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The development of a diatom-based transfer function along the Pacific
coast of eastern Hokkaido, northern Japan—an aid in paleoseismic studies
of the Kuril subduction zone

Abstract
This paper provides a dataset to develop a diatom-based transfer function, which is applicable to paleoseismic
studies at southwestern Kuril subduction zone, northern Japan. Modern diatom samples were collected from
five transects from saltmarshes of Lakes Akkeshi and Onnetoh along the Pacific coast of eastern Hokkaido.
The relationships between diatom species and environmental variables were elucidated by canonical
correspondence analysis (CCA) and partial CCAs. Partial CCAs associated with Monte Carlo permutation
tests show that elevation accounts for a significant portion of the total variance in the diatom data. Therefore,
statistically significant transfer functions quantifying the relationship between modern diatom assemblages
and elevation were developed using weighted averaging partial least squares and applied to fossil diatom
assemblages from Lake Onnetoh. The reconstructed curve of elevations contains five emergence and four
submergence events and the transfer functions calculated the amplitude of four of the emergence events to be
at least 1 m. The results are consistent with paleoecological data produced by previous studies. If these events
represent uplift associated with interplate earthquake and subsidence during an interseismic period along the
Kuril subduction zone, transfer functions of eastern Hokkaido can contribute to reconstruction of the
recurrence intervals and the amplitude of earthquakes.
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Abstract 

 This paper provides a dataset to develop a diatom-based transfer function, 

which is applicable to paleoseismic studies at southwestern Kuril subduction zone, 

northern Japan. Modern diatom samples were collected from five transects from 

saltmarshes of Lakes Akkeshi and Onnetoh along the Pacific coast of eastern Hokkaido. 

The relationships between diatom species and environmental variables were elucidated 

by canonical correspondence analysis (CCA) and partial CCAs. Partial CCAs 

associated with Monte Carlo permutation tests show that elevation accounts for a 

significant portion of the total variance in the diatom data. Therefore, statistically 

significant transfer functions quantifying the relationship between modern diatom 

assemblages and elevation were developed using weighted averaging partial least 

squares and applied to fossil diatom assemblages from Lake Onnetoh. The 

reconstructed curve of elevations contains at fives emergence and four submergence 

events and the transfer functions calculated the amplitude of four of the emergence 

events to be at least 1.0m. The results are consistent with paleoecological data 

produced by previous studies. If these events represent uplift associated with interplate 

earthquake and subsidence during an interseismic period along the Kuril subduction 

zone, transfer functions of eastern Hokkaido can contribute to reconstruction of the 

recurrence intervals and the amplitude of earthquakes. 

 

Keywords: diatoms, transfer function, salt marsh, earthquakes, Hokkaido 
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1. Introduction 

The process of subduction is associated with large earthquakes at plate 

boundaries (Thatcher, 1984; Savage and Thatcher, 1992). Before an earthquake, the 

upper continental plate locks with underlying oceanic plate at the seaward edge of the 

subduction-zones. The locked zones between both plates cause downward creeping of 

the upper plate (interseismic strain). During the earthquake, the stress is released 

(elastic deformation) and these processes can produce geologic evidences in coastal 

areas. (e.g. Atwater, 1997; Nelson et al., 1996a). Along the northwest Pacific coast of 

America, seismic cycles during the Holocene are expected to record relative sea-level 

(RSL) changes in coastal deposits which consist of intercalation of brackish-marine 

mud with brackish-freshwater peat (Atwater and Hemphill-Haley, 1997; Nelson et al., 

1996b; Shennan et al., 1998). Furthermore, on the southeast of the Kuril subduction 

zone, recent studies attribute Holocene RSL changes reconstructed from estuarine 

deposits to plate-boundary earthquakes in the Holocene (Atwater et al., in press; Sawai, 

2001a; Sawai et al., 2002), even though historical records of the past 200 years give no 

evidence of great earthquakes at eastern Hokkaido, near the Kuril subduction zone. If 

the RSL changes are the product of plate-boundary earthquakes on the Kuril 

subduction zone, then accurate reconstructions of RSL changes are required to assess 

the spatial extent and recurrence intervals of the earthquakes.  

One approach to the study of post-glacial RSL change has been to use 

microfossil assemblages (e.g. diatoms) that are preserved in a range of coastal 

sedimentary deposits. During the past 50 years, sea-level indicators developed from 

microfossils have been used extensively to provide reconstructions of Holocene RSL 
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change, for the UK, Europe and elsewhere (e.g. Denys and de Wolf, 1999; Shennan 

and Horton, 2002). However, these microfossil data and their associated RSL 

reconstructions are subject to errors, which limit the precision of determining both age 

and elevation. With increasing focus on sea-level changes of shorter period and smaller 

amplitude, the relative size of these errors become increasingly important. One 

challenge for studies of Holocene RSL is to limit errors by using the most precise 

indicators available.  

 Transfer functions produce precise reconstruction of former sea levels using a 

statistically based relationship between modern diatom assemblages, their measured 

relationships to sea level and their fossil counterparts (Gehrels et al., 2001; Horton et 

al., 1999, 2003; Horton and Edwards, 2003, 2004 in press; Sherrod, 1999; Zong and 

Horton, 1999). Although numerous studies of microfossils and their relationship to 

RSL in coastal environments of Japan have been reported (see below), there are ample 

opportunities to increase knowledge of changes in sea level in the Japanese region 

using the understanding and techniques developed by other ecologists, limnologists, 

oceanographers, palynologists and geologists.  

 This paper, therefore, seeks to document some characteristics of modern 

environments along the Pacific coastline of eastern Hokkaido, Japan and to develop a 

diatom-based transfer function for use in paleoseismic interpretations of the southern 

Kuril subduction zone. 

 

 

2. Previous studies in Japan 
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Detailed studies of diatoms and their relationship to RSL began in Japan in the 

1980s although a few pioneer works had been already published (e.g. Hasegawa, 1976). 

Their first aims were to establish a coastal diatom classification and to apply this to 

reconstruct changes in sedimentary environments across marine-freshwater transitions 

of Holocene deposits (Ando, 1986; Kashima, 1986; Kosugi, 1988). Subsequently, the 

classifications were used to decipher RSL observations associated with the mid 

Holocene RSL highstand and the late Holocene RSL fluctuations (e.g. Fujimoto, 1990; 

Ohira et al., 1994; Umitsu, 1994; Sawai and Kashima, 1996; Yokoyama et al., 1996; 

Kawase, 198; Sawai and Mishio, 1998; Sato et al., 2001; Sawai, 2001a). A mid 

Holocene RSL highstand along the coast of eastern Hokkaido is estimated to have 

occurred between 3000 and 6000 14C years ago as indicated by uplifted and buried 

shells of intertidal bivalves and marine mud-freshwater peat contacts (Maeda et al., 

1992; Maeda et al., 1994).  

Details of RSL fluctuations after the highstand are recorded by fossil diatom 

assemblages at Lakes Akkeshi and Onnetoh (Sawai, 2001a; Sawai et al., 2002). 

Diatom assemblages from estuarine deposits at these sites record at least three cycles 

of RSL rise and fall in the past 3000 years with recurrence intervals of between 1100 

and 300 cal years. Sawai (2001a) and Sawai et al. (2002) concluded that these 

repetitions of rise and fall were attributed to uplift associated with interplate 

earthquakes along the Kuril subduction zone. However, the changes in RSL associated 

with these earthquakes have not been quantitatively analysed. .  
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3. Study area 

3.1 Transects 

Five studied transects were selected from two estuaries in Hokkaido, Lakes 

Akkeshi (transects A, B and C) and Onnetoh (transects D and E) (Fig. 1), which cover 

a wide range of environmental factors (e.g. tidal range and sedimentary conditions). 

Lake Akkeshi is protected from the open sea by a narrow entrance dominated 

by oyster banks. The lake floor consists mainly of fine sand and mud, and the shore is 

exposed at the low tide. Saltmarshes occupy the eastern shores of the lake. The 

spring-tide range is 1.2 m and the neap-tide range 0.9 m (Maritime Safety Agency, 

1998). The extreme tidal range, between the highest and lowest astronomical tides, is 

1.7 m. A 200m transect (Transect A) from the southern saltmarsh, which has a 

salinities of 5-34ppt, was studied and covers a range of sub-environments from 

forested upland, high marsh, low marsh to tidal flat. The forested upland is dominated 

by Alnus japonica and Alnus hirsute (Fig 2). Phragmites communis and Spiraea 

salicifolia cover the high marsh where sediments are composed of mud (silts and 

clays). The narrow low marsh is dominated by Triglochin maritimum and Carex 

subspathacea. The sediments on tidal flats are composed entirely of sand with Zostera 

marina and Zostera japonica (Fig. 2). Transect B is close to Transect A and covers the 

same range of sub-environments but also includes the subtidal zone. Vegetation and 

surface sediments from upland to tidal flat are near-identical to Transect A. The 

subtidal zones are dominated by Zostera marina and Zostera japonica. Sediments of 

the subtidal zones are composed of sand but also contain more mud relative to the tidal 

flat. Transect C is about 700m long and extends from upland, high marsh, low marsh to 
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tidal flat. The upland is forested and dominated by Alnus japonica, Alnus hirsute, and 

Lysichiton camtschatcense, where sediments are composed of wet soil. The high marsh 

is dominated by herbaceous plants including Carex spp. and Phragmites communis, 

whereas the low marsh supports Triglochin maritimum and Carex subspathacea. 

Sediments on these marshes are composed of mud, and the tidal flat consists entirely of 

fine sand.  

Lake Onnetoh has the similar range of tides as the Lake Akkeshi, however the 

salinity range is lower (2 to 16ppt). The saltmarshes of Lake Onnetoh are protected 

from the sea by a sand barrier (Fig. 1). Transect D is located in the southern area of 

Lake Onnetoh. The sub-environments include upland, high marsh, low marsh and tidal 

flat. Forested upland is located above the highest high tide level (HHTL). The upland 

vegetation is characterized mainly by Picea glehnii, and also includes Menziesia 

pentandra, Abies sachalinensis, and Maianthemum dilatatum. The forest floor consists 

of moss. The saltmarsh is separated into high and low marshes by tide level and 

dominant species of vascular plants. The high marsh is between mean high tide level 

(MHTL) and HHTL (Sawai 2001b). The high marsh contains mainly Phragmites 

communis, and the downward edge of high marsh is dominated by Eleocharis 

kamtschatica and Eleocharis acicularis var longiseta. The low marsh is located below 

HHTL and dominated by Triglochin maritimum and Carex subspathacea. Some 

vegetation containing Zostera marina and Zostera japonica is found on the tidal flat. 

Sediments on the tidal flat are composed of mud. Transect E lies near the entrance of 

Lake Onnetoh. The transect extends from forested upland, high marsh, through salt 

pond to tidal flat. The upland is dominated by Alnus japonica and Alnus hirsute. 
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Sediments on the high marsh consist mainly of humic mud, and are covered by 

Phragmites communis. The salt pond is isolated from the sea by a sand berm and a 

narrow outlet connecting to the sea. The tidal flat consists of fine-grained sand. 

3.2 Core site 

The transfer function is applied to fossil diatom assemblages in deposits of 

Lake Onnetoh to test the applicability of the transfer function for palaeoseismic studies 

(Fig. 1). The core was obtained from a station near the most landward part of the 

Transect D. The core comprises alternating brackish-marine inorganic mud and 

brackish-freshwater peat. The inorganic mud includes seeds of saltmarsh plants, such 

as Triglochin. maritimum and Carex. subspathacea. The peat contains abundant plant 

macrofossils, including leaves of Picea glehnii, Hylocomium splendens, and 

Rhytidiadelphus triquetrus although some samples of peat (about 0.19 – 0.24 m and 

–0.24 m relative to the present MTL) are dominated by fruits of Eleocharis 

kamtschatica and Scirpus tabernaemontani, which live in freshwater and brackish 

wetlands (Sawai et al., 2002). Ages of this core were estimated by three radiocarbon 

assays from seeds, cone scale, and leaves (Table 4) and three tephras: the age of tephra 

Ta-c2 has been reported as 1600 14C yr BP (Ohira et al., 1994) and 2500 cal yr BP 

(Kelsey et al., 2002); tephra Ta-a as A.D.1739; and tephra Ko-c2 as A.D.1694 (Saiwa 

et al., 2002). 

 

4. Methods 

4.1 Diatom analysis 

We collected modern samples from each transect at the sediment-water 
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interface (top 2-3mm of surface sediment) using disposable plastic syringes of 10 ml or 

a small spatula during low tides. After collection, samples were kept at about –15˚C in 

a freezer. In the laboratory, samples were divided using disposable plastic syringes. 

The sub-samples were treated using a staining method described by Sawai (2001b). 

Live and dead diatoms were identified and counted in each prepared slide using an oil 

immersion microscope (1000 magnification) until approximately 300 dead diatom cells 

were counted. Fragments consisting of more than half of a diatom valve were included 

in the count of dead diatoms (Sawai, 2001b). We referred to Krammer (1982, 2000), 

Krammer and Lange-Bertalot (1986, 1988, 1991a, 1991b), Lange-Bertalot (1996, 

2001), Patrick and Reimer (1966), Sawai and Nagumo (2003), Round et al. (1990), and 

Witkowski et al. (2000) for diatom identification.  

We apply a training set of modern dead diatom assemblages to the fossil core. 

A ‘living diatom’ training set may reflect the most accurate ecological conditions, 

however, living diatom populations can vary throughout the year in abundance and 

productivity within the same estuary (Moore and McIntire, 1977; Sabbe, 1993). In our 

diatom data, counted dead frustules and valves greatly exceed living cells in 

Hokkaido’s lakes and the relative abundance of the total (living + dead) diatoms is 

almost the same as the abundance of only dead diatom assemblages (Sawai, 2001a). 

This observation suggests that dead diatom assemblages can account for seasonal 

variation of living diatoms and be similar to fossil diatom assemblages rather than the 

living diatom population.  

Another critical issues for coastal paleoenvironmental reconstructions using 

diatom data is the autochthonous/allochthonous problem because daily tides easily 
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transport diatom valves and frustules (Simonsen, 1969; Vos and de Wolf, 1993). Sawai 

(2001b) showed that Paralia sulcata and Cocconeis scutellum could be significant 

allochthonous components in tidal marsh deposits. Living specimens of Paralia 

sulcata form long chains (Crawford, 1979). The chains can float and small specimens 

are transported by the flow of the tide, and trapped during the ebb (Denys, 1999; 

Hemphill-Haley, 1995a; Nelson et al., 1996b; Sawai, 2001b; Sawai et al., 2002). 

Cocconeis scutellum lives on seaweed, to which the cells are strongly attached through 

the raphid valve (R-valve). On death, however, non-attached P-valves become 

separated from the seaweed, whereas R-valves remain attached by the mucilage. 

Separated P-valves are transported over long distances by tidal currents, and many 

valves are incorporated as an allochthonous component of surface sediment 

assemblages. Only P-valves are entirely and selectively distributed on tidal 

environments, although its habitat is limited to the seaweed zone (Sawai, 2001b). Thus, 

in this paper we use a training set of dead diatom species relative to total diatom valves 

counted excluding Paralia sulcata and P-valves of Cocconeis scutellum. 

4.2 Environmental analysis 

We collected modern samples for environmental analyses (porewater salinity, 

grain size and organic content) at the same time as the diatom sampling. Porewater was 

separated by centrifuge from the modern sediment samples. The porewater salinity was 

measured using salinity refractometer. Grain size was measured by gentle washing 

through sieves and organic matter contents of the sediments were measured by loss on 

ignition. All stations were leveled to sea level using a level and staff at regular spatial 

and temporal intervals throughout the study, and the tide gauge data from Akkeshi 
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town was used to standardize elevations with respect to elevation of the lowest tide of 

each day and the nearest bench mark of the Geographical Survey Institute of Japan 

(error ±0.10m). 

4.3 Canonical correspondence analysis 

 We studied the relationships between diatom species and environmental 

variables using canonical correspondence analysis (CCA) (ter Braak, 1986). The 

independence and relative strength of the major environmental gradients were 

estimated using a series of partial CCAs to separate the total variation in the diatom 

data into components which represent: i) the unique contributions of individual 

environmental variables; ii) the contribution of covariance between variables; and iii) 

the unexplained variance. The statistical significance of the partial CCAs was 

determined using a Monte Carlo permutation test. CCA was performed using the 

computer program CANOCO release 4 (ter Braak and Smilauer, 1998). Only taxa 

exceeding 3 % were used in the analysis. 

4.4 Quantitative reconstruction techniques 

Numerous transfer functions have been developed to reconstruct 

quantitatively paleoenvironmental variables. Some of these have a stronger ecological 

and/or statistical basis than others. Thus, some methods are more appropriate than 

others for quantifying relationship between diatom assemblages and elevation. The 

fundamental distinction between existing methods concerns the underlying 

taxon-environment response model (Birks, 1995). The amount of biological 

compositional turnover along the environmental gradient of interest (elevation) is used 

to decide whether linear-based or unimodal-based statistical methods are appropriate 
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(Birks, 1995). This was estimated using detrended canonical correspondence analysis 

(DCCA) with detrending by segments and non-linear rescaling provides an estimate 

(as the length of DCCA axis one) of the gradient length in relation to elevation in 

standard deviation (SD) units (Birks, 1995; Korsman and Birks, 1996). If the gradient 

length is longer than 2 SD units several species will have their optima located within 

the gradient and unimodal-based methods of regression and calibration are appropriate 

(Birks, 1995). Detrended canonical correspondence analysis of the training set with 

elevation as the only environmental variable has produced a gradient length of 6.40. 

This indicates a unimodal nature of the diatom abundance data with respect to 

elevation relative to the present mean tidal level. Thus, unimodal-based methods of 

regression and calibration were used. 

Diatom-based transfer functions have been previously developed using a 

unimodal-based technique known as weighted averaging (WA) regression and 

calibration with inverse and classical deshrinking (e.g. Horton et al., 1999; Zong and 

Horton, 1999). Here we advocate the use of another unimodal-based technique, 

weighted averaging partial least squares (WA-PLS). There are two main reasons why 

WAPLS outperforms WA. Firstly, WA suffers from “edge effects” and, therefore, it 

overestimates optima at the low end and underestimates optima at the high end of the 

environmental gradient (Birks, 1995). Second, the influences of additional 

environmental variables to those of interest are ignored in WA even though they are 

likely to affect the composition and abundance of biological data. WA-PLS uses the 

interactions between environmental variables to improve predictions. The transfer 

function for elevation was developed using the program CALIBRATE, release 0.70, 
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1997 (Juggins and ter Braak, 1997). The performance of the transfer functions was 

assessed in terms of root-mean square error of prediction (RMSEP) and squared 

correlation (r2) of observed versus predicted values. Root-means square error of 

prediction indicates prediction errors and r2 measures the strength of the relationship of 

observed versus predicted values. Root-means square error of prediction and r2 were 

calculated as both ‘apparent’ measures in which the whole training set was used to 

generate the transfer function and assess the predictive ability, and jack-knifed or 

‘leave-one-out’ measures (ter Braak and Juggins, 1993). Jack-knifing generates a 

prediction error (RMSEPjack), which is a measure of the overall predictive abilities of 

the training set.  

 

5. Results 

5.1 Diatom assemblages (Figs. 3-5; Table 1) 

 We identified 148 taxa from the five modern transects of Lakes Akkeshi and 

Onnetoh. It is worth noting that Cocconeis scutellum and Paralia sulcata are widely 

scattered on all transects. The distributions of other dominant diatom species show 

clear transitions associated among sub-environments. On Transects A and B, 

freshwater diatoms Diadesmis contenta var. contenta and Eunotia bilunaris dominate 

in upland, whereas Planothidium delicatulum and Tryblionella compressa are common 

on tidal flats. Despite this clear contrast, brackish-marine diatoms Caloneis bacillum, 

Navicula rhynchocephala, and Scolioneis tumida, are common both in high and low 

marshes and the boundaries between these sub-environments are mixed. The 

transitions between sub-environments of Transect C are more distinct than Transects A 
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and B, although brackish diatom Navicula cryptotenella overlaps between high and 

low marshes. Composition of diatom assemblages on upland and tidal flat of Transect 

C are similar to Transects A and B. 

On Transect D, the high marsh and the low marsh are composed of distinct 

brackish diatom assemblages, Gyrosigma obscrum and Pseudostaurosira brevistriata, 

and Gyrosigma scalproides, Navicula cryptotenella and Navicula digtoradiata, 

respectively. The upland of Transect E is dominated by Pinnularia subrabenhorstii and 

Planothidium lanceolatum. The assemblage changes from freshwater diatoms on the 

upland to brackish diatoms on the salt pond, which is composed of Pleuosigma 

pulchrum and Scolioneis tumida. The tidal flat of Transect E is composed of diatom 

species such as Planothidium delicatulum that are similar to Transect C. 

 

5.2 Canonical correspondence analysis 

We use a regional training set (excluding Cocconeis scutellum and Paralia 

sulcata) from the 5 modern transects to elucidate the relationship between the diatom 

assemblages and a series of environmental variables. The sample-environment and 

species-environment biplots show that axes one (eigenvalue = 0.80) is correlated with 

LOI, elevation and salinity, whilst axes two (eigenvalue = 0.59) is correlated with sand 

and mud (Fig. 6; Tables 2). Both axes control 15.1% and 74.6% of the species-data and 

species environmental relationships, respectively. Therefore, axis one reflects the 

major gradient from high marsh plotted on the right (high elevation, LOI and low 

salinity) to tidal flat plotted on the left (low elevation, LOI and salinity). Axis two 

reflects a grain-size gradient with sand-dominated station at the top and silt-dominated 
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at the bottom of the plot. The sample-environment biplot shows the five study areas 

occupying a similar ordination space, which suggests that most of the assemblages 

among sites are compatible with respect to the major environmental gradients. Species 

characteristic of a particular environment may also be identified on the species- and 

sites-environment biplot (Fig. 6; Table 1). For example, Diadesmis contenta var. 

contenta, which is a freshwater and aerophilous diatom, has strong positive 

correlations with upland sites with high elevation and LOI. Moreover, Tryblionella 

granulata and Diploneis decipiens var. parallea are related to tidal flat sites with high 

sand fractions and low elevations.  

The five environmental variables account for 20.2 % of the explained variance 

in the diatom data (Fig. 7a). Partial CCAs (Fig. 7b) show that the total explained 

variance is composed of 17.1 % (LOI), 15.1 % (elevation), 13.7 % (salinity), 12.0 % 

(sand fraction) and 9.9 % (mud fraction). The associated Monte Carlo permutation 

tests indicate that each of these gradients accounts for a significant portion of the total 

variance in the diatom data (p = 0.01, 99 random permutations). Therefore, statistically 

significant transfer functions quantifying the relationship between modern diatom 

assemblages and elevation can be developed. However, 32.2 % of the total explained 

variance of diatom data is accounted for by inter-correlations between environmental 

variables and, thus, a transfer function for elevation cannot be considered to be 

completely independent from other variables. Numerous studies have shown a strong 

relationships of elevation versus substrate, LOI in particular (Horton, 1999. Horton and 

Edwards, 2004 in press; Horton et al., 1999; 2003 in press; Zong and Horton 1999). 

Subsequently, for palaeoenvironmental reconstructions, it must be assumed that the 
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joint distribution with elevation in the training set is the same as in the fossil set (Le 

and Shackleton, 1994; Birks, 1995). One striking fact raised by CCA is the large 

amount of unexplained variation: over 79.8 % total variation of the diatom data 

remains unexplained. Whether this is due to some overlooked factor (e.g. seasonal 

variations; Horton and Edwards, 2003) or to a large amount of stochastic variations 

remains unclear. Nevertheless, the explained percentage is similar to those found in 

many other biological datasets with a large number of samples with many zero values 

(Gasse et al., 1995; Jones and Juggins 1995; Zong and Horton, 1999).  

5.3 Diatom-based elevation transfer function 

We developed a transfer function for elevation from 75 species and 78 

samples from the 5 study sites (without Paralia sulcata and P-valves of Cocconeis 

scutellum). WA-PLS produces as many components as there are variables or samples. 

The first component maximises the covariance between the vector of weighted 

averages and the environmental variable of interest (elevation). Subsequent 

components are chosen to maximise the same criterion but must be uncorrelated to 

earlier components (Birks, 1995). The choice of component for the transfer function 

depends upon the prediction statistics (RMSEPjack and r2
jack) and the principle of 

parsimony, that is, the lowest component that gives an acceptable model (Horton et al., 

2003 in press). Therefore, we have chosen component two because it performs better 

than components one and three, with modest differences thereafter when jack-knifed 

errors are considered (Tables 4). Figure 8 shows the relationship between observed and 

diatom-predicted elevation using component two, which illustrates the strong 

performance of the local WA-PLS transfer functions (RMSEPjack = 0.29; r2
jack = 0.84). 
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The training set covers a range of elevations from subtidal to upland. Therefore, it is 

expected to perform well with alternating of brackish (subtidal-high marsh) and 

freshwater (upland) samples found in the fossil core. However, the transfer function 

reconstruction for freshwater samples may underestimate relative to brackish samples. 

This is to be expected as diatoms of aerial habitat (such as upland) are controlled by 

numerous other environmental variables, such as moisture, extremes of temperature 

and substrate (Ando 1979, 1981, 1982; Jahansen, 1999).  

 

 

6. Application to fossil diatom assemblages from Lake Onnetoh  

6.1 Elevation changes reconstructed from Onnetoh core samples  

 The changes in elevations at Lake Onnetoh were reconstructed using WA-PLS. 

The continuous curve of elevations contains five obvious emergence events (Fig. 9). 

The first emergence, dated 1733-2001 cal. yr BP, records at least 1.0 m change across 

the contact between inorganic mud and overlying peat. Subsequently, a clear 

submergence (at least 1.3 m) is recognized surrounding tephra Ta-c2. This 

submergence was replaced by the second emergence of at least 1.3 m (Cycle 1). The 

next cycle of submergence and emergence (Cycle 2) is recorded below the sample 

dated 1174-1350 cal. yr BP. The amplitude of the event (at least 0.5 m) is small 

relatively to the others. After the Cycle 2, the transfer function shows two sudden 

submergence and emergence (both amplitudes of at least. 1.0 m) cycles (Cycles 3 and 

4) around the stratigraphic contact dated 523-315 cal. yr BP. In addition, the latter 

submergence and emergence (Cycle 4) is found just below two tephras (tephra Ta-a: 
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A.D.1739, tephra Ko-c2: A.D.1694). These results are consistent with paleoecological 

data (diatoms and macro plant fossils) given by Sawai et al. (2002) and Atwater et al. 

(in press).  

6.2 Implication of reconstructed elevation changes 

 Recent studies along the Pacific coasts of eastern Hokkaido have attributed 

RSL changes in the late Holocene to subsidence during an interseismic period and 

uplift associated with interplate earthquakes along the Kuril subduction zone (Kelsey 

et al., 2002; Sawai, 2001a; Sawai et al., 2002). If the RSL history reflects the 

paleoseismic cycles, the reconstructed elevations given by diatom-based transfer 

function represent the amplitude of coastal subsidence and uplift events associated 

with the earthquakes. In such seismic cycles, the net deformation is estimated zero for 

individual earthquake cycles (Hyndman and Wang, 1995; Hyndman et al., 1995). Thus 

an equation is suggested which can estimate coseismic or postseismic deformation 

(amplitude of subsidence or uplift) from the rate of interseismic deformation and the 

interval of earthquakes on the Cascadia subduction zones (Long and Shennan, 1998). 

This can be directly applied to Kuril subduction zone: 

H = R*I 

where H equals the amplitudes of coseismic or postseismic uplift (mm), R the rate of 

interseismic subsidence accompanied with strain accumulation (mm/year), and I the 

interval since the last earthquake (years). The present interseismic subsidence rate can 

be provided by the recent tide-gauge data at Hanasaki, near Onnetoh (average rate of 8 

mm/yr: Ozawa et al., 1997). We can calculate the interval value of 160-60 years from 

the last earthquake event (about A.D.1600, Atwater et al., in press). Despite this 
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estimation, well-dated deposits record only four seismic emergence events in the past 

2000 years with recurrence intervals of more than 500 cal years (Sawai, 2001a; Sawai 

et al., 2002). Therefore, there is a clear disagreement between observational data and 

geological evidence. One possibility is that deformation patterns vary with each 

earthquake cycles. The other possibility is that changes in rates of interseismic strain 

accumulation, especially during the preseismic period, result in the difference between 

the calculated interval value and the geologic record. Studies of diatom analysis across 

the stratigraphic contacts associated with earthquakes near Cascadia subduction zones 

may provide good analogues for Hokkaido (e.g. Atwater and Hemphill-Haley, 1997; 

Hemphill-Haley, 1995b; Long and Shennan, 1998; Shennan et al., 1996, 1998; Sherrod 

et al., 2000). For example, a reduction of strain accumulation during an interseismic 

period was suggested by detailed diatom analysis across the stratigraphic contacts in 

Johns River and Netarts Bay estuaries (Long and Shennan, 1998). If the second 

possibility were correct, transfer functions of higher resolution at Hokkaido would 

clarify the detailed changes in interseismic, coseisimic, and postseismic land-levels. 

 

 

7. Conclusion 

 This study provides new calibration data for quantitative reconstruction of 

elevation relative to the tidal level at eastern Hokkaido, northern Japan. Canonical 

correspondence analysis (CCA) and partial CCAs show that diatom assemblages from 

modern samples have statistically significant relationships with elevation. Therefore, 

diatom-based transfer functions using weighted averaging partial least squares 
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(WA-PLS) were developed. Transfer functions reconstruct an emergence and four 

cycles of emergence and submergence from fossil diatom assemblages at Lake 

Onnetoh over the last 2000 years; with three of these cycles having a amplitude of at 

least 1.0m. If the cycles are attributed to subsidence and uplift events associated with 

interplate earthquake at the Kuril subduction zone, transfer functions using the data of 

this study can contribute to paleoseismic studies. 
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Table 1. List of dominant diatom taxa. 

  

Code1 Diatom species average2 max3 min4 N5

AMHO Amphora holsatica Hustedt 4.9  14.6  0.3  10 
AMSA Amphora salina W.Smith 3.9  13.7  0.3  41 
AUCR Aulacoseira crassipunctata Krammer 10.4  18.7  2.2  2 
CABA Caloneis bacillum (Grunow) Cleve 7.1  36.8  0.3  39 
CAOR Caloneis oregonica (Ehrenberg) Patrick 7.4  18.3  1.2  3 
COPU Cosmioneis pusilla (W.Smith) D.G.Mann & A.J.Stickle 3.0  15.5  0.8  7 
DICC Diadesmis contenta var. contenta (Grunow) D.G.Mann 10.0  24.3  1.2  8 
DIDP Diploneis decipiens var. parallela Cleve 11.3  42.9  0.6  34 
DIMI Dimmeregramma minor (Gregory) Ralfs 3.8  5.2  1.0  6 
DISM Diploneis smthii (Brébisson) Cleve 2.1  8.9  0.3  36 
EUBI Eunotia bilunaris (Ehrenberg) Mills 14.1  42.8  1.0  7 
EUPA Eunotia paludosa Grunow 7.4  10.1  4.4  4 
EUPP Eunotia praerupta Ehrenberg 2.9  7.4  0.6  8 
FRRH Frustulia rhomboides (Ehrenberg) De Toni 3.4  12.2  0.5  5 
GYKU Gyrosigma küetzingii (Grunow) Cleve 7.1  28.0  0.5  19 
NACT Navicula cryptotenella Lange-Bertalot 16.4  54.8  0.9  38 
NADI Navicula digtoradiata (Gregory) Ralfs 12.5  40.2  1.2  10 
NAPE Navicula peregrina (Ehrenberg) Kützing. 2.7  9.1  0.5  18 
NARH Navicula rhynchocephala Kützing 6.2  29.8  0.3  43 
NASA Navicula salinarum Grunow 5.8  18.1  0.4  14 
NEBS Neiduim bisulcatum var. subampliatum Krammer 17.1  46.8  0.6  4 
NISI Nitzschia sigma var. intercedens Grunow 2.2  6.6  0.5  33 

ODAU Odontella aurita (Lyngbye) Agardh 3.1  19.9  0.5  40 
PILA Pinnularia lagerstedtii (Cleve) Cleve-Euler 3.4  11.9  0.5  11 
PISU Pinnularia subrabenhorstii Krammer 8.5  16.5  0.7  5 
PIVI Pinnularia viridis (Nitzsch) Ehrenberg 4.1  16.5  0.6  13 

PLDE Planothidium delicatulum (Kützing) Round et Bukhtiyarova 8.0  29.7  0.4  53 
PLLA Planothidium lanceolatum (Brébisson) Round et Bukhtiyarova 12.2  63.8  0.5  11 
PLPU Pleuosigma pulchrum Grunow 3.5  15.4  0.6  15 
PVEL Pinnunavis elegans (W.Smith) Okuno 2.8  10.4  0.4  10 
SCTU Scolioneis tumida (Brébisson ex Kützing) D.G.Mann 11.0  37.3  0.3  51 
SEPU Sellaphora pupula (Kützing) Mereschkowsky 4.6  16.4  0.3  4 
SUFA Surirella fatuosa (Ehrenberg) Kützing 1.4  5.3  0.4  32 
TRCC Tryblionella compressa (Bailey) Boyer 2.5  10.7  0.3  32 
TRGR Tryblionella granulata (Grunow) D.G.Mann 6.6  22.5  0.4  36 

 

                                                  
1 Used in ordination diagrams based on CCA (Fig. 6). 
2 Average abundance in all samples. 
3 Maximum abundance in all samples. 
4 Minimum abundance in all samples. 
5 Number of stations at which occurred. 
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Table 2. Results of CCA from diatom assemblages from modern samples at Akkeshi 

and Onnetoh sites.  
 

Axes                           1 2 
Total 

inertia 
Eigenvalues 0.798 0.233 9.198 
Cumulative percentage variance    

of species data :    8.7 15.1  
of species-environment relation: 42.9 74.6  

    
Sum of all unconstrained eigenvalues    9.198 
Sum of all canonical     eigenvalues   1.860 
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Table 3. Statistics summary of the performance of weighted averaging partial least 
squares (WA-PLS) for elevations (data set without Paralia sulcata and P-valves of 
Cocconeis scutellum). 
 

Estimated errors 
Component RMSE R-squared 

1 0.2554 0.8763 
2 0.2075 0.9183 
3 0.1759 0.9414 

   
Prediction errors 

 RMSEP R-squared 
1 0.2963 0.8335 
2 0.2884 0.843 
3 0.3025 0.8288 
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Table 4. Radiocarbon Ages on Macro-plant Fossils (after Sawai et al., 2002) 
 
Elevation6 

(cm) 
Material Position Type of contact Age (14C yr 

B.P.) 
Age (cal yr 

B.P.)7
Lab no. 

 

41 – 38 Cone scale of 
Picea glehnii 

Above  Abrupt, 
peat/mud 

400±50 523-315 Wk-9727 

28 - 32 Leaf of Osmunda 
cinnamomea 

Above  Contrast in 
diatom 

assemblages 

1360±60 1350-1174 Wk-9884 

-163 - -158 Seeds of 
Polygonum sp. 

Above  Gradual, 
peat/mud 

1950±60 2001-1733 Wk-9726 

                                                  
1  Relative to the present mean tide level at Onnetoh site. 
2  Range at two standard deviations, given by the calibration data of Stuiver et al. (1998) and the 
calibration software CALIB 4.1 of Stuiver and Reimer (1993). An error multiplier was 1.0. 
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Figures 

 
Fig. 1. Location of four transects. a: Plate tectonic setting. Solid line with triangles 
shows seaward edge of the subduction-zone. b: eastern Hokkaido, showing Akkeshi 
(quadrilateral c), Onnetoh (quadrilateral d), and Hanasaki. c: Locations of sampling 
transects in Akkeshi. d: Locations of sampling transects in Onnetoh. 
 

 35



Fig. 2. Vascular plants and moss zonations at Akkeshi and Onnetoh estuaries. 
The environments of the transects were divided into upland, high marsh, low 
marsh, and tidal flat. Vascular plants and moss form their zonations relating to 
tidal level on the environments. Detailed compositions of assemblages are 
described in the text. 
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Fig. 3. Changes in dominant diatom species (exceeding 5% relative to total diatom 

valves counted excluding Paralia sulcata and P-valves of Cocconeis 
scutellum) on transects A and B. Only Paralia sulcata and Cocconeis 
scutellum are expressed as TDV. 
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Fig. 4. Changes in dominant diatom species (exceeding 5% relative to total 
diatom valves counted excluding Paralia sulcata and P-valves of Cocconeis 
scutellum) on transects C and D. Only Paralia sulcata and Cocconeis 
scutellum are expressed as TDV. 
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Fig. 5. Changes in dominant diatom species (exceeding 5% relative to total 
diatom valves counted excluding Paralia sulcata and P-valves of Cocconeis 
scutellum) on transect E. Only Paralia sulcata and Cocconeis scutellum are 
expressed as TDV. 
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Fig. 6. Ordination diagrams for (a) sample stations and (b) species based on 
canonical correspondence analysis (CCA) of eastern Hokkaido diatom data. 
Five environmental variables (elevation, salinity, LOI, sand fractions, and mud 
fractions) are shown by arrows. CCA is based on TDV data set. Species codes 
are indicated in Table 2. 
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Fig. 7. Pie charts showing percentages of the total variances of the diatom data sets from 

eastern Hokkaido: (a) shows explained and unexplained portions; and (b) 
components represent the contributions of elevation, salinity, LOI, sand 
fractions, mud fractions, and intercorrelation among gradients.  
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Fig. 8. Graphs of calibration results: (a) Scatter plots; and (b) residuals of WA-PLS 

predicted elevation versus observed elevations  
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Fig. 9. Fossil diatom assemblages and results of weighted averaging partial least squares 

(WA-PLS) for elevations. Only dominant species >5% TDV are shown in the 
diagram. Three radiocarbon ages were obtained from macro plant fossils above 
the contacts between marine-brackish mud and peat and overlying freshwater 
peat (following Sawai et al., 2002). Thick line in right column shows 
reconstructed elevation trend. Reconstructed values with arrows (>0.85 m) 
possibly show lower elevations because Diatom-based transfer functions with 
freshwater samples can underestimate the elevation (see text). 
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