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Motion Planning and Control of Cooperative Robotic Systems

Abstract
This thesis addresses the problem of motion planning for cooperative robotic systems. The problem of motion
planning for a robotic system is stated as:

Given initial positions and orientations and goal positions and orientations for a collection, C, of robots, in workspace,
W, generate a continuous trajectory for C avoiding contact with the obstacles, Oi, subject to various dynamical
constraints of the system.

Because robots are physical systems subject to continuous laws of motion and driven by continuous actuators,
we formulate the motion planning problem as an unconstrained variational problem using tools from optimal
control and calculus of variations in the first part of the thesis. We develop a general framework for solving
motion planning problems involving equality and inequality constraints.

In the second part of the thesis, we study planar human manipulation and develop a computational model for
friction-assisted dual arm manipulation tasks incorporating the dynamics of the musculo-skeletal system. We
show that our computational model predicts the force distribution and object trajectory in voluntary, relaxed
movements. We further study similar tasks in the vertical plane and our experimental findings suggest that
there is a great degree of repeatability in trajectories and velocity profiles across trials and subjects.

In the third part, we focus on extending this computational model to plan and control cooperative robotic
systems. We solve the dynamic motion planning problem for a system of cooperating robots in the presence of
geometric and kinematic constraints, and test the resulting open-loop trajectories on the experimental
testbed.

In the last part of the thesis, we explore the application of the motion planning algorithms when the number
of robots in C is very large. Because of increased computational time, we use optimal sensor-based closed loop
motion plans. These are combined with the framework of graph theory and optimal control to guarantee
provable measure on the performance of the entire system.

The main contributions of the thesis are: (a) studying trajectory generation and force distribution in human
dual arm manipulation; and (b) a set of motion planning algorithms for cooperating robot systems subject to
dynamic constraints.
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Abstract

MOTION PLANNING AND CONTROL OF COOPERATIVE
ROBOTIC SYSTEMS

Jaydev P. Desai
Vijay Kumar

James P. Ostrowski

This thesis addresses the problem of motion planning for cooperative robotic systems.

The problem of motion planning for a robotic system is stated as:

Given initial positions and orientations and goal positions and orientations for a collec-

tion, C, of robots, in workspace, W, generate a continuous trajectory for C avoiding contact

with the obstacles, Oi, subject to various dynamical constraints of the system.

Because robots are physical systems subject to continuous laws of motion and driven

by continuous actuators, we formulate the motion planning problem as an unconstrained

variational problem using tools from optimal control and calculus of variations in the first

part of the thesis. We develop a general framework for solving motion planning problems

involving equality and inequality constraints.

In the second part of the thesis, we study planar human manipulation and develop a

computational model for friction-assisted dual arm manipulation tasks incorporating the

dynamics of the musculo-skeletal system. We show that our computational model predicts

the force distribution and object trajectory in voluntary, relaxed movements. We further

study similar tasks in the vertical plane and our experimental findings suggest that there

is a great degree of repeatability in trajectories and velocity profiles across trials and

subjects.

In the third part, we focus on extending this computational model to plan and control

cooperative robotic systems. We solve the dynamic motion planning problem for a system

of cooperating robots in the presence of geometric and kinematic constraints, and test the

resulting open-loop trajectories on the experimental testbed.

In the last part of the thesis, we explore the application of the motion planning algo-

rithms when the number of robots in C is very large. Because of increased computational

time, we use optimal sensor-based closed loop motion plans. These are combined with

the framework of graph theory and optimal control to guarantee provable measure on the

performance of the entire system.
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The main contributions of the thesis are: (a) studying trajectory generation and force

distribution in human dual arm manipulation; and (b) a set of motion planning algorithms

for cooperating robot systems subject to dynamic constraints.
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Chapter 1

Introduction

For centuries people have built mechanisms that imitate human characteristics and have

some form of automation. The ancient Egyptians attached mechanical arms to their gods

which were operated by priests to convey that they were acting under the inspiration from

god. The Greeks built hydraulically operated statues to test the principles of hydraulics.

Mechanical puppets built in the eighteenth century in Europe made convincing imitation

of humans and animals. Over the years, these mechanical innovations combined with

the computing power and advances in technology has translated to the development of

robotics. Robotics as we know today, is a huge interdisciplinary field comprised of various

topics like vision, sensing, dynamics, motion planning and control, locomotion, and design.

Of all the above areas, one of the most basic problems in robotics is planning the motion of

a robot for a specified task and controlling it to follow a desired trajectory. Hence the prob-

lem of robot motion planning deals with finding a feasible trajectory for a robot moving in

an environment with obstacles.

A single robot can manipulate objects only as far as it can reach. Most industrial robots

are fixed in place thereby limiting their flexibility for tasks requiring manipulation beyond

their workspace. One of the examples of such a scenario is the car industry. Here, for tasks

requiring welding, painting, and sealing, the car chassis is moved from one cell to another

using automated guided vehicles (AGV’s). Since the guidance mechanism is pre-installed,

it is expensive to alter it. A solution to this problem is to mount manipulators on mobile

robots.

According to Latombe [76], the basic motion planning problem for a robotic system is

as follows:

Given an initial position and orientation and a goal position and orientation of robot,
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R in workspace, W, generate a path, � specifying a continuous sequence of positions and

orientations of R avoiding contact with the obstacles, Oi, starting at the initial position and

orientation, and terminating at the goal position and orientation. Report failure if no such

path exists.

However, some of the most general problems in motion planning with practical applica-

tions (for example, the car industry) require a motion planner which can also incorporate

dynamic constraints like constraints on velocities, joint torques and forces. Thus, our

definition of the motion planning problem is somewhat broader in scope:

Given a set of initial positions and orientations, I, and a set of goal positions and ori-

entations, G, of a collection, C, of robots, in workspace, W, and a set of dynamic constraints,

D, generate a path, �, specifying a continuous sequence of positions and orientations for

all robots in C avoiding contact with the obstacles, Oi, and satisfying the constraints in D,

starting at I and terminating at G.

Cooperative robotic systems appear at first glance to be more troublesome than their

usefulness. While we can design one robot to carry out every envisionable task, it is

more productive to have a team of robots distributed in the environment for carrying out

preassigned tasks. This follows from the classical “divide and conquer” strategy. Such

a strategy also greatly simplifies the complexity of each robot, as they are designed to

do specific tasks rather than all of them. Such robotic systems can have a wide range

of applications, ranging from actual physical coupling through objects transported in the

environment to loosely coupled systems like a team of robots moving in a formation.

While the above definition of motion planning is very broad and there is extensive

literature on this subject as discussed in later chapters, our focus in this thesis is on a spe-

cial class of problems. Firstly, we focus on solving the motion planning problem described

above with the goal of optimizing a suitable cost function. The choice of the cost function

greatly depends on the type of task that is being carried out. Thus, for example, in the

case of robot motion planning, if we are interested in finding a smooth trajectory for the

kinematic motion planning problem, it is meaningful to minimize the norm of the velocity

of the mobile robot. However, most robotic tasks also have dynamic considerations and

hence it is important to have the dependence of dynamics of the system in the cost func-

tion, otherwise the problem is singular. Secondly, if we desire smooth velocity profiles1 it

is reasonable to minimize the norm of the actuator forces/torques. Thus for most dynamic

1Some robotic systems like the TRC-Labmates have wheel angular velocities as control inputs and hence
smooth velocity profiles lead to lower slippage and dead-reckoning errors.
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motion planning problems such as the one we defined above, it is reasonable to minimize

the norm of the actuator forces, if we desire smooth velocity profiles or the rate of change

of actuator forces, for smooth force trajectories of the manipulator. Normally smoothness

in the force profile is desirable to avoid step changes in the current flowing through the

motor coil which generates the required forces. Secondly, we are more interested in coop-

erating mobile robot systems. The behavior of such systems is governed by kinematic and

dynamic constraints, and redundancies in actuation.

As discussed above, the goal of the thesis is to study the motion planning problem in

cooperating robot systems. We are motivated by tasks that might be required of a sys-

tem of autonomous robots such as the one shown in the schematic in Figure 1.1. Multiple

robots are organized into a small team to pick up an object and move it from one location

to another. The system of robots is subject to many constraints like, (a) There are many

obstacles in the environment, (b) There are many ways in which the robots can be orga-

nized and the load can be distributed, and (c) There are many possible paths. It may be

desirable to find a solution to the problem that requires, for example, the smallest amount

of force or involves the shortest distance. Alternatively, because the robust control of a

system with rapidly changing contact forces is known to be difficult, the smoothest path

in which the contact forces or actuator forces exhibit minimal variation might be of in-

terest. We are motivated by such tasks and the need to plan the optimal motion for such

tasks.

In order to better understand the robot motion planning problem, we study human

performance with the goal of understanding how humans plan and control motion. The

main motivation for this work comes from the close parallel between biological and robotic

systems. Biological systems provide us with proofs of concept of optimal systems and

performance. However, we have a very poor understanding of these systems. On the other

hand, we have a reasonably good understanding of the design and control issues in robotic

systems. Unfortunately, the present day robot systems are far from optimal. Thus by

studying the two types of systems in parallel we can hope to improve our understanding

of the fundamental aspects of human motion planning and control, while being able to

design better robot control algorithms.
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Figure 1.1: Coordination of a multi-robot system in an unstructured environment.

1.1 Approach

There is a vast body of literature for motion planning of holonomic and nonholonomic

robots. We will survey them in Chapter 2. While, motion planning can be broadly classi-

fied into online and offline strategies, there are problems which rely on a combination of

these approaches for planning a trajectory from one position and orientation to another.

Some online strategies rely on a sensor based approach like sonar or vision with some

hierarchical rules for planning the motion. Such schemes are rarely concerned about op-

timality issues in finding a feasible path. These methods use knowledge of the current

state of the system and its environment to plan the motion for next time instant. Since

these strategies do not require any pre-computation, they are suitable for tasks which do

not require any specific constraints to be satisfied along the trajectory, i.e., for tasks whose
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only requirement is a desired goal configuration.

Offline strategies on the other hand, compute motion plans based on the global prop-

erties of the workspace. Their output is a set of open-loop trajectories which can be im-

plemented by the system. These methods also take into account the specific constraints

that need to be satisfied at every stage of the manipulation task. Offline methods are very

well suited for controls since, the controller can be designed to stabilize the motion of the

robot along the nominal trajectory, which is the output of the motion planner. However,

offline schemes have certain disadvantages like, their inability to deal with uncertainties

that can appear during the course of task execution. Another disadvantage is that they

are computationally more expensive as the trajectories have to be pre-computed before the

onset of motion.

If the goal of building robot manipulators is to mimic human behavior and also the

ease and dexterity of human movements, it is reasonable to study motion planning in

humans. There is a significant amount of literature which discusses the trajectory plan-

ning problem in humans. Humans are highly redundant and yet we are able to perform

manipulation tasks with great ease and speed. A simple task of lifting an object or a

“handshake”, though effortlessly carried out by humans, seems an enormously compli-

cated problem when we try to understand the underlying control strategies used by the

central nervous system (CNS). Since humans seem to be highly adept at manipulation

tasks, the goal of this work is to first understand how humans carry out point to point

movements. Later, we construct a mathematical model to capture some of the observed

behavior.

Most of the studies on understanding human motion planning has been done in the

planar single arm or two arm reaching tasks. The minimum jerk criterion (jerk is defined

as the third derivative of the position variable with respect to time) suggests that mo-

tion planning in humans occurs in task space while the equilibrium trajectory hypothesis

suggests that a motion plan is computed at the kinematic level and subsequently trans-

formed to the actuator level. The minimum torque change criterion naturally resolves the

indeterminacies as the cost functional explicitly models the dynamics of the system. Thus

it gives explicit joint space trajectories which can be transformed through forward kine-

matics to the task space trajectory. After comparing the results from our computational

model and the observed experimental data, we explore a similar methodology to study the

cooperative robot motion planning problem in the presence of obstacles.

In the following work, we initially develop offline strategies for motion planning and
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seek to find locally optimal solutions to motion plans, both in human motion and cooper-

ating robots. Since the extension of this methodology to control a larger (n � �, where n is

the number of robots) formation of robots is computationally expensive, we develop strate-

gies which use a blend of online and offline schemes for motion planning. Here we use

tools from graph theory to model and control a formation of robots and change formations

in the presence of obstacles.

1.2 Statement of the Problem

The main goal of the thesis is to study the problem of motion planning for a system of

cooperating robots: Given initial positions and orientations and goal positions and orien-

tations for a collection, C of robots, in workspace, W, generate a continuous trajectory for C
avoiding contact with the obstacles, Oi, subject to various dynamical constraints of the sys-

tem. Because robots are physical systems subject to continuous laws of motion and driven

by continuous actuators, we formulate the motion planning problem as an unconstrained

variational problem using tools from optimal control and calculus of variations. We de-

velop a numerical method to solve the continuous motion planning problem for systems

subject to dynamical constraints, nonholonomic constraints, and inequality constraints

engended by frictional contacts, saturation of actuators, and obstacles. We present many

examples of biological and robotic systems to illustrate the application of the methods.

These examples include: (a) motion planning for cooperating mobile manipulators; (b)

modeling of trajectory generation in human dual-arm cooperative manipulation tasks;

and (c) optimal control of locomotion in the snakeboard.

1.3 Contribution

This thesis makes three significant contributions in the area of cooperative robot motion

planning. These are summarized below:

� In the first part of the thesis, we propose a general methodology for solving optimal

control problems in an unconstrained variational calculus framework. We then study

the problem of human motion planning in horizontal and vertical plane in great

detail. Here, we develop a mathematical model for motion planning in humans which

matches some of the experimentally observed kinematic and dynamic trajectories in

planar manipulation tasks.
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� In the second part, we focus on extending the general method and studies on human

motion planning to cooperative robotic systems. This system has two cooperating

robots with manipulators mounted on them grasping an object. We have solved the

dynamic motion planning problem for such a system in the presence of obstacles and

other kinematic constraints.

� In the last part of the thesis, we focus on extending the methodology of Chapter 5

to a formation of many robots using a combination of centralized and decentralized

control. The advantage of this approach is significant reduction in computational

time and ease of incorporating uncertainties in the environment. We guarantee the

shape of a formation while the robots move from one configuration to another and

develop an algorithm for changing formation.

1.4 Organization

In Chapter 2, we review work done in the area of human and robot motion planning.

We discuss various methodologies and models proposed in psychophysics and the cogni-

tive sciences that attempt to explain the basic problems related to human point to point

movements. We also relate these to problems in robot motion planning and discuss the

advantages and disadvantages of various approaches. In Chapter 3, we propose a general

mathematical model in the framework of calculus of variations to solve the optimal control

problem. We specialize the modeling technique and the numerical method to the existing

problem to obtain faster and accurate solutions.

In Chapter 4, we discuss the experimental studies carried out with human subjects

for point to point movements in the horizontal and vertical plane. We compare our exper-

imental findings with the results of our computational model for planar motions. We also

present the explained and unexplained observations with a mathematical model for planar

tasks. We begin by analyzing experimental data collected from our experimental setup.

Since the problem of cooperative manipulation of a grasped object by humans is similar

in nature to that of two robot manipulators grasping an object, we first try to understand

the basic human motion planning problem. We develop a novel numerical method that

accommodates both equality and inequality constraint in a unified framework. The math-

ematical model is formulated in the framework of calculus of variations. We develop our

computational model using this approach and it explains some of the observed behavior.

In Chapter 5, we demonstrate that a similar mathematical model can be used to plan

the motion of cooperating nonholonomic robots in an environment with obstacles. We only
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plan the motions of the base TRC-Labmates as the problem of coordination and control

of robot manipulators on these platforms has been studied in [131]. If we use the same

strategy to solve the motion planning problem for a larger number of robots, the task will

be computationally burdensome though centralized motion planning methodology has a

great advantage of developing explicit motion planning schemes.

In Chapter 6, we investigate the problem of controlling a large formation of robots

using a hybrid of centralized and decentralized motion planning strategies. We assume

that the lead robot plans an optimal trajectory and that is used to plan the trajectory of

the other follower robots in the formation. To overcome the obstacles in the environment,

these formations need to change their shape. In order to accomplish this, we propose a

new methodology which uses some of the tools from graph theory to solve the problem. We

finally make some concluding remarks in Chapter 7.
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Chapter 2

Background

2.1 Human motion planning

The problem of modeling or trajectory generation in humans is difficult since we do not

have adequate information about task executions by the central nervous system (CNS).

There is a significant amount of literature in the area of single arm manipulation. Most of

the research in this area has focussed on, kinematics of multi-joint movements, coordina-

tion of hands and fingers for grasping and manipulation tasks and developing mathemat-

ical models to explain the observed experimental data. We will investigate each of these

areas in greater detail.

2.1.1 Kinematics of multi-joint movements

Some of the earlier works in this area stems from studies of single arm movements in the

horizontal or spatial domain. Morasso [91] studied spatial control of arm movements and

formulated the hypothesis that the central commands for point to point movements are

formulated in terms of the trajectories of the hand in space rather than joint variables.

Viviani and Terzuolo [124, 125] gave a detailed kinematic description of hand motion dur-

ing handwriting and showed that the basic kinematic variables, i.e., tangential velocity

and the curvature of trajectory, preserve their temporal pattern when the position and

size of movement is changed. Soechting and Lacquaniti [113] studied invariant charac-

teristics for a simple task of reaching forward towards a target and concluded that the

trajectory in space was independent of the movement speed. Secondly, they hypothesized

that movements can be viewed to consist of two phases, an acceleratory phase and a de-

celeratory phase. The acceleratory phase is so organized as to maintain an invariant ratio
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of elbow and shoulder angular velocity with respect to target location in the deceleratory

phase. Further, Soechting and Lacquaniti [114] studied the effect of sudden changes in

target location to kinematic trajectories of the arm and concluded that the coordination of

arms and shoulders in such tasks was achieved by a reduction in the number of degrees

of freedom of the movement.

A detailed account and model of a kinematic chain for the asymmetric behavior of the

human arms in a manipulation task is proposed by Guiard [51]. Atkeson and Holler-

bach [6] carried out a detailed study of kinematic features for unrestrained vertical arm

movements. They concluded that though the velocity profiles were bell-shaped, there was

a distinct difference in the curvature of the trajectories for upward and downward move-

ments. Downward movements in some subjects were observed to be straight while the

upward movements showed curvature. They also concluded that all movements, whether

curved or straight, with heavier or lighter objects, showed an invariant tangential velocity

profile when normalized. However, the curvature of trajectories for unrestricted vertical

arm movements did contradict the model of Flash and Hogan [44].

2.1.2 Coordination of hands and fingers for grasping and manipulation
tasks

The coordinated manipulation with fingers has also been extensively studied in the robotics

literature. Johansson and Westling [65, 66] have studied the coordination of grip and load-

ing force when small objects are lifted, positioned and replaced by human subjects. They

showed that the ratio of the grip force to load force does not vary appreciably with load.

They also investigated the adaptation of motor commands to variations in the weight

of the object during various phases of the task. The target and probing strategies used

by humans suggest that the haptic information may be used to convey the size informa-

tion which can be combined with the sensory information in programming a precision

grip [48]. It is well-known that the grip force is adapted to the friction between the skin

and the object. This adaptation depends on the cutaneous afferent input [65]. The rela-

tive importance of various sources of sensory feedback has been studied by Srinivasan and

Chen [116]. However, we are more interested in the plans for grasping and manipulation,

i.e., the feed forward component of the control system.

Sensor driven models for grasping are also discussed in [102, 116]. Reinkensmeyer et

al. [105] studied how humans control fast, planar, single-degree-of-freedom, wrist move-

ments using a simple two-hand grasp. A similar study was also been done by Lum et

al. [84] for feedforward stabilization in a bimanual unloading task. Their studies revealed
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that the load-sharing in the hand-load-hand system is asymmetric. One hand chiefly ac-

celerates while the other brakes the system during the task. Their studies also showed

that humans exert a higher internal force than required to carry out the manipulation

task. The dependence of internal forces on external disturbances has been studied by

Johansson et al. [64]. They observed that the grip force in a pinch grip rises about 70

milliseconds after the onset of a ramp increase in load.

Flanagan and Tresilian [42] further explored the relationship between the grip force

and the load force for different grips. Their most interesting observation is the strong

correlation between the grip force and the acceleration (and therefore the load forces) of

the grasped object. They proposed a model for the coordinated control of grasp and reach,

in which the grasp controller is strongly coupled to the reach controller. This is in contrast

to the paradigm generally used in robotics in which the reaching motion and the grasp

forces are controlled independently [92].

Hoff and Arbib [57], presented a model describing the kinematics of hand transport

under a variety of circumstances, including target perturbation. They developed a model

for temporal coordination of reaching and grasping tasks. They also provided an optimiza-

tion principle for hand preshaping in grasping tasks. Though these models study finger or

hand manipulation in the horizontal or vertical plane, they do not explicitly address the

problem of two-arm manipulation considering the dynamics of the entire system for large

scale motion. We investigate this problem and describe how the computational model ac-

counts for some of the observed experimental data. This will improve our understanding

of human manipulation and aid in designing better robot control algorithms.

2.1.3 Mathematical models

Mathematical modeling is important to understand the dynamics, control and planning

process underlying a manipulation task. The planning phase of a manipulation task may

be classified into two independent sub-phases [137]. First, the trajectory generation prob-

lem involves the computation of the best trajectory for the object. Given this trajectory, the

second problem is to determine the force distribution, or the distribution of the load forces

between the different limbs, that will produce the desired trajectory. Trajectory generation

is generally formulated as an optimization problem (for example, shortest distance [100],

minimum acceleration [94], or minimum time [112]). For a given optimal trajectory, the

indeterminacy (called actuator redundancy) in the force distribution problem, is resolved

by minimizing a suitable cost function that usually involves some measure of the internal

forces [74, 129, 142], or by imposing additional constraints on the grasp forces [99, 134].
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Although the optimization criteria or constraints may be meaningful for robot systems, it

is not clear if they are useful for modeling human behavior.

An alternative approach is to consider trajectory generation and force distribution

problems concurrently. The results of a two-stage approach to planning motions and

forces are generally inferior to globally optimal solutions that are obtained by solving

for the best trajectory and the best force distribution concurrently [137, 138]. The dy-

namics of frictional, open-palm grasps has been studied in robotics. Yun [133] studied

the control of grasping forces in friction-assisted pushing tasks with a prespecified trajec-

tory. Erdmann [39] addressed planning of manipulation tasks with open-palm grasps in

a quasi-static framework. Lynch and Mason [87] studied the control of single arm, pla-

nar grasps. The dynamics of multi-limbed frictional grasps are addressed by Murray et

al. [92]. However, they do not address the planning of trajectories and grasp forces.

Many previous studies have investigated mechanisms that might underlie the gener-

ation of single arm trajectories in humans. These include studies on the movement of a

single joint [58], and multi-joint reaching motions in the horizontal [44, 91, 121] and verti-

cal [6, 113] planes. Questions relating to the generation of more complex motions are also

addressed: for example, a modified hand [43] and eye [53] trajectories. Modeling multi-

joint systems has been explored in the work of McIntyre [90]. This model for multi-joint

motor systems takes into account the non-linear features of the motor system and is used

to represent mechanical interactions with the environment. This can be used to derive the

control inputs for a wide variety of motor tasks.

Flash and Hogan [44, 59] studied single arm reaching tasks and suggested that the

central nervous system uses an optimality criterion to calculate the trajectory along which

to move. In medium speed, large amplitude, unconstrained motions in the horizontal

plane for a single arm, the integral of the jerk along the trajectory is minimized. Their

model thus involved minimizing the norm of jerk in planar arm movements, i.e.,

J � min
�

�

Z tf

to

�
...
x
�



...
y
�
�dt

where to and tf are the initial and final times and �x� y� represent the coordinates of

the end-effector of the manipulandum in the plane. The minimum-jerk solution, as it

is known in the literature, depends only on the kinematics of the task and is independent

of the physical structure and the dynamics of the arm. The solution to the minimum-jerk

problem is determined by the boundary conditions at the beginning and termination of

movement. Once this information is given, we can uniquely specify the hand trajectory.

Thus for example, in the case of zero starting and ending velocities and accelerations, the
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trajectory is a fifth order polynomial and is given by:

x�t� � x� 
 �x� � xf �����t
� � ��t� � �
�t��

y�t� � y� 
 �y� � yf �����t
� � ��t� � �
�t��

where, tf is the final time, �t � t�tf and �x�� y�� are the initial coordinates of the hand at

t � 
. The final coordinates of the hand are given by �xf � yf � at t � tf . According to studies

of Garvin et al. [45] on coordinated manipulation with two arms by humans, it appears

that the minimum-jerk criterion may not adequately explain all aspects of the observed

kinematic data in bimanual tasks.

An alternative model that has been employed for single arm reaching tasks in the

plane is the so-called minimum-torque-change criterion, first proposed by Uno et al. [121],

where the task is to minimize the rate of change of actuator torques:

J � min
�

�

Z tf

to

k ��k�dt

where, to and tf are the starting and ending times of motion and � represents the vector

of actuator torques. The general form of the dynamical equations of motion are given by:

M����� 
 C��� ��� � �

where M represents the inertia of the object, � represents the generalized coordinates,

C��� ��� is the coriolis force and � is the vector of generalized torques. We will use some

of these ideas to model the closed kinematic chain for coordinated two arm manipulation

tasks by humans in Chapter 4. This model suggests that the planned trajectories and

forces are such that they minimize the integral norm of the vector of time rates of change

of actuator or muscle forces [121]. Unlike the minimum-jerk model, the minimum-torque-

change model also predicts the force distribution in the system [138]. Further, as will

be shown later, it appears to explain the kinematics and dynamics of bimanual reaching

movements in which the asymmetry of the two arms does not play a significant role [30,

34]. In the current study for modeling friction assisted planar manipulation tasks, we

use the minimum torque change model as it predicts some of the observed features of

experimental data.

2.2 Cooperative robot motion planning

The area of motion planning has received great attention recently. The motion planning

problem involves finding a feasible path from an initial configuration to the final configura-

tion while avoiding collisions with obstacles subject to kinematic and dynamic constraints

13



that may possibly be present in the system/environment. Traditionally, the motion plan-

ning problem defined by Latombe, involves finding a feasible path (if there exists one) for

a single robot subject to geometric constraints. We have extended this to finding a so-

lution for a more general problem where we also need to satisfy kinematic and dynamic

constraints like constraints on the turning radii of the mobile platforms, bounds on the

actuator forces and so on. The task becomes much more complicated when we try to find

solutions for a system of cooperating robots navigating in an environment with obstacles.

This is due to the fact that apart from solving the basic robot motion planning problem

defined in Chapter 1, they also need to satisfy other constraints such as contact forces on

the grasped object, frictional constraints, etc.

The notion of representing the robot in a transformed space where the robot is a point

was first introduced by Udapa [120] though he used only rough approximations to the ac-

tual configuration space obstacles or C-space obstacles. The idea of a configuration space

obstacle or C-space obstacle is to map the obstacle from the workspace, W, to the config-

uration space of the robot. This transforms the motion planning problem for a robot with

physical dimensions in the workspace, W, to one in which the robot is a point. This notion

was formalized for arbitrary degrees of freedom of a robot by Lozano-Perez [82]. With the

aid of this formulation, a robot is a point in the configuration space and the forbidden con-

figurations are represented as C-space obstacles. An example of a C-space obstacle is as

shown in Figure 2.1. Figure 2.1(a) shows the top view of the envelope of the robot moving

around the obstacle at a fixed orientation while Figure 2.1(b) shows the plot of the actual

C-space obstacle for various orientations of the robot from 
 to ��
 degrees.

Hence, by computing the C-space obstacles, we can construct algorithms for computing

the motion plans for a single point in this space. Though this seems to have reduced the

computational complexity of the problem by considering the motion planning of a single

point, it is however not that straight forward. This is due to increased computational

complexity in computing arbitrary C-space obstacles for non-polyhederal obstacles. For

example, the problem of computing the configuration space for a robot with polygonal

shaped links and polygonal obstacles is a PSPACE hard problem [76].1 Complexity issues

for holonomic systems have been very well understood. In such problems the existence

of a path is characterized by the notion of “connectedness” of the configuration space, i.e.,

its topology. Schwartz and Sharir [110, 111] studied precisely this problem. Since then

much work has been done both in theory and practical implementation of motion planning

1A PSPACE hard problem is one which requires polynomial order memory allocation for solving the
problem.

14



a)

2 4

3

4

5

6

7

X (m)

Y
 (

m
)

b)

2
45

0

100

200

300

400

X (m)Y (m)

T
he

ta
 (

de
g)

Figure 2.1: C-space obstacle for a pentagonal obstacle and square robot: a) Top view, b)
Actual C-space obstacle.

algorithms for holonomic systems [11, 19, 40, 49, 83]. Though the area of nonholonomic

motion planning has received significant attention in the recent past, few people have

investigated optimality issues in motion planning for nonholonomic systems and of those,

few have again implemented practical planners.

Latombe [76] provides a very nice classification of the motion planning methodologies

and emphasizes three important methodologies in this area: road-map, cell decomposition

and the potential field approach. We will now briefly describe each of these approaches

below.

� Roadmap is defined as the network of one dimensional curves which captures the

free space of the robot. Once these roadmaps are constructed the next task is to find

a suitable path between the initial and final points. Variations of this method are

the visibility graph, Voronoi diagram, freeway net and silhouette.

� Cell decomposition is probably one of the most popular methods for motion plan-

ning. The aim is to discretize the free space of the robot into cells so that the path

between the cells can be easily generated. The method uses a non-directed graph as

the underlying tool for finding a feasible path. The problem eventually reduces to a

findpath problem on a graph.

� Potential field approach is probably one of the most popular methods for online mo-

tion planning. This method involves construction of artificial potentials which can be
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attractive or repulsive depending on whether it is a goal or an obstacle in the envi-

ronment. Thus at each instant, the robot moves in the direction of the negative of the

gradient of the potential which is analogous to an artificial force applied to the robot.

Though the idea of potential fields first appeared in the dissertation of Khatib [69],

it was formally used in the context of motion planning in [70]. Koditschek [71] used

the Poincar�e-Hopf Index theorem to prove that a global navigation function does not

exist in general. More generally, in R� if there are q obstacles homeomorphic to a

closed unit disc then the potential function, U must have at least q saddle points. He

proposed that one possible way to overcome this difficulty is to construct potential

functions with their minimum located at the goal and whose domain of attraction

is the entire free space of the robot except possibly finitely many points of measure

zero. These are the saddle points of the potential function. A generalization of this

approach to account for arbitrary star shaped obstacles was developed by Rimon and

Koditschek [106], where they constructed such “almost global navigation functions”

by successive smooth deformations of the obstacles into spheres and carrying out the

motion planning problem in the sphere world.

Though the above approaches work very well in some situations, they are rather imprac-

tical methods when it involves motion planning for a nonholonomic robot with additional

inequality constraints imposed by, for example, bounds on the minimum and maximum

separation between the two robots as shown in the experimental test-bed (Figure 5.2).

Secondly, in the case of potential field approaches, constructing the navigating functions

is also not an easy task.

Since we deal with continuous systems, we are interested in solving problems of motion

planning which yield continuous solutions. Buckley [22] addressed continuum methods

for motion planning. He defined a non-intersection metric, and its directional derivatives

in the configuration space to avoid obstacles. Buckley addressed the minimization of an

integral cost function using the calculus of variations. The resulting two-point boundary

value problem was solved for many planar motion planning problems. However, he did

not consider either kinematic or dynamic constraints.

Initial results for optimal control problems with inequality constraints appeared in the

works of Bryson et al. [20]. The method is a modification to the extremal solution of the

problem of Bolza. They required that the constraints not having an explicit dependence

on the input, satisfy certain corner conditions at the entry point of a constraint boundary.

These constraints were essentially lower order derivatives of the constraint. Speyer and

Bryson [115] further proved that these conditions must also be satisfied at the exit point
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from a constraint boundary if we use the direct adjoining approach. Jacobsen and Lele [62]

combined the previous conditions and defined the highest derivative of the slack variable

as a new control input to the system. Thus, there were no discontinuities in the adjoint

variables for such constraints. These results are also summarized in [21]. Jacobsen et

al. [63] further studied the nature of solutions by Bryson et al. [20] and showed that in

some cases, the conditions of Bryson can lead to non-stationary trajectories. Baillieul [7]

developed a new approach for optimal control problems with nonlinear state evolution

equations. He showed that for bilinear systems with a right invariant evolution equation,

it is possible to obtain closed form solutions for the control inputs where the Legendre

condition is satisfied.

One of the primary objectives of a motion planning algorithm avoiding obstacles, in-

volves an efficient distance computation algorithm. The literature on the computation of

distances between objects and the rate of change of the distances with respect to config-

uration space variables is very relevant to this work. In particular, there are two sets of

papers that are worth mentioning. Gilbert and Johnson [46] proposed a distance function

for motion planning. The main focus of this paper was on the properties of the distance

function and the computation of distances and their gradients. Efficient algorithms for

computing distances in Rn are described in [47]. A different approach to computing dis-

tances between polyhedra is described by Lin and Canny [81]. It is based on a cleverly de-

signed data structure which facilitates the identification and tracking of a pair of features

(vertex, edge or face), one on each polyhedron during the motion. Though the algorithm is

linear in the number of vertices, it is not very popular due to the storage requirements of

the data structure defining the connectivity between different vertices.

The first fundamental result in motion planning for car-like systems was derived by

Reeds and Shepp [104]. Building on the work of Dubins [37], they showed that minimum-

distance trajectories for a car are composed of straight lines and circular arcs. Lau-

mond [77] addressed motion planning of a nonholonomic cart in a cluttered environment.

The focus was on blending straight line segments with arcs so that the resulting path

is free of cusps. Barraquand and Latombe [12] described the generation of collision-free

paths for a cart with a trailer that minimized the number of reversals in the path. Jacobs

and Canny [61] presented an algorithmic approach to path planning for mobile robots

subject to nonholonomic constraints. They defined a set of canonical trajectories which

satisfied the nonholonomic constraints and an algorithm that found a path satisfying the

constraints imposed by the obstacles. In the area of nonholonomic motion planning, Fer-

nandes et al. [41] adopted an optimal controls approach to obtain near optimal solutions
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by choosing the control input as a linear combination of smooth orthogonal basis functions.

However, the search space for such functions is infinite dimensional and their approach

considers a finite combination of these basis functions to minimize the residue along with

the prescribed cost function. This approach does not work very well with unilateral con-

straints on the state, because the optimal inputs can become discontinuous at points where

the trajectory switches from an unconstrained region to a constrained region. Laumond et

al. [78] proposed an efficient algorithm for planning near minimum distance trajectories

for a car moving among obstacles. Their planning problem is divided into three stages: (a)

find a holonomic path that avoids all obstacles; (b) find the nearest path that also satisfies

the nonholonomic constraints; and (c) optimize the obtained path. The results in these

papers cannot be easily extended to systems in which dynamic considerations are impor-

tant. Different researchers have studied the nonholonomic motion planning problem from

different viewpoints: probabilistic road maps by Kavraki et al. [67], differential geometric

methods by Sussmann [118] and behavior based planning by Manikonda [88] are some of

these examples.

There are many approaches to the generation of open-loop trajectories for nonholo-

nomic systems. Brockett [17] derived the optimal control inputs for canonical systems in

which the tangent space to the configuration space manifold is spanned by the input vector

fields and their Lie brackets. Murray and Sastry [93] studied a more general class of non-

holonomic systems that can be converted to the so-called chained form. Their results are

applicable to systems which may require more than one level of Lie brackets to span the

tangent space of the configuration space manifold. This work also outlines an algorithmic

approach to steering such systems from an initial to final configuration using sinusoidal

inputs. Bushnell et al. [23] studied the motion planning of three-input wheeled systems

by reduction to the chained form. Tilbury et al. [119] employed methods of exterior dif-

ferential calculus to reduce the N -trailer system to the chained form. Other interesting

methods are described in Egeland et al. [38] and Walsh and Sastry [127]. However, the

reduction of general systems to the chained form is by no means a simple process. While

this approach yields considerable geometric insight into the nature of inputs and trajecto-

ries, the inputs are suboptimal and these methods do not lend themselves to incorporating

obstacles and other constraints which can be possibly present in a practical system.

It is useful to think of nonholonomic locomotion systems in terms of a set of shape vari-

ables that can be independently actuated and a group of rigid body motions that describes

the gross motion of the locomotion system [75, 96]. Koon and Marsden [72] discussed the

optimal control of nonholonomic mechanical systems that exhibit group symmetries and
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derived a set of simplified necessary conditions for the control inputs. Ostrowski and Bur-

dick [96] discussed optimal “gaits” for such systems by investigating different sinusoidal

input motions of the shape variables. Again these approaches are not suitable for solving

motion planning problems with obstacles and other unilateral constraints.

In recent years, many researchers have investigated control of nonholonomic systems.

A car or a car with trailers are typical examples of such systems. Other examples include

underwater vehicles [38], satellites [127] and variable truss chains [75]. Brockett [18]

showed that no smooth state-feedback control law can asymptotically stabilize a nonholo-

nomic system to a specified configuration even if the system is controllable. However,

stabilization can be achieved using non-smooth, autonomous feedback laws [16, 38], time-

varying feedback laws [108] or non-smooth, time-varying schemes [26].

The approach adopted here and briefly described in [31, 33, 136], is in many ways

superior to others discussed in the literature. We solve the general nonholonomic mo-

tion planning problem by formulating it as an optimal control problem with equality and

inequality constraints on the state and/or inputs. It is then reformulated as an uncon-

strained variational calculus problem and the general approach in Gregory and Lin [50]

is used to solve the problem. The advantage of this method is that constraints such as

nonholonomic constraints simply become equality constraints on the state variables and

they can be easily dealt with. In addition, it is easy to include constraints on the state,

and in particular, unilateral constraints such as those arising from the boundaries of the

configuration space. Once the optimal trajectory is known, there are many methods (see,

for example, [109, 126]) to efficiently control the system along the trajectory.

As the number of robots in the formation increases (n � �), the computational cost

for planning a feasible motion plan increases significantly and hence it is meaningful to

construct better control strategies to carry out a particular task. Many researchers have

recently investigated controlling multiple (i.e., many) cooperative robots [2, 5, 73, 101].

This research has primarily focused on generating emergent or complex behaviors from

organizations of many small, individual, and often heterogeneous robots. Generally, these

approaches either require some type of supervisory (centralized) control and process plan-

ning, or rely on more evolutionary approaches to generate a pre-specified system behavior

without provable bounds on the performance of the entire system. The goal we pursue

here to control a formation of robots relies on the idea of decentralized motion planning.

Here, each robot has minimal interaction with the other robots in the formation and it is

equipped with the sensing and computational hardware that allow it to detect the distance

to the nearest obstacle and the relative position and orientation of the neighboring robots
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in the team. We attempt to generate rigorously provable measures/bounds on the per-

formance of our system. We formulate the problem of control and coordination for many

robots moving in formation using decentralized controllers. In this approach, a motion

plan for the overall formation is given, for example, using methods from optimal control

or some other external source such as human operator. This motion plan is then used

to control a single lead robot. We assume that each robot has the ability to measure the

relative position of other robots in the formation. Once the motion for the lead robot is

given, the remainder of the formation is governed by local control laws based on the rel-

ative dynamics of each of the follower robots and the relative positions of the robots in

the formation. These control laws have the advantage of providing easily computable,

real-time feedback control, with provable performance for the entire system. An impor-

tant requirement in controlling a formation of robots is the ability to change the shape

of a formation to avoid obstacles. We investigate this problem and develop a strategy for

changing formations for a team of robots.

One of the main challenges in the practical implementation of the theoretical algo-

rithms is to be able to obtain information about the environment in real-time and using

it to plan subsequent motion. Since our proposed strategy is not limited to the shape and

size of obstacles, some of the existing techniques in literature to model the environment

can be effectively exploited to carry out the required task. Thus, the formation of robots

must be capable of navigating in possibly uncertain environments along with a possible

uncertainty in its state estimation. Even if the robot has a priori a nominal model of

the environment there is normally some uncertainty in the state and the model of the

robot/environment. State and modeling uncertainties, for example, can be present in the

form of position and modeling of the shape and size of the obstacles. Modeling uncertainty

can lead to an increase in the state uncertainty while a reduction in state uncertainty

can be used with effective identification techniques to reduce the modeling uncertainty.

There is extensive literature on motion planning with uncertainty in the environment.

Lumelsky et al. [85] presented an algorithm for terrain acquisition without any limita-

tions on the size or shape of the obstacle. The algorithm is useful to construct a model of

planar terrains with obstacles of arbitrary shapes. The hierarchical generalized Voronoi

graph (HGVG) technique of Choset and Burdick [25] is an alternate strategy for motion

planning of a single point robot based on sensory information. Some of the main features

of this method are: (a) it uses the line of sight distance information to build the map of the

environment and (b) it can be constructed without any constraints on the size and shape

of obstacles present in the environment. Another advantage of this method is that it is
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proven to be complete, i.e., it finds the goal if it is reachable and reports the entire map

of the environment in the event of a non-existent path. It will be a challenging task to

use some of these techniques to execute online motion planning algorithms developed in

Chapter 6.
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Chapter 3

Unconstrained reformulation of

the optimal control problem

3.1 Introduction

We will model our system of cooperating manipulators as a dynamic system in state space,

and the constraints on the system (for example, limits on joint positions and forces, and

constraints due to obstacles) will be described as state and input based inequality con-

straints. We will assume that it is meaningful to minimize an integral cost or performance

function. In tasks in which dynamic considerations are not important, it may be useful

to minimize distance [104]. A minimum jerk functional has been advocated for modeling

reaching by humans [44] for generating smooth robot trajectories [140]. When manipulat-

ing objects, it is necessary to maintain force closure while minimizing the contact forces.

Therefore, there are constraints on the exerted forces and it is often meaningful to min-

imize the integral of the norm of the actuator forces. In many systems, this also results

in minimizing the energy consumption [112]. If we desire a smooth actuator force his-

tory, it makes sense to minimize the integral of the norm of the rate of change of actuator

forces [121]. An important benefit of such integral cost functions based on actuator forces

is that by minimizing them, we can automatically resolve kinematic and actuator redun-

dancy while generating trajectories that will guarantee a desired level of smoothness in

the actuator forces and/or trajectories.

In the following section, we will describe the classical optimal control problem and the

solution of Pontryagin for various conditions on the state and control vector. In Section 3.3,

we will consider an equivalent of the optimal control problem in variational framework,
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known as the problem of Bolza. We will present first order necessary conditions for the

critical solution to both of these problems in the corresponding sections and discuss the

their equivalence. We will then reformulate the optimal control problem as an uncon-

strained variational problem in Section 3.4. The variational problem is formulated in an

integral form, in contrast to the more traditional methods that express the necessary con-

ditions as differential equations [50]. In Section 3.5, we will illustrate the procedure with

a simple example and finally discuss the numerical method for solving these problems in

Section 3.6.

3.2 The optimal control problem

Consider a dynamic system described by:

�x � f�t� x�t�� u�t�� (3.1)

where x � �x��t�� x��t�� � � � � xn�t��T is the n � � state vector and u � �u��t�� � � � � um�t��T

is the m � � vector of control inputs. The control vector, u � R � U � R
m belongs to an

arbitrary set U . The set U of admissible controls, is one that consists of bounded, piecewise

continuous functions. Further we assume that f � R�R
n�R

m � R
n is sufficiently smooth

(at least C�). The cost functional to be minimized is:

J�x� u� � 	�t�� x�� 


Z tf

t�

L �t� x�t�� u�t�� dt (3.2)

where, t� and tf are the initial and final time and t � �t�� tf �. 	 � R � R
n � R and L �

R � R
n � R

m � R are also assumed to be sufficiently smooth (at least C�). In addition, we

have the following constraints:

gi�t� x� u� � 
 i � �� � � � � l� (3.3)

hi�t� x� u� � 
 i � �� � � � � l� (3.4)

The equality and inequality constraints may or may not have an explicit dependence on

the input, u�t�. The optimal control problem is stated as follows [50]:

Problem 3.2.1 The optimal control problem:

Among all controls, u�t� � U , find the control u��t�, and the corresponding state x��t�,

satisfying Equation (3.1), which evolves the state from initial state x�t�� � x�, to the final

state x�tf � � xf , while minimizing the cost functional, J�x� u� given by Equation (3.2).
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The solution to the classical optimal control problem was given by Pontryagin, known as

the Pontryagin’s minimum principle. The solution of Pontryagin’s minimum principle

can be broken down into three cases depending on whether �x�� u�� is on the boundary of

the admissible set, �x� u�. The three cases are enumerated below:

1. In the first case, �x��t�� u��t�� is an interior point for all t � �t�� tf �.

2. In the second case, u��t� is on the boundary of U for a subinterval of �t�� tf � and x��t�

is an interior point for all t � �t�� tf �.

3. Finally, in the third case, both x��t� is on the boundary of the admissible set for all

t � �t�� tf � and u � U .

The main theorem’s relating to Pontryagin’s minimum principle for the three cases de-

scribed above can be summarized below [50, 55].

Theorem 3.2.2 (Case 1: Pontryagin’s minimum principle) [50] Define the Hamilto-

nian, H�t� x� u� 
� as:

H�t� x� u� 
� � L�t� x� u� 
 
T f�t� x� u�

where, 
 is an n� � vector of multipliers. Then if, �x�� u�� gives a minimum to J�x� u�, there

exists, 
��t� such that:

�x�t� � H��t� x� u� 
�

�
�t� � �Hx�t� x� u� 
� (3.5)

Hu�t� x� u� 
� � 


along �t� x��t�� u��t�� 
��t�� for all t � �t�� tf � satisfying the following boundary conditions:

x�t�� � x� and x�tf � � xf

In the second theorem, we assume that x��t� is an interior point for all t � �t�� tf � in the

admissible set and u��t� may lie on the boundary of the admissible set, U for some interval

of �t�� tf �. This can happen when we have a bounded control set such that, U � fu � juj � c�g
where c� � 
.

Theorem 3.2.3 (Case 2: Pontryagin’s minimum principle) [50] Define the Hamilto-

nian, H�t� x� u� 
� as:

H�t� x� u� 
� � L�t� x� u� 
 
T f�t� x� u�
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where, 
 is an n� � vector of multipliers. Then if, �x�� u�� gives a minimum to J�x� u�, there

exists, 
��t� such that:

�x�t� � H��t� x� u� 
�

�
�t� � �Hx�t� x� u� 
� (3.6)

H�t� x��t�� u��t�� 
��t�� � H�t� x��t�� u�t�� 
��t��

for u�t� � U for all t � �t�� tf � satisfying the following boundary conditions:

x�t�� � x� and x�tf � � xf

Finally, when the optimal control problem involves equality constraints, the state vec-

tor, x��t� can lie on the boundary of the constrained set. These constraints can be of the

following form:

gi�t� x� � 
 i � �� � � � � q (3.7)

Thus the most general form of the Pontryagin minimum principle gives the following so-

lution for the optimal control problem.

Theorem 3.2.4 (Case 3: Pontryagin’s minimum principle) [50] Define the Hamilto-

nian, H�t� x� u� 
� as:

H�t� x� u� 
� � L�t� x� u� 
 
T f�t� x� u�

where, 
 is an n� � vector of multipliers. Then if, �x�� u�� gives a minimum to J�x� u�, there

exists, 
��t� such that:

�x�t� � H��t� x� u� 
�

�
�t� � �Hx�t� x� u� 
� 
 �TQx (3.8)

H�t� x��t�� u��t�� 
��t�� � H�t� x��t�� u�t�� 
��t��

where Q � �Q�� Q�� � � � � Qq�
T and

Qi �

nX
j��

�gi
�xj

f�t� x� u� i � �� �� � � � � q

for u�t� � U for all t � �t�� tf � satisfying the following boundary conditions:

x�t�� � x� and x�tf � � xf
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Clearly, when q � 
, the above theorem reduces to Theorem 3.2.2 or Theorem 3.2.3.

Clearly, both Theorems 3.2.3 and 3.2.4 cannot be easily solved numerically, particularly

due to the inequality in H�t� x� u� 
�. Also the classical techniques do not incorporate equal-

ity constraints having state dependence as in Equation (3.3) and inequality constraints

having either state or control input dependence as in Equation (3.4). A general procedure

for solving these problems is to rewrite the Hamiltonian incorporating the the equality

and inequality constraints. This can be written as [21]:

Theorem 3.2.5 Define the Hamiltonian, H as:

H�t� x� u� 
� �� �� � L�t� x� u� 
 
T f�t� x� u� 
 �T g�t� x� u� 
 �Th�t� x� u� (3.9)

where � and � are l� � � and l� � � vectors. Thus if the optimal control problem has a

solution, �x��t�� u��t�� then there exist nonzero multipliers, 
��t� which are solutions of the

equation:
�
�t� � �Hx�t� x� u� 
� �� ��

and the optimal inputs satisfy:

�H�t� x� u� 
� �� ��

�u
�
�L�t� x� u�

�u

 
T

�f�t� x� u�

�u

 �T

�g�t� x� u�

�u

 �T

�h�t� x� u�

�u
� 


Also the multipliers, ��t� need to satisfy the following complimentary conditions:

�i

�
� 
 if hi � 


� 
 if hi � 
 i � �� � � � � l��
(3.10)

3.3 The variational problem

The optimal control problem defined in Problem 3.2.1 is related to a problem in the calcu-

lus of variations known as the problem of Bolza. The general control problem of Bolza can

be stated as:

Problem 3.3.1 The problem of Bolza

Of all the arcs, �x�t�� u�t�� satisfying the differential equation:

�x�t� � f�t� x�t�� u�t��

and the equality and inequality constraints:

gi�t� x� u� � 
 i � �� � � � � l�

hi�t� x� u� � 
 i � �� � � � � l�
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find the one that minimizes the integral:

J�x� u� � 	�t�� x�� 


Z tf

t�

L �t� x�t�� u�t�� dt

with the initial and final conditions:

x�t�� � x� and x�tf � � xf

respectively.

The inequality constraints can be converted to equality constraints by adding slack vari-

ables. Thus the modified inequality constraints are:

�hi�t� x� u� 
� � hi�t� x� u� 
 
i
� � 
 i � �� � � � � l�

The optimal control problem defined in Problem 3.2.1 can be reformulated as the con-

trol problem of Bolza in the variational calculus framework using the method of Valen-

tine [122] to convert inequality constraints to equality constraints and introducing the

slack variables as new control inputs. Details of this procedure and its modification are

discussed in greater detail in Section 3.4.1. The first order necessary conditions for solv-

ing the problem of Bolza are the Euler-Lagrange equations and the Weierstrass-Erdmann

corner conditions.

3.3.1 Euler-Lagrange equations

Let x�t� be an n�� vector of functions which are continuous over the interval �t�� tf � and let

z�t� be a piecewise smooth variation such that z�t�� � z�tf � � 
 and � is some parameter

such that j�j � � where � is a constant. We define the new set of functions, x�t� �� as:

x�t� �� � x�t� 
 �z�t� for j�j � �

and the functional, F ��� as:

F ��� �

Z tf

t�

H�t� x�t� ��� �x�t� ���dt (3.11)

Expanding Equation (3.11) in Taylor series, we get:

F ��� � F �
� 
 �

Z tf

t�

�Hxz 
H 	x �z�dt

�

�
��
Z tf

t�

�Hxxz
� 
 �Hx 	xz �z 
H 	x 	x �z

��dt
O�j��j� (3.12)

Thus, the critical condition is given by:

F ��
� �
Z tf

t�

�Hxz 
H 	x �z�dt � 
 (3.13)
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If we substitute, H�t� x� u� 
� �� �� 
� � L�t� x� u� 
 �T g�t� x� u� 
 �T �h�t� x� u� 
�, in Equa-

tion (3.13), and make a few manipulations using the Lemma of Du Bois Reymond, we

obtain the Euler Lagrange equations which are the first order necessary conditions for the

solution to the problem of Bolza. The Euler-Lagrange equations are given by:

d

dt

�H�t� x� u� 
� �� �� 
�

� �x
�
�H�t� x� u� 
� �� �� 
�

�x
(3.14)

The above result along with the Weierstrass-Erdmann conditions for corner points is the

general solution to the problem of Bolza and can be summarized in the following theorem:

Theorem 3.3.2 Define the Hamiltonian, H�t� x� u� 
� �� �� 
� as:

H�t� x� u� 
� �� �� 
� � L�t� x� u� 
 
T f�x� u� 
 �T g�t� x� u� 
 �T �h�t� x� u� 
�

If x��t� yields a relative minimum for problem of Bolza defined in Problem 3.3.1 then

there exist nonzero multipliers, 
� � and � and the Hamiltonian, H�t� x� u� 
� �� �� 
� de-

fined above so that x��t� satisfies the Euler-Lagrange equations given in Equation (3.14) on

every smooth portion of the trajectory of x�t� and the Weierstrass-Erdmann corner condi-

tions at every point of discontinuity, ci � �t�� tf � of �x�t� and x�t�� � x� and x�tf � � xf . The

Weierstrass-Erdmann corner conditions are given by:

�H

� �x
jc�i �

�H

� �x
jc�i�

�x
�H

� �x
�H

�
jc�i �

�
�x
�H

� �x
�H

�
jc�i (3.15)

Remark 3.3.3 The extremals of the optimal control problem defined in Section 3.2 and the

extremals of the variational problem of Bolza given by Theorem 3.3.2 can be summarized

as follows [135]:

Theorem 3.3.4 Let x�t� be a piecewise smooth function and u�t� be a piecewise continuous

function as defined above.

1. If x�t� satisfies the first order necessary conditions for the optimal control problem in

Theorem 3.2.5, it also satisfies the first order necessary conditions for the problem of

Bolza given by Theorem 3.3.2.

2. If x�t� satisfies the first order necessary conditions for the problem of Bolza given by

Theorem 3.3.2 and if the corresponding Lagrange multipliers, �, for the inequality

constraints are non-negative for all t � �t�� tf � then x�t� is also the critical solution to

the optimal control problem in Theorem 3.2.5.
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3.4 Reformulation of the optimal control problem

Having established the correspondence between the critical solutions of the optimal con-

trol problem and its variational counterpart in the previous section, we will focus on re-

formulating the optimal control problem with equality and inequality constraints as an

unconstrained variational calculus problem. This approach is useful since classical so-

lutions to the optimal control problem given by Theorem 3.2.3 and 3.2.4 are difficult to

compute numerically. Secondly, solving the constrained problem involves solving a two-

point boundary value problem which is difficult to solve numerically.

We will reformulate the problem in Equations (3.1-3.4) as an unconstrained variational

problem in which we will minimize the integral of a Hamiltonian, H:

J �

Z tf

t�

H
�
X�t�� �X�t�� t

�
dt (3.16)

We first treat the case with no inequality constraints1.

No inequality constraints (l� � 
): We construct the Hamiltonian by adjoining the

original cost function, L, with the constraints:

H�X� �X� � L�x� u� 
 
T � �x� f�x� u�� 
 �T g�x� u� (3.17)

Here, X is the extended state vector:

X � �XT
x � X

T
u �X

T
� � X

T
� �

T (3.18)

in which Xx � x is the renamed n� � state vector of the original problem, and Xu, X�, X�

are defined according to the differential equations:

�Xu � u� �X� � 
� �X� � � (3.19)


 and � are the multipliers corresponding to the state Equations (3.1) and constraints in

Equation (3.3) respectively. We let the inputs and the multipliers be derivatives of the

extended state vector, X, so that they can be piecewise continuous while X (including

the original state vector, x) is piecewise smooth. The unconstrained variational problem is

then to minimize the functional in Equation (3.16) subject to suitable boundary conditions.

The initial and final states, Xx�t�� and Xx�tf � are given. Xu, X�, and X� can be chosen to

be zero at the initial time, since it is their derivatives that are important for our problem.
1In our applications, none of our equations will have an explicit dependence on time, t. From this point,

for notational convenience we will stop showing the dependence on t.
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Since they are otherwise unconstrained, they must satisfy the transversality conditions

at tf [107]:

Xxjt� � x�� Xujt� � 
� X�jt� � 
� X�jt� � 


Xxjtf � xf �
�H
� 	Xu

jtf � 
� �H
� 	X�

jtf � 
� �H
� 	X�

jtf � 

(3.20)

Inequality constraints (l� 	� 
): Here, we adjoin the inequality constraints by rewrit-

ing them as equality constraints. This is achieved by adding slack variables, 
i [62, 122].

Each inequality constraint can be converted to an equality constraint and written as:

hi�t� x� u� 
� � 

 �hi � hi�t� x� u� 
 
i
� � 
� i � �� � � � � l� (3.21)

We introduce two more variables in the extended state vector, X� and X�, that satisfy:

�X� � 
� �X� � �

where 
 is the vector of slack variables and � is the multiplier associated with the vector
�h. Once again, we let 
 and � be derivatives of the state so that they can be piecewise

continuous. The unconstrained variational problem is to minimize the functional in Equa-

tion (3.16) where:

H�X� �X� � L�x� u� 
 
T � �x� f�x� u�� 
 �T g�x� u� 
 �T �h�x� u� 
� (3.22)

with the state given by:

X � �XT
x �X

T
u � X

T
� �X

T
� � X

T
� �X

T
� �

T (3.23)

subject to the boundary conditions:

Xxjt� � x�t��� Xujt� � 
� X�jt� � 
� X�jt� � 
� X�jt� � 
� X�jt� � 
�

Xxjtf � x�tf ��
�H
� 	Xu

jtf � 
� �H
� 	X�

jtf � 
� �H
� 	X�

jtf � 
� �H
� 	X�

jtf � 
� �H
� 	X�

jtf � 

(3.24)

The necessary conditions for x�t�, u�t� to solve the system of Equations (3.1-3.4), is that

there exists a piecewise smooth vector X�t�, which is a critical solution to Equation (3.16)

with the Hamiltonian given by Equation (3.22) and the boundary conditions given by

Equation (3.24).

The procedure outlined in this section so far can be used for kinematic motion plan-

ning and is illustrated in Example 1 in Section 5.4. When dynamic considerations are

important, the problem becomes more complicated and state constraints require special

attention. This is explained in the next section and illustrated in Examples 2-4 in Sec-

tion 5.5.
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3.4.1 Constraints on the state

Equality constraints: When equality constraints are at the state level and do not in-

volve the input u explicitly, we may be faced with numerical difficulties. In order to avoid

this, we repeatedly differentiate the constraints gi�x�, with respect to time substituting

the state equations for the derivative of the state until the resulting equation explicitly

contains u. Let pi be the lowest order derivative of gi in which the dependence on u be-

comes explicit. After differentiation, the original constraint, gi, is renamed as gmi
and is

given by:

gmi
�x� u� � g


pi�
i �x� u� � 
 (3.25)

In order to satisfy the original equality constraints, gi�x� � 
, we enforce the following

boundary conditions on the lower order derivatives of gpii �x� u�. These boundary conditions

are given by:

gi�x�� � 


�gi�x�� � 


...

g

pi���
i �x�� � 
 (3.26)

Thus, we adjoin the vector, gm � �gm�
� gm�

� � � � � gml�
�T , instead of the vector g to the Hamil-

tonian in Equation (3.22).

Inequality constraints: The potential difficulties associated with state inequality con-

straints are discussed in [21, p.117], [62]. When the trajectory goes from an unconstrained

segment to a constrained segment, there is a discontinuity in the adjoint variables (multi-

pliers) and this gives rise to numerical problems. This problem is circumvented by differ-

entiating the state inequality constraints until the input becomes explicit [62]. The arcs

lying on the state constraint boundary in the original (undifferentiated) optimal control

problem now become singular arcs in the transformed (differentiated) problem. The dis-

continuities in the adjoint variables at the junction of a constrained and an unconstrained

arc are eliminated, thus leading to increased convergence speed and more accurate nu-

merical results.

Some of the inequality constraints in Equation (3.21) may need differentiation as they

may not have an explicit dependence on the input. These � equations that do not have an

explicit dependence on the input need to differentiated until this dependence is obtained.
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Instead of adjoining �h in Equation (3.22), we adjoin �hm to the Hamiltonian, where:

�hmi
�x� u� � h


qi�
i �x� u� 


d
qi�
�i
dt
qi�

� 
 (3.27)

When the ith constraint is inactive, 

qi�i is non zero and it determines the evolution of

the system relative to the constraint. When the constraint is satisfied, 

qi�i is zero. We

accordingly modify X� so that �X� contains the qthi derivative of each inequality, and we

order the inequalities so that qi � 
 for the first � inequalities:

�X� � �


q��
� � 



q��
� � � � � � 



q��
� � 
���� � � � � 
l� �

These variables can be viewed as additional inputs for the unconstrained system. How-

ever, when one or more constraints are satisfied, the corresponding 


qi�
i are zero and the

optimal control is singular [62].

Unlike Equation (3.25), Equation (3.27) involves the derivatives of the slack variables.

This introduces new dynamics into the system [62]. The slack variable 
i and its deriva-

tives up to the �qi���
th order are part of the description of the system dynamics. We will

denote the qi new variables, 
i� �
i� � � � � 

qi���i , by �i��� � � � � �i�qi . Thus,

�i�� � 
i

�i�� � �
i
...

�i�qi � 

qi��
i (3.28)

We define a new vector, X� , of dimension
P�

i�� qi, that will be part of our state X:

X� � ������ ����� � � � � ���q� � ����� ����� � � � � ���q� � � � � � ����� ����� � � � � ���q� �
T

There are
P�

i���qi � �� associated state equations:

c�X� � �X�� � 
 (3.29)

where the equations take the form:

��i�� � �i��

��i�� � �i��
... (3.30)

��i�
qi��� � �i�qi
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Finally, all the constraints are adjoined to the Hamiltonian in Equation (3.22). We will

adjoin the l� constraints in Equation (3.27) and the state equations in Equation (3.29).

The modified Hamiltonian is given by:

H�X� �X� � L�x� u� 
 
T � �x� f�x� u�� 
 �T gm 
 �T �hm 
 �T �c�X� � �X��� (3.31)

where the vector, �hm � ��hm�
� �hm�

� � � � � �hml�
�T , is used instead of the vector �h. The extended

state vector is:

X � �XT
x �X

T
� �X

T
u � X

T
� �X

T
� � X

T
� �X

T
� �X

T
	 �

T (3.32)

where
�X	 � � � ������ � � � � ���q���� ����� � � � � ���q���� � � � � ����� � � � � ���q����

and � is the l	 � � vector of multipliers, where

l	 �

�X
i��

�qi � ���

� is an l��� vector of multipliers for the modified inequality constraints in Equation (3.27)

and � is an l� � � vector of multipliers for the modified equality constraints in Equa-

tion (3.25). Thus the Hamiltonian depends on the r � � state vector X, where:

r � n


�X
i��

qi 
m
 l� 
 n
 l� 
 l� 


�X
i��

�qi � �� (3.33)

The boundary conditions are given by:

Xxjt� � x�t��� X�jt� � ��t��� Xujt� � 
� X�jt� � 
� X�jt� � 
� X�jt� � 
�

X�jt� � 
� X	 jt� � 
� Xxjtf � x�tf �� X�jtf � ��tf ��
�H
� 	Xu

jtf � 
� �H
� 	X�

jtf � 
�

�H
� 	X�

jtf � 
� �H
� 	X�

jtf � 
� �H
� 	X�

jtf � 
� �H
� 	X�

jtf � 


Table 3.1: The variables in the extended state vector for the variational problem.

Equations State variables Inputs Multipliers Slack variables
State equations n m n -

l� equality constraints - - l� -
Inequality constraints

P�
i�� qi - �� l�

Total n

P�

i�� qi m �� l�

Table 3.1 accounts for the various terms in Equation 3.33 where �� � l� 

P�

i���qi � ��

and �� � n
 l� 
 l� 

P�

i���qi � ��.
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Remark 3.4.1 We may substitute for the control inputs in terms of the state vector and

its derivatives explicitly in the Hamiltonian. This is always possible for affine systems.

This procedure eliminates m control inputs and the associated multipliers. It reduces the

dimensionality of the extended state vector and decreases the complexity of the variational

problem.

3.4.2 Difficulties with state constraints

We saw in the previous section that state constraints that are not explicitly dependent on

the input need to be differentiated until the dependence on the input becomes explicit. If

a constraint g�t� x� has to be differentiated p times to make the dependence on u explicit,

we enforce p boundary conditions on g and its derivatives (up to order (p� �) at t� as men-

tioned before and adjoin g
p��t� x� u� to the Hamiltonian to enforce the constraint. Since the

constraint is not explicitly enforced at all mesh points (only the pth derivative is enforced),

the solution may drift due to numerical errors and the constraint may not be satisfied at

points far away from the initial value.

In order to “stabilize” equality constraints, we use a trick that is routinely used for

initial value problems [13]. Instead of adjoining the pth derivative of the state constraint,

we adjoin a linear combination of the state constraint and its derivatives up to the pth level

choosing the constants ki so that the solution of the differential equation:

g
p��x� u� 
 kp��g

p����x� 
 � � �
 k� �g�x� 
 k�g�x� � 


exponentially goes to zero. For example, we can enforce a second order (p � �) constraint

g�t� x� � 
, by adjoining the term:

�g�x� u� t� 
 k� �g�x� t� 
 k�g�x� t�

where the constants k� and k� can be picked so that g�t� x� exponentially goes to zero.

Since inequality constraints are converted to equality constraints in our method, this ap-

proach can be used with inequality constraints as well. This approach greatly enhances

the convergence and the accuracy of the solutions.

3.5 Example

We now consider a general motion planning problem of a point in R�. The purpose of this

section is to introduce the general technique used in solving some of the other compli-

cated motion planning problems whose solutions appear in this thesis. The methodology
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adopted in this example will clarify some of the theoretical results of the previous sections.

Consider the example of finding the trajectory of a point moving around a circular obstacle

(-a,0) (a,0)

(0,1)

X

Y

Figure 3.1: A canonical motion planning problem.

as shown in Figure 3.1. The coordinates of the initial and final positions of the point are

��a� 
� and �a� 
� respectively. The radius of the circular obstacle is taken to be unity, i.e.,

R � �. The cost function to be minimized is given by:

J �

Z �

�

�
�x�� 
 �x��

�
dt (3.34)

subject to the following constraint and boundary conditions:

x�� 
 x�� �R� � 
 (3.35)

x��
� � �a x��
� � 


x���� � a x���� � 

(3.36)

If we apply the method of Gregory and Lin [50] without differentiating the constraints

until the input appears explicitly, there will be impulsive jumps in the multipliers as

predicted by Jacobsen et al. [63]. This in general lead to poor numerical accuracy and

increased convergence time in some cases. Hence we resort to differentiation of the con-

straints and eventually stabilize it for accelerated convergence. In this section, we will

outline the procedure used and give the analytical results for the motion planning prob-

lem mentioned above. We note that the constraint to be satisfied at all times is not a

distance constraint. However, it behaves very much like one. We first subtract the square
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of the slack variable, x�, in the original constraint so that the equality holds at all points

on the path. Thus the constraint is:

x�� 
 x�� �R� � x�� � 
 (3.37)

Differentiation of this constraint leads to the new constraint:

x� �x� 
 x� �x� � x� �x� � 
 (3.38)

However, x� needs to satisfy the initial condition and is given by:

x��
� � x���
� 
 x���
��R�

This constraint can be adjoined with the original cost function by a multiplier, �x�, to

form the Hamiltonian and is given by:

H�X� �X� � �x�� 
 �x�� 
 �x��x� �x� 
 x� �x� � x� �x�� (3.39)

where X � �x�� x�� x�� x��
T and �X � � �x�� �x�� �x�� �x��

T . We enforce x��
� � 
 as the initial

condition. Based on the Hamiltonian in Equation (3.39) we have:

HX �

�
BBBB�

�x� �x�

�x� �x�




� �x� �x�

	
CCCCA (3.40)

H 	X �

�
BBBB�

� �x� 
 x� �x�

� �x� 
 x� �x�

x� �x� 
 x� �x� � x� �x�

�x� �x�

	
CCCCA (3.41)

The first order necessary conditions for a minimum (Euler-Lagrange equations) is given

by:
d

dt
H 	X � HX (3.42)

That leads to the following set of equations:

��x� � �x��x�
��x� � �x��x�

x� �x� 
 x� �x� � x� �x� � C�

x��x� � C� (3.43)
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It can be easily shown that C� and C� are identically 
. Since x� and x� is not specified at

the terminal point, transversality conditions are imposed and they are given by:

H 	x� � 


H 	x� � 

(3.44)

Thus at t � �,

x� �x� 
 x� �x� � x� �x� � 


x� �x� � 


The Weierstrass-Erdmann corner conditions are satisfied at points where �x becomes dis-

continuous. The corner conditions at t � t� are given by:

H 	X jt�� � H 	X jt��
Ht�� � �XTH 	X jt�� � Ht�� � �XTH 	X jt�� (3.45)

Thus using the corner conditions and the Euler-Lagrange equations we obtain the follow-

ing analytical solution for the problem:

x��t� �


���
��


C�t� a 
 � t � t�

cos�C�t
C�� t� � t � t�

C
�t� �� 
 a t� � t � �

x��t� �


���
��


C�t 
 � t � t�

sin�C�t
 C�� t� � t � t�

C��t� �� t� � t � �

x��t� �


���
��


C�t 
 � t � t�

C�
� t

� 
 C��t
 C�� t� � t � t�

C���t� �� t� � t � �

x��t� �


���
��

p
x�� 
 x�� �R� 
 � t � t�


 t� � t � t�p
x�� 
 x�� �R� t� � t � �

where

t� �
p
�

�
p
��
��

t� �
p
��
��

�
p
��
��

C� �
p
�
� f�

p
� 
 ���g

C� � �f�p� 
 ���g C� � ���� 

p
� C
 � C�

C� �
�
p
��
��
� C� � �C� C� � ��


� f�
p
� 
 ���g

C�� � ��C�f
p
� 
 ���g C�� � C�t� � C�

� t
�
� � C��t� C�� � C�

� t
�
� 
 C��t� 
 C��

(3.46)
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Figure 3.2(a) shows the path followed by the particle from the initial to the final configu-

ration. Since the analytical and numerical solutions coincide, we have only one trajectory

in Figure 3.2(a). Similar is the case for the multiplier �x�, in Figure 3.2(b). Based on

the results of the equivalence of the critical solutions, we see that the multiplier in Fig-

ure 3.2(b) is non-positive as the constraint in Equation (3.35) is opposite to the notation in

Equation (3.4).
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Figure 3.2: Analytical and Numerical solutions for a) the path of the particle and b) Mul-
tiplier �x�.

Clearly, the above example demonstrates the methodology that we have developed in

dealing with equality and inequality constraints though the above example did not have

any equality constraints. However, for the problems considered in this thesis, the solutions

are not easy to compute analytically and hence we have to use numerical techniques. In

the following section, we describe the numerical procedure used to compute solutions for

a broad class of problems.

3.6 Numerical method

3.6.1 Integral formulation of the necessary conditions

Consider the general variational calculus problem with the r � � state vector X:

I � min

Z tf

t�

H�t�X� �X� dt (3.47)

subject to boundary conditions on X at t� and tf . Define an admissible variation, z�t�, to

be a piecewise smooth function that satisfies the boundary conditions at t� and tf . We will

follow the approach proposed by Gregory and Lin [50] in which the admissible variations
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are approximated by piecewise continuous basis functions. We then consider the first

variation of the functional in Equation (3.47) and derive conditions under which it is zero.

If X�t� is a solution of the variational problem in Equation (3.47), then for all admissi-

ble variations z�t�, the following integral equation must be satisfied as in Section 3.3.1

Z tf

t�

�HX
T z 
H 	X

T �z� dt � 
 (3.48)

where HX and H 	X denote partial derivatives with respect to X and �X respectively. This

necessary condition should be contrasted with the traditional Euler-Lagrange equations.

The main disadvantage with using Euler-Lagrange equations is that they are not valid at

points called “corners” where the derivative of the state is discontinuous. Thus at these

points, the Weirstrass-Erdmann corner conditions apply as stated in Equation (3.15). In

most motion planning problems, the corner points are not a priori known. By directly

solving the integral equation in Equation (3.48), we eliminate the need to patch solutions

at the corners. The integral equation is valid at all points, even at points at which �X�t� is

discontinuous.

1

a
k-1

a
k

a k+1

α
k (t)

Figure 3.3: Shape functions used in the numerical method.

We represent the piecewise smooth variation z�t� using basis functions. We first dis-

cretize the interval �t�� tf � so that t� � a� � a� � � � � � aN � tf . For simplicity, we will

assume that ai�ai�� � h, for i � �� � � � � N . Since our controls need to be piecewise continu-

ous, the simplest basis function whose derivative is piecewise continuous is the piecewise

linear shape function. Thus, we introduce a set of piecewise linear shape functions:

�k�t� �


���
��


t�ak��
h if ak�� � t � ak�

ak���t
h if ak � t � ak���


 otherwise, (k � 
� � � � � N )

(3.49)
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The components of the variation z�t� are approximated by the sum:

�zi �

NX
j��

zij�j�t�

Next we use the central difference scheme to approximate the derivatives and the mean-

value theorem to approximate the integral in Equation (3.48), on each subinterval �ai��� ai�.

This process yields the following set of vector equations in the unknown values Xk at

points k � �� � � � � N�� [50, pg. 134]:


 �
h

�
HX�

ak 
 ak��

�
�
Xk 
Xk��

�
�
Xk �Xk��

h
�


H 	X�
ak 
 ak��

�
�
Xk 
Xk��

�
�
Xk �Xk��

h
� 


h

�
HX�

ak�� 
 ak
�

�
Xk�� 
Xk

�
�
Xk�� �Xk

h
��

H 	X�
ak�� 
 ak

�
�
Xk�� 
Xk

�
�
Xk�� �Xk

h
� (3.50)

Note that the unknowns, Xk, are vectors. In all, we have r�N
�� unknowns. We also have

r�N � �� equations from Equation (3.50). The remaining �r equations are obtained from

the boundary conditions.

The resulting system of r�N 
 �� nonlinear equations is solved using the Newton-

Raphson method. Each equation only depends on three adjacent points. The matrix of

the system of linear equations solved during the iteration is thus block-tridiagonal and

the system can be solved very efficiently.

3.7 Conclusions

In this chapter, we have discussed the general optimal control problem and its correspond-

ing variational problem known as the problem of Bolza. The methodology presented is

applicable to general motion planning problems with geometric, kinematic and dynamic

constraints. The geometric constraints include constraints imposed by the presence of

obstacles while the kinematic constraints may be holonomic or nonholonomic. The dy-

namic constraints include the equations of motion and constraints on the contact forces.

In addition, there may be inequality constraints like constraints on the turning radius for

a mobile platform or bounds on the minimal and maximal separation between the plat-

forms. Since the solutions to the general optimal control problem as proved by Pontryagin

is not easily implemented in numerical computations, it is reasonable to consider the un-

constrained variational formulation. We adopt this strategy for solving general motion
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planning problems by formulating it as a problem in the calculus of variations and solving

it using the integral form of the necessary conditions. There are several advantages to

this method:

1. The method is general in the sense that any state or input based constraint (equality

or inequality) can be incorporated and any state or input based cost functional can

be chosen.

2. In problems with inequality constraints, the system can switch back and forth be-

tween constrained and unconstrained states any number of times. The method is

transparent to the number of switches and to the corner conditions that characterize

the variational problem.

3. When inequality constraints are imposed on the state (for example, due to obstacles

or joint limits), the optimal trajectories may not be smooth. This method works

with the class of all piecewise smooth trajectories and is therefore more powerful

than methods that use a finite number of smooth basis functions to approximate the

solution.

4. Although the resulting variational problem is of much higher dimension than the

original optimal control problem, the resulting problem can be solved reasonably

efficiently using standard off-the-shelf algorithms.

There is one issue pertaining to the numerical method that is not addressed in this

chapter. It has to do with the so-called second order necessary conditions for the varia-

tional problem. The methods of Section 3.3 guarantee that the first order necessary con-

ditions are satisfied. Second order conditions are checked offline to ensure that we indeed

have a locally minimal solution. There is a shortcoming with the method of slack variables.

Solutions to necessary conditions to the original problem with inequalities will satisfy the

necessary conditions for the corresponding problem with slack variables. However, in gen-

eral, there may be spurious solutions in problems with slack variables. Fortunately, these

are easy to detect off-line. Both these shortcomings are easily overcome with appropriate

numerical algorithms [14] that explicitly minimize the cost function as opposed to solving

necessary conditions. In the following chapters we will apply the method developed in this

chapter to solve complex motion planning problems in human and robotic systems.
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Chapter 4

Computational model for human

motion

In this chapter, we study the problem of human motion and model the manipulation task

in the framework of robotics. The methodology developed in Chapter 3 will be used to

mathematically model the system. In this chapter, we study the problem of human dual

arm manipulation and develop a computational model that predicts the trajectories and

force distribution for the coordination of two arms moving an object between two given

positions and orientations in the horizontal plane. We begin by the description of the

experimental system and details of the experimental task. Later, we develop a compu-

tational model based on the work of Uno et al. [121] to model the experimental system.

Finally, we will present some experimental results on human vertical arm movements and

compare the force and trajectory profiles with planar movements.

4.1 Experimental system

4.1.1 Planar two arm movements

The experimental system for measuring trajectories and force distribution consists of a

target system and a passive planar manipulandum with a handle as shown in Figure 4.1.

The sides of the handle are parallel plates and simulate a box-like object. Metallic tabs can

be added to the handle in order to vary its weight and inertia. Each plate is instrumented

with a six-axis force/torque sensor allowing measurement of the forces and torques ex-

erted by the subject during the manipulation task. The handle assembly is attached to

the manipulandum with a low-friction, linear bearing. Thus, during the experiment, the
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weight of the object is supported by the two palms and not by the manipulandum.

The manipulandum consists of three links, connected by revolute joints. The first two

links of the manipulandum form a serial kinematic chain capable of locating the distal end

of the second link (which coincides with the center of the third link) at any position �x� y�

in the horizontal plane (two degrees of freedom) within the manipulandum workspace. By

revolving about its center point, the third link (the handlebar) provides a third, rotational

degree of freedom ���. Three optical encoders mounted at the joints are used to measure

the corresponding angles of rotation at a sampling rate of 200 Hz. During the experiments,

Figure 4.1: Experimental testbed.

the subject sits in front of the manipulandum, and firmly grasps the two flat plates of the

handle as shown in Figure 4.1. A rectangular wooden frame supporting a transparent

Plexiglas sheet is suspended from the ceiling by nylon cables, such that the Plexiglas sheet

is horizontal at the level of the subject’s chin (Figure 4.1). Four target sets are mounted on

the Plexiglas at different locations, and each set consists of arrays of light emitting diodes

(LEDs). A schematic of the top view showing the four targets on the plexiglass sheet and

the human holding the force sensors is as shown in Figure 4.2. The task was to move

from one lit array of LED’s to another. The room was darkened, and a random sequence

of target configurations was presented. The duration during which any given target was

lit was also randomly determined in the range 1.5 - 3.5 seconds. There was adequate

time for the subject to complete the motion and all motions started from complete rest.

The geometry and position of the diodes is as shown in Figure 4.3. The subjects were
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Figure 4.2: Top view of planar ma-
nipulation task.
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Figure 4.3: Schematic of the target
assembly for planar movements.

instructed to position and orient the handlebar at the configuration specified by the lit

array of LED’s, while maintaining a firm grasp on the side plates with both hands and

keeping the elbows in the horizontal plane passing through the shoulders. They were told

to move naturally, i.e.,at what was in their opinion a comfortable speed. High accuracy

was not required from the subjects, as they were instructed not to be unduly concerned

about small errors in final position and orientation. Furthermore, since the experiments

were performed in the dark, no visual feedback of the arms and the handle was provided

to the subjects. Some of the subjects commented that they were able to see the handle

after they adapted to the darkness. Each subject was asked to perform five groups of fifty

movements. While the subjects carried out the task, force information was captured by

the six-axis force/torque sensor (made by ATI : model : 65/5 Gamma F/T sensor) while the

encoders gave information about the position of the end-effector of the manipulandum in

the plane. Eight healthy subjects participated in the experiments, ages ranging between

24 and 40. Six of these subjects were right handed while two were left handed. The

first fifty motions from each subject were discarded allowing the subject to adapt to the

experimental task (though they were not informed that the first fifty motions would be

discarded). After each set of fifty motions, the subjects were given adequate time (as they

required) before the onset of another set of data. Thus the subjects had a chance to relax

before they proceeded to the next set thereby removing any effects of excessive fatigue in

the experimental data.
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4.1.2 Vertical two arm movements

The experimental system for measuring the trajectories and forces in vertical arm move-

ments is different than the one used in planar arm movements. Instead of a spatial manip-

ulandum, we use the OPTOTRAK system to capture the trajectory of the grasped object.

We placed four infrared light emitting diodes on a grid as shown in Figure 4.5(a). The

metallic grid is mounted on the object being manipulated and the location of the infrared

sensors is used to compute the position and orientation of the grasped object. Figure 4.5(a)

shows the manipulated object which consists of force sensors on either ends grasped by

open palms and four infrared markers which are tracked by the OPTOTRAK during the

movement of the object. In vertical arm movements the object has three rotational and

three translational degrees of freedom. In our experimental setup, we used a similar tar-

get display as in planar studies except that we increased the span of frontal plane motion.

A schematic of the target assembly is as shown in Figure 4.4 with the targets numbered

from � through �. The target assembly was fixed to the wall at a variable height depending

5

6 7

8

25cm 25cm

8.5cm

11cm

Figure 4.4: Schematic of the target assembly for vertical two arm movements.

on the comfort of the subject in moving from one target to another. The placement of the

display was such that the subjects were able to reach all the targets with ease. The actual

experimental setup for vertical arm movements is as shown in Figure 4.5(b) with a subject

grasping the object.

The OPTOTRAK system consists of a position sensor unit and a system control unit.

The OPTOTRAK system is a infrared-based, non-contact movement measurement sys-

tem. The three optical sensors in the position sensor unit track a infrared light emitting

diode (LED) attached to the moving object. The position sensor unit consists of three one

dimensional charged coupled devices (CCD’s) paired with three lens cells and mounted on

a long stabilized bar. Within each of the three lens cells, light from an infrared source
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a) b)

Figure 4.5: a) Force sensors with infrared markers b) Experimental system for vertical
movements.

is directed onto the CCD and measured. These measurements determine the location of

the marker in space in real time. Since the OPTOTRAK system is pre-calibrated, there is

no need for routine calibration. It has the capability of tracking ��� markers in real-time

with a peak scan rate of �


 Hz when a single marker is used. It is also capable of very

accurate measurements with accuracies of 
��mm and resolutions of up to 
�
�mm. The

system also comes with a system control unit which is the central controlling, interfacing

and processing unit of the OPTOTRAK system. The unit is a bridge between the position

sensor unit and the host computer and relays data in real time. The operating range is

���m to �m from the position sensor unit. The actual measurement system with the system

control unit is as shown in Figure 4.6.

Figure 4.6: The OPTOTRAK system.

As in the case of planar arm movements, the lights in the room were completely shut

off so that the subject had no visual feedback of the object being manipulated and they

were required to align the object as best as possible with the array of lighted LED’s. In

this study, we took � sets of �
 movements and all the experimental data was analyzed
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offline. Between each set of movements, the subjects had sufficient time to relax their

arms. All other experimental conditions were similar to planar arm movements.

The instructions given to the subject prior to starting the experiment are as stated

below:

� Hold the object with your open palms and do not curl your fingers around the object.

� Move as naturally as possible and follow the the lighted array of LED from one target

to another.

� There is adequate time to move from one target to another and hence avoid any

undue hasty movements or excessive force on the object being manipulated.

� At all times keep the arms and the object in the horizontal plane for planar arm

movements.

� There are � sets of experiments with a break between each set so that there is enough

time to relax the arms.

� In vertical two arm studies, the subjects were asked to align the horizontal bar at

the center of the grasped object with the direction of the lighted LED’s.

4.2 A computational model for motion generation

The schematic of human holding the grasped object is as shown in Figure 4.7(a) and the

associated normal and tangential forces are as shown in Figure 4.7(b). We denote the

normal and tangential forces by Fin and Fit (i=1,2) respectively.

We model the two arms holding an object in the horizontal plane by two planar 3-link

manipulators as shown in Figure 4.8. Each arm has 3 degrees of freedom. If the arms

rigidly hold the object, the system of the two arms and the object (closed kinematic chain)

has three degrees of freedom. The object can therefore be placed at an arbitrary position

and orientation in the plane. Hence, the closed kinematic chain is not kinematically re-

dundant. However, since there are � joints, there are � actuators and thereby the system is

overconstrained. Thus, there can in principle be infinite possible force and motion profiles

which will guarantee the desired motion of the object from one position and orientation

to another. The closed loop is modeled by equality constraints on the position variables

and the friction-assisted grasp by inequality constraints on the contact forces. The dy-
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Figure 4.7: a) Schematic of human grasping the object and b) Forces exerted by the human
subject.
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Figure 4.8: Two robots holding an object.

namics of the two manipulators can be described by two sets of three ordinary differential

equations (refer to the appendix for the derivation of manipulator dynamics) [140]:

I����� ��� 
 C����� ���� � �� � JT� F�

I����� ��� 
 C����� ���� � �� � JT� F� (4.1)

where �i is the � � � vector of the joint coordinates of the ith (i � �� �) manipulator, ie.

�� � ���� ��� ���
T and �� � ���� ��� �
�

T , Ii��i� is the � � � inertia matrix, Ci��i� ��i� is the

�� � vector of nonlinear terms (Coriolis and centrifugal forces), �i is the �� � vector of the

joint torques, Ji is the � � � Jacobian matrix relating the velocity of the center of mass of

the object to the joint velocities and Fi is the ��� generalized force vector, representing the
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force exerted by the manipulator on the object and the moment about the center of mass.

Based on the physical dimensions of the subject, we can calculate the mass and moments

of inertia of the human arm based on the normalized anthropometric measurements of

Winter [130]. The dynamics of the grasped object is given by:

M �p � F� 
 F� (4.2)

where, M is the � � � inertia matrix of the object and p � �x� y� ��T , is the � � � vector

representing the position and orientation of the object with �x� y�, being the coordinates

of the position of the center of the object. As shown in Figure 4.8, the components of the

contact force acting on the object along the inward pointing normals are denoted by F�n

and F�n while those tangential to the contact plane with F�t and F�t.

The two manipulators completely restrain the motion of the object. Therefore, the

position of the center of mass of the object can be expressed as either a function of ��

or a function of ��. Hence, the position of the center of mass of the grasped object is

constrained by the equality constraint:

�p�����t�� � �p�����t�� (4.3)

where the vector �p�����t�� denotes the position and orientation of the object expressed as

a function of �� and �p�����t�� is the same vector expressed as a function of �� (which are

both explicitly dependent on time, t). The constraints on the normal component of the

contact force are:

F�n � 
� F�n � 
� (4.4)

The tangential forces are subject to constraints due to Coulomb’s law of friction. This

ensures that the object does not slip from the subject’s hands and is given by:

jF�tj � �F�n� jF�tj � �F�n (4.5)

where � is the coefficient of friction.

4.2.1 The optimal control problem

Based on the formulation of Chapter 3, we need to define a suitable cost function so that

we can find the extremal solution. The “minimum jerk solution” proposed by Flash and

Hogan [60] for pure translatory motion in R
� and later extended by Garvin et al. [45]

to account for rotational component of motion in the plane, is a purely kinematic model

of the system and does not consider the mass of the grasped object or dynamics of the
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human arm. Since, it is a purely kinematic model, we cannot obtain any force information,

i.e., how the left and right arm forces are distributed in the manipulation task. In order

to obtain force information, we use the model first proposed by Uno et al. [121] which

minimizes the rate of change of actuator torques. Since the inputs to the system are

the rate of change of actuator torques, we are guaranteed a piecewise smooth solution

for the forces and torques based on the methodology of Chapter 3. This is a reasonable

assumption, since normal point to point movements by humans are “smooth” without any

abrupt changes in forces.

Thus to find an optimal solution, we use the following cost function:

min
�

�

Z tf

t�

� ���� 
 ���� � dt (4.6)

subject to the constraints in Equations (4.1-4.5).

We define the input vector to be

u � �� � (4.7)

Based on the methodology in Chapter 3, we write the optimal control problem as follows:

The optimal control problem is to

min
�

�

Z tf

t�

� ���� 
 ���� �dt

subject to the following system dynamics (Equation 4.1):

�x � f�x� u� t�

where the above equation is a vector equation with x as a �� � � vector,

������� ���� ����
T .

and the equality and inequality constraints are:

�p�����t�� � �p�����t��

M �p � F� 
 F�

F�n � 
� F�n � 


jF�tj � �F�n� jF�tj � �F�n

We can easily write down it’s reformulation in the unconstrained variational calculus

framework based on the methodology of Section 3.4. Boundary conditions must be spec-

ified to solve the optimal control problem defined above. For each movement, we know
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the start and end positions. Further, the motion starts and ends with zero velocity and

acceleration. Thus we have a total of 9 boundary conditions at each point. Since we have a

12-dimensional state space, we can specify 3 additional boundary conditions at each end.

For example, it may be meaningful to specify the internal forces at the beginning and the

end of motion [140].

4.3 Results

4.3.1 Planar two arm movements

In this section, we present some of our experimental and theoretical results. These results

are based on pure translatory tasks for the subject in the horizontal plane. In other words,

it is possible for the subject to go from the initial to final position via a pure translation,

although the experimental apparatus allows the subject to perform rotations as well. The

trajectories and force histories for four subjects are presented and analyzed.

Repeatability

During the experiments, the time taken to complete the motion varied from 0.8 seconds

to 1.2 seconds, and there is considerable variation across subjects. Further, the subjects

made a systematic error when reaching the targets. This was expected given that no

visual feedback of the arms with the handle was provided and because of the parallax

in the perception of the target. However, the duration of the motion and the accuracy

in reaching the target are of secondary importance to this study since we are primarily

interested in the kinematic and dynamic features of the measured trajectories.

We tested the repeatability of the trajectories by comparing the motions performed by

the same subject and by different subjects on different trials. Numerical calculations of

repeatability measures for different trajectories (within subject and across subjects) are

presented in [45]. The velocity histories were found to be repeatable across trials for

the same subject and across subjects. The force trajectories on the other hand were not

repeatable. This could be due to the fact that the task is over constrained and hence the

subjects have no way of controlling the internal force or the “squeeze” force that they exert

during a typical manipulation task. We will present experimental evidence in this regard

later in the section. Note that in all the experiments studied here, the angular variations

(�) and the torques recorded by the force/torque sensors are close to zero and will not be

shown in the plots.
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Frontal and sagittal plane motions

The trajectories for a representative subject for the � � � and the � � � motions (the

numbers refer to the target numbers in Figure 4.3) are shown in Figures 4.9 and 4.10.

The spread in the sagittal plane trajectories (� � �) can be seen to be less than 0.01

meters while the spread in the frontal plane trajectories (� � �) is less than 0.05 meters.

At first sight, it appears that the trajectories are straight lines, but it is clear from Figures

4.9(b) and 4.10(b), that the average trajectory is curved. This is also the case for motions

in the opposite direction, �� � and �� �, as shown in Figure 4.11. In fact, if we compare

the trajectories for � � � and � � �, and similarly for � � � and � � �, we find that

the curvatures have opposite signs. The average curvature for these trajectories is shown

in Table ��� for subjects S1-S4. While the signs of the curvature for the trajectories was

observed to be the same across subjects, there was a significant variability in the actual

values. However, the variability for one subject across trials was found to be very low. For

example, for subject S2, the standard deviation in the curvature for the �� � motion and

the � � � motion was observed to be 
�

�� meters and 
�

	� meters(less than �� of the

average value, which makes the data statistically significant). The bias in curvature was

not statistically significant in oblique translatory motions. The average trajectories for

the � � � and � � � motions are shown in Figure 4.12 for two representative subjects.

From the individual plots (not all are shown here), we found the � � � trajectories to be

less curved than all other trajectories.
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Figure 4.9: a) Observed trajectories and b) Average trajectory for the �� � motion.

Figure 4.13 shows the velocity profiles for � � � and � � � motion averaged over all

the trials for a subject. Since the velocity profiles are repeatable, we can conclude some in-

variant characteristics for other subjects also. As seen from Figure 4.13(a), �y is bell shaped
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Figure 4.10: a) Observed trajectories and b) Average trajectory for the �� � motion.

Table 4.1: Radius of curvature for motions in the frontal and sagittal planes.

Motion S1 S2 S3 S4
�� � �
���m �
���m �
���m �
���m
�� � 

���m 

���m 

���m 

��	m

�� � 

��	m 

��
m 

��
m 

��	m

�� � �
���m �
���m �
���m �
���m

and asymmetric to the left. Thus the acceleratory phase is smaller than the deceleratory

phase. This implies that humans, in response to the task, accelerate the object faster to-

wards the onset of motion and after having reached the peak velocity relatively quickly,

tend to decelerate to lower velocities after that. It is also interesting to note the sinusoidal

shape of �x which reflects the observed curvature in the � � � motion. These observations

are also observed in Figure 4.13(b) for the � � � motion. Similar observations are also

made for the �� � and �� � motion though they have not been plotted.

Force history

As the total (resultant) force acting on the object is uniquely determined by the trajecto-

ries, we are mainly interested in the internal forces. There are three components to the

internal force vector: a moment perpendicular to the plane and two force components. We

will denote the internal force in the direction normal to the two palms by Fn, where

Fn � F�n � F�n
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Figure 4.11: Averaged trajectories for: a) the � � � and � � � motions; and b) the � � �
and �� � motions.
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Figure 4.12: Trajectories for: a) the �� � motion; and b) the �� � motion.

We will call this component the interaction force, using the terminology of [134]. The

tangential component and the moment normal to the plane are observed to be negligible

in this study and are not discussed further.

The internal forces varied significantly across subjects. While the instructions for the

task (moving from one target to another) specify the initial and final positions and ve-

locities, there is no mechanism for specifying the initial and final internal forces. Each

subject used a different initial and final internal (grip) force and therefore, there is consid-

erable variability in the magnitudes across subjects. For this reason we did not average

the internal force data across subjects.

The internal force history for the motion (� � �) is shown in Figure 4.14(a) for two

representative subjects. The solid line denotes subject, S3, and the dashed line denotes

subject, S4. The internal force increased as the velocity increased to a peak and then
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Figure 4.13: Velocity profiles for a) �� � motion and b) �� � motion.

decreased toward the end of motion. While the magnitude of the internal force varied

across subjects, this general trend was observed in all subjects.

The normal component of the forces exerted on the object are shown in Figure 4.14(b).

In the � � � motion, there was an initial dominance by the left arm followed by a right

arm dominance in the second half of motion. In other words, the palm that pushed the

object in the direction of acceleration or deceleration dominated. This is consistent with

the observations of Reinkensmeyer et al. [105] in their study of bimanual, single-degree-

of-freedom, wrist movements. However, the forces exerted by the left arm were larger

than the right arm. This can be easily explained if we look at the data of [30, 45, 138, 139]

that shows that the velocity profiles (not shown here) are always asymmetric. The time

taken to go from zero velocity to the maximum velocity is always less than the time taken

to decelerate from the peak velocity to rest. In other words, the magnitude of the peak

acceleration (to the right), is always lower than the magnitude of the peak deceleration (to

the left). Since, in the �� � motion, the hand that dominates initially (the pushing hand)

is the left hand, we expect to find the left arm force to be larger than the right arm force.

The internal force for the sagittal plane motions are shown in Figure 4.15. During the

� � � motion, once again there was an increase in the internal force Fn, as the object

was moved from the initial to final position. However, the increase was more significant

and occurred through a larger part of the motion than observed for frontal plane motions

(Figure 4.14). This initial increase was also seen when the object was moved from � � �

as shown in Figure 4.16. However, in this case the increase was followed by a significant

decrease in the internal force. One possible hypothesis to explain the sharp rise and fall in

the interaction forces for �� � and �� � motions respectively, is based on the assumption
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Figure 4.14: a) Internal forces and (b) left and right palm forces for the � � � motion for
two representative subjects.

that if humans tend to apply constant torque about the shoulder joint, then further the

object is from the shoulder (as in position �) smaller will be the interaction force. That

would also explain why the interaction force is higher at the end of the �� � motion.

Thus, there are two general trends observed in Figs. 4.14(a) and 4.16. As mentioned

earlier, the internal force appeared to increase as the velocity of the object increased. In

addition, the internal force increased as the object was moved closer to the subject and

decreased as the object was moved away.
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Figure 4.15: a) Internal forces and (b) left and right palm forces for the � � � motion for
two representative subjects.
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Figure 4.16: Internal forces for (a) the � � � motion and (b) the � � � motion for two
representative subjects.

General translatory motions

The trajectories in the frontal plane and those in the sagittal plane showed a tendency

to curve, and this tendency was consistent across trials with the same subject and across

subjects. In general translatory motions, the curvature in the observed trajectories was

not consistent across subjects. However, the exception is the trajectory for the motion

� � � which was found to be straight for all subjects. The average trajectory and the

average velocity profiles for this motion are shown in Figure 4.17. Because the trajectory

was very close to a straight line, the velocities in the x and y direction were the same except

for a scaling factor. Neither of these two observations could be made for any other oblique

motion. Further the � � � trajectory and the force distribution appeared to be more

repeatable than for other oblique motions. The average internal force profile and the palm

force profiles for the �� � motion are shown for two different subjects in Figure 4.18. Once

again, the internal forces and the left and right arm forces show the same trends observed

earlier. The internal force increased as the velocity increased and then decreased toward

the end of the motion. Also, the dominance of the left arm force in the beginning and the

right arm toward the end was clearly seen for both the subjects in Figure 4.18(b).

Computational results and experimental observations

In this section, we compare the experimental observations with the predictions from the

computational model using the minimum torque change criterion for the � � � oblique
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Figure 4.17: a) Average trajectory; and b) average velocity profiles for the �� � motion.
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Figure 4.18: a) Internal forces and (b) left and right palm forces for the � � � motion for
two representative subjects.

motion. Instead of using the averaged results, we randomly chose an experimental trial1

for comparison. The boundary conditions (initial and final position, velocity, acceleration

and interaction force) for the computational model are calculated from the experimental

data.

The predicted and observed trajectory is shown in Figure 4.19(a) and the velocities

are shown in Figure 4.20. The discrepancy between the theoretical predictions and the

experimental data is small compared to the variance of the data (not shown in the plots).

However, this is not true of the interaction force shown in Figure 4.19(b). Though there

is a pretty good agreement towards the beginning and end of the motion, there seems

to be a larger discrepancy in the interaction forces towards the center of motion. We

1Since we need boundary conditions to generate the solution to (4.1-4.6), we use experimentally observed
end conditions rather than averaged boundary conditions.
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expect the interaction forces to depend on the acceleration of the object rather than its

velocity. This is clearly not the case, as the bell-shaped velocity profile leads to lower

accelerations towards the center of motion.2 Clearly higher interaction force towards the

center of motion suggests a velocity-dependent nature of the interaction forces.

The predicted variation of the interaction force is very small. However, the experimen-

tal data shows that the interaction force first increases and then tails off. In particular, the

computational model does not capture the increase in interaction force with an increase

in object velocity [35].
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Figure 4.19: Theoretical and experimental a) Trajectory and b) Interaction force for motion
�� �.
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Figure 4.20: Theoretical and experimental velocities: a) �x and b) �y for motion �� �.

2Thus, we expect the interaction forces to drop towards the center of motion.
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Effect of increasing the weight of the grasped object

If the object is made heavier, one expects the internal force to increase so that the ratio

of the tangential to the normal force at each palm is less than the coefficient of friction.

Figure 4.21 shows the effect of increasing the mass of the object from 0.85 to 1.95 Kg.

for two representative motions for one subject averaged across all trials. Increasing the

mass of the grasped object resulted in an increase in the internal force but there was no

significant change in the trajectory.
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Figure 4.21: Internal force plots for motion a) � � � and b) � � � for two representative
subjects.

4.3.2 Vertical two arm movements

Repeatability

In vertical two arm studies, we studied the trajectories for movements in the frontal and

sagittal plane. All movements in the frontal and sagittal plane had negligible rotational

component. The subjects were not given any specific instructions regarding rotating the

object during the manipulation task. The results analyzed offline showed that the subjects

were not rotating the object when they carried out the manipulation task. This was veri-

fied by computing the rotation matrix at each data point. Figure 4.22 (a) and (b) show the

cosine of angle of rotation about the axis corresponding to the axis of rotation for the �� �

and � � � motion respectively. The data is plotted for all the trials for a representative

subject. As seen from the figure, the value varies by less than 
�
� around 
. A similar

observation was also made for other subjects indicating that the subjects moved the object

with negligible rotation.
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Figure 4.22: Plots showing the cosine of the angle of rotation for a) � � � and b) � � �
motion.

We observed that all the trajectories and velocity profiles were highly repeatable across

trials and across subjects for all the investigated motions. Hence it is meaningful to av-

erage the trajectories and velocity profiles. The force profiles on the other hand are not

repeatable as in the case of planar arm movements. We hypothesize that a similar expla-

nation as planar arm movements holds in vertical arm movements also, i.e., since the task

is over constrained the subjects had no way of controlling the “squeeze” force. However,

the shape of the force profiles are identical across all the subjects for all the trials. Since

the significant components of each movement is the X � Z plane, we have not plotted the

trajectories and forces in the Y direction for most of the plots.

Trajectories and velocity profiles

In Figure 4.23, we show the observed trajectories for a particular subject and then the

average trajectories over all trials for that subject. The trajectories, � � � and � � � are

significantly different than the trajectories observed in planar two arm movements. It is

clearly seen from Figure 4.23(a) that the trajectories for all the trials for the �� � motion

by the subject have a leftward curvature and hence the average trajectory is also curved.

However, unlike planar arm movements, the trajectories for the � � � movement are

straight. This result is also in agreement with the findings of Atkeson and Hollerbach [6].

This could be partly explained by the fact that during the vertical arm movements there

is a greater effort by the subject to lift the grasped object in upward motion and a straight

path may not necessarily be the optimal trajectory. However, for downward movements,
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less effort is required as the motion is assisted by gravity. This is also reflected in the indi-

vidual left and right arm forces and the interaction forces for two representative subjects

in Figure 4.27 and Figure 4.28. For frontal plane motion the trajectories are straight lines

when projected in the X � Z plane which is the significant plane of motion. These results

are also in agreement with the findings of Atkeson and Hollerbach [6]. This is clearly ob-

served from the trajectories for the subject in Figure 4.24(a) and the average trajectories

in Figure 4.24(b). In Figures 4.25(a) and 4.25(b), we show the three-dimensional plots of

the trajectories in the frontal and sagittal plane respectively.
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Figure 4.23: a) Observed trajectories for � � � motion and b) Average trajectories for
�� � and �� � motion.
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Figure 4.24: a) Observed trajectories for � � � motion and b) Average trajectories for
�� � and �� � motion.

The velocity profile for � � � and � � � motion are as shown in Figure 4.26(a) and for

� � � and � � � motion in Figure 4.26(b). It is clearly seen that based on the observed
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Figure 4.25: Three dimensional trajectories for the a) frontal and b) sagittal plane motion.
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Figure 4.26: Average velocity profiles for a) � � �, � � � motion and b) � � � and � � �
motion.

near straight line trajectories, the velocity profiles for these motions are more symmetric

that those in planar arm movements. If we align the peaks of the �� � and �� � motion

by reflecting the velocity profile for the � � � motion along the Z-axis, we observe that

the � � � motion leads the � � � motion. Also the time taken to complete the � � �

motion is marginally greater than the � � � motion which indicates that the distance

traveled during the � � � motion is shorter than the � � � motion since the area under

the velocity-time curve for the �� � motion is lager than the �� � motion. This supports

the observation that the trajectory for the � � � motion is nearly straight while that of

the �� � motion is curved to the left.

63



Force history

The interaction force profiles for the �� � and �� � motion are as shown in Figure 4.27(a)

and Figure 4.28(a) respectively. It is clear from the figures that the forces do not exhibit

the characteristics of planar movements as the motion is in the vertical plane. The force

profiles are sinusoidal and start and end with roughly the same values. In each of these

plots, we have plotted the results for two representative subjects. Clearly, the interaction

forces are higher for the upward movement than downward movement as in the � � �

movement, work is done against gravity. Though the shapes of the interaction force profile

is repeatable, the actual values are not. This is because the manipulation task is over

constrained and that makes the control of “squeeze force” difficult.

a)

0 0.5 1
0

5

10

15

20

Normalized time (sec)

F
or

ce
s 

(N
)

b)

0 0.5 1
0

2

4

6

8

10

Normalized time (sec)

F
or

ce
s 

(N
)

____    F1n

−.−.−.    F2n

Figure 4.27: a) Internal forces and (b) left and right palm forces for the � � � motion for
two representative subjects.

a)

0 0.5 1
0

5

10

15

20

Normalized time (sec)

F
or

ce
s 

(N
)

b)

0 0.5 1
0

2

4

6

8

10

Normalized time (sec)

F
or

ce
s 

(N
)

−.−.−.    F2n

____     F1n

Figure 4.28: a) Internal forces and (b) left and right palm forces for the � � � motion for
two representative subjects.
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The left and right arm force trajectories for the � � � and � � � motion are shown

in Figure 4.27(b) and Figure 4.28(b) respectively. It is seen that the force profiles for the

individual arms are similar for both the subjects and there is no dominance of one arm over

the other during the execution of the required task. This is expected since the movement

is in the vertical plane and parallel to the body with the object grasped approximately

mid-way between the two shoulders.3

The internal forces and left and right arm forces for the � � � motion are shown in

Figure 4.29 for two representative subjects. The internal forces show a significant rise

towards the beginning of motion as is observed in other motions. This is primarily due

to the initial reaction which could be caused due to the fear of loosing the grasped object.

The left and right arm forces show that the left arm is dominant towards the initial part

of motion and the right arm takes over in the latter half. The intersection of the two force

profiles as seen in Figure 4.29(b) is midway for the first subject and asymmetric for the

second subject. However, in both the cases the dominance of left and right arm is clearly

evident.
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Figure 4.29: a) Internal forces and (b) left and right palm forces for the � � � motion for
two representative subjects.

4.4 Conclusions and future work

There are many trajectory generation and motion planning schemes that have been pro-

posed for cooperating robot arms in the literature. However, there is no clear rationale for

selecting one method over another.

3The dashed force profiles are for the right hand while the solid lines represent the left hand.
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The first thing that is worth noting is that human trajectories and velocities are sur-

prisingly repeatable both in planar and vertical arm movements. This suggests that there

is a definite strategy used by humans in manipulation tasks. The near-straightness of the

trajectories and the smoothness of the velocity profiles suggest optimality by some mea-

sure. The increase in internal forces with an increased external load (weight) for planar

movements suggests that the optimality criterion must incorporate the force distribution.

However, there are several observations that are difficult to explain with a simple

optimality criterion. First, trajectories in the sagittal and frontal plane for planar motion

shows a curvature that is consistent across subjects. This is particularly significant for

manipulation in the sagittal plane. If the two arms are identical, there is no physical

explanation for the asymmetry induced by this curvature. Clearly, the two arms are not

identical. However there is no simple cost function that can model this asymmetry. It

is not completely clear why the trajectories in the planar studies exhibit curvature while

those in vertical arm movements are nearly straight. One way to possibly account for this

is to compare the eigenvalues of the inertia matrix of the manipulandum and the two arms

in the task space. Comparing the maximum and the minimum eigenvalues of the inertia

matrix for the manipulandum and the two arms gives a ratio of approximately � indicating

that we cannot neglect the inertia of the manipulandum in the experiments. This could

partly account for the observed curvature in the frontal and sagittal plane trajectories for

planar arm movements. Similar curvature is not present in vertical arm movements as

the grasped object is freely manipulated in space. Another significant observation that

is difficult to explain using physical principles is the increase in internal force with an

increase in velocity. One expects internal forces to be larger for increased accelerations.

However, this is not the case.

It is tempting to compare this work to the work on human grasping [42, 64, 65, 105].

It is worth noting that the internal forces in the experiments of [42, 64, 65, 105] are very

high compared to the resultant force required to accelerate it. While the ratio of the grip

force (equal to half the internal force) to the load force (equal to half the resultant force)

in these papers varies from � to �, the ratio in the bimanual tasks reported here is only

around 1. For example, the peak internal force (Fn) for the � � � motion for subjects S3

and S4 for planar movements was observed to be between �N and ��N. The peak resultant

force (FR) was around �
N of which the weight of the grasped object accounted for ����N.

It is also worth noting that weight accounts for a much larger fraction of the resultant

force in our experiments.

Another difference between the experimental paradigm of this work and that used in
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previous studies has to do with the coupling between the grasping and the manipulation

functions. In [42, 64, 65], the control of the grasp forces can be completely decoupled from

the manipulation task because the joints and muscle groups used in manipulation are

completely decoupled from those used in grasping. This is not true in our work and in

[105], where the same effectors (palms) are responsible for holding the object and manip-

ulating it.

We presented a computational model for planar arm movements derived from the min-

imum torque-change model for single-arm reaching tasks. The model predictions and the

experimental findings were roughly consistent as far the trajectories and the velocities

are concerned. However, the interaction forces were consistently different. Nevertheless

if the asymmetry in the human neuromuscular system can be reflected in this model,

it may serve as a model for predicting trajectories and force distribution in manipula-

tion tasks. It can also be used for generating trajectories for synthetic human models in

computer graphics and for motion planning in robotic systems. Finally, it is superior to

previous trajectory planning models in that it explicitly incorporates the distribution of

forces between the two arms and frictional constraints in friction-assisted grasps.

Our results in vertical arm movements are significantly different that those observed

in the planar case. The vertical arm trajectories for upward movements exhibit curvature

while the downward movements are straight. The force profiles for these motions also

exhibit different internal forces based on the manipulation task. This can be partially

explained by the fact that in one case the work is done against gravity (�� � motion) while

in the other case, it is along the direction of the gravitational force (�� � motion). Frontal

plane movements also exhibited near straight line trajectories and the force profiles are

similar to those in the planar case.

In this chapter, we have provided a detailed analysis of planar and vertical manipu-

lation tasks involving friction assisted grasps. The long term goal of this study is to see

(a) if human trajectory formation and the distribution of forces between the arms can be

explained by some optimality criterion; and (b) if such criteria can be used in the control

and coordination of robotic arms. This study may also help improve our understanding of

how humans use their arms in bimanual tasks. This is potentially useful for the design

of haptic interfaces (and human-machine interfaces in general) in which two arms are

required.
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Chapter 5

Multiple robot motion planning

We addressed the mathematical and numerical techniques for solving general motion

planning problems in Chapter 3 and a specific application to modeling cooperative hu-

man manipulation tasks in Chapter 4. In this chapter, we address the problem of motion

planning for cooperating mobile robots such as the experimental system shown in Fig-

ure 5.2. We are interested in solving motion planning problems such as the ones shown

in Figures 5.3, 5.4 and 5.5. The problem of nonholonomic motion planning is very well

addressed by Li and Canny [80]. They address some of the methodologies and control

algorithms which are a departure from the traditional methodologies in motion planning,

for example [24, 76]. There are three levels of indeterminacy in the motion planning prob-

lem. First, given a start and a goal configuration, the trajectory of the object will need to

be determined. Even if this trajectory is a priori specified, it may have to be modified to

avoid obstacles as shown in Figures 5.3, 5.4 and 5.5. Second, since a mobile manipulator

is kinematically redundant [103, 128], the object motion must be decomposed into dis-

placements of the joints of the manipulator and rotations of the wheels of the mobile cart.

Finally, the system is statically indeterminate. Therefore, the motion planning task also

involves distributing the load between the cooperating mobile manipulators in an optimal

fashion.

Depending on the choice of the cost functional, we can resolve one or more levels of

indeterminacy. For example, by minimizing a cost functional that is derived from the ve-

locity of the system, we can obtain a plan that specifies the velocities of the object, the

manipulators and the platforms [31, 33]. If the platforms and manipulators are equipped

with good velocity controllers, such a kinematic plan can be used to plan the trajectory of

the system. However, as we show later, such plans may result in discontinuities in the in-

put velocities and may be impractical. If the cost functional depends on the actuator forces
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and the force distribution, as shown later, the resulting plan resolves indeterminacies at

all three levels. Such plans are only meaningful for systems in which torque (force) control

is possible. Since the discontinuities in the velocity profiles leads to errors due to slippage

and dead-reckoning, it is be meaningful to obtain smoother velocity profiles which are de-

rived by minimizing the actuator forces based on the methodology in Chapter 3. These

plans will naturally have discontinuous actuator force/torque profiles.

Here we consider the dynamic modeling of cooperating mobile manipulators with non-

holonomic velocity constraints. In addition, we impose suitable unilateral constraints in

order to model joint limits and avoid collisions with obstacles. We first adopt a kinematic

cost functional in which we use the L� norm of the wheel velocities to minimize the dis-

tance traveled by the powered wheels. In order to facilitate stable grasping, we constrain

the relative position and orientation between the two platforms so that the object is within

the reachable workspace of each manipulator. Further, because the dynamics of the mobile

manipulators may not allow paths with high curvature, we limit the radius of curvature

of the platform trajectories. In our experimental system, the DC servo motors powering

the wheels are velocity controlled. Thus, a cost function which guarantees a continuous

velocity profile is meaningful to prevent slippage and errors due to dead-reckoning which

can arise with discontinuous velocity profiles. Such a cost function (as the norm of actu-

ator forces/torques) will indirectly minimizes the energy required for actuation and the

magnitudes of the forces over time.

5.1 Experimental system

In our experimental testbed shown in Figure 5.2, two mobile platforms can be used to

mount robot manipulators to cooperatively grasp and transport an object. The TRC plat-

form is a nonholonomic cart with two actuated degrees-of-freedom. The TRC platforms

are car-like computer controlled nonholonomic vehicles which have two DC-motor actu-

ated wheels and four casters, one at each corner. The linear and angular velocities of the

drive wheels can be controlled through a RS-232 serial line with a bandwidth of ��Hz.

The drive wheels are equipped with encoders. Each platform is controlled by an IBM PC

486 compatible computer. The wheel rotations are used with a dead-reckoning scheme to

estimate the position and orientation of the platform for real time control. The relative

position and orientation between the two platforms is measured through an instrumented

four-bar-linkage whose schematic is shown in Figure 5.1. As shown in the figure, each joint

of this linkage is equipped with an encoder, but this information is only used for analyzing
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the performance of the system; it is not used for real-time control. Thus the readings of

the encoder can be used to obtain accurate separation between the two platforms. This

system is used to obtain the distance between the two platforms and compare it with the

desired separation. Finally, it is important to note that currently there is no way of ex-

perimentally measuring the absolute position and orientation of the two platforms. The
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d

Castor

Castor
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α2 α4
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EncoderEncoder

Encoder
Encoder

Encoder

Figure 5.1: Schematic of the four-bar linkage connecting the two platforms.

mobile platforms enable appropriate (and even optimal) positioning and configuring before

grasping, and possible reconfiguration, if necessary. For example, in the scenario shown in

Figure 5.3, a system of two mobile manipulators, when faced with an obstacle, can “step

aside” by performing a maneuver that is roughly analogous to parallel parking and con-

tinue on their trajectory. In Figure 5.4, two mobile manipulators change their formation

from a “march in a single file” (stage 1 in the figure) to a “march abreast” (stage 2 in the

figure) when confronted with an obstacle in front of them. In this way they can follow the

desired trajectory for the object while reconfiguring, rather than having to stop, retrace

their steps and change their formation. The team of manipulatory agents can reconfigure

to a single-file formation to squeeze through a narrow corridor, as shown in Figure 5.5.

In order to allow each mobile manipulator to function independently, and to cooper-

atively perform manipulation tasks, each is controlled by an independent controller and

they are loosely coupled depending on the nature of the task [1]. Each agent is equipped

with force/torque sensors and can sense the actions of the other agent. During a coopera-

tive manipulation task, the only information that is exchanged at servo rates is the force
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information [8]. In a typical maneuver, each agent is given a nominal trajectory for the

object. Each platform follows an appropriate trajectory while the manipulators maintain

a stable grasp of the object by exerting the appropriate forces [132]. In this way the grasp

is maintained even if the platform trajectories deviate from the prescribed trajectory.

5.2 Obstacles as constraints

To formulate the problem of planning an obstacle-free path, we represent obstacles as

unilateral constraints in the state space. We need to be able to compute gradients of these

constraints along different directions in the state space to solve the obstacle avoidance

problem in the optimal control framework. In order to do this, we first define a suitable

measure of the distance between the robot system in a general configuration and any

obstacle. We then develop expressions for: (a) the distance function; and (b) gradients of

this function with respect to the configuration space variables.

Efficient algorithms for computing distances between two compact convex sets in Rn

are described in [47, 81]. However, when the sets intersect, most algorithms ([47] included)

do not compute the extent of the intersection. In order to compute the gradient, it is nec-

essary to have a continuous distance function that returns a “negative distance” when the

objects intersect, a zero distance when the objects touch and a positive distance when the

objects do not intersect. We model our objects as compact sets in R�. Negative distance

or the penetration distance between two objects is defined to be the smallest relative rigid

body translation in R� which will ensure that the two objects have no interior points in

common. We simplify the problem of computing the distance and its gradient by using

a spherical representation [27] for the links of the robot system and by representing the

obstacles with convex polygons. As shown in Figure 5.6, each link is represented by cir-

cumscribing circles and the robot is a union of these circles. By decomposing each link into

smaller polygons, we can describe the robot by smaller circumscribing circles and obtain

a description with a finer resolution. The advantage of this approach is that the distance

between a circular robot and a polygonal obstacle can be easily computed. In the present

problem, we model the robots to be circular1 and assume the obstacles to be polygonal of

varied shapes and sizes [29].

The distance between a robot link (a circle, SA) and an obstacle (a polygon, SB) can

be written in terms of �x� y�, the coordinates of the center of SA (point C), and �, the

1Equivalently we can assume that the robots are polygonal and the obstacles are circular. But we have
chosen to approximate the robots since there are fewer robot links than obstacles in most problems.
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Figure 5.2: A team of two cooperating mobile platforms.
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Figure 5.3: Executing a “parallel-parking” maneuver to circumvent an obstacle.
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Figure 5.6: Modeling a convex link with a desired resolution.

orientation of the link (see Figure 5.7). Let the point on SB that is closest to C be denoted

by O with coordinates �xo� yo�. The distance, d�x� y� ��, and its gradient, depend on whether

O is on an edge (Case �) or at the vertex (Case �).

In Case �, d�x� y� �� can be written as:

d�x� y� �� � j � �x� xo� sin�
 �y � yo� cos�j � rA

where rA is the radius of the robot link. dx, dy and d�, the partial derivatives of d�x� y� ��

with respect to x, y and � respectively, are given by:

dx � � sin� sgnf��x� xo� sin�
 �y � yo� cos�g
dy � cos� sgnf��x� xo� sin�
 �y � yo� cos�g (5.1)

d� � 
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Figure 5.7: Distance between a circular robot and convex polygon: (a) Case � (b) Case �.

In Case �, the closest point on the obstacle to the robot is the vertex of the polygon. Thus

d�x� y� �� is given by:

d�x� y� �� �
p

�x� xo�� 
 �y � yo�� � rA

and the gradient is given by:

dx � �d
 rA�
���x� xo�

dy � �d
 rA�
���y � yo� (5.2)

d� � 


When the center of SA belongs to SB, the negative distance is given by:

d�x� y� �� � �j � �x� xo� sin�
 �y � yo� cos�j � rA (5.3)

Both computations, (Case � or Case �) and (5.3), return the distance, �rA, when C lies on

the edge of the polygon.

5.3 Dynamic model

5.3.1 System description

In our experimental testbed shown in Figure 5.2, two mobile platforms can be used to

mount robotic manipulators which can cooperatively grasp and transport an object. The

platform is a nonholonomic cart with two actuated degrees-of-freedom. The task is to

obtain a trajectory and the history of actuator forces that will move the system from an

initial configuration to a desired final configuration, while enabling the two manipulators

to maintain contact with the object. There are several assumptions that we make based

on the physical characteristics of our system.
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� The end effectors are flat palms that can only push and not pull as shown in Fig-

ure 5.8. Thus the contact forces are nonnegative and subject to frictional constraints.

Further, we generate motion plans that require a zero moment about the center of

the palm for each manipulator.

� Since the platforms operate in an essentially two-dimensional world, we assume that

all rigid bodies “live” in the special Euclidean group in two dimensions. This leads

us to the planar models shown in Figure 5.8. We do not explicitly model the weight

of the grasped object. Instead, we require that the normal force on each manipulator

be larger than some critical value so that the resulting frictional force in the vertical

direction equilibrates the gravitational force.

� The control bandwidth for the platforms is much lower than that for the manipula-

tors. It is meaningful to plan the complete motion for the platform, while the ma-

nipulators are controlled to accommodate errors in platform trajectories. Since the

manipulator actuator forces will be determined primarily by errors that occur during

execution and by feedback control laws, we only determine the set points for desired

contact forces and assume that a suitable impedance controller will simultaneously

regulate contact forces and the object trajectory.

� Because we are interested in determining the manipulator contact forces (and not

the actuator forces), we assume a simplified model for the manipulator as shown

in Figure 5.8(a). Each manipulator has two prismatic (actuator forces, Ni and Ti)

and one rotary actuator (actuator torque, �i). On each manipulator, the actuator

forces corresponding to the two linear actuators are the normal and tangential con-

tact forces. All the manipulator mass is lumped at the object and at the base.

� Finally, in order to simplify the control problem, we generate motion plans in which

the position of the center of the grasped object is midway between the centers of the

bases of the two manipulators. With such plans, even if the manipulators are spatial,

the manipulation task is confined to a vertical plane and this makes the impedance

control task simpler. This requirement leads us to the model shown in Figure 5.8(b),

where xc � x��x�
� and yc �

y��y�
� .

� We assume that the actuators for the platform consist of coaxial motors on drive

wheels along an axis that passes through the geometric center of the platform as

shown in Figure 5.8(b). Further, the manipulators are mounted centrally on each

platform.
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5.3.2 Dynamics

The dynamic equations for the closed chain formed by the two agents, the object and

the ground, can be derived using Lagrange’s equation. Let q denote the �
 � � vector of

generalized coordinates (see Figure 5.8(b)):

q � �x�� y�� ��� �r��� �l��� x�� y�� ��� �r��� �l���
T (5.4)

The Lagrangian, L�q� �q�, is given by:

�

�

�X
i��

h
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�
�y� 
 �y�
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��
�

where �r�i and �l�i are the wheel rotations, Ip�i is the moment of inertia of the platform

about a vertical axis through the centroid, Iw�i is the wheel inertia, mp�i is the mass of

platform and M the mass of the object being manipulated. The subscript, i denotes the

ith platform. Note that Ip�i and mp�i (and if necessary M ) include the lumped inertia of the

manipulator.

The equations of motion are given by Lagrange’s equation:

d

dt

�
�L

� �q

�
� �L

�q
� Q
AT� (5.5)

where, Q is a �
�� vector of generalized forces acting on the platform, � is a ��� vector of

Lagrange multipliers and A is the �� �
 matrix of coefficients representing the kinematic
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constraints which are given by:

�x� sin �� � �y� cos �� � 


�x� cos �� 
 �y� sin �� � R

�
� ��r�� 
 ��l��� � 


��� � R

�B
� ��r�� � ��l��� � 
 (5.6)

�x� sin �� � �y� cos �� � 


�x� cos �� 
 �y� sin �� � R

�
� ��r�� 
 ��l��� � 


��� � R

�B
� ��r�� � ��l��� � 


where, R, is the wheel radius. These equations can be compactly written as:

A�q� �q � 
 (5.7)

where, A can be further simplified to consist of the following form:

A �

�
A� 



 A�

�
(5.8)

Based on Equation (5.7), we can write

Ai �

�
���

sin �i � cos �i 
 
 


cos �i sin �i 
 �R
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�


 
 � � R
�B

R
�B

�
��� i � �� � (5.9)

After some manipulation we obtain the dynamic equations for the system in the form [31]:

I �q � Q
AT� (5.10)

where, the inertia matrix, I, is given by:
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where �M� � M
� 
mp��, �M� � M

� 
mp�� and

Q � �N��x 
 T��x� N��y 
 T��y� ��� �r��� �l��� N��x 
 T��x� N��y 
 T��y� ��� �r��� �l���
T

�r�i and �l�i are the actuator torques for platform, i. The normal force, Ni, and the tangen-

tial force, Ti, are the two manipulator actuator forces, with x and y components denoted

by appropriate subscripts. The joint torque �i is the torque at the base joint of the manip-

ulator.

We can eliminate the six Lagrange multipliers from Equations (5.7) and (5.10) to get

four equations which represent dynamic equality constraints for our system. They can be

written as:�
�M��x� 


M

�
�x�

�
cos �� 
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�M��y� 


M
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�y�
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I���� � �� 
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I���� � �� 
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R
(5.11)

where Qi�x � Ni�x 
 Ti�x, Qi�y � Ni�y 
 Ti�y �i � �� �� and

�� �
���r�� 
 �l���� Iw�����r�� 
 ��l����

R

�� �
���r�� 
 �l���� Iw�����r�� 
 ��l����

R

There are three types of inequality constraints on the system:

1. The two manipulators have limited workspaces. Thus the platforms cannot drift too

far apart. In order to model this, we impose limits on the prismatic joints along the

line joining the bases of the two manipulators. If the length of the R�P�P�P�P�R
chain between the two platforms (see Figure 5.8(b)) is l, there is a lower limit and an

upper limit on l:

ll � l �
p

�x� � x��� 
 �y� � y��� � lu (5.12)

The maneuverability of a platform relative to the other is not restricted unless l is at

a limit.

2. We artificially limit the turning radius of the platform. Although in our experimental

platforms, they have no such limit, this constraint makes our plans conservative. We
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choose this so that the motion plans can be used with car-like systems that do have

constraints on the turning radius.

��i
���i � �x�i � �y�i � 
 i � �� �� (5.13)

Here, �i is the minimum radius of curvature for the path of the geometric center of

platform, i.

3. In order for the object to be held in a stable grasp, the normal force, Ni must be

non negative and the tangential force, Ti, must be bounded. We adopt the Coulomb

friction model and the constraint equations are given by:

N� � � � 
� N� � � � 
� jT�j � �N�� jT�j � �N� (5.14)

Here � is an appropriately chosen constant that will guarantee the ability to equili-

brate gravitational forces on the object and � is the coefficient of friction.

5.4 Kinematic motion plans

In this section, we will demonstrate the planning of shortest distance paths in the presence

of constraints. This will involve the determination of geodesics on the configuration space

(manifold). If the configuration space is Rn (but with no obstacles), the geodesics are

simply straight lines in Rn. However, this is not true in general. Even in Rn, the presence

of obstacles can significantly alter the trajectory.

Note that in this section, we will only be interested in planning optimal trajectories

with piecewise continuous velocities. This assumes that the system has a suitable velocity

controller that can generate such trajectories. If smoother trajectories are desired, the

dynamics of the system need to be incorporated and this is the subject of the next section.

5.4.1 The variational problem

We formulate the shortest distance problem by synthesizing a cost function that is the

integral of the norm of the actuator velocities. This cost function is given by:

J �

Z tf

to

�
���r�� 


���l�� 

���r�� 


���l��

�
dt (5.15)

It is easily seen that the integrand is sum of the squares of the Cartesian velocities of the

two platforms with appropriate geometric scaling factors. u � ���r��, ��l��, ��r��, ��l���
T is the

vector of control inputs.
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There are three types of constraints that must be incorporated. First, the distance

between the two platforms is constrained as shown in Equation (5.12). Second, the turning

radius for each platform may be limited as discussed in Section 5.3 (see Equation (5.13)).

Finally, we have additional constraints imposed by obstacles in the environment. These

constraints are of the form:

�� dij � 
 i � �� �� � � � � nl� j � �� �� � � � no (5.16)

where, � denotes the required clearance between the robot and the obstacle, dij denotes

the distance of the manipulator link, i from the obstacle, j, nl is the number of circles used

to model the manipulator links and no is the number of convex polygonal obstacles. Thus

there are nl�no constraints. However, at a given configuration, it is possible to deactivate

certain constraints due to obstacles that are far away using appropriate thresholding.

Example 1: Consider the example shown in Figure 5.9 in which two mobile manipula-

tors maneuver through a constriction created by two obstacles. We will show how to find

kinematic motion plans for this task. The treatment in this example is kept as simple as

possible. We will not follow the procedure of differentiating state constraints described in

Section 3.4.1. Since the state constraints will only be of first order constraints (p � �), sat-

isfactory performance can be obtained by directly adjoining the constraints in the Hamil-

tonian. Also, we will not try to reduce the dimensionality of the problem by substituting

for the control inputs in terms of the state derivatives as discussed in Section 3.4.1.

There are two obstacles in the problem, one of which is concave. This obstacle is de-

composed into two convex obstacles (see Figure 5.9). Each mobile platform is modeled by a

circle as shown in Figure 5.6. The grasped object is above the plane of the platform motion

and is not modeled for obstacle avoidance. The parameters describing the manipulators

are shown in Table 5.1 (Note that the inertial parameters are not relevant for this example

as we are only interested in a kinematic motion plan).

The kinematic model of cooperating mobile platforms is given by the following set of

equations:
�x� � R

� �u� 
 u�� cos �� �x� � R
� �u� 
 u�� cos ��

�y� �
R
� �u� 
 u�� sin �� �y� �

R
� �u� 
 u�� sin ��

��� �
R
�B �u� � u�� cos �� ��� �

R
�B �u� � u�� cos ��

��r�� � u� ��r�� � u�

��l�� � u� ��l�� � u�

(5.17)
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We define the state vector, x, consists of the generalized coordinates:

x � �x�� y�� ��� �r��� �l��� x�� y�� ��� �r��� �l���
T

The inequalities can be converted to equalities and written in the following form:

�h� � ���

h
R
�B � ��r�� � ��l���

i�
�
h
R
� �

��r�� 
 ��l���
i�


 
��

�h� � ���

h
R
�B � ��r�� � ��l���

i�
�
h
R
� �

��r�� 
 ��l���
i�


 
��
�h� � ll � l 
 
��
�h� � l � lu 
 
��

�h� � �� d�� 
 
��
�h
 � �� d�� 
 
�

�h� � �� d�� 
 
��
�h� � �� d�� 
 
��

(5.18)

To reduce the problem to the standard form, we will follow the procedure of Section 3.4

(with l� � 
) and define the extended state vector as:

X � �XT
x �X

T
u � X

T
� �X

T
� � X

T
� �

T (5.19)

where

Xx � �x�� y�� ��� �r��� �l��� x�� y�� ��� �r��� �l���
T �

�X� � �
� � � � 
���
T �

�X� � ��� � � � ���
T

�Xu � �u� u� u� u��
T �

�X� � �
� � � � 
��
T


�� � � � � 
�� are multipliers for the state equations given in Equation (5.17), ��� � � � � �� are

multipliers for the modified inequality constraints and 
�� � � � � 
� are the slack variables in

Equation (5.18). The Hamiltonian for the variational problem can now be expressed as a

function of the �
�dimensional extended state vector X and �X. The boundary conditions

are:

Xxjt� � x�to�� Xujt� � 
� X�jt� � 
� X�jt� � 
� X�jt� � 
�

Xxjtf � x�tf ��
�H
� 	Xu

jtf � 
� �H
� 	X�

jtf � 
� �H
� 	X�

jtf � 
� �H
� 	X�

jtf � 
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where

�H
� 	Xu

jtf �

�
���������

�R
� 
� cos �� � R

� 
� sin �� � R
�B
� cos �� � 
� 
 �u�

�R
� 
� cos �� � R

� 
� sin �� 

R
�B
� cos �� � 
� 
 �u�

�R
� 

 cos �� � R

� 
� sin �� � R
�B
� cos �� � 
� 
 �u�

�R
� 

 cos �� � R

� 
� sin �� 

R
�B
� cos �� � 
�� 
 �u�

�
���������
� �H

� 	X�
jtf �

�
����������������������

��
�

��
�

��
�

��
�

��
�

�




��
�

��
�

�
����������������������

�H
� 	X�

jtf �

�
��������������������������

�x� � R
� �u� 
 u�� cos ��

�y� � R
� �u� 
 u�� sin ��

��� � R
�B �u� � u�� cos ��

��r�� � u�

��l�� � u�

�x� � R
� �u� 
 u�� cos ��

�y� � R
� �u� 
 u�� sin ��

��� � R
�B �u� � u�� cos ��

��r�� � u�

��l�� � u�

�
��������������������������

� �H
� 	X�

jtf �

�
��������������������

��min�
���� � �x�� � �y�� 
 
��

��min�
���� � �x�� � �y�� 
 
��

ll � l 
 
��

l � lu 
 
��

�� d�� 
 
��

�� d�� 
 
�


�� d�� 
 
��

�� d�� 
 
��

�
��������������������

Table 5.1: The parameters used in Examples �� �.

N �� �� R B ll lu �

100 0.1 m 0.1 m 0.1 m 0.3 m 0.9 m 1.1 m 0.01 m
k� k� � mp�� mp�� Ip�� Ip��
5 5 0.25 5.0 Kg 5.0 Kg 1.0 Kg-m� 1.0 Kg-m�

Figure 5.9 shows snapshots of the computed motion plan at equal intervals in time

(0.25 seconds). The path of the geometric center of each platform is shown in Figure 5.10.

The linear velocity of the geometric center, vi, and the angular velocity, �i, of platform i
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Figure 5.9: Example 1: Two robots going through a narrow constriction.

is shown in Figure 5.11. The shortest path requires the system of mobile manipulators to

reconfigure from a “march-abreast” formation to a “follow-the-leader” formation and then

back to the first formation in order to squeeze through the constriction in the middle. It

is seen that the platforms tend to “hug” the obstacle boundary as they avoid it. Since the

system switches from an unconstrained state to a constrained state, we can expect discon-

tinuities in the velocity profile for a kinematic modeling of the system. These are clearly

evident in the plots shown in Figure 5.11. Due to the limitations of the TRC-Labmates

internal controllers and their narrow bandwidth, it is impractical to use such discontin-

uous velocity profiles for accurate trajectory following. Errors due to dead-reckoning are

unavoidable and hence in order to get satisfactory response from the experimental system,

it is meaningful to have “smooth” velocity profiles. Thus we seek minimization of energy

or the actuator forces to obtain a continuous velocity profile in the next section.

5.5 Motion planning with dynamics

In this section, we will illustrate with examples the procedure for generating plans that

conform to dynamic constraints such as frictional constraints, normal forces and so on. By

choosing a cost function that will depend on torques, we will guarantee solution trajecto-

ries in which the velocities are piecewise smooth. Correspondingly in the process, we have

a satisfactory solution for our experimental system. The actuator forces, and therefore

83



a)

0 1 2 3 4
1

1.5

2

2.5

X (m)

Y
 (

m
)

Platform 2

b)

0 1 2 3 4

0

0.5

1

1.5

X (m)

Y
 (

m
) Platform 1

Figure 5.10: Example 1: Paths of (a) Platform 2; and (b) Platform 1.
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Figure 5.11: Example 1: Velocities of the platforms.

accelerations, may only be piecewise continuous.

5.5.1 The variational problem

In this section, we will consider the minimization of the integral of the norm of the actuator

forces and torques for the platforms and the manipulators according to the model shown

in Figure 5.8. The cost function is given by:Z tf

t�

kuk�W dt (5.20)

where the input vector is:

u � ���� �r��� �l��� N�� T�� ��� �r��� �l��� N�� T��
T

and kukW is the weighted norm uTWu, with W a user-defined positive-definite weighting

matrix.

The state vector, x, consists of the position and velocities of the platforms:

x � �P V �T
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where

P � �x�� y�� ��� �r��� �l��� x�� y�� ��� �r��� �l���
T

and

V � � �x�� �y�� ���� ��r��� ��l��� �x�� �y�� ���� ��r��� ��l���
T

In this problem, in addition to the inequality constraints discussed in Section 5.4.1,

there is an additional set of inequalities associated with the grasping forces. The nor-

mal and tangential forces must satisfy Coulomb’s law according to Equation (5.14). All

inequalities can be written according to the procedure in Section 3.4 as equalities:

�h� � ll � l 
 
��
�h� � l � lu 
 
��

�h� � ���
���� � �x�� � �y�� 
 
��

�h� � ���
���� � �x�� � �y�� 
 
��

�h� � � �N� 
 
��
�h
 � T� � �N� 
 
�


�h� � �T� � �N� 
 
��

�h� � � �N� 
 
��
�h� � T� � �N� 
 
��

�h�� � �T� � �N� 
 
���

(5.21)

In addition, we have the six kinematic equality constraints on the state:

�x� sin �� � �y� cos �� � 
� �x� cos �� 
 �y� sin �� � R
� �

��r�� 
 ��l��� � 
�

��� � R
�B � ��r�� � ��l��� � 
� �x� sin �� � �y� cos �� � 
�

�x� cos �� 
 �y� sin �� � R
� �

��r�� 
 ��l��� � 
� ��� � R
�B � ��r�� � ��l��� � 


(5.22)

Of the equality constraints in Equation (5.21) and Equation (5.22), ten are state con-

straints that need to be differentiated to make explicit the dependence on the input. Thus,

after differentiating the appropriate constraints in Equation (5.21) and Equation (5.22),

we obtain:

��l 
 � �
�� 
 �
� �
� � 
 �l 
 � �
�� 
 �
� �
� � 


���
������ � �x��x� � �y��y� 
 
� �
� � 
 ���

������ � �x��x� � �y��y� 
 
� �
� � 


� �N� 
 
�� � 
 T� � �N� 
 
�
 � 


�T� � �N� 
 
�� � 
 � �N� 
 
�� � 


T� � �N� 
 
�� � 
 �T� � �N� 
 
��� � 


(5.23)
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and

�x� sin �� 
 �x� ��� cos �� � �y� cos �� 
 �y� ��� sin �� � 


�x� cos �� � �x� ��� sin �� 
 �y� sin �� 
 �y� ��� cos �� � R
� �

��r�� 
 ��l��� � 


��� � R
�B ���r�� � ��l��� � 


�x� sin �� 
 �x� ��� cos �� � �y� cos �� 
 �y� ��� sin �� � 


�x� cos �� � �x� ��� sin �� 
 �y� sin �� 
 �y� ��� cos �� � R
� �

��r�� 
 ��l��� � 


��� � R
�B ���r�� � ��l��� � 


(5.24)

respectively. Based on Equation (5.11) and Equation (5.24) we can combine the two sets

of equations to get a system of equations of the form:

�f��P �� �V � �f��P� V �� 
 �f��P ��u (5.25)

Note that we can invert the �
 � �
 matrix �f��P �� to obtain the expression for �V . Thus,

the state equations are given by:

�
�P

�V

�
�

�
V

�f��P ���� f�f��P� V �� 
 �f��P ��ug

�
(5.26)

In this way, we embed the � equality constraints into the state Equation (3.1).

The extended state vector, X, is defined by:

X � �XT
x �X

T
� �X

T
u � X

T
� �X

T
� �X

T
� � X

T
	 �

T

where

Xx � �x�� y�� ��� �r��� �l��� x�� y�� ��� �r��� �l��� �x�� �y�� ���� ��r��� ��l��� �x�� �y�� ���� ��r��� ��l���
T �

X� � ����� �����
T �

�X� � �
�� � � � � 
���
T �

�X� � ���� � � � � ����
T �

�Xu � ���� �r��� �l��� N�� T�� ��� �r��� �l��� N�� T��
T �

�X� � ��
�� �
�� �
�� �
�� 
�� 

� 
�� 
�� 
�� 
���
T �

�X	 � ���� ���
T

(5.27)


�� � � � � 
�� are multipliers for the state equations for x, and � are the multipliers for the

�
 modified inequality constraints in Equation (5.23). ��� �� are the multipliers for the

equation: �
�����

�����

�
�

�
����

����

�
(5.28)
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where

���� � 
�� ���� � 
�

Finally, instead of directly adjoining the differentiated state constraints, we adjoin a lin-

ear combination of the state constraint and its derivatives following the procedure of Sec-

tion 3.4.2. For example, the constraint on the lower bound of the distance between the

platforms is adjoined as:

��f���l 
 ������ 
 ����� �
�� 
 k��� �l 
 ���������� 
 k��ll � l 
 ������g

with the boundary conditions:

ll � l�
� 
 ������
� � 
� � �l�
� 
 ������
������
� � 
�

Based on the nomenclature in Section 3.4.1, we have

n � �
� m � �
� l	 � �� � � �� l� � �
� l� � 
�

q� � �� q� � �� q� � �� q� � �� q� � � � � � q�� � 


According to Equation (3.33), we have r � ��. However, we may express u in terms of the

derivatives of x using Equation (5.11). Thus we can reduce the number of variables as

described in Section 3.4.1 and we end up with a problem in which X is a ��� � vector. The

boundary conditions for the variational problem are:

Xxjt� � x�to�� X�jt� � ��t��� Xujt� � 
� X�jt� � 
� X�jt� � 
� X�jt� � 
�

X	�t�� � 
� Xxjtf � x�tf �� X�jtf � ��tf ��
�H
� 	Xu

jtf � 
� �H
� 	X�

jtf � 
� �H
� 	X�

jtf � 
�

�H
� 	X�

jtf � 
� �H
� 	X�

jtf � 
�

Based on the methodology of Section 5.4.1, we can similarly write expressions for �H
� 	Xu

jtf ,
�H
� 	X�

jtf , �H
� 	X�

jtf , �H
� 	X�

jtf and �H
� 	X�

jtf at the final time, tf .

5.5.2 Examples and Experimental results

Example 2: We demonstrate the results obtained for the maneuver shown in Fig-

ure 5.12. The dynamic parameters are as shown in Table 5.1 and M , the mass of the

object being manipulated is 
�

� Kg. This corresponds to an object weight of roughly 0.05

Newtons. We chose such a low weight to confirm our kinematic motion plans as lower
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mass of the grasped object necessarily leads to a purely kinematic behavior of the system.

With a coefficient of friction of 0.25, the minimum normal force, �, is taken to be 0.1 New-

tons. This is clearly a situation where the dynamic interaction between the platforms is

minimal. Example 4 will illustrate the effect of changing M and �.

In this maneuver, the robot agents are in a “serial” follow-the-leader formation and

have to make a 	
� turn to avoid a possible obstacle in front of the first platform. Fig-

ure 5.13 illustrates the path of the center of each mobile platform. The first (leading)

platform goes forward while turning to the left, reverses, and then goes forward again.

Thus the path exhibits two cusps (Figure 5.13(b)). The second platform follows a smooth

path with a reversal near the end of the motion — there is a small cusp that can be seen

in Figure 5.13(a). Note that the turning radius constraint does not allow a simple “turn-

in-place” maneuver for the first platform. Figure (5.14) shows the x and y components of

velocities for each platform. Note that the velocities are smooth. In fact, they are piecewise

smooth because they are state variables.

The normal and tangential contact forces for each end-effector are shown in Figure 5.15.

Note that the normal force is always above the desired minimum, �. Since the cost func-

tion depends on the contact forces, both N� and N� are kept small. As a result at least

one of the normal forces is always at the minimum. The tangential forces must satisfy

Coulomb’s law of friction and this is seen in Figure 5.16(b). The manipulator torque for

each manipulator base is shown in Figure 5.16(a) and the wheel torques are shown in

Figure 5.17. Note that the wheel torques and the contact forces are only piecewise contin-

uous. The sudden changes in the wheel torques for the first platform occur at the cusps of

the path where the Cartesian velocities reverse.

(-1,0) (0,0)

(0,0)

(0,-1)

          FINAL

CONFIGURATION

         INITIAL

CONFIGURATION

PLATFORM 2 PLATFORM 1

Figure 5.12: Example 2: An example of reconfiguring maneuver.
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Figure 5.13: Example 2: Paths of (a) Platform 2; and (b) Platform 1.
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Figure 5.14: Example 2: Velocities of the platforms.
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Figure 5.15: Example 2: (a) Normal force, Ni and (b) Tangential force, Ti.
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Figure 5.16: Example 2: (a) Base torques, ��� �� and (b) Ti
�Ni
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Figure 5.17: Example 2: (a) Wheel torques �r��� �l�� and (b) �r��� �l��.

Example 3: In Example �, we treat the problem of executing a turn through 	
� and

a change in formation from a “serial, follow-the-leader” configuration to “parallel, march-

abreast” configuration as shown in Figure 5.18. The parameters are the same as in Exam-

ple 2. We also investigate the trajectories for different final conditions by varying the final

orientation of the two platforms while keeping the final positions fixed. Thus, the initial

configuration is the same for all the maneuvers and is given by:

�x��
�� y��
�� ���
�� x��
�� y��
�� ���
��
T � �
� 
� 
���� 
� 
�T �

The desired final configuration is:

�x��
�� y��
�� ���
�� x��
�� y��
�� ���
��
T � �
� 
� �f � 
���� �f �T �

where the final orientation �f belongs to the set f���� ���� ����� �g.

The paths for the platforms are shown in Figure 5.19. Each platform attempts to turn

at a point by moving first forward, reversing while turning and then moving forward while

turning. Thus all paths show two cusps.
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Figure 5.18: Example 3: A 	
� turn.
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Figure 5.19: Example 3: Paths of (a) Platform 2, and (b) Platform 1 for different �f .

Example 4: In Example �, we consider the same task as in Example 2 (Figure 5.12)

but we vary the mass of the manipulated object. This indirectly increases the interaction

forces between the mobile platforms. In Figures 5.20, 5.21, 5.22, 5.23, and 5.24, we show

the planned motion for three different values of M (0.005, 1.0, and 5.0 Kg.). The corre-

sponding thresholds (�) on the normal forces are 0.1, 20.0, and 100.0 Newtons respectively.

As the mass and the threshold normal force increases, the dynamic interaction be-

tween the platforms becomes more significant. As shown in Figure 5.20, the trajectories

show a significant change as M is changed. As the mass is increased from 0.005 to 1.0

Kg., the path of Platform 1 continues to show two cusps (two reversals) but the shape of

the path between the cusps changes. With a higher mass (5.0 Kg.), the path begins to

show additional cusps (Figure 5.20(c)). The trajectory of the follower (Platform 2) in this

case shows only minor changes. For smaller mass values the interaction forces fluctuate

although their magnitudes are small. For larger mass values the forces are steadier and

larger. Figures 5.21 and 5.22 also illustrate this. For small mass values, the tangential

forces approach their maximum or minimum values. Because a larger object mass re-

quires a larger “squeeze force”, the internal forces dominate over inertial forces. Finally,

as seen in Figures 5.23 and 5.24, the ratio, Ti
�Ni

, shows a steady value for larger mass
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values of the grasped object.
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Figure 5.20: Example 4: Paths of the platforms for a) M � 
�

� Kg, b) M � ��
 Kg and c)
M � ��
 Kg.
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Figure 5.21: Example 4: Normal force, N�, for a) M � 
�

� Kg, b) M � ��
 Kg and c)
M � ��
 Kg.

5.6 Experimental results

In the experiments, the platforms are commanded to follow the planned trajectories while

the manipulators are commanded to maintain a stable grasp. The platform control is

based on position feedback that is obtained from dead-reckoning. Therefore the com-

manded position (and velocity) trajectories are translated into position (and velocity) tra-

jectories for the drive wheels, and the wheels are appropriately controlled based on po-

sition feedback using proportional control. We show the experimental results in Fig-

ures 5.25 and 5.26. In all these plots the variation of the relative position and orientation

(measured by the instrumented four bar linkage) is shown and compared with the relative

position and orientation computed from the optimal motion plan. The results for the 	
�
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Figure 5.22: Example 4: Normal force, N�, for a) M � 
�

� Kg, b) M � ��
 Kg and c)
M � ��
 Kg.
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Figure 5.23: Example 4: T�
�N�

for a) M � 
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 Kg and c) M � ��
 Kg.
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Figure 5.25: Variation of distance (a) and relative angle between platforms (b), �� � ��, for
a 	
� turn.
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Figure 5.26: Variation of distance (a) and relative angle between platforms (b), �� � ��, for
a parallel parking maneuver.

turn maneuver are shown in Figure 5.25. We compare the variation in l (the distance be-

tween the bases of the two manipulators) and � � �� � �� (the relative angle between the

two platforms) for the optimal motion plan and the experiment. Ideally, we expect to see

no discrepancy between the two sets of plots. However, because the platform control is ac-

complished with dead-reckoning, we can see that the experimental trajectory drifts from

the commanded trajectory with time. The angular discrepancy between the commanded

(optimal) and the experimental trajectory is as much as 7 degrees.

In Figure 5.26, we show the same results for the parallel parking maneuver. The

errors due to dead-reckoning are seen to be more pronounced especially if we look at the

variation of l with time. Here the optimal motion plan requires l to be at its upper limit

(��� meters). The experimental results show that l overshoots the optimal trajectory and

therefore violates this constraint. Obviously, this can be circumvented if the optimal path

is generated with a factor of safety on the constraints (e.g., with the limits on l between
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0.95 and 1.05 meters). More importantly, it is clear that such an open loop approach to

control may not be satisfactory for the types of maneuvers we are interested in.

The errors in dead-reckoning mainly occur when there are reversals in the paths of

any of the drive motors or the passive wheels (castors in our case). The reversal of a drive

motor invariably results in slip while the reversal of the path of castor causes it to change

its configuration (the spherical ball of the castor will always trail the pin along which the

vertical load is transmitted) which in turn results in frictional forces that indirectly cause

the drive wheels to slip. In an experiment where we commanded a platform to go forward

and backward on a 1 meter straight line track, the angular errors were observed to be 3

degrees per meter. This is consistent with the discrepancy between the experimental and

the optimal trajectories in the plots.

5.7 Optimal gait generation for locomotion systems

In this section, we discuss another possible application of the general methodology for

motion planning discussed in Chapter 3 for complex dynamical systems. We will discuss

numerical methods for calculating the optimal input patterns for a class of locomotion

systems characterized by a combination of nonholonomic constraints and group symme-

tries [98]. We also address the use of Lagrangian reduction techniques to improve the

speed and performance of these methods. One of the central examples used to illustrate

this general framework for locomotion is the snakeboard. Results from our investigations

into optimal gaits for the snakeboard example are presented, and some of the interesting

consequences of placing an optimality criterion on the input patterns are discussed.

The snakeboard exhibits several basic gait patterns, each with a specific desired tar-

get motion. In this work, we explore the ways in which the input patterns scale as the

demands are increased on the system. In particular, we show that the character of the

input patterns- that is, the type of gait chosen- may change according to the desired final

state. We liken this to similar transitions found in biological organisms, e.g., as exhibited

in a horse when shifting between a trot, gallop, or pace. A great deal of research and

speculation has been invested in showing that an animal transitions between gaits as a

means of optimizing (minimizing) the energy that is expended. The results presented in

the following sections establishes a general framework for studying these and other issues

related to optimality of gaits for undulatory locomotion systems.
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5.7.1 Dynamic formulations and reduction

Locomotion problems can naturally be formulated as dynamic mechanical systems, and

so are governed by Lagrange’s equations. In this section, we develop the formulation of

the constrained dynamics and address the use of reduction techniques (developed else-

where [15, 95, 97]) to simplify the analysis of locomotion systems.

5.7.2 Review of Lagrangian dynamics

For the basic locomotion problem, let Q be the configuration space, describing both the

position (and orientation) of the body and the internal shape of the locomotion system.

We assume the existence of a Lagrangian function, L�q� �q�, governing the dynamics of the

system. The interaction of the locomotion system with its environment is modeled by k

linear functionals, ��� � � � � �k [95]. We require that trajectories of the system satisfy:

�ji �q� �q
i � 
� j � �� � � � � k� (5.29)

In some cases, the constraints alone will determine the motion of the system, given the

shape changes as inputs. This is called the kinematic case [68]. More generally, however,

the formulation of the dynamics of the system requires the use of Lagrange multipliers to

modify Lagrange’s equations. In this case, the full dynamics of the system are given by:

d

dt

�
�L

� �qi

�
� �L

�qi
� 
j�

j
i 
 �i� (5.30)

Here, � represents applied forces and torques, such as those applied within the body to

change the internal shape, and the 
’s are Lagrange multipliers, which loosely correspond

to the magnitudes of the forces required to enforce the constraints. Notice that the La-

grange multipliers represent k additional state variables that must be solved for using

Equation (5.29) and (5.30) (a total of �n 
 k states). There are several ways to eliminate

the Lagrange multipliers, although these methods often lead to a more complex set of

governing equations complex, and can lead to singularities in the representation. In the

next section, we describe one method for eliminating the multipliers that is particularly

well-suited for problems of locomotion.

5.7.3 The reduction process

When studying locomotion systems, it is important to note that the configuration man-

ifold, Q, can always be divided into two parts: the inertial position of the body and the

internal shape of the system. Th position and orientation of the body will generally be
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a Lie subgroup of SE���; for example, SE��� for a snake or paramecium, or SO��� for a

satellite or the falling cat. The remainder of the state of the system is just the internal

shape of the body. We denote this internal shape by M , and call it the shape space. In

the standard mathematical nomenclature, Q is called a trivial principal fiber bundle with

fibers G and base space M . Q is “trivial” because the product structure is global, and it

is a “principal” bundle because the fiber is a Lie group. The Lie group structure (which

is common to all locomotion systems) leads to a systematic method, called Lagrangian

reduction, for reducing the equations of motion to a more compact form.

Associated with a Lie group, G, is its Lie algebra, g. The Lie algebra can be identified

with the tangent space at the identity, TeG (see [92]). The reader familiar with screw

theory will recognize the Lie algebra elements as defining twists. In particular, we will be

interested in body velocities, where an element 
 � g is defined as 
 � g�� �g.

Conservation laws naturally arise when a Lagrangian remains fixed under the action

of a Lie group, G. More formally, let the action of g � G on q � �h� r� � G �M � Q be

given as �g�h� r� � �gh� r�, where gh represents the action of the group G on itself (often

represented using homogeneous matrix multiplication). The Lagrangian function is said

to be G-invariant if L��g�q��Dq�gvq� � L�q� vq� for all g � G and �q� vq� � TQ.

For all unconstrained systems, Noether’s theorem [15] states that the invariance of the

Lagrangian implies a momentum conservation law, e.g., conservation of linear and angu-

lar momentum. Examples of “locomotion” systems that obey these laws are the falling cat

and the satellite with rotors. Letting p denote the body momentum, it is straightforward

to show [95] that the conservation law takes the form:


 � g�� �g � �A �r� �r 
 I�r���p� (5.31)

where A �r� is called the “local form” of the mechanical connection, and I is the locked

inertia tensor. I�r� describes the total inertia of the system when all joints are frozen

at configuration r. The connection, A , plays a central role in understanding locomotion,

and is developed in much greater detail in [15]. Its importance stems from the fact that

it determines the robot’s motion (note that g�� �g is the velocity of the robot’s reference

frame, as seen in body coordinates) as the combination of momentum, p, and internal

shape changes, �r� �r�. Hence, the connection will determine how internal shape changes

create a net robot motion. Notice also that the information encoded in the term A �r� is a

function of the shape, r, only.

The presence of external nonholonomic constraints, however, breaks these conserva-

tion laws. In fact, it is exactly the failure of the momentum conservation laws for these
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types of systems that is the key to dynamic undulatory locomotion (and many other forms

of locomotion). It describes why the snakeboard example discussed below can build up

momentum, even though the external forces (the forces of constraint) do no work on the

system.

A full treatment of the reduction process is present in [15]. The equations that result

from this process, however, are analogous with those seen in the unconstrained case, with

the exception that the momentum is no longer fixed, but may vary, dependent on the

internal shape. The interaction between constraints and momentum terms is summarized

in the following reduced equations of motion, which has been used to characterize a wide

range of locomotion systems [95].

g�� �g � �A �r� �r 
 I�r���p� (5.32)

�p � ��r� �r� p�� (5.33)

M�r��r � �C�r� �r� 
N�r� �r� p� 
 � (5.34)

In this formulation, a nonholonomic momentum, p, is defined, with an associated gov-

erning equation for p (Equation (5.34)), called the nonholonomic momentum equation [15].

The form of Equation (5.33) is very similar to that found in the unconstrained case (Equa-

tion (5.31)), with the replacement of the mechanical connection by a nonholonomic connec-

tion, A . The nonholonomic connection plays a similar role as above by formally expressing

the intuitive relationships between internal shape changes ( �r) and their effect on locomo-

tion (
 � g�� �g). Finally, we point out that the each of the equations is independent of g.

In particular, the shape equation (Equation (5.34)) is used to calculate the cost function in

terms of the energy input into the system.

Finally, we highlight the special limiting cases of the reduced formulation given by

Equation (5.33) - (5.34). In many examples, such as with certain models of mobile robots,

inchworms, or paramecia, the symmetries are completely annihilated by the constraints,

and so inertial effects are not present. This case is called the principal kinematic case, for

which the connection reduces to

g�� �g � �A �r� �r� (5.35)

On the other hand, in the case of the falling cat, some models of underwater vehicles,

satellites with rotors, and platform divers, there are no external constraints to influence

the system. In this case, the equations reduce to those found in Equation (5.31). Further-

more, many of these systems are assumed to have zero initial momentum. In this case, the

governing equations again reduce to Equation (5.35), with the nonholonomic connection

being replaced by the mechanical connection.
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Figure 5.27: The snakeboard model.

5.7.4 The example of the snakeboard

The Snakeboard is a variant of the skateboard in which the passive wheel assemblies

can pivot freely about a vertical axis. By coupling a twisting of the human torso with

an appropriate turning of the wheels (where the turning is controlled by the rider’s foot

movements), a rider can generate a snake-like locomotion pattern without having to kick

off the ground. A simplified model that captures the essential behavior of the snakeboard

is shown in Figure 5.27. We assume for our problem that the front and rear wheel axles

move through equal and opposite rotations. A momentum wheel rotates about a vertical

axis through the center of mass, simulating the motion of a human torso.

The snakeboard’s position variables, �x� y� �� � SE���, are determined by a frame af-

fixed to its center of mass. The shape variables are ��� ��, and so the configuration space

is Q � G�M � SE��� � �S� S�. The physical parameters for the system are the mass of

the board, m; the inertia of the rotor, Jr; the inertia of the wheels about a vertical axis, Jw;

and the half-length of the board, l. We make an additional assumption (see [15]) that the

inertias of the system satisfy J 
 Jr 
 �Jw � ml�. This assumption greatly simplifies the

equations of motion. The Lagrangian function for this problem is then:

L �
�

�
m� �x� 
 �y� 
 l� ���� 


�

�
Jr� ��

� 
 � �� ��� 
 �Jw ��� (5.36)

Control torques at the rotor and wheel axles are assumed, so � � �
� 
� 
� �� � ���. The

assumption that the wheels do not slip in the direction of the wheel axles determines two

constraints of the form of Equation (5.29):

� sin�� 
 �� �x
 cos�� 
 �� �y � l cos��� �� � 
 (5.37)

� sin�� � �� �x
 cos�� � �� �y 
 l cos��� �� � 
 (5.38)
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One approach to finding the equations of motion for this system is to solve explicitly for

the Lagrange multipliers. Instead, we can use the geometry of the system [95] to define

the nonholonomic momentum as:

p � ��ml cos� �� �x cos � 
 �y sin � � l �� tan�� 
 Jr sin �� ��� (5.39)

The momentum, p is chosen to correspond to the snakeboard’s total angular momentum

about the instantaneous center of rotation (think about the circular path it would follow if

the wheel angle, �, were fixed).

Using the constraint equations and the formula for the nonholonomic momentum, we

can then write down the equations governing � �x� �y� ���, involving the connection as in Equa-

tion (5.33):

g�� �g �

�
BB�

Jr
�ml sin �� 



 


� Jr
ml� sin

� � 


	
CCA
�

��

��

�



�
BB�

� �
�ml



�

�ml� tan�

	
CCA p (5.40)

The first term on the right-hand side of this equation is the nonholonomic connection, A .

Finally, the internal shape dynamics can be reduced as well [95], taking the form:�
Jr � J�

r

ml�
sin� �

�
�� � J�

r

�ml�
sin �� �� ��


Jr
�ml�

��p � ��

�Jw �� � �� (5.41)

These six equations (Equation (5.40) - (5.41)) completely define the motion of the sys-

tem. The use of reduction methods leads to a very concise and physically intuitive formu-

lation of the dynamical relationships that govern the snakeboard’s movement.

5.8 Numerical studies of snakeboard gaits

The example of a snakeboard for studying gait transitions is an important one for a va-

riety of reasons. First, this example contains many of the features common to a wide

spectrum of locomotion systems [97]. Also, the snakeboard provides an interesting ar-

ray of gait possibilities. In previous works [79], detailed studies have been performed on

several of these gaits (using open-loop inputs), and the system was shown to be locally

controllable [95]. The results presented here provide insights into optimal motions and

issues of gait transitions.

The physical parameters for all of the simulations shown here are:

m � ��
kg l � 
��m

Jr � 
���kg �m� Jw � 
���kg �m�
(5.42)
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These are approximate parameters taken from a prototype snakeboard used in the exper-

iments. For each simulation, the initial and final values of the state variables are set to

zero, unless otherwise specified. The cost function, C, is the time integral of the energy

input into the system.

5.8.1 Forward motion
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Figure 5.28: Forward motion of the snakeboard for zero initial and final momentum, along
with the optimal inputs, � vs. �.

The original studies of the snakeboard were inspired by the serpentine-like paths fol-

lowed by the actual Snakeboard riders. It was observed that they generated a forward

gait by synchronizing their torso and feet motions. This was called a “1-1” gait, implying

the same frequency motion for each of the inputs. Coupling the inputs in this manner led

to a net forward travel, with an associated generation of forward velocity, or momentum.

In this section, we seek to optimize the cost function given a desired forward motion of

�m� The optimal trajectory is given in Figure 5.28, along with a plot of the inputs used.

Notice the figure-eight motion of the shape inputs. Many modern results in geometric

analysis of nonholonomic systems suggest that so-called “area rules” play an important

role in motion generation. Essentially, these rules relate closed loops (i.e., loops enclosing

particular areas) in the shape space with proportional changes in position and orientation.

The motions shown in Figure 5.28 are suggestive of a (signed) area rule— one that builds

up and then takes away momentum, corresponding to a total signed area of zero— and a

moment rule, corresponding to the net motion in the forward direction.
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Figure 5.29: Rotate gait, with optimal inputs.

5.8.2 Rotate motion: “Three-point” turn

In the snakeboard, it was observed that a 2:1 input motion— that is, the rotor moving

twice as fast as the wheels— resulted in a net rotation of the system. A parametric study

of the optimal motions for generating such a rotation is shown in Figure 5.29, along with

the optimal inputs. Notice, however, the scale on the axes— the motion is essentially

rotating in place. This optimal gait is realized as a single, simple loop in shape space.

First, the wheels are turned outward. Then, the rotor is turned, causing the body to rotate

accordingly, until the system reaches the desired orientation, at which point the wheels

are turned back in place (see Figure 5.29).

5.8.3 Lateral motion: Parallel parking

A very interesting motion found in the snakeboard (but not yet seen in Snakeboard riding)

is a lateral motion, similar to a parallel parking maneuver. For the open loop system, this

gait was generated using a 3:2 ratio of rotor movement to wheel movement. The optimal

motion for a lateral motion of �m is shown in Figure 5.30. In this motion, the final po-

sition of � is specified as ���, explaining the lack of symmetry of this gait. The reader

is reminded that while this type of motion may seem very natural for kinematic mobile

robots, where the wheel angles are directly controlled, the motion in the snakeboard can-

not occur without involving the dynamics of the system.
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Figure 5.30: Parallel parking for the snakeboard.

5.8.4 Gait transitions

One of the most interesting aspects of combining optimal control theory with studies of

locomotion is the ability to ask questions about optimality of gaits. With the methods

developed here, it may be possible to analyze in simulation the dynamics of gait selection,

such as that found in many biological creatures.
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Figure 5.31: a) Gait transitions for increasing forward displacement and b) Inputs during
gait transition in forward motion.

We examine three types of gait transitions. In Figure 5.31(a), the total forward distance

traveled is varied. It is apparent that the optimal motion changes over the given range.

More interesting is to observe the deformation of the input patterns. Figure 5.31(b) shows

a very interesting series of changes, invoking parallels to a series of bifurcation points.

This cascading pattern continues as the closed curve in shape space moves from two loops

to three and even four loops.
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Figure 5.32: a) Gait transition when varying desired final momentum and b) Input pat-
terns during gait transition.

The second parameter that was varied was the desired final momentum, for a fixed

forward displacement (see Figure 5.32(a)). As the desired momentum value is increased,

there is a definite shift between two types of input motions. The shifts in input patterns

are shown in Figure 5.32(b), which shows the gradual distortion of a symmetric input

pattern (for zero initial and final momenta) to a distorted figure-eight (although it does

appear to retain the same basic structure throughout the deformation, suggesting a homo-

topic equivalence to this class of gaits). In Figure 5.33, we plot the cost function associated

with various values of the final momentum. Notice that initially an increase in the desired

final momentum leads to a decrease in the value of the cost function. This makes sense

since a nonzero final momentum implies that the system does not have to expend energy

in slowing down to zero momentum during the second half of the gait. Obviously, however,

this effect cannot last indefinitely, since there must be a cross-over point at which the en-

ergy exerted to achieve a particular momentum is greater than the energy input in the

initial start-and-stop motion. This cross-over point occurs around p � ��
. At this point in

Figure 5.32(a), the gait appears to have fully transitioned over to a unimodal shape.

Finally, we investigate the transition between two distinct types of gaits, by varying

parameters between a forward, “drive” gait and a lateral motion, “parallel parking” gait.

It is interesting to note that the smooth transition of the x-y pattern followed by the gaits

is not as apparent in the input patterns, which are quite complex.
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Figure 5.33: Cost function vs. desired final forward position.

5.9 Discussion

In this chapter, we presented a general approach for robot motion planning with geo-

metric, kinematic and dynamic constraints and demonstrated applications for planning

cooperative manipulation tasks with two cooperating mobile manipulators. The geomet-

ric constraints include constraints imposed by the presence of obstacles while the kine-

matic constraints may be holonomic or nonholonomic. The dynamic constraints include

the equations of motion and constraints on contact forces. In addition, the constraints

may be inequality constraints. We determine trajectories and actuator forces that mini-

mize a suitably chosen integral cost function while satisfying the constraints.

The motion planning problem was formulated as a problem in the calculus of varia-

tions and solved using the integral form of the necessary conditions. There are several

advantages to this method as presented in Section 3.7. In the problems considered in

this chapter, the dimension of the extended state space vector X was as high as 58 and

the number of mesh points N � �

. These solutions took approximately five minutes on

a 200 MHz. Silicon Graphics Impact workstation. Approximate solutions with 20 mesh

points can be computed in less than two minutes.

An example of the applicability of the proposed method for complex dynamical systems

is the snakeboard. We studied the various gait patterns that generate the required mo-

tion. We also studied the effect of distance traveled on gait transitions for the snakeboard
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Figure 5.34: Gait transition between parallel parking and drive gaits.

and the effect of varying values of final momentum for a fixed travel distance. The results

showed a gradual distortion in the symmetric input pattern for zero initial and final mo-

menta to a distorted figure-eight while maintaining the same basic structure throughout

the deformation for various values of final momenta.

One of the main disadvantages of this methodology is that the number of variables

in the formulation increases rapidly for very complex problems. Thus, this technique

does not lend itself to the solution of such general motion planning problems as the piano

movers problem. Instead, we can use this approach to generate solutions for problems

with a small number of robots/obstacles or to refine nominal solutions that are achieved

by geometric planners in complicated environments [36, 67]. Since this method suffers

from higher computational costs and also complexity for finding motion plans for larger

formations of robots, it is meaningful to combine centralized and decentralized motion

planning techniques in order to control a larger formation of robots. This is the essence of

the material in the next chapter.
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Chapter 6

Motion planning for formations of

robots

6.1 Introduction

In the last chapter, we discussed how to obtain optimal solutions for a team of cooperating

robots. Clearly, extension of this methodology to a larger number of robots (and in partic-

ular controlling a formation of robots) is quite straightforward. However, the search for

optimal motion plans can be computationally very expensive, particularly as the number

of robots or degrees of freedom of the system gets larger (n � �). For this reason, we pur-

sue in the current work easily computable feedback laws that can be used in conjunction

with a higher level (but lower complexity) motion planner. The motion planning problem

for such a team of robots can be stated as:

Given any team, C, of n robots with a given lead robot, and initial positions and orienta-

tions and goal positions and orientations in workspace W, generate a continuous trajectory

for C avoiding contact with the obstacles, Oi, or between robots subject to various geometric

and kinematic constraints of the system.

For a team of mobile robots, geometric constraints are typically constraints due to ob-

stacles in the environment and kinematic constraints are essentially nonholonomic con-

straints. Typically, these mobile robots have very good velocity controllers and are there-

fore able to follow a prescribed trajectory. It is therefore useful to model the control prob-

lem by tracking the velocity as the input variable. Thus dynamic modeling is not required.

We are interested in finding a kinematic motion plan for such a system.

The multi-robot motion planning problem can be approached by assuming that the
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sensory information collected by each robot is available to a central planner. In Chap-

ter 5, we used variational methods to obtain optimal motion plans for multiple robots

using such a centralized planner. The main disadvantage is that the search for optimal

motion plans can be computationally very expensive, particularly as the number of robots

(the number of degrees of freedom) becomes large. The multi-robot control and planning

problems are more tractable if each robot is assumed to be autonomous and controlled by

an independent control law. Sensor-based planners for independently controlled robots

are described in [141], while decentralized feedback control laws are developed in [117].

The main disadvantage is that it is difficult to establish guarantees or bounds on the sys-

tem performance. In this chapter, we will show that independently controlled robots with

appropriately designed control laws can maintain a desired formation with provable mea-

sures on the performance of the entire system. This is in contrast to the behavior based

control paradigm [9, 10, 89] where such measures can only be obtained empirically.

In this chapter, we discuss several fundamental issues underlying the control and co-

ordination of multiple autonomous robots. We focus on tasks in which the robots are

required to follow a trajectory while maintaining a desired formation and avoiding obsta-

cles. While these issues arise in any situation in which it is necessary to coordinate a

large number of independently controlled robots, they are particularly important in mili-

tary applications [3] where vehicles are often required to maintain a close formation. In

autonomous vehicle highway systems [86, 123], there is a need to control a platoon of cars

in formation while allowing the cars to perform such maneuvers as lane changes, merges,

or avoiding obstacles on the road. In these applications, it is necessary for the team to

accommodate constraints such as those imposed by obstacles, while maintaining the for-

mation as best as possible. In a situation as the one shown in Figure 6.1, for example, it

might be necessary to change the formation in order to negotiate the obstacle, and then

reform the original formation.

We model any given formation of robots as a triple �g� r�H�, where g represents the

group variables, �x� y� �� � SE���, of the lead robot in the formation, r is a set of shape

variables that describe the relative positions of the other robots in the team, and H is a

control graph which describes the control strategy (or behavior) used by each robot, and

the dependence of its trajectory on that of one or more of its neighbors. Thus, g denotes

the gross motion of the team of robots, r governs the ‘shape of the formation’, and H is

the discrete coordination protocol employed by the team. The formation of the team is

described by the pair �r�H�.
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Figure 6.1: Formation of robots changing shapes.

The control of a system of autonomous robots that can perform such tasks requires co-

ordination at several different levels. At the lowest level, it is necessary for each robot to

control its motion, to avoid collisions with its neighbors, and to move along a desired tra-

jectory. At an immediately supervisory level it is necessary to outline a strategy for main-

taining a formation. In a system of two robots, this might be as simple as a leader-follower

strategy where a leader plans and follows a preferred trajectory while the follower main-

tains a specified relative position and orientation with respect to the leader. This motion

of the lead robot is specified by the group variable g and the motion of the follower robot

is specified by the shape variable r. When the number of robots is more than two, there

might be more than one leader-follower pairs or other more complex structure of interac-

tion. This level of coordination is discrete. In contrast to the control laws for individual

robots where the state variables and inputs change continuously, there are only a finite

number of distinct formations and the changes in formations represent discrete changes

in the organization of the team. Each such formation of robots represents the underlying

control strategy and this control strategy is modeled by a directed graph H. Finally, at the

highest level, it is necessary to plan the trajectory for the entire team of robots based on

the available terrain information. At this stage �g� r�H� are planned concurrently based

on the requirements of the task. Thus, based on the above problem formulation and the

discussion, we can plan the motion for any given number of robots subject to geometric

and kinematic constraints.

Since our method for controlling formations must rely on local sensor-based informa-

tion, we must develop control laws that are based on such local information. We describe

two scenarios for feedback control within a formation [32]. In the first scenario, one robot

follows another by controlling the relative distance and orientation between the two. This
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Figure 6.2: Notation for l � � control.

situation is applicable to all formations in which each robot has one leader except for the

lead robot. Thus it can be used, for example, for robots marching in a single file. We la-

bel such a controller as the l � � controller or Controller I. A schematic of this controller

is shown in Figure 6.2 where we have two non-holonomic mobile robots and the aim of

this controller is to maintain the desired relative angle, �d��, and a desired separation, ld��
between the leader and the follower.

��
��
��

(x3, y3)

θ3

Castord

l23

θ1

ψ13

d
Castor

θ2

ψ23

Castord

��
��
��

(x2, y2)

��
��

l13

ROBOT 1

ROBOT 2

ROBOT 3

(x1, y1)

Figure 6.3: Notation for l � l control.

In the second scenario, a robot maintains its position in the formation by maintaining

a specified distance from two robots, or from one robot and an obstacle in the environment.

This behavior is useful for robots that are constrained by more than one robot (or obstacle)

in the formation. We label such a controller as the l � l controller or Controller II. A

schematic of this controller is shown in Figure 6.3 where we have two non-holonomic

mobile robots and the aim of this controller is to maintain the desired separation ld�� and

ld�� between the follower robot and its two leaders.
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We can represent a formation of robots in a graph theoretic setting where each robot

has a directional dependence on the other robots in the formation. A dependence of robot

A on robot B represents the dependence of the position (and orientation) of robot A on

that of B. Based on the two types of control laws proposed above, it is possible to maintain

arbitrary formations such as a triangular formation G, a straight line formation H, or

a rectangular formation, J as shown in Figure 6.4 depending on the constraints in the

environment.
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Figure 6.4: Isomorphic and Non-isomorphic digraphs.

In this chapter, we first describe our basic formulation of the problem where we model

a team of robots as a triple consisting of a group element that describes the gross motion

of the team, a set of shape variables that describe the relative positions of the robots, and

a control graph that describes the behaviors of the robots in the formation. We then de-

velop feedback control laws that are essential to maintain the desired position of a robot

within the formation and the overall shape of a formation. Later, we characterize the dif-

ferent formations possible for a team of n robots by enumerating the control graphs. We

prove an upper bound on the total number of possible control graphs and enumerate the

equivalence classes of digraphs that are relevant to this problem. We describe a discrete

coordination strategy for changing formations in terms of a sequence of transitions in the

control graph that satisfy the constraints in the problem. We present several examples

to demonstrate the general approach and show how a team of robots can automatically

111



change the shape of the formation and/or its control graphs in order to circumvent obsta-

cles (for example, to squeeze through a narrow passage).

6.2 Problem formulation

We now develop a framework for formalizing the basic issues addressed above. Before

getting into details, it is useful to review the basic assumptions underlying this work.

Each robot is equipped with the sensing and computational hardware that allow it to de-

tect the distance to the nearest obstacle and the relative position and orientation of the

neighboring robots in the team. Further, we assume that each team has a designated lead

robot which has the responsibility of planning the trajectory for the team. The trajectory

planning by the lead robot may be based on an approximate model of the team and the

formation without specifics of the individual robots. We presented the framework for solv-

ing optimal control problems having equality and inequality constraints in Chapter 3 and

applied it to solve the robot motion planning problem for two robots in Chapter 5. Based

on the methodology of Chapter 5, the optimal motion plan for the kinematic motion plan-

ning problem of the lead robot is straightforward. Thus the lead robot follows this optimal

trajectory and the other robots in the team follow the lead robot while maintaining the

desired formation.

The configuration space for a team of n robots in the plane is given by the Cartesian

product of n copies of SE��� i.e., SE���� SE���� � � � �SE���. We model the team of robots

by a triple �g� r�H�, where g represents the group variables, �x� y� �� � SE���, of the lead

robot in the formation, r is a set of shape variables that describe the relative positions

of the other robots in the team, and H is a control graph which describes the control

strategy (or behavior) used by each robot, and the dependence of its trajectory on that of

one or more of its neighbors. When viewed in this framework, the problem of locomotion

of a team of robots can be broken down into three sub-problems.

1. Trajectory planning: The determination of the optimal trajectory g�t� � SE��� for the

lead robot;

2. Robot control: The design of continuous robot control laws that enable the robots to

maintain the desired shape variables using the strategy prescribed by the control

graph H and also being able to modify the shape of the formation; and

3. Formation control: The design of the protocol for effecting changes in the control

graph, H, and the changes in shape r, to accommodate constraints imposed by the
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task, including those associated with obstacles.

In Chapters 3 and 5, we developed a set of algorithms grounded in the methods of

variational calculus for solving the trajectory planning problem with state and input con-

straints. This provides a solution to Item � above. In this chapter, we will focus on Items

� and �. We first develop a set of decentralized control laws that allow each robot to main-

tain a desired position within a formation and enables changes in the shape of the team

formation. These control laws have the advantage of providing easily computable control

inputs in real time, with provable performance for the entire system. We then focus on

changes in formation which do not require a change in the control graph and later develop

tools to incorporate changes in coordination protocol or control graph that describes the

behavior of each robot in relation to its neighbors. In particular, we enumerate the set

of possible control graphs for a team of n robots, and develop an algorithm that yields a

sequence of intermediate control graphs for transitions between two arbitrary formations.

6.3 Control laws for shape variables

In this section we develop two types of feedback controllers for maintaining a formation

of a team of mobile robots. These control laws are useful for maintaining either: (a) the

desired separation and relative angle between the leader and the follower robot as shown

in Figure 6.2 or (b) the desired separation of the follower robot from its two leaders as

shown in Figure 6.3.

The standard kinematic equations for a nonholonomic robot is given by:

�xi � vi cos �i

�yi � vi sin �i (6.1)

��i � �i

where the subscript, i, refers to the ith robot. With this notation, vi is the generalized

velocity along the allowable direction of motion for the mobile robot, and �i is the angular

velocity about the center of the wheel base. Each robot is driven by two coaxial, powered

wheels with a passive, front, castor-like wheel. The theory and the methods presented

here are easily adapted to other nonholonomic models of wheeled robots. Our motivation

for using Equation (6.1) comes from our experimental testbed shown in Figure 5.2.
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6.3.1 Controller I: l� � control

Figure 6.2 shows a system of two nonholonomic mobile robots separated by a distance of l��
between the center of the first robot and the front castor of the second robot. The distance

between the castor and the center of axis of the wheels of each robot is denoted by d. Each

robot has two actuated degrees-of-freedom. The two robots are not physically coupled in

any way and the aim of the feedback controller is to maintain the desired formation. The

state of the follower robot is given by: �l��� ���� ���
T

In the l�� control mode for two mobile robots, the aim is to maintain a desired length,

ld�� and a desired relative angle, �d�� between the two robots. The kinematic equations for

the system of two mobile robots shown in Figure 6.2 is given by Equation (6.1) for the first

robot and:

�l�� � v� cos 	� � v� cos��� 
 d�� sin	�

���� �
�

l��
�v� sin��� � v� sin	� 
 d�� cos 	� � l����� (6.2)

��� � ��

for the second robot where, 	� � ��
������ and vi� �i �i � �� ��, are the linear and angular

velocities at the center of the axle of each robot. In order to avoid collisions between robots,

we will require that l�� � �d.

We use standard techniques of I/O linearization [4] to generate a control law that gives

exponentially convergent solutions in the internal shape variables l�� and ���. These

control laws are given by:

�� �
cos 	�
d

�
��l����

d
�� � ����� v� sin��� 
 l���� 
 ��� sin	�

�
v� � ��� � d�� tan 	� (6.3)

where

��� �
���l

d
�� � l��� 
 v� cos���

cos 	�

The linear velocity, v� shows a dependence on the error in the desired and actual separa-

tion between the two robots, while the angular velocity, �� in addition to the error in the

desired and actual separation, also depends on the error in the relative orientation, i.e.,

���. The above control law leads to the following dynamics in the l � � variables:

�l�� � ���l
d
�� � l���

���� � ����
d
�� � ���� (6.4)
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Theorem 6.3.1 Assume the system of two mobile robots shown in Figure 6.2 and the as-

sociated control law in Equation (6.3). For the motion of the lead robot following a circu-

lar path, v� � K�, �� � K�, �� is locally asymptotically convergent to ���t� 
 �d�� � �� �
arccos�K�����, where

�� �

r�
K�l���K� sin�d��

d

��


�
K� cos�d��

d

��
and �� � arctan

�
K� cos�d��

K�l���K� sin�d��

�

Proof� Since l�� and ��� are exponentially stabilized, we focus our attention on the zero

dynamics of the system, which for this case is given in terms of ��. We seek to show that the

zero dynamics of the system are asymptotically stable, i.e., the system is asymptotically

minimum phase [4].

The differential equation for �� is given by:

��� �
K�l�� 
K� sin�

d
��

d
cos�K�t� �� 
 ��� 
 �d��� 


K� cos�
d
��

d
sin�K�t� �� 
 ��� 
 �d���

The above equation can be re-written as:

��� � �� cos�K�t� �� 
 ��� 
 �d�� � ���

where �� and �� are as given in the proposition.

We make a change of variables to ��� � ����� � K�t
������, which gives the following

differential equation:
���� � K� � �� cos���� 
 �d�� � ���� (6.5)

The equilibrium point, �e�� � ��d�� 
 �� 
 arccos�K�����, is easily shown to be asymp-

totically stable, using a linearization of Equation (6.5). Thus, the orientation of the lead

robot will locally converge to �e� � �� � �e�� � ���t� 
 �d�� � �� � arccos�K�����.

Corollary 6.3.2 For the case that the lead robot follows a straight line (�� � K� � 
), ��
converges exponentially to ���.

Proof� For v� � K� and �� � 
, we obtain the following expression for �� after some

algebraic manipulations:

�� � ��� �
K�

d
sin���� � ��� (6.6)

where, ��� is the initial orientation of the first robot at the beginning of the motion (and

maintained as a constant throughout the motion since �� � 
 � ���t� � ���). Integrating
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the expression and assuming ���
� � ���, we get:

tan

�
�� � ���

�

�
� tan

�
��� � ���

�

�
exp�

K�
d
t

As t��, �� exponentially converges to ���.

Remarks:

1. Note that we can solve explicitly for the motion of �� as

tan

����d�����

� 

q

���K�

���K�

tan

����d�����

� �
q

���K�

���K�

� C� exp
�
p
��
�
�K�

�
t

where ��� � K�t 
 ��� � ��, �� and �� are as defined in the proposition and ��� � K�
�

(since l�� � �d). C� is the constant of integration.

2. The optimal point-to-point paths of a nonholonomic car with constraints on the turn-

ing radius were shown by Reeds and Shepp [104] to be composed of straight lines and

circular arcs. This is seen to be generally true even for more complicated systems

from the numerical results presented in Chapter 5. In this section the convergence

of solutions has been obtained without placing any restrictions on K� and K�. Thus,

the l�� controlled robot can track, with exponential convergence, any straight line,

circular arc, or rotate in place motion of the lead robot thereby following the optimal

trajectory generated by the lead robot.

6.3.2 Controller II: l� l control

Figure 6.3 shows a system of three nonholonomic mobile robots. The task involves stabi-

lizing the distance of the third robot from the other two robots. Thus the state of the third

robot is specified by �l��� l��� ���
T . Distances are measured from the center of the axle of

the first two robots to the castor of the third robot which is offset by d from its axle. Each

robot has two actuated degrees-of-freedom. The three robots are not physically coupled in

any way and the aim of the feedback controller is to maintain the desired formation.

In the l � l control, the aim is to maintain the desired lengths, ld�� and ld�� of the third

robot from its two leaders. Again, we assume that both l�� and l�� � �d. Additionally, we

require that the follower robot never lies on the line connecting the two lead robots as the

control law for �� becomes singular (see Equation (6.8)). In particular, this requires that

the two lead robots never separate by a distance greater than or equal to ld�� 
 ld��.
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The kinematic equations for the system of three mobile robots shown in Figure 6.3 is

given by Equation (6.1) for i � �� � and

�l�� � v� cos 	� � v� cos��� 
 d�� sin	�

�l�� � v� cos 	� � v� cos��� 
 d�� sin	� (6.7)

��� � ��

for the third robot; where, 	i � �i 
 �i� � �� �i � �� ��.

Again, we use I/O linearization to generate a feedback control law:

�� �
���l

d
�� � l��� cos 	� 
 v� cos��� cos 	� � ���l

d
�� � l��� cos 	� � v� cos��� cos 	�

d sin�	� � 	��

v� �
���l

d
�� � l��� 
 v� cos��� � d�� sin	�

cos 	�
(6.8)

This gives exponential convergence for the controlled variables:

�l�� � ���l
d
�� � l���

�l�� � ���l
d
�� � l���� (6.9)

As seen from the expressions of the control laws, �� and v�, it is clear that the error in the

separation between the robots appears in the equations.

Theorem 6.3.3 Assume a system of three mobile robots as in Figure 6.3 and the associated

control law given by Equation (6.8). For a straight line parallel motion of the first two

robots (constant velocity v� � v� � K, �� � �� � 
 and ��� � ��� � ��), �� locally converges

exponentially to �e� � �� and ����t� � ����
� and ����t� � ����
�.

Proof� The proofs are similar in nature to those presented for l � � feedback control. Re-

stricting our attention to the zero dynamics, the above l � l control law gives

��� �
K

d
sin��� � ���

���� � 
 (6.10)

���� � 


Integrating the expression and assuming ���
� � ���, we get:

tan

�
�� � ��

�

�
� tan

�
��� � ��

�

�
exp�

K
d
t �

As t��, �� exponentially converges to ��. Hence, the solution �e� � �� is a stable equilib-

rium point. Similarly the other two differential equations for ��� and ��� gives constant

value for all time, t, namely, ����
� and ����
� respectively.
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Thus, based on the type of control law employed to control the motion of a robot, the

configuration variables of the robot will change. For example in the case of l � � control,

the configuration variables of the controlled robot are given by �lik� �ik� �k� and in the case

of l � l control, it is given by �lik� ljk� �k�, where i� j refers to the subscript for the leader

robot/robots and k refers to the subscript for the follower robot. For a long chain of robots

moving with a particular formation, the lead robot in the chain plans an optimal path,

avoiding any obstacles. Next, the velocity and the trajectory information of the lead robot

is conveyed down the chain to the first generation of robots and they in turn act as lead-

ers for the subsequent generations. Alternatively, the follower robots could estimate the

velocities of the lead/leader robots based on sensory information. This will allow each of

the robots in the formation to maneuver fully autonomously.

6.4 Modeling formations

A formation of n robots has one designated lead robot called R� that directly or indirectly

controls all other (follower) robots in the formation. Within the formation, the follower

robots will be dependent on other robots for their motion. We term these robots as leaders

to designate that they lead other follower robots, but distinguish them from unique lead

robot R�. For example, in Figure 6.4, R� is the lead robot and R�, R�, R� and R� are all

leaders each with one or more followers.

6.4.1 Control graphs

We can think of a formation as being made up of two components: a) the shape vari-

ables, r, that describe its internal state and b) a directed relational graph structure, the

control graph or digraph, H, that represents the internal topology of the formation.

Two digraphs are said to be isomorphic if there is a one-to-one correspondence between

their point sets and preserves adjacency and directionality between vertices (refer Equa-

tion (6.20) for a precise definition).

A transition from one formation to another may or may not involve a change in the

control graph. Consider digraphs, G and H shown in Figure 6.4 to illustrate the point.

R� in G follows R� and R� while R� in H follows R�. G is not isomorphic to H since the

connectivity of R�� R�� R� and R
 is different in both the control graphs. In the same figure

is another control graph J , which is isomorphic to G.

One possible way of representing a digraph is through an n� n adjacency matrix. For
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example, the digraph G in Figure 6.4 is given by:

G �

�
�����������


 � � 
 
 



 
 � � � 



 
 
 
 
 �


 
 
 
 � 



 
 
 
 
 �


 
 
 
 
 


�
�����������

In the representation above, the �i� j� element represents an incoming edge from robot Ri
to Rj. We represent the rows and columns of G by the vertices which represent the robots,

i.e., R� through R
. Now for example, since there is an arrow from R� to R� and R� to R�,

the first row for R� has � in the ��� �� and ��� �� entry of the matrix. It is important to note

that if there are q rows identically zero, there are n� q � � leaders in the given formation

and one lead robot. Thus, there are � leaders and one lead robot in the above formation

since the sixth row is identically zero. Associated with digraphs, is also the concept of

connectedness, which plays an important role in our formation transition algorithm. A

digraph G, is strongly connected if there exists at least one directed path from every vertex

to every other vertex in the graph. It is weakly connected if the corresponding undirected

graph is connected but G is not strongly connected. A digraph that is neither strongly nor

weakly connected is disconnected.

There are two constraints for formation changes. The first constraint is there can be

no disconnected digraphs during the transition from one graph to another. This requires

every vertex in the control graph has at least one incoming edge for l � � control and at

most two incoming edges for l � l control. A disconnected graph requires more than one

lead robot. While this may be desirable, it effectively breaks the team up into sub-teams

and is beyond the scope and assumptions of this work. Secondly, we require a numbering

system for robots to facilitate the construction of the adjacency matrix. Formally, these

two constraints on allowable control graphs can be written as:

Constraint A: Every vertex i � �, in the digraph has at least one incoming edge (for l��
control) and at most two incoming edges (for l � l control). This implies that there is

no isolated robot in any control graph.

Constraint B: Every directed edge in the digraph goes from a lower vertex label to

a higher vertex label. This implies that the adjacency matrix is always upper-

triangular.
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While these two constraints impose restrictions on the robot controllers, they do not

restrict the relative positions of robots in a given formation. Depending on the types of

sensors used, it may be difficult for one robot to follow one or more leaders when the lead-

ers are far away from the follower. In fact, when the sensors are line-of-sight sensors (for

example, optical or acoustic sensors), the restrictions are more severe. The follower must

be able to “see” the leader in the formation. When the formation changes, and this in-

cludes changes in the control graph and the shape of the formation, it may be necessary

to guarantee the “line of sight arrangement” between the leader and its follower(s). In

fact, in this chapter, the examples in Section 6.5.3 will illustrate this point. The target for-

mations and the strategies used to change formations are carefully selected not to violate

such sensor constraints. In general, these sensor constraints may be quite complex. In

this thesis, we do not use any sensor constraints to limit our modeling of control graphs

primarily because sensor constraints are very specific to applications.

In the following sections, we will: (a) describe the methodology used to transition from

one formation to another without having disconnected digraphs in the transition process;

and (b) prove the expression for an upper-bound on the total number of allowable control

graphs given n robots using the technique of mathematical induction; and (c) use Polya’s

enumeration theorem to obtain a polynomial for digraphs which enumerates the equiva-

lence classes of digraphs with a given number of directed edges.

6.4.2 Transition matrix

The transition from one control graph to another is modeled by a transition matrix. The

transition matrix, T , is the difference between the final and the initial adjacency matrices.

Let us consider the following example in Figure 6.5. The adjacency matrix for the initial

R1

R2

R3

l-l

l- ψ

R1R3 R2

l- ψ l- ψ

G

H

Figure 6.5: Change in formation.
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and final control graphs, i.e., G and H respectively, is given by:

G �

�
���


 � �


 
 �


 
 


�
��� and H �

�
���


 � 



 
 �


 
 


�
��� (6.11)

The appearance of a � in a column for a robot immediately defines its controller.

X
column

��s �


���
��



 Lead robot

� follower robot with l � � control

� follower robot with l � l control

Thus, T � H �G, is given by:

T �

�
���


 
 ��

 
 



 
 


�
��� (6.12)

The appearance of ���� in the ��� �� entry of the matrix denotes that the edge connecting

the vertices � and � needs to be broken to achieve the transition. The formation of a new

edge (not present in this example) is signalled by the appearance of a �
�� in the transition

matrix.

6.4.3 Enumeration of graphs

In this section, we will focus on proving the upperbound for the total number of allowable

control graphs for a given number of vertices (robots).

Theorem 6.4.1 Given n vertices in a digraph and constraints A and B, there are at most

N�n� � n�
n����
�n�� distinct control graphs.

Proof� We prove the theorem by mathematical induction. For n � �, it is clear that there

is just one possible digraph and that is a single vertex. For n � �, there is again only one

possible digraph with a directed edge from � to �. Thus the formula is true for n � �� �.

Assume the formula is true for some n � k, i.e., the total number of distinct digraphs

is, N�k� � k�
k����
�k��

. It is necessary to prove that it is also true for n � k 
 �, i.e., the total

number of distinct digraphs is, N�k 
 �� � k�
k����
�k

.

Consider the �k 
 ��th vertex. Based on constraints A and B, if vertex �k 
 �� has

one incoming edge, there are
�k
�

�
possible vertices from which the incoming edge could be

incident. If it has two incoming edges, there are
�
k
�

�
possible choices of vertices from which

the incoming edges could be incident. Thus there are totally,
�k
�

�


�k
�

�
� k
k���

� possibilities
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of incoming edges for vertex �k
��. Thus the total number of digraphs for �k
�� vertices

based on constraints A and B is:

N�k 
 �� � N�k�� k�k 
 ��

�
�
k��k 
 ���

�k

Thus we have proved the theorem for n � k 
 �. Since k is arbitrary, the above formula is

true for all n.

12

3

12

3

12

3

Figure 6.6: Control graphs for n � �.
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3 4

2 1
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Figure 6.7: Control graphs for n � �.

As an illustration of constraints A and B and the above theorem, Figures 6.6 and 6.7

show all allowable control graphs for n � � and n � � respectively. Clearly there are �

allowable control graphs for n � � and �� allowable control graphs for n � � as seen from

the figure. We will return to describe why certain digraphs in Figure 6.7 are boxed.
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We will now prove a corollary to the above theorem when all the robots in the team

have l � � control, except the lead robot. The theorem below gives an upperbound on all

allowable trees1 in a team of n robots.

Corollary 6.4.2 Given n vertices in a digraph and constraints A and B, there are at most

�n� ��� distinct trees.

Proof� We prove the theorem by mathematical induction. For n � �, it is clear that there

is just one possible tree and that is a single vertex. For n � �, there is again only one

possible tree with a directed edge from � to �. Thus the formula is true for n � �� �.

Assume the formula is true for some n � k, i.e., the total number of distinct trees is,

�k � ���. It is necessary to prove that it is also true for n � k 
 �, i.e., the total number of

distinct trees is, k�.

Consider the �k
��th vertex. Based on constraints A and B, vertex �k
�� has k possible

vertices from which the incoming edge could be incident. Thus the total number of distinct

trees is �k � ���
�k
�

�
� k�.

Thus we have proved the theorem for n � k
�. Since k is arbitrary, the above formula

is true for all n.

Though Theorem 6.4.1 gives us an upperbound on the allowable control graphs, and Corol-

lary 6.4.2 gives us an upperbound on the total number of trees in a formation, they are

not particularly useful for enumerating or classifying them.

In the present problem, due to constraint B all allowable control graphs have only one

directed edge from vertex � to vertex �. Thus robot R� has l � � control with robot R�

in all allowable control graphs. We will now develop the necessary tools for enumerating

digraphs which in conjunction with our theorem and the proposed algorithm will satisfy

constraints A and B. However, the control graphs that we obtain will have a unique vertex

labeled R� for the lead robot and there could be multiple choices for R� (in the case of an

allowable control graph being a tree). Similarly the labeling on the other vertices will

not be unique and they can be numbered based on constraint B. Thus in Figure 6.7, the

boxed control graphs refer to two allowable control graphs each involving a permutation

on the two vertices with labels � and �. For a larger number of vertices (robots), though the

unlabeled digraph may be isomorphic, the labeled digraphs will differ by a permutation on

at most n� � vertices (since R� is uniquely identified). During the process of enumerating

the allowable control graphs, we will create a library of these control graphs, each of

1A tree is a connected acyclic digraph.
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which can be recalled based on the constraints in the environment. We will now briefly

review some mathematical preliminaries before we state Polya’s enumeration theorem for

digraphs.

6.4.4 Mathematical preliminaries

The study of permutation groups and graph theory are closely related to each other as

graphs provide a pictorial representation of its automorphism group. Consider a set, X �

f�� �� � � � � ng and let G be the set of all permutations of X. This collection of elements of G

forms a group and is called the symmetric group, Sn. The order of Sn is denoted by o�Sn�

and is equal to n� as it represents all possible permutations of n objects. The degree of a

permutation is the total number of elements in the set X, i.e., n on which an element of Sn
acts.

A permutation
�a b c d
b c a d

�
can be represented compactly as �a b c��d� to denote the same

permutation as above where a � b� b � c� c � a� d � d. Such a representation of a

permutation is called the cycle representation of a permutation. It is well known that every

permutation can be written as a product of disjoint cycles [54]2. Thus, if a permutation

	 � G, acts on the set X, let �k�	� denote the number of cycles of length k in the disjoint

cycle decomposition of 	. The cycle index denoted by Z�G�, is defined as a polynomial using

variables s�� s�� � � � � sn. It is given by:

Z�G� �
�

o�G�

X
��G

nY
k��

s
�k
��
k (6.13)

To illustrate Equation (6.13), let G � S�, the symmetric group of degree �. Before we

go any further to compute the cycle index of S�, we will describe the elements of S� which

consist of functions mapping elements of a set X � f�� �� �g of three elements to itself.

Since the total number of permutations of n elements is n�, there are �� possible functions

which will map elements of X to itself uniquely. These functions are as stated below:

e � f�� �� �g � f�� �� �g � � f�� �� �g � f�� �� �g � � f�� �� �g � f�� �� �g
� 
 � � f�� �� �g � f�� �� �g � 
 � � f�� �� �g � f�� �� �g � 
 � � f�� �� �g � f�� �� �g

where e is the identity map and � and � are called the generators of S�. Clearly ��
� � �
�
and � 
 � � � 
 � 
 � � e. Any of the above permutations of S� can be written as a product

of disjoint cycles. Thus for example, the map � can be written compactly as ������� which

2Two cycles are said to be disjoint if there are no common elements among them. Thus the permutation
�������� which maps f� � � �g � f� � � �g, is composed of two disjoint cycles ���� and ����.
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indicates the same information as the mapping for � above. We define any permutation,

	 � Sn to be of type, ��� � ���� ��� � � � � �n� if 	 has �k cycles of length k for k � �� �� � � � � n.

Thus in S�, the identity permutation e � ���������, has � cycles of length � and hence is

of the type ��� 
� 
�. Similarly there are three permutations, � � �������, � 
 � � �������

and � 
 � � �������, each having one cycle of length � and one cycle of length �, i.e., each

permutation is of the type ��� �� 
�. Finally, there are two permutations, � � ����� and

� 
 � � ����� of length � and are of the type �
� 
� ��. Thus, the cycle index for S�, using

Equation (6.13) is given by:

Z�S�� �
�

��
�s�� 
 �s�s� 
 �s�� (6.14)

Notice that the sum of the coefficients of the polynomial comes to � 
 � 
 � � � � ��,

the number of permutations of three elements. The general expression for Z�Sn� can be

derived based on various partitions of n. With the above notation, each permutation 	 of

n objects can be associated with a partition of n which has �k�	� disjoint cycles of length k

for each k from � through n. For a given permutation 	, the partition of n can be written

as a vector ��� � ���� ��� � � � � �n� where �k is the number of parts of length k. Each such

permutation must satisfy:

n � ��� 
 ��� 
 � � �
 n�n �

nX
k��

k�k (6.15)

Based on the above notation, if we denote h��� to be the number of permutations in Sn

whose cycle decomposition gives the partition ���, then it can be shown that [52]:

h��� �
n�Qn

k�� k
�k�k�

(6.16)

Thus in the case of S�, the identity permutation has ��� � ��� 
� 
� which gives h��� � �

while � � ��� �� 
� gives h��� � �. The cycle index for a symmetric group of order n can

then be shown to be [52]:

Z�Sn� �
�

n�

X

��

h���

nY
k��

s�kk (6.17)

where the summation is over all partitions, ��� of n and h��� is as given by Equation (6.16).

We now define the power group. Let G� be a permutation group with object set X �

f�� �� � � � � ng and G� be a permutation group with object set Y � f�� �� � � � �mg of at least two

elements. Since each of the n elements of X can be mapped into any one of the m elements

of Y , the total number of different functions from X into Y is mn. These collection of mn

functions is defined as the object set YX , for the power group GG�

� . The permutations of
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GG�

� consist of all ordered pairs �	� ��, of permutations 	 � G� and � � G�. The image of

any function f in Y X under �	� �� is given by:

��	� ��f��x� � ��f�	x�� � x � X

In order to state Polya’s enumeration theorem, we will take G� � I, the identity group on

Y . Thus the power group IG� , acts on Y X .

Next, let w � Y � f
� �� �� � � �g be a function whose range is the set of all nonnegative

integers. For each k, we define

ck � jw���k�j

to be the number of elements of Y with weight k. Then the elements y � Y which have

w�y� � k are said to have weight k and w is called the weight function.3 In Polya’s ter-

minology, f from X to Y are called “configurations” and the elements y of Y are called

“figures”. The weights of the elements of Y can be expressed as powers of some common

quantity x. In that case, the weight assignment to the elements of Y can be described by

the “figure counting series” c�x�, and is given by:

c�x� �
�X
k��

ckx
k (6.18)

where ck is the number of elements in the set Y with weight k. In other words, given a

polynomial of the form

c�x� � � 
 �x
 �x� 
 � � �

implies that Y has three elements with weight 
, four elements with weight �, and so on.

Notice that the sum of the coefficients in the polynomial should give the total number of

elements in the set Y .

Now the weight of the function f in YX is defined as:

w�f� �
X
x�X

w�f�x��

A relation, �, is said to be an equivalence relation if it is reflexive, symmetric and tran-

sitive. An equivalence class is a collection of objects which are equivalent. Thus in the

context of functions f in YX , we define two functions to be equivalent if they have the

same weight i.e., f � g if w�f� � w�g�. These functions form an equivalence class. An orbit

is defined as the collection of elements in the same equivalence class. Thus, functions with

different weights fall into different orbits. Since pre-image under w of any non-negative
3In general, the weight w�y� could be a symbol or a real number.
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integer k is finite, there are only a finite number of orbits for each k. If we denote Ck to

be the total number of elements in each orbit whose functions have weight k, the series in

the indeterminate x is called the “configuration counting series” and is given by:

C�x� �
�X
k��

Ckx
k

Thus, the configuration counting series gives the expression for the total number of dif-

ferent configurations. For example, in the case of enumerating graphs, the polynomial

C�x� � � 
 �x 
 �x� gives an expression of possible configurations of graphs with: a) no

edges - only one graph is possible since the coefficient of x� is �, b) one edge - two graphs

are possible since the coefficient of x� is � and c) two edges - three graphs are possible

since the coefficient of x� is �. The main essence of Polya’s enumeration theorem is that it

counts the number of equivalence classes with various weights, given X, Y , permutation

group G� on X, and the weights w�y� for each y � Y .

Theorem 6.4.3 (Polya’s enumeration theorem) [52] The configuration counting series

C�x� is obtained by substituting the figure counting series c�xi� for each si in the cycle index

Z�G�� s�� s�� � � � � sn� of the permutation group G�. That is,

C�x� � Z�G��
X

ckx
k�
X

ckx
�k�
X

ckx
�k� � � ���

We will now illustrate Polya’s enumeration theorem with the aid of a simple example.

In this example, we will enumerate all possible “necklaces” that can be made by placing

beads on the vertices of a triangle. Suppose we are given two colors, white and black,

for the beads. Then all possible necklaces are shown in Figure 6.8. We now show that

the configurations in Figure 6.8 are indeed the only possible configurations. We define a

set X � f�� �� �g which contains three beads with unassigned colors to them. If we want

to obtain the total number of unlabeled necklaces, we must identify labeled necklaces

which differ from each other by a rotation about the centroid of the equilateral triangle or

reflection about the line passing through a vertex and the midpoint of the opposite edge.

The set, Y � fW�Bg consists of two elements “white” and “black” which denotes the color

of a bead in X. A function f from X to Y corresponds to a labeled necklace in which bead

number k in X has “color” f�k�. Thus, the necklace represented by f has jf���W �j beads

of white color and jf���B�j beads of black color. I is the identity group acting on Y and

to remove the labels on the beads we identify two necklaces to be equivalent whenever

they are in the same orbit of the power group ID� , where D� is called the dihedral group

of degree �. The dihedral group, Dn is the group of all symmetries of the regular polygon.
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Mathematically, a dihedral group Dn, of degree n, is generated by elements r and d such

that rn � e and dr � rd��. The order of the dihedral group is o�Dn� � �n.

If we define the weights w�W � � 
 and w�B� � �, then c�x� � �
x is the figure counting

series for Y and a function of weight k represents a necklace with k black beads and

�� k white beads. Thus the configuration counting series C�x� enumerates the unlabeled

necklaces and the coefficient of xk is the number of necklaces with k black beads. By

Polya’s enumeration theorem:

C�x� � Z�D�� � 
 x�

Since Z�D�� is the same as Z�S�� (D� is isomorphic to S�), the configuration counting series

is obtained by substituting ��
x� for s�, ��
x�� for s� and ��
x�� for s� in Equation (6.14).

After some simplifications, we get:

C�x� � � 
 x
 x� 
 x� (6.19)

indicating that there is one necklace with all white beads (� � x�), one necklace with one

black and two white beads (� � x�) and so on. The expression in Equation (6.19) is also

easily verified from Figure 6.8 as we scan from left to right.

Figure 6.8: The necklace problem.

Since our ultimate goal is to obtain an expression for the equivalence classes of figures

for a digraph, it is important to understand the principle of G-equivalence classes of r-sets.

We define two subsets P� � fx�� x�� � � � � xrg and P� � fx��� x
�

�� � � � � x
�

rg of X � f�� �� � � � � ng to

be G-equivalent if there exists a permutation 	 � G such that, 	P� � P�. We will call P�

and P� as r-sets of X since they contain r elements. We now state and prove the corollary

that gives the total number of G� equivalence classes of r-sets of X.

Corollary 6.4.4 [52] The coefficient of xr in Z�G� � 
 x� is the number of G-equivalence

classes of r-sets of X.

Proof� The figure counting series c�x� � � 
 x can be derived based on the assumption

that � � x� indicates the absence of an object in X while x � x� indicates its presence.

Clearly xr indicates the presence of r distinct objects of X thus forming an r-set P� or P� as

defined above. Now based on Polya’s enumeration theorem the coefficient of xr indicates

the number of G-equivalence classes of r-sets of X.
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We now state the generalization of Polya’s enumeration theorem for N variables:

Theorem 6.4.5 (Polya’s enumeration theorem for N variables) [52]

If c�x�� x�� � � � � xN � is the figure counting series for Y , then the orbits of functions in YX

determined by the power group IG� are enumerated by weight with C�x�� x�� � � � � xN � and

C�x�� x�� � � � � xN � � Z�G�� c�x�� x�� � � � � xN �� c�x��� x
�
�� � � � � x

�
N �� � � ���

Before we proceed to state the theorem of Polya for enumerating directed graphs of

order n, we need to introduce some definitions. The number of edges incident out of a

vertex vi, is called the out-degree of vi and is denoted by d��vi�. The number of edges

incident into vi, is called the in-degree of vi and is denoted by d��vi�. Thus, the out-degree

of v� (R�) in digraph G of Figure 6.5 is d��v�� � �, while its in-degree is d��v�� � 
.

Similarly, the out-degree of v� (R�) is d��v�� � 
, while its in-degree is d��v�� � �.

Let X � f�� �� � � � � ng and let X��� denote all ordered pairs of different elements of X.

Let Y � f
� �g and the functions, f � X��� � Y represent labeled digraphs of order n.

Based on the function f , we denote D�f� to be the corresponding digraph with a directed

edge from vertex i to vertex j if and only if f�i� j� � �. Thus the presence or absence of

a directed edge between ordered vertices is obtained by their function value 
 or �. The

figure counting series is thus �� 
 x� as the arc connecting two given vertex pairs �vi� vj� is

either present or absent. Two functions f and g represent the same digraph if there exists

a permutation 	 � G such that, if i is adjacent to j in D�f� then 	i is adjacent to 	j in

D�g�. Therefore D�f� and D�g� are isomorphic if and only if

f�i� j� � g�	i� 	j� � �i� j� � X ���� for some 	 � G (6.20)

We next introduce the concept of the reduced ordered pair group of G denoted by G���.

The reduced order pair group of a permutation group G with object set X is defined as a

group of permutations induced by permutations in G such that for every ordered pair �i� j�

in X ��� the image under 	
� � G��� is given by:

	
�

�i� j� � �	i� 	j�

The object set of G��� is X ���. Since there are at most � � �n�� possible orderings in X���,

the degree of G��� is n�n� ��. For example, in the case of allowable control graphs with n

robots, the set X��� denotes the pairs of vertices connected by a directed edge and G��� is

simply S
���
n . Corollary 6.4.4 gives the total number of formations with r directed edges in

a control graph.
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As an example of the induced term in the cycle index of Z�S���� �, consider the permuta-

tion 	 � ������� of S�. The permutation

	 �

�
� � �

� � �

�

induces the following permutation on the six ordered vertex pairs

	
�

�

�
�� �� �� �� �� ��

�� �� �� �� �� ��

�

Thus, 	 � ������� � S� induces the permutation 	
�

� ��� ������ ������ ��� � S
���
� in cycle

notation. Based on the permutation 	, the term s�s� in the cycle index Z�S�� induces the

term s�� in the cycle index Z�S���
� � of the reduced ordered pair group. Similarly, if we choose

other permutations belonging to the group S�, we can derive the other induced terms in

the cycle index of Z�S���
� �. Following the calculations for S�, we obtain the following cycle

index for the reduced ordered pair group S
���
� :

Z�S
���
� � �

�

��

�
s
� 
 �s�� 
 �s��

�
(6.21)

Similar computation for S� gives the following expression for the cycle index for the re-

duced ordered pair group, Z�S���� �:

Z�S
���
� � �

�

��

�
s��� 
 �s��s

�
� 
 �s�� 
 �s
� 
 �s��

�
(6.22)

Each permutation of S� induces a term in the reduced ordered pair group and is given

in Table 6.1 along with the total number of permutations of S� which give the following

partition ��� � ��� 
� 
� 
�� ��� �� 
� 
�� ��� 
� �� 
�� �
� �� 
� 
�� �
� 
� 
� �� for n � � (refer to

Equation (6.15)). The total number of permutations h���, with a particular partition ���,

is computed using Equation (6.16).

Table 6.1: Cycle structure of permutations in S� and the corresponding induced term in
S
���
� .

Term in Z�S�� Induced term of Z�S���
� � No. of permutations (h���)

s�� s��� �

s��s� s��s
�
� �

s�s� s�� �

s�� s
� �

s� s�� �
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We will now proceed to state the theorem for the total number of digraphs of order n us-

ing the modified form of Polya’s enumeration theorem. The following theorem enumerates

digraphs dn�x�, of order n.

Theorem 6.4.6 (Polya’s enumeration theorem for digraphs) [52]

The counting polynomial dn�x� for digraphs of order n is given by

dn�x� � Z�S���
n � � 
 x� �

n
n���X
k��

akx
k

where

Z�S���
n � �

�

n�

X

��

n�Qn
k�� k

�k�k�

nY
k��

s

k����k��k��k

�
�

k

Y
r�t

s
�dr�te�r�t
br�tc

and br� tc and dr� te denote the least common multiple (l.c.m) and the greatest common

divisor (g.c.d) of r and t respectively.

The upper limit in the summation for dn�x� in the above theorem is n�n� �� since the set

X ���, of all ordered pairs of elements of X has n�n��� elements. Now since any term in the

cycle index of the reduced ordered pair group G���, consists of the polynomial in s�kk such

that
P

k�k � n�n���, we conclude that the highest exponent of x in dn�x� is n�n���. As an

example, the expression enumerating digraphs of order n � �, is given by the polynomial

d��x�:

d��x� � � 
 x
 �x� 
 �x� 
 �x� 
 x� 
 x


Summing the coefficients of the various powers of x in d��x� gives the total number of

Figure 6.9: All unlabeled digraphs for n � �.

digraphs of order � (i.e., d���� � ��). The term �x� in the above expression for d��x�,

suggests that there are � possible digraphs with � directed edges. These digraphs belong

to the same equivalence class. These are shown in Figure 6.9. It can be easily verified
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from Figure 6.9 that the above formula is correct when we scan the figure from the top

row, left to right. The boxed digraphs in Figure 6.9 are the required control graphs and we

will derive the algorithm to obtain these digraphs from all possible digraphs later in this

section. For n � �, the expression for d��x� is given by:

d��x� � �
x
�x�
��x�
��x�
��x�
��x

��x�
��x�
��x�
�x��
x��
x�� (6.23)

Summing the coefficients for d��x� or evaluating d���� gives ��� possible unlabeled di-

graphs of order �. Since the present problem has only one lead robot (R�), every vertex

except v�, has at least one and at most two incoming edges (constraint A) which greatly

simplifies the enumeration task. The next theorem gives an upper-bound on the allowable

unlabeled control graphs for arbitrary order n.

Theorem 6.4.7 An upper-bound on the allowable unlabeled control graphs for n robots is

given by the polynomial:

Rn�x� �


�n���X
k�
n���

akx
k

There are �n � �� equivalence classes of digraphs, where the kth equivalence class has ak

members, and ak is given by Theorem 6.4.6.

Proof� We will first prove that the lower bound on the summation is indeed �n� ��. Since

there is at least one directed edge incident on any vertex (except one vertex which corre-

sponds to the lead robot) based on constraint A, the lower bound on the total number of

directed edges in the control graph to make it at least weakly connected is �n � ��. Thus

the lower bound on the required polynomial is �n���. Similarly, since there can be at most

� directed edges incident on any vertex, except two vertices v� and v�, 4 the upper-bound

on the summation is ��n� �� 
 � � ��n� ��.

Since k varies from �n� �� through ��n� ��, there are �n� �� equivalence classes and

the coefficient of the polynomial xk is ak, which denotes the members in the equivalence

class with k directed edges.

The expression for Rn�x� can be extracted from the expression for dn�x� stated in The-

orem 6.4.6 based on the lower and upper bounds on k.

Thus Rn��� gives us an upper-bound on unlabeled allowable control graphs for any given

n. To illustrate the theorem for n � �, we get:

R��x� � �x� 
 �x�

4The vertex corresponding to the lead robot (v�) has in-degree, d��v�� � � and the other vertex labeled v�
has in-degree, d��v�� � � based on constraints A and B.
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Figure 6.10: The two equivalence classes of digraphs for n � � enumerated by Theo-
rem 6.4.7.

For example, the coefficient � of x� implies that there are four unlabeled digraphs in the

equivalence class with � directed edges as shown in Figure 6.10. It is clear that the task

of enumerating all digraphs of order three given by Polya’s enumeration theorem 6.4.6 is

reduced to �n � �� equivalence classes and the search space for allowable control graphs

is far less than before. In the case of n � �, we can narrow our search for allowable

control graphs to only eight (a� 
 a� � � 
 � � �) as shown in Figure 6.10 compared

to sixteen (d���� � ��) enumerated in Figure 6.9. Similarly in the case for n � � from

��� (d���� � ���) possible digraphs we need to search only �� (a�
a�
a� � ��
��
�� � ��).

The three control graphs boxed in Figure 6.9 are the allowable control graphs since there

is only one vertex with in-degree zero and all other vertices have at least one incoming

edge (i.e., their in-degree is at least one).

Before we state the algorithm to obtain allowable control graphs from Theorem 6.4.7,

we need to define a few more terms. A walk of length q in a digraph is determined by

the sequence of points v�� v�� � � � � vq in which vi is adjacent to vi�� for i � q. A closed walk

has the same first and last point, i.e., v� � vq. A cycle is a non-trivial closed walk with

all points distinct except the first and the last vertex. A digraph is said to be acyclic if it

has no cycles. We will now state some theorems for acyclic digraphs as they are central to

extracting the allowable control graphs enumerated by Theorem 6.4.7.

Theorem 6.4.8 [28] Given the n � n adjacency matrix X of a digraph G of order n, the

digraph G is acyclic if and only if Det(I�X) is not equal to zero, where I is the n�n identity

matrix.

Since any acyclic digraph has Det(I �X) non-zero, is it guaranteed that the adjacency

matrix can be reduced to an upper or a lower triangular matrix? Since constraint B in

our formulation requires that the edge is incident from a lower index to a higher index,

the adjacency matrix is always upper triangular. Thus, the following theorem proves that

given an acyclic digraph, we can always reorder the vertices so that the adjacency matrix
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is upper (lower) triangular. In our case, we will not have a lower triangular matrix due to

constraint B.

Theorem 6.4.9 [28] A digraph G, is acyclic if and only if its vertices can be ordered such

that the adjacency matrix is an upper (lower) triangular matrix.

Theorem 6.4.8 is the central result for extracting allowable control graphs. We need

the above theorem since constraint B requires that the edges are directed from a lower

index to a higher index. If that is the case, there can be no cycles in the allowable control

graphs since a cycle has the same first and last vertex. We now state the algorithm used

to extract the allowable unlabeled digraphs from those enumerated by Theorem 6.4.7.

Algorithm for choosing allowable control graphs: The algorithm can be broken

down into the following steps:

1. Use Polya’s theorem to enumerate all digraphs of order n, i.e.,

dn�x� � � 
 a�x
 a�x
� 
 � � � 
 an
n���x

n
n���

2. Use Theorem 6.4.7 to obtain an upper-bound on allowable control graphs, i.e., Rn�x�

given by:

Rn�x� � a
n���x

n��� 
 anx

n 
 � � � 
 a
�n���x

�n���

3. Choose any digraph G, enumerated by Rn�x� and label the vertices arbitrarily. Based

on this labeling construct the adjacency matrix X.

4. Check if there is only one vertex in G that has in-degree 
 i.e., check if X has only

one column with all its entries 
. If there exists a zero column, re-label the vertex

corresponding to that column as vertex vL. This is the vertex for the lead robot R�,

since our formulation allows for only one lead robot in the team of n robots. If not,

goto step � for a new digraph..

5. If vL exists, check if all the other vertices have in-degree of at least � and no vertex

has in-degree greater than � based on constraint A, i.e., � � d��vi� � � for all i �

�� � � � � n (i 	� L). If not, goto step � for a new digraph.

6. If condition ��� is satisfied evaluate Det(I �X), where X is the adjacency matrix for

G. If G is acyclic, Det(I �X) evaluates to a non-zero value. If not, goto step � for a

new digraph.
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7. If G satisfies all the above steps, we can re-label the lead robot denoted by vertex vL

as v�.

8. Repeat step � until all the digraphs enumerated by Rn�x� are examined.

The above algorithm can be illustrated by the flowchart shown in Figure 6.11.

Choose G(j) in Rn(x) 

No
Does vL exist ?

Yes

Constraint A satisfied ?
No

Yes

Det(I-X) = 0 ?
Yes

No

Store E(k)

j=j+1

Is j > 2n-3 ?

Yes

Stop

dn(x)

Rn(x)

j=n-1

 k=1

Choose E(k) in G(j) and 
label vertices arbitrarily               

Is k > aj ?

Yes

k=k+1

No

No

Figure 6.11: Flowchart for choosing allowable control graphs.

Corollary 6.4.10 All the robots in the team (except the lead robot, R�) have l � � control

if and only if the total number of directed edges in the allowable control graph obtained by

the above algorithm is �n� ��.

Proof� We first prove that if all the robots in the team apart from R� have l�� control, then

the total number of edges in the allowable control graphs obtained by the above algorithm

is �n��� . Since every robot apart from R� has l�� control there is only one edge incident

on every vertex. Since there are a total of �n��� vertices, there are �n��� edges connecting

them and there is one edge incident from the lead robot R� to R� which makes the total

number of edges �n� ��.
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To prove the converse, we need to show that �n � �� edges guarantee l � � control for

all the robots, except R�. Assume that this is false. Thus, there is at least one robot with

l � l control, i.e., � incoming edges (� � d��vi� � � for i � �� � � � � n). If there is at least

one robot with two incoming edges and since the digraph is at least weakly connected, the

total number of edges in the control graph would be at least �n� �� 
 � � n, where �n� ��

edges are required to connect �n � �� remaining robots and � edges are incident on the

robot with l � l control. Clearly the sum of edges contradicts the assumption of �n � ��

edges.

Corollary 6.4.11 All the robots in the team (except the lead robot, R� and the robot with

only one incoming edge say R�) have l� l control if and only if the total number of directed

edges in the allowable control graphs obtained by the above algorithm is ��n� ��.

Proof� We first prove that if all the robots in the team apart from R� and R� have l � l

control, then the total number of edges in the allowable control graphs obtained by the

above algorithm is ��n � �� . Since every robot apart from R� and R� have l � l control,

there are two incident edges on every vertex (i.e., d��vi� � � for i � �� � � � � n). Since there

are a total of �n � �� vertices, there are ��n � �� edges connecting them and there is one

edge incident from the lead robot R� to R� which makes the total number of edges ��n���.

To prove the converse, we need to show that ��n� �� vertices guarantee l� l control for

all the robots, except R� and R�. Assume that this is false. There is only one lead robot

R� in the formation and the digraph is at least weakly connected and no robot has more

than two incoming edges by constraint A . Thus, if the converse is false, there exists at

least one vertex vk with in-degree � (� � d��vk� � �). Thus, the total number of edges in

the allowable control graph will be at most ��n � �� 
 ��for vk� 
 ��R� to R�� � �n � �.

However, there are ��n� �� edges, hence no such vk exists.

The above two theorems suggest that as the exponent of x in the expression for Rn�x�

varies from �n � �� to ��n � ��, there is a spectrum of control graphs ranging from pure

l � � control to pure l � l control with a medley of combined l � � and l � l control falling

in between the two exponents (for n � � as n � � has only two equivalence classes, pure

l � � and pure l � l control). It is also important to note that the above algorithm was

specialized to the case for only one lead robot due to constraint A. However, if we have

multiple lead robots in the formation, we can easily adapt the above algorithm to choose

those allowable formations where the only condition that changes is that of the in-degree

of the vertices. Say for example in the case of two lead robots, we need to search for control
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graphs with only two vertices having in-degree zero and all other vertices having in-degree

of at least one and at most two. Such a constraint would allow disconnected digraphs as

allowable control graphs for a team of robots. Thus, the above algorithm combined with

the theorems gives us a strategy to choose allowable control graphs from the vast array of

control graphs enumerated by Polya’s Theorem 6.4.6.

6.4.5 Mixed graphs:

A graph is said to be a mixed graph if it consists of any number (including zero) of directed

and/or undirected edges. In this paragraph, we will discuss mixed graphs as a natural

extension of ordinary and directed graphs. Though graphs in our problem are directed

graphs, and have been discussed above, we present the following material on mixed graphs

for the sake of completeness. It is clear from Figure 6.12 that there are �
 equivalence

Figure 6.12: All mixed graphs of order �.

classes of graphs of order �. The first class has no edges and � member, the second has �

directed edge and � member, the third has � directed edges and � members and so on. In

Figure 6.13, the notation mnqr denotes the mixed graph with n vertices, q directed edges

and r undirected edges. Figure 6.13 enumerates equivalence classes with only one directed

edge. There are two equivalence classes with m��� � � and m��� � � members.

m311 = 2 m312 = 1

Figure 6.13: The two equivalence classes of mixed graphs with one directed edge for n � �.

A similar enumeration for one directed edge for n � � yields three equivalence classes:

� members with � undirected edges, � members with � undirected edges, and � members

with � undirected edges as shown in Figure 6.14.

137



m412 = 5

m413 = 6

m414 = 3

Figure 6.14: The three equivalence classes of mixed graphs with one directed edge for
n � �.

Before we state the theorem for the enumeration of mixed graphs, we define the no-

tions of converse and self-converse of a cycle in the disjoint cycle decomposition of a given

permutation. Let 	
�

be a permutation in S
���
n induced by 	. The converse of any given cycle

z
�

in the disjoint cycle decomposition of 	
�

is that cycle z
��

of 	
�

which permutes all ordered

pairs �i� j� � X ��� such that �j� i� is permuted by z
�

. A cycle z
�

of 	
�

is self-converse if �i� j�

is permuted by z
�

whenever �j� i� is permuted. As an example consider the permutation

	 � ������� � S� which induces the permutation 	
�

� ��� ������ ������ ��� as discussed

before. The converse of the cycle z
�

� ��� ��� in the disjoint cycle decomposition of 	
�

is

z
��

� ��� ��� since z
��

permutes the ordered pairs ��� �� and ��� �� such that the ordered pair

��� �� and ��� �� is permuted by z
�

. Note that z
�

is not self-converse. However, if z
�

� ��� ���,

then it is clearly self-converse as z
��

� z
�

.

We will now state the theorem which enumerates mixed graphs of order n with q di-

rected edges and r undirected edges. The figure counting polynomial which enumerates

mixed graphs of order n with both directed and ordinary edges is given by:

mn�x� y� �
X
q�r��

mnqrx
qyr

where q 
 r � �n
�

�
. The theorem stated below can be derived using Polya’s enumeration

theorem for N variables stated in Theorem 6.4.5.

Theorem 6.4.12 (Polya’s enumeration theorem for mixed graphs) [52]
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The counting polynomial for mixed graphs of order n is given by:

mn�x� y� � Z�S���
n � �� 
 �x
 y����� � 
 y���� (6.24)

where

Z�S���
n � sk� tk� �

�

n�

X

��

n�Qn
k�� k

�k�k�

Y
k odd

s

k����k
k

Y
k even

�s

k���
k tk�

�k

nY
k��

s
�k��k

�
�

k

Y
r�w

s
�dr�we�r�w
br�wc

(6.25)

where sk denotes pairs of converse cycles and tk for self-converse cycles.

We substitute �� 
 �xk 
 yk���� for sk (converse cycles) in the cycle index of the reduced

ordered pair group and �� 
 yk��� for tk.

The figure counting series corresponding to converse cycles is given by ��
�x
y� where

� indicates the absence of an edge between two given vertices, �x indicates two possible

orientations and y an undirected line. The power of ��� in �� 
 �x 
 y���� vanishes in

mn�x� y� since sk always occurs with even powers as converse cycles in a given permutation

necessarily appear in pairs. Similarly, the figure counting series �� 
 y� indicates the

presence or absence of an undirected edge in self-converse cycles. Also the power of ��� in

�� 
 y���� vanishes in mn�x� y� as the only term which contains tk occurs in even powers of

k. Since the theorem stated above is general, we can easily obtain expressions for digraphs

dn�x�, and ordinary graphs gn�x� of order n as shown below:

dn�x� � mn�x� x
�� gn�y� � mn�
� y�

As an example to illustrate the applicability of the above theorem, consider a mixed

graph of order n � �. The expression for Z�S���� � sk� tk� is given by:

Z�S
���
� � sk� tk� �

�

��
�s
� 
 �s��t� 
 �s���

Now to obtain the expression for m��x� y�, we substitute ��
�x
y���� for s�, ��
�x�
y�����

for s�, �� 
 �x� 
 y����� for s� and �� 
 y���� for t�. After some simplifications the formula

for m��x� y� is given by:

m��x� y� � � 
 x
 �x� 
 �x� 
 y 
 �xy 
 �x�y 
 y� 
 xy� 
 y�

It can be easily verified from Figure 6.12 that the above formula is correct when we scan

the figure from the top row, left to right.
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6.4.6 Formation changes

Depending on the task, the environment, and the sensor constraints, it may be necessary

to change the formation of the team of robots. The choice of formation for a particular task

is a challenging problem which is not addressed here. Instead, we focus on the problem of

achieving a desired formation. We have addressed the enumeration of control graphs in

the previous section. In this section, we explain how a transition between a given control

graph and a target control graph can be achieved.

Figure 6.15 is an exhaustive list of all possible transitions in the control graph at

the jth vertex. The list in the figure is obtained by considering the possible switches in

control laws for robot Rj (j 	� �). In transitions �, ��a�, ��a� and ��a�, the robot changes

its controller dependencies instantaneously on the initiation of transition. Thus if Rj is to

undergo a transition of the type ��a� shown in Figure 6.15, it will simultaneously break

connection with Ri and make connection with Rh. The simultaneous “make and break”

is possible as Rj is at no instant an isolated robot in the control graph (Rj preserves the

link with the common robot, Rk, which is present in the initial and final control graph).

However, transitions of the type ��b�, ��b� and ��b� have an intermediate step since the

intersection set of the leaders of Rj before and after transition is a null set. Thus, for

example, if Rj in ��b� were to form two new connections, it will not break connections with

both Ri and Rk simultaneously, but instead break it with Ri (or Rk) and then form a link

with Rp (or Rh) and so on for the remaining set of robots. This procedure is enforced based

on constraints A and B mentioned before.

Thus, it is clear from the flowchart in Figure 6.16 that as you scan the columns of the

transition matrix sequentially from T� through Tn, you will encounter one of the seven

possible enumerations shown in Figure 6.15 which is an exhaustive list of all possible

transitions for the robot Rj . Based on the algorithm in the flowchart and the discussion

above, the process of transitioning from one control graph to another is indeed complete,

i.e., the algorithm in Figure 6.16 will guarantee that at the end of the transition process,

we will have the desired final control graph.

6.5 Simulation results

In this section, we will demonstrate the use of the proposed control laws both in the

presence and absence of obstacles and show how we can transition from one formation

to another based on the transitions enumerated in Figure 6.15. The concepts discussed
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Figure 6.15: Enumeration of transitions between control laws for robot Rj . Tj refers to the
jth column of the transition matrix. The row numbers are either h, i, k or p, depending on
the example.

j=1

Scan the jth column, Tj, for robot Rj

Is Tj of type 1 or 2(a) ?
Yes

No Use current control graph to 
     decide transition type

Control graph change

j=j+1

Is j > n ?

Yes

No

Stop

Figure 6.16: Control graph transition algorithm flowchart.
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above have been demonstrated through several examples in each section below. In Sec-

tions 6.5.1 and 6.5.2, the changes in formation or motion plans are such that at each

instant of time, the formation (or underlying digraph) is isomorphic to the initial configu-

ration. Hence, there is no change in the control graph at any instant of time. In Example

�, we demonstrate that it is possible to have a change in the shape of the formation while

preserving the underlying control graph. This can occur since it is not always neces-

sary to change the control graph. Finally, in Section 6.5.3, we discuss three examples of

non-isomorphic graph transitions based on sensory constraints that are essentially line of

sight constraints. All the simulations were done in Matlab and the constants �� and �� in

Equations (6.4) and (6.9) were chosen to be �
 for all the simulations.

0

0

2

4

R2

R1

R3

Y
 (

m
)

X (m)

Figure 6.17: Parallel parking.

6.5.1 No obstacles

Example 1: We first consider an example of parallel parking without any obstacles in

the environment. The lead robot denoted R� plans an optimal path as shown in Fig-

ure 6.17. In this example, we show two follower robots and they are both controlled by

an l � � control law. Using the notation of Figure 6.2, the configuration of the system of

three robots is given by �x�� y�� ��� l��� ���� ��� l��� ���� ���
T . In this example, the lead robot’s

(R�) optimal path minimizes the distance traveled in the parallel displacement of �m with

turning radius constraints. The optimal path is as shown in Figure 6.17. Also shown is the

snapshot at various instants of time of the three robots moving in formation. The initial

142



and final values of the shape variables describing the follower robot are l�� � l�� �
p
�m,

��� � ����, and ��� � �����. The offset d, was chosen to be 
��m.

Since we cannot guarantee any final orientation (�� or ��) of R� and R�, we denote

their final orientation by ��f and ��f . However, based on the claim in Theorem 6.3.1, if

the lead robot after reaching the final position, continues to move in a straight line, the

orientation of R� and R� will exponentially stabilize to that of the lead robot, R�. We note,

however, that the shape variables �l��� ����
T and �l��� ����

T do achieve the desired values

at the completion of motion. Note that the distance and relative orientation for follower

robots R� and R�, is measured from the center of R� to their tip.

6.5.2 Obstacles

In this section, we present examples for the case of � robots avoiding an obstacle. An

obstacle free optimal path is generated by the lead robot and the path is optimal with

respect to a suitable cost function. The l � l control can be modified to avoid obstacles by

changing for example, the l � � control for R� to an l � l control where R� maintains a

desired separation from R� and the obstacle O� shown schematically in Figure 6.18. In

the first two examples we illustrate how R� and R� change from an l � � control to an

l� l control when they are within a certain threshold of the obstacle. The schematic of the

various controllers for each robot is as shown in Figure 6.18.

Example 2: In this example, R� executes a straight line path from �
� 
� 
� to ��
� 
� 
�.

As proved in Section 6.3, we expect the orientations of the follower robots to exponentially

stabilize to that of the lead robot, R�, after they overcome the obstacle. This is observed

in the plot shown in Figure 6.19. Initially, when the lead robot follows a straight line,

the follower robots, R� and R� are controlled by the l � � feedback law while the other

robots are controlled by the l � l feedback law as shown in Figure 6.18. However, when

R� and R� move within a predefined distance of the obstacle, they switch from the l � �

controller to an l � l controller, where one of the distances is the distance to the obstacle.

This guarantees that the robots are a predefined distance away from the obstacle. After

the obstacle is overcome and the distance of R� and R� exceeds the threshold, it switches

back to the l�� controller. This is observed in the paths shown in Figure 6.19. The sensor

constraints in this example are line-of sight constraints and requires that:

� There is no robot/obstacle between R� and R�.

� There is no robot/obstacle between R�, R� and R�.
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R1 :  Lead Robot          R2 :  l-psi with R1 / l-l with O1, R1

R3 :  l-l with R1, R2      R4 :  l-psi with R2 / l-l with O1, R2

R5 :  l-l with R2, R4      R6 :  l-l with R3, R5

Figure 6.18: Controller schematic.

� There is no robot/obstacle between R� and R�.

� There is no robot/obstacle between R�, R� and R�.

� There is no robot/obstacle between R�, R� and R
.

Thus there are � sensor constraints corresponding to the eight edges in the digraph. Al-

though it is difficult to see from the figure, all the robots move without contacting each

other (or the obstacle) or violating the sensor constraints.
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Figure 6.19: Trajectories for � robots avoiding an obstacle.
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Figure 6.20: Trajectories for � robots avoiding an obstacle where the optimal path for the
lead robot is not a straight line.

Example 3: The optimal path for R� is computed by minimizing a suitable norm which

could be the norm of velocities or the actuator forces. In this case, we minimize the norm

of the actuator forces, which gives the required trajectory for R�. The initial and final

configuration of R� is �
� 
� 
� and ��� 
� 
�, respectively. The trajectories for all the robots

are as shown in Figure 6.20. Initially, when the lead robot follows the trajectory avoiding

the obstacle, the follower robots, R� and R� are controlled by the l � � feedback law while

the other robots are controlled by the l� l feedback law as shown in Figure 6.18. However,

as in Example �, when R� and R� reach within the predefined distance of the obstacle, they

switch from the l � � controller to the l � l controller to guarantee that the robot moves

a safe, predefined distance from the obstacle. After the obstacle is overcome they switch

back to the l�� controller. This is shown in Figure 6.20. Note that the final orientation of

the follower robots is not the same as that of the lead robot, R�. However, as mentioned in

the case of the parallel parking maneuver (Example �), if the lead robot now continues to

move in a straight line, the orientation of the follower robots will exponentially converge

to that of R� as proved in Theorem 6.3.1.

Example 4: In this example, we consider a change in shape of the formation from a

triangular to a rectangular one as shown schematically in Figure 6.21. The initial and fi-

nal configurations of these robots and their respective paths are shown in Figure 6.22. We

note that there is no collision among the robots when they transition from the triangular

formation to the rectangular one. This is an example of formation change that is achieved
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Figure 6.21: Schematic of initial and final control graphs.
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Figure 6.22: Change in formation without change in control graph.

by changing the desired values of the shape variables while maintaining the same under-

lying control graph at all instants of time. The purpose of this example is to illustrate that

it is possible to overcome obstacles without changing the control graph.

6.5.3 Transitions between non-isomorphic control graphs

Finally, we present some results which involve changing from one formation to another.

These involve changes in both the shape and the underlying control graph. In each of

these examples, we will demonstrate a single transition or a combination of transitions

for a particular robot based on the enumeration in Figure 6.15. Clearly, in the case of

three robots the sum of members in the two equivalence classes of digraphs corresponds

to the total number of allowable formations as shown in Figure 6.6. However, for a larger
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number of robots in the formation this is not the case and hence we need to choose one

representative formation from an equivalence class as is demonstrated by Examples �, �

and � below.

R1

R2

R3

l-l

l- ψ

R1R2R3
l- ψ l- ψ

G H

Figure 6.23: Schematic of formation change for three robots.

Example 5: In the first example of changes in control graph, we take the example of

three robots moving in a triangular formation, and which need to transition to a straight

line formation. The initial (I) and final (F ) adjacency matrix along with the transition (T )

matrix are given by Equation (6.26). The desired formation is a straight line since the

narrow passage is wide enough to only let one robot go through. Clearly, they cannot

maintain the original control graph as R� would not be in the line of sight of R� to obtain

sensory information for maintaining its desired shape variables.

I �

�
���


 � �


 
 �


 
 


�
��� F �

�
���


 � 



 
 �


 
 


�
��� T �

�
���


 
 ��

 
 



 
 


�
��� (6.26)

Figure 6.23 shows the initial and final control graphs. As seen in the figure, it is necessary

for R� to change from l�l control following R� and R�, to an l�� control following R�. Thus

the transition matrix T , has a ���� in the ��� �� entry as shown in Equation (6.26). This

transition represents case ��a� of Figure 6.15. While the figure shows a smooth change in

positions from the triangular formation to the in-line formation, there are several discrete

changes that occur. First, robot R� senses the obstacles and initiates a change in its shape

variables and then for robot R�, to the desired new internal shape and controller depen-

dency. Thus it guarantees that the overall formation will achieve the desired shape, i.e.,

a straight line formation, prior to reaching the narrow constriction shown in Figure 6.24.

Further, the controller for robot R� changes from an l � l controller to an l � � controller.

Table 6.2 shows the sequence of events that take place to achieve the desired final

configuration shown in Figure 6.24. Note that ri indicates the initial values for the shape
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Figure 6.24: Formation change for three robots involving non-isomorphic representations.

Table 6.2: Sequence of events for Example �.

Event Control action
R� detects obstacle Shape change: r� � �r�
r� � �r� completed Shape change: r� � �r�

Graph transition: G� � H�

variable and �ri, the desired values for the shape variables for robot i. Gj and Hj denote the

jth column of the matrix. Thus for example, r� � �l��� ����
T and �r� � ��ld���

��d���
T . Similarly,

r� � �l��� l���
T and �r� � ��ld���

��d���
T .

R5 R4 R3

l- ψ l- ψ l- ψ

R1R2

l- ψ

R3

R4

R5 l-l

l- ψ

l- ψ

R1R2

l- ψ

G H

Figure 6.25: Schematic of formation change for five robots.

Example 6: In this example, we illustrate the change in formation which corresponds

to transitions � and ��a� in Figure 6.15. The initial (I) and final (F ) adjacency matrix along
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Figure 6.26: Formation change for five robots.

with the transition (T ) matrix for the formation is given by:

I �
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��������
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 � � 
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(6.27)

Figure 6.26 shows the results of simulation for five robots changing to a straight line

formation in the presence of a narrow constriction. A schematic of the initial and final

control graphs is as shown in Figure 6.25. Since the only nonzero columns are given by

T� � �
 �� � 
 
�T and T� � �
 
 �� 
 
�T (see Figure 6.15 for notation), it implies that only

R� and R� undergo changes in their control laws though the other robots may undergo a

change in the shape variables (R� and R�).

The situation in this example for R� is similar to the previous example for R�. However,

the changes in the control laws and set points for R� are more complex, because it needs to

maintain a relative position and orientation with respect to R� which itself is undergoing

a transition.

Table 6.3: Sequence of events for Example �.

Event Control action
R� detects obstacle Shape change: r� � �r�
r� � �r� completed Shape change: r� � �r�
r� � �r� completed Shape change: r� � �r�

Graph transition: G� � H�

r� � �r� completed Shape change: r� � �r�
G� � H� completed Graph transition: G� � H�

Table 6.3 shows the sequence of events that take place to achieve the desired final

configuration shown in Figure 6.26. Note that ri indicates the initial values for the shape
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variable and �ri, the desired values for the shape variables for robot i. Gj and Hj denote the

jth column of the matrix. Thus for example, r� � �l��� ����
T and �r� � ��ld���

��d���
T . Similarly,

r� � �l��� ����
T and �r� � ��ld���

��d���
T , r� � �l��� ����

T and �r� � ��ld���
��d���

T , and r� � �l��� l���
T and

�r� � ��ld���
��d���

T .
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R4
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R6
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R6 R3 R1

R5 R4
l- ψ l- ψ

l- ψ l- ψ

l- ψ

G H

Figure 6.27: Schematic of formation change for six robots.

Example 7: Finally, in this example the task is to transition from a triangular forma-

tion to a rectangular formation. The results of the change in leaders and the transition of

various robots to the desired internal shape variables is as shown in Figures 6.28 and 6.29.

This example illustrates the change in formation which corresponds to transition ��b� in

Figure 6.15. This is an example of an intermediate l � l control which robot R� has to

undergo before stabilizing to the desired l � � control with respect to R�. The initial (I)

and final (F ) adjacency matrix along with the transition (T ) matrix for the formation is

given by:

I �

�
�����������


 � � 
 
 



 
 
 � � 



 
 
 
 � �


 
 
 
 
 



 
 
 
 
 



 
 
 
 
 


�
�����������

F �

�
�����������


 � � 
 
 



 
 
 � 
 



 
 
 
 
 �


 
 
 
 � 



 
 
 
 
 



 
 
 
 
 


�
�����������

T �

�
�����������


 
 
 
 
 



 
 
 
 �� 



 
 
 
 �� 



 
 
 
 � 



 
 
 
 
 



 
 
 
 
 


�
�����������

(6.28)

As seen from the transition matrix, the only robot undergoing change in the leader is R�.

The corresponding column using the notation of Figure 6.15 is given by T� � �
 � � �
� � 
 
�T . A schematic of the initial and final control graphs is as shown in Figure 6.27.
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Figure 6.28: Formation change squeezing through a narrow passage.
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Figure 6.29: Formation change for six robots going around an obstacle.

Since R� changes from an l � l control with respect to R� and R� to an l � � control

with respect to R�, it has to break links with two robots and form a new link with a

different robot. Once the transition process initiates for R�, it severs its link with R� and

forms a new link with R�. It thus maintains an intermediate l � l control with R� and R�

until it stabilizes the separation to the desired values before initiating the final severing

of connection with R�. Once it has severed connection with R�, it starts stabilizing its

orientation with respect to R�. The formation finally converges to the desired rectangular

formation as shown in Figure 6.28. Figure 6.29 also illustrates similar transitions in shape

and control graph for all the robots. However, here since the rectangular formation is the

simplest complexity control graph, i.e., a tree, it is possible to go around obstacles with

this simpler control graph rather than original one. In this example, we assume that the

robots can see each other over obstacles (since R� must see R�).

Table 6.4 shows the sequence of events that take place to achieve the desired final

configuration shown in Figures 6.28 and 6.29. Note that ri indicates the initial values
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Table 6.4: Sequence of events for Example �.

Event Control action
R� detects obstacle Shape change: r� � �r�
r� � �r� completed Shape change: r� � �r�
r� � �r� completed Shape change: r� � �r�
r� � �r� completed Shape change: r� � �r�

Graph transition: G� � H�

r� � �r� completed Shape change: r
 � �r

G� � H� completed

for the shape variable and �ri, the desired values for the shape variables for robot i. Gj

and Hj denote the jth column of the matrix. Thus for example, r� � �l��� ����
T and �r� �

��ld���
��d���

T . Similarly, r� � �l��� ����
T and �r� � ��ld���

��d���
T , r� � �l��� ����

T and �r� � ��ld���
��d���

T ,

r� � �l��� l���
T and �r� � ��ld���

��d���
T , and r
 � �l�
� ��
�

T and �r
 � ��ld�
�
��d�
�

T .

6.6 Conclusions

In this chapter, we have studied strategies for controlling formations of mobile robots

using methods from nonlinear control theory and graph theory. We have focused on de-

composing the problem of controlling a formation into: a) controlling a single lead robot

and b) controlling other follower robots in the team. We used the terms l � � and l � l

control to reflect whether the control laws are based on tracking the position and orienta-

tion of the robot relative to a leader, or the position relative to two leaders, respectively.

It was assumed that there is a single lead robot for the overall formation whose motion

plans are generated externally. These results apply to general formations moving through

an environment that may include obstacles. The two controllers proposed here are used to

achieve this objective. The l � � and the l � l controllers guarantee the correct formation,

while the modified l� l controller can also be used to change the shape of our formation in

the presence of obstacles. This methodology was illustrated by numerous examples both

in the presence and absence of obstacles.

We also studied the problem of changes in formation. In practical applications in-

volving obstacles or narrow passageways it may be necessary to transition between non-

isomorphic control graphs. Thus, to achieve these transitions, we developed the idea of

a transition matrix. We also proved the upper bound on the total number of allowable

control graphs for a given number of robots based on two constraining assumptions. We
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further used the idea of graphical enumeration for digraphs and specialized it to generate

equivalence classes of allowable control graphs which satisfy constraint A and B automat-

ically. Such an array of different control graphs can be used in conjunction with the set

points for the internal shape variables as a library of possible shapes which can be invoked

based on the task requirement. Once a particular control graph is chosen, we can label its

vertices based on constraint B. Further, we also enumerated the possible transitions for

a robot when it changes leader(s) in the transition process. The enumerated transitions

guarantee a unique way to change from one control graph to another modulo the order in

which the connections are made or broken with the initial leaders in the formation. These

enumerations were used to solve numerous examples involving non-isomorphic control

graph transitions. The computation time for optimal trajectory planning based on the

methodology of Chapter 5 for two robots avoiding a circular obstacle requires at least 2

min. for a specifically tailored compiled code and the formation may not necessarily be

maintained. In contrast, the motion for the formation of six robots around an obstacle of

higher complexity such as the one shown in Figure 6.28 has a run time of about 10 s. in

Matlab.

Though the transition matrix gives us the information needed to change formations,

it is not clear if there is an optimal way for carrying out these changes, rather than the

sequential algorithm given here. Also, is it possible to carry out these changes without

having an isolated robot at any stage in the transition process? It is possible to have

changes in only the group variables, g for the lead robot without changing the internal

shape, r or the control graph, H as in the example of the parallel parking maneuver. Sim-

ilarly, we can have changes in g and r simultaneously, without changing the control graph

H as illustrated in Examples � through �. Finally, we can have changes in all the three

variables �g� r�H�, as illustrated by Examples � through �. However there are a couple

of important issues that need to be addressed in future research in this area: a) how to

choose a control graph and the desired shape based on the constraints in the environment?

and b) sensor constraints and changes in �g� r�H� have to be planned concurrently to make

a general motion planner for a large number of robots so that the robots do not collide with

the obstacles and among themselves.

The work presented in this chapter enumerates all possible allowable control graphs,

but it does not give an algorithm for selecting the appropriate control graph and the shape

of the formation. Finally, experimental verification of these strategies is definitely a very

challenging issue. Developing a system of autonomous robots that can maintain a forma-

tion while avoiding obstacles will yield many practical insights that can be used to develop
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better planning and control algorithms.
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Chapter 7

Conclusions and future work

This thesis deals with the general problem of motion planning in systems with two or more

cooperating arms or robots. We have adopted a framework that allows us to concurrently

study and compare biological and robotic systems. We have developed methods that allow

us to plan trajectories and actuator forces for cooperating robot systems. The same meth-

ods lend themselves to modeling trajectory generation and force distribution in human

dual arm manipulation. Further, we have pursued the extension of this framework and

the methods to systems with many (tens of) cooperating robots.

In the following section, we will briefly summarize the material presented in the thesis

and then highlight the major contributions of this work. Finally, we will present some

possible areas of future research that come naturally from this thesis.

7.1 Summary

In Chapter 1, we introduced the subject of motion planning and defined the motion plan-

ning problem for a kinematic system as given by Latombe. We then motivated the need

for a more general definition of motion planning that is relevant to more complex manip-

ulation tasks that are typical in cooperating robots. In particular, we considered a system

of robots lifting and carrying large (but not necessarily heavy), awkwardly sized payloads

such as barrels or boxes, in which the dynamics of the manipulation task played a sig-

nificant role. In such tasks, the robots typically needed to avoid obstacles and plan their

trajectories, while being subject to both kinematic and dynamic constraints. Such cooper-

ative manipulation tasks were similar to the cooperative manipulation tasks in which two

human arms are used to transport an object from one position and orientation to another.

In Chapter 2, we described extensively the literature in the general area of motion
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planning for human and robotic systems. Although there is significant literature on the

subject of trajectory generation for single arm reaching, there is no model which describes

the behavior of the system for complex tasks in which the dynamics of the musculo-skeletal

system plays a significant role. One of the reasons for a lack of complete model is the

difficulty in understanding complex set of commands and strategies used by the central

nervous system(CNS) for planning motion from one position and orientation to another.

Similarly, in the area of cooperative robotic manipulation tasks, there is a need for

motion planning algorithms that find optimal trajectories and force distributions for co-

operating robots while satisfying equality and inequality constraints. Traditionally, the

motion planning problem defined by Latombe, involved finding a feasible path (if there

exists one) for a single robot subject to geometric constraints. Since we are interested

in deriving continuous motion plans for our experimental system, we need to extend this

definition to account for more complicated motion planning tasks. These problems in-

volve constraints ranging from such kinematic constraints as constraints on the turning

radius of a mobile robot to inequalities which bound the normal forces, i.e., dynamic con-

straints. All these requirements make the motion planning problem quite complicated.

We reviewed the pertinent existing literature which addresses some of the issues in this

area.

In Chapter 3, we discussed the optimal control problem and the solution of Pontryagin

for various cases involving constraints on the state and/or the control inputs to the system.

An equivalent problem in the variational calculus domain known as the problem of Bolza

was also studied and the critical solutions for the problem, namely the Euler-Lagrange

equations were derived along with the Weierstrass-Erdmann corner conditions. We stated

conditions under which the critical solutions of the optimal control problem are also the

critical solutions of the unconstrained variational problem and vice-versa. The motivation

for formulating the optimal control problem as a problem in the unconstrained variational

calculus framework is two-fold. Firstly, obtaining solutions to the optimal control problem

using the theorem of Pontryagin for complex problems by using a numerical method is

not an easy task. Secondly, solving constrained optimal control problems is not straight-

forward as numerical techniques for solving two-point boundary value problems are not

very efficient. Our approach overcomes both these difficulties. Further, we derived explicit

formulae for the total number of variables in the unconstrained formulation based on new

adjoined constraints. We also discussed methods for stabilizing constraints at each mesh

point for greater accuracy and increased convergence to the optimal solution. Finally, we

also discussed the numerical technique for solving the reformulated problem.
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In Chapter 4, we used mathematical modeling techniques of Chapter 3 to model tra-

jectory generation and force distribution in human dual arm manipulation. We studied

the bi-manual manipulation task, both in the horizontal and vertical plane and the mo-

tion planning problem. Studies of planar human manipulation tasks showed that the

trajectories are repeatable across trials and across subjects and that these trajectories

and velocity profiles are smooth. Experimental results illustrated an invariance and cer-

tain symmetries in trajectories in these manipulation tasks. Our studies suggested that

humans may employ a strategy that minimized a suitable integral cost function. This mo-

tivated our computational model for modeling trajectory generation and force distribution.

We modeled the planning problem as an optimal control problem that involved minimiz-

ing the rate of change of actuator torques subject to kinematic and dynamic constraints.

The results of this model compared favorably to experimentally observed trajectories, ve-

locities and force profiles for a class of manipulation tasks. The model also predicted an

increase in the interaction force as the weight on the grasped object increased, a feature

that is also observed in experiments. Though the analytical model did predict the observed

trajectories and forces, we are currently unable to account for the dependence of internal

forces on the hand velocities. Our results in vertical arm movements were significantly

different that those observed in the planar case. The vertical arm trajectories for upward

movements exhibited curvature while the downward movements were straight. Though

the shape of the internal force profile was repeatable across subjects, their magnitudes

varied from one subject to the other. Also the magnitudes of internal forces varied sig-

nificantly according to the direction of motion in the sagittal plane. The force profiles for

these motions showed a higher internal force for the �� � motion than the �� � motion.

This could be attributed to the fact that in one case work is done against gravity (� � �

motion) while in the other case, it is along the direction of the gravitational force (� � �

motion). Frontal plane movements also exhibited near straight line trajectories and the

force profiles are similar to those in the planar case.

In Chapter 5, we explored the problem of cooperative robot motion planning based on

findings from human manipulation studies. We considered car-like platforms equipped

with robot arms and the task of cooperatively transporting objects. We adopted a cost

function similar to the one used in Chapter 4. By minimizing the norm of the actuator

forces/torques, we achieved a smooth velocity profile for our platforms which are veloc-

ity controlled. Smoother velocity profiles result in smaller dead-reckoning errors caused

by slippage on the floor. We demonstrated the generality of the method by considering

one other example, the example of the snakeboard. In this system, the nonholonomic
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constraints are such that the mobility of the system cannot be modeled using just the

kinematics. It is necessary to incorporate the dynamics of the system. We studied gait

transitions in the snakeboard and showed that smooth motions can be obtained.

When we consider a larger number of robots (n � �), the complexity of the motion

planning problem greatly increases. In Chapter 6, we argued that it makes sense to use

a hybrid of methodologies, i.e., both centralized and decentralized control strategies to

achieve the required objective. We motivated the problem of controlling the formation of

a team of robots. Such a task may typically involve changes in both the shape and the un-

derlying control strategy. These strategies are also observed in microscopic organisms like

the paramecium or the amoeba and hence serve as basic building blocks for modeling such

problems. The motion planning problem for a large formation of robots was broken down

into two sub-problems. Firstly, we designed suitable controllers to maintain the shape of

a formation and avoid obstacles in the process and secondly, we defined the connectivity

constraints between robots and how to achieve transition from one formation to another.

We also specialized results from graph theory to our specific problem and developed an

algorithm for choosing allowable control graphs. Along with the idea of the transition ma-

trix, we also enumerated possible changes in control graphs and outlined the algorithm for

transiting from one control graph to another. In all motion planning tasks in this chapter,

we used techniques from optimal control based on Chapter 3 to plan an optimal trajectory

for the lead robot based on geometric and kinematic constraints.

7.2 Contributions

This thesis makes significant contributions in the following areas:

� The problem of motion planning for general dynamical systems while optimizing

a suitable cost function is a difficult problem. The complexity of the problem in-

creases as different types of constraints are present in the system, like, state and

input based equality and inequality constraints. One of the main contributions of

the thesis is to handle these varied constraints in a unified framework and illustrate

the effectiveness of the procedure by modeling and simulating highly complex sys-

tems like the system of cooperating robots or understanding coordinated two-arm

manipulation tasks by humans. Having formulated the optimal control problem in

the framework of unconstrained variational calculus, we further develop the notion

of differentiating constraints and their stabilization at each mesh-point by adjoining
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the lower order derivatives with suitable constant coefficients. This ensures that the

constraints exponentially converged at each mesh-point.

� The second significant contribution is in the area of coordinated human manipu-

lation. So far, researchers have investigated single-arm manipulation tasks in the

horizontal or vertical plane and coordination of hands and fingers for small move-

ments without incorporating the dynamics of the human arm. In this thesis, we

have investigated dual arm manipulation tasks for large movements and developed

a computational model for the first time. Unlike previous studies, we studied tasks

that rely on frictional forces for stable prehension of the object as the object is free

to slide on a vertical column. The subject needs to hold the object while carrying out

the manipulation task. Our computational model predicts many important features

of human trajectory generation and load distribution in planar manipulation tasks.

We also investigated dual-arm manipulation tasks in the vertical plane and our ex-

perimental data gave insight into the trajectories and force distribution between the

two arms while performing a typical manipulation task.

� The third contribution is a systematic study of the problem of cooperative robot mo-

tion planning for a team of autonomous robots. We developed motion planning algo-

rithms for robot systems consisting of mobile platforms equipped with robot arms.

The motion plans were implemented and tested on an experimental testbed which

consisted of two TRC-Labmate platforms. In order to illustrate the generality of our

methods, we used the same algorithms to generate motion plans for a nonholonomic

system called the snakeboard. We obtained numerical solutions for optimal gaits

and transitions between the gaits based on certain fixed end-point conditions.

� Finally, we also studied the problem of coordinating a large number of robots and

controlling the formation. Since the task of computing optimal motion plans for a

large number of robots is computationally expensive, we designed a new method and

a set of algorithms for such a system. The basic idea is to combine open loop motion

plans with closed loop motion plans or feedback control laws. The open loop plans

for one or more leader platforms are generated using optimal control methods, while

feedback control laws for follower platforms/robots guarantee that the followers and

the leaders remain in a tight formation. In the presence of severe free-space con-

straints in the environment, it is necessary to transition between non-isomorphic

control graphs. Thus to achieve these transitions, we developed the idea of a tran-

sition matrix. We also proved the upper bound on the total number for possible
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formations, given the number of robots based on two constraining assumptions. We

further used the idea of graphical enumeration for digraphs and developed an al-

gorithm to choose allowable control graphs. Such an array of different formations

can be used as a library of possible formations which can be recalled based on the

task requirement. Further, we also enumerated the possible transitions for a robot

when it changes its controller dependency. The enumerated transitions guarantee a

unique way to change formation modulo the order in which the connections are made

or broken with the initial leaders in the formation.

7.3 Future work

In this thesis, we have successfully investigated the motion planning problem for a class

of dynamical systems and proposed new methodologies for the motion planning problem.

Though we have obtained solutions for the general motion planning problem, there are

areas of future research.

1. The proposed methodology for solving optimal control problems in the variational

framework uses first order necessary conditions for finding a critical solution. It is

meaningful to investigate and prove some results on the global or strong optimality

of certain class of problems with specific types of constraints.

2. In the area of human manipulation, there have been no reported studies on general

spatial motion planning1 and computational models for understanding these tasks.

Part of the difficulty for these studies lies in design and construction of an appro-

priate testbed. For planar motion, we can use encoders as used in the experiments

described here, but it is not clear how to construct a spherical joint with encoders to

capture the orientation of a spatial manipulandum. However, with the availability

of motion detectors like the OPTOTRAK system or the POLARIS system, these lim-

itations can be easily overcome. It will be interesting to study the trajectories and

velocity profiles for general spatial manipulation tasks using results from single and

dual arm movements based on existing observations in horizontal and vertical arm

movements. Finally, building a computational model for these observed data in the

spatial domain is the next logical step.

1We note that there have been studies on vertical arm movements by Atkeson and Hollerbach [6] and
others, but these motions are not general.
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3. The area of motion planning for general robotic systems has been explored in great

detail in this thesis from the point of view of planning optimal motions. The method-

ology presented is very general to the types and number of constraints. One of the

biggest hurdles in extending this methodology to planning motions for a larger num-

ber of robots is the increase in computational complexity of the algorithm. We can,

however use methods of optimal control to plan the initial trajectory of the lead robot

based on the obstacles in the environment. This can be combined with local sensory

information acquired on-line by the robots and using the robots own control laws

developed in Chapter 6 to plan the motion for the team. Thus using centralized

and decentralized control is well suited to this problem. Though, we have developed

some groundwork in this direction, there are a host of issues that need to be explored.

These are summarized below:

� Though the transition matrix gives us the algorithm for changing formations by

sequential changes in the control graph, it is not understood if there is an opti-

mal way for carrying out these changes rather than a sequential pattern. For

example, if there are a lot of changes in the initial control graph, is it possible

to find an optimal way to carry out these changes while dynamically relabel-

ing the vertices (except robot �) in the digraph? Also, is it possible to carry out

these changes without having an isolated robot at any stage in the transition

process? One possible cost function to study optimality of transitions could be

to minimize the number of “make and break” connections.

� Though it is possible to have changes in some or all of the variables in the

triple, �g� r�H�, it is not clear, how to choose a control graph and the desired

shape based on the constraints in the environment? The work presented here

enumerates all possible control graphs that are allowable but it does not give

an algorithm for selecting the appropriate control graph and the shape of the

formation. Thus, it will be interesting to design a motion planner which will

decide “on the fly”, the type of formation required to overcome the obstacles in

the environment based on the sensory data obtained by the lead/leader robots

in the formation.

Finally, experimental verification of these strategies is definitely a very challenging

issue. Developing a system of autonomous robots that can maintain a formation

while avoiding obstacles will yield many practical insights that can be used to de-

velop better planning and control algorithms.
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Appendix A

Human manipulation

A.1 Data analysis

The recorded encoder readings were analyzed off-line, and the corresponding joint angles

of the manipulandum were derived after the data was processed with a third order But-

terworth low pass filter using a cutoff frequency of 7.5 Hertz. The corresponding angular

velocities were obtained by numerical differentiation using a five-point Lagrangian differ-

ence method [56]. The Cartesian trajectories and velocity profiles were then derived by

employing the forward kinematics transformations for the manipulandum.

For each measured motion, only those components for which the prescribed ampli-

tudes were non-zero were considered. Thus for example, in the case of pure translatory

motion (no rotational component), the rotational components of motions were discarded.

Therefore, only components having high signal/noise ratio were used. These components

are referred to as the “significant components” of motion. Considering each significant

component separately, the start and end times were taken as the point in time when the

velocity of that component has reached 5% of its peak velocity. For a given motion, the

minimum of the start times of its significant components was taken as the motion start

time, and the maximum of their end times was taken as the motions end time. Since in

general, the duration of motion may be different for the repetition of that particular mo-

tion, we normalized the data so that we can compare the data across trials for different

motions. Thus the durations of motion were normalized based on the methods of Atkeson

and Morasso [6, 91]. For each motion, the normalized time, ��� was:

� �
t� t�
tf � t�

(A.1)
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Similarly, for each motion component (e.g., x), the normalized amplitude ��x� was taken as

�x �
x�t�� x�t��

x�tf �� x�t��
(A.2)

In order to normalize the velocity profiles, Equation (A.2) was differentiated with respect

to normalized time. Since,
d�x

d�
� �

d�x

dt
� �

dt

d�
� (A.3)

and
dt

d�
� tf � t� � (A.4)

it follows that:
d�x

d�
� �x

tf � t�
x�tf �� x�t��

(A.5)

A.2 Human data

In this section, we will present some sample experimental data and the physical parame-

ters required from the human subject in order to model the manipulation task. Figure A.1

shows the schematic of the human subject and the critical parameters like the length of

upper-arm, fore-arm, and hands. The data for six subjects is as shown in Table A.1. Based

a

b

c

Figure A.1: Schematic of essential parameters required for modeling human motion.

on the table and the correlations in Winter [130], the mass of the upper-arm, fore-arm and
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Table A.1: Physical parameters for six subjects.

Subjects a b c Weight (W)
S1 �


� in �� �
� in �� �

� in ��� lbs.
S2 ��

� in �
 �
� in �� �

� in ��
 lbs.
S3 ��

� in �
 �
� in �� �

� in �	
 lbs.
S4 ��

� in �
 in �� �
� in ��
 lbs.

S5 � in �� in �� in �

 lbs.
S6 �


� in �� in �� �
� in ��� lbs.

the hand grasping the object can be computed by the following relations:

mupper � 
�
��W

mforearm � 
�
��W

mhand � 
�

�W

where, W is the weight of the subject. The radius of gyration of each arm is obtained

through similar correlations from Winter and is used to compute the moment of inertia of

the upper arm, forearm and hand. These moments of inertia are given by:

Iupper � mupper�
����c�
�

Iforearm � mforearm�
��
�b��

Ihand � mhand�
��	�a�
�

The physical parameters, a� b and c along with the mass of each arm segment is used

to compute the inertia matrix for each arm. The inertia of the force sensors along three

principal directions is given by: Ixx � Izz � ���� � �
�� kg�m� and Iyy � ���	 � �
�� kg�m�

Sample raw data collected from the OPTOTRAK is shown in Table A.2 and the raw

force data is shown in Table A.3.

A.3 Dynamics of a three link serial manipulator

We use Lagrange’s equations to derive the dynamics of a three link serial chain manipu-

lator as that is the model for the human arm. Let vi represent the translational velocity

of the center of mass of the ith link and �i (� ��i) its angular velocity in the z direction. Let

Izi be the moment of inertia in the z direction of the ith link relative to the frame attached
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Table A.2: Sample raw data from the OPTOTRAK.

x� (mm) y� (mm) z� (mm) x� (mm) y� (mm) z� (mm)
103.69 -153.03 -1713.29 100.90 -215.67 -1723.19
103.31 -152.88 -1713.48 100.43 -215.50 -1723.47
102.98 -152.72 -1713.68 100.01 -215.32 -1723.75
102.66 -152.52 -1713.87 99.64 -215.11 -1724.03
102.36 -152.27 -1714.07 99.32 -214.85 -1724.30

Table A.3: Sample raw data from the force sensors.

Fx Fy Fz �x �y �z
55 -77 -321 49 52 -287
56 -78 -320 48 52 -286
56 -78 -320 49 53 -286
56 -78 -319 48 54 -285
56 -77 -318 48 55 -283

to the center of each link and oriented along the principal axes. Since the motion of the

mechanism is in the plane, the Lagrangian is the kinetic energy of the system and is given

by:

L��� ��� �
�

�

�X
i��

miv
�
i 
 Izi ��

�
i (A.6)

where � � ���� ��� ���
T is the � � � vector of generalized coordinates representing the

relative joint angles as shown in Figure A.2.

Let ri represent the distance from the joint to the center of mass of the ith link and li

the length of each link as shown in Figure A.2. Hence, the coordinates of the center of

mass for each link is given by:

�x� � r�c� �y� � r�s�

�x� � l�c� 
 r�c�� �y� � l�s� 
 r�s��

�x� � l�c� 
 l�c�� 
 r�c��� �y� � l�s� 
 l�s�� 
 r�s���

(A.7)

where c� � cos ��, c�� � cos��� 
 ���, c��� � cos��� 
 �� 
 ��� and similarly, s� � sin ��,

s�� � sin��� 
 ���, s��� � sin��� 
 �� 
 ���. The translational velocity of the center of mass

of each link is thus: v�i � ��x
�
i 


��y
�
i (i � �� �� �) where ��xi and ��yi are given by:

��x� � �r�s� ���
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Figure A.2: A three link serial manipulator.

��y� � r�c� ���

��x� � ��l�s� 
 r�s��� ��� � r�s�� ���

��y� � �l�c� 
 r�c��� ��� 
 r�c�� ��� (A.8)

��x� � ��l�s� 
 l�s�� 
 r�s���� ��� � �l�s�� 
 r�s���� ��� � r�s��� ���

��y� � �l�c� 
 l�c�� 
 r�c���� ��� 
 �l�c�� 
 r�c���� ��� 
 r�c��� ���

Lagrange’s equations are given by:

d

dt

�
�L

� ��i

�
� �L

��i
� �i (A.9)

where �i is the sum of all the external forces acting on the body along the generalized

coordinate, �i. The vector, � is a �� � vector and is given by:

� � � � JTF

where J is the manipulator Jacobian and F � �Fx� Fy� �z�
T is the vector of external forces

acting on the end effector as shown in Figure A.2 and � � ���� ��� ���
T is the vector of joint

torques at each link joint. The end-effector coordinates are given by, p � �x� y� ��T where:

x � l�c� 
 l�c�� 
 l�c���

y � l�s� 
 l�s�� 
 l�s��� (A.10)

� � �� 
 �� 
 ��
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Thus, the manipulator Jacobian is given by:

J �

�
���

�x
���

�x
���

�x
���

�y
���

�y
���

�y
���

��
���

��
���

��
���

�
��� (A.11)

Using Equation (A.10), we can easily calculate the manipulator Jacobian J , by evaluat-

ing the various entries of the matrix in Equation (A.11). Once we have calculated J , we

can use the Lagrangian given by Equation (A.6) and Lagrange’s equations given by Equa-

tion (A.9) to derive the equations of motion for the three link manipulator. After some

simplification, the equations for each arm can be compactly written as:

I����� 
 C��� ��� � � � JTF

where � � ���� ��� ���
T is the � � � vector of the joint coordinates, I��� is the � � � inertia

matrix, C��� ��� is the � � � vector of nonlinear terms (Coriolis and centrifugal forces), �

is the � � � vector of joint torques, J is the � � � Jacobian matrix relating the velocity of

the center of mass of the object to the joint velocities and F is the � � � generalized force

vector, representing the force exerted by the manipulator on the object and the moment

about the center of mass.
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