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Explicit Forgetting Algorithms for Memory Based Learning

Abstract
Memory-based learning algorithms lack a mechanism for tracking time-varying associative mappings. To
widen their applicability, they must incorporate explicit forgetting algorithms to selectively delete
observations. We describe Time-Weighted, Locally-Weighted and Performance-Error Weighted forgetting
algorithms. These were evaluated with a Nearest-Neighbor Learner in a simple classification task. Locally-
Weighted Forgetting outperformed Time-Weighted Forgetting under time-varying sampling distributions and
mappings, and did equally well when only the mapping varied. Performance-Error forgetting tracked about as
well as the other algorithms, but was superior since it permitted the Nearest-Neighbor learner to approach the
Bayes' misclassification rate when the input-output mapping became stationary.
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Abstract

Memory�based learning algorithms lack a mechanism for tracking time�varying

associative mappings� To widen their applicability� they must incorporate ex�
plicit forgetting algorithms to selectively delete observations� We describe Time�

Weighted� Locally�Weighted and Performance�Error Weighted forgetting algo�
rithms� These were evaluated with a Nearest�Neighbor Learner in a simple clas�
si�cation task� Locally�Weighted Forgetting outperformed Time�Weighted For�

getting under time�varying sampling distributions and mappings� and did equally
well when only the mapping varied� Performance� Error forgetting tracked

about as well as the other algorithms� but was superior since it permitted the
Nearest�Neighbor learner to approach the Bayes� misclassi�cation rate when the

input�output mapping became stationary�



Why Explicitly Forget�

Memory�based learning �MBL� algorithms are those that require that all presented
input�output pairs be explicitly stored and available during the learning process� Some
representative examples of MBL algorithms are Locally Weighted Regression �Atkeson�
����	� Nearest�Neighbor Classi
cation �Aha et al�� ����	� CART �Breiman et al�� ����	�
ID�
 �Quinlan� ����	� and Radial Basis Functions �Poggio and Girosi� ����	� These
algorithms present an alternative to on�line associative learning paradigms such as
backpropagation �Rumelhart et al�� ����	 and Perceptrons �Minsky and Papert� ����	
that use incremental ��rules for weight updating�

One major advantage of on�line approaches is that when the input�output mapping
to be learned changes over time� the ��rule will result in weight changes that track the
mapping� MBL approaches store all observations and have no intrinsic mechanism for
adapting to changing mappings �Schlimmer and Granger� ����� Moore� ����	� There�
fore� to use MBL approaches and track the environment� we must have some algorithm
for inactivating exemplars that are that are no longer representative of the current
mapping �see Figure ��� We call this type of algorithm a �Forgetting� Algorithm�

In this work� three forgetting algorithms are described� Time�Weighted Forget�
ting �TWF� � Locally�Weighted Forgetting �LWF�� and Performance Error Weighted
�PEWF� forgetting� The TWF and LWF algorithms are 
nite�horizon� since they limit
the total number of observations kept in memory� while the PEWF algorithm is not
�see Figure ��� It is shown that when the forgetting algorithms are used along with
a nearest�neighbor �NN� learning algorithm in a simple concept tracking task� LWF
performs better than TWF under drifting sampling distributions and input�output
mappings� and does as well as TWF when only mappings drift� PEWF is shown to
track as well the others� but has the signi
cant advantage that it allows the Bayes�
misclassi
cation rate to be approached if the input�output mapping stops drifting� un�
der the assumption that learning algorithm used with it approaches the optimal Bayes�
rate in static situations �see Figure 
�� Therefore using PEWF forgetting is not detri�
mental to the asymptotic performance of classi
cation algorithms in static situations�
unlike the TWF and LWF 
nite�horizon methods� The practical result is that we can
now track changing concepts with memory�based learners such as the Nearest�Neighbor
algorithm� yet still approach Bayes� error rates whenever the associative mapping be�
comes stationary�

Description of the Forgetting Algorithms

Time weighted Forgetting

In Time�Weighted Forgetting� exemplars are weighted using a weighting function which

�Many ��rule learning algorithms are e�ectively run in �batch mode� where all of the exemplars

are held in memory to speed weight adjustment� forgetting algorithms would also be useful in these

cases�

�



assigns a weight wi� �initialized to wi � �� to each observation� The updating function
is a function of an observation�s arrival time� It is common to recursively update weights
to yield an exponential weighting function using the simple relation wi�t�� � �wi�t� with
� � � � �� where wi�t is the weight associated with the ith observation at time step t�
Often the system is clocked by the arrival of a new observation� When wi goes below
a threshold value �� its corresponding exemplar is deleted�

Locally Weighted Forgetting

Experiences can be deleted based on the principle of locality of observations� which
states that observations should be forgotten only if there is subsequent information in
their locality of parameter space �Salganico�� ���
	� This mechanism is implemented
by associating a weight w to each observation� Each weight is decremented at a rate
proportional to the number and proximity of succeeding exemplars to the corresponding
observation�

We decrement each exemplar�s weight by a factor �� proportional to the proximity
of a subsequent observation� based on a m�nearest neighborhood in�uence function� A
new exemplar is initialized with a weight w � �� Each time a new exemplar is input�
the weightings wfkg of kth nearest observations� Xfkg� �k � m�� within a neighborhood
of the m nearest�neighbors of the new exemplarX are decreased by multiplication with
��Xfkg� which is a truncated quadratic function of the distance of the nearest neighbor
to the query�point� When a given observation�s weighting falls below some threshold
value �� it is deleted from the learning set�

Prediction Error Forgetting

Aha et al� �Aha et al�� ����	 have used the prediction accuracy criterion for the removal
of noisy observation in nearest�neighbor classi
ers� We extend their approach to handle
time�varyingmappings� Each observation is in either the accepted or rejected state� New
observations are initialized with the state accepted� and only accepted observations are
used to form predictions� Although an observation may be rejected� it is not deleted
since it may be eventually accepted� or rejected and reaccepted in the case of cyclicly
drifting concepts� Whenever a new prediction is made� each one of the m nearest�
neighbors of the prediction point has it performance record updated� This record is an
n bit long 
rst�in last�out register containing a ��� for each of the times that exemplar
agreed with the actual outcome of the query point �for a total of x ���s�� and a ���
otherwise� The � � � performance accuracy probability interval for each of the m

observations is computed using each observation�s �x� n� statistics� If the observation
is re�ective of the current input�output mapping� its prediction accuracy over its last
n participations will be high and it will be accepted� if it is obsolete� it will be low and
it will be rejected�






Tracking Performance (P.E. Forgetting, % Active)
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Figure �� Tracking Switching Concepts� The plot of misclassi
cation error for Nearest�
Neighbor �NN� classi
er for an input�ouput classi
cation function which switches be�
tween two di�erent functions every ���� presentations� The condition � � ���� corre�
sponds to using the NN algorithm with no forgetting� and it can be seen that learner
cannot track to the changes in this case� Using PEWF forgetting withm � �N � ���N �
where N is the number of currently active observations� the NN learner can track the
change� �In the plots b���
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L.W. Forgetting
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Figure �� Comparison of Stored Sample Sizes� �a� Shows the number of samples held
in memory as a function of the number of presentations for TWF �b� LWF and �c� for
PEWF� It can be seen that PEWF�s sample size is modulated at the switching points�
while the TWF and LWF reach a 
nite asymptotic number of active examples in the
store �in the plots b � �� g � ���
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Tracking Performance Comparison
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Tracking Performance Comparison
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Figure 
� Comparison between asymptotic and dynamic behavior for LWF and PEW�
It can be seen that the tracking abilities with the NN learner is similar in �a�� However�
in static mapping situations� the asymptotic error of the NN algorithm� when used with
PEW tends towards the true NN asymptote� whereas LWF reaches inferior asymptotic
value �in the plots b � ���
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