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graphics and computer vision applications. It also details model-based computer vision

methods for extracting and combining data with the model. Our face models respect

the measurements of populations described by face anthropometry studies. In computer

graphics, the anthropometric measurements permit the automatic generation of varied ge-

ometric models of human faces. This is accomplished by producing a random set of

face measurements generated according to anthropometric statistics. A face fitting these

measurements is realized using variational modeling. In computer vision, anthropomet-

ric data biases face shape estimation towards more plausible individuals. Having such a

detailed model encourages the use of model-based techniques—we use a physics-based

deformable model framework. We derive and solve a dynamic system which accounts for

edges in the image and incorporates optical flow as a motion constraint on the model. Our

solution ensures this constraint remains satisfied when edge information is used, which

helps prevent tracking drift. This method is extended using the residuals from the optical

flow solution. The extracted structure of the model can be improved by determining small

changes in the model that reduce this error residual. We present experiments in extracting

the shape and motion of a face from image sequences which exhibit the generality of our
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Chapter 1

Introduction

Appropriate combinations of statistical and constraint-based geometric methods permit

modeling and estimation of complex objects. This thesis investigates such combinations

in the modeling and estimation of human faces. By concentrating on such a particular class

of objects, we show how model-based techniques can exploit existing data and knowledge

about facial shape and motion.

Across the human population, the faces of individuals exhibit a great deal of varia-

tion in their appearance, but they all still have a good deal of structure in common. A

similar statement can be made about facial motion—while it is complex and non-rigid,

the motions are still fairly constrained. The work presented here takes advantage of this

commonality—information concerning the appearance of faces is either used by or en-

coded directly into the model. This results in more successful and robust systems.

Aside from being a good testbed for our model-based techniques, faces are interesting

on their own, playing an important role in a wide range of applications. Graphical model-

ing of faces has obvious applications in the entertainment industry for character animation

and in simulations involving people. Vision research on face tracking contributes toward

the ability to monitor a user’s attention and reactions automatically and without intrusion,

and thus would have obvious benefits in human-machine interaction. Other applications

range from interactive entertainment, to security, to ergonomic studies.
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Model specificity

Modeling commonality in computer graphics and computer vision is notoriously difficult.

It requires making a decision concerning the trade-off between model specificity and gen-

erality. As a result, models capable of representing the shape of an arbitrary face can be

categorized based on the restrictiveness of their coverage:

• Unconstrained coverage. The face model has enough flexibility (in terms of de-

grees of freedom) to represent any face, although the model can also represent many

other objects that are not faces (a table or a banana). Representation schemes that

fall into this category are typically free-form meshes.

• Constrained coverage. In addition to having the flexibility to represent any face,

the model has a bias towards representing actual faces, but can still represent objects

that are not faces. A good example of a representation in this category is a model

based on principal component analysis (PCA), which is a technique based on statis-

tical analysis of examples. The manually constructed face model used in this thesis

for shape estimation (described in Chapter 4) also falls in this category.

• Generative. For this most restrictive category, models can represent any face, but

include a probability distribution on the faces represented (as to the likelihood of

each represented face). This dissertation describes the first generative model for

faces in Chapter 3.

The choice of which class is appropriate is largely application dependent. The state-of-

the-art models used for face tracking tend to be models with constrained coverage models,

although unconstrained models are sometimes used as well.

Model-based techniques

Using detailed models raises distinctive challenges and opportunities for computer vision.

In the absence of knowledge about the objects being observed, vision techniques often
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will extract information for each image pixel. Improvements to this individual pixel view

simply exploit the spatial or temporal coherency expected in most situations. Of course,

such assumptions carry with them the added complexity of segmentation—finding the

boundaries of coherent regions in space and time [NH87]. Meanwhile, in the presence of

knowledge concerning the observed objects, such as membership in a particular class of

objects, model-based vision techniques extract information for each degree of freedom of

a particular model.

The use of model-based techniques introduce a new set of problems, however. The

most significant of these is the problem of maintaining alignment of the model with the

image. Even though an accurate observation model might be available, should its current

state not correspond with the current state of the observed object, the advantage of using

a model is lost (and its use may even be detrimental). Another difficulty arises from po-

tential interdependencies between parameters, and possible ambiguity between two model

configurations (which have similar appearances, but different parameter values). This be-

comes more important to address as model complexity increases. As a result, information

extracted in a model-based framework must be used carefully, and combined in a way that

respects these interdependencies.

The model-based techniques described in this dissertation are applied to faces (but

can be applied more generally). Face tracking is a particularly natural testbed for our re-

search for two reasons. The actual shape and motion of faces makes edge and optical flow

information easy to use and advantageous to combine; and the abundance of data describ-

ing human face shape [Far94] facilitates the development of three-dimensional models of

faces with separable shape and motion parameterizations.

Constraints and Modeling

The main techniques in this thesis each use some form of constraints on the model to

achieve the desired goal. The following is a brief description of the different uses of

constraints used in this thesis.
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Variational modeling techniques use geometric constraints: these constraints restrict

the coverage of a model (either shape or motion) by limiting the space of acceptable

parameter combinations. Typically, solving for parameters which satisfy geometric con-

straints involves some form of constrained optimization. Existing uses of these techniques

range from surface design to the modeling and estimation of articulated rigid motion.

In this document, geometric constraints are used to construct a generative face model—

where the coverage of the model is limited by geometric constraints derived from anthro-

pometric data.

The model-based tracking technique described in this thesis uses a data-based con-

straint on the estimated parameters as a means of combining information. In other words,

the optimization problem that is solved to determine the current estimate is converted into

a constrained optimization problem, where the constraint is used to disambiguate the so-

lution. Using one source of data to constrain the solutions from another source can help

when the optimization problem involved in the unconstrained solution is difficult. For ex-

ample, we use optical flow information to constrain a template alignment problem (based

on edges). By limiting the choices available to the alignment, many of the local minima

of this problem are avoided.

Finally, we can use a model constraint, which is the implicit constraint a model places

by restricting possible configurations to those given by the model. The method of regular-

ization in computer vision is probably the best known example of using a model constraint.

For the work here, we use a model constraint to assess and improve the accuracy of the

current estimate. Later, we present how we can improve the shape estimate by making

small adaptations which force the motion observations to agree with the data.

1.1 Contributions

This dissertation describes face model construction processes, as well as techniques for

the use and combination of different sources of model-based information for estimation

4



and tracking. For model construction, knowledge of facial geometry comes in the form of

measurements from face anthropometry [Far94, KS96], the science dedicated to the mea-

surement of the human face. Anthropometric studies such as [Far87, Far94] provide data

on the shape of faces which help characterize the distinctive features of faces from a par-

ticular population. This represents the first significant use of data from face anthropometry

studies in both graphics and vision.

In computer graphics, we present a system which is capable of generating distinct

and plausible face geometries automatically. The system generates a set of random facial

measurements from statistics gathered from face anthropometry studies [Far87, Far94].

Armed with a set of measurements, variational modeling techniques are used to construct a

face geometry that realizes the measurements. Variational modeling is a surface modeling

tool that employs constrained optimization methods to find the fairest surface that satisfies

a set of geometric constraints. In this case, a fair surface is one that minimizes bending

away from a prototypical face, and is subjected to a set of geometric constraints that are

an abstraction of the measurements performed by anthropometrists.

Face model construction in computer vision is a considerably different task, where

simplicity in parameterization takes precedence over appearance. The generative model

described above is not appropriate for use by a vision system. Instead, the parameteriza-

tion of our model is constructed by hand—a series of localized deformations are specified

that allow for shape variations observed in anthropometry studies [Far94]. During shape

estimation, the data from these studies is used to bias the model towards more likely indi-

viduals, by minimizing deviation from expected values of anthropometric measurements.

Since motion tracking is also a goal of this vision system, a motion parameterization is

also constructed (by hand) for a small set of facial expressions.

The shape and motion estimation of model parameters is realized using a deformable

model framework [Met96]. This framework uses a parameterized face model, which has

parameters for both the shape of the face (the unchanging appearance of an individual) as

well as its motion (facial expressions and displays). Shape estimation is performed using
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edges found in the image, guided by knowledge of where edges are likely to occur.

The apparent motion of brightness patterns in an image—the optical flow—provides

a constraint on the motion of a deformable model. We derive and solve a system that

incorporates this constraint, which is then used for model tracking. The solution contains a

familiar term found in other model-based optical flow tracking work. However, it contains

an additional term which maintains the optical flow constraint in the presence of other

data (in this case, edges). The use of this constraint enforcement term greatly improves

the robustness of the tracking results by producing a motion estimate that is consistent

with all observed data. This fruitful combination of optical flow information with edges

combats error accumulation in model tracking.

The model-based optical flow solution also provides an estimate of how much error is

present (a residual). We present a model-based technique which improves the shape and

motion estimate by minimizing this residual. The use of the model gives meaning to the

error estimate, which describes how the observed motion deviates from what the model

can represent.

1.2 Overview

This document proceeds as follows. Chapter 2 provides background information on the

use of a deformable model framework for computer vision, and a review of model-based

techniques using such a framework. Also included is a summary of Farkas’s system of

anthropometric face measurements, and a description of variational modeling.

The next two chapters describe the construction of face models for graphics and vi-

sion, and how data from anthropometry studies can be used in their formation. Chapter 3

describes our generative face model. It describes our method for generating sets of mea-

surements consistent with population groups. This leads to a discussion of how variational

modeling can be used to produce face geometries that realize a set of generated measure-

ments. In Chapter 4, a model suitable for shape and motion estimation is described. In
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contrast to the generative face model, this face is geared more towards vision. While its

parameterization is hand constructed, it still relies on face anthropometry data to maintain

a consistent geometry.

The face model developed in Chapter 4 is used in a deformable model framework for

the shape and motion estimation of human subjects, which is the subject of Chapter 5.

The optical flow constraint equation [Hor86] is reformulated as a constraint on the motion

of the deformable model. This constrained system is solved to produce a model-based

optical flow solution which allows for the addition of other data sources (in this case, edge

data), so that the optical flow constraint is maintained. Kalman filtering is then used to

allow small violations in this optical flow constraint, given that the optical flow measure-

ments are noisy. Chapter 6 then describes a technique which can be used to improve the

shape and motion estimates by reducing the error residuals from the optical flow constraint

solution. A series of vision experiments using this framework are then presented, which

exhibit the generality, as well as validate the accuracy of these techniques. Finally, Chap-

ter 8 summarizes the contributions of this work, along with a discussion of future work

possibilities.
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Chapter 2

Background

This chapter reviews a variety of topics that are touched upon elsewhere in this document.

The focus of this dissertation is on modeling in graphics and vision. Central to both of

these areas is the issue of representation: how to specify shape and motion for a particular

class of objects. More specific to computer vision is the process of estimation, whose goal

is to minimize the deviation between the model and data. For the applications here, we use

physical simulation as an analogy for optimization, which permits a powerful set of exist-

ing techniques to be borrowed from physics. It also couples these with existing geometric

techniques from vision. This is often called a physics-based framework, or a deformable

model framework [MT93, PS91, TWK88], and is the subject of Section 2.1. This is fol-

lowed by descriptions of model-based shape estimation using edges and model-based mo-

tion estimation using optical flow information in Section 2.2.1. Later in Chapter 5, these

techniques will be combined together in a deformable model framework.

These modeling techniques say little about the actual construction of a model. This

process can become quite difficult, especially for face models. Part of this difficulty comes

from the complex variability in measurements seen in human faces and face models. This

variability has been systematically studied in the field of anthropometry.

Section 2.3 provides a brief review of anthropometry—the biological science of hu-

man body measurement. The procedures for measurement in anthropometry are precisely

9



specified, allowing data between individuals to be successfully compared, and for useful

statistics of population groups to be derived. Later in this document, our approaches rely

on this large body of existing data that describes the shapes of people’s faces. In graphics,

it will allow for the automatic generation of varied face geometries. In vision, it provides

information about the shapes of faces which is used to bias the estimation process towards

more likely occurring individuals.

The use of anthropometric data for graphics model generation is described in Chap-

ter 3. This data is supplied as input to modeling techniques which allow the low-level

parameters of a shape to be determined indirectly. In particular, variational modeling

techniques are used, which is the subject of Section 2.4. We use variational modeling to

obtain a surface that conforms to a set of anthropometric measurements while retaining

characteristics that all faces share.

2.1 Deformable models for computer vision

Deformable models [MT93, PS91, TWK88] are parameterized shapes that deform due

to forces according to physical laws. For vision applications, physics provides a useful

analogy for treating shape estimation [MT93], where forces are determined from visual

cues such as edges in an image. The deformations that result produce a shape that agrees

with the data.

The use of physics also makes available additional mathematical tools. For example,

smooth surfaces that interpolate a set of sparse data can be determined by associating

an energy with the surface (which is minimized) [TWK87], and produces a method of

regularization useful as a data fitting technique. Constraint techniques from physics have

been used to form articulated rigid models [MT93], and will be used in Chapter 5 to

incorporate optical flow information. The next section describes how a model is specified

and represented in a deformable model framework.
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2.1.1 Model formulation

The shape of the deformable model x is parameterized by a vector of values q (sometimes

called generalized coordinates) and is defined over a domain Ω which can be used to

identify specific points on the model; a particular point on the model is written as x(q;u)

with u ∈Ω, although the dependency of x on q is often omitted.

The model x is formed by applying a deformation function to an underlying shape s

(which has parameters qs). An example shape primitive is the ellipsoid:

sellip
(
(ax,ay,az); (u,v)

)
=


ax cosucosv

ay cosu sinv

az sinu


where Ω =

{
(u,v) ∈

[
−π

2
,
π
2

]
× [0,2π)

} (2.1)

which has parameters ax, ay and az for scaling in the x, y and z directions, respectively.

While the shape of this model is limited to ellipsoids, its coverage can be extended by ap-

plying deformations. The deformation function T :Rq×R3 7→R3 deforms the underlying

shape based on the q deformation parameters in qT , so that:

x(q;u) = T(qT; s(qs;u)) (2.2)

Here, T is defined as a composed sequence of deformation functions (such as bending or

scaling deformations) [MT93]. To allow for a more streamlined discussion here, it can

also contain rigid motions (translations and rotations), for example:

Trigid

(
(c>,θ>)>;x

)
= c + Rx (2.3)

where c specifies the translation vector, and R is a rotation matrix given by the quaternion

θ.

The kinematics of the model can be determined in terms of the parameter velocities q̇.

As the shape changes, the velocity at a point u on the model is given by:

ẋ(u) = L(q;u)q̇ (2.4)
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where L = ∂x/∂q is the model Jacobian [Met96]. Note that the dependency of L on q

is not always written, for reasons of conciseness. For cases where x is defined using a

sequence of deformation functions, the Jacobian can be computed using the chain rule as

in Appendix A.

A good geometric intuition for L(u) is obtained by noting that each column of L cor-

responds to a particular parameter in q, and is a three-dimensional vector which “points”

in the direction that x(u) moves as that parameter is increased—of course, it is only a

linear approximation to the actual motion.

There really isn’t anything special about the models used here. Basically, any explic-

itly parameterized model will work. For model-based applications, the construction of

the parameterization often captures the geometric structure for the class of objects being

modeled, whether constructed automatically or by hand, so it is the choice of what model

to use that is important. How to choose an appropriate model is largely an engineering

decision.

2.1.2 Perspective projection of the model

When modeling an object viewed in images, x needs to include a camera projection, re-

sulting in a two-dimensional model (called xp), which is projected flat from the original

three-dimensional model. Under perspective projection (with a camera having focal length

f ), the point x(u) = (x,y, z)> projects to the image point xp(u) = f
z (x,y)>.

The velocities of model points projected onto the image plane, ẋp, can be found in

terms of ẋ. The Jacobian Lp = ∂xp/∂q is given by:

ẋp(u) =
∂xp

∂x
ẋ(u) =

(
∂xp

∂x
L(q;u)

)
q̇ = Lp(q;u)q̇ (2.5)

where

∂xp

∂x
=

 f/z 0 − f x/z2

0 f/z − f y/z2

 (2.6)
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The matrix in (2.6) projects the columns of L (which are three-dimensional vectors) onto

the image plane.

2.1.3 Estimation using dynamics

The models defined earlier become useful for applications such as shape and motion es-

timation when used in a physics-based framework [Met96]. These techniques are a form

of optimization whereby the deviation between the model and the data is minimized. The

optimization is performed by integrating differential equations derived from the Euler-

Lagrange equations of motion:

Mq̈ + Dq̇+ Kq = fq (2.7)

where M, D and K are mass, damping and stiffness matrices, respectively, and fq are

generalized forces, derived from data, and applied to the model.

When used as an optimization tool, the full generality of these equations is not needed.

Simplification can provide a more efficient and stable solution to the optimization—the

mass matrix M is often zeroed in estimation applications, since model inertia can pro-

duce oscillations around the desired minimum. This simplification also has the desirable

property that the model state no longer changes once all forces vanish or equilibrate. The

damping matrix D specifies how energy is dissipated, and is typically simplified to be

diagonal (or the identity), to allow for fast solution. However, for situations where there

is a fairly significant interdependency between the parameters in q, the damping matrix

(as D =
R

L>L) [Met96] can alleviate this problem. Although inverting D then becomes

necessary for the solution of the dynamic system. The use of the stiffness matrix K is

associated with the quadratic strain energy 1
2q>Kq, and provides a measure of “fairness”

of the model (preferred surfaces minimize bending energy), allowing for reasonable solu-

tions in situations where the data is sparse (relative to the number of model parameters) or

particularly noisy.

For the applications here, the mass term is omitted, and the damping is set to be the
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identity. Additionally, no stiffness term is used since the models used here have a fairly

small set of parameters. This results in the following simplified dynamic equations of

motion:

q̇ = fq (2.8)

where the applied forces fq are computed from three-dimensional forces f3D and two-

dimensional image forces fimage as:

fq =
Z (

L(u)>f3D(u)+ Lp(u)>fimage(u)
)

du

∼=∑
j

(
L(u j)>f3D(u j)+ Lp(u j)>fimage(u j)

) (2.9)

The distribution of forces on the model is based in part on forces computed from the edges

of an input image [Met96]. Using L and Lp, the applied forces are converted to forces

which act on q and are integrated over the model to find the total parameter force fq.

The dynamic system in (2.8) is solved by integrating over time, using standard (explicit)

differential equation integration techniques. Euler integration is used in [Met96].

2.2 Model-based estimation

The use of parameterized models, such as those introduced in Section 2.1, suggest a

model-based approach to estimation. Instead of extracting information per image pixel,

or per node (in a mesh), a model-based approach extracts information for each degree of

freedom in the model parameterization—for each model parameter (typically there are far

fewer parameters in the model than are needed to represent arbitrary shapes). This section

summarizes previous approaches for model-based shape estimation using edge informa-

tion and model-based optical flow computation.

2.2.1 Model-based shape estimation

The model-based extraction of shape using image edge information can be accomplished

using the physics-based framework described in Section 2.1. All that is needed is a method
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for determining forces from image data. With that, and given an adequate model initializa-

tion, these techniques will align features on the model with image features, determining

object pose and shape parameters. The remainder of this section describes current ap-

proaches for data-force computation.

There are two basic approaches to this problem in this framework—both assign forces

derived from image features that are applied to particular model locations. The two issues

to address here are force determination (given the data, determine an appropriate force),

and force assignment (what model locations should be affected by this force). Upon each

solution iteration, these forces are determined again, and re-assigned. A successful fit has

the model-data alignment improving (and converging) over a series of iterations.

The first approach involves determining a force distribution designed to “attract” the

model towards regions with significant image intensity gradient. Given the image I, the

resulting two-dimensional potential field at image location (x,y) is given by [TWK88]:

P(x,y) =−‖∇ (Gσ ∗ I)(x,y)‖ (2.10)

where the image I is blurred by convolution (∗) with the Gaussian Gσ of radius σ, and

as a result produces a larger area of influence in the image, permitting a greater deviation

between the actual model position from its initialized position. The image processing steps

are shown in the first three frames of Figure 2.1. This potential results in the following

force distribution on the image, with weighting factor β:

f(ucontour) =−β ·∇P(x,y) (2.11)

where ucontour is the point on the model that projects to the image position (x,y), and is

nearby (measured along the surface) an occluding contour of the observed object [Met96]

(if there is no nearby occluding contour, this force is not applied). This is a simple three-

dimensional analog of using this image potential for two-dimensional “snakes” [TWK88].

The resulting force distribution from this potential for the example in Figure 2.1 is shown

in the rightmost frame, where it can be seen how the field would tend to draw the model

into alignment with nearby image features.
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Gradient magnitude imageIntensity image Gradient of potential fieldBlurred gradient image

Figure 2.1: Force distribution derived from image features

An alternative method of force determination is possible when a more detailed model

is used. With more detail, comes knowledge of where image edges are likely to occur—

edges are caused by the presence of occlusion boundaries and highly curved regions on the

model surface. In this case, instead of producing an image gradient force field, forces are

applied directly to the closest edge-producing point on the model from each edge pixel.

This is the reverse matching problem: finding a mapping from model features to image

edges (as opposed to a mapping from image edges to features).

Chan and Metaxas [CMD94, Met96] determine the image edges using a qualitative

shape recovery process [DPR92], which extracts sets of pixel coordinates Ei for each

identified edge segment i. Then, the set of edge-producing model locations Mi ⊂ Ω (cor-

responding to the edge set Ei) is determined using occluding contours and surface creases.

Correspondences between pixels in Ei and model points in Mi are determined by a proxim-

ity based assignment between the model locations and each image pixel e∈Ei: um ∈Mi is

the point on the model that is closest to e in the image. This choice results in the following

long-range forces (weighted by β):

f(um) = β · (e−xp(um)) (2.12)

As seen in Figure 2.2, forces are assigned to feature-producing model locations to the

nearest edge feature.

While the first of the techniques listed here can be used for any model (even a free-

form mesh), the second method requires a fairly detailed model, so that the predicted edge

locations are fairly accurate. However, by using long range forces, the model can be much
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Figure 2.2: Force assignments derived from image features and predicted model locations

farther from initialization position using the second technique, showing the advantage of

a having a detailed model.

2.2.2 Model-based optical flow

Optical flow information, which describes the apparent motion of brightness patterns in

an image, is often used for object tracking in vision. Direct use of this information often

requires assumptions about the objects being viewed. Most common, is the assumption

that particular locations on viewed objects do not change brightness. This brightness

constancy assumption allows the formulation of the well-known optical flow constraint

equation [Hor86] for the image I (the assumption manifests itself as the zero on the right-

hand-side):

∇I

 u

v

+ It = 0 (2.13)

where ∇I = [Ix Iy] are the spatial derivatives and It is the temporal derivative of the image

intensity. u and v are the components of the image velocities. The following is a brief

discussion of how a model-based approach reformulates (2.13) in terms of the model

parameters q, which replace the image velocities. For consistency, this discussion will

use the notation described in Section 2.1, which is different (and more compact) from that
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used in previous model-based optical flow work.

For a model under perspective projection, there exists a unique point u on the model

that corresponds to each pixel (provided it is not on an occluding boundary). The crucial

observation is that in a model-based approach, u and v are identified with the components

of the projected model velocities ẋp(u): u

v

= ẋp(u) = Lp(u)q̇ (2.14)

The model-based optical flow constraint equation in the image can be found by rewrit-

ing (2.13) using (2.14):

∇ILp(u)q̇ + It = 0 (2.15)

Formulations which are basically identical to (2.15) (although are often confined to

rigid motion) can be found in [Adi85, BAHH92, CAHT94, HW88, LRF93, NH87, NS85].

Negahdaripour and Horn [NH87] refers to a formulation such as this as a direct method

for motion estimation. The discussion of (2.15) in [BAHH92, NH87, NS85] is specialized

for rigid motion, and while still general, requires a lengthy derivation by hand. Using the

modular shape formulation described in Section 2.1 allows for more simple derivations of

(2.15), and is more similar to the description in [CAHT94, LRF93]. (Another difference

between these techniques is noted by their use of either Euler angles or quaternions as the

representation for the rotations).

There are a number of techniques available for solving (2.15). The most common is

the iterative minimization of the quadratic error measure, summed over a set of pixels:

min
q̇

∑
i

(∇IiLp(ui)q̇ + Iti)
2 (2.16)

which is the approach taken in [BAHH92, HW88, NH87, NS85]. An alternative method

solves the least-squares problem using the pseudo-inverse of the matrix formed by stack-

ing a set of equations like (2.15) for a set of pixels [CAHT94, NS85, LRF93]:

Bq̇ + It = 0 (2.17)
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which is solved as:

q̇ =−B+It (2.18)

where B+ is the pseudo-inverse of B [Str88]. This approach is basically a one-step version

of the iterative approach above. This version linearizes by assuming Lp is constant for

the entire time step (instead, with the above iterative solution, Lp is re-evaluated at each

iteration step per time step).

Once a solution is obtained, image warping techniques can be used to improve the so-

lution [BAHH92], which can to some degree correct for the linearization performed (such

as in the formation of Lp), or for the determination of large motions (using a coarse-to-

fine strategy). Given the solution, the current image is warped to “undo” the current flow

estimate, allowing a more detailed estimate to be obtained as increments to the original

solution, using the warped image.

There are a number of benefits obtained when using a model-based optical flow for-

mulation in place of an image-based method (should the application permit their use).

By restricting the extracted motion to a particular motion parameterization, the problem

of flow field determination is no longer underconstrained1. Image-based techniques re-

quire the presence of smoothness conditions to determine a solution, and even worse, may

require a motion segmentation to determine the boundaries of where the smoothing is

performed. Model-based techniques are able to extract flow information, even when the

useful information is sparse, and do not need to impose any smoothness constraints to

determine a solution (since they are implicit in the model).

Without the use of position information, however, the tracking solution will drift; solv-

ing (2.15) over a sequence of frames involves integrating a velocity. Chapter 5 will de-

scribe a technique for combining model-based optical flow solutions with edge informa-

tion, and therefore prevents this tracking error accumulation.

1This assumes, of course, that the motion parameterization of the model does not have an extremely
large set of motion parameters. This would preclude the use of model-based techniques over image-based
techniques.
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Aside from tracking, it is also possible to use a model-based optical flow formula-

tion to estimate the model structure. In particular, Koch [Koc93] describes a model-based

framework which uses optical flow information to estimate the rigid translation and rota-

tion of a moving face, and adapts the shape of the face to account for the motion discrep-

ancy. Chapter 6 presents an alternative method of structure estimation from optical flow

information.

2.3 Face anthropometry

Anthropometry is the biological science of human body measurement. Anthropometric

data informs a range of enterprises that depend on knowledge of the distribution of mea-

surements across human populations. For example, in human-factors analysis, a known

range for human measurements can help guide the design of products to fit most peo-

ple [Doo82]; in medicine, quantitative comparison of anthropometric data with patients’

measurements before and after surgery furthers planning and assessment of plastic and re-

constructive surgery [Far94]; in forensic anthropology, conjectures about likely measure-

ments, derived from anthropometry, figure in the determination of individuals’ appearance

from their remains [Rog84, Far94]; and in the recovery of missing children, by aging their

appearance taken from photographs [Far94]. The use of anthropometry data in this dis-

sertation describes a similar use of anthropometry in the construction of face models for

computer graphics and computer vision applications.

In order to develop useful statistics from anthropometric measurements, the measure-

ments are made in a strictly defined way [Hrd72]. The rest of this section outlines one

popular regime of such measurements and the information available from analyses of the

resulting data.

Anthropometric evaluation begins with the identification of particular locations on a

subject, called landmark points, defined in terms of visible or palpable features (skin or

bone) on the subject. A series of measurements between these landmarks is then taken
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using carefully specified procedures and measuring instruments (such as calipers, levels

and measuring tape). As a result, repeated measurements of the same individual (taken

a few days apart) are very reliable, and measurements of different individuals can be

successfully compared.

Farkas [Far94] describes a widely used set of measurements for describing the human

face. A large amount of anthropometric data using this system is available [Far87, Far94].

The system uses a total of 47 landmark points to describe the face; Figure 2.3 illustrates

many of them. The landmarks are typically identified by abbreviations of corresponding

anatomical terms. For example, the inner corner of the eye is en for endocanthion, while

the top of the flap of cartilage (the tragus) in front of the ear is t for tragion.

Five of the landmarks determine a canonical coordinate system for the head. The

horizontal plane is determined by the two lines (on either side of the head) connecting

the landmark t to the landmark or (for orbitale), the lowest point of the eye socket on

the skull. The vertical mid-line axis is defined by the landmarks n (for nasion), a skull

feature roughly between the eyebrows; sn (for subnasale) the center point where the nose

meets the upper lip; and gn (for gnathion), the lowest point on the chin. In measurement,

anthropometrists actually align the head to this horizontal and vertical, in what is known

as Frankfurt horizontal (FH) position [Far94, KS96], so that measurements can be made

easily and accurately with respect to this coordinate system.

Farkas’s inventory includes the five types of facial measurements described below and

illustrated in Figure 2.4:

• the shortest distance between two landmarks. An example is en-ex, the distance

between the landmarks at the corners of the eye

• the axial distance between two landmarks—the distance measured along one of the

axes of the canonical coordinate system, with the head in FH position. An example

is v-tr, the vertical distance (height difference) between the top of the head (v for

vertex) and hairline (tr for trichion).
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Figure 2.3: Anthropometric landmarks on the face [Far94]

• the tangential distance between two landmarks—the distance measured along a pre-

scribed path on the surface of the face. An example is ch-t, the surface distance from

the corner of the mouth (ch for cheilion) to the tragus.

• the angle of inclination between two landmarks with respect to one of the canonical

axes. An example is the inclination of the ear axis with respect to the vertical.

• the angle between locations, such as the mentocervical angle (the angle at the chin).

Farkas describes a total of 132 measurements on the face and head. Some of the

measurements are paired, when there is a corresponding measurement on the left and

right side of the face. Until recently, the measurement process could only be carried out

by experienced anthropometrists by hand. However, recent work has investigated 3-D

range scanners as an alternative to manual measurement [BA96, Far94, KS96].

Systematic collection of anthropometric measurements has made possible a variety of

statistical investigations of groups of subjects. Subjects have been grouped on the basis

of gender, race, age, “attractiveness” or the presence of a physical syndrome. Means and

variances for the measurements within a group, tabulated in [Far94, Gor89], effectively

provide a set of measurements which captures virtually all of the variation that can occur

in the group.
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Figure 2.4: Example anthropometric measurements [Far94]

In addition to statistics on measurements, statistics on the proportions between mea-

surements have also been derived. The description of the human form by proportions

goes back to Dürer and da Vinci; anthropometrists have found that proportions give use-

ful information about the correlations between features, and can serve as more reliable

indicators of group membership than can simple measurements [Far87]. Many facial pro-

portions have been found to show statistically significant differences across population

groups [Hrd72]. These proportions are averaged over a particular population group, and

means and variances are provided in [Far87]. An example proportion is shown in Fig-

ure 2.5, which states that the width of the mouth ch-ch is roughly three-halves the size of

the width of the nose (at the base) al-al.

Later, in Chapter 3, Farkas’s anthropometry is applied to the generation of distinct,

plausible face geometries. Face anthropometry data is also used to bias a face model

towards more likely individuals during shape estimation in Chapter 4. Both of these ap-

plications involve the representation of anthropometric measurements, in order to apply

Farkas’s anthropometry. Additional techniques are developed in Chapter 3 to deal with

the fact that only limited information is provided by these sources (means and variances

for measurements and proportions). Of course, with more detailed information, such as
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Figure 2.5: Example anthropometric proportion

measurement and proportion covariance data, as well as fitted distributions (instead of

assuming Gaussian), different methods would be used.

2.4 Variational modeling

Traditional work on surface modeling provides the designer with “handles” for modifying

the shape, which are directly related to the underlying representation. In an attempt to

move away from this paradigm, work on variational shape design attempts to provide a

more abstract level of control over the shape to the designer, such as “construct a smooth

surface which passes through these points and contains this curve” [CG91, GC95, HKD93,

MS92, TQ94, WW92, WW94].

This section provides a brief overview of variational modeling. Later in this document

(in Chapter 3), the underlying method used for the automatic generation of varied face ge-

ometries will draw on the techniques presented here, using anthropometric measurements

(described in Section 2.3) as a means of abstract specification of shape.

Variational modeling allows the specification of shape to be separated from the rep-

resentation of shape. This abstraction is realized using standard optimization techniques,

where the desired shape is the solution to a problem rooted in the calculus of variations.
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Instead of directly manipulating the underlying representation, the designer supplies con-

straints on the desired shape, which are taken into account during the optimization. Typi-

cally these constraints only determine a small number of the degrees of freedom necessary

to describe the entire shape—the remaining degrees of freedom are determined by mini-

mizing an objective function which specifies the fairness of the shape. While fair is often

interpreted as “visually pleasing,” its use here can be application dependent. For a gen-

eral surface, these optimization problems have no closed-form solutions. To make the

problem tractable, a shape representation method is chosen from the Computer Aided Ge-

ometric Design (CAGD) literature which confines the resulting surface to be of a certain

class. Furthermore, the objective function is often approximated and discretized to allow

its efficient solution.

Use of a wide variety of constraint types and objective functions can be found in the

variational modeling literature. The presentation here, however, will focus on the frame-

work in [WW92]. The next few sections contain discussions of the surface representations

used in variational modeling frameworks, how constraints are specified for these surfaces,

and how these surfaces are faired in the presence of these constraints.

2.4.1 Linear surface representations

As stated earlier, the surface representation schemes used in variational modeling do not

allow for arbitrary surfaces to be specified. Instead, the representation methods define a

surface in terms of a finite number of degrees of freedom (the control points)–this is known

as the finite-element method [Zie77]. If the representation scheme is flexible enough, the

resulting surfaces can closely approximate the true solution to the variational problem.

Parametric surface modeling schemes map R2 to surfaces in R3. The parametric sur-

face s is defined over a two-dimensional domain with parameters u and v using the differ-

entiable functions x(u,v), y(u,v) and z(u,v):

s(u,v) =
(

x(u,v),y(u,v), z(u,v)
)

u,v ∈ [a,b] (2.19)
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where ‖su(u,v)× sv(u,v)‖ 6= 0 for all (u,v). su and sv denote parametric derivatives in the

u and v directions, respectively.

Variational modeling frameworks typically use a surface representation scheme for

s(u,v) which is a linear combination of control points p weighted by a set of basis func-

tions b:

s(u,v) = ∑
i∈I

bi(u,v)pi (2.20)

Since any point s(u,v) on the surface s depends linearly on its degrees of freedom (the

control points p), finding solution of variational problems can be made quite efficient. In

this document, the particular surface representation scheme used will be B-splines [Far93],

which have a rectangular domain (such as [0,1]× [0,1]).

2.4.2 Fairing

Measures of surface fairness are formulated as a local measure, and are integrated over the

entire shape. The integral of these objective functions are a single positive value, evaluat-

ing to zero for the fairest shape possible. A fairing process will minimize this functional,

in the presence of constraints. Most variational modeling systems use quadratic objective

functions (for efficiency reasons), which require approximation and linearization.

The most prevalent surface objective function is the thin plate functional, which ap-

proximates the bending energy in a thin elastic sheet—it is defined in terms of surface

curvatures. Surface curvature (measured at a particular surface point, in a particular tan-

gent direction) measures the rate of change of tangent inclination. A basic result from

differential geometry tells us that curvature is a smoothly varying function which takes on

maximum and minimum values κ1 and κ2 (principal curvatures) in orthogonal directions

ê1 and ê2 (principal directions). These curvatures are computed using the first and second

fundamental forms from differential geometry [dC76].

The thin-plate function is the sum of the principal curvatures squared, and integrated
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over the entire surface:

E(s) =
Z (

κ2
1 + κ2

2

)
dudv (2.21)

However, due to its highly non-quadratic character (that is, non-quadratic in p), this func-

tion is often replaced by the quadratic approximation:

Eapprox(s) =
Z

(suu · suu + 2suv · suv + svv · svv) dudv (2.22)

(double subscripts on s denote second parametric derivatives). However, this function

tends to poorly approximate the thin-plate functional when the parameterization area does

not scale uniformly onto the surface. A first order membrane term (scaled by α) is added

to penalize non-uniform parameterizations:

Eapprox(s) =
Z [

(suu · suu + 2suv · suv + svv · svv)+

α(su · su + 2su · sv + sv · sv)
]

dudv
(2.23)

Typically, α is just large enough to prevent approximation error. This is the surface func-

tional used in most variational frameworks including [GC95, HKD93, WW92, WW94].

Clearly, E(s) is a function of p (the model degrees of freedom). Eapprox(s) is quadratic

in p for linear surface schemes [GC95, HKD93, WW94], so E can be written as:

Equadratic(s) =
1
2

p>Kp (2.24)

where K is a matrix derived from the shape representation. For linear surface representa-

tions, K can usually be found explicitly (given a particular mesh topology). A derivation

of K for B-splines is provided in [WW92]. Due to the local refinement properties of most

shape representations used in these applications, K will be sparse (mesh nodes have only

a few neighbors), containing only O(dimp) non-zero entries, allowing for more efficient

optimization techniques.

The objective function can also be measured with respect to the difference from a

prototype shape s′ [WW92] (with control points p′), so that the minimization is performed
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with respect to (s− s′), resulting in:

Equadratic(s− s′) =
1
2

(p−p′)>K(p−p′) (2.25)

When minimized, this produces shapes that retain characteristics of the prototype, since s′

is now the fairest possible surface. Effectively, this objective function measures bending

away from the prototype surface.

2.4.3 Constraints

The constraints give the user control over the geometry of the surface. They provide a

layer of abstraction between the underlying shape representation and parameterization so

that the user can make statements like “the curve must pass through this point” and “the

surface should contain this curve.” A survey by Nowacki, Liu and Lu [NLL90] reviews

types of constraints used with polynomial curve and surface schemes.

Of course, given a shape with a fixed number of degrees of freedom, it might not

always be possible to satisfy all the constraints. This is solved by simply refining or

subdividing the shape to add the degrees of freedom necessary [GC95, WW92, WW94].

Another possibility is that the constraints may be dependent, or even worse, might conflict.

Automatic solutions to these issues are left as open problems (or are ignored) in the above

mentioned work.

The user specifies a set of constraints, each taking the form:

A(p) = 0 (2.26)

where A is a function, reaching only zero when the constraint is satisfied. For example, to

constrain a particular location on a surface (u0,v0) to pass through a point x, the constraint

is:

s(u0,v0)−x = 0 (2.27)

When using linear surface representations, point constraints are linear in p. If all of the

constraints are linear, they can be accumulated into a matrix equation, with each row of
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the matrix corresponding to a single constraint:

Ap = b (2.28)

where the matrix A and vector b depend on the particular constraints being imposed.

Note that the above point constraint does not mean that “some location” on the surface

pass through x, but rather that a specific location, given by (u0,v0), passes through x.

While it might seem desirable for the constrained points to slide in parameter space, it is

prohibitively expensive to do so [WW94].

2.4.4 Fairing with constraints

The minimization of the objective function subject to the constraints is a constrained op-

timization problem. Most work [GC95, HKD93, WW94] uses a quadratic objective with

linear constraints, which can be solved with a single linear system.

Solving a quadratic objective with linear constraints amounts to solving the following

constrained minimization problem:

min
p

∥∥∥∥1
2

(p−p′)>K(p−p′)
∥∥∥∥ subject to Ap = b (2.29)

There are a number of approaches to solving such a system including the use of Lagrange

multipliers [GC95, WW92, WW94] and null-space projection [HKD93].

The Lagrange multiplier technique [Str88] adds additional degrees of freedom (one

for each degree of constraint), to solve a larger, unconstrained system. The Lagrange

multiplier y yields the unconstrained minimization:

min
p,y

∥∥∥∥1
2

(p−p′)>K(p−p′)+ (Ap−b)>y
∥∥∥∥ (2.30)

At the minimum, the partial derivatives of the bracketed terms vanish (since this system is

symmetric and positive definite). Differentiation leads to the linear system:∣∣∣∣∣∣ K A>

A 0

∣∣∣∣∣∣
∣∣∣∣∣∣ p

y

∣∣∣∣∣∣=

∣∣∣∣∣∣ Kp′

b

∣∣∣∣∣∣ (2.31)
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Provided there are no problems with the constraint matrix (such as dependent rows), the

above system can be solved with techniques such as LU decomposition [Str88]. Since

this matrix is sparse (due to the local refinement property of the resulting surface, it has

O(dimp) non-zero entries), sparse matrix techniques can be employed to solve the system

in O((dimp)2) time.

In [WW94], instead of solving this system in a single step, the conjugate gradient

method [Str88] (an iterative linear equation solution technique) is used. Given the spar-

sity of the matrix, each iteration takes O(dimp), with convergence typically occurring in

O(dimp) iterations (resulting in a quadratic time solution). Since this is an interactive sys-

tem, with the user working directly with the surface, there is no need to show the user the

final solution if they are still interacting—it is considered more important to show the user

feedback [GW93]. As a result, the solver is only run a few steps before being redisplayed.

During this time, the constraints may drift slightly, and the surface may become somewhat

unfair. Once the user releases the surface, the solver can “catch up,” and display the itera-

tions toward the final surface over the next few seconds. This iterative technique requires

a reasonable initial guess at the solution, to be efficient and ensure convergence. In this

framework, since surfaces are built up from scratch, using the answer from the previous

iteration is always sufficient.

The use of wavelets in [GC95] was intended for reducing the number of iterations re-

quired for the convergence of the conjugate gradient method. Other techniques for solving

the main system are also available. Null-space projection (also called constraint reduction)

transforms the constrained system into a smaller unconstrained system with the constraints

built in [HKD93].

These variational techniques provide a valuable abstraction that allows the user to be

ignorant of the underlying surface representation scheme. While some simple applica-

tions of these methods have appeared in recent modeling software, they are by no means

in widespread use at this time. Chapter 3 discusses a new use of variational modeling
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techniques—for the generation of face models. This is a departure in using these tech-

niques for interactive modeling or data fitting.
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Chapter 3

Face model generation

A hallmark of the diversity and individuality of the people we encounter in daily life is

the range of variation in the shape of their faces. A simulation or animation that fails to

reproduce this diversity—whether by design or circumstance—deprives its characters of

independent identities. To animate a bustling scene realistically or to play out an extended

virtual interaction believably requires hundreds of different facial geometries, maybe even

a distinct one for each person, as in real life.

It is a monumental challenge to achieve such breadth with existing modeling tech-

niques. One possibility might be to use range scanning technology. This involves all the

complexities of casting extras for a film: with scanning, each new face must be found on a

living subject. And although scanning permits detailed geometries to be extracted quickly,

scanned data frequently includes artifacts that must be touched up by hand. Another alter-

native is manual construction of face models, by deforming an existing model or having

an artist design one from scratch; this tends to be slow and expensive.

This chapter describes an alternative, which was first presented in [DMS98]: a system

capable of automatically generating distinct, plausible face geometries. This system con-

structs a face in two steps. The first step is the generation of a random set of measurements

that characterize the face. The form and values of these measurements are computed ac-

cording to face anthropometry, the science dedicated to the measurement of the human
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face. Anthropometric studies like [Far87, Far94] report statistics on reliable differences in

shape across faces within and across populations. Random measurements generated ac-

cording to the anthropometric profile of a population characterize the distinctive features

of a likely face in that population.

In the second step, our system constructs the best surface that satisfies the geomet-

ric constraints that a set of measurements imposes, using variational modeling [GC95,

TQ94, WW92], which was reviewed in Section 2.4. Variational modeling is a framework

for building surfaces by constrained optimization; the output surface minimizes a measure

of fairness, which in our case formalizes how much the surface bends and stretches away

from the kind of shape that faces normally have. Having a fairness measure is neces-

sary, since the anthropometric measurements leave the resulting surface underdetermined.

Bookstein [Boo89] uses this same fairness measure as a method of data interpolation for

sparse biometric data, supporting its utility for determining the geometry of an underde-

termined biological shape. Variational modeling provides a powerful and elegant tool for

capturing the commonalities in shape among faces along with the differences. Its use re-

duces the problem of generating face geometries into the problem of generating sets of

anthropometric measurements.

The remainder of this chapter describes our techniques in more detail. We begin in

Section 3.1 by introducing the problem of representing and specifying face geometry.

In Section 2.3, we summarize the research from face anthropometry that we draw on;

Section 3.2 describes how random measurements are generated from these results. In

Section 3.3, we describe our use of variational techniques to derive natural face geometries

that satisfy anthropometric measurements. We finish in Section 3.4 with illustrations of

the output of our system.
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3.1 Face modeling background

Human face animation is a complex task requiring modeling and rendering not only of

face geometry, but also of distinctive facial features (such as skin, hair, and tongue) and

their motions. Most research in face modeling in computer graphics has addressed these

latter problems [LTK95, MTMdAT89, Par82, PW96].

Research on human geometry itself falls into two camps, both crucially dependent

(in different ways) on human participation. The first approach is to extract geometry

automatically from the measurement of a live subject. Lee, et al. [LTK95] use a range

scan of a subject, and produce a physics-based model capable of animation. Akimoto, et

al. [ASR93] use front and profile images of a subject to produce a model.

The second approach is to facilitate manual specification of new face geometry by a

user. A certain facility is offered already by commercial modelers (though of course their

use demands considerable artistic skill); several researchers have sought to provide higher

levels of control. Parke [Par82] provides parameters which can control the face shape; and

Magnenat-Thalmann, et al. [MTMdAT89] describe a more comprehensive set of localized

deformation parameters. Patel [PW91] offers an alternative set of parameters similar in

scope to [MTMdAT89] but more closely tied to the structure of the head. DiPaola [DiP91]

uses a set of localized volumetric deformations, with a similar feel to [MTMdAT89] in

their effects. Lewis [Lew89] discusses the use of stochastic noise functions as a means

of deforming natural objects (including faces). In this case, the control maintained by the

user is limited to noise generation parameters.

In contrast, we adopt a different approach: generating new face geometries automati-

cally. More so than interactive methods, this approach depends on a precise mathematical

description of possible face geometries. Many conventional representations of face shape

seem inadequate for this purpose.

For example, the simple scaling parameters used by manual modeling techniques can

perform useful effects like changing the width of the mouth or the height of the head;

but they are unlikely to provide sufficient generality to describe a wide sampling of face
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geometries.

Meanwhile, for models based on principal components analysis (PCA)—an alternative

representation derived from work in face recognition [VP97]—the opposite problem is

likely. PCA describes a face shape as a weighted sum of an orthogonal basis of 3-D shapes

(called principal components). This basis is constructed from a large bank of examples

that have been placed in mutual correspondence. (This correspondence is very much like

that required for image morphing [BN92]; establishing it is a considerable task, but not

one that has evaded automation [VP97].)

PCA typically allows faces nearly identical to those in the bank to be accurately repre-

sented by weighting a truncated basis that only includes a few hundred of the most signifi-

cant components. However, because components are individually complex and combined

simply by addition, alternative weightings could easily encode implausible face shapes.

Identifying which basis weights are reasonable is just the original problem (of characteriz-

ing possible faces) in a different guise. Bookstein [Boo91] describes this problem in terms

of “latent variables,” and notes that principal components often bear little resemblance to

the underlying interdependent structure of biological forms. (In other words, it is quite

difficult to extract non-linear dependencies between different shape aspects using a linear

model like PCA.) At the same time, there is no guarantee that faces considerably outside

the example set will be approximated well at all.

We therefore adopt a representation of face shape based on constrained optimization.

The constraints—generated as described in Section 3.2—are based on the anthropometric

studies of the face of [Far87, Far94, KS96] described in Section 2.3; we avoid the diffi-

culty of learning possible geometries since these studies identify the range of variation in

real faces. The constraint optimization, as described in Section 3.3, is accomplished by

variational surface modeling.
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3.2 Generating measurements

The rich descriptions of human geometry developed in anthropometry provide an invalu-

able resource for human modeling in computer graphics. This goes for artists as well as

automatic systems: Parke and Waters [PW96] describe the importance of having a set of

“conformation guidelines” for facial shape, which draw from artistic rules of face design.

These guidelines provide qualitative information about the shape and proportion of faces,

respecting the quantitative information found in anthropometric measurements.

In using such descriptions, automatic systems immediately confront the problem of

bringing a model into correspondence with a desired set of measurements. A widely-

used approach is to design a model whose degrees of freedom can be directly specified

by anthropometric measurements. For example, in the early visualization frameworks

for human factors engineering surveyed in [Doo82]—where anthropometric data first fig-

ured in graphics—articulated humans were made to exhibit specified body measurements

by rigidly scaling each component of the articulation. Grosso, et al. [GQB89] describe a

similar model, but scale physical characteristics (such as mass) as well, to produce a model

suitable for dynamic simulation and animation. Azuola [Azu96] builds on Grosso’s work,

and generates random sets of (axis-aligned distance) measurements using covariance in-

formation (but not proportions). The purpose of this generation is to produce a fairly small

sampling of differently sized people for human factors analysis.

Our work represents a departure in that we use anthropometric data to constrain the

degrees of freedom of the model indirectly (as described in Section 3.3). This is a must

for the diverse, abstract and interrelated measurements of face anthropometry. The flex-

ibility of generating measurements as constraints offers additional benefits. In particular,

it allows statistics about proportions to be taken into account as precisely as possible.

This section describes how our system uses published facial measurement and pro-

portion statistics [Far87, Far94] to generate random sets of measurements. The generated

measurements both respect a given population distribution, and—thanks to the use of

proportions—produce a believable face.
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3.2.1 The need for proportions

Start with a given population, whose anthropometric measurements are tabulated for mean

and standard deviation (we later use the measurements from [Far94]). We can assume that

the measurements are given by a Gaussian normal distribution (due to the lack of data

concerning the shape of these the distributions), as corroborated by statistical tests on the

raw the data [Far94]. This gives a naive algorithm for deriving a set of measurements—

generate each measurement independently as if sampled from the normal distribution with

its (estimated) mean and variance. Such random values are easily computed [PTVF92];

then, given the constraint-based framework we use, a shape can be generated to fit the

resulting suite of measurements as long as the measurements are geometrically consistent.

Mere geometric consistency of measurements is no guarantee of the reasonable ap-

pearance of the resulting face shape, however. Anthropometric measurements are not in-

dependent. On the face, one striking illustration comes from the inclinations of the profile,

which are highly intercorrelated. In the population described in [Far87], the inclinations

to the front of the chin from under the nose (sn-pg) and from the lower lip (li-pg) take a

wide range of values, but, despite the many curves in this part of the face, tend to agree

very closely.

Published proportions provide the best available resource to model correlations be-

tween measurements such as these. (Covariance information more naturally applies here,

but it is simply not available). For example, [Far87] tabulates the mean and variance for

statistically significant ratios between anthropometric measurements for a population of

young North American Caucasian men and women. Given a calculated value for one mea-

surement, the proportion allows the other measurement to be determined using a random

value from the estimated distribution of the proportion. Since the proportion reflects a cor-

relation between these values, the resulting pair of measurements is more representative

of the population than the two measurements would be if generated independently.

With many measurements come many useful proportions, but each value will be cal-

culated only once. We must find the proportions that provide the most evidence about
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the distribution. The next section describes the algorithm we use to do that. It assumes

that proportions can be applied in either direction (by approximating the distribution for

the inverse proportion) and that we are generating a set of measurements all of which are

related by proportions. (We can split the measurements into groups before applying this

algorithm.) The algorithm also assumes that we are given a fixed initial measurement (or

measurements) in this set from which other measurements could be generated. If we are

generating a random face, the choice of which initial measurement to use is up in the air.

We therefore find the best calculation scheme for each possible initial measurement, and

then use the best of those. Random values for this initial measurement are generated by

sampling its distribution. Thereafter, randomly generated proportions are used to generate

the remaining dependent measurements.

The same algorithm could also be used to fill in measurements specified by a user (as

a rough guide of the kind of face needed) or selected to be representative of an extreme in

the population (for use in human-factors analysis). In this case, the algorithm gives a way

of generating a plausible, random variation on this given information.

3.2.2 An algorithm for proportions

Given base measurements, our goal is to find the best way to use an inventory of pro-

portions to calculate dependent measurements. We can describe this problem more pre-

cisely by viewing measurements as vertices and proportions as edges in a graph. Fig-

ure 3.1(a) shows a portion of this graph, given the measurements and proportions from

[Far87, Far94] (some edge labels are omitted for the sake of readability). The presence

of cycles in this graph exhibits the need to select proportions. A particular method for

calculating measurements using proportions can be represented as a branching in this

graph—an acyclic directed graph in which each vertex has at most one incident edge. The

edge e from s to d in this branching indicates that d is calculated by proportion e from

s. By assumption, we will require this branching to span the graph (this means adding
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dummy edges connecting multiple base measurements). An example branching is illus-

trated in Figure 3.1(b), and contains a single base measurement (the vertex marked with a

double circle).

eu-eu

t-t

ex-ex

zy-zy

n-sn

n-sto

g-op

eu-eu / g-op

n-sto / ex-ex

ex-ex / t-t

t-t / eu-eu

n-sto / zy-zy

eu-eu

t-t

ex-ex

zy-zy

n-sn

n-sto

g-op

(a) (b)

Figure 3.1: Interpreting measurements and proportions as a graph (a); Example branching
used to compute measurements (b)

The algorithm associates each vertex v in the branching with a mean µv and variance

σ2
v . The variance is an indication of the precision of the statistical information applied in

generating the measurement at v from given information. The smaller σv/µv, the more

constrained the measurement. We take σv/µv as the weight of d.

For base measurements, σv is simply the standard deviation of the measurement.

Thereafter, if an edge connects s to d with a proportion with mean µe and standard de-

viation σe, and s has mean µs and standard deviation σs, then the induced distribution at d

is characterized by:

µd=µsµe

σ2
d=µ2

s σ2
e + µ2

eσ2
s + σ2

eσ2
s

(This assumes proportions and measurements are independent and Gaussian.) Note that

the weight of d is always larger than the weight of s—this means the precision of the

information concerning the distribution decreases as we go deeper into the branching.

Our goal in selecting proportions is to derive a branching TM which assigns a mini-

mum total weight to its vertices. This allows the most constrained features to determine

the remaining features via proportionality relationships. We can modify Prim’s algorithm
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for minimum spanning tree to solve this problem. Our algorithm maintains a subtree T

of some optimal branching. Initially, the subtree contains just the root for the initial mea-

surement. At subsequent stages, each vertex is associated with the least weight induced by

any edge running from the branching to it. The algorithm incorporates the vertex v whose

weight is the least into the tree, by the appropriate new edge e.

As with Prim’s algorithm (c.f. [Gib85]), the argument that this algorithm works en-

sures inductively that if T is a subtree of some optimal branching TM , then so is T + e.

If e is not an edge in TM , then TM contains some other directed path to v, ending with

a different edge e′. This path starts at the root of T , so it must at some point leave T .

Because e was chosen with minimum weight and weights increase along paths, in fact the

path must leave T at e′; since the algorithm chose e, e and e′ induce the same weight for

v. The inductive property is now established, since (TM − e′)+ e is an optimal branching

of which T is a subtree.

3.3 Variational Modeling

Using the method outlined in Section 3.2, we generate complete sets of anthropometric

measurements in Farkas’s system. These constraints describe the geometry of the face in

great detail, but they by no means specify a unique geometry for the face surface. For

example, Farkas’s measurements are relatively silent about the distribution of curvature

over the face—the particular measurement that specifies the angle formed at the tip of the

chin (the mentocervical angle; as in Figure 2.4), does not actually specify how sharply

curved the chin is. What is needed then, intuitively, is a mechanism for generating a

shape that shares the important properties of a typical face, as far as possible, but still

respects a given set of anthropometric measurements. This intuition allows the problem of

building an anthropometric face model to be cast as a constrained optimization problem—

anthropometric measurements are treated as constraints, and the remainder of the face is

determined by optimizing a surface objective function. This characterization allows us to
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apply variational modeling techniques, as described in Section 2.4.

This section describes how we adapt existing variational modeling techniques to de-

velop the anthropometric face model. Our approach to variational modeling greatly re-

sembles the framework in [WW92]; a key difference is that we perform most of the varia-

tional computation in advance and share results across different face generation runs. This

amortization of computational cost makes it feasible to construct larger models subject to

many constraints. However, it requires careful formulation of constraints and algorithms

to exploit the constancy of the face model and its inventory of constraints.

As described in Section 3.3.1, we begin by specifying a space of possible face geome-

tries using a parametric surface s(u,v), and locating the landmark points on the surface.

We use a B-spline surface [Far93] to represent s. This surface is specified by a control

mesh, where the mesh degrees of freedom are collected into a vector p. A particular

instantiation p′ of p provides a prototype shape, a reference geometry that epitomizes

the kind of shape faces have. Both s(u,v) and p′ are designed by hand, but the same

parameterized surface and prototype shape are used to model any set of anthropometric

measurements.

Given this shape representation, the task of the face modeling system is to allow a

given set of anthropometric measurements m to be used as degrees of freedom for s, in

place of p. It does so in two logical steps: (1), expressing m as constraints on p in terms

of the landmark points as described in Section 3.3.2; and (2), using variational techniques

as described in Section 2.4.2 through Section 3.3.5 to find a surface that satisfies the con-

straints and which minimizes bending and stretching away from the prototype face shape.

3.3.1 Surface representation

We choose a B-spline surface as a shape representation because of the demands both of

anthropometric modeling and variational techniques. Our shape must be smooth, must

permit evaluation of our constraints, and must have surface points and tangent vectors that

are defined as linear combinations of its control mesh points. This scheme meets all of

42



these requirements.

The specification of s(u,v) involved the manual construction of a B-spline control

mesh for the face, shown in Figure 3.2. The mesh is a tube with openings at the mouth and

neck; the geometry follows an available polygonal face model and (as required for accu-

rate variational modeling) is parameterized to avoid excessive distortion of (u,v) patches.

Figure 3.2: The prototype face model

Anthropometric landmarks are assigned fixed locations on the surface in (u,v) param-

eter space; some are also associated with constraints that enforce their fixed geometric

interpretations. For example, in the case of the v landmark, which represents the top of

the head, we ensure that the tangent to the surface at the point representing the landmark

is in fact horizontal. We likewise add constraints to keep the model in FH position, so

that the horizontal axis of the model is consistent with the axis by which landmarks are

identified (and measurements taken). These constraints together constitute a set of base

constraints which must be satisfied to apply any anthropometric measurement. Further

constraints are then added to the model—one for each measurement.

3.3.2 Surface constraints

Our framework derives a shape by applying both linear and non-linear constraints. The

linear constraints are derived from axial distance anthropometric measurements and the
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base constraints on the model; both can be represented as a linear function of the degrees

of freedom of the model, p. A matrix A describes how the values of all linear constraints

are calculated, while a vector b encodes the intended values for those measurements. Thus

solutions to these constraints satisfy:

Ap = b (3.1)

Because A depends only on the types of constraint measurements, A can be solved in

advance; then values of p can be computed directly from b given particular measurements

m.

Many of the constraints are non-linear, however. Each non-linear constraint is associ-

ated with a positive function measuring how far the surface is from the correct measure-

ment. These functions are summed to give an overall penalty function P so that non-linear

constraints impose the equation:

P (p) = 0 (3.2)

(P (p)≥ 0 for all p). The remainder of this section describes the penalty functions associ-

ated with each type of measurement constraint.

The shortest distance measurement constrains the points xi and x j at a distance r apart

using the penalty:

Pdist(xi,x j) =
(∥∥xi−x j

∥∥− r
)2

(3.3)

The tangential distance constraint, which specifies the length of a surface curve to be r,

is approximated using the chord-length approximation of a curve [Far93] using the points

x1 . . .xn:

Parc−len(x1, . . .,xn) =

(
n−1

∑
i=1
‖xi−xi+1‖− r

)2

(3.4)

The points xi all lie on a predetermined curve specified in (u,v)-space (using a B-spline),

and are adaptively sampled as to achieve a good estimate of the arc length using the chord-

length approximation.
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The inclination measurement constraint fixes a vector v at an angle θ to a fixed axis a:

Pincl(v) = (v̂−Rot(a,θ))2 (3.5)

Using the rotation Rot, the axis a is aligned with the “goal” direction. v can be the direction

between two points on the surface, as well as a surface tangent vector.

The angle measurement constraint positions the vectors v1 and v2 to be separated by

the angle θ. It is treated as two independent inclination constraints:

Pangle1(v1) = (v̂1−Rot(v̂2,θ))2

Pangle2(v2) = (v̂2−Rot(v̂1,−θ))2
(3.6)

3.3.3 Fairing

A fair surface can be constructed by minimizing an objective function E(s). We will be

using the linearized thin-plate functional (2.23) which measures the bending of the surface

s, with respect to the prototype shape (2.25). The use of a prototype shape instructs the

fairing process to ignore expected regions of sharp curvature, such as the ears and nose on

the face.

As described in Section 2.4.2, for linear surface representation schemes (including

B-splines), the objective function in (2.23) can be evaluated exactly as a quadratic form

1
2p>Kp, where K is determined based on the surface representation scheme; the construc-

tion for B-splines is given in [WW92]. Due to the local refinement property of B-splines,

K is sparse.

3.3.4 Fairing with constraints

Given K, the problem of fairing given purely linear constraints as in (3.1) is reduced to

the a linearly constrained quadratic optimization problem (see Section 3.3.4), solved using

the following linear system: ∣∣∣∣∣∣ K A>

A 0

∣∣∣∣∣∣
∣∣∣∣∣∣ p

y

∣∣∣∣∣∣=

∣∣∣∣∣∣ Kp′

b

∣∣∣∣∣∣ (3.7)
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Solving such a system requires selecting a technique that is mathematically sound and

computationally feasible. For example, interactive modeling, with varying constraints and

response time demands, requires the use of iterative solution methods, such as the con-

jugate gradient technique [GC95, WW94]. However, we can solve this system without

iteration, using a sparse LU decomposition technique [GL89]; producing the decompo-

sition takes O(n2) time given a O(n) sparse n× n system. This technique is applicable

because the set of constraints is hand-constructed, so we can guarantee that the constraint

matrix A contains no dependent rows, and hence that the LU decomposition is well de-

fined. It is feasible because the control mesh topology and the constraint matrix are un-

changing, so that only one decomposition ever needs to be generated. Finding solutions is

then quite efficient. In general, solving a system given an LU decomposition takes O(n2)

time. However, we have found that the LU decomposition is roughly O(n) sparse given

our constraints. (This is not too surprising given that the each constraint involves only a

few points on the surface; note that an LU decomposition can be sparse even if the actual

inverse is dense.) This means that, in practice, solution steps require roughly linear time.

3.3.5 Non-linear constraints

As described in Section 3.3.2, the non-linear constraints are specified using the penalty

function P (p). Since this function is positive, it is simply added into the minimization

(2.30) [PB88, WW92]. The extended linear system (3.7) has Kp′ −∂P (p)/∂p in place of

Kp′. Due to the non-linearity of P , this system must be solved iteratively. (By contrast,

Section 3.3.4 described a non-iterative method for solving the linear constraints.)

At iteration i, we determine Ci to be used in place of −∂P (p)/∂p as:

Ci = Ci−1−µi
∂P (pi−1)

∂p
(3.8)

with C0 = 0. The scalar value µ is a positive weight (analogous to a time-step in ODE inte-

gration), determined using an adaptive method such as step-doubling (for ODE solution)

[PTVF92]. This results in the iterative linear system:
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∣∣∣∣∣∣ K A>

A 0

∣∣∣∣∣∣
∣∣∣∣∣∣ pi

y

∣∣∣∣∣∣=

∣∣∣∣∣∣ Kp′+ Ci

b

∣∣∣∣∣∣ (3.9)

where p0 is the solution corresponding to (2.31). Note that we still exploit the LU de-

composition to allow steps to be solved quickly and exactly; this technique is stabler and

faster to converge than the combination of a conjugate gradient technique with the penalty

method. We experimented with linearizations of some of the non-linear constraints (and

added them into A), but found little gain in efficiency, and decreased stability in solving.

In practice, the simultaneous use of all anthropometric constraints will lead to conflict.

For example, some measurements lead to linearly dependent constraints; they are easily

identified by inspection, and culled to keep A invertible. Similarly, when multiple mea-

surements place non-linear constraints on similar features of nearby points on the model

(without providing additional variation in shape), including all can introduce a source of

geometric inconsistency and prevent the convergence of C . Our constraint set was selected

by following a strategy of including only those constraints with the most locally confining

definitions (i.e. constraints which affected fewer facial locations or more proximate facial

locations were favored).

3.4 Results and discussion

Sample face models derived using this technique are shown in Figure 3.3. To produce the

measurements for these models, we ran the generation algorithm described in Section 3.2

on the measurements from [Far94] and the proportions from [Far87] for North American

Caucasian young adult men and women. Faces for the random measurements were real-

ized by applying the variational framework to a B-spline mesh (a grid 32 by 32) so as to

satisfy the base constraints (a total of 15) and 65 measurements that give good coverage

both of the shape of the face and of the kinds of measurements used in Farkas’s system.

There were a total of 120 proportions used as input to the algorithm in Section 3.2.2.
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Producing the LU decomposition used for all these examples involved a one-time cost

of roughly 3 minutes on an SGI 175 MHz R10000. Faces typically found their rough

shape within 50 iterations; our illustrations were allowed to run for up to 200 iterations to

ensure convergence to millimeter accuracy, resulting in runs that took about 1 minute for

each face. Models were rendered using RenderMan.

Individual variation across the example males and females in Figure 3.3 encompass a

range of features; for example, clear differences are found in the length and width of the

nose and mouth, the inclinations of forehead and nose, as well as the overall shape of the

face. At the same time, traits that distinguish men and women—such as the angle at the

chin, the slope of the eyes and the height of the lower face (particularly at the jaw)—vary

systematically and correctly (based on qualitative comparisons with the anthropometric

data). Examining the variation within a population group, the thirty generated males in

Figure 3.4 exhibit the expected range of geometric variation.

In order to quantify this comparison, the proportion-based measurement generation

algorithm from Section 3.2.2 was validated by generating a large number of measurement

sets, and comparing the resulting measurement distributions to the published figures from

the corresponding population groups. On average, the means differed by about 1% (with

a maximum deviation of 4.5%)—well below the differences in means between population

groups. The standard deviations agreed comparably, where the generated measurements

had standard deviations that range from being 5% lower to 20% higher than the published

values. While this validation guarantees the plausibility of measurements on the generated

face models, data is not available for comparing the entire geometry (this would require

having, for example, a set of measurements of an individual along with a corresponding

range scan). One would not expect such a comparison to agree anyway, as the prototype

shape has a measurable effect on the resulting geometry. However, this effect decreases

with the use of additional measurements, which suggests the need to search out additional

data on face geometry (morphometrics [Boo91] seems to be a good starting point).

Despite the many changes, a single prototype shape was used for all examples. This
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Males Females

Figure 3.3: Automatically generated face models (3 views of each)

gives the models commonalities in shape where anthropometric data is silent. Further, all

the faces in Figures 3.3 and 3.4 use the same texture so as not to exaggerate their differ-

ences. The ears remain coarsely modeled (partly as a result of scarcity of measurements

within the ear). Figure 3.5 shows the results when the skin and eye color is varied (man-

ually), and hair is added, and additional detail (such as in the ears) is painted onto the

texture. Note that the same texture is still used on all faces (with color conversions), and

that the locations of hair is the same on all generated subjects–only the hair styles are

manually specified.
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Figure 3.4: A male a minute

Males Females

Figure 3.5: All gussied up
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3.5 Summary

We have described a two step procedure for generating novel face geometries. The first

step produces a plausible set of constraints on the geometry using anthropometric statis-

tics; the second derives a surface that satisfies the constraints using variational modeling.

This fruitful combination of techniques offers broader lessons for modeling: in particu-

lar, ways to scale up variational modeling—a technique previously restricted to modeling

frameworks that have seen limited use to surface fitting tasks—for constrained classes of

shapes, and ways to apply anthropometric proportions—long valued by artists and scien-

tists alike—in graphics model generation.
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Chapter 4

Face modeling for vision

The last chapter described a generative face model suitable for producing random facial

geometries. However, due to its use of constrained optimization techniques, it cannot be

used for shape estimation without raising efficiency concerns. This chapter describes a

parameterized model of face shape and motion, which is to be used in a model-based

vision framework. This face model encodes information about the shape, motion, and

appearance of human faces.

Our three-dimensional face model is a polygonal model with a manually designed pa-

rameterization. The shape parameterization is specified as a sequence of deformations de-

signed to capture the variabilities in shape and appearance of faces across the human pop-

ulation that are observed in face anthropometry studies [Far94]. Anthropometric statistics

are also used to initialize the model with an average shape, and to bias shape estimation

toward more “face-like” parameter combinations. The motion of the face (such as head

motion or facial expressions) is specified using a small set of parameters. The Facial Ac-

tion Coding System (FACS) [EF78] describes facial movements in terms of “action units”,

and motivates the design of the motions of our model. There are parameters for a variety

of face motions such as opening of the mouth and raising of the eyebrows. The model is

realized using a manually constructed series of parameterized deformations applied to a

polygon mesh. The construction process is primarily an engineering task, and the majority
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of design decisions will be made based on its use as a model for estimation, tracking and

geometric reasoning (such as for reasoning about self-occlusion).

4.1 Model construction

The deformable face model described here is shown in Figure 4.1(a). It is a polygon

mesh, shown in (b), formed from ten component parts (such as the nose, mouth, or eyes),

each shown in (c). These parts are connected together to form a single mesh, where the

gaps between the parts are closed by a mesh “zippering” process. The mesh faces filling

the gaps are primarily used for geometric inferencing (such as visibility determination),

discussed in Section 4.5. With the construction of the model, we assume the observed

subject is not wearing eyeglasses, and does not have large amounts of facial hair (such as

a beard or mustache) that change the overall face shape.

(a) (b) (c)

Figure 4.1: The deformable face model

4.2 Model parameterization

The face model constructed here has two kinds of parameters. Shape parameters describe

the unchanging features of an observed face and capture variations in appearance across

the human population. Motion parameters describe how an observed face changes during
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a tracking session. This separation produces an easier tracking problem by requiring a

smaller description of object state to be estimated in each frame.

This division is often built into face models [BY95, LRF93, MRB95, TW93] to sim-

plify model construction or estimation, while Reynard, et al. [RWBM96] use this separa-

tion to permit learning the variability of motions for a class of objects.

As a result of this separation, the parameters in q are rearranged and separated into

qb, which describe the underlying features of an individual, and into qm, which describe

motion (both rigid and non-rigid), so that q = (q>b ,q
>
m)>.

The partition of q into qb and qm can also be viewed another way–the parameters in qb

are a static quantity for a particular individual, and specify what a person looks like and

how their facial expressions appear. The parameters in qm are a dynamic quantity, which

change when a subject moves their head, opens their mouth, or makes a facial expression.

The goal of a shape and motion estimation process is to recover the value of q from a

sequence of frames. During estimation, the change in qb should tend to zero as the shape

of the face is established. Once this occurs, fitting need only continue for qm. So for

reasons of efficiency, qb should include as many parameters as possible.

Also included in qb are parameters which specify the character of facial expressions,

called expression-shape parameters—these parameters do not change the underlying face

shape, but rather change the appearance of a particular facial expression. These parameters

abstract information related to facial muscle placement. Figure 4.2 contains examples

of varying expression-shape parameters that specify how a particular individual smiles.

Figure 4.2(a) shows the model in its rest state (not smiling), while (b) and (c) contain

differently shaped smiles. The smile in Figure 4.2(c) is more curved (like the Cheshire

cat’s) by varying some of the expression-shape parameters.

The model x is formed by applying deformation functions to the underlying polygon

mesh s from Figure 4.1(b). The domain Ω of s is simply the set of points on its surface.

There are separate deformation functions for shape (Tb) and for motion (Tm). For a face,
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(a) (b) (c)

Figure 4.2: Example smile expression-shape deformations

it makes sense to apply the shape deformations first, so that:

x(q;u) = Tm (qm; Tb (qb; s(u))) (4.1)

The shape deformation Tb uses the parameters qb to deform the underlying face mesh s.

On top of this is the motion deformation Tm with parameters qm, which includes a rigid

head translation and rotation, as well as non-rigid facial deformations. Of course, each of

these deformations can be defined using a series of composed functions (see Appendix A),

as will be seen in upcoming sections.

4.3 Model deformations

In order to represent the variabilities observed in anthropometric measurements, scaling

and bending deformations, in addition to translation and rotation, are used in the construc-

tion of the face model. This section provides details on these deformations. The model

designer carefully combines the deformations to produce a parameterized face model. The

result of this construction is an underlying model (the polygon mesh) which has a series of

deformations functions applied to it, each having a small number of parameters, and each

is applied to a particular set of face parts, ranging from a single part to the entire face.

Rigid transformations such as translation and rotation are used for the placement of

parts on the face. Scaling and bending deformations, shown in Figure 4.3, allow for the

representation of a variety of face shapes. Each of these deformations is defined with

respect to particular landmark locations in the face mesh. By fixing the deformations into

the mesh, the desired effect of any particular deformation is not lost due to the presence

of other deformations (since the landmark points are deformed along with the rest of the
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mesh). Although varying degrees of continuity can be attained for these deformations,

each of the following deformations are C1 continuous.

A shape (before any deformation is applied) which contains the landmark points p0, p1

and c is shown in Figure 4.3(a). Figure 4.3(b) shows the effect of scaling this shape along

the displayed axis. The center point c is a fixed point of the deformation, while the region

between p0 and p1 is scaled to have length d (the parameter of the scaling deformation).

Portions of the shape outside this region are rigidly translated.
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(c) (d)

Figure 4.3: Scaling and bending deformations

Bending is applied in Figure 4.3(c), and shows the effect of bending the shape in (a)

in a downward direction. The bending is applied to the area between p0 and p1, where

c is the center of the bending. Outside this area, the shape is rotated rigidly. Each plane

perpendicular to the bending axis is rotated by an angle determined by the distance of this

plane to the center point c. The amount of bending is specified by the parameters θ0 and

θ1, which specify the rotation angle at p0 and p1, respectively.

In addition, the spatial extent of each of these deformations can be localized, as shown

in Figure 4.3(d). The influence of the scaling deformation varies in directions perpendic-

ular to the axis, producing a tapering effect. Near the top of the shape, the object is fully

scaled to be the length d, while the bottom of the object is unaffected by the deformation.

The ability to restrict the effect of a deformation is vital in specifying the variations of

shape seen in the face. We will now see how these deformations can be used to create the

model.
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4.3.1 Face shape

The underlying shape s, which is the polygon mesh shown in Figure 4.1, can take the shape

of a variety of faces through the application of a number of spatial deformations. This

parameterization of the model is specified by the model designer. The job of the designer

is made easier by separating the face into parts, allowing each face model component to

be treated separately. Instead of describing the entire model (which would be extremely

lengthy and not particularly enlightening), a short description is provided which illustrates

the concepts necessary for its construction.

Deformations are defined over a particular set of face model parts, although most de-

formations affect only one part. Example deformations that parameterize multiple parts,

are those affecting the lower-face, which deform the chin and both cheeks. All of the

deformations are specified in a particular order, and are applied in sequence to the under-

lying shape (see Appendix A). All of the parameters to describe the shape of the face at

rest (there are approximately 80) are collected together into qb. The shape deformations

are collected together into a single deformation function Tb.

Figure 4.4: Scaling deformations of the nose

Figure 4.4 shows some of the scaling deformations defined for the nose. Each arrow

indicates a particular scaling parameter (in the vertical or horizontal direction), that affects

the space between the enclosing lines. The results of applying some of the deformations

to the nose are shown in Figure 4.5. Figure 4.5(a) and (d) show two views of the default

nose. Figure 4.5(b) shows a nose deformed using vertical scaling, while the pulled-up
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nose in (c) is produced using a localized bending deformation. Figure 4.5(e) and (f) show

localized scaling affecting the width of the nose in different places.

(a) (b) (c) (d) (e) (f)

Figure 4.5: Example deformations affecting the nose

Verification of the face parameterization produced by the model designer can be ac-

complished by fitting the model to a series of randomly generated sets of facial measure-

ments, as in Section 3.2. This is effectively a Monte Carlo method of sampling the space

of face measurements. The fitting is easily accomplished, given a set of measurements,

using the anthropometric forces described in Section 2.3. The model designer can alter

the model parameterization when a particular set of face measurements cannot be satisfied

by the model. We obtained a face model capable of representing a wide variety of faces

after only a few design iterations.

4.3.2 Face motion

The deformations corresponding to motions (such as facial expressions) are modeled using

the same techniques employed for face shape. However, there is no available motion data

that corresponds to anthropometric data for shape (although such motion data might be

available in the near future [GGW+98]). The motion deformations are applied to the

face in rest position—after the shape deformations, as in (2.2). Examples of modeled

expressions are displayed in Figure 4.6. The model is capable of opening the mouth

as in Figure 4.6(a), smiling (b), raising each eyebrow (c) and frowning each eyebrow

(d). This results in a total of 6 expression parameters, each corresponding to a particular

FACS action unit [EF78]. In addition to this are the six parameters for rigid head motion

(translation and rotation), resulting in a total of 12 parameters in qm.
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(a) (b) (c) (d)

Figure 4.6: Face motion and expression deformations

The construction of expressions is simplified by decomposing each face motion into

several component deformations. For example, the mouth opening deformation is decom-

posed into chin/cheek bending, lip scaling and lip translation. To facilitate tracking of

these expressions by reducing the number of motion parameters, there is a single control

parameter for each expression which uniquely determines all of its component parameters.

Given a particular face motion which is constructed using a series of deformations with

parameters bi, the control parameter e determines the value bi based on the formula:

bi = sie (4.2)

where si is the scaling parameter used to form the linear relationship between bi and e.

These scaling parameters are the expression-shape parameters included in qb (there are

about 20 in total). For situations where these parameters are not estimated, these param-

eters are treated as constants, average values for which are determined by the designer

during construction of the model.

The set of face motion parameters qm consists of the control parameters for each of the

expressions (which are initially all zero), and the rigid translation and rotation specifying

the head position. The parameters bi are not estimated, but are determined directly by

(4.2) using the estimated value of e. The motion deformations are collected together into

the deformation Tm.
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4.4 Use of anthropometry data

The construction of our face model includes representation of the anthropometric mea-

surements described in Section 2.3. Given the measurement descriptions in [Far94], they

are realized using a straightforward set of geometric operations performed using points

on the face model: given a value of qb, a set of measurements can then be taken from the

model.

Use of this data allows for a hand-crafted model to be biased towards more likely

individuals, and places it in the class of constrained coverage models. For a particular set

of model points x1 . . .xn, a measurement M j is written as:

M j
(
x1, . . . ,xn

)
j ∈ 1..M (4.3)

where M is the number of measurements in Farkas’ inventory. As an example, a shortest

distance measurement is simply the following:

Mdist
(
x1,x2

)
= ‖x1−x2‖ (4.4)

where x1 and x2 are model points corresponding to the two landmarks used by the mea-

surement. Note that these points depend on the shape parameters qb, but not on the motion

parameters qm (which is effectively zeroed when any anthropometric measurements are

taken on the model—since this reflects the same “expressionless” conditions under which

the data was originally gathered).

The statistical characterization of measurements and proportions, described in Sec-

tion 2.3, can be built into the model in two ways. First, by using an average set of mea-

surements, a set of parameters specifying the initial model is determined. This initial

model is an anthropometrically “average” model, and is shown in Figure 4.1(a). Second,

this characterization provides a means of biasing the face model shape parameters (qb)

toward more likely occurring individuals.

Given a particular set of population groups, average measurement values and variances
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are obtained from [Far94] as:

(µ j,σ2
j) j ∈ 1..M (4.5)

The biasing of the parameters is performed using three-dimensional spring-like forces (a

soft constraint) that are applied to the polygonal face model that softly enforce a measure-

ment on the model. First, an energy is associated with each measurement:

Ej =
1
2

(
M j(x1, . . . ,xn

)
−µ j

)2
(4.6)

Then, the force resulting from the energy Ej, which is applied to model domain point ui

(which corresponds to the point xi on the model surface), is obtained as:

fEj(ui) =−∂Ej

∂xi
=−

(
M j(x1, . . . ,xn

)
−µ j

)∂M j

∂xi
(4.7)

The penalty formulations of constraints in Section 3.3.2, which were used to formulate

constraints for the generative model in Chapter 3, correspond to the energies in (4.6).

The total anthropometric force applied to model domain point ui is computed as the

weighted sum of all measurement forces at ui:

fant(ui) = ∑
j∈1..M

(
1− e−Ej/σ2

j

√
2πσ

)ρ

fEj(ui) (4.8)

Each force is weighted by a quantity which is a power (ρ) of how improbable the current

measurement is (assuming a Gaussian distribution on the anthropometric measurements

[Far94]). This weighting prevents the model from actually attaining the average set of

measurements, but instead is simply biased towards them. For values of ρ around 10,

forces on measurements within one standard deviation of the mean for that measurement

are effectively ignored.

The weighting on these forces makes it clear that these forces are simply being used

as a prior on the shape. It is possible to consider a deformable framework from a purely

statistical point of view [BFO95], although re-interpreting force distributions such as these

(as well as other more complex techniques borrowed from physics, such as the solution of

constraints) is an open research problem.
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For proportions, the energy would involve two measurements as:

Ejk =
1
2

(
M j(x1, . . . ,xn

)
−p jk ·Mk(x′1, . . . ,x

′
n′
))2

(4.9)

where p jk is the mean proportion between measurements µ j and µk. As with the above for

measurements, a force distribution for proportion data is obtained using this energy.

4.5 Face feature and edge determination

The tracking of edges in a deformable model framework, as described in Section 2.2.1,

is facilitated by knowing what locations of the face model are likely to produce edges in

an image. On the face, certain features are likely to produce edges in the image. The

particular features chosen are the boundary of the lips and eyes, and the top boundary

of the eyebrows. Edges in the polygon mesh which correspond to these features were

manually marked during the model construction, and are shown in Figure 4.7(a).

(a) (b) (c)

Figure 4.7: Likely face features in an image

Other likely candidates for producing edges are the regions on the model of high cur-

vature. The base of the nose and indentation on the chin are examples of high curvature

edges, and can be seen in Figure 4.7(b). Occluding boundaries on the model also produce

edges in the image, and can be determined using the three-dimensional model. The loca-

tion of occlusion boundaries on the model will be useful when determining the quality of

selected points for the measurement of optical flow.

Of course, for an edge to be produced in the image, the corresponding region on the

face must be visible to the camera. This visibility determination is performed using the
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model and camera transformation. The model depth information can be used to determine

the parts of the model that are visible to the camera (the frontmost regions of the model).

Figure 4.7(b) shows visible locations of the model (features, high curvature and occluding

edges) that are likely to produce edges, given the model in (c).

Once the locations on the model are known which are likely to produce image edges,

two-dimensional edge-based forces [MT93] are applied to the model, as given by (2.12).

These forces contribute to the value of fq (affecting parameters in both qb and qm) based on

(2.9). Over the course of fitting, these edge forces “pull” the model so that the model edges

become aligned with their corresponding image edges, as described in Section 2.2.1. The

next two chapters describe how this face model is used in a deformable model framework

for shape and motion estimation.

4.6 Summary

This chapter contained a description of the model-building process for a deformable face

model; the parameterization of the model was built by hand. At the same time, anthropo-

metric data was used to bias the model towards more likely individuals. This 3-D model

can then be used to determine probable locations of image edges, as well as information

about the model’s self-occlusion. All of this results in a value for fq: the data forces

applied to the model.
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Chapter 5

Shape and Motion Estimation

This chapter describes a constraint approach to optical flow within a deformable model

framework for shape and motion estimation. We show that the approach can greatly im-

prove the ability to estimate motion, especially by exploiting the distinction between shape

and motion built into the parameterization of the model. The work here builds on the de-

formable model framework described in Section 2.1, on the model-based optical flow

work from Section 2.2.2, and on the model-based edge fitting work from Section 2.2.1.

Our approach can be summarized as follows. To start, image velocities in the optical

flow constraint equation are interpreted as projections of the model’s three-dimensional

velocities; this produces a system of optical flow equations that constrain the velocities of

the motion parameters of the model. In the theory of dynamic systems [Sha89], velocity

constraints such as these are called non-holonomic.

The velocities of the motion parameters are already accounted for as resulting from

the application of edge-based forces; finding the equilibrium resulting from these forces

amounts to a straightforward optimization problem (which can be solved using a de-

formable model framework). With the addition of the optical flow constraints, a con-

strained optimization problem results.

The constrained dynamic system is solved using the method of Lagrange multipli-

ers. This involves converting the optical flow constraints into constraint forces that are

65



combined with other forces (such as edge-based forces) to improve the estimation of the

model. The method of Lagrange multipliers recasts the optical flow constraints as two

kinds of forces. One provides the standard least-squares model-based solution to the opti-

cal flow constraints [NH87, LRF93]. The second is a constraint enforcement term which

ensures the optical flow constraint remains satisfied when combined with edge forces. In

order to provide a means for the combination of different sources of noisy information,

an extended Kalman filter [Gel74] is used. The optical flow constraint can be introduced

into such a filtering framework, resulting in a standard application of Kalman filtering to

a system augmented with constraint information.

This treatment of optical flow offers several advantages. Since our technique is model-

based, we avoid the explicit computation of the optical flow field by instead using the

optical flow constraint equation at select pixels in the image. Furthermore, using our

three-dimensional model, we can avoid choosing pixels on occlusion boundaries (which

violate the optical flow constraint equation) by determining their probable locations in the

image. (Similarly, we can determine likely locations of edges in the image to produce

edge forces on the model.) Finally, the presence of the constraint enforcement term yields

a profitable combination of the optical flow solution with the edge forces. Problems with

tracking error accumulation are alleviated using these edge forces, which now keep the

model aligned with its image without a statistically relevant violation of the optical flow

constraint.

5.1 Related Work

A wide variety of techniques have been used in the extraction and recognition of facial

expressions in image sequences. Several 2-D face models based on splines or deformable

templates [LTC97, MRB95, YCH92] have been developed which track the contours of a

face in an image sequence. Terzopoulos and Waters [TW93] and Essa and Pentland [EP97]
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use a physics-based 3-D mesh with many degrees of freedom, where face motion is mea-

sured in terms of muscle activations. Edge forces from snakes are used in [TW93], while

in [EP97], the face model is used to regularize an optical flow field that is used in expres-

sion recognition. A structure from motion approach is used by Jebara and Pentland [JP97]

to track head motion using a small number of image features. The rough 3-D shape of the

head is also extracted.

Another approach is to directly use the optical flow field from face images. Yacoob

and Davis use statistical properties of the flow for expression recognition [YD94]. Black

and Yacoob parameterize the flow field based on the structure of the face under projec-

tion [BY95]. Basu, et al [BEP96] extract a flow field, and then regularize it using a 3-D

ellipsoid model of the head. Addressing the problem of image coding, Li, et al [LRF93]

estimate face motion using a simple 3-D model by a combination of prediction and a

model-based least-squares solution to the optical flow constraint equation (without a con-

straint enforcement term). A render-feedback loop is used to combat error accumulation

in tracking.

None of these approaches permit large head rotations due to the use of a 2-D model (or

an imprecise 3-D model), and the inability to handle self-occlusion. None of the previous

work makes a serious attempt in extracting a detailed 3-D shape description of the face

from an image sequence. At best, the rough shape is determined [JP97], or the boundary of

face parts are located to align the model with an image. And most importantly, optical flow

has been solved separately from other cues, producing combined solutions which may not

respect the optical flow constraint. Our system, first presented in [DM96], uses a 3-D

model, and allows the tracking of large rotations by using self-occlusion information from

the model. We also extract the shape of the face using a combination of edge forces and

anthropometry information. Our optical flow solution was in part motivated by [BY95],

but is also superficially similar to [LRF93]. Our formulation, unlike [BY95, LRF93],

includes a constraint enforcement term, and allows us to improve our solution by including

additional information. Our face model also permits the use of a small number of image
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points to sample the optical flow field, as well as the computation of edge forces to prevent

error accumulation in the motion.

5.2 Optical flow constraints

In the following, the use of optical flow constraints on deformable models is presented.

The optical flow constraint equation, which expresses a constraint on the optical flow

velocities, is reformulated as a system of dynamic constraints that constrain q̇, the velocity

of the deformable model. The resulting information will be combined with the model

forces fq so that the constraint remains satisfied. The optical flow constraint equation is

used at a number of select locations in the image to constrain the motion of the model,

instead of explicitly computing the optical flow field. The use of optical flow information

greatly improves the estimation of qm, the motion parameters of the deformable model.

Hard constraints on a dynamic system (the type of constraints used here) restrict the

shape and motion by reducing the number of available degrees of freedom, while soft

constraints (such as spring forces) bias the behavior of the system toward a certain goal

(involving the system energy). Hard constraints are specified by equations involving q (or

its time derivatives). The technique used here for satisfying a set of hard constraints is the

addition of a constraint force to the system, which is determined at each iteration of the

system.

Constraints which depend only on q are called holonomic constraints, and constrain

the model to a set of allowable positions. They can be used in a deformable model formu-

lation, for instance, to add point-to-point attachment constraints between the parts of an

articulated object [MT93]. A holonomic constraint C has the general form

C(q, t) = 0 (5.1)

Non-holonomic constraints additionally depend on the velocity of the parameters, q̇, and
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constrain the motion of the model. A non-holonomic constraint C has the general form

C(q̇,q, t) = 0 (5.2)

In the following, we show how the optical flow constraints take this form and are incorpo-

rated into a dynamic system using the method of Lagrange multipliers.

5.2.1 Constraint formulation

The discussion in Section 2.2.2 describes how the optical flow constraint equation can be

reformulated in terms of the velocities of the model degrees of freedom. This rewriting

uses an identification of the image velocity (ui,vi) at pixel i with its corresponding model

velocity ẋp(ui):  ui

vi

= ẋp(ui) = Lm p(ui)q̇m (5.3)

where Lp =
[
Lb p Lm p

]
is the projected model Jacobian that has been split into blocks

corresponding to qb and qm. Direct use of the optical flow information only provides

motion information, and as a result, only qm is affected. To clarify this: any observed

motion is caused by dynamic changes in the true value of qm. The true value of qb is a

static quantity—the meaning of q̇b comes from the analogy of physics, where the value of

qb improves over the course of fitting (over time).

The non-holonomic constraint equation for the optical flow at a pixel i in the image

can be found by rewriting the optical flow constraint equation (2.13) using (5.3):

∇IiLm p(ui)q̇m + Iti = 0 (5.4)

Instead of using this constraint at every pixel in the image, n pixels are selected from the

input image (where n� dimqm). Section 5.4 describes the criterion used to choose these

particular points, and also describes how some of the known difficulties in the computation

of the optical flow are avoided in this model-based approach.
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For the n chosen pixels in the image, the system of equations based on (5.4) becomes:
∇I1Lm p(u1)

...

∇InLm p(un)

 q̇m +


It1
...

Itn

= 0 (5.5)

which can be written compactly as

Bq̇m + It = 0 (5.6)

This equation is simply a model-based version of the optical flow constraint equation,

which was discussed in Section 2.2.2. Instead of solving it on its own, however, it is used

as a constraint on the motion of the model.

5.2.2 Solving the dynamic system

The constrained system of equations (2.8) and (5.6) are solved using the method of La-

grange multipliers [Sha89, Str88]. The Lagrange multiplier technique adds additional

degrees of freedom (one for each degree of constraint), to form a larger, unconstrained

system. The initial dynamic equation of motion (2.8), now split into two parts corre-

sponding to qb and qm, is modified by adding the constraint force fc to q̇m:

q̇b = fqb, q̇m = fqm + fc (5.7)

Adding fc ensures the constraint equation is satisfied, and also cancels the components of

fqm that would violate the constraint. Using the Lagrange multiplier λλλ, the constraint force

can be solved for as:

fc =−B>λλλ (5.8)

We can combine equations (5.6), (5.7) and (5.8) to form:

BB>λλλ = Bfqm + It (5.9)
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and can now determine the constraint force (by multiplying (5.9) on the left by B+, the

pseudo-inverse [Str88] of B):

fc =−B+(Bfqm + It) =−B+It−B+Bfqm (5.10)

which results in the unconstrained dynamic system:

q̇b = fqb, q̇m =−B+It +
[
1−B+B

]
fqm (5.11)

The first term of q̇m in (5.11), −B+It, is a model-based linear least-squares solution to

the optical flow constraint equations (5.6) [LRF93]. A model-based solution to the opti-

cal flow constraint equations attributes the flow in the image to motion parameters in the

model. This works as follows. A change to any motion parameter induces a characteristic

motion field in the image. Figure 5.1 illustrates these vector fields for particular motion

parameters of our face model (described in Section 4.3.2). Figure 5.1(a) shows the vector

field arising from translation toward the camera; the focus of expansion can be seen in the

center of the nose. Figure 5.1(b) shows the field for horizontal translation, Figure 5.1(c)

shows the field for rotation about the vertical axis. Finally, Figure 5.1(d) shows the field

produced by opening the mouth. Formally, these 2-D vector fields are obtained by consid-

ering each column of Lm p(u) over the entire model (for all u∈Ω). The linear combination

of the fields Lm p(u) using the weights −B+It best satisfies (5.6) at the sampled pixels in

the least-squares sense.

The second term in (5.11) contains the edge forces fqm scaled by the matrix (1−B+B).

(The computation of edge forces was described in Section 2.2.1.) This projection matrix

cancels the component of fqm that violates the constraint (5.6) on q̇m. By scaling the edge

forces, this term prevents small errors in qm from accumulating.

Solving the system in (5.11) simply involves integrating it over time (we use an Euler

step):

q(t + 1) = q(t)+ q̇(t)∆t (5.12)

The process used to initialize the system (to determine the value of q(0)) is described in

Chapter 7.
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(a) (b)

(c) (d)

Figure 5.1: Sample 2-D vector fields Lm p(u)

5.3 Kalman Filtering

The optical flow constraint on q̇m is imperfect due to noise and estimation errors. It is

therefore desirable to have only a partial cancellation of fqm; this is accomplished through

the use of filtering. This section describes how the computation from the previous section

is cast as an extended Kalman filter.

Kalman filtering [Gel74] has become a popular tool in computer vision, and the for-

mulation here is, on the whole, similar to other applications [BC86, Met96]: there is a

measurement equation which models the noise inherent in the data gathering process, and

there is a process model, which predicts the behavior of the system based on the current

state. The initialization and tuning of the filter is accomplished using standard techniques.

The significant difference here, is that there is not only the edge data equation (2.8), which

has been previously used as a filtering measurement equation [Met96], but there is also a
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data-based constraint equation (5.6). The first part of this section describes one reason-

able way of using this constraint in the measurement equation. Alternative formulations

are possible; ours corresponds to the non-stochastic solution in (5.11). The remainder of

the section describes an extended Kalman filter based in part on this measurement equa-

tion.

By assuming a Gaussian noise model for both the measurements and state, the Kalman

filter can maintain an estimate of the state y and the state covariance P. While the assump-

tion of Gaussian noise might not be particularly accurate in describing the actual noise in

the system, it permits a much simpler solution while still capturing a large amount of the

uncertainty.

The measurement equation for the Kalman filter relates the measurements z to the state

y using the measurement matrix H. Terms vfq and vIt are added to represent the assumed

zero-mean Gaussian noise in fq and It; they have covariances Rfq and RIt respectively:

z(t) = H(t)y(t)+

 vfq(t)

vIt(t)

 (5.13)

where the construction of H, y and z in (5.14) comes from (5.6), (5.7) and (5.8).

H =


1 0 0

0 1 B>

0 B 0

 , y =


q̇b

q̇m

λλλ

=

q̇

λλλ

 ,

z =


fqb

fqm

−It

=

 fq

−It

=

∑ j Lp(u j)>f(u j)

−It


(5.14)

The state y consists of the parameter velocities q̇; together with the Lagrange multipliers

λλλ used in the optical flow solution. This inclusion is for presentation only, because, as will

be seen later, λλλ is effectively not part of the state. The discrete update equation for the

state is given by (5.12).

z consists of the parameter forces fq and the temporal image derivatives It. Note

that the spatial image derivatives are not included in the measurements (even though they
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are used in the formation of B); doing so would greatly complicate the measurement

equations. Similar simplifications can be found in image-based optical flow techniques

[SAH91] where the noise in the spatial image derivatives are ignored to provide a Gaus-

sian solution. Reasonably accurate estimates of the spatial image derivatives are usually

available (especially away from occlusion boundaries), making this a fairly safe assump-

tion. Also note that H depends on the state y, which makes the measurement equation

non-linear. Because of this non-linear dependency, the filter is an extended Kalman filter.

The pseudo-inverse of H produces the same solution as (5.11):

H+ =


1 0 0

0 1−B+B B+

0 (B+)> − (B+)>B+

 (5.15)

In contrast, the smaller system which does not include the Lagrange multiplers λλλ in the

state produces a different solution from (5.11):
1 0

0 1

0 B


+

=

1 0 0

0 (B>B + 1)−1 (B>B + 1)−1B>

 (5.16)

Although the solution of the smaller system corresponding to (5.16) approaches that of q̇

in (5.15) if all of the non-zero eigenvalues of B>B are much greater than 1, this is not the

case in the applications presented here (where all actually tend to be much less than 1).

The inclusion of λλλ in (5.14) thus ensures the system reduces to the original unfiltered

solution, but some complications arise as well. The presence of λλλ is a result of the con-

straints on the dynamic system—it should not be considered part of the state. Each λ j in

λλλ is associated with a particular pixel from the optical flow computation. However, there

is not necessarily any correspondence between the pixels (and hence the λ j) across itera-

tions. Even worse, the number of pixels used (the dimension of λλλ) varies across iterations.

This means a subset of the state parameters are only present at one iteration, and their

predicted values at time t are not based on any previously estimated values. An alternative
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interpretation would be to view these parameters λλλ as having infinite observation noise, or

perhaps that the “observability” of λλλ is changing.

The discrete process equation for the Kalman filter gives an expression for the predic-

tion of the state y(t + 1) given the previous estimate y(t). In this case, this equation states

that the predicted motion of the observed subject is the same as in the previous iteration,

along with the added noise w (assumed to be independent zero-mean Gaussian noise with

covariance Q) to form the primarily data-driven system:

y(t + 1) = y(t)+ w(t) p(w)∼ N(0,Q) (5.17)

The prior estimates of y and P used in the computation of the estimated state and covari-

ance at time t are denoted ỹ and P̃. Since λλλ is treated as a distinct value each iteration,

only the portions of ỹ(t−1) and P̃(t−1) that correspond to q̇ are retained, resulting in:

ỹ(t) =

q̇(t−1)

0

 ,
P̃(t) =

Pq̇(t−1) 0

0 0

+ Q(t−1)

(5.18)

(where Pq̇ is the block of P(t−1) corresponding to q̇).

Computing the estimated mean and covariance of y involves forming the Kalman gain

matrix, which is used to combine the solution using the current measurements with the

solution from the previous iteration. In the following filtering equations, all quantities are

taken at time t, but this dependence is omitted to improve readability. The Kalman gain

matrix [Gel74] is computed as:

K = P̃H>
(

HP̃H>+ R
)−1

(5.19)

The covariance matrix R is computed as the sum of terms resulting from the noise in fq

and It:

R =

Rfq 0

0 RIt

 (5.20)
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The addition of (5.20) ensures the invertibility of the matrix (HP̃H>+ R) in (5.19); this

matrix is also symmetric and positive definite.

Using K, the estimated mean is computed as a sum of the current solution Kz and the

weighted prior mean estimate ỹ, or as the sum of the prior estimate ỹ and the innovation

(z−Hỹ) weighted by K:

y = Kz + (1−KH) ỹ = ỹ + K (z−Hỹ) (5.21)

It is easily verified that (5.21) corresponds exactly with the original solution for q̇ in (5.11)

when R = 0 and P̃ = 1 so that K = H+. The estimated covariance [Gel74] is computed

from the prior covariance P̃ as:

P = (1−KH)P̃ (5.22)

The Kalman filtered solution has a number of advantages over the direct solution from

(5.11). Primarily, it makes the framework more robust to noise and small estimation errors.

Additionally, it provides a useful means for the combination of the edge forces and optical

flow information; the optical flow constraint is now relaxed to a degree based on the error

in the optical flow information. The filtered solution includes a control for tuning how

much trust goes into the optical flow information relative to the edge information; this

control is the relative scale between Rfq and RIt . Finally, the estimation of the static

quantity qb will eventually cease as the estimated variance of these parameters converges.

5.4 Feature selection

The construction of the optical flow constraint on q̇m required the selection of a set of

image pixels from which to measure optical flow information. While it would be possible

to use all pixels on the observed object, this would have two problems. Most obviously, it

would be expensive to solve the system—it is especially wasteful since it is likely that most

pixels do not provide a significant amount of useful information. And secondly, particular
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points actually provide harmful information—such as those near occlusion boundaries.

This section describes our method for the selection of pixels in the construction of (5.5).

Tomasi and Shi [ST94] define good features for tracking by using the following crite-

rion. The outer product of the image gradients at pixel i is summed over a small window

around that pixel:

∑
window(i)

∇Ii ∇I>i (5.23)

A feature is selected when the smaller eigenvalue of this 2× 2 matrix is greater than a

threshold value. These features possess significant image gradients in two orthogonal di-

rections, which makes them reliable tracking features, as well as good sources of optical

flow information. Features with one very large eigenvalue are also useful in our applica-

tion, as these image points also provide good optical flow information.

However, not all pixels with significant gradient magnitude should be chosen. In par-

ticular, pixels on occlusion boundaries must be avoided, as they violate the optical flow

constraint equation. The use of model-based techniques here provides a straightforward

solution—assuming the model is at least roughly aligned with the image, pixels anywhere

nearby the predicted occlusion boundaries of the model are simply not chosen.

Besides providing the most accurate information possible, the set of chosen points

must also adequately sample the facial motion information present in the image. The ac-

curate measurement of a parameter in qm requires a sufficient number of pixels in the

image corresponding to model points where the Jacobian of that parameter does not van-

ish. Note that some motion parameters are defined only over a particular region of the

face (such as the mouth-opening motion in Figure 5.1(d) which is non-zero only in the

jaw region).

Using too few pixels in the computation results in a loss of accuracy, and can reach

the point where the system loses track of the subject. Including too many pixels forces

the pixel selection method to include pixels containing little useful information (such as

having a small gradient magnitude). It has been determined by experimentation that 10
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to 20 pixels per parameter provide sufficient accuracy and robustness for the application

of face tracking (at which point the results change negligibly when more pixels are used).

Since there can be considerable overlap between the sets of pixels used to measure each

parameter, the total number of pixels used can be fairly small. For each of the experiments

here, n is approximately 120 pixels.

5.5 Discussion

The successful tracking performed by this framework is primarily due to the use of optical

flow as a constraint. This was verified to some degree by disabling key components of

our tracking system, and observing the resulting performance decrease. Altering (5.11)

to use the system in (5.16) (which actually corresponds to standard Kalman filter data

fusion), fqm is no longer scaled by the constraint projection matrix, and this effectively

disables constraint enforcement. This produced a much less robust system—especially

when many motion parameters were active. Perhaps the constraint enforcement made the

edge force optimization problem simpler by projecting away components that would result

in local minima. Further investigation on this point is needed.

Using an ordered solution, which alternatively uses the optical flow solution (for a big

step), and a edge force solution (for a smaller correction), produced a system which failed

quite frequently. Since at each step, the solution depended on a single (perhaps very noisy)

source of information, the solution no longer depended solely on the useful component of

each information source.

When edge forces are disabled (for qm only), errors in the estimation of q̇m accumu-

late, causing the model to eventually lose track (a single 60 degree head turn is easily

enough to do this). Using only edge forces (and no optical flow information) produces a

harder and more expensive problem. Edge forces are most effective when the model is

very close to the solution, and require many iterations otherwise. Large changes in many

parameters at once often results in a local minimum solution being found.
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While using optical flow as a constraint is a clear advantage, the presence of noise in

the optical flow information makes having a strictly enforced constraint counterproduc-

tive. Canceling the entire component of the edge force which violates the constraint also

throws away some potentially useful information. The extended Kalman filter allows for

the softening of this constraint based on the reliability of the optical flow information. The

addition of edge forces takes into account this reliability, so that the filter weights the edge

forces more when the optical flow information is less reliable.

5.6 Summary

This chapter has described a deformable model framework which treats optical flow in-

formation as a constraint on the motion of the model. When combined with edge infor-

mation, the estimation results are greatly improved. This use of edge information combats

error accumulation in tracking, as well as allows for the extraction of shape information.

The presence of an extended Kalman filter helps deal with noisy input while also provid-

ing a useful means for combining the optical flow and edge information. The use of a

three-dimensional model accounts for the self-occlusion of the face, and hence permits

the tracking of a subject under large amounts of head rotation.
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Chapter 6

Error residual minimization

The face model described in Chapter 4 includes an intuitive distinction between shape and

motion. The model has motion parameters, which describe both rigid and non-rigid mo-

tions, and shape parameters, which describe the basic underlying shape of the model. The

purpose of this distinction is to reduce the number of motion parameters. This distinction

now leads us to develop a method, initially presented in [DM98], where changes in the

image are initially attributed entirely to motion, but then the error in the reconstructed

motion is used to more accurately extract both shape and motion parameters of the object

being tracked.

This formulation is used in concert with the tracking framework from Chapter 5. In

this chapter, we extend this framework so that the face shape is updated also based on

the optical flow information. Derivatives of the model Jacobian (second derivatives of

the model) determine how changes in the parameters of the model affect its motion pa-

rameterization. Using these derivatives in a truncated Taylor series expansion, the model

parameters (both shape and motion) are refined by minimizing the residuals from the

model-based motion computation. This method simultaneously corrects the shape and

motion parameters for each image frame.

For every image in the sequence, we first solve a model-based least squares optical
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flow solution, which determines the motion parameters. Then, the residual from this com-

putation determines the error in the model parameters using another least squares process,

which adjusts the shape and motion parameters of the model. The use of residuals to de-

termine the applicability of a model’s assumptions is the subject of regression diagnostics

[Bel80]. The method here, however, assumes the model is appropriate, and instead uses

the deviations from the model to improve the estimate.

This approach allows a more accurate extraction of the shape and motion. The esti-

mation framework presented in the previous chapter extracted the basic shape of the face

using only edge information. Edge information is not always adequate due to poor illu-

mination and self-occlusion. This may result in inaccurate estimation of the basic shape,

which can in turn cause error in the motion estimation. This approach also differs from

other model-based shape and motion estimation methods [Koc93] where optical flow in-

formation was used to directly improve the shape, leading to potentially large shape esti-

mation errors. Our method does not require the extraction of tracked features, but instead

uses motion information–in this case, optical flow information. Shape and motion are

improved simultaneously.

6.1 Shape and motion estimation

This section describes our new technique for non-rigid shape and motion estimation us-

ing the residuals from a least-squares motion estimation. When optical flow is used as

the cue for motion estimation, as in Section 5.2, the residuals are in part caused by vi-

olations of the optical flow constraints (i.e. specularity), by linearization of the optical

flow constraints, and by measurement noise. In a model-based framework, residuals are

also produced by errors in the extracted shape and motion of the model. In order for the

residuals to be useful, however, a significant error in the shape and motion during tracking

must be responsible for the majority of the residual—this is our primary assumption. This

assumption is supported by experimental evidence discussed in Section 7.1.3.

82



The use of a model allows for a model-based computation using these residuals. For

the applications here, the deformable face model described in Chapter 4 is used. The

optical flow least-squares residuals R are computed from (5.6):

R = Bq̇m + It = B(−B+It)+ It =
(
1−BB+)It (6.1)

The residual is a vector which has dimension n (the number of pixels used in the motion

computation).

There are a number of approaches to using this residual information–given the as-

sumption above, the goal of these approaches will be to reduce this residual. One possible

approach is to extract shape information using the same formulation for determining mo-

tion as described in Section 5.2, as in:

Bq̇m + Bbq̇b + It = 0 . (6.2)

where the construction of Bb is analogous to B, but uses Lb instead of Lm. The system

in (6.2) is decoupled, and is solved for motion first, and then for shape in terms of the

residual R :

Bbq̇b =−R ⇒ q̇b =−B+
b R (6.3)

This method is closely related to the method described by Koch [Koc93]. It is a rea-

sonable approach in the context of image coding, where image fidelity is of much greater

importance than accuracy of face shape estimation—the face shape is deformed to account

for the tracking errors in motion. This produces a face shape that results in a higher quality

image, but does not necessarily estimate the actual 3-D face shape of the subject.

As stated earlier, in the framework presented here, a clear distinction is made between

shape and motion parameters, since the true value of qb is a static quantity. Hence, it does

not make sense to adjust the shape parameters qb directly from observed velocities, as in

[Koc93].

Instead of this, our approach is to find what small change in q would affect the largest

reduction in the motion residual. This approach uses the fact that the model Jacobian
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Lm p(u;q) depends on both qb and qm (based on how the model was constructed), so that

second derivative information is employed. Let ∆q be the current deviation of q from its

true value (not including the motion in q̇m)—this includes both the shape error and the

accumulated motion error. We assume ∆q is of sufficiently small magnitude so that the

first-order approximation to Lm using its Taylor-series expansion is sufficiently accurate:

Lm p(ui;q + ∆q)≈ Lm p(ui;q)+
∂Lm p(ui;q)

∂q
∆q (6.4)

For the case of the face model described in Chapter 4, whose parameterization consists

of mostly affine scaling deformations, sufficient linearization accuracy is easily attained.

Combining this approximation of Lm p with the model-based optical flow constraint equa-

tion (2.15) results in:

∇IiLm p(ui)q̇m + ∇Ii

(
∂Lm p(ui)

∂q
∆q
)

q̇m + Iti = 0 (6.5)

where ∂Lm p/∂q is part of the model Hessian matrix (a rank 3 tensor). It is used here as

a block matrix, written here “curried” with ∆q to keep the notation under control (so that

the parenthesized sub-expression here is a matrix). The value of q̇m is taken as −B+It as

in (6.1); its instance here does not include any other terms (such as edge forces), since

they do not affect the residual.

When (6.5) is considered over n pixels from the input image, this results in the system:

Bq̇m + (Gq̇m)∆q + It = 0 . (6.6)

where G =



(
∇I1

∂Lm p(u1)
∂q

)>
...(

∇Im
∂Lm p(um)

∂q

)>

 (6.7)
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The transpositions performed in the construction of G 1 allow it now to be curried

with q̇m (this construction transposes the second and third indices for the tensor G). This

manipulation allows for the solution of ∆q, which is found using another least-squares

process, given by the equation:

(Gq̇m)∆q =−(Bq̇m + It) (6.8)

which can be manipulated by substituting q̇m =−B+It and R = Bq̇m +It, and then solved:

(GB+It)∆q = R ⇒ ∆q = (GB+It)+R (6.9)

This least squares solution determines the best set of small changes in qb and qm that

minimize the optical flow residual (6.1), given the linearization of Lm p in (6.4).

6.2 Solution improvement

The value of ∆q from the previous section specifies an absolute update to the state (unre-

lated to the current timestep ∆t)—∆q is simply added to q after each iteration.

The solution (5.11) from Chapter 5 must be adjusted to accommodate this added term.

This involves determining and evaluating the edge forces using the model at the updated

location (q + ∆q). This greatly reduces overshooting, which would be caused by edge

forces contributing corrections which are redundant with those already present in ∆q. The

new system is:

q̇b = fqb(q + ∆q), q̇m =−B+It +
[
1−B+B

]
fqm(q + ∆q) (6.10)

which is updated over time similarly to (5.12), but with ∆q added in:

q(t + 1) = q(t)+ q̇∆t + ∆q (6.11)

Analogous changes can be made to the Kalman filtered solution: the force determina-

tion is made at the improved state, and the improvement is added in after each iteration

(unfiltered).
1The matrix G is the same as H in [DM98], but is changed here to avoid overloading with the measure-

ment matrix from Chapter 5.

85



6.3 Implementation

Due to the linear approximation in (6.4), it is important to determine if the residual actually

does decrease with the addition of ∆q. Once ∆q has been computed using (6.9), the model-

based motion analysis in (5.6) is re-solved using qnew = q + ∆q, producing an updated

residual R new. If the addition of ∆q causes the residual magnitude of R new to be larger

than R , the results of the shape and motion refinement are discarded (∆q is set to zero).

Otherwise, the changes specified by ∆q can be used directly. Note that this process does

not include any edge forces, since they do not affect the residual.

The efficiency of solving this system is improved by omitting parameters in the con-

struction of G from (6.7) which cannot be affected based on qm. For example, if there is

no motion extracted in the eyebrow region of the face, then there is no reason to include

eyebrow shape parameters in G. At any point in time, typically about half of the shape

parameters of the face model can be omitted from the computations.

The process of determining ∆q can also be iterated, solving (5.6) and (6.9) repeatedly

to obtain a greater improvement. For the applications here, the linear approximation in

(6.4) is relatively accurate for the face model described in Chapter 4, due to the fact that

most of the model parameterization is linear scaling. As a result, only the single iteration

is performed.

The least squares solution to (6.9) is solved using a singular-value decomposition. This

avoids any problems associated with the lowering of rank due to the aperture problem or a

lack of motion, as well as the problems associated with a non-orthogonal set of parameters.

6.4 Summary

We have presented a novel deformable-model technique which uses residuals from a

model-based optical flow solution to refine the shape and motion of the model. By us-

ing second derivative information from the model, small improvements to the parameters

are made by minimizing the residuals. Besides having greater accuracy than a framework
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using only optical flow and edges, our framework extracts the shape of the face without

needing data from extreme head poses (such as a profile view). Instead, much smaller

motions are needed to extract much of the shape information.
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Chapter 7

Experiments and Results

7.1 Vision Experiments

This section contains the results from a series of face shape and motion estimation ex-

periments. The first three experiments exhibit the generality of our tracking system (from

Chapter 5) on a variety of subjects, while the next six experiments use a common observed

subject, and provide a quantitative validation of the shape and motion estimation systems

(from both Chapter 5 and Chapter 6).

7.1.1 Initialization

The entire estimation process is automatic, except for the initialization, which requires the

manual specification of several landmark features in the first frame of the sequence (the

eyebrow centers, eye corners, nose tip, and mouth corners). The subject must also be at

rest, and (approximately) facing forward, as in Figure 7.1(a).

Using these marked features, forces are applied to the initial face model (described in

Section 2.3) that deform the corresponding points on the face toward the desired locations

in the image. The rotation and translation, as well as course-scale face shape parameters

(such as those which determine the positions and sizes of the face parts) are fitted using

this information, the result of which is shown in Figure 7.1(b). Once roughly in place,
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both edge and anthropometry forces are applied that pull the face into the correct shape as

in Figure 7.1(c). The distance from the initial face to the camera is determined given the

assumption that the subject’s face is the same size as the model.

(a) (b) (c)

Figure 7.1: Model initialization

The problem of automatically locating the face and its various features has been ad-

dressed elsewhere [YD94, YCH92], and could be used to make this process automatic.

No markers or make-up are used on the subject (markers are used for the validation of the

tracking method, however, as described below). Experience has shown that the initializa-

tion process is robust to small displacements (i.e. several pixels) in the selected landmark

points.

7.1.2 Tracking experiments

The original image sequences are 8 bit grey images at NTSC resolution (480 vertical

lines). In each of the sequences, the width of the face in the image averages 200 pixels,

and the range of motion of features across the image sequence is typically 80 to 100 pixels.

For each of the tracking examples, several frames from the image sequence are displayed,

cropped appropriately. Below each, the same sequence is shown with the estimated face

superimposed. In each case, a model initialization is performed as described above. The

initialization process usually takes about 2 minutes of computation. Afterwards, process-

ing each frame (using the extended Kalman filter formulation) takes approximately 1.4

seconds each (all computation times are measured on a 175 MHz R10000 SGI O2). When

using the error residual computation, processing each frame takes an additional 8 seconds.
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The sequence shown in Figure 7.2 was taken on an IndyCam at 5 fps. Figure 7.2 shows

a subject turning her head in (a) through (d) and opening her mouth from (d) to (f). Based

on the good alignment of the face model with the image, it appears the face model is able to

capture the shape of her face, as well as the head rotation and mouth motion. The next two

sequences were taken on a higher quality camera at 30 fps1. Both Figure 7.3 and Figure 7.4

show a subject smiling and moving forward in (b) and (c), opening their mouth while

turning their head in (e) and (f), and turning back, closing their mouth slightly in (g). All

of these motions appear to be correctly tracked based on the observed motion. These three

experiments involve different subjects, having very different appearances. This suggests

the verification of the face model shape parameterization (described in Section 4.3.1) was

successful.

7.1.3 Shape estimation validation experiments

The same observed subject is used in both experiments presented here, which provide

a validation of the shape estimation accuracy of our system. The shape (determined by

qs) is validated using a Cyberware range scan of the subject, shown in Figure 7.5(a).

Experiments using the edge-based shape estimation from Chapter 5 are compared along

side with results using the error residuals from Chapter 6.

The shape estimation validation experiment in Figure 7.7 shows the subject making a

series of non-rigid face motions: opening his mouth in (b) and (c), smiling in (d) through

(e), and finally raising his eyebrows in (f). In each case, the motion parameter values

change appropriately, and at the correct times (both techniques extracted virtually the

same motion parameter values).

At each frame, Figure 7.8 shows the extracted shape results as compared against the

range scan of the subject, for both techniques. Note that for this comparison, all motion

parameters are ignored, so that only the shape is compared. The RMS error is computed

1We are grateful to Yaser Yacoob and the Center for Automation Research at the University of Maryland
College Park for providing these two image sequences.
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(a) (b) (c) (d) (e) (f)

Figure 7.2: Motion and expression tracking example 1

(a) (b) (c) (d) (e) (f) (g)

Figure 7.3: Motion and expression tracking example 2

(a) (b) (c) (d) (e) (f) (g)

Figure 7.4: Motion and expression tracking example 3
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(a) (b) (c)

Figure 7.5: (a) Shaded range scan of subject, (b) Marker calibration images, (c) Resulting
marked model

using the nodes of the model, and also includes a uniform scaling of the model so that

the two faces are the same scale (this eliminates the depth ambiguity—in this case, the

estimated model was compared at 96% scale).

For the edge-based estimation system (the dotted line), the RMS error starts at around

1.7 cm after initialization, and shows a steady reduction over the course of the experiment,

ending around 1.3 cm. For the system using error residuals (the solid line), the RMS error

again starts at around 1.7 cm, but ends with less error (0.85 cm) compared to the edge-

based technique.

The experiment in Figure 7.9 shows the subject performing small head motions in (a)

through (f) while smiling in (c) and (d), and finishing with a significant head rotation in

(g). Using the edge-based method (again, the dotted line), the RMS error starts at around

1.9 cm after initialization, shows a gradual reduction over the course of the experiment,

ending just under 1 cm, with the large reduction in error around frame 50 corresponding

to when the subject turned his head significantly to the side in Figure 7.9(f) and (g), where

the profile view contained good edge information to fit the face shape. For the system

using error residuals (the solid line), the RMS error again starts at around 1.9 cm, but this

time finishes with just under half of the RMS error as the edge-based technique: around

0.4 cm. In addition, this lower level was reached fairly quickly, showing the advantage of

using the error residual technique.

Besides estimating the shape more accurately, the technique using the optical flow

error residuals also estimates expression-shape parameters. This allows the extraction of
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the correct curve of the smile expression for this subject, as in Figure 7.6(a), compared to

treating these values as constants, as was the case for edge-based fitting, which is shown

in Figure 7.6(b).

(a) (b)

Figure 7.6: Fitting expression-shape parameters (a) using error residuals; using average
value (b) with edge-based estimation

The derivation of the method using the residuals in Section 6.1 assumes that shape

error is the leading contributor to the residuals from the motion computation. During the

experiments, the residual magnitudes started fairly high (initially around 0.18 for the first

experiment, and 0.24 for the second), and ended up around 0.050 (for both experiments)

by the end of motion sequence (this is for the residual-based method). (Note that these

values are the magnitude of R , and is not a shape difference measure). In order to estimate

what portion of the residuals are caused by shape error, both experiments were run again

(for the residual-based method only); this time, the initial model shape was taken from the

range scan of the subject (so that shape error is eliminated). The residuals that resulted

from these experiments had a fairly small and constant magnitude, which averaged around

0.035 (pixel intensity units—for pixels in the range [0,1]). This enforces the validity of

our assumption that shape error is responsible for the bulk of the residual.

7.1.4 Tracking validation experiments

The next four experiments use markers to allow for the validation of the motion tracking

of the techniques from Chapter 5 and Chapter 6. The same subject is used in each of the

experiments. Eleven small circular markers were placed on the face of a subject. Analysis

of the accuracy of the motion estimation in qm is performed using these markers on the
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(a) Frame 1 (b) Frame 9 (c) Frame 13 (d) Frame 20 (e) Frame 24 (f) Frame 32

Figure 7.7: Shape validation experiment 1
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Figure 7.8: Results of shape validation experiment 1
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(a) Frame 1 (b) Frame 11 (c) Frame 18 (d) Frame 24 (e) Frame 35 (f) Frame 46 (g) Frame 57

Figure 7.9: Shape validation experiment 2
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Figure 7.10: Results of shape validation experiment 2

subject, which allow for alignment verification in the image plane (ground truth motion in

3-D is not available).

For these experiments, no shape estimation is performed. Instead, the face shape is

provided by an off-line fitting of the face model to the range scan in Figure 7.5(a)—this

way, any deviation can be attributed primarily to motion error, not shape error. In addition,

the fixed locations of the markers on the model are determined using some additional

images taken of the subject, shown in Figure 7.5(b). The markers are fixed into particular

locations of the polygon mesh (they have fixed coordinates in Ω). The model resulting

from this fitting and marker placement is shown in Figure 7.5(c), with the marker locations

shown as dark circles. The RMS error of the extracted model (comparing the extracted

model with the range scan) is 0.26 cm.

First, the image locations of each of the markers from the image sequence is obtained
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using a semi-automatic tracking system. The rough location of the markers is tracked us-

ing the KLT2 package (which is based on [ST94]), and was fine tuned using a deformable

ellipse template. Simple calibration tests suggest this tracking technique has a variance of

0.35 pixels in measuring the center of a marker (which are usually about 8 pixels across)

in the image.

Care was taken so that the presence of the markers did not significantly affect the

motion estimation, since these markers could provide useful information for tracking.

The pixel selection method for the optical flow information was modified so that no points

were selected that were within 3 pixels (the radius of the spatial derivative filters) of any

point on a marker. In addition, any edges used to produce edge forces were similarly

limited to be distant from markers. Given that the markers were not placed directly on top

of important facial features, it is unlikely that the presence of the markers detrimentally

affected the experiment results.

In each of the following four motion validation experiments, there is an accompanying

graph showing the displacement error for each frame. This displacement error of a marker

is the Euclidean distance (in pixels) between the image location of the marker (if visible),

and the predicted image location of the marker given the model (which is the projected

image location of the model marker). The dark line on the graph shows the mean displace-

ment error of all visible markers (one standard deviation is indicated by the gray region

surrounding it). The dotted lines indicate the minimum and maximum displacement error.

The first three sequences were taken using an IndyCam at 5 fps. The final sequence

was taken on a high quality camera (Pulnix TM-9701; greyscale, progressive scan) at 30

fps. Also note that this final sequence was taken at a different time than the first three—

the markers were re-applied to the subject, and their locations were determined again,

as in Figure 7.5(b) and (c). Their new locations were roughly the same as in the earlier

validation experiments (at most 1.5 cm difference).

The sequence in Figure 7.11 shows the subject making a series of (nearly) rigid head

2Stan Birchfield’s KLT package is available at http://vision.stanford.edu/˜birch/klt
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motions. The subject turns to his right in (a) through (c), back to his left by (e) and

then faces forward in (f). The average of the deviation errors for this sequence, shown in

Figure 7.12, is roughly between 2 and 3.5 pixels, which given the face is approximately

200 pixels across in the image, amounts to less than 2%. The maximum error of around 7

pixels is around 3.5% (roughly 0.5 cm).

The motion in the second sequence in Figure 7.13 is predominantly non-rigid motion

(facial expressions). The subject moves forward and frowns his eyebrows in (b), moves

back and produces a surprise expression in (d), followed by a smile in (f). The average

error shown in Figure 7.14, is slightly higher for this experiment, averaging between 2 and

4 pixels, with a maximum again at about 7 pixels. The largest error is produced during the

smile expression; possible reasons for this are discussed below.

The third sequence in Figure 7.15 is a combination of rigid and non-rigid motions.

The subject turns his head from (a) through (d) while smiling, returning to rest position

in (f). The displacement error shown in Figure 7.16 is also somewhat higher, averaging

from 2 to 4 pixels (but being closer to 4 for a longer period), reaching a maximum of just

over 7 pixels. The largest error is produced when the smile is viewed from the side, and is

concentrated in the mouth area.

The last sequence in Figure 7.17 is primarily a rigid-motion sequence that is signif-

icantly longer than the other experiments (760 frames). It includes head rotations in a

variety of directions, as well as some large head translation (side-to-side and away from

the camera). Eyebrow raises and a smile are also present. This sequence demonstrates the

ability of the system to maintain track over a long sequence, without experiencing failure

due to tracking drift. In this sequence, the face is approximately 140 pixels across in the

image (somewhat smaller than in the previous experiments). The average pixel devia-

tions shown in Figure 7.18, range between 1.5 and 2.8 pixels, with a maximum error at

4.6 pixels, corresponding to about the same absolute distance error as with the previous

experiments (roughly 0.5 cm). Hence, the apparently lower pixel deviations for this se-

quence amount to approximately the same error in actual distance. During the sequence,
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some of the motions were very close to the maximum limits of tracking speed (pixel ve-

locities were about the same size as the derivative filter width). In particular, the turning

motion at frames 250–320 is the most serious, with other occurrences at frames 430–450

and 610–620. These motions manifest themselves in Figure 7.18 as larger displacement

errors. However, during the successive motions (which are well below this maximum ve-

locity), the system recovers from these errors, and improves the fit using edge information,

returning to the baseline deviation amount of around 2 pixels.

While the edge information prevented drift in this example, it only works to a certain

extent. Should the baseline deviation be significantly higher, the alignment of the model

and image can be poor enough to cause tracking failure (drift seems to be the cause). 3

This tracking experiment was run again (a number of times) to experimentally deter-

mine the minimum baseline deviation that causes tracking failure. After each iteration,

Gaussian noise was added (of increasing variance until tracking failed) to the rigid motion

parameters in qm. Tracking failure became common as average pixel deviation values

went above 4.6 (the incidence of failure went from non-existent below 4.5, to prevalent

by 4.7). Alternatively, adding Gaussian noise directly to the images (of increasing vari-

ance until tracking failed) produced a similar value (average pixel deviation of 4.4, with a

corresponding image noise variance of 15.5% of intensity).

Each of these motion tracking experiments were also run using the motion improve-

ment technique from Chapter 6 (the shape improvement was disabled, since these experi-

ments do not perform shape estimation; however, the residual method still included shape

parameters in its computation, so as to preserve the “intent” of the method).

To my initial dismay, the results were indistinguishable (under 0.1 pixel deviation dif-

ference; sometimes lower, sometimes higher) from the experiments which did not use this

method. After some analysis, it became apparent that the edge forces were far surpass-

ing any benefit the motion improvement performed. This explanation was supported by

3Tracking failure is simply defined as reaching a 10 pixel deviation–at this point, further tracking may
still produce reasonable velocity results, but only because the head is roughly an ellipsoid; the deviation
typically increases once this point is reached, with tracking being re-gained only by luck.
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(a) Frame 1 (b) Frame 7 (c) Frame 15 (d) Frame 23 (e) Frame 41 (f) Frame 48

Figure 7.11: Motion validation experiment 1
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Figure 7.12: Results of motion validation experiment 1

another experiment, which involved comparing the results with and without the motion

improvement method from Chapter 6; but this time, edge forces were disabled in both.

In both cases, the system lost track. However, when the motion improvement method

was present, it retained track until about frame 180, whereas without this improvement

method, tracking lasted only until frame 120. Hence, while the motion improvement

method does not seem to contribute noticeably to the results in the presence edge forces,

it still nudges the system in the right direction. Of course, the shape improvement method

still contributes a great deal (as seen earlier), even in the presence of edge forces.

Considering all the experiments, the error in the tracking results can have other (non-

noisy) sources, besides motion estimation error. One possibility is that it can be caused

by poorly extracted marker locations (although this distance is less than a pixel). Another

source can be the discrepancy between the face shape used and the shape of the observed

subject. The RMS error between the face shape and the range scan for only the marker

100



(a) Frame 1 (b) Frame 11 (c) Frame 16 (d) Frame 18 (e) Frame 24 (f) Frame 29 (g) Frame 40

Figure 7.13: Motion validation experiment 2
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Figure 7.14: Results of motion validation experiment 2
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(a) Frame 1 (b) Frame 16 (c) Frame 18 (d) Frame 27 (e) Frame 39 (f) Frame 43

Figure 7.15: Motion validation experiment 3
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Figure 7.16: Results of motion validation experiment 3
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Frame 1 Frame 30 Frame 110 Frame 130

Frame 180 Frame 210 Frame 260 Frame 280

Frame 320 Frame 350 Frame 390 Frame 540

Frame 600 Frame 680 Frame 710 Frame 760

Figure 7.17: Motion validation experiment 4
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Figure 7.18: Results of motion validation experiment 4
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points is much lower than that from the whole model; it is 0.1 cm, which will cause at

most 1 pixel of deviation in marker locations. Violation of the assumption of perspective

projection is also a possible contributor to error, although in this case is minimal, given

the small depth range of the face compared to the distance of the face to the camera.

From this, it can be concluded that a significant portion of the errors present here are from

motion estimation.

Upon closer examination, it can be seen that the larger errors which are present during

non-rigid motions (in particular, smiling), are caused by the smile produced by the model

not matching the smile on the subject. Although the estimation of the expression-shape

parameters will help for markers on or near the smile boundary, the model deformations

do not affect the surrounding surface as much as their corresponding expressions affect

the surrounding tissue.

Judging by the good performance here, it seems that both techniques are relatively

insensitive to optical flow constraint equation errors (such as violations of the brightness

constancy assumption [NY93], or the truncation of higher order image-derivative terms

[Nag83]). Any remaining problems appear to be corrected by edge forces, which prevent

drift from accumulating.

7.1.5 Limitations

The many experiments in this section show the capabilities of the shape estimation and

tracking systems described in Chapter 5 and Chapter 6. On the other hand, they also say a

lot about what the limitations of the system are.

First, some of the limitations of the system come directly from the assumptions made

during design. Most obvious is the assumption of brightness constancy during optical

flow computation. Major lighting changes can cause tracking failure. Specularities also

cause small problems, but tend not to affect the entire model, since they tend to be fairly

localized. In some cases, poor lighting will also lead to tracking failure. Typically, these

occur in situations where edges are washed out (opening the aperture too wide on a camera
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will do this).

Second, is to simply exceed the maximum tracking speed (determined by the derivative

filter width). This problem can be addressed simply by using multi-scale optical flow

methods.

Third, are deviations from the model—where the images go past the coverage limits

of the model. Attempting to track motions that are not represented produces relatively

unpredictable effects. For example, lip puckering is not modeled: tracking this facial

motion produces the best fit using the existing motion parameters (often quite far off).

This causes poor model-image alignment, which can lead to tracking failure. Occlusions

produce similar problems. There is hope for these problems—as these violations first

appear as large increases in the error residual, perhaps these regions can be automatically

ignored.

Finally, are the problems associated with the tracking of multiple, simultaneous mo-

tions. In the validation experiments, situations where head rotation was accompanied

by a non-rigid expression deformation often produced higher pixel deviations. On occa-

sion, this deviation can be serious enough to cause tracking failure. This is caused by

the linearization in the model-based optical flow solution, which could perhaps be allevi-

ated by using the iterative method from Section 2.2.2, or the image warping method from

[BAHH92].
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Chapter 8

Contributions

We have described techniques for the construction of face models for both computer

graphics and computer vision applications, and describe how information gathered using

these models in a vision system can be extracted and combined.

More specifically, in the construction of the face models here, the use of face anthro-

pometry data was introduced. For computer graphics, this allowed for the generation of

random individuals from a particular population. For computer vision, it improved the

estimation of shape, by ensuring the likelihood that the extracted face can actually exist,

and also by providing a reasonable starting point (the average face).

In addition, techniques were described for using such a face model for model-based

shape and motion estimation. In particular, the use of optical flow information as a con-

straint on the model motion allowed for the combination of edge data with the optical flow

information. This solution was sufficient to prevent tracking drift. The use of a model-

based optical flow solution also resulted in a technique that improves the shape and motion

estimate by reducing the error residual of this solution. Finally, a number of experiments,

some of which provide validation of these techniques, have been performed. These ex-

periments raised some interesting issues concerning the use of model-based optical flow

methods.
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8.1 Conclusions and Future Work

8.1.1 Face generation

The generation model presented in Chapter 3 must ultimately be more richly represented.

Possible extensions might apply variational techniques to construct the face surface and

the interior skull simultaneously; this would form the basis of a face animation model as

in [LTK95]. Similarly, landmarks on the face could be used to drive texture synthesis,

deriving distinct but plausible patterns of skin and hair.

Acquiring better data is also an avenue of improvement. In this work, proportions

were used since they were the best available resource to model the correlations that exist

between measurements. Having access to the raw data (per individual) would allow for a

covariance analysis, as well as the fitting of probability distributions (since they probably

aren’t Gaussian).

In the meantime, our work already suggests new computational approaches for tasks

that rely on anthropometric results, like forensic anthropology, plastic surgery planning,

and child aging. It could also figure in a user interface for editing face models, by al-

lowing features to be edited while related features systematically changed—preserving

natural proportions or ensuring that faces respect anthropometric properties common to

their population group. Both tasks underscore the importance of continuing to gather and

analyze anthropometric data of diverse human populations.

8.1.2 Face shape estimation and tracking

The end of Chapter 7 described a number of limitations in the tracking system detailed in

Chapter 5. The most significant of which is the idealization of the optical flow constraint

equation. For instance, the problems of photometric variation and self-shadowing, which

violate the optical flow constraint equation, are not addressed. The presence of a three-

dimensional model could prove to be useful when addressing these problems. Another

limitation is in tracking large motions; at the moment, motions larger than the width of
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the derivative filters will not be tracked correctly. Multi-scale optical flow techniques can

be applied here, although will need to be modified to work in a model-based framework.

It should also be possible to warp the current image based on the prior motion estimate,

and perform a residual flow computation as an innovations process in the Kalman filtering

framework. These subjects require further investigation.

Investigation of the recognition of faces using the shape parameterization, or of facial

motion using the motion description is worth pursuing. And of course, additional detail

in the motion parameterization of the model will allow for the tracking of more complex

facial motions. This might prove more difficult than it seems, from two ends. First,

the modeling (by hand) would be quite difficult; more automated approaches would be

advisable. And second, it is possible that as the number of non-rigid motion parameters

increases, it will become more difficult to distinguish between them. Perhaps the tracking

of multiple hypotheses will be necessary to ensure model-image alignment.
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Appendix A

Modularization of global deformations

The shape model x is defined through the repeated application of n global deformations

Tk : R3→ R3, where k ∈ 1 . . .n, to the underlying shape s as:

x(q;u) = Tn(qTn ; . . .T1(qT1 ; s(qs;u))) (A.1)

where qTk are the parameters used by Tk. The parameters used by all of the global defor-

mations are accumulated into the vector qT as in:

qT = (q>T1
, . . . ,q>Tn

)> (A.2)

so that q can now be grouped as:

q = (q>s ,q
>
T)> (A.3)

For a particular set of deformation functions, closed form expressions for the resulting

shape can be derived. From these complex expressions, the Jacobian matrix can be derived

(see [MT93] for an example), although this method is tedious and non-modular.

Instead of this, a single expression for the resulting shape is not derived, but rather

each deformation is applied separately given the definition in (A.1). The Jacobian matrix

can be calculated in a similar way using the chain rule. First, define the deformation τk as

the composition of the first k deformation functions T1 through Tk:

τk(qT ;p) = Tk(qTk ; . . .T1(qT1 ;p)) p ∈R3, k ∈ 1 . . .n (A.4)
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with τ0 defined to be the identity. Given this definition of τk, it follows how to compute

Jx, the Jacobian of x with respect to q, using the following recurrence:

Jτ0 = Js =
∂s
∂qs

Jτk =
[

∂Tk(p)
∂p

Jτk−1

∂Tk

∂qTk

]
k ∈ 1 . . .n

(A.5)

so that Jx = Jτn . The left block in (A.5) uses the chain rule, so that the matrix ∂Tk(p)/∂p

“deforms” the individual columns of the Jacobian matrix Jτk−1 . The right block in (A.5)

contains the derivatives of the outermost deformation Tk with respect to its parameters.

A naive technique for computing Jx using this recurrence from the bottom-up (which

starts with Js), is particularly expensive in terms of both time and space complexity. This

is particularly a problem since the Jacobian needs to be re-evaluated at each iteration, over

many points on the model. Instead, the quantity J>f is computed, given an applied force f

such as in (2.9). The quantity J>f can be computed efficiently in a top-down fashion as:

fn = f , fk−1 =
(

∂Tk(p)
∂p

)>
fk k ∈ 1 . . .n (A.6)

J>s f =
(

∂s
∂qs

)>
f0 , J>Tk

f =
(

∂Tk

∂qTk

)>
fk k ∈ 1 . . .n (A.7)

If the actual columns of Jx are required, as is the case for the optical flow computation

(2.15), they can be found by three applications of the above technique using the unit

vectors î, ĵ, and k̂ in the x, y and z directions, respectively, as:

J>x = (J>x î)î>+ (J>x ĵ)ĵ>+ (J>x k̂)k̂> (A.8)

since îî>+ ĵĵ>+ k̂k̂> = 1. For the optical flow computation, this construction is only

required for the motion parameters in qm.

Besides global deformations, it is also useful to include rigid motions (translations and

rotations) and even camera projections. For the case of camera projections, however, the

mapping becomes T : R3→ R2, and (A.8) uses only î and ĵ, since the image forces are
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two-dimensional. The formulation of the projected Jacobians in (2.5) and (2.6) is simply

an instance of the left block of (A.5).

This modular technique for computing the Jacobian matrix allows for significantly

easier implementation at little computational expense. It is also a more modular approach,

since the choice of which deformations used can be made on the fly.
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