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Abstract

This thesis describes techniques for the construction of face models for both computer graphics and
computer vision applications. It also details model-based computer vision methods for extracting and
combining data with the model. Our face models respect the measurements of populations described by
face anthropometry studies. In computer graphics, the anthropometric measurements permit the
automatic generation of varied geometric models of human faces. This is accomplished by producing a
random set of face measurements generated according to anthropometric statistics. A face fitting these
measurements is realized using variational modeling. In computer vision, anthropometric data biases
face shape estimation towards more plausible individuals. Having such a detailed model encourages the
use of model-based techniques—we use a physics-based deformable model framework. We derive and
solve a dynamic system which accounts for edges in the image and incorporates optical flow as a motion
constraint on the model. Our solution ensures this constraint remains satisfied when edge information is
used, which helps prevent tracking drift. This method is extended using the residuals from the optical flow
solution. The extracted structure of the model can be improved by determining small changes in the
model that reduce this error residual. We present experiments in extracting the shape and motion of a
face from image sequences which exhibit the generality of our technique, as well as provide validation.
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Supervisor: Dimitris Metaxas

This thesis describes techniques for the construction of face modelsfor both computer
graphics and computer vision applications. It also details model-based computer vision
methods for extracting and combining data with the model. Our face models respect
the measurements of populations described by face anthropometry studies. In computer
graphics, the anthropometric measurements permit the automatic generation of varied ge-
ometric models of human faces. This is accomplished by producing a random set of
face measurements generated according to anthropometric statistics. A face fitting these
measurements is realized using variational modeling. In computer vision, anthropomet-
ric data biases face shape estimation towards more plausible individuals. Having such a
detailed model encourages the use of model-based techniques—we use a physics-based
deformable model framework. We derive and solve a dynamic system which accounts for
edgesin the image and incorporates optical flow as a motion constraint on the model. Our
solution ensures this constraint remains satisfied when edge information is used, which
helps prevent tracking drift. This method is extended using the residuals from the optical
flow solution. The extracted structure of the model can beimproved by determining small
changesin the model that reduce this error residual. We present experimentsin extracting
the shape and motion of aface from image sequences which exhibit the generality of our

technique, as well as provide validation.
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Chapter 1

| ntroduction

Appropriate combinations of statistical and constraint-based geometric methods permit
modeling and estimation of complex objects. This thesis investigates such combinations
inthe modeling and estimation of human faces. By concentrating on such aparticular class
of objects, we show how model-based techniques can exploit existing data and knowledge

about facial shape and motion.

Across the human population, the faces of individuals exhibit a great deal of varia-
tion in their appearance, but they all still have a good dea of structure in common. A
similar statement can be made about facial motion—while it is complex and non-rigid,
the motions are still fairly constrained. The work presented here takes advantage of this
commonality—information concerning the appearance of faces is either used by or en-

coded directly into the model. Thisresultsin more successful and robust systems.

Aside from being agood testbed for our model -based techniques, faces are interesting
on their own, playing an important role in a wide range of applications. Graphical model-
ing of faces has obvious applicationsin the entertainment industry for character animation
and in ssimulations involving people. Vision research on face tracking contributes toward
the ability to monitor auser’s attention and reactions automatically and without intrusion,
and thus would have obvious benefits in human-machine interaction. Other applications

range from interactive entertainment, to security, to ergonomic studies.
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Model specificity

Modeling commonality in computer graphics and computer vision is notorioudly difficult.
It requires making a decision concerning the trade-off between model specificity and gen-
erality. Asaresult, models capable of representing the shape of an arbitrary face can be

categorized based on the restrictiveness of their coverage:

e Unconstrained coverage. The face model has enough flexibility (in terms of de-
grees of freedom) to represent any face, athough the model can also represent many
other objects that are not faces (atable or a banana). Representation schemes that

fall into this category are typically free-form meshes.

e Constrained coverage. In addition to having the flexibility to represent any face,
the model has a bias towards representing actual faces, but can still represent objects
that are not faces. A good example of a representation in this category is a model
based on principal component analysis (PCA), which is atechnique based on statis-
tical analysis of examples. The manually constructed face model used in thisthesis
for shape estimation (described in Chapter 4) aso fallsin this category.

e Generative. For this most restrictive category, models can represent any face, but
include a probability distribution on the faces represented (as to the likelihood of
each represented face). This dissertation describes the first generative model for

facesin Chapter 3.

The choice of which classisappropriateislargely application dependent. The state-of -
the-art model s used for face tracking tend to be model swith constrained coverage models,

although unconstrained model s are sometimes used as well.

M odel-based techniques

Using detailed model s rai ses distinctive challenges and opportunities for computer vision.

In the absence of knowledge about the objects being observed, vision techniques often
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will extract information for each image pixel. Improvementsto thisindividual pixel view
simply exploit the spatial or temporal coherency expected in most situations. Of course,
such assumptions carry with them the added complexity of segmentation—finding the
boundaries of coherent regionsin space and time [NH87]. Meanwhile, in the presence of
knowledge concerning the observed objects, such as membership in a particular class of
objects, model-based vision techniques extract information for each degree of freedom of
aparticular model.

The use of model-based techniques introduce a new set of problems, however. The
most significant of these is the problem of maintaining alignment of the model with the
image. Even though an accurate observation model might be available, should its current
state not correspond with the current state of the observed object, the advantage of using
amodel islost (and its use may even be detrimental). Another difficulty arises from po-
tential interdependencies between parameters, and possi ble ambiguity between two model
configurations (which have similar appearances, but different parameter values). This be-
comes more important to address as model complexity increases. Asaresult, information
extracted in amodel -based framework must be used carefully, and combined in away that
respects these interdependencies.

The model-based techniques described in this dissertation are applied to faces (but
can be applied more generally). Face tracking is a particularly natural testbed for our re-
search for two reasons. The actual shape and motion of faces makes edge and optical flow
information easy to use and advantageous to combine; and the abundance of data describ-
ing human face shape [Far94] facilitates the development of three-dimensional models of

faces with separabl e shape and motion parameterizations.

Constraintsand Modeling

The main techniques in this thesis each use some form of constraints on the model to
achieve the desired goal. The following is a brief description of the different uses of

constraints used in thisthesis.



Variational modeling techniques use geometric constraints: these constraints restrict
the coverage of a model (either shape or motion) by limiting the space of acceptable
parameter combinations. Typically, solving for parameters which satisfy geometric con-
straints involves some form of constrained optimization. Existing uses of these techniques
range from surface design to the modeling and estimation of articulated rigid motion.
In this document, geometric constraints are used to construct a generative face model—
where the coverage of the model is limited by geometric constraints derived from anthro-
pometric data

The model-based tracking technique described in this thesis uses a data-based con-
straint on the estimated parameters as a means of combining information. In other words,
the optimization problem that is solved to determine the current estimate is converted into
a constrained optimization problem, where the constraint is used to disambiguate the so-
lution. Using one source of data to constrain the solutions from another source can help
when the optimization problem involved in the unconstrained solution is difficult. For ex-
ample, we use optical flow information to constrain a template alignment problem (based
on edges). By limiting the choices available to the alignment, many of the local minima
of this problem are avoided.

Finally, we can use amodel constraint, which istheimplicit constraint amodel places
by restricting possible configurationsto those given by the model. The method of regular-
izationin computer visionis probably the best known example of using amodel constraint.
For the work here, we use a model constraint to assess and improve the accuracy of the
current estimate. Later, we present how we can improve the shape estimate by making

small adaptations which force the motion observations to agree with the data.

1.1 Contributions

This dissertation describes face model construction processes, as well as techniques for

the use and combination of different sources of model-based information for estimation
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and tracking. For model construction, knowledge of facial geometry comesin the form of
measurements from face anthropometry [Far94, KS96], the science dedicated to the mea-
surement of the human face. Anthropometric studies such as [Far87, Far94] provide data
on the shape of faces which help characterize the distinctive features of faces from a par-
ticular population. Thisrepresentsthefirst significant use of datafrom face anthropometry

studies in both graphics and vision.

In computer graphics, we present a system which is capable of generating distinct
and plausible face geometries automatically. The system generates a set of random facial
measurements from statistics gathered from face anthropometry studies [Far87, Far94].
Armed with aset of measurements, variational modeling techniquesare used to construct a
face geometry that realizes the measurements. Variational modeling is a surface modeling
tool that employs constrained optimization methodsto find thefairest surface that satisfies
a set of geometric constraints. In this case, afair surface is one that minimizes bending
away from a prototypical face, and is subjected to a set of geometric constraints that are

an abstraction of the measurements performed by anthropometrists.

Face model construction in computer vision is a considerably different task, where
simplicity in parameterization takes precedence over appearance. The generative model
described above is not appropriate for use by avision system. Instead, the parameteriza-
tion of our mode! is constructed by hand—a series of localized deformations are specified
that allow for shape variations observed in anthropometry studies [Far94]. During shape
estimation, the data from these studies is used to bias the model towards more likely indi-
viduals, by minimizing deviation from expected values of anthropometric measurements.
Since motion tracking is aso a goal of this vison system, a motion parameterization is

also constructed (by hand) for asmall set of facial expressions.

The shape and motion estimation of model parametersis realized using a deformable
model framework [Met96]. This framework uses a parameterized face model, which has
parameters for both the shape of the face (the unchanging appearance of an individual) as

well asits motion (facial expressions and displays). Shape estimation is performed using
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edges found in the image, guided by knowledge of where edges are likely to occur.

The apparent motion of brightness patterns in an image—the optical flow—provides
a congtraint on the motion of a deformable model. We derive and solve a system that
incorporatesthis constraint, whichisthen used for model tracking. The solution containsa
familiar term found in other model-based optical flow tracking work. However, it contains
an additional term which maintains the optical flow constraint in the presence of other
data (in this case, edges). The use of this constraint enforcement term greatly improves
the robustness of the tracking results by producing a motion estimate that is consistent
with all observed data. This fruitful combination of optical flow information with edges
combats error accumulation in model tracking.

The model-based optical flow solution also provides an estimate of how much error is
present (aresidual). We present a model-based technique which improves the shape and
motion estimate by minimizing this residual. The use of the model gives meaning to the
error estimate, which describes how the observed motion deviates from what the model

can represent.

1.2 Oveview

This document proceeds as follows. Chapter 2 provides background information on the
use of a deformable model framework for computer vision, and a review of model-based
techniques using such a framework. Also included is a summary of Farkas's system of
anthropometric face measurements, and a description of variational modeling.

The next two chapters describe the construction of face models for graphics and vi-
sion, and how data from anthropometry studies can be used in their formation. Chapter 3
describes our generative face model. It describes our method for generating sets of mea-
surements consistent with population groups. Thisleadsto adiscussion of how variational
modeling can be used to produce face geometries that realize a set of generated measure-

ments. In Chapter 4, a model suitable for shape and motion estimation is described. In
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contrast to the generative face model, this face is geared more towards vison. While its
parameterization is hand constructed, it still relies on face anthropometry datato maintain
aconsistent geometry.

The face model developed in Chapter 4 is used in a deformable model framework for
the shape and motion estimation of human subjects, which is the subject of Chapter 5.
The optical flow constraint equation [Hor86] is reformulated as a constraint on the motion
of the deformable model. This constrained system is solved to produce a model-based
optical flow solution which alowsfor the addition of other data sources (in this case, edge
data), so that the optical flow constraint is maintained. Kaman filtering is then used to
allow small violationsin this optical flow constraint, given that the optical flow measure-
ments are noisy. Chapter 6 then describes a technique which can be used to improve the
shape and motion estimates by reducing the error residual s from the optical flow constraint
solution. A series of vision experiments using this framework are then presented, which
exhibit the generality, as well as validate the accuracy of these techniques. Finally, Chap-
ter 8 summarizes the contributions of this work, along with a discussion of future work

possibilities.






Chapter 2

Background

This chapter reviews a variety of topics that are touched upon elsewherein this document.
The focus of this dissertation is on modeling in graphics and vision. Central to both of
these areas istheissue of representation: how to specify shape and motion for a particul ar
class of objects. More specific to computer vision isthe process of estimation, whose goal
isto minimize the deviation between the model and data. For the applications here, we use
physical smulation as an analogy for optimization, which permits a powerful set of exist-
ing technigues to be borrowed from physics. It also couples these with existing geometric
techniques from vision. Thisis often called a physics-based framework, or a deformable
model framework [MT93, PS91, TWK88], and is the subject of Section 2.1. Thisisfol-
lowed by descriptions of model -based shape estimation using edges and model -based mo-
tion estimation using optical flow information in Section 2.2.1. Later in Chapter 5, these
techniques will be combined together in a deformable model framework.

These modeling techniques say little about the actual construction of a model. This
process can become quite difficult, especially for face models. Part of thisdifficulty comes
from the complex variability in measurements seen in human faces and face models. This
variability has been systematically studied in the field of anthropometry.

Section 2.3 provides a brief review of anthropometry—the biological science of hu-

man body measurement. The procedures for measurement in anthropometry are precisely
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specified, alowing data between individuals to be successfully compared, and for useful
statistics of population groups to be derived. Later in this document, our approaches rely
on thislarge body of existing data that describes the shapes of people’sfaces. In graphics,
it will allow for the automatic generation of varied face geometries. Invision, it provides
information about the shapes of faceswhich is used to bias the estimation process towards

more likely occurring individuals.

The use of anthropometric data for graphics model generation is described in Chap-
ter 3. This datais supplied as input to modeling techniques which allow the low-level
parameters of a shape to be determined indirectly. In particular, variational modeling
techniques are used, which is the subject of Section 2.4. We use variational modeling to
obtain a surface that conforms to a set of anthropometric measurements while retaining

characteristics that all faces share.

2.1 Deformable modelsfor computer vision

Deformable models [MT93, PS91, TWK88] are parameterized shapes that deform due
to forces according to physical laws. For vision applications, physics provides a useful
analogy for treating shape estimation [MT93], where forces are determined from visual
cues such as edges in an image. The deformations that result produce a shape that agrees
with the data.

The use of physics also makes available additional mathematical tools. For example,
smooth surfaces that interpolate a set of sparse data can be determined by associating
an energy with the surface (which is minimized) [TWK87], and produces a method of
regularization useful as a data fitting technique. Constraint techniques from physics have
been used to form articulated rigid models [MT93], and will be used in Chapter 5 to
incorporate optical flow information. The next section describes how amodel is specified

and represented in adeformable model framework.
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2.1.1 Mode formulation

The shape of the deformable model x is parameterized by a vector of values q (sometimes
called generalized coordinates) and is defined over a domain Q which can be used to
identify specific points on the model; a particular point on the model iswritten as x(q; u)
with u € Q, although the dependency of x on g is often omitted.

The model x is formed by applying a deformation function to an underlying shape s

(which has parameters gs). An example shape primitiveis the ellipsoid:

ay COSU COSV
Sallip ((ax, @y, @2); (U,v)) = | aycosusinv

. (2.1)
azsSnu

T TT

where Q = {(u,v) € [—5, ﬂ X [O,ZT[)}
which has parameters ax, ay and a, for scaling in the x, y and z directions, respectively.
While the shape of thismodel islimited to ellipsoids, its coverage can be extended by ap-

plying deformations. The deformation function T : RY x R3 — R3 deformsthe underlying
shape based on the q deformation parametersin qr, so that:

X(g;u) =T (qgr; s(ds;u)) (22

Here, T is defined as a composed sequence of deformation functions (such as bending or
scaling deformations) [MT93]. To alow for a more streamlined discussion here, it can
also contain rigid motions (trand ations and rotations), for example:

Trigid ((CT, GT)T;X) =C+RX (2.3)

where ¢ specifies the trandlation vector, and R isarotation matrix given by the quaternion
0.
The kinematics of the model can be determined in terms of the parameter velocities q.

As the shape changes, the velocity at a point u on the model is given by:
X(u) =L(q;u)q (24)
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where L = 0x/dq is the model Jacobian [Met96]. Note that the dependency of L on q
is not aways written, for reasons of conciseness. For cases where x is defined using a
sequence of deformation functions, the Jacobian can be computed using the chain rule as
in Appendix A.

A good geometric intuition for L (u) is obtained by noting that each column of L cor-
responds to a particular parameter in g, and is a three-dimensional vector which “points’
in the direction that x(u) moves as that parameter is increased—of course, it is only a
linear approximation to the actual motion.

There really isn’t anything special about the models used here. Basically, any explic-
itly parameterized model will work. For model-based applications, the construction of
the parameterization often captures the geometric structure for the class of objects being
modeled, whether constructed automatically or by hand, so it is the choice of what model
to use that is important. How to choose an appropriate model is largely an engineering

decision.

2.1.2 Perspective projection of the model

When modeling an object viewed in images, x needs to include a camera projection, re-
sulting in a two-dimensional mode! (called xp), which is projected flat from the original
three-dimensional model. Under perspective projection (with acamerahaving focal length
f), thepoint x(u) = (x,y,2) " projectsto theimage point xp(u) = ;(x, y)'.

The velocities of model points projected onto the image plane, xp, can be found in

terms of x. The Jacobian L p = dxp/0q is given by:

folw) = 52w = (FPL@)) 4= Lo @5)

where

axp[f/z 0 fx/zz} 26)

28 0 f/z —fy/Z2
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The matrix in (2.6) projects the columns of L (which are three-dimensional vectors) onto

the image plane.

2.1.3 Estimation using dynamics

The models defined earlier become useful for applications such as shape and motion es-
timation when used in a physics-based framework [Met96]. These techniques are aform
of optimization whereby the deviation between the model and the datais minimized. The
optimization is performed by integrating differential equations derived from the Euler-

L agrange equations of motion:
M@+Dg+Kg=fq (2.7)

where M, D and K are mass, damping and stiffness matrices, respectively, and fq are
generaized forces, derived from data, and applied to the model.

When used as an optimization tool, the full generality of these equationsis not needed.
Simplification can provide a more efficient and stable solution to the optimization—the
mass matrix M is often zeroed in estimation applications, since model inertia can pro-
duce oscillations around the desired minimum. This simplification also has the desirable
property that the model state no longer changes once al forces vanish or equilibrate. The
damping matrix D specifies how energy is dissipated, and is typically smplified to be
diagonal (or the identity), to allow for fast solution. However, for situations where there
is afairly significant interdependency between the parameters in g, the damping matrix
(asD = [L L) [Met96] can aleviate this problem. Although inverting D then becomes
necessary for the solution of the dynamic system. The use of the stiffness matrix K is
associated with the quadratic strain energy %qTK g, and provides a measure of “fairness’
of the model (preferred surfaces minimize bending energy), allowing for reasonable solu-
tionsin situations where the data is sparse (relative to the number of model parameters) or
particularly noisy.

For the applications here, the mass term is omitted, and the damping is set to be the
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identity. Additionally, no stiffness term is used since the models used here have afairly
small set of parameters. This results in the following simplified dynamic equations of

motion:

q="q (2.8)
where the applied forces fq are computed from three-dimensional forces fzp and two-

dimensional image forces fimage as:
fq= / (L (W) "fap(u) + L p(u) fimage(u) ) dlu
NZ( )" fap(uj) +Lp(uj) fimage(uj))

The distribution of forceson the model is based in part on forces computed from the edges

(2.9)

of an input image [Met96]. Using L and L p, the applied forces are converted to forces
which act on g and are integrated over the model to find the total parameter force fq.
The dynamic system in (2.8) is solved by integrating over time, using standard (explicit)
differential equation integration techniques. Euler integration is used in [Met96].

2.2 Mode-based estimation

The use of parameterized models, such as those introduced in Section 2.1, suggest a
model-based approach to estimation. Instead of extracting information per image pixel,
or per node (in a mesh), a model-based approach extracts information for each degree of
freedom in the model parameterization—for each model parameter (typically there arefar
fewer parametersin the model than are needed to represent arbitrary shapes). This section
summarizes previous approaches for model-based shape estimation using edge informa-

tion and model-based optical flow computation.

2.2.1 Model-based shape estimation

The model-based extraction of shape using image edge information can be accomplished
using the physics-based framework described in Section 2.1. All that is needed isamethod

14



for determining forcesfromimage data. With that, and given an adequate mode! initializa-
tion, these techniques will aign features on the model with image features, determining
object pose and shape parameters. The remainder of this section describes current ap-
proaches for data-force computation.

There are two basic approaches to this problem in this framework—both assign forces
derived from image features that are applied to particular model locations. The two issues
to address here are force determination (given the data, determine an appropriate force),
and force assignment (what model |ocations should be affected by thisforce). Upon each
solution iteration, these forces are determined again, and re-assigned. A successful fit has
the model -data alignment improving (and converging) over a series of iterations.

The first approach involves determining a force distribution designed to “attract” the
model towards regions with significant image intensity gradient. Given the image |, the

resulting two-dimensiona potential field at image location (x,y) is given by [TWK88]:
PXx,y) = = [[0(Go *1) (%)l (210)

where the image | is blurred by convolution (x) with the Gaussian Gg of radius o, and
as aresult produces alarger area of influence in the image, permitting a greater deviation
between the actual model position fromitsinitialized position. Theimage processing steps
are shown in the first three frames of Figure 2.1. This potential results in the following

force distribution on the image, with weighting factor [3:

f(Ucontour) = —B- OP(X,y) (2.11)

where Ucontour iS the point on the model that projects to the image position (x,y), and is
nearby (measured along the surface) an occluding contour of the observed object [Met96]
(if there is no nearby occluding contour, this forceis not applied). Thisis asimple three-
dimensional analog of using thisimage potential for two-dimensional “snakes’ [TWK88].
The resulting force distribution from this potential for the examplein Figure 2.1 is shown
in the rightmost frame, where it can be seen how the field would tend to draw the model

into alignment with nearby image features.
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Intensity image Gradient magnitude image Blurred gradient image Gradient of potential field

Figure 2.1: Force distribution derived from image features

An aternative method of force determination is possible when a more detailed model
isused. With more detail, comes knowledge of where image edges are likely to occur—
edges are caused by the presence of occlusion boundariesand highly curved regionson the
model surface. In this case, instead of producing an image gradient force field, forces are
applied directly to the closest edge-producing point on the model from each edge pixel.
This is the reverse matching problem: finding a mapping from model features to image
edges (as opposed to a mapping from image edges to features).

Chan and Metaxas [CMD94, Met96] determine the image edges using a qualitative
shape recovery process [DPR92], which extracts sets of pixel coordinates E; for each
identified edge segment i. Then, the set of edge-producing model locations M; C Q (cor-
responding to the edge set E;) is determined using occluding contours and surface creases.
Correspondences between pixelsin Ej and model pointsin M; are determined by aproxim-
ity based assignment between the model locationsand each image pixdl e€ Ej: um € Mj is
the point on the model that is closest to eintheimage. This choiceresultsin thefollowing

long-range forces (weighted by [3):

f(um) =B (e—xp(um)) (212)

As seen in Figure 2.2, forces are assigned to feature-producing model locations to the
nearest edge feature.

While the first of the techniques listed here can be used for any model (even a free-

form mesh), the second method requires afairly detailed model, so that the predicted edge

locations arefairly accurate. However, by using long range forces, the model can be much
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Figure 2.2: Force assignments derived from image features and predicted model locations

farther from initialization position using the second technique, showing the advantage of

ahaving a detailed model.

2.2.2 Model-based optical flow

Optical flow information, which describes the apparent motion of brightness patterns in
an image, is often used for object tracking in vision. Direct use of thisinformation often
requires assumptions about the objects being viewed. Most common, is the assumption
that particular locations on viewed objects do not change brightness. This brightness
constancy assumption allows the formulation of the well-known optical flow constraint
equation [Hor86] for theimage | (the assumption manifestsitself as the zero on the right-
hand-side):

u] [ u]+|to (2.13)
\'

where I = [l ly] arethe spatial derivativesand I; isthe temporal derivative of theimage
intensity. u and v are the components of the image velocities. The following is a brief
discussion of how a model-based approach reformulates (2.13) in terms of the model
parameters g, which replace the image velocities. For consistency, this discussion will

use the notation described in Section 2.1, which is different (and more compact) from that
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used in previous model-based optical flow work.

For amodel under perspective projection, there exists a unique point u on the model
that corresponds to each pixel (provided it is not on an occluding boundary). The crucia
observation isthat in amodel-based approach, u and v are identified with the components

of the projected model velocities Xp(u):

[ ) ] = Xp(u) = Lp(u)q (214)

The model-based optical flow constraint equation in the image can be found by rewrit-
ing (2.13) using (2.14):

OIL p(u)g 41t =0 (2.15)

Formulations which are basically identical to (2.15) (although are often confined to
rigid motion) can befound in [Adi85, BAHH92, CAHT94, HW88, LRF93, NH87, NS85].
Negahdaripour and Horn [NH87] refers to a formulation such as this as a direct method
for motion estimation. The discussion of (2.15) in [BAHH92, NH87, NS85] is specialized
for rigid motion, and while still general, requires alengthy derivation by hand. Using the
modular shape formulation described in Section 2.1 allowsfor more ssmple derivations of
(2.15), and is more similar to the description in [CAHT94, LRF93]. (Another difference
between these techniquesis noted by their use of either Euler angles or quaternions as the
representation for the rotations).

There are a number of techniques available for solving (2.15). The most common is

the iterative minimization of the quadratic error measure, summed over a set of pixels:
rrgnz(mlin(ui)q+|ti)2 (2.16)
|

which is the approach taken in [BAHH92, HW88, NH87, NS85]. An alternative method
solves the | east-squares problem using the pseudo-inverse of the matrix formed by stack-
ing a set of equations like (2.15) for aset of pixels[CAHT94, NS85, LRF93]:

Bg+1t=0 (2.17)
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which is solved as;

q=—B"l (2.18)
where B isthe pseudo-inverse of B [Str88]. Thisapproachisbasically aone-step version
of the iterative approach above. This version linearizes by assuming L p, is constant for
the entire time step (instead, with the above iterative solution, L is re-evaluated at each
iteration step per time step).

Once a solution is obtained, image warping techniques can be used to improve the so-
lution [BAHH92], which can to some degree correct for the linearization performed (such
as in the formation of L p), or for the determination of large motions (using a coarse-to-
fine strategy). Given the solution, the current image is warped to “undo” the current flow
estimate, alowing a more detailed estimate to be obtained as increments to the origina
solution, using the warped image.

There are a number of benefits obtained when using a model-based optical flow for-
mulation in place of an image-based method (should the application permit their use).
By restricting the extracted motion to a particular motion parameterization, the problem
of flow field determination is no longer underconstrained®. 1mage-based techniques re-
quire the presence of smoothness conditionsto determine a solution, and even worse, may
reguire a motion segmentation to determine the boundaries of where the smoothing is
performed. Model-based techniques are able to extract flow information, even when the
useful information is sparse, and do not need to impose any smoothness constraints to
determine a solution (since they are implicit in the model).

Without the use of position information, however, the tracking solution will drift; solv-
ing (2.15) over a sequence of frames involves integrating a velocity. Chapter 5 will de-
scribe a technique for combining model-based optical flow solutions with edge informa-

tion, and therefore prevents this tracking error accumulation.

1This assumes, of course, that the motion parameterization of the model does not have an extremely
large set of motion parameters. Thiswould preclude the use of model-based techniques over image-based
techniques.
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Aside from tracking, it is also possible to use a model-based optical flow formula
tion to estimate the model structure. In particular, Koch [Koc93] describes a model-based
framework which uses optical flow information to estimate the rigid trandation and rota-
tion of amoving face, and adapts the shape of the face to account for the motion discrep-
ancy. Chapter 6 presents an aternative method of structure estimation from optical flow

information.

2.3 Face anthropometry

Anthropometry is the biological science of human body measurement. Anthropometric
data informs arange of enterprises that depend on knowledge of the distribution of mea-
surements across human populations. For example, in human-factors analysis, a known
range for human measurements can help guide the design of products to fit most peo-
ple [Doo82]; in medicine, quantitative comparison of anthropometric data with patients
measurements before and after surgery furthers planning and assessment of plastic and re-
constructive surgery [Far94]; in forensic anthropol ogy, conjectures about likely measure-
ments, derived from anthropometry, figure in the determination of individuals appearance
from their remains[Rog84, Far94]; and in the recovery of missing children, by aging their
appearance taken from photographs [Far94]. The use of anthropometry datain this dis-
sertation describes a similar use of anthropometry in the construction of face models for
computer graphics and computer vision applications.

In order to develop useful statistics from anthropometric measurements, the measure-
ments are made in a strictly defined way [Hrd72]. The rest of this section outlines one
popular regime of such measurements and the information available from analyses of the
resulting data.

Anthropometric evaluation begins with the identification of particular locations on a
subject, called landmark points, defined in terms of visible or palpable features (skin or

bone) on the subject. A series of measurements between these landmarks is then taken
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using carefully specified procedures and measuring instruments (such as calipers, levels
and measuring tape). As aresult, repeated measurements of the same individua (taken
a few days apart) are very reliable, and measurements of different individuals can be

successfully compared.

Farkas [Far94] describes awidely used set of measurements for describing the human
face. A large amount of anthropometric data using this system isavailable [Far87, Far94].
The system uses atotal of 47 landmark points to describe the face; Figure 2.3 illustrates
many of them. The landmarks are typically identified by abbreviations of corresponding
anatomical terms. For example, the inner corner of the eye is en for endocanthion, while

the top of the flap of cartilage (the tragus) in front of the ear ist for tragion.

Five of the landmarks determine a canonical coordinate system for the head. The
horizontal plane is determined by the two lines (on either side of the head) connecting
the landmark t to the landmark or (for orbitale), the lowest point of the eye socket on
the skull. The vertical mid-line axis is defined by the landmarks n (for nasion), a skull
feature roughly between the eyebrows; sn (for subnasale) the center point where the nose
meets the upper lip; and gn (for gnathion), the lowest point on the chin. In measurement,
anthropometrists actually align the head to this horizontal and vertical, in what is known
as Frankfurt horizontal (FH) position [Far94, KS96], so that measurements can be made

easily and accurately with respect to this coordinate system.

Farkas's inventory includesthe five types of facial measurements described below and
illustrated in Figure 2.4:

¢ the shortest distance between two landmarks. An example is en-ex, the distance

between the landmarks at the corners of the eye

e theaxial distance between two landmarks—the distance measured aong one of the
axes of the canonical coordinate system, with the head in FH position. An example
is v-tr, the vertical distance (height difference) between the top of the head (v for

vertex) and hairline (tr for trichion).
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Figure 2.3: Anthropometric landmarks on the face [Far94]

¢ thetangential distance between two |andmarks—the distance measured along a pre-
scribed path on the surface of the face. An exampleisch-t, the surface distancefrom
the corner of the mouth (ch for cheilion) to the tragus.

e theangle of inclination between two landmarks with respect to one of the canonical
axes. An exampleistheinclination of the ear axis with respect to the vertical.

¢ the angle between locations, such asthe mentocervical angle (the angle at the chin).

Farkas describes a total of 132 measurements on the face and head. Some of the
measurements are paired, when there is a corresponding measurement on the left and
right side of the face. Until recently, the measurement process could only be carried out
by experienced anthropometrists by hand. However, recent work has investigated 3-D
range scanners as an alternative to manual measurement [BA96, Far94, KS96].

Systematic collection of anthropometric measurements has made possible avariety of
statistical investigations of groups of subjects. Subjects have been grouped on the basis
of gender, race, age, “attractiveness’ or the presence of a physical syndrome. Means and
variances for the measurements within a group, tabulated in [Far94, Gor89], effectively
provide a set of measurements which captures virtualy al of the variation that can occur

in the group.
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Figure 2.4: Example anthropometric measurements [Far94]

In addition to statistics on measurements, statistics on the proportions between mea-
surements have aso been derived. The description of the human form by proportions
goes back to Direr and da Vinci; anthropometrists have found that proportions give use-
ful information about the correlations between features, and can serve as more reliable
indicators of group membership than can simple measurements [Far87]. Many facia pro-
portions have been found to show statistically significant differences across population
groups [Hrd72]. These proportions are averaged over a particular population group, and
means and variances are provided in [Far87]. An example proportion is shown in Fig-
ure 2.5, which states that the width of the mouth ch-ch is roughly three-halves the size of
the width of the nose (at the base) al-al.

Later, in Chapter 3, Farkas's anthropometry is applied to the generation of distinct,
plausible face geometries. Face anthropometry data is also used to bias a face model
towards more likely individuals during shape estimation in Chapter 4. Both of these ap-
plications involve the representation of anthropometric measurements, in order to apply
Farkas's anthropometry. Additional techniques are developed in Chapter 3 to dea with
the fact that only limited information is provided by these sources (means and variances

for measurements and proportions). Of course, with more detailed information, such as
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Figure 2.5: Example anthropometric proportion

measurement and proportion covariance data, as well as fitted distributions (instead of

assuming Gaussian), different methods would be used.

2.4 Variational modeling

Traditional work on surface modeling provides the designer with “handles’ for modifying
the shape, which are directly related to the underlying representation. In an attempt to
move away from this paradigm, work on variational shape design attempts to provide a
more abstract level of control over the shape to the designer, such as “construct a smooth
surface which passes through these pointsand containsthiscurve” [CG91, GC95, HKD93,
MS92, TQ94, WW92, WW9].

This section provides abrief overview of variational modeling. Later in this document
(in Chapter 3), the underlying method used for the automatic generation of varied face ge-
ometrieswill draw on the techniques presented here, using anthropometric measurements

(described in Section 2.3) as a means of abstract specification of shape.

Variational modeling allows the specification of shape to be separated from the rep-
resentation of shape. This abstraction is realized using standard optimization techniques,

where the desired shape is the solution to a problem rooted in the calculus of variations.
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Instead of directly manipulating the underlying representation, the designer supplies con-
straints on the desired shape, which are taken into account during the optimization. Typi-
cally these constraints only determine asmall number of the degrees of freedom necessary
to describe the entire shape—the remaining degrees of freedom are determined by mini-
mizing an objective function which specifies the fairness of the shape. Whilefair is often
interpreted as “visually pleasing,” its use here can be application dependent. For a gen-
eral surface, these optimization problems have no closed-form solutions. To make the
problem tractable, a shape representation method is chosen from the Computer Aided Ge-
ometric Design (CAGD) literature which confines the resulting surface to be of a certain
class. Furthermore, the objective function is often approximated and discretized to allow
its efficient solution.

Use of awide variety of constraint types and objective functions can be found in the
variational modeling literature. The presentation here, however, will focus on the frame-
work in [WW92]. The next few sections contain discussions of the surface representations
used in variational modeling frameworks, how constraints are specified for these surfaces,

and how these surfaces are faired in the presence of these constraints.

2.4.1 Linear surfacerepresentations

As stated earlier, the surface representation schemes used in variational modeling do not
allow for arbitrary surfaces to be specified. Instead, the representation methods define a
surfacein termsof afinite number of degrees of freedom (the control points)—thisisknown
as the finite-element method [Zie77]. If the representation scheme is flexible enough, the
resulting surfaces can closely approximate the true solution to the variational problem.
Parametric surface modeling schemes map R? to surfacesin R3. The parametric sur-
face sis defined over atwo-dimensional domain with parameters u and v using the differ-

entiable functions x(u, v), y(u,v) and z(u, v):
$0.9) = (X0v)yWV.209) wvela (219)
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where ||sy(u,Vv) x s,(u,V)|| # 0for al (u,v). s, and s, denote parametric derivativesin the
u and v directions, respectively.

Variational modeling frameworks typically use a surface representation scheme for
s(u,v) which isalinear combination of control points p weighted by a set of basis func-

tions b:
Swv) = 3 b(uvp (2.20)

Since any point s(u,v) on the surface s depends linearly on its degrees of freedom (the
control points p), finding solution of variational problems can be made quite efficient. In
thisdocument, the particular surface representation scheme used will be B-splines[Far93],

which have arectangular domain (such as [0, 1] x [0, 1]).

24.2 Fairing

Measures of surface fairnessare formulated as alocal measure, and areintegrated over the
entire shape. The integral of these objective functions are a single positive value, evaluat-
ing to zero for the fairest shape possible. A fairing process will minimize this functional,
in the presence of constraints. Most variational modeling systems use quadratic objective
functions (for efficiency reasons), which require approximation and linearization.

The most prevalent surface objective function is the thin plate functional, which ap-
proximates the bending energy in a thin elastic sheet—it is defined in terms of surface
curvatures. Surface curvature (measured at a particular surface point, in a particular tan-
gent direction) measures the rate of change of tangent inclination. A basic result from
differential geometry tellsusthat curvatureis a smoothly varying function which takes on
maximum and minimum values K, and K2 (principal curvatures) in orthogonal directions
& and & (principal directions). These curvatures are computed using the first and second
fundamental forms from differential geometry [dC76].

The thin-plate function is the sum of the principal curvatures squared, and integrated
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over the entire surface:
E(s) = / (k% +k3) dudv (2.21)

However, due to its highly non-quadratic character (that is, non-quadratic in p), thisfunc-
tion is often replaced by the quadratic approximation:

Eapprox(s) = / (Suu* Suu=+ 28w+ Suv + Sw - Sw) dudv (2.22)

(double subscripts on s denote second parametric derivatives). However, this function
tendsto poorly approximate the thin-plate functional when the parameterization area does
not scale uniformly onto the surface. A first order membrane term (scaled by a) is added
to penalize non-uniform parameterizations:

Eapprox(S) = / [ (Suu-Suu~+2Suw - Sw+Sw-Sw) +
(2.23)

o (Su-Su+25u-Sv+Sv-Sv)| dudv
Typicaly, a isjust large enough to prevent approximation error. Thisis the surface func-
tional used in most variational frameworksincluding [GC95, HKD93, WW92, WW94].
Clearly, E(s) isafunction of p (the mode! degrees of freedom). Egpprox(S) is quadratic
in p for linear surface schemes [GC95, HKD93, WW94], so E can be written as:

1
Equadratic(S) = QpTKp (2.24)

where K isamatrix derived from the shape representation. For linear surface representa-
tions, K can usualy be found explicitly (given a particular mesh topology). A derivation
of K for B-splinesis provided in [WW92]. Due to the local refinement properties of most
shape representations used in these applications, K will be sparse (mesh nodes have only
afew neighbors), containing only O(dimp) non-zero entries, alowing for more efficient
optimization techniques.

The objective function can also be measured with respect to the difference from a

prototype shape s [WW92] (with control pointsp’), so that the minimizationis performed
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with respect to (s— '), resulting in:

Eqearaic(5—5) = 5(—P) K(p—p) (225

When minimized, this produces shapes that retain characteristics of the prototype, since s
is now the fairest possible surface. Effectively, this objective function measures bending

away from the prototype surface.

2.4.3 Constraints

The constraints give the user control over the geometry of the surface. They provide a
layer of abstraction between the underlying shape representation and parameterization so
that the user can make statements like “the curve must pass through this point” and “the
surface should contain this curve” A survey by Nowacki, Liu and Lu [NLL90] reviews
types of constraints used with polynomial curve and surface schemes.

Of course, given a shape with a fixed number of degrees of freedom, it might not
always be possible to satisfy al the constraints. This is solved by smply refining or
subdividing the shape to add the degrees of freedom necessary [GC95, WW92, WW94].
Another possibility isthat the constraints may be dependent, or even worse, might conflict.
Automatic solutionsto these issues are left as open problems (or are ignored) in the above
mentioned work.

The user specifies aset of constraints, each taking the form:
A(p)=0 (2.26)

where A is afunction, reaching only zero when the constraint is satisfied. For example, to
constrain aparticular location on asurface (U, Vo) to pass through a point x, the constraint
is.

S(up,Vo) —x=0 (2.27)

When using linear surface representations, point constraints are linear in p. If al of the

constraints are linear, they can be accumulated into a matrix equation, with each row of
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the matrix corresponding to a single constraint:
Ap=Db (2.28)

where the matrix A and vector b depend on the particular constraints being imposed.
Note that the above point constraint does not mean that “some location” on the surface

pass through X, but rather that a specific location, given by (ug, Vo), passes through x.

While it might seem desirable for the constrained points to dide in parameter space, it is

prohibitively expensive to do so [WW94].

244 Fairingwith constraints

The minimization of the objective function subject to the constraintsis a constrained op-
timization problem. Most work [GC95, HKD93, WW94] uses a quadratic objective with
linear constraints, which can be solved with asingle linear system.

Solving aquadratic objective with linear constraints amounts to solving the following

constrained minimization problem:

subjectto Ap=Db (2.29)

; } T o
min|i>(P—p) K(p—p)

There are a number of approaches to solving such a system including the use of Lagrange
multipliers[GC95, WW92, WW94] and null-space projection [HKD93].

The Lagrange multiplier technique [Str88] adds additional degrees of freedom (one
for each degree of constraint), to solve a larger, unconstrained system. The Lagrange
multiplier y yields the unconstrained minimization:

min

2.30
i (2:30)

2P—0)K(p—p)+ (Ap—b)Ty

At the minimum, the partial derivatives of the bracketed termsvanish (sincethissystemis
symmetric and positive definite). Differentiation leads to the linear system:

K AT
A O

Kp'
b

p
y

(2.31)

29



Provided there are no problems with the constraint matrix (such as dependent rows), the
above system can be solved with techniques such as LU decomposition [Str88]. Since
this matrix is sparse (due to the local refinement property of the resulting surface, it has
O(dimp) non-zero entries), sparse matrix techniques can be employed to solve the system
in O((dimp)?) time.

In [WW94], instead of solving this system in a single step, the conjugate gradient
method [Str88] (an iterative linear equation solution technique) is used. Given the spar-
sity of the matrix, each iteration takes O(dimp), with convergence typically occurring in
O(dimp) iterations (resulting in aquadratic time solution). Sincethisisan interactive sys-
tem, with the user working directly with the surface, there is no need to show the user the
final solutionif they are still interacting—it is considered more important to show the user
feedback [GW93]. Asaresult, the solver isonly run afew steps before being redisplayed.
During thistime, the constraints may drift dightly, and the surface may become somewhat
unfair. Once the user releases the surface, the solver can “catch up,” and display the itera-
tions toward the final surface over the next few seconds. This iterative technique requires
areasonable initial guess at the solution, to be efficient and ensure convergence. In this
framework, since surfaces are built up from scratch, using the answer from the previous

iteration is aways sufficient.

The use of waveletsin [GC95] was intended for reducing the number of iterations re-
quired for the convergence of the conjugate gradient method. Other techniquesfor solving
the main system are also available. Null-space projection (also called constraint reduction)
transformsthe constrained system into asmaller unconstrained system with the constraints
built in [HKD93].

These variational techniques provide a valuable abstraction that alows the user to be
ignorant of the underlying surface representation scheme. While some simple applica
tions of these methods have appeared in recent modeling software, they are by no means

in widespread use at this time. Chapter 3 discusses a new use of variational modeling
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techniques—for the generation of face models. Thisis a departure in using these tech-

niques for interactive modeling or data fitting.
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Chapter 3

Face model generation

A hallmark of the diversity and individuality of the people we encounter in daily lifeis
the range of variation in the shape of their faces. A simulation or animation that fails to
reproduce this diversity—whether by design or circumstance—deprives its characters of
independent identities. To animate abustling scene realistically or to play out an extended
virtua interaction believably requires hundreds of different facial geometries, maybe even

adistinct onefor each person, asinred life.

It is a monumental challenge to achieve such breadth with existing modeling tech-
nigues. One possibility might be to use range scanning technology. Thisinvolves al the
complexities of casting extrasfor afilm: with scanning, each new face must be found on a
living subject. And although scanning permits detailed geometriesto be extracted quickly,
scanned data frequently includes artifactsthat must be touched up by hand. Another alter-
native is manual construction of face models, by deforming an existing model or having
an artist design one from scratch; this tends to be slow and expensive.

This chapter describes an aternative, which wasfirst presented in [DM S98]: a system
capable of automatically generating distinct, plausible face geometries. This system con-
structsafacein two steps. Thefirst step isthe generation of arandom set of measurements
that characterize the face. The form and values of these measurements are computed ac-

cording to face anthropometry, the science dedicated to the measurement of the human
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face. Anthropometric studieslike [Far87, Far94] report statistics on reliable differencesin
shape across faces within and across populations. Random measurements generated ac-
cording to the anthropometric profile of a population characterize the distinctive features

of alikely face in that population.

In the second step, our system constructs the best surface that satisfies the geomet-
ric constraints that a set of measurements imposes, using variational modeling [ GC95,
TQ94, WW92], which was reviewed in Section 2.4. Variational modeling is a framework
for building surfaces by constrained optimization; the output surface minimizes ameasure
of fairness, which in our case formalizes how much the surface bends and stretches away
from the kind of shape that faces normally have. Having a fairness measure is neces-
sary, since the anthropometric measurements |l eave the resulting surface underdetermined.
Bookstein [Boo89] uses this same fairness measure as a method of data interpolation for
sparse biometric data, supporting its utility for determining the geometry of an underde-
termined biological shape. Variational modeling provides a powerful and elegant tool for
capturing the commonalities in shape among faces along with the differences. Its use re-
duces the problem of generating face geometries into the problem of generating sets of

anthropometric measurements.

The remainder of this chapter describes our techniques in more detail. We begin in
Section 3.1 by introducing the problem of representing and specifying face geometry.
In Section 2.3, we summarize the research from face anthropometry that we draw on;
Section 3.2 describes how random measurements are generated from these results. In
Section 3.3, we describe our use of variational techniquesto derive natural face geometries
that satisfy anthropometric measurements. We finish in Section 3.4 with illustrations of

the output of our system.



3.1 Face modeling background

Human face animation is a complex task requiring modeling and rendering not only of
face geometry, but also of distinctive facial features (such as skin, hair, and tongue) and
their motions. Most research in face modeling in computer graphics has addressed these
latter problems [LTK95, MTMdAT®89, Par82, PW96].

Research on human geometry itself falls into two camps, both crucialy dependent
(in different ways) on human participation. The first approach is to extract geometry
automatically from the measurement of a live subject. Lee, et a. [LTK95] use arange
scan of a subject, and produce a physics-based model capable of animation. Akimoto, et
al. [ASR93] use front and profileimages of a subject to produce a model.

The second approach is to facilitate manual specification of new face geometry by a
user. A certain facility is offered already by commercial modelers (though of course their
use demands considerable artistic skill); several researchers have sought to provide higher
levelsof control. Parke [Par82] provides parameterswhich can control the face shape; and
Magnenat-Thalmann, et al. [MTMdAT89] describe amore comprehensive set of localized
deformation parameters. Patel [PW91] offers an alternative set of parameters smilar in
scope to [MTMAAT89] but more closely tied to the structure of the head. DiPaola[DiP91]
uses a set of localized volumetric deformations, with a smilar feel to [MTMdAT89] in
their effects. Lewis [Lew89] discusses the use of stochastic noise functions as a means
of deforming natural objects (including faces). In this case, the control maintained by the
user islimited to noise generation parameters.

In contrast, we adopt a different approach: generating new face geometries automati-
cally. More so than interactive methods, this approach depends on a precise mathematical
description of possible face geometries. Many conventional representations of face shape
seem inadequate for this purpose.

For example, the simple scaling parameters used by manual modeling techniques can
perform useful effects like changing the width of the mouth or the height of the head,;

but they are unlikely to provide sufficient generality to describe a wide sampling of face
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geometries.

Meanwhile, for models based on principal componentsanaysis (PCA)—an alternative
representation derived from work in face recognition [V P97]—the opposite problem is
likely. PCA describes aface shape as aweighted sum of an orthogonal basis of 3-D shapes
(called principal components). This basis is constructed from a large bank of examples
that have been placed in mutual correspondence. (This correspondence is very much like
that required for image morphing [BN92]; establishing it is a considerable task, but not
one that has evaded automation [V P97].)

PCA typically alowsfaces nearly identical to those in the bank to be accurately repre-
sented by weighting atruncated basi s that only includes afew hundred of the most signifi-
cant components. However, because components are individually complex and combined
simply by addition, aternative weightings could easily encode implausible face shapes.
| dentifying which basis weights are reasonableisjust the original problem (of characteriz-
ing possible faces) in adifferent guise. Bookstein [Boo91] describes thisproblemin terms
of “latent variables,” and notes that principal components often bear little resemblance to
the underlying interdependent structure of biological forms. (In other words, it is quite
difficult to extract non-linear dependencies between different shape aspects using alinear
model like PCA.) At the same time, there is no guarantee that faces considerably outside

the example set will be approximated well at all.

We therefore adopt a representation of face shape based on constrained optimization.
The constraints—generated as described in Section 3.2—are based on the anthropometric
studies of the face of [Far87, Far94, KS96] described in Section 2.3; we avoid the diffi-
culty of learning possible geometries since these studies identify the range of variationin
real faces. The constraint optimization, as described in Section 3.3, is accomplished by

variational surface modeling.
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3.2 Generating measurements

The rich descriptions of human geometry developed in anthropometry provide an invalu-
able resource for human modeling in computer graphics. This goes for artists as well as
automatic systems: Parke and Waters [PW96] describe the importance of having a set of
“conformation guidelines’ for facial shape, which draw from artistic rules of face design.
These guidelines provide qualitative information about the shape and proportion of faces,
respecting the quantitative information found in anthropometric measurements.

In using such descriptions, automatic systems immediately confront the problem of
bringing a model into correspondence with a desired set of measurements. A widely-
used approach is to design a model whose degrees of freedom can be directly specified
by anthropometric measurements. For example, in the early visualization frameworks
for human factors engineering surveyed in [ Doo82]—where anthropometric datafirst fig-
ured in graphics—articulated humans were made to exhibit specified body measurements
by rigidly scaling each component of the articulation. Grosso, et al. [GQB89] describe a
similar model, but scale physical characteristics (such asmass) aswell, to produce amodel
suitable for dynamic simulation and animation. Azuola[Azu96] builds on Grosso’swork,
and generates random sets of (axis-aligned distance) measurements using covariance in-
formation (but not proportions). The purpose of thisgenerationisto produceafairly small
sampling of differently sized people for human factorsanaysis.

Our work represents a departure in that we use anthropometric data to constrain the
degrees of freedom of the model indirectly (as described in Section 3.3). This is a must
for the diverse, abstract and interrelated measurements of face anthropometry. The flex-
ibility of generating measurements as constraints offers additional benefits. In particular,
it allows statistics about proportionsto be taken into account as precisely as possible.

This section describes how our system uses published facial measurement and pro-
portion statistics [Far87, Far94] to generate random sets of measurements. The generated
measurements both respect a given population distribution, and—thanks to the use of

proportions—produce a believable face.
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3.2.1 Theneed for proportions

Start with a given popul ation, whose anthropometric measurements are tabul ated for mean
and standard deviation (we later use the measurements from [Far94]). We can assume that
the measurements are given by a Gaussian normal distribution (due to the lack of data
concerning the shape of these the distributions), as corroborated by statistical tests on the
raw the data [Far94]. This gives a naive algorithm for deriving a set of measurements—
generate each measurement independently as if sampled from the normal distribution with
its (estimated) mean and variance. Such random values are easily computed [PTVF92];
then, given the constraint-based framework we use, a shape can be generated to fit the
resulting suite of measurements aslong as the measurements are geometrically consistent.

Mere geometric consistency of measurements is no guarantee of the reasonable ap-
pearance of the resulting face shape, however. Anthropometric measurements are not in-
dependent. On theface, one striking illustration comes from the inclinations of the profile,
which are highly intercorrelated. In the population described in [Far87], the inclinations
to the front of the chin from under the nose (sn-pg) and from the lower lip (li-pg) take a
wide range of values, but, despite the many curvesin this part of the face, tend to agree
very closely.

Published proportions provide the best available resource to model correlations be-
tween measurements such as these. (Covariance information more naturally applies here,
but it is ssimply not available). For example, [Far87] tabulates the mean and variance for
statistically significant ratios between anthropometric measurements for a population of
young North American Caucasian men and women. Given acalculated value for one mea-
surement, the proportion alows the other measurement to be determined using a random
value from the estimated distribution of the proportion. Sincethe proportion reflects a cor-
relation between these values, the resulting pair of measurements is more representative
of the population than the two measurements would be if generated independently.

With many measurements come many useful proportions, but each value will be cal-

culated only once. We must find the proportions that provide the most evidence about
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the distribution. The next section describes the algorithm we use to do that. It assumes
that proportions can be applied in either direction (by approximating the distribution for
the inverse proportion) and that we are generating a set of measurements all of which are
related by proportions. (We can split the measurements into groups before applying this
algorithm.) The agorithm also assumes that we are given a fixed initial measurement (or
measurements) in this set from which other measurements could be generated. If we are
generating a random face, the choice of which initial measurement to use is up in the air.
We therefore find the best calculation scheme for each possible initial measurement, and
then use the best of those. Random values for this initial measurement are generated by
sampling itsdistribution. Thereafter, randomly generated proportions are used to generate

the remaining dependent measurements.

The same agorithm could also be used to fill in measurements specified by a user (as
arough guide of the kind of face needed) or selected to be representative of an extremein
the population (for use in human-factorsanalysis). In this case, the algorithm gives a way

of generating a plausible, random variation on this given information.

3.2.2 An algorithm for proportions

Given base measurements, our goa is to find the best way to use an inventory of pro-
portions to calculate dependent measurements. We can describe this problem more pre-
cisely by viewing measurements as vertices and proportions as edges in a graph. Fig-
ure 3.1(a) shows a portion of this graph, given the measurements and proportions from
[Far87, Far94] (some edge labels are omitted for the sake of readability). The presence
of cycles in this graph exhibits the need to select proportions. A particular method for
calculating measurements using proportions can be represented as a branching in this
graph—an acyclic directed graph in which each vertex has at most one incident edge. The
edge e from sto d in this branching indicates that d is calculated by proportion e from

S. By assumption, we will require this branching to span the graph (this means adding
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dummy edges connecting multiple base measurements). An example branching is illus-
trated in Figure 3.1(b), and contains a single base measurement (the vertex marked with a

doublecircle).

t-t/ eu-e’u/—>- eu-eu / g-op .............
| T | @
e GO I \ —

ex-ex / t-t /

n-sto / ex-ex
(@ (b)

Figure 3.1: Interpreting measurements and proportions as a graph (a); Example branching
used to compute measurements (b)

The algorithm associates each vertex v in the branching with a mean py and variance
02. The variance is an indication of the precision of the statistical information applied in
generating the measurement at v from given information. The smaller oy/py, the more
constrained the measurement. We take oy /py as the weight of d.

For base measurements, oy is smply the standard deviation of the measurement.
Thereafter, if an edge connects s to d with a proportion with mean ple and standard de-
viation gg, and s has mean s and standard deviation a5, then the induced distribution at d

is characterized by:

Ha=HsHe
0% —4203 + W0 + oo?
(This assumes proportions and measurements are independent and Gaussian.) Note that
the weight of d is always larger than the weight of s—this means the precision of the
information concerning the distribution decreases as we go deeper into the branching.
Our goal in selecting proportions is to derive a branching Ty which assigns a mini-
mum total weight to its vertices. This allows the most constrained features to determine

the remaining features via proportionality relationships. We can modify Prim’salgorithm
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for minimum spanning tree to solve this problem. Our algorithm maintains a subtree T
of some optimal branching. Initialy, the subtree contains just the root for theinitial mea-
surement. At subsequent stages, each vertex is associated with the |east weight induced by
any edge running from the branching to it. The algorithm incorporates the vertex v whose
weight isthe least into the tree, by the appropriate new edge e.

As with Prim’s algorithm (c.f. [Gib85]), the argument that this algorithm works en-
sures inductively that if T is a subtree of some optimal branching Ty, then soisT +e.
If eisnot an edge in Ty, then Ty contains some other directed path to v, ending with
a different edge €. This path starts at the root of T, so it must at some point leave T.
Because e was chosen with minimum weight and weights increase along paths, in fact the
path must leave T at €; since the algorithm chose e, e and € induce the same weight for
v. The inductive property is now established, since (Tw — €) + e isan optima branching

of which T isasubtree.

3.3 Variational Modeling

Using the method outlined in Section 3.2, we generate complete sets of anthropometric
measurementsin Farkas's system. These constraints describe the geometry of the facein
great detail, but they by no means specify a unique geometry for the face surface. For
example, Farkas's measurements are relatively silent about the distribution of curvature
over the face—the particular measurement that specifies the angle formed at thetip of the
chin (the mentocervical angle; as in Figure 2.4), does not actually specify how sharply
curved the chin is. What is needed then, intuitively, is a mechanism for generating a
shape that shares the important properties of atypica face, as far as possible, but still
respects a given set of anthropometric measurements. Thisintuition allows the problem of
building an anthropometric face model to be cast as a constrained optimization problem—
anthropometric measurements are treated as constraints, and the remainder of the faceis

determined by optimizing a surface objective function. This characterization allows us to
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apply variational modeling techniques, as described in Section 2.4.

This section describes how we adapt existing variational modeling techniques to de-
velop the anthropometric face model. Our approach to variational modeling greatly re-
sembles the framework in [WW92]; akey differenceisthat we perform most of the varia-
tional computation in advance and share results across different face generation runs. This
amortization of computational cost makesit feasible to construct larger models subject to
many constraints. However, it requires careful formulation of constraints and algorithms
to exploit the constancy of the face model and its inventory of constraints.

Asdescribed in Section 3.3.1, we begin by specifying a space of possible face geome-
tries using a parametric surface s(u, v), and locating the landmark points on the surface.
We use a B-spline surface [Far93] to represent s. This surface is specified by a control
mesh, where the mesh degrees of freedom are collected into a vector p. A particular
instantiation p’ of p provides a prototype shape, a reference geometry that epitomizes
the kind of shape faces have. Both s(u,v) and p’ are designed by hand, but the same
parameterized surface and prototype shape are used to model any set of anthropometric
measurements.

Given this shape representation, the task of the face modeling system is to alow a
given set of anthropometric measurements m to be used as degrees of freedom for s, in
place of p. It does so in two logical steps. (1), expressing m as constraints on p in terms
of the landmark points as described in Section 3.3.2; and (2), using variational techniques
as described in Section 2.4.2 through Section 3.3.5 to find a surface that satisfies the con-

straints and which minimizes bending and stretching away from the prototype face shape.

3.3.1 Surfacerepresentation

We choose a B-spline surface as a shape representation because of the demands both of
anthropometric modeling and variational techniques. Our shape must be smooth, must
permit evaluation of our constraints, and must have surface points and tangent vectorsthat

are defined as linear combinations of its control mesh points. This scheme meets all of

42



these requirements.

The specification of s(u,v) involved the manual construction of a B-spline control
mesh for the face, shownin Figure 3.2. The mesh isatube with openingsat the mouth and
neck; the geometry follows an available polygonal face model and (as required for accu-

rate variational modeling) is parameterized to avoid excessive distortion of (u,V) patches.

Figure 3.2: The prototype face model

Anthropometric landmarks are assigned fixed locations on the surfacein (u,v) param-
eter space; some are also associated with constraints that enforce their fixed geometric
interpretations. For example, in the case of the v landmark, which represents the top of
the head, we ensure that the tangent to the surface at the point representing the landmark
isin fact horizontal. We likewise add constraints to keep the model in FH position, so
that the horizontal axis of the model is consistent with the axis by which landmarks are
identified (and measurements taken). These constraints together constitute a set of base
constraints which must be satisfied to apply any anthropometric measurement. Further

constraints are then added to the model—one for each measurement.

3.3.2 Surface constraints

Our framework derives a shape by applying both linear and non-linear constraints. The

linear constraints are derived from axia distance anthropometric measurements and the
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base constraints on the model; both can be represented as a linear function of the degrees
of freedom of the model, p. A matrix A describes how the values of all linear constraints
are calculated, while avector b encodes the intended valuesfor those measurements. Thus

solutions to these constraints satisfy:
Ap=Db (321

Because A depends only on the types of constraint measurements, A can be solved in
advance; then values of p can be computed directly from b given particular measurements
m.

Many of the constraints are non-linear, however. Each non-linear constraint is associ-
ated with a positive function measuring how far the surface is from the correct measure-
ment. These functionsare summed to give an overall penalty function P so that non-linear

constraints impose the equation:
P(p)=0 (3.2

(P (p) > Ofor al p). The remainder of this section describes the penalty functions associ-
ated with each type of measurement constraint.
The shortest distance measurement constrainsthe points x; and x; at adistance r apart

using the penalty:
Paist(%i,x) = (] x| =1)* (33)

Thetangential distance constraint, which specifiesthelength of asurfacecurvetober,
is approximated using the chord-length approximation of a curve [Far93] using the points

X1...Xn:

n-1 2
Parc—ten(X1, ..+, Xn) = <Zl [1Xi = Xiya]| — I’) (34)

The points x; all lie on a predetermined curve specified in (u, v)-space (using a B-spline),
and are adaptively sampled asto achieve agood estimate of the arc length using the chord-

length approximation.



The inclination measurement constraint fixes a vector v at an angle 6 to afixed axis a:
Pinci (V) = (7 — Rot(a,8))? (35)

Using therotation Rot, the axisaisaligned with the*“goal” direction. v can bethedirection
between two points on the surface, as well as a surface tangent vector.
The angle measurement constraint positions the vectors v1 and v, to be separated by

theangle 6. It istreated as two independent inclination constraints:
IDanglel (V1) = (V1 — Rot(Va, 9))2

Pangiey (V2) = (V2 — Rot(V1, —6))

) (3.6)

3.3.3 Fairing

A fair surface can be constructed by minimizing an objective function E(s). We will be
using thelinearized thin-plate functional (2.23) which measures the bending of the surface
s, with respect to the prototype shape (2.25). The use of a prototype shape instructs the
fairing process to ignore expected regions of sharp curvature, such asthe ears and nose on
the face.

As described in Section 2.4.2, for linear surface representation schemes (including
B-splines), the objective function in (2.23) can be evaluated exactly as a quadratic form
%pTK p, whereK isdetermined based on the surface representation scheme; the construc-
tion for B-splinesis givenin [WW92]. Due to the local refinement property of B-splines,

K issparse.

3.3.4 Fairingwith constraints

Given K, the problem of fairing given purely linear constraints as in (3.1) is reduced to
thealinearly constrained quadratic optimization problem (see Section 3.3.4), solved using
the following linear system:

K AT
A 0

Kp'
b

p
y

(3.7)
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Solving such a system requires selecting atechnique that is mathematically sound and
computationally feasible. For example, interactive modeling, with varying constraints and
response time demands, requires the use of iterative solution methods, such as the con-
jugate gradient technique [GC95, WW94]. However, we can solve this system without
iteration, using a sparse LU decomposition technique [GL89]; producing the decompo-
sition takes O(n?) time given a O(n) sparse n x n system. This technique is applicable
because the set of constraints is hand-constructed, so we can guarantee that the constraint
matrix A contains no dependent rows, and hence that the LU decomposition is well de-
fined. It is feasible because the control mesh topology and the constraint matrix are un-
changing, so that only one decomposition ever needsto be generated. Finding solutionsis
then quite efficient. In general, solving a system given an LU decomposition takes O(n?)
time. However, we have found that the LU decomposition is roughly O(n) sparse given
our constraints. (Thisis not too surprising given that the each constraint involves only a
few points on the surface; note that an LU decomposition can be sparse even if the actual

inverseisdense.) This means that, in practice, solution steps require roughly linear time.

3.3.5 Non-linear constraints

As described in Section 3.3.2, the non-linear constraints are specified using the penalty
function P (p). Since this function is positive, it is ssmply added into the minimization
(2.30) [PB88, WW92]. The extended linear system (3.7) has Kp’ — dP (p)/0p in place of
Kp'. Due to the non-linearity of P, this system must be solved iteratively. (By contrast,
Section 3.3.4 described a non-iterative method for solving the linear constraints.)

At iteration i, we determine C; to be used in place of —dP (p)/dp as:
(3.8)

with Co = 0. The scalar value p is apositive weight (analogousto atime-step in ODE inte-
gration), determined using an adaptive method such as step-doubling (for ODE solution)
[PTVF92]. Thisresultsin the iterative linear system:
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K AT
A 0

Kp’'+GCi
b

Pi
y

(3.9)

where po is the solution corresponding to (2.31). Note that we still exploit the LU de-
composition to allow steps to be solved quickly and exactly; this technique is stabler and
faster to converge than the combination of a conjugate gradient technique with the penalty
method. We experimented with linearizations of some of the non-linear constraints (and
added them into A), but found little gain in efficiency, and decreased stability in solving.
In practice, the smultaneous use of al anthropometric constraintswill lead to conflict.
For example, some measurements lead to linearly dependent constraints; they are easily
identified by inspection, and culled to keep A invertible. Similarly, when multiple mea-
surements place non-linear constraints on similar features of nearby points on the model
(without providing additional variation in shape), including all can introduce a source of
geometricinconsistency and prevent the convergence of C. Our constraint set was selected
by following a strategy of including only those constraints with the most locally confining
definitions (i.e. constraints which affected fewer facial locations or more proximate facial

locations were favored).

3.4 Resultsand discussion

Sample face models derived using this technique are shown in Figure 3.3. To produce the
measurements for these models, we ran the generation algorithm described in Section 3.2
on the measurements from [Far94] and the proportions from [Far87] for North American
Caucasian young adult men and women. Faces for the random measurements were real-
ized by applying the variational framework to a B-spline mesh (agrid 32 by 32) so asto
satisfy the base constraints (a total of 15) and 65 measurements that give good coverage
both of the shape of the face and of the kinds of measurements used in Farkas's system.
There were atotal of 120 proportions used as input to the algorithm in Section 3.2.2.
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Producing the LU decomposition used for all these examples involved a one-time cost
of roughly 3 minutes on an SGI 175 MHz R10000. Faces typically found their rough
shape within 50 iterations; our illustrations were alowed to run for up to 200 iterationsto
ensure convergence to millimeter accuracy, resulting in runs that took about 1 minute for

each face. Models were rendered using RenderMan.

Individual variation across the example males and females in Figure 3.3 encompass a
range of features; for example, clear differences are found in the length and width of the
nose and mouth, the inclinations of forehead and nose, as well as the overall shape of the
face. At the same time, traits that distinguish men and women—such as the angle at the
chin, the slope of the eyes and the height of the lower face (particularly at the jaw)—vary
systematically and correctly (based on qualitative comparisons with the anthropometric
data). Examining the variation within a population group, the thirty generated males in

Figure 3.4 exhibit the expected range of geometric variation.

In order to quantify this comparison, the proportion-based measurement generation
algorithm from Section 3.2.2 was validated by generating a large number of measurement
sets, and comparing the resulting measurement distributionsto the published figuresfrom
the corresponding population groups. On average, the means differed by about 1% (with
amaximum deviation of 4.5%)—well below the differences in means between population
groups. The standard deviations agreed comparably, where the generated measurements
had standard deviations that range from being 5% lower to 20% higher than the published
values. While thisvalidation guaranteesthe plausibility of measurements on the generated
face models, data is not available for comparing the entire geometry (this would require
having, for example, a set of measurements of an individual along with a corresponding
range scan). One would not expect such a comparison to agree anyway, as the prototype
shape has a measurable effect on the resulting geometry. However, this effect decreases
with the use of additional measurements, which suggests the need to search out additional

data on face geometry (morphometrics [Boo91] seems to be a good starting point).

Despite the many changes, a single prototype shape was used for all examples. This
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Males Females
Figure 3.3: Automatically generated face models (3 views of each)

gives the models commonalities in shape where anthropometric datais silent. Further, al
the faces in Figures 3.3 and 3.4 use the same texture so as not to exaggerate their differ-
ences. The ears remain coarsely modeled (partly as aresult of scarcity of measurements
within the ear). Figure 3.5 shows the results when the skin and eye color is varied (man-
ualy), and hair is added, and additional detail (such asin the ears) is painted onto the
texture. Note that the same texture is still used on al faces (with color conversions), and
that the locations of hair is the same on all generated subjects-only the hair styles are

manually specified.
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Figure 3.4: A maleaminute

Males

Figure 3.5: All gussied up
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3.5 Summary

We have described a two step procedure for generating novel face geometries. The first
step produces a plausible set of constraints on the geometry using anthropometric statis-
tics, the second derives a surface that satisfies the constraints using variational modeling.
This fruitful combination of techniques offers broader lessons for modeling: in particu-
lar, ways to scale up variational modeling—a technique previoudly restricted to modeling
frameworks that have seen limited use to surface fitting tasks—for constrained classes of
shapes, and ways to apply anthropometric proportions—long valued by artists and scien-

tists alike—in graphics model generation.
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Chapter 4

Face modeling for vision

The last chapter described a generative face model suitable for producing random facial
geometries. However, due to its use of constrained optimization techniques, it cannot be
used for shape estimation without raising efficiency concerns. This chapter describes a
parameterized model of face shape and motion, which is to be used in a model-based
vision framework. This face model encodes information about the shape, motion, and

appearance of human faces.

Our three-dimensional face model is a polygona model with a manually designed pa-
rameterization. The shape parameterization is specified as a sequence of deformationsde-
signed to capture the variabilitiesin shape and appearance of faces across the human pop-
ulation that are observed in face anthropometry studies [Far94]. Anthropometric statistics
are aso used to initialize the model with an average shape, and to bias shape estimation
toward more “face-like” parameter combinations. The motion of the face (such as head
motion or facial expressions) is specified using a small set of parameters. The Facial Ac-
tion Coding System (FACYS) [EF78] describesfacia movementsin termsof “action units’,
and motivates the design of the motions of our model. There are parameters for a variety
of face motions such as opening of the mouth and raising of the eyebrows. The model is
realized using a manually constructed series of parameterized deformations applied to a

polygon mesh. The construction processis primarily an engineering task, and the majority
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of design decisions will be made based on its use as a model for estimation, tracking and

geometric reasoning (such as for reasoning about self-occlusion).

4.1 Modd construction

The deformable face model described here is shown in Figure 4.1(a). It is a polygon
mesh, shown in (b), formed from ten component parts (such as the nose, mouth, or eyes),
each shown in (c). These parts are connected together to form a single mesh, where the
gaps between the parts are closed by a mesh “zippering” process. The mesh facesfilling
the gaps are primarily used for geometric inferencing (such as visibility determination),
discussed in Section 4.5. With the construction of the model, we assume the observed
subject is not wearing eyeglasses, and does not have large amounts of facial hair (such as

a beard or mustache) that change the overall face shape.

(@ (b) (©
Figure 4.1: The deformable face model

4.2 Model parameterization

The face model constructed here has two kinds of parameters. Shape parameters describe
the unchanging features of an observed face and capture variations in appearance across

the human population. Motion parameters describe how an observed face changes during
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atracking session. This separation produces an easier tracking problem by requiring a

smaller description of object state to be estimated in each frame.

This division is often built into face models [BY 95, LRF93, MRB95, TW93] to sm-
plify model construction or estimation, while Reynard, et al. [RWBM96] use this separa-

tion to permit learning the variability of motionsfor a class of objects.

As aresult of this separation, the parameters in q are rearranged and separated into
Jb, Which describe the underlying features of an individual, and into qm, which describe

motion (both rigid and non-rigid), so that q = (g, ,q,,) -

The partition of g into gy and gm can also be viewed another way—the parametersin qp
are a static quantity for a particular individual, and specify what a person looks like and
how their facial expressions appear. The parametersin gm are a dynamic quantity, which
change when a subject moves their head, opens their mouth, or makes afacial expression.
The goal of a shape and motion estimation process is to recover the value of g from a
sequence of frames. During estimation, the change in gy should tend to zero as the shape
of the face is established. Once this occurs, fitting need only continue for gm. So for

reasons of efficiency, g should include as many parameters as possible.

Also included in gy, are parameters which specify the character of facia expressions,
called expression-shape parameters—these parameters do not change the underlying face
shape, but rather change the appearance of aparticular facia expression. These parameters
abstract information related to facial muscle placement. Figure 4.2 contains examples
of varying expression-shape parameters that specify how a particular individual smiles.
Figure 4.2(a) shows the model in its rest state (not smiling), while (b) and (c) contain
differently shaped smiles. The smile in Figure 4.2(c) is more curved (like the Cheshire

cat's) by varying some of the expression-shape parameters.

The model x isformed by applying deformation functions to the underlying polygon
mesh s from Figure 4.1(b). The domain Q of sis simply the set of points on its surface.

There are separate deformation functions for shape (Ty,) and for motion (T ). For aface,
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Figure 4.2: Example smile expression-shape deformations
it makes sense to apply the shape deformations first, so that:

X(q;u) = Tm(dm; Tp(db; S(u))) (4.1)

The shape deformation Ty, uses the parameters g, to deform the underlying face mesh s.
On top of thisis the motion deformation T, with parameters gm, which includes arigid
head tranglation and rotation, as well as non-rigid facial deformations. Of course, each of
these deformations can be defined using a series of composed functions (see Appendix A),

aswill be seen in upcoming sections.

4.3 Model deformations

In order to represent the variabilities observed in anthropometric measurements, scaling
and bending deformations, in addition to trandation and rotation, are used in the construc-
tion of the face model. This section provides details on these deformations. The model
designer carefully combines the deformationsto produce a parameterized face model. The
result of thisconstruction isan underlying model (the polygon mesh) which has aseries of
deformations functions applied to it, each having a small number of parameters, and each
isapplied to a particular set of face parts, ranging from a single part to the entire face.
Rigid transformations such as trandation and rotation are used for the placement of
parts on the face. Scaling and bending deformations, shown in Figure 4.3, alow for the
representation of a variety of face shapes. Each of these deformations is defined with
respect to particular landmark locationsin the face mesh. By fixing the deformationsinto
the mesh, the desired effect of any particular deformation is not lost due to the presence

of other deformations (since the landmark points are deformed along with the rest of the
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mesh). Although varying degrees of continuity can be attained for these deformations,
each of the following deformations are C! continuous.

A shape (before any deformationis applied) which containsthe landmark points po, p1
and cisshown in Figure 4.3(a). Figure 4.3(b) shows the effect of scaling this shape along
the displayed axis. The center point c is afixed point of the deformation, while the region
between pp and p; is scaled to have length d (the parameter of the scaling deformation).
Portions of the shape outside this region are rigidly translated.
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Figure 4.3: Scaling and bending deformations

Bending is applied in Figure 4.3(c), and shows the effect of bending the shape in (a)
in a downward direction. The bending is applied to the area between pp and p1, where
c isthe center of the bending. Outside this area, the shape is rotated rigidly. Each plane
perpendicular to the bending axisisrotated by an angle determined by the distance of this
plane to the center point c. The amount of bending is specified by the parameters 8o and
01, which specify therotation angle at pg and p1, respectively.

In addition, the spatial extent of each of these deformations can be localized, as shown
in Figure 4.3(d). The influence of the scaling deformation varies in directions perpendic-
ular to the axis, producing a tapering effect. Near the top of the shape, the object is fully
scaled to be the length d, while the bottom of the object is unaffected by the deformation.
The ability to restrict the effect of a deformation is vital in specifying the variations of
shape seen in the face. We will now see how these deformations can be used to create the
model.

57



4.3.1 Faceshape

The underlying shape s, which isthe polygon mesh shownin Figure4.1, can take the shape
of avariety of faces through the application of a number of spatial deformations. This
parameterization of the model is specified by the model designer. The job of the designer
is made easier by separating the face into parts, allowing each face model component to
be treated separately. Instead of describing the entire model (which would be extremely
lengthy and not particularly enlightening), ashort descriptionis provided whichillustrates
the concepts necessary for its construction.

Deformations are defined over a particular set of face model parts, although most de-
formations affect only one part. Example deformations that parameterize multiple parts,
are those affecting the lower-face, which deform the chin and both cheeks. All of the
deformations are specified in a particular order, and are applied in sequence to the under-
lying shape (see Appendix A). All of the parameters to describe the shape of the face at
rest (there are approximately 80) are collected together into q,. The shape deformations

are collected together into a single deformation function Ty,.
B

.\

Figure4.4: Scaling deformations of the nose

Figure 4.4 shows some of the scaling deformations defined for the nose. Each arrow
indicates aparticular scaling parameter (inthe vertical or horizontal direction), that affects
the space between the enclosing lines. The results of applying some of the deformations
to the nose are shown in Figure 4.5. Figure 4.5(a) and (d) show two views of the default

nose. Figure 4.5(b) shows a nose deformed using vertical scaling, while the pulled-up
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nosein (c) is produced using alocalized bending deformation. Figure 4.5(¢e) and (f) show
localized scaling affecting the width of the nose in different places.
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Figure 4.5: Example deformations affecting the nose
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Verification of the face parameterization produced by the model designer can be ac-
complished by fitting the model to a series of randomly generated sets of facial measure-
ments, asin Section 3.2. Thisis effectively a Monte Carlo method of sampling the space
of face measurements. The fitting is easily accomplished, given a set of measurements,
using the anthropometric forces described in Section 2.3. The model designer can alter
the model parameterization when a particul ar set of face measurements cannot be satisfied
by the model. We obtained a face model capable of representing a wide variety of faces

after only afew design iterations.

4.3.2 Facemotion

The deformations corresponding to motions (such asfacial expressions) are modeled using
the same techniques employed for face shape. However, there is no available motion data
that corresponds to anthropometric data for shape (although such motion data might be
available in the near future [GGW'98]). The motion deformations are applied to the
face in rest position—after the shape deformations, as in (2.2). Examples of modeled
expressions are displayed in Figure 4.6. The model is capable of opening the mouth
as in Figure 4.6(a), smiling (b), raising each eyebrow (c) and frowning each eyebrow
(d). Thisresultsin atotal of 6 expression parameters, each corresponding to a particular
FACS action unit [EF78]. In addition to this are the six parameters for rigid head motion

(trandation and rotation), resulting in atotal of 12 parametersin gm.
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Figure 4.6: Face motion and expression deformations

The construction of expressions is ssimplified by decomposing each face motion into
several component deformations. For example, the mouth opening deformation is decom-
posed into chin/cheek bending, lip scaling and lip trandation. To facilitate tracking of
these expressions by reducing the number of motion parameters, there is a single control
parameter for each expression which uniquely determinesall of itscomponent parameters.
Given a particular face motion which is constructed using a series of deformations with

parameters by, the control parameter e determines the value b based on the formula:
b =se (4.2)

where s is the scaling parameter used to form the linear relationship between b; and e.
These scaling parameters are the expression-shape parameters included in gy (there are
about 20 in total). For situations where these parameters are not estimated, these param-
eters are treated as constants, average values for which are determined by the designer

during construction of the model.

The set of face motion parameters qm consists of the control parametersfor each of the
expressions (which areinitially al zero), and the rigid trand ation and rotation specifying
the head position. The parameters b; are not estimated, but are determined directly by
(4.2) using the estimated value of e. The motion deformations are collected together into
the deformation T .
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4.4 Use of anthropometry data

The construction of our face model includes representation of the anthropometric mea-
surements described in Section 2.3. Given the measurement descriptionsin [Far94], they
are realized using a straightforward set of geometric operations performed using points
on the face model: given avalue of qp, a set of measurements can then be taken from the
model.

Use of this data alows for a hand-crafted model to be biased towards more likely
individuals, and places it in the class of constrained coverage models. For a particular set

of model pointsx; . ..xn, ameasurement M; is written as:
Mj(x1,...,Xa) j€1.M (4.3)

where M is the number of measurementsin Farkas' inventory. As an example, a shortest

distance measurement issimply the following:
Mdist(X17X2) = ||x1 — X2|| (4.9

where x1 and x» are model points corresponding to the two landmarks used by the mea-
surement. Note that these points depend on the shape parameters g, but not on the motion
parameters gm (which is effectively zeroed when any anthropometric measurements are
taken on the model—since this reflects the same “ expressionless’ conditions under which
the data was originally gathered).

The statistical characterization of measurements and proportions, described in Sec-
tion 2.3, can be built into the model in two ways. First, by using an average set of mea-
surements, a set of parameters specifying the initial model is determined. This initia
model is an anthropometrically “average” model, and is shown in Figure 4.1(a). Second,
this characterization provides a means of biasing the face model shape parameters (qp)
toward more likely occurring individuals.

Given aparticular set of population groups, average measurement values and variances

61



are obtained from [Far94] as:
(1j,05) jel.M (4.5)

The biasing of the parameters is performed using three-dimensiona spring-like forces (a
soft constraint) that are applied to the polygonal face model that softly enforce a measure-
ment on the model. First, an energy is associated with each measurement:

Ej = % (Mj(Xl, e ,Xn)—uj)z (4.6)

Then, the force resulting from the energy E;, which is applied to model domain point u;
(which corresponds to the point x; on the model surface), is obtained as:
o5 _ oM;

_axi _—(Mj(Xl,...,Xn)—Hj)a—Xi (47)

ij (ui) =

The penalty formulations of constraints in Section 3.3.2, which were used to formulate
congtraints for the generative model in Chapter 3, correspond to the energiesin (4.6).

The total anthropometric force applied to model domain point u; is computed as the

weighted sum of all measurement forces at u;:

e—Ej/O'J2 P .
i) = 3 (1— ﬁ> fe, (u1) (48)

Each force is weighted by a quantity which is a power (p) of how improbable the current

measurement is (assuming a Gaussian distribution on the anthropometric measurements
[Far94]). This weighting prevents the model from actually attaining the average set of
measurements, but instead is ssimply biased towards them. For values of p around 10,
forces on measurements within one standard deviation of the mean for that measurement
are effectively ignored.

The weighting on these forces makes it clear that these forces are ssimply being used
as aprior on the shape. It is possible to consider a deformable framework from a purely
statistical point of view [BFO95], although re-interpreting force distributions such as these
(as well as other more complex techniques borrowed from physics, such as the solution of

constraints) is an open research problem.
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For proportions, the energy would involve two measurements as.

1

Ejx= > (Mj (X1,... ,Xn) —Pijk- Mk(Xll, ... ,X/n/))z 4.9

where pjk isthe mean proportion between measurements pj and k. Aswith the above for

measurements, aforce distribution for proportion datais obtained using this energy.

4.5 Facefeature and edge deter mination

The tracking of edges in a deformable model framework, as described in Section 2.2.1,
is facilitated by knowing what locations of the face model are likely to produce edges in
an image. On the face, certain features are likely to produce edges in the image. The
particular features chosen are the boundary of the lips and eyes, and the top boundary
of the eyebrows. Edges in the polygon mesh which correspond to these features were

manually marked during the model construction, and are shown in Figure 4.7(a).
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Figure4.7: Likely facefeaturesin an image

Other likely candidates for producing edges are the regions on the model of high cur-
vature. The base of the nose and indentation on the chin are examples of high curvature
edges, and can be seen in Figure 4.7(b). Occluding boundaries on the model also produce
edges in the image, and can be determined using the three-dimensional model. The loca-
tion of occlusion boundaries on the model will be useful when determining the quality of
selected points for the measurement of optical flow.

Of course, for an edge to be produced in the image, the corresponding region on the

face must be visible to the camera. This visibility determination is performed using the
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model and cameratransformation. The model depth information can be used to determine
the parts of the model that are visible to the camera (the frontmost regions of the model).
Figure4.7(b) showsvisible locations of the model (features, high curvature and occluding
edges) that are likely to produce edges, given the model in (c).

Once the locations on the model are known which are likely to produce image edges,
two-dimensional edge-based forces [MT93] are applied to the model, as given by (2.12).
These forces contributeto the value of f (affecting parametersin both gy and qm) based on
(2.9). Over the course of fitting, these edgeforces* pull” the model so that the model edges
become aligned with their corresponding image edges, as described in Section 2.2.1. The
next two chapters describe how this face model is used in a deformable model framework

for shape and motion estimation.

46 Summary

This chapter contained a description of the model-building process for a deformable face
model; the parameterization of the model was built by hand. At the same time, anthropo-
metric data was used to bias the model towards more likely individuals. This 3-D model
can then be used to determine probable locations of image edges, as well as information
about the model’s self-occlusion. All of this results in a value for fq: the data forces

applied to the model.



Chapter 5

Shape and M otion Estimation

This chapter describes a constraint approach to optical flow within a deformable model
framework for shape and motion estimation. We show that the approach can greatly im-
provethe ability to estimate motion, especially by exploiting the distinction between shape
and motion built into the parameterization of the model. The work here builds on the de-
formable model framework described in Section 2.1, on the model-based optical flow
work from Section 2.2.2, and on the model-based edge fitting work from Section 2.2.1.

Our approach can be summarized as follows. To start, image velocities in the optical
flow constraint equation are interpreted as projections of the model’s three-dimensional
velocities; this produces a system of optical flow equations that constrain the vel ocities of
the motion parameters of the model. In the theory of dynamic systems [Sha89], velocity
constraints such as these are called non-holonomic.

The velocities of the motion parameters are already accounted for as resulting from
the application of edge-based forces; finding the equilibrium resulting from these forces
amounts to a straightforward optimization problem (which can be solved using a de-
formable model framework). With the addition of the optical flow constraints, a con-
strained optimization problem results.

The constrained dynamic system is solved using the method of Lagrange multipli-

ers. This involves converting the optical flow constraints into constraint forces that are
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combined with other forces (such as edge-based forces) to improve the estimation of the
model. The method of Lagrange multipliers recasts the optical flow constraints as two
kinds of forces. One provides the standard | east-squares model -based solution to the opti-
cal flow constraints [NH87, LRF93]. The second is a constraint enforcement term which
ensures the optical flow constraint remains satisfied when combined with edge forces. In
order to provide a means for the combination of different sources of noisy information,
an extended Kalman filter [Gel74] is used. The optical flow constraint can be introduced
into such afiltering framework, resulting in a standard application of Kalman filtering to

a system augmented with constraint information.

Thistreatment of optical flow offers several advantages. Since our techniqueis model-
based, we avoid the explicit computation of the optical flow field by instead using the
optical flow constraint equation at select pixels in the image. Furthermore, using our
three-dimensional model, we can avoid choosing pixels on occlusion boundaries (which
violate the optical flow constraint equation) by determining their probablelocationsin the
image. (Similarly, we can determine likely locations of edges in the image to produce
edge forces on the model.) Finally, the presence of the constraint enforcement term yields
a profitable combination of the optical flow solution with the edge forces. Problemswith
tracking error accumulation are alleviated using these edge forces, which now keep the
model aligned with its image without a statistically relevant violation of the optical flow

constraint.

5.1 Redated Work

A wide variety of techniques have been used in the extraction and recognition of facial
expressions in image sequences. Several 2-D face models based on splines or deformable
templates [LTC97, MRB95, Y CH92] have been developed which track the contours of a
facein an image sequence. Terzopoulosand Waters[ TW93] and Essa and Pentland [ EP97]
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use a physics-based 3-D mesh with many degrees of freedom, where face motion is mea-
sured in terms of muscle activations. Edge forces from snakes are used in [TW93], while
in [EP97], the face model is used to regularize an optical flow field that is used in expres-
sion recognition. A structure from motion approach is used by Jebara and Pentland [ JP97]
to track head motion using a small number of image features. The rough 3-D shape of the
head is also extracted.

Another approach is to directly use the optical flow field from face images. Yacoob
and Davis use statistical properties of the flow for expression recognition [YD94]. Black
and Yacoob parameterize the flow field based on the structure of the face under projec-
tion [BY95]. Basu, et a [BEP96] extract a flow field, and then regularize it using a 3-D
ellipsoid model of the head. Addressing the problem of image coding, Li, et a [LRF93]
estimate face motion using a smple 3-D model by a combination of prediction and a
model-based | east-squares solution to the optical flow constraint equation (without a con-
straint enforcement term). A render-feedback loop is used to combat error accumulation

in tracking.

None of these approaches permit large head rotations due to the use of a2-D model (or
an imprecise 3-D model), and the inability to handle self-occlusion. None of the previous
work makes a serious attempt in extracting a detailed 3-D shape description of the face
from an image sequence. At best, the rough shape is determined [JP97], or the boundary of
facepartsarelocated to align the model with animage. And most importantly, optical flow
has been solved separately from other cues, producing combined solutions which may not
respect the optical flow constraint. Our system, first presented in [DM96], uses a 3-D
model, and allows the tracking of large rotations by using self-occlusion information from
the model. We also extract the shape of the face using a combination of edge forces and
anthropometry information. Our optical flow solution was in part motivated by [BY 95],
but is also superficially similar to [LRF93]. Our formulation, unlike [BY 95, LRF93],
includes a constraint enforcement term, and allows us to improve our solution by including

additional information. Our face model aso permits the use of a small number of image
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pointsto sample the optical flow field, aswell asthe computation of edge forcesto prevent

error accumulation in the motion.

5.2 Optical flow constraints

In the following, the use of optical flow constraints on deformable models is presented.
The optical flow constraint equation, which expresses a constraint on the optical flow
velocities, isreformulated as a system of dynamic constraints that constrain ¢, the velocity
of the deformable model. The resulting information will be combined with the model
forces fy so that the constraint remains satisfied. The optical flow constraint equation is
used at a number of select locations in the image to constrain the motion of the model,
instead of explicitly computing the optical flow field. The use of optical flow information
greatly improves the estimation of gm, the motion parameters of the deformable mode!.

Hard constraints on a dynamic system (the type of constraints used here) restrict the
shape and motion by reducing the number of available degrees of freedom, while soft
congtraints (such as spring forces) bias the behavior of the system toward a certain goal
(involving the system energy). Hard constraints are specified by equationsinvolving g (or
itstime derivatives). The technique used here for satisfying a set of hard constraintsisthe
addition of a constraint force to the system, which is determined at each iteration of the
system.

Constraints which depend only on q are called holonomic constraints, and constrain
the model to a set of alowable positions. They can be used in a deformable model formu-
lation, for instance, to add point-to-point attachment constraints between the parts of an

articulated object [MT93]. A holonomic constraint C has the general form
C(q,1)=0 (5.1)

Non-holonomic constraints additionally depend on the velocity of the parameters, g, and
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constrain the motion of the model. A non-holonomic constraint C has the general form

C(9,9,t) =0 (5.2)

In the following, we show how the optical flow constraints take thisform and are incorpo-

rated into a dynamic system using the method of Lagrange multipliers.

5.2.1 Constraint formulation

The discussion in Section 2.2.2 describes how the optical flow constraint equation can be
reformulated in terms of the velocities of the model degrees of freedom. This rewriting
uses an identification of the image velocity (u;, Vi) at pixel i with its corresponding model

velocity Xp(ui):

[ . } — %p(U) = Lnp(Ui)am (53)
Vi
where Lp = [pr Lmp] is the projected model Jacobian that has been split into blocks
corresponding to gy and qm. Direct use of the optical flow information only provides
motion information, and as a result, only gn, is affected. To clarify this. any observed
motion is caused by dynamic changes in the true value of qm. The true value of qp is a
static quantity—the meaning of gy, comes from the analogy of physics, where the value of
gp improves over the course of fitting (over time).

The non-holonomic constraint equation for the optical flow at a pixel i in the image

can be found by rewriting the optical flow constraint equation (2.13) using (5.3):
OliLmp(Ui)gm+15 =0 (5.4)

Instead of using this constraint at every pixel in the image, n pixels are selected from the
input image (where n > dimqm). Section 5.4 describes the criterion used to choose these
particular points, and also describes how some of the known difficultiesin the computation

of the optical flow are avoided in this model-based approach.
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For the n chosen pixelsin theimage, the system of equations based on (5.4) becomes:

D|1me(ul) |t1
: Om+ : =0 (5.5)

DIanp(Un) I’[n

which can be written compactly as
Bdm+1t=0 (5.6)

This equation is smply a model-based version of the optical flow constraint equation,
which was discussed in Section 2.2.2. Instead of solving it on its own, however, it is used

as a congtraint on the motion of the mode!.

5.2.2 Solving the dynamic system

The constrained system of equations (2.8) and (5.6) are solved using the method of La-
grange multipliers [Sha89, Str88]. The Lagrange multiplier technique adds additional
degrees of freedom (one for each degree of constraint), to form a larger, unconstrained
system. The initial dynamic equation of motion (2.8), now split into two parts corre-

sponding to g, and gm, is modified by adding the constraint force f¢ to qm:

Adding f; ensures the constraint equation is satisfied, and also cancels the components of
fq. that would violate the constraint. Using the Lagrange multiplier A, the constraint force

can be solved for as:
fo=—BTA (5.8)
We can combine equations (5.6), (5.7) and (5.8) to form:

BB'A = Bfq,, + It (5.9)
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and can now determine the constraint force (by multiplying (5.9) on the Ieft by BT, the
pseudo-inverse [Str88] of B):

fe=—B"(Bfg, +1t) = —BT1{ — B Bfy,, (5.10)
which results in the unconstrained dynamic system:
Qo = fq,, Om= —BT I+ [1—B+B} fam (5.11)

The first term of g in (5.11), —B™ I, is a model-based linear |east-squares solution to
the optical flow constraint equations (5.6) [LRF93]. A model-based solution to the opti-
cal flow constraint equations attributes the flow in the image to motion parameters in the
model. Thisworksasfollows. A change to any motion parameter induces a characteristic
motion field in the image. Figure 5.1 illustrates these vector fields for particular motion
parameters of our face model (described in Section 4.3.2). Figure 5.1(a) shows the vector
field arising from trand ation toward the camera; the focus of expansion can be seen in the
center of the nose. Figure 5.1(b) shows the field for horizontal trandation, Figure 5.1(c)
shows the field for rotation about the vertical axis. Finally, Figure 5.1(d) shows the field
produced by opening the mouth. Formally, these 2-D vector fields are obtained by consid-
ering each column of L mp(u) over theentiremodel (for all u € Q). Thelinear combination
of thefields L mp(u) using the weights —B ™| best satisfies (5.6) at the sampled pixelsin
the least-squares sense.

The second termin (5.11) contains the edge forcesfy,, scaled by thematrix (1—B*B).
(The computation of edge forces was described in Section 2.2.1.) This projection matrix
cancels the component of fq,, that violates the constraint (5.6) on gm. By scaling the edge
forces, thisterm prevents small errorsin qm, from accumulating.

Solving the system in (5.11) ssimply involvesintegrating it over time (we use an Euler
step):

qt+1)=q(t)+q(t)At (5.12)

The process used to initialize the system (to determine the value of q(0)) is described in
Chapter 7.
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Figure 5.1: Sample 2-D vector fields L mp(u)

5.3 Kalman Filtering

The optical flow constraint on gm, is imperfect due to noise and estimation errors. It is
therefore desirable to have only a partial cancellation of fq,,; thisis accomplished through
the use of filtering. This section describes how the computation from the previous section
is cast as an extended Kalman filter.

Kaman filtering [Gel 74] has become a popular tool in computer vision, and the for-
mulation here is, on the whole, similar to other applications [BC86, Met96]: there is a
measurement equation which models the noise inherent in the data gathering process, and
there is a process model, which predicts the behavior of the system based on the current
state. Theinitialization and tuning of thefilter is accomplished using standard techniques.
The significant difference here, isthat thereisnot only the edge data equation (2.8), which

has been previoudy used as afiltering measurement equation [Met96], but thereisaso a
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data-based constraint equation (5.6). The first part of this section describes one reason-
able way of using this constraint in the measurement equation. Alternative formulations
are possible; ours corresponds to the non-stochastic solution in (5.11). The remainder of
the section describes an extended Kalman filter based in part on this measurement equa-
tion.

By assuming a Gaussian noise model for both the measurements and state, the Kalman
filter can maintain an estimate of the state y and the state covariance P. While the assump-
tion of Gaussian noise might not be particularly accurate in describing the actual noisein
the system, it permits a much simpler solution while still capturing alarge amount of the
uncertainty.

The measurement equation for the Kalman filter relatesthe measurementsz to the state
y using the measurement matrix H. Terms vt, and v|, are added to represent the assumed

zero-mean Gaussian noisein fq and I; they have covariances Ry, and Ry, respectively:

Vi, (t)
z(t) =H(t)y(t) + (5.13)
( V|t(t) )

where the construction of H, y and z in (5.14) comes from (5.6), (5.7) and (5.8).

100 db .
H=10 1 B"|, y=|dnm (q>,

0B O A

fb
z= fq — (fq> _ (Zij(uj)Tf(Uj)>
= | g, | = _
—lt —lt

_I'[

(5.14)

The state y consists of the parameter velocities (; together with the Lagrange multipliers
A used in the optical flow solution. Thisinclusion isfor presentation only, because, aswill
be seen later, A is effectively not part of the state. The discrete update equation for the
state is given by (5.12).

z consists of the parameter forces fy and the temporal image derivatives ;. Note

that the spatial image derivatives are not included in the measurements (even though they

73



are used in the formation of B); doing so would greatly complicate the measurement
equations. Similar simplifications can be found in image-based optical flow techniques
[SAH91] where the noise in the spatial image derivatives are ignored to provide a Gaus-
sian solution. Reasonably accurate estimates of the spatial image derivatives are usually
available (especially awvay from occlusion boundaries), making this afairly safe assump-
tion. Also note that H depends on the state y, which makes the measurement equation
non-linear. Because of this non-linear dependency, the filter is an extended Kaman filter.

The pseudo-inverse of H produces the same solution as (5.11):

1 0 0
H"=1|0 1-B™B B+ (5.15)
o (BN —(@B"'B*

In contrast, the smaller system which does not include the Lagrange multiplersA in the
state produces a different solution from (5.11):
+
1 0 0

— (5.16)
0 B'B+1)! (B'"B+1)1BT

Although the solution of the smaller system corresponding to (5.16) approaches that of g
in (5.15) if al of the non-zero eigenvalues of B B are much greater than 1, thisis not the
case in the applications presented here (where al actually tend to be much less than 1).
The inclusion of A in (5.14) thus ensures the system reduces to the original unfiltered
solution, but some complications arise as well. The presence of A is aresult of the con-
straints on the dynamic system—it should not be considered part of the state. Each Aj in
A is associated with a particular pixel from the optical flow computation. However, there
is not necessarily any correspondence between the pixels (and hence the Aj) across itera-
tions. Even worse, the number of pixels used (the dimension of A) varies across iterations.
This means a subset of the state parameters are only present at one iteration, and their

predicted values at timet are not based on any previously estimated values. An alternative
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interpretation would be to view these parametersA as having infinite observation noise, or
perhaps that the “ observability” of A is changing.

The discrete process equation for the Kalman filter gives an expression for the predic-
tion of the state y(t + 1) given the previous estimate y(t). In this case, this equation states
that the predicted motion of the observed subject is the same asin the previous iteration,
along with the added noise w (assumed to be independent zero-mean Gaussian noise with

covariance Q) to form the primarily data-driven system:

yt+1) =yt +w(t)  pw)~N(@OQ) (5.17)

The prior estimates of y and P used in the computation of the estimated state and covari-
ance at timet are denoted § and P. Since A is treated as a distinct value each iteration,

only the portions of §(t — 1) and P(t — 1) that correspond to ¢ are retained, resulting in:

(t) = q“”),

O (5.18)
py— |0 ﬂ+oam
a 0 0

(where Py isthe block of P(t — 1) corresponding to q).

Computing the estimated mean and covariance of y involvesforming the Kalman gain
matrix, which is used to combine the solution using the current measurements with the
solution from the previousiteration. In the following filtering equations, all quantities are
taken at time t, but this dependence is omitted to improve readability. The Kalman gain
matrix [Gel 74] is computed as:

K =PHT (HPHT + R)_l (5.19)

The covariance matrix R is computed as the sum of terms resulting from the noise in f

and l:

R= d (5.20)
0 Ry
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The addition of (5.20) ensures the invertibility of the matrix (HPH " + R) in (5.19); this
matrix isaso symmetric and positive definite.

Using K, the estimated mean is computed as a sum of the current solution Kz and the
weighted prior mean estimate ¥, or as the sum of the prior estimate ¥ and the innovation
(z—HY) weighted by K:

y=Kz+(1—KH)§=y+K (z—HY) (5.21)

Itiseasily verified that (5.21) corresponds exactly with the original solution for g in (5.11)
when R = 0 and P = 1 so that K = H*. The estimated covariance [Gel74] is computed

from the prior covariance P as:

P=(1-KH)P (5.22)

The Kalman filtered solution has a number of advantages over the direct solution from
(5.11). Primarily, it makestheframework morerobust to noise and small estimation errors.
Additionally, it provides a useful meansfor the combination of the edge forcesand optical
flow information; the optical flow constraint is now relaxed to a degree based on the error
in the optical flow information. The filtered solution includes a control for tuning how
much trust goes into the optical flow information relative to the edge information; this
control is the relative scale between Rf, and R,. Finaly, the estimation of the static

quantity qp will eventually cease as the estimated variance of these parameters converges.

5.4 Featuresdection

The construction of the optical flow constraint on gm required the selection of a set of
image pixels from which to measure optical flow information. Whileit would be possible
to use al pixels on the observed object, thiswould have two problems. Most obvioudly, it
would be expensiveto solve the system—it isespecially wasteful sinceit islikely that most

pixels do not provide a significant amount of useful information. And secondly, particular
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points actually provide harmful information—such as those near occlusion boundaries.

This section describes our method for the selection of pixelsin the construction of (5.5).
Tomas and Shi [ST94] define good features for tracking by using the following crite-

rion. The outer product of the image gradients at pixel i is summed over a small window

around that pixel:

On 01’ (5.23)

window(i)

A feature is selected when the smaller eigenvalue of this 2 x 2 matrix is greater than a
threshold value. These features possess significant image gradients in two orthogonal di-
rections, which makes them reliable tracking features, as well as good sources of optical
flow information. Features with one very large eigenvalue are also useful in our applica-
tion, as these image points also provide good optical flow information.

However, not all pixels with significant gradient magnitude should be chosen. In par-
ticular, pixels on occlusion boundaries must be avoided, as they violate the optical flow
constraint equation. The use of model-based techniques here provides a straightforward
solution—assuming the model is at least roughly aligned with the image, pixels anywhere
nearby the predicted occlusion boundaries of the model are smply not chosen.

Besides providing the most accurate information possible, the set of chosen points
must also adequately sample the facial motion information present in the image. The ac-
curate measurement of a parameter in gm requires a sufficient number of pixels in the
image corresponding to model points where the Jacobian of that parameter does not van-
ish. Note that some motion parameters are defined only over a particular region of the
face (such as the mouth-opening motion in Figure 5.1(d) which is non-zero only in the
jaw region).

Using too few pixels in the computation results in a loss of accuracy, and can reach
the point where the system loses track of the subject. Including too many pixels forces
the pixel selection method to include pixels containing little useful information (such as

having a small gradient magnitude). It has been determined by experimentation that 10
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to 20 pixels per parameter provide sufficient accuracy and robustness for the application
of face tracking (at which point the results change negligibly when more pixels are used).
Since there can be considerable overlap between the sets of pixels used to measure each
parameter, the total number of pixelsused can befairly small. For each of the experiments

here, nis approximately 120 pixels.

5.5 Discussion

The successful tracking performed by thisframework is primarily due to the use of optical
flow as a constraint. This was verified to some degree by disabling key components of
our tracking system, and observing the resulting performance decrease. Altering (5.11)
to use the system in (5.16) (which actually corresponds to standard Kalman filter data
fusion), fq,, is no longer scaled by the constraint projection matrix, and this effectively
disables constraint enforcement. This produced a much less robust system—especially
when many motion parameters were active. Perhaps the constraint enforcement made the
edge force optimization problem ssimpler by projecting avay componentsthat would result
in local minima. Further investigation on this point is needed.

Using an ordered solution, which alternatively uses the optical flow solution (for abig
step), and aedge force solution (for asmaller correction), produced a system which failed
quitefrequently. Since at each step, the solution depended on asingle (perhapsvery noisy)
source of information, the solution no longer depended solely on the useful component of
each information source.

When edge forces are disabled (for gm only), errorsin the estimation of qm accumu-
late, causing the model to eventually lose track (a single 60 degree head turn is easily
enough to do this). Using only edge forces (and no optical flow information) produces a
harder and more expensive problem. Edge forces are most effective when the model is
very close to the solution, and require many iterations otherwise. Large changes in many

parameters at once often resultsin alocal minimum solution being found.
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While using optical flow as a constraint is a clear advantage, the presence of noisein
the optical flow information makes having a strictly enforced constraint counterproduc-
tive. Canceling the entire component of the edge force which violates the constraint also
throws away some potentialy useful information. The extended Kaman filter allows for
the softening of this constraint based on thereliability of the optical flow information. The
addition of edge forcestakesinto account thisreliability, so that the filter weights the edge

forces more when the optical flow information islessreliable.

5.6 Summary

This chapter has described a deformable model framework which treats optical flow in-
formation as a constraint on the motion of the model. When combined with edge infor-
mation, the estimation results are greatly improved. This use of edge information combats
error accumulation in tracking, as well as allows for the extraction of shape information.
The presence of an extended Kaman filter helps deal with noisy input while also provid-
ing a useful means for combining the optical flow and edge information. The use of a
three-dimensional model accounts for the self-occlusion of the face, and hence permits

the tracking of a subject under large amounts of head rotation.
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Chapter 6

Error ressdual minimization

The face model described in Chapter 4 includes an intuitive distinction between shape and
motion. The model has motion parameters, which describe both rigid and non-rigid mo-
tions, and shape parameters, which describe the basic underlying shape of the model. The
purpose of this distinction is to reduce the number of motion parameters. This distinction
now leads us to develop a method, initially presented in [DM98], where changes in the
image are initially attributed entirely to motion, but then the error in the reconstructed
motion is used to more accurately extract both shape and motion parameters of the object

being tracked.

This formulation is used in concert with the tracking framework from Chapter 5. In
this chapter, we extend this framework so that the face shape is updated also based on
the optical flow information. Derivatives of the model Jacobian (second derivatives of
the model) determine how changes in the parameters of the model affect its motion pa-
rameterization. Using these derivativesin atruncated Taylor series expansion, the model
parameters (both shape and motion) are refined by minimizing the residuals from the
model-based motion computation. This method simultaneously corrects the shape and

motion parameters for each image frame.

For every image in the sequence, we first solve a model-based least squares optical
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flow solution, which determines the motion parameters. Then, theresidual from this com-
putation determinesthe error in the model parameters using another least squares process,
which adjusts the shape and motion parameters of the model. The use of residuals to de-
termine the applicability of amodel’s assumptionsis the subject of regression diagnostics
[Bel80]. The method here, however, assumes the model is appropriate, and instead uses
the deviations from the model to improve the estimate.

This approach allows a more accurate extraction of the shape and motion. The esti-
mation framework presented in the previous chapter extracted the basic shape of the face
using only edge information. Edge information is not always adequate due to poor illu-
mination and self-occlusion. This may result in inaccurate estimation of the basic shape,
which can in turn cause error in the motion estimation. This approach also differs from
other model-based shape and motion estimation methods [Koc93] where optical flow in-
formation was used to directly improve the shape, leading to potentially large shape esti-
mation errors. Our method does not require the extraction of tracked features, but instead
uses motion information—in this case, optical flow information. Shape and motion are

improved simultaneoudly.

6.1 Shapeand motion estimation

This section describes our new technique for non-rigid shape and motion estimation us-
ing the residuals from a least-squares motion estimation. When optical flow is used as
the cue for motion estimation, as in Section 5.2, the residuals are in part caused by vi-
olations of the optical flow constraints (i.e. specularity), by linearization of the optical
flow constraints, and by measurement noise. In a model-based framework, residuals are
also produced by errors in the extracted shape and motion of the model. In order for the
residualsto be useful, however, a significant error in the shape and motion during tracking
must be responsible for the majority of the residual—thisis our primary assumption. This

assumption is supported by experimental evidence discussed in Section 7.1.3.
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The use of amodel allows for a model-based computation using these residuals. For
the applications here, the deformable face model described in Chapter 4 is used. The
optical flow least-squares residuals R are computed from (5.6):

R =Bgm+1t=B(-B"l)+1=(1-BB") Iy (6.1)

The residual is a vector which has dimension n (the number of pixels used in the motion
computation).

There are a number of approaches to using this residual information—given the as-
sumption above, the goal of these approacheswill beto reduce thisresidual. One possible
approach isto extract shape information using the same formulation for determining mo-

tion as described in Section 5.2, asin:
Bam+Bpap+1:t=0. (6.2)

where the construction of By, is analogous to B, but uses Ly, instead of L. The system
in (6.2) is decoupled, and is solved for motion first, and then for shape in terms of the
residua R :

Bogb=—-R = @@= —Bg_R (6.3

This method is closely related to the method described by Koch [Koc93]. Itisarea
sonable approach in the context of image coding, where image fidelity is of much greater
importancethan accuracy of face shape estimation—the face shapeis deformed to account
for the tracking errorsin motion. This produces aface shape that resultsin ahigher quality
image, but does not necessarily estimate the actual 3-D face shape of the subject.

As stated earlier, in the framework presented here, aclear distinction is made between
shape and motion parameters, since the true value of gy, isastatic quantity. Hence, it does
not make sense to adjust the shape parameters qp directly from observed velocities, asin
[Koc93].

Instead of this, our approach isto find what small change in q would affect the largest
reduction in the motion residual. This approach uses the fact that the model Jacobian
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L mp(u; g) depends on both gy and gm (based on how the model was constructed), so that
second derivative information is employed. Let Ag be the current deviation of g from its
true value (not including the motion in gm)—this includes both the shape error and the
accumulated motion error. We assume Aq is of sufficiently small magnitude so that the

first-order approximation to L i, using its Taylor-series expansion is sufficiently accurate:

oL mp(ui : q)
aq
For the case of the face model described in Chapter 4, whose parameterization consists

Lmp(Ui;q+Aq) ~ Lmp(ui;q) + AQ (6.4)

of mostly affine scaling deformations, sufficient linearization accuracy is easily attained.
Combining this approximation of L mp with the model-based optical flow constraint equa-

tion (2.15) resultsin:

aL mp(Ui)
oq

where 0L m/0q is part of the model Hessian matrix (arank 3 tensor). It is used here as

D|ime(ui)qm+ Ul ( AC]) qm+ Iti =0 (65)

ablock matrix, written here “curried” with Aqg to keep the notation under control (so that
the parenthesized sub-expression hereis amatrix). The value of m istaken as —B™l; as
in (6.1); its instance here does not include any other terms (such as edge forces), since

they do not affect the residual.

When (6.5) is considered over n pixelsfrom the input image, thisresultsin the system:

BGm + (Gdm)Aq +1;=0. (6.6)
(ml_"’me(un)T
dq
where G = : (6.7)
AL mp(um)
(D'm oq )




The transpositions performed in the construction of G * alow it now to be curried
with gm (this construction transposes the second and third indices for the tensor G). This
manipulation allows for the solution of Aq, which is found using another |least-squares

process, given by the equation:
(GAm)Agq = —(BGm+1v) (6.8)
which can be manipulated by substituting m = —B"l;and R = Bgm+ 1, and then solved:
(GBTI)Ag=R = Aq=(GB*I)"R (6.9)

This least squares solution determines the best set of small changesin g, and g, that

minimize the optical flow residual (6.1), given the linearization of L mp in (6.4).

6.2 Solution improvement

The value of Aq from the previous section specifies an absolute update to the state (unre-
lated to the current timestep At)—Aq is smply added to g after each iteration.

The solution (5.11) from Chapter 5 must be adjusted to accommodate this added term.
This involves determining and evaluating the edge forces using the model at the updated
location (q + Aqg). This greatly reduces overshooting, which would be caused by edge
forces contributing corrections which are redundant with those aready present in Ag. The

new system is:
b ="fgq,(d+A0),  qm=—B¥li+ [1-B*B]fg,(q+Aq) (6.10)
which is updated over time similarly to (5.12), but with Aq added in:
q(t+1) =q(t) +qAt+Aq (6.12)

Analogous changes can be made to the Kalman filtered solution: the force determina-
tion is made at the improved state, and the improvement is added in after each iteration
(unfiltered).

1The matrix G isthe same as H in [DM98], but is changed here to avoid overloading with the measure-
ment matrix from Chapter 5.
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6.3 Implementation

Duetothelinear approximationin (6.4), itisimportant to determineif theresidual actually
does decrease with the addition of Ag. Once Aq has been computed using (6.9), the model -
based motion analysis in (5.6) is re-solved using gnew = q + Ag, producing an updated
resdua R ney. If the addition of Aq causes the residual magnitude of R ey to be larger
than R, the results of the shape and motion refinement are discarded (Aq is set to zero).
Otherwise, the changes specified by Aqg can be used directly. Note that this process does
not include any edge forces, since they do not affect the residual.

The efficiency of solving this system is improved by omitting parameters in the con-
struction of G from (6.7) which cannot be affected based on gm. For example, if thereis
no motion extracted in the eyebrow region of the face, then there is no reason to include
eyebrow shape parametersin G. At any point in time, typically about half of the shape
parameters of the face model can be omitted from the computations.

The process of determining Aq can aso beiterated, solving (5.6) and (6.9) repeatedly
to obtain a greater improvement. For the applications here, the linear approximation in
(6.4) isrelatively accurate for the face model described in Chapter 4, due to the fact that
most of the model parameterizationislinear scaling. Asaresult, only the singleiteration
is performed.

Theleast squares solution to (6.9) is solved using asingular-value decomposition. This
avoids any problems associated with the lowering of rank due to the aperture problem or a

lack of motion, aswell asthe problemsassociated with anon-orthogonal set of parameters.

6.4 Summary

We have presented a novel deformable-model technique which uses residuals from a
model-based optical flow solution to refine the shape and motion of the model. By us-
ing second derivative information from the model, small improvements to the parameters

are made by minimizing the residuals. Besides having greater accuracy than aframework
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using only optical flow and edges, our framework extracts the shape of the face without
needing data from extreme head poses (such as a profile view). Instead, much smaller

motions are needed to extract much of the shape information.
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Chapter 7

Experiments and Results

7.1 Vision Experiments

This section contains the results from a series of face shape and motion estimation ex-
periments. The first three experiments exhibit the generality of our tracking system (from
Chapter 5) on avariety of subjects, whilethe next six experiments use acommon observed
subject, and provide a quantitative validation of the shape and motion estimation systems
(from both Chapter 5 and Chapter 6).

7.1.1 Initialization

The entire estimation process is automatic, except for theinitialization, which requiresthe
manual specification of several landmark featuresin the first frame of the sequence (the
eyebrow centers, eye corners, nose tip, and mouth corners). The subject must also be at
rest, and (approximately) facing forward, asin Figure 7.1(a).

Using these marked features, forces are applied to the initial face model (described in
Section 2.3) that deform the corresponding points on the face toward the desired | ocations
in the image. The rotation and trandation, as well as course-scale face shape parameters
(such as those which determine the positions and sizes of the face parts) are fitted using

this information, the result of which is shown in Figure 7.1(b). Once roughly in place,
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both edge and anthropometry forces are applied that pull the faceinto the correct shape as
in Figure 7.1(c). The distance from the initial face to the camerais determined given the

assumption that the subject’s face is the same size as the mode!.

(b)
Figure 7.1: Model initialization
The problem of automatically locating the face and its various features has been ad-
dressed elsewhere [YD94, YCH92], and could be used to make this process automatic.
No markers or make-up are used on the subject (markersare used for the validation of the
tracking method, however, as described below). Experience has shown that the initializa-

tion process is robust to small displacements (i.e. several pixels) in the selected landmark

points.

7.1.2 Tracking experiments

The original image sequences are 8 bit grey images at NTSC resolution (480 vertical
lines). In each of the sequences, the width of the face in the image averages 200 pixels,
and therange of motion of featuresacross theimage sequence istypically 80to 100 pixels.
For each of the tracking examples, several framesfrom the image sequence are displayed,
cropped appropriately. Below each, the same sequence is shown with the estimated face
superimposed. In each case, amode initialization is performed as described above. The
initialization process usually takes about 2 minutes of computation. Afterwards, process-
ing each frame (using the extended Kalman filter formulation) takes approximately 1.4
seconds each (all computation times are measured on a175 MHz R10000 SGI O2). When

using the error residual computation, processing each frame takes an additional 8 seconds.
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The sequence shown in Figure 7.2 wastaken on an IndyCam at 5 fps. Figure 7.2 shows
asubject turning her head in (a) through (d) and opening her mouth from (d) to (f). Based
on the good alignment of the face model with theimage, it appearsthe facemodel isableto
capture the shape of her face, aswell asthe head rotation and mouth motion. The next two
sequences weretaken on ahigher quality cameraat 30 fpst. Both Figure 7.3 and Figure 7.4
show a subject smiling and moving forward in (b) and (c), opening their mouth while
turning their head in (€) and (f), and turning back, closing their mouth dightly in (g). All
of these motions appear to be correctly tracked based on the observed motion. These three
experiments involve different subjects, having very different appearances. This suggests
the verification of the face model shape parameterization (described in Section 4.3.1) was

successful.

7.1.3 Shape estimation validation experiments

The same observed subject is used in both experiments presented here, which provide
avalidation of the shape estimation accuracy of our system. The shape (determined by
gs) is validated using a Cyberware range scan of the subject, shown in Figure 7.5(a).
Experiments using the edge-based shape estimation from Chapter 5 are compared along
side with results using the error residuals from Chapter 6.

The shape estimation validation experiment in Figure 7.7 shows the subject making a
series of non-rigid face motions: opening his mouth in (b) and (c), smiling in (d) through
(e), and finally raising his eyebrows in (f). In each case, the motion parameter values
change appropriately, and at the correct times (both techniques extracted virtualy the
same motion parameter values).

At each frame, Figure 7.8 shows the extracted shape results as compared against the
range scan of the subject, for both techniques. Note that for this comparison, all motion

parameters are ignored, so that only the shape is compared. The RMS error is computed

We are grateful to Yaser Yacoob and the Center for Automation Research at the University of Maryland
College Park for providing these two image sequences.
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Figure 7.3: Motion and expression tracking example 2

@ (b) © (d) © ® @

Figure 7.4: Motion and expression tracking example 3
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(b)

Figure 7.5: (a) Shaded range scan of subject, (b) Marker calibration images, (c) Resulting
marked model

using the nodes of the model, and also includes a uniform scaling of the model so that
the two faces are the same scale (this eliminates the depth ambiguity—in this case, the
estimated model was compared at 96% scale).

For the edge-based estimation system (the dotted line), the RMS error starts at around
1.7 cm after initialization, and shows a steady reduction over the course of the experiment,
ending around 1.3 cm. For the system using error residuals (the solid line), the RM S error
again starts at around 1.7 cm, but ends with less error (0.85 cm) compared to the edge-
based technique.

The experiment in Figure 7.9 shows the subject performing small head motionsin (a)
through (f) while smiling in (c) and (d), and finishing with a significant head rotation in
(9). Using the edge-based method (again, the dotted line), the RMS error starts at around
1.9 cm after initialization, shows a gradual reduction over the course of the experiment,
ending just under 1 cm, with the large reduction in error around frame 50 corresponding
to when the subject turned his head significantly to the side in Figure 7.9(f) and (g), where
the profile view contained good edge information to fit the face shape. For the system
using error residuals (the solid line), the RMS error again starts at around 1.9 cm, but this
time finishes with just under half of the RMS error as the edge-based technique: around
0.4 cm. In addition, thislower level was reached fairly quickly, showing the advantage of

using the error residual technique.

Besides estimating the shape more accurately, the technique using the optical flow

error residuals also estimates expression-shape parameters. This allows the extraction of
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the correct curve of the smile expression for this subject, asin Figure 7.6(a), compared to
treating these values as constants, as was the case for edge-based fitting, which is shown
in Figure 7.6(b).

(@ (b)

Figure 7.6: Fitting expression-shape parameters () using error residuals; using average
value (b) with edge-based estimation

The derivation of the method using the residuals in Section 6.1 assumes that shape
error is the leading contributor to the residuals from the motion computation. During the
experiments, the residual magnitudes started fairly high (initially around 0.18 for the first
experiment, and 0.24 for the second), and ended up around 0.050 (for both experiments)
by the end of motion sequence (thisis for the residual-based method). (Note that these
values are the magnitude of R , and isnot a shape difference measure). In order to estimate
what portion of the residuals are caused by shape error, both experiments were run again
(for the residual -based method only); thistime, theinitial model shape was taken from the
range scan of the subject (so that shape error is eliminated). The residuals that resulted
from these experiments had afairly small and constant magnitude, which averaged around
0.035 (pixel intensity units—for pixelsin the range [0, 1]). This enforces the validity of

our assumption that shape error is responsible for the bulk of the residual.

7.1.4 Tracking validation experiments

The next four experiments use markersto allow for the validation of the motion tracking
of the techniques from Chapter 5 and Chapter 6. The same subject is used in each of the
experiments. Eleven small circular markerswere placed on the face of asubject. Analysis

of the accuracy of the motion estimation in g, is performed using these markers on the
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(a) Frame 1 (b) Frame 9 (c) Frame 13 (d) Frame 20 (e) Frame 24 (f) Frame 32

Figure 7.7: Shape validation experiment 1
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Figure 7.8: Results of shape validation experiment 1
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(@ Framel (b)Framell (c)Framel8 (d)Frame24 (e)Frame35 (f) Frame46 (g) Frame57

Figure 7.9: Shape validation experiment 2
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Figure 7.10: Results of shape validation experiment 2

subject, which alow for alignment verification in the image plane (ground truth motionin
3-D isnot available).

For these experiments, no shape estimation is performed. Instead, the face shape is
provided by an off-linefitting of the face model to the range scan in Figure 7.5(a)—this
way, any deviation can be attributed primarily to motion error, not shape error. In addition,
the fixed locations of the markers on the model are determined using some additional
images taken of the subject, shown in Figure 7.5(b). The markersare fixed into particular
locations of the polygon mesh (they have fixed coordinates in Q). The model resulting
from thisfitting and marker placement is shown in Figure 7.5(c), with the marker locations
shown as dark circles. The RMS error of the extracted model (comparing the extracted

model with the range scan) is 0.26 cm.

First, the image locations of each of the markers from the image sequence is obtained
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using a semi-automatic tracking system. The rough location of the markersistracked us-
ing the KLT? package (which is based on [ST94]), and was fine tuned using a deformable
ellipse template. Simple calibration tests suggest this tracking technique has a variance of
0.35 pixels in measuring the center of a marker (which are usually about 8 pixels across)
in the image.

Care was taken so that the presence of the markers did not significantly affect the
motion estimation, since these markers could provide useful information for tracking.
The pixel selection method for the optical flow information was modified so that no points
were selected that were within 3 pixels (the radius of the spatial derivative filters) of any
point on a marker. In addition, any edges used to produce edge forces were similarly
limited to be distant from markers. Given that the markers were not placed directly on top
of important facial features, it is unlikely that the presence of the markers detrimentally
affected the experiment results.

In each of the following four motion validation experiments, thereis an accompanying
graph showing the displacement error for each frame. This displacement error of a marker
isthe Euclidean distance (in pixels) between the image location of the marker (if visible),
and the predicted image location of the marker given the model (which is the projected
image location of the model marker). The dark line on the graph shows the mean displace-
ment error of al visible markers (one standard deviation is indicated by the gray region
surrounding it). The dotted lines indicate the minimum and maximum displacement error.

The first three sequences were taken using an IndyCam at 5 fps. The final sequence
was taken on a high quality camera (Pulnix TM-9701; greyscale, progressive scan) at 30
fps. Also note that this final sequence was taken at a different time than the first three—
the markers were re-applied to the subject, and their locations were determined again,
as in Figure 7.5(b) and (c). Their new locations were roughly the same as in the earlier

validation experiments (at most 1.5 cm difference).

The sequence in Figure 7.11 shows the subject making a series of (nearly) rigid head

2Stan Birchfield’'sK LT package isavailableat ht t p: / / vi si on. st anf or d. edu/ ~bi rch/ ki t

97



motions. The subject turns to his right in (a) through (c), back to his left by (e) and
then faces forward in (f). The average of the deviation errorsfor this sequence, shown in
Figure 7.12, is roughly between 2 and 3.5 pixels, which given the face is approximately
200 pixels across in the image, amounts to less than 2%. The maximum error of around 7

pixelsisaround 3.5% (roughly 0.5 cm).

The motion in the second sequence in Figure 7.13 is predominantly non-rigid motion
(facial expressions). The subject moves forward and frowns his eyebrows in (b), moves
back and produces a surprise expression in (d), followed by a smilein (f). The average
error shownin Figure 7.14, isdightly higher for this experiment, averaging between 2 and
4 pixels, with amaximum again at about 7 pixels. The largest error is produced during the

smile expression; possible reasons for this are discussed below.

The third sequence in Figure 7.15 is a combination of rigid and non-rigid motions.
The subject turns his head from (a) through (d) while smiling, returning to rest position
in (f). The displacement error shown in Figure 7.16 is also somewhat higher, averaging
from 2 to 4 pixels (but being closer to 4 for alonger period), reaching a maximum of just
over 7 pixels. The largest error is produced when the smile is viewed from the side, and is

concentrated in the mouth area

The last sequence in Figure 7.17 is primarily a rigid-motion sequence that is signif-
icantly longer than the other experiments (760 frames). It includes head rotations in a
variety of directions, as well as some large head trandation (side-to-side and away from
the camera). Eyebrow raises and asmile are also present. This sequence demonstratesthe
ability of the system to maintain track over along sequence, without experiencing failure
due to tracking drift. In this sequence, the face is approximately 140 pixels across in the
image (somewhat smaller than in the previous experiments). The average pixel devia-
tions shown in Figure 7.18, range between 1.5 and 2.8 pixels, with a maximum error at
4.6 pixels, corresponding to about the same absolute distance error as with the previous
experiments (roughly 0.5 cm). Hence, the apparently lower pixel deviations for this se-

guence amount to approximately the same error in actual distance. During the sequence,
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some of the motions were very close to the maximum limits of tracking speed (pixel ve-
locities were about the same size as the derivative filter width). In particular, the turning
motion at frames 250-320 is the most serious, with other occurrences at frames 430-450
and 610-620. These motions manifest themselves in Figure 7.18 as larger displacement
errors. However, during the successive motions (which are well below this maximum ve-
locity), the system recoversfrom these errors, and improvesthefit using edge information,
returning to the baseline deviation amount of around 2 pixels.

While the edge information prevented drift in this example, it only works to a certain
extent. Should the baseline deviation be significantly higher, the alignment of the model
and image can be poor enough to cause tracking failure (drift seems to be the cause). 2

This tracking experiment was run again (a number of times) to experimentally deter-
mine the minimum baseline deviation that causes tracking failure. After each iteration,
Gaussian noise was added (of increasing variance until tracking failed) to the rigid motion
parameters in gm. Tracking failure became common as average pixel deviation values
went above 4.6 (the incidence of failure went from non-existent below 4.5, to prevalent
by 4.7). Alternatively, adding Gaussian noise directly to the images (of increasing vari-
ance until tracking failed) produced a similar value (average pixel deviation of 4.4, with a
corresponding image noise variance of 15.5% of intensity).

Each of these motion tracking experiments were also run using the motion improve-
ment technique from Chapter 6 (the shape improvement was disabled, since these experi-
ments do not perform shape estimation; however, the residual method still included shape
parameters in its computation, so as to preserve the “intent” of the method).

To my initial dismay, the results were indistinguishable (under 0.1 pixel deviation dif-
ference; sometimes lower, sometimes higher) from the experiments which did not use this
method. After some analysis, it became apparent that the edge forces were far surpass-

ing any benefit the motion improvement performed. This explanation was supported by

STracking failure is simply defined as reaching a 10 pixel deviation—at this point, further tracking may
still produce reasonable velocity results, but only because the head is roughly an ellipsoid; the deviation
typically increases once this point is reached, with tracking being re-gained only by luck.
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(a) Frame 1l (b) Frame 7 (c) Frame 15 (d) Frame 23 (e) Frame 41 (f) Frame 48

Figure 7.11: Motion validation experiment 1
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Figure 7.12: Results of motion validation experiment 1

another experiment, which involved comparing the results with and without the motion
improvement method from Chapter 6; but this time, edge forces were disabled in both.
In both cases, the system lost track. However, when the motion improvement method
was present, it retained track until about frame 180, whereas without this improvement
method, tracking lasted only until frame 120. Hence, while the motion improvement
method does not seem to contribute noticeably to the results in the presence edge forces,
it still nudges the system in the right direction. Of course, the shape improvement method

still contributes a great deal (as seen earlier), even in the presence of edge forces.

Considering all the experiments, the error in the tracking results can have other (non-
noisy) sources, besides motion estimation error. One possibility is that it can be caused
by poorly extracted marker locations (although this distance is less than apixel). Another
source can be the discrepancy between the face shape used and the shape of the observed

subject. The RMS error between the face shape and the range scan for only the marker
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(a) Frame 1 (b) Frame 11 (c) Frame 16 (d) Frame 18 (e) Frame 24 (f) Frame 29 (g) Frame 40

Figure 7.13: Motion validation experiment 2
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Figure 7.14: Results of motion validation experiment 2
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(a) Frame 1 (b) Frame 16 (c) Frame 18 (d) Frame 27 (e) Frame 39 (f) Frame 43

Figure 7.15: Motion validation experiment 3
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Figure 7.16: Results of motion validation experiment 3
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Figure 7.17: Motion validation experiment 4
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Figure 7.18: Results of motion validation experiment 4
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points is much lower than that from the whole model; it is 0.1 cm, which will cause at
most 1 pixel of deviation in marker locations. Violation of the assumption of perspective
projection is also a possible contributor to error, although in this case is minimal, given
the small depth range of the face compared to the distance of the face to the camera.
Fromthis, it can be concluded that a significant portion of the errors present here are from
motion estimation.

Upon closer examination, it can be seen that the larger errorswhich are present during
non-rigid motions (in particular, smiling), are caused by the smile produced by the model
not matching the smile on the subject. Although the estimation of the expression-shape
parameters will help for markers on or near the smile boundary, the model deformations
do not affect the surrounding surface as much as their corresponding expressions affect
the surrounding tissue.

Judging by the good performance here, it seems that both techniques are relatively
insensitive to optical flow constraint equation errors (such as violations of the brightness
constancy assumption [NY 93], or the truncation of higher order image-derivative terms
[Nag83]). Any remaining problems appear to be corrected by edge forces, which prevent

drift from accumulating.

7.1.5 Limitations

The many experiments in this section show the capabilities of the shape estimation and
tracking systems described in Chapter 5 and Chapter 6. On the other hand, they also say a
lot about what the limitations of the system are.

First, some of the limitations of the system come directly from the assumptions made
during design. Most obvious is the assumption of brightness constancy during optical
flow computation. Major lighting changes can cause tracking failure. Specularities also
cause small problems, but tend not to affect the entire model, since they tend to be fairly
localized. In some cases, poor lighting will also lead to tracking failure. Typically, these

occur in situations where edges are washed out (opening the aperturetoo wide on acamera
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will do this).

Second, isto smply exceed the maximum tracking speed (determined by the derivative
filter width). This problem can be addressed simply by using multi-scale optical flow
methods.

Third, are deviations from the model—where the images go past the coverage limits
of the model. Attempting to track motions that are not represented produces relatively
unpredictable effects. For example, lip puckering is not modeled: tracking this facial
motion produces the best fit using the existing motion parameters (often quite far off).
This causes poor model-image alignment, which can lead to tracking failure. Occlusions
produce similar problems. There is hope for these problems—as these violations first
appear as large increases in the error residual, perhaps these regions can be automatically
ignored.

Finally, are the problems associated with the tracking of multiple, ssimultaneous mo-
tions. In the validation experiments, situations where head rotation was accompanied
by a non-rigid expression deformation often produced higher pixel deviations. On occa
sion, this deviation can be serious enough to cause tracking failure. This is caused by
the linearization in the model-based optical flow solution, which could perhaps be alevi-
ated by using the iterative method from Section 2.2.2, or the image warping method from
[BAHH92].
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Chapter 8

Contributions

We have described techniques for the construction of face models for both computer
graphics and computer vision applications, and describe how information gathered using

these modelsin avision system can be extracted and combined.

More specifically, in the construction of the face models here, the use of face anthro-
pometry data was introduced. For computer graphics, this alowed for the generation of
random individuals from a particular population. For computer vision, it improved the
estimation of shape, by ensuring the likelihood that the extracted face can actually exist,

and also by providing areasonable starting point (the average face).

In addition, techniques were described for using such a face model for model-based
shape and motion estimation. In particular, the use of optical flow information as a con-
straint on the model motion allowed for the combination of edge datawith the optical flow
information. This solution was sufficient to prevent tracking drift. The use of a model-
based optical flow solution also resulted in atechnique that improves the shape and motion
estimate by reducing the error residua of this solution. Finally, anumber of experiments,
some of which provide validation of these techniques, have been performed. These ex-
periments raised some interesting issues concerning the use of model-based optical flow
methods.
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8.1 Conclusionsand FutureWork

8.1.1 Facegeneration

The generation model presented in Chapter 3 must ultimately be morerichly represented.
Possible extensions might apply variational techniques to construct the face surface and
the interior skull ssimultaneoudy; this would form the basis of aface animation model as
in [LTK95]. Similarly, landmarks on the face could be used to drive texture synthesis,
deriving distinct but plausible patterns of skin and hair.

Acquiring better data is also an avenue of improvement. In this work, proportions
were used since they were the best available resource to model the correlations that exist
between measurements. Having access to the raw data (per individual) would allow for a
covariance analysis, as well as thefitting of probability distributions (since they probably
aren’'t Gaussian).

In the meantime, our work already suggests new computational approaches for tasks
that rely on anthropometric results, like forensic anthropology, plastic surgery planning,
and child aging. It could aso figure in a user interface for editing face models, by a-
lowing features to be edited while related features systematically changed—jpreserving
natural proportions or ensuring that faces respect anthropometric properties common to
their population group. Both tasks underscore the importance of continuing to gather and

analyze anthropometric data of diverse human populations.

8.1.2 Faceshape estimation and tracking

The end of Chapter 7 described a number of limitationsin the tracking system detailed in
Chapter 5. The most significant of which is the idealization of the optical flow constraint
equation. For instance, the problems of photometric variation and self-shadowing, which
violate the optical flow constraint equation, are not addressed. The presence of a three-
dimensional model could prove to be useful when addressing these problems. Another

limitation is in tracking large motions; at the moment, motions larger than the width of

108



the derivativefilters will not be tracked correctly. Multi-scale optical flow techniques can
be applied here, athough will need to be modified to work in a model-based framework.
It should also be possible to warp the current image based on the prior motion estimate,
and perform aresidual flow computation as an innovations process in the Kalman filtering
framework. These subjects require further investigation.

Investigation of the recognition of faces using the shape parameterization, or of facial
motion using the motion description is worth pursuing. And of course, additional detail
in the motion parameterization of the model will alow for the tracking of more complex
facial motions. This might prove more difficult than it seems, from two ends. First,
the modeling (by hand) would be quite difficult; more automated approaches would be
advisable. And second, it is possible that as the number of non-rigid motion parameters
increases, it will become more difficult to distinguish between them. Perhaps the tracking

of multiple hypotheses will be necessary to ensure model-image alignment.
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Appendix A
Modularization of global defor mations

The shape model x is defined through the repeated application of n global deformations
Ty :R3— R3, wherek € 1...n, to the underlying shape s as:

X(Q;u) =Tn(qr,;---Ta(qr,; S(ds; u))) (A1)
where g, are the parameters used by Ty. The parameters used by all of the global defor-
mations are accumul ated into the vector gt asin:

gt = (af,,---»07,) " (A-2)

so that q can now be grouped as:

q=(de.q7)" (A.3)

For a particular set of deformation functions, closed form expressions for the resulting
shape can be derived. From these complex expressions, the Jacobian matrix can be derived
(see [MT93] for an example), although this method is tedious and non-modular.

Instead of this, a single expression for the resulting shape is not derived, but rather
each deformation is applied separately given the definition in (A.1). The Jacobian matrix
can be calculated in asimilar way using the chain rule. First, define the deformation 1k as

the composition of thefirst k deformation functions T, through Ty:

w(gr;p) = Tk(ar,;...T1(at;p)) peR3 kel...n (A.4)
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with 1o defined to be the identity. Given this definition of 1y, it follows how to compute

Jx, the Jacobian of x with respect to g, using the following recurrence:

0s
Ji, = Tk(p) —aTk kel...n |
‘[k _— ap ‘[k_l aqu oo 0

o that Jx = Jq,. Theleft block in (A.5) uses the chain rule, so that the matrix dTy(p)/op
“deforms’ the individual columns of the Jacobian matrix Jr, ,. The right block in (A.5)
contains the derivatives of the outermost deformation Ty with respect to its parameters.

A naive technigue for computing Jx using this recurrence from the bottom-up (which
starts with Jg), is particularly expensive in terms of both time and space complexity. This
isparticularly a problem since the Jacobian needsto be re-evaluated at each iteration, over
many points on the model. Instead, the quantity J ' f is computed, given an applied force f

such asin (2.9). The quantity J f can be computed efficiently in atop-down fashion as:

.
fn=", fk_lz(%) fk kel...n (A.6)
T T
Jlf:(aa—qss) fo, J?kf:((%") fk kel...n (A7)
k

If the actual columns of Jy arerequired, asisthe case for the optical flow computation
(2.15), they can be found by three applications of the above technique using the unit

vectorsi, j, and k in thex, y and z directions, respectively, as:
3o = @i+ (DI T+ @Rk T (A8

sinceii ' +jj " +kkT = 1. For the optical flow computation, this construction is only
required for the motion parametersin gm.

Besides global deformations, it isalso useful to include rigid motions (trandations and
rotations) and even camera projections. For the case of camera projections, however, the

mapping becomes T : R3 — R2, and (A.8) uses only i and j, since the image forces are
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two-dimensional. The formulation of the projected Jacobians in (2.5) and (2.6) is simply
an instance of the left block of (A.5).

This modular technique for computing the Jacobian matrix allows for significantly
easier implementation at little computational expense. It isalso amore modular approach,

since the choice of which deformations used can be made on thefly.
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