
University of Pennsylvania
ScholarlyCommons

Departmental Papers (ESE) Department of Electrical & Systems Engineering

July 2005

On the Robustness of Router-based Denial-of-
Service (DoS) Defense Systems
Ying Xu
University of Pennsylvania

Roch A. Guérin
University of Pennsylvania, guerin@acm.org

Follow this and additional works at: http://repository.upenn.edu/ese_papers

Postprint version. Copyright ACM, 2005. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for
redistribution. The definitive version was published in ACM SIGCOMM Computer Communication Review, Volume 35, Issue 3, July 2005, pages 47-60.
Publisher URL: http://doi.acm.org/10.1145/1070873.1070878

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/ese_papers/104
For more information, please contact repository@pobox.upenn.edu.

Recommended Citation
Ying Xu and Roch A. Guérin, "On the Robustness of Router-based Denial-of-Service (DoS) Defense Systems", . July 2005.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76358835?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fese_papers%2F104&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/ese_papers?utm_source=repository.upenn.edu%2Fese_papers%2F104&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/ese?utm_source=repository.upenn.edu%2Fese_papers%2F104&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/ese_papers?utm_source=repository.upenn.edu%2Fese_papers%2F104&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/ese_papers/104
mailto:repository@pobox.upenn.edu

On the Robustness of Router-based Denial-of-Service (DoS) Defense
Systems

Abstract
This paper focuses on "router-based" defense mechanisms, and whether they can provide effective solutions to
network Denial-of-Service (DoS) attacks. Router-based defenses operate either on traffic aggregates or on
individual flows, and have been shown, either alone or in combination with other schemes, e.g., traceback, to
be reasonably effective against certain types of basic attacks. Those attacks are, however, relatively brute-force,
and usually accompanied by either significant increases in congestion, and/or traffic patterns that are easily
identified. It is, therefore, unclear if router-based solutions are viable in the presence of more diverse or
sophisticated attacks. As a result, even if incorporating defense mechanisms in the routers themselves has
obvious advantages, such schemes have not seen wide deployments. Our ultimate goal is to determine
whether it is possible to build router-based defense mechanisms that are effective against a wide range of
attacks. This paper describes a first phase of this effort aimed at identifying weaknesses in existing systems. In
particular, the paper demonstrates that aggregate defense systems can be readily circumvented, even by a
single attacker, through minor modifications of its flooding patterns. Flow-based defenses fare slightly better,
but can still be easily fooled by a small number of attackers generating transient flooding patterns. The findings
of the paper provide insight into possible approaches for designing better and more robust router-based
defense systems.

Keywords
Security, Denial-of-Service, Router

Comments
Postprint version. Copyright ACM, 2005. This is the author's version of the work. It is posted here by
permission of ACM for your personal use. Not for redistribution. The definitive version was published in
ACM SIGCOMM Computer Communication Review, Volume 35, Issue 3, July 2005, pages 47-60.
Publisher URL: http://doi.acm.org/10.1145/1070873.1070878

This journal article is available at ScholarlyCommons: http://repository.upenn.edu/ese_papers/104

http://repository.upenn.edu/ese_papers/104?utm_source=repository.upenn.edu%2Fese_papers%2F104&utm_medium=PDF&utm_campaign=PDFCoverPages

On the Robustness of Router-based
Denial-of-Service (DoS) Defense Systems

Ying Xu and Roch Guérin∗

Multimedia and Networking Lab
Department of Electrical and Systems Engineering

University of Pennsylvania
Philadelphia, PA, USA

yingx,guerin@ee.upenn.edu

ABSTRACT
This paper focuses on “router-based” defense mechanisms, and
whether they can provide effective solutions to network Denial-
of-Service (DoS) attacks. Router-based defenses operate either on
traffic aggregates or on individual flows, and have been shown, ei-
ther alone or in combination with other schemes, e.g., traceback,
to be reasonably effective against certain types of basic attacks.
Those attacks are, however, relatively brute-force, and usually ac-
companied by either significant increases in congestion, and/or traf-
fic patterns that are easily identified. It is, therefore, unclear if
router-based solutions are viable in the presence of more diverse
or sophisticated attacks. As a result, even if incorporating de-
fense mechanisms in the routers themselves has obvious advan-
tages, such schemes have not seen wide deployments. Our ultimate
goal is to determine whether it is possible to build router-based
defense mechanisms that are effective against a wide range of at-
tacks. This paper describes a first phase of this effort aimed at
identifying weaknesses in existing systems. In particular, the paper
demonstrates that aggregate defense systems can be readily circum-
vented, even by a single attacker, through minor modifications of
its flooding patterns. Flow-based defenses fare slightly better, but
can still be easily fooled by a small number of attackers generating
transient flooding patterns. The findings of the paper provide in-
sight into possible approaches for designing better and more robust
router-based defense systems.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General—Secu-
rity and protection

General Terms
Security, Performance

∗This work was supported by NSF grant ITR00-85930.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

Keywords
Denial-of-Service, Router-based Defense

1. INTRODUCTION
With the Internet emerging as the de-facto commercial commu-

nications infrastructure, it has increasingly become the target of
attacks from a broad range of sources. An important category of
such attacks consists of network denial-of-service (DoS) attacks,
or bandwidth attacks, that directly target network resources such as
link capacity and/or router buffers. Network DoS attacks are usu-
ally perpetrated by taking advantages of both network and system
vulnerabilities. In particular, attackers exploit end-system security
flaws to take control of one or more remote hosts that can then be
commandeered to mount coordinated flooding attacks. The net-
work’s vulnerability to such attacks is compounded by the “best ef-
fort” nature of the Internet that does not impose explicit constraints
on the traffic rate of individual hosts. As a result, compromised
hosts can often be used to source enough traffic to saturate a target
network link.

The potential threats of network DoS attacks have raised con-
cerns among the network community and motivated the develop-
ment of a broad spectrum of defense solutions (see [20] for a com-
prehensive survey of various types of DoS attacks and defenses).
One family of mechanisms is traceback schemes that attempt to
identify the sources of attacking traffic in order to shut them off.
Traceback mechanisms require adding a light-weighted packet ma-
nipulation function at the participating routers. In particular, every
traceback-capable router randomly selects a packet (usually with
a small probability) and informs the destination of that packet of
its own identity, either via header encapsulation [23] or through an
additional ICMP message [6]. Hence, during a high-volume traffic
flooding attack, the victim will be able to reconstruct the incoming
path of the attack traffic once it has gathered a sufficiently large
amount of such information. Although traceback schemes auto-
mate the process of tracking down where the flooding traffic comes
from, they are not very effective at rapidly stopping an ongoing at-
tack since collecting enough information to identify the source of
an attack often takes a long time.

Other more reactive solutions address the issue of on-line detec-
tion and mitigation of network DoS attacks by relying on certain
pre-defined “normal” system behaviors, usually in terms of prop-
erties relating to local network conditions and/or incoming traf-
fic patterns, to throttle attacks. Any behavior deviating from this
“norm”, once detected, is automatically classified as malicious and
subjected to regulation. “Normal” system behaviors can be defined
at the transport layer. For example, [10, 19] identify suspicious

connections based on comparing forward and reverse traffic pat-
terns with certain pre-defined “normal” patterns derived from typi-
cal TCP connections. In [25, 14], statistics relevant to TCP session
setup and teardown specifications were utilized to distinguish ma-
licious traffic from legitimate traffic. Most recently, [26] proposes
a framework to extract regular connection behaviors based on an-
alyzing network wide traffic, using statistical techniques borrowed
from information theory and data mining. Although checking “nor-
mal” behaviors at the transport layer can be effective against at-
tacks targeting end-system resources, e.g., SYN flooding attacks,
or detecting malicious intrusion attempts, e.g., port scanning activ-
ities, it may not be effective at thwarting bandwidth attacks. This
is mainly because behaviors defined at the transport layer often do
not specify how link resources such as bandwidth or buffer should
be accessed. Therefore, DoS attackers may set up regular (TCP)
connections, but can still flood at an abnormally high rate to grab
link resources by ignoring network congestion notifications.

An arguably more reliable way to characterize “normal behav-
iors” is to define rules and criteria at the IP layer (network layer).
IP layer is the de-facto “convergence” layer that provides a com-
mon interface for various upper layer protocols to utilize network
resources. Monitoring network layer behaviors enables one to di-
rectly check whether link resources are accessed in a regular man-
ner. In this paper, we focus on defense systems enforcing network
layer behaviors. One family of such systems are router-based de-
fenses [18, 17, 12, 13, 21] 1 that rely on incoming traffic patterns
and/or local router conditions, e.g., congestion level or queue size,
to identify DoS attack(ers). Based on the granularity at which ab-
normal behaviors are defined, router-based defense solutions can be
categorized into aggregate level defenses and flow level defenses.
Aggregate level defenses throttle bulks of traffic that appear to be
malicious. Specifically, incoming packets are classified into dis-
tinct traffic aggregates, i.e., a group of packets sharing some com-
mon attributes. Any traffic aggregate matching a pre-defined ab-
normal behavior will be identified and later regulated. A traffic
aggregate is usually defined in a coarse-grain manner, so that a
small number of aggregates can fully profile traffic from all mali-
cious users. For example, in defense schemes such as the Aggre-
gate Congestion Control and Pushback (ACC-Pushback) [17] pro-
posal, traffic aggregates are defined based on destination address
clusters. Traffic aggregates responsible for inducing significant link
congestion will be identified and rate-limited. In contrast to aggre-
gate level defenses, flow level defenses directly address how a well-
behaving user or a flow2 should send traffic so that every user can
get its “fair” share of network resources. Since TCP users dominate
the Internet user community, it is reasonable to define “normal”
user behavior based on how a TCP flow consumes link resources.
Such an approach is taken in solutions such as the RED preferential
dropping (RED-PD) proposal [18], which identifies and regulates
any flow transmitting at an abnormally higher rate than a standard
TCP flow. Aggregate level and flow level defenses exhibit maximal

1Several commercial products with similar goals are also available
on the market [1, 2, 4]. These products usually rely on a hybrid set
of rules, often covering multiple layers, to detect network anoma-
lies and filter out suspicious traffic. However, due to the complexity
of the rule set, many of them can only achieve semi-automatic op-
eration and require network administrators to decide which filters
to install. In addition, the details of the algorithms they use to iden-
tify anomalies and regulate attackers are not publicized. Thus, we
do not study these systems in this paper.
2The traffic of an individual user is often represented by a “flow”,
which is a fine-grain traffic descriptor associated with a particu-
lar combination of source/destination addresses, port numbers and
protocol ID.

efficacy in different scenarios. Specifically, flow level defenses are
most effective when a few brute-force attackers are present, since
their high flooding rates will ensure that they are accurately iden-
tified and throttled. However, if the attack traffic is composed of
a large number of hosts, flow level defenses may not be effective
since the rate of each attack flow may be too small to be distinguish-
able from a legitimate TCP flow. Even if the attack flows could be
recognized, their sheer number will make the overhead of manag-
ing them prohibitively large. In comparison, it is possible for an
aggregate level defense to throttle brute-force DoS attacks involv-
ing a large number of hosts. Specifically, as attacking flows can
usually be categorized into a few traffic aggregates, the complexity
of handling them will be small. Nevertheless, when the number
of attacking flows is reasonable, flow level systems impose more
stringent control than aggregate level systems, which do not pre-
cisely limit the amount of resources consumed by individual users.
For example, the ACC system allows flows sharing a common link
to consume different proportions of the link bandwidth, as long as
they do not induce severe congestion. In contrast, flow level mech-
anisms continuously impose a common resource consumption cri-
terion on all flows sharing a link, and thus have the extra benefit of
strengthening “fair” sharing of the link capacity among flows.

Despite their documented efficiency against brute-force flood-
ing attacks, it is still unclear whether router-based defenses can be
truly successful if deployed in real networks. For example, the be-
haviors of real-world attackers may evolve from current brute-force
attacks and render existing proposals ineffective. Our ultimate goal
is to design a router-based defense system that is robust against a
broad range of network attacks. In order to make progress towards
achieving this goal, we first focus on two specific systems, ACC-
Pushback and RED-PD that we believe are representative of the
two major classes of existing router-based systems, and investigate
why and how they can be defeated. This is the main theme of this
paper. In [27], we leverage this understanding to develop a new
type of router-based defense system that can successfully thwart a
much broader range of attacks than existing ones.

Given our goal of assessing the efficacy of router-based defenses
against a broad range of network attacks, we first develop a num-
ber of “smart” attacking schemes along what we feel are the most
natural and “promising” directions. These schemes represent likely
choices for attackers to challenge existing defenses as they evolve
their current “brute-force” behaviors. When evaluating aggregate
defense systems, we focus on investigating whether attacking traf-
fic can both avoid being detected and still significantly degrade
TCP performance. We suspect that this can be achieved with a
small number of attackers, or even a single attacking host, via a
more “gentle” flooding behavior. As for flow level defenses, our
focus is on exploring how the efficiency of the defense system di-
minishes as the number of attacking hosts increases. Clearly, even
the addition of a single host sending normal TCP traffic affects the
performance of other users. No flow-level defense system can,
therefore, protect TCP users against an unlimited number of ma-
licious hosts. However, taking control of a very large number of
end-systems can be difficult, so that attackers will likely prefer us-
ing a smaller number of hosts to achieve a given impact. To under-
stand how the number of distinct attacking hosts affects the impact
of an attack, we first evaluate, as a benchmark, the effect of a single
attacking host that intelligently shapes its traffic. Next, we examine
the extent to which defense systems can be defeated by a relatively
small number of such “intelligent” attackers. A related but different
scenario that we also explore for flow-level defenses, is the avail-
ability of multiple identities (or source addresses) at a single host.
A host that assumes multiple identities (spoof its source address)

makes its attacking traffic appear as if it originates from distinct
end-systems. When the number of available spoofed address is
large, defense mechanisms can then be fooled into believing that
the overall traffic originates from multiple legitimate hosts. As in
the multi-host case, potential attackers may have access to only a
limited number of addresses because of increased policing by ser-
vice providers that check for legitimate source addresses at their
network boundary. Understanding how an attacker’s impact varies
with the number of addresses at its disposal is, therefore, of special
interest in this context.

We tested the “smart” attacking schemes we developed on both
aggregate and flow level DoS defense mechanisms. Our results
reveal that existing router-based schemes are indeed relatively easy
to defeat, and we are currently applying the understanding gained
in this paper towards designing more robust mechanisms [27]. The
rest of the paper is structured as follows. In Section 2, we review
the defense systems we consider and the techniques they use to
combat DoS attacks. We describe the setup we use for evaluation
purposes in Section 3, and report on the performance of aggregate
and flow level defense systems when attacked by a single “smart”
attacker in Section 4 and 5, respectively. Section 6 further explores
scenarios involving multiple attackers and attackers that are able to
assume multiple identities. Section 7 is devoted to a brief review of
several related studies. Finally, we conclude in Section 8 and point
out directions for further study.

2. ROUTER-BASED DEFENSE SYSTEMS
In this section, we review the two main families of router-based

defense mechanisms we are considering in this initial study. As
mentioned before, router-based defense systems can be classified
into aggregate level and flow level systems, based on the granular-
ity at which “abnormal behaviors” are defined. For each type of
systems, we highlight the key components they rely on.

2.1 Aggregate Level Defense Systems
We start with aggregate DoS defense systems. The most fun-

damental design issues for this type of defenses are the defini-
tion of aggregates and what is considered malicious behavior. Al-
though there is no consensus regarding what kind of traffic should
be viewed as “abnormal”, the conventional wisdom is that DoS at-
tacks usually exhibit some unique characteristics. First, although
DoS attacks can originate from multiple sources, the traffic usu-
ally heads for a common destination, be it a specific host machine
or a targeted network domain. Second, in order to generate maxi-
mum disruption, the attack traffic often consists of high-bandwidth
packet streams that create heavy congestion along their path. From
those observations, it is natural to define as abnormal traffic aggre-
gates with a high volume of packets that both contribute to severe
congestion and share a common destination.

In this paper, we concentrate on a representative aggregate level
defense system, the ACC-Pushback proposal [17], that relies on
a similar definition of abnormal traffic. The ACC-Pushback so-
lution can be divided into two components, the basic local ACC
mechanism and the extra Pushback mechanism. The initial DoS
detection and mitigation are undertaken by the local ACC mecha-
nism. As illustrated in Figure 1, the local ACC system is built on
the RED queue management scheme [9], and counts the number of
random packet drops generated by the RED queue. If the observed
K-second link loss rate exceeds a given threshold phigh, the ACC
system decides that the monitored link is under attack and activates
an identification agent that starts searching for malicious traffic.
Specifically, packets are clustered into traffic aggregates based on

their destination addresses3; traffic aggregates that contribute the
largest amount of packet drops are identified as potentially mali-
cious. One important configuration knob of the local ACC is phigh,
which needs to be chosen so as to achieve a reasonable trade-off be-
tween mis-detections (false negatives) and false alarms (false pos-
itives). In [17], phigh is set at 10% by default to ensure that the
detection mechanism only functions when there is sufficient proof
of ongoing attacks. It is not difficult to see that such a mechanism
is predicated on the assumption that DoS attacks are always accom-
panied by heavy congestion. In the following, we show that an at-
tacker employing an alternative flooding strategy can successfully
evade the ACC defense by not triggering large amount of packet
losses, while still causing significant disruption to TCP flows..

After a traffic aggregate is classified as malicious, it is rate-limited
in a pre-filter (See Figure 1). The goal of the pre-filter is to bring
the link loss rate back down to a value lower than phigh. In ad-
dition to the local pre-filter, the regulation of aggregates identified
as malicious can also be propagated to upstream routers through
the Pushback mechanism. Specifically, the aggregates are split into
smaller streams (aggregates) based on where they are coming from.
Pre-filtering is then performed on the largest traffic streams at up-
stream routers. In many scenarios, the Pushback mechanism pro-
vides better discrimination between attacking and normal traffic.
For instance, if the attack traffic only comes from a few incoming
links, legitimate traffic from other directions will not be penalized
even if they all share the same set of destinations. In spite of such
extra benefit, we will not explicitly evaluate the performance of the
Pushback mechanism, as our goal is to assess the extent to which
the local ACC mechanism can fail to detect malicious traffic.

2.2 Flow Level Defense Systems
Flow level defense systems take a more forceful approach, as

they rely on an a priori definition of the “normal” behavior of in-
dividual flows, which they constantly strive to enforce by identify-
ing flows that deviate from this norm and forcing them into con-
formance. A commonly used definition of good behavior is that
of fair4 sharing of resources among flows. This approach is em-
bodied in defense systems that utilize preferential dropping mech-
anisms to control resource consumption, including proposals such
as: Core-Stateless Fair Queueing (CSFQ) [24], Flow Random Early
Detection (FRED) [16], CHOKe [22], Approximate Fair Dropping
(AFD) [21], and RED preferential dropping (RED-PD) [18]. These
systems estimate the resource usage of a certain set of flows, and
accordingly assign them dropping probabilities.

In this paper, we focus on one representative flow level defense
mechanism, namely, the RED-PD proposal [18]. The goal of the
RED-PD system is to ensure that the transmission rate of each user
does not exceed the throughput of a standard TCP flow under the
same network condition, i.e., to enforce TCP-friendliness. Specif-
ically, the throughput of a standard TCP flow is well-known to be
roughly equal to:

f(r, p) =

√
1.5

r
√

p
(1)

where r and p are its round-trip time and loss rate, respectively [8].
Hence, when the loss rate is p, the RED-PD system attempts to
enforce a maximum flow rate of f(r, p).

Enforcing this constraint could be achieved by measuring the
bandwidth of individual flows and comparing these values to f(r, p).
3See [17] for the detailed clustering algorithm.
4Fairness can have many interpretations, such as max-min fairness
or TCP-friendliness. In this paper, we assume TCP-friendliness as
our fairness criterion.

Pre−filter

(Random dropping)
RED Queue

Yes

Identification
Agent

OUT
Classifier

(Pre−filtering?)

Yes

NoIN

AgentAttack Detection
(Under Attack?)

Figure 1: Architecture of Router-based Defense

NA

TCP user
Attacker

1

Cross Traffic

�����
�����
�����
�����

2

N
T

(5ms,
622Mb/sec)

L+1B

(0.2ms,C)

L

(y,45Mb/sec)

(5ms,622Mb/sec)

target network domain

Figure 2: System Topology

This approach is adopted in the CSFQ and FRED proposals. How-
ever, tracking all individual flows can represent a significant over-
head when the number of flows is large. To avoid such burden,
the RED-PD system relies on packet losses to sample the incom-
ing traffic. The RED-PD architecture is similar to that of Figure 1,
with the difference that it does not involve an attack detection com-
ponent. Instead, the random drops of the RED queue are directly
fed to the identification agent, where they are used to estimate the
bandwidth consumption of individual flows.

The algorithm used by the RED-PD system to identify a TCP-
unfriendly flow is based on a simple rationale, which assumes that
the number of packet losses of a flow is proportional to its number
of transmitted packets. Specifically, let T (r, p) be equal to r√

1.5p
,

i.e., the average duration of the period in which a standard TCP flow
loses one packet. The RED-PD system collects a trace of packet
drops, and scans this trace every K ∗ T (r, p) seconds. Any flow
that contributes more than K losses in one such scanning period
is deemed TCP-unfriendly. The actual RED-PD design divides a
scanning period into M lists, each equal to K

M
T (r, p) seconds. Any

flow that contributes losses in at least K out of M lists in the cur-
rent scanning period is marked as non-conformant at the end of this
period. According to [18], using M lists provides a better tolerance
to bursty traffic and can reduce the chances of wrongly punishing
short TCP flows or TCP friendly flows that respond to congestion
relatively slowly. These flows might remain non-conformant for
some time before responding to congestion notifications. Hence,
quickly marking them as TCP-unfriendly would increase the prob-
ability of false alarms. Once a flow has been identified as non-
conformant, its traffic is sent to the pre-filter, where it is subjected
to additional dropping before entering the RED queue. The drop-
ping probability applied to a specific non-conformant flow, denoted
as pd, is adjusted adaptively (See Fig.7 and Fig.8 in [18]). Specif-
ically, after a flow is identified, its dropping probability pd will be
increased by an amount equal to p∆. pd will keep on increasing
until the remaining traffic of this flow is deemed conformant in a
subsequent scanning period. After that, pd will be decreased as
long as the flow continues to be TCP-friendly. Once pd is less than
pmin, the flow is released from the pre-filter and not subjected to
any further regulation.

When testing the RED-PD system, we focus on evaluating the
performance of its detection and traffic regulation mechanisms. It is
not difficult to see that these mechanisms are most effective against
a few high rate attackers, since each will experience a relatively
large number of packet losses, and therefore be quickly detected.
However, as we shall see, this situation changes when an attacker
adopts a more adaptive attacking strategy.

3. EVALUATION SETUP
We carry out our investigation using the topology of Figure 2,

which consists of L links shared by a number of TCP flows and a
set of malicious hosts. The first L − 1 links are backbone (non-
bottleneck) links, while the Lth link is the edge (bottleneck) link5.
Each backbone link has a capacity of 622 Mb/sec and a propagation
delay equal to 5 ms, and carries cross traffic generated by 10 long-
lived TCP flows. The bottleneck link has a capacity of C Mb/sec
and a propagation delay of 0.2ms, shared by NT long-lived TCP
users. The access links of all TCP users have a speed of 45 Mb/sec
and a delay of y ms. We do not impose any window size limita-
tions on the TCP flows, so that their traffic can grow to consume
the full link bandwidth. In addition, there are NA attacking sources
sending traffic across both the backbone and the bottleneck links.
We assume that each attacking source is connected over a high-
speed access link of, say 622 Mb/sec and with a 5 ms delay. In
our experiments, parameters such as L, NA, NT , C, y can all be
varied. Unless stated explicitly, we use the following default set-
ting: L = 1 (single link), NA = 1 (single attacker), NT = 32,
C = 45Mb/sec, y = 10ms. We also assume that the queue at
the bottleneck link is a RED queue, with a total size of 1000 pack-
ets. The minth, maxth and qweight of the RED queue are set to
5 packets, 200 packets, and 0.002, respectively. The specific RED
parameter setting was found to have minor impact on the perfor-
mance of the defense mechanisms.

Though simple, Figure 2 is representative of how a private net-
work, e.g., an enterprise or a campus network, connects to the Inter-
net. In such configurations, the link connecting the private network
to the backbone is usually the bottleneck link and a potential tar-
get for external attackers. An attacker can flood this link simply by
sending packets destined for any machine inside the target network.

4. PERFORMANCE OF AGGREGATE
LEVEL DEFENSES

In this section, we explore the performance of aggregate-based
defense systems, particularly, the ACC system, when under “intel-
ligent” DoS attack.

4.1 Bandwidth Soaking Attack

4.1.1 Intuition and Attacking Behavior
Current DoS attacks are typically brute-force, with attackers flood-

ing the target link with more traffic than it can carry. This trig-
gers persistent congestion and high link loss rate. As demonstrated
5In many settings, the speed of the edge (bottleneck) link can still
be quite large, e.g., over 100Mb/sec

Send probing packets at a fixed rate of rpro

foreach received feedback packet i
Extract sequence number seqi

N i
l = seqi − seqi−1 − 1

if N i
l > 0 R = R − N i

l rdecr

R = R + rincr

(N i
l : Number of lost packets

indicated by feedback packet i)
end

Table 1: Bandwidth Soaking Attacker

in [17], an ACC system deployed on the target link can easily de-
tect such an attack. Unless the attack traffic is highly distributed
across the network, it can be contained either locally or by push-
ing back to an upstream router close to the attacking sources. In
this section, we assess the performance of an ACC system in the
face of a “gentler” type of DoS attackers. Instead of directly blast-
ing at its highest possible rate, this type of attackers gradually in-
crease the rate at which they flood the target link until the loss rate
reaches a certain value pthres that corresponds to only modest con-
gestion, i.e., is below the activation threshold of the ACC system.
The attacker then tries to stabilize the link congestion at that level
using only small rate adjustments. Intuitively, we expect that grad-
ual rate increases can help an attacker slowly increase congestion
without ever creating any abnormal traffic patterns seen at the ag-
gregate level. Specifically, as the attacker increases its rate by a
small amount, the link loss rate also increases, but only slightly,
since the increase in the total input rate is also small. The nature
of TCP congestion control makes in turn normal TCP users reduce
their own transmission rates. Hence, the slight increase in the rate
of the flooding traffic is compensated for by the lost throughput on
the part of TCP users. As this process continues, the attacker keeps
grabbing more and more bandwidth from the TCP users. When
the link loss rate ultimately reaches pthres, the attacker will often6

have grabbed a large fraction of the link bandwidth away from the
TCP users without ever incurring sufficiently heavy losses to trig-
ger detection.

We use the name “bandwidth soaking” to capture the behavior
of this type of attacker. To achieve its goal, a “bandwidth soak-
ing” attacker needs to be aware of the congestion level at the target
link and adjust its flooding rate accordingly. Next, we present a
prototype design that realizes this using a simple rate adaptation
mechanism.

4.1.2 Attacking Strategy
A “bandwidth soaking” attacker sends out two types of pack-

ets: probing packets and flooding packets. We assume that prob-
ing packets are sent at a fixed rate rpro and contain increasing se-
quence numbers. Each probe triggers one feedback packet carrying
the same sequence number (more on how to realize this later), so
that the number of lost probes can be measured at the source. This
information can then be used to control the rate of the flooding
packets, whose main purpose is to load the target link. Table 1
describes the algorithm used to adjust the total transmission rate
R, i.e., the flooding rate plus probing rate. R is adjusted in an
additive-increase additive-decrease (AIAD) manner that provides
for relatively smooth rate variations.

In order to drive the loss rate of the bottleneck link up to pthres,
the ratio between rate increases (rincr) and decreases (rdecr) used
6Clearly, this is a function of the initial level of congestion on the
link.

500 1000 1500
10

−3

10
−2

10
−1

Time (second)

Lo
ss

 R
at

e

Overall
TCP
Attacker

(a) Dynamics:RED

500 1000 1500
0

5

10

15

20

25

30

35

40

45

50

Time (second)

T
hr

ou
gh

pu
t (

M
b/

se
c)

TCP
Attacker

(b) Traffic Rates: RED

Figure 3: Bandwidth Soaking Attacker: RED Queue

by the algorithm should satisfy:

rdecr

rincr

=
1

pthres

− 1 (2)

The rationale behind this relation is best understood through an
example. Consider a scenario where the current loss rate is p,
and further assume that the loss rate experienced by the probing
traffic is also p. Then, for every K probing packets, the num-
ber of observed feedback packets is approximately K(1 − p), and
the corresponding net rate adjustment, denoted as ∆K , is equal to
K[(1−p)rincr−p·rdecr]. It can be easily seen that when (2) holds,
∆K is positive if p is smaller than pthres, and negative otherwise.
Hence, the above rate adaptation algorithm forms a feedback loop
that attempts to stabilize the link loss rate at pthres. As we will see
in most of our experiments, a “bandwidth soaking” attacker can
indeed keep the link loss rate closely around this target.

Implementing the above scheme can be done relatively easily
and we briefly outline possible options. Because probing packets
must generate feedback, ICMP, TCP SYN and TCP FIN are possi-
ble packet types. In contrast, flooding packets should generate as
little feedback as possible, in order not to congest the reverse path.
Reverse path congestion is undesirable, since it could cause extra
lost feedback packets, which would in turn trigger unnecessary de-
creases in the flooding rate. This can be achieved by corrupting
the IP checksum of flooding packets or simply by using TCP RST
packets, as many operating systems quietly drop such packets. In
addition, the probing rate rpro needs to be kept low, not only to
avoid reverse path congestion, but also because it is common for
firewalls to rate limit ICMP, TCP SYN or TCP FIN packets. Too
high a probing rate would, therefore, translate into additional losses
that are not caused by congestion, which would again affect the ac-
curacy of the rate adjustment mechanism.

4.1.2.1 Illustration.
We integrated the basic “bandwidth soaking” attacking strategy

into the NS2 [3] simulator, and tested its performance using the
topology of Figure 2 together with the default parameter setting
specified in Section 3. Unless stated elsewhere, we used pthres =
4%, a value that is well below the 10% default detection threshold
of the ACC system. In addition, rincr was set to 1%C/rpro, so that
the attacker can grab an additional 1% of the link capacity every
second after the attack starts. In this experiment, the probing rate
rpro was also set to 1% of the link capacity. The experiment lasted
for 2000 seconds, and the attacker initiated its attack at the 800th
second. As our focus is on the detection component of the local
ACC mechanism, we did not activate its regulation mechanism, so

[0,5] (5,6] (6,7] (7,8] (8,9] (9,10] >10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Loss Rate (%)

F
re

qu
en

cy
 D

is
tr

ib
ut

io
n

1Kb/sec
10Kb/sec
100Kb/sec
1MKb/sec

(a) Impact of Probing Rate

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of TCP users

T
h(

af
te

r)
/T

h(
be

fo
re

)
(b) TCP Throughput Change

Figure 4: Multiplexing Long-lived TCP flows

[0,5] (5,6] (6,7] (7,8] (8,9} (9,10] >10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Loss Rate (%)

F
re

qu
en

cy
 D

is
tr

ib
ut

io
n

1Kb/sec
10Kb/sec
100Kb/sec
1MKb/sec

(a) Impact of Probing Rate

10
−2

10
−1

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Response Time (second)

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
D

is
tr

ib
ut

io
n

Before Attack
After Attack

(b) Response Time Increase

Figure 5: Mixed Traffic Scenario

that it actually behaved like a standard RED queue. Figure 3 reports
the results of our experiment.

Figure 3(a) and 3(b) plot the 1-second loss rates and the evolu-
tion of the throughput of both TCP users and the attacker. As shown
in figure 3(a), the attacker has successfully driven the link loss rate
up to the 4% target. Moreover, the 1-second loss rate indeed sta-
bilizes around 4%, with only small fluctuations (about 1%). As
a result, the attacker remains undetected by the ACC mechanism.
Moreover, the loss rate of TCP flows has increased from initially
less than 1% to 4%, which translates into a significant reduction
in their throughput. This can be observed in Figure 3(b), in which
the TCP throughput gradually decreases by more than 80%. Mean-
while, the attacker’s transmission rate continuously increases and
when the system stabilizes, it has grabbed a major fraction of the
total link capacity.

4.2 ACC Defense versus Bandwidth Soaking
Attacker

The previous section demonstrates that the ACC defense can be
defeated even by a single “bandwidth soaking” attacker, at least in
one specific setting. We now evaluate whether this remains true
across a range of configurations that involve varying parameters
such as the probing rate rpro, the bottleneck link capacity C, the
number of TCP users aggregated NT and the number of links L.
We assess the efficacy of the defense system based on two dif-
ferent measures, namely, the likelihood that it detects a malicious
traffic aggregate and the degree of protection it provides to TCP
flows. An efficient defense scheme should detect attacking traf-
fic with high probability, and prevent significant reductions in TCP
throughput. As in the previous experiment, the rate-limiting func-
tion of the ACC system is turned off when evaluating how often an
attack is detected. However, rate-limiting is turned on when eval-
uating TCP throughput degradations. Two different environments
are considered: one involving only long-lived TCP flows and one
involving both long-lived and short-lived TCP flows.

4.2.1 Long-lived TCP Environment
We first consider a scenario where normal users are all long-

lived TCP flows. The default parameter setting given in Section 3
is again adopted as a baseline configuration, and we vary one pa-
rameter at a time to explore the impact of those changes.

4.2.1.1 Probability of detection.
We found that the ACC defense cannot detect a “bandwidth soak-

ing” attacker unless the attacker uses a very small probing rate rpro.
This is demonstrated in figure 4(a), in which the frequency distri-

bution of the 1-second link loss rate p is plotted, for different values
of rpro. As can be observed, when rpro is very low, the probability
that a “bandwidth soaking” attacker is detected is non-negligible,
as link congestion frequently exceeds the 10% threshold. For ex-
ample, if rpro = 1Kb/sec, p is higher than 10% in more than 15%
of the intervals. Intuitively, this is because a lower probing rate re-
sults in slower responses to changing network conditions. If rpro

is too small, the attacker cannot always detect a queue overflow
event in a timely fashion, and thus may trigger significant conges-
tion before reducing its flooding rate. Nevertheless, as shown in
figure 4(a), the attacker can evade detection completely if rpro is
greater than 100Kb/sec (0.2%C), as in these cases the link loss
rate remains below 7%. A number of other configurations with dif-
ferent combinations of C, NT and L values were also tested, and
did not result in significant differences, i.e., a probing rate of about
0.2%C consistently allowed the attacker to avoid detection.

4.2.1.2 TCP performance change.
When the ACC system fails to detect a “bandwidth soaking” at-

tacker, it lets all the attacking traffic in and offers virtually no pro-
tection to TCP users. The resulting TCP throughput reduction de-
pends in part on the number of TCP flows on the bottleneck link,
and on the evolution of the overall loss rate because of the attack-
ing traffic. The number of TCP flows competing for resources de-
termines the initial loss rate, while the loss target selected by the
attacker identifies the relative loss increase that the TCP flows will
experience. We illustrate this in figure 4(b), which plots the ra-
tio of the TCP throughput after and before the attack, when the
number of TCP users NT increases from 2 to 128. From the fig-
ure, we see that performance degradations are greater when NT

is smaller. Specifically, the TCP throughput is reduced by more
than 80% when NT is smaller than 30. However, when NT is
larger than 100, the throughput reduction is only about 40%. This
is because the larger number of TCP flows resulted in a higher ini-
tial loss rate, and hence a smaller relative increase when the link
loss rate reached the attacker’s 4% target. For the same reason, the
throughput reduction achieved by an attack also varies as a function
of the bottleneck capacity C. In particular, higher speed links are
more susceptible to larger decreases.

4.2.2 Mixed Traffic Environment
The second scenario we consider is a mixed traffic environment

where the bottleneck link carries both long-lived and short-lived
TCP flows7, together with a number of ON-OFF UDP sources. This

7The short-lived TCP traffic was generated using the NS2 WEB

is probably a more realistic traffic mix, with long-lived TCP, short-
lived TCP and UDP flows representing traffic generated by FTP
file transfer applications, web browsing applications and real-time
streaming applications. We set the number of long-lived TCP flows
to 32, and tune the load of the short-lived TCP and UDP traffic
so that they constitute roughly 30% and 10% of the total traffic,
respectively. The long-lived TCP flows contribute the remaining
60%. The other system parameters are again set to their default
values. When the attacker is absent, such a configuration yields an
overall loss rate approximately equal to 1%.

4.2.2.1 Probability of detection.
We first evaluate the probability of detecting the attacker. As

with the previous experiment, we evaluate this based on the dis-
tribution of the 1-second loss rate for different values of rpro, as
plotted in figure 5(a). One can observe that an attacker can be de-
tected with a slightly higher probability in this case. In particular,
even probing rate as high as 1Mb/sec cannot completely eliminate
periods during which losses exceed 10%. This is mainly due to the
presence of the short-lived TCP flows, which generate burstier traf-
fic and are less responsive to variations in congestion levels than
long-lived TCP flows. An off-line inspection of the traffic dynam-
ics indicates that the overall rate of the short-lived TCP flows in-
deed varies significantly over short periods of time. Because nei-
ther long-lived TCP flows nor attacker are able to react as fast, this
often results in a high instantaneous link loss rate. However, even
taking into account those transient excursions above the 10% loss
level, the probability that the attack is detected remains small (the
loss rate exceeds 10% in less than 2% of the time), as long as rpro

is larger than 100Kb/sec.

4.2.2.2 TCP performance change.
Although the defense system can occasionally detect attackers,

the detection probability is so small that it is unlikely to greatly re-
duce the level of disruption an attacker can create. This was verified
in our experiments. Specifically, when the ACC regulation is turned
on, the overall loss rate of all long-lived TCP flows still increases
from 1% to about 4%, making their throughput decrease by more
than 70%. The loss rate of the UDP flows also grows by a similar
amount. As for short TCP sessions, we anticipate that their per-
formance, measured in terms of session response time will also be
adversely affected because of the higher loss rate. We demonstrate
this in figure 5(b), which plots the complementary cumulative dis-
tribution function (CCDF) of the response time of short-lived TCP
sessions before and after the attack. As we can see, more than 40%
of the short-lived sessions take more than 1 second to complete
their transaction, while this number was below 20% before the at-
tack started. Moreover, 10% of the short-lived sessions experience
response times in excess of 6 seconds, while this was the case for
only 2.5% of them before the attack. On average, the transmission
delay across all the TCP sessions increases by approximately 133%
after the attack.

4.3 Comments and Discussions
We have shown that a simple progressive rate increase strategy,

“bandwidth soaking”, allowed attackers to avoid detection by an
ACC-type system. In [28][Appendix I], we further analyze the
vulnerability of the ACC defense to a broader range of attacking
strategies, where the attacker’s rate adaptation algorithm belongs
to the broad family of so-called “binomial” rate adaptation mecha-
nisms [5]. By analyzing the behavior of the stabilized system, we

traffic generator.

establish that the ACC defense system is most vulnerable to a par-
ticular subset of binomial algorithms. The “bandwidth soaking”
mechanism, represents one specific algorithm within this subset.

Our findings indicate that aggregate level schemes are unlikely to
offer a robust solution against broad range of attacks. In particular,
they allow situations where although the overall congestion level
appears to be “normal”, the sharing of link bandwidth among flows
is quite “unfair”. As we illustrated, a “bandwidth soaking” attacker
can gradually nudge out legitimate TCP users and seize a large
amount of the link bandwidth without creating significant losses.
Obviously, the likelihood a “bandwidth soaking” attacker can avoid
detection heavily depends on the specific pthres it chooses as com-
pared with phigh configured at the targeted ACC defense. If they
are too close, the attacker will likely be identified. However, phigh

cannot be set to a very low value, as this would also increase the
probability of false alarms. For example, setting phigh close to
1% (the case in 4.2.2) would cause some legitimate flows to be
frequently identified and punished. Lacking the knowledge of the
range of “regular” link loss rate during overload, it is expected that
in practice phigh would be set to a large value, e.g., > 5%, to en-
sure sufficient transparency to TCP flows. In this case, there should
still exist a wide range of pthres that allows an attacker to remain
undetected. In fact, in an extreme case where phigh is set to zero,
the ACC system would be constantly scanning for attackers, and
would now have to rely on a more precise description of what con-
sists an abnormal behavior to reduce false alarms. In other words,
simply classifying as malicious the aggregates losing most pack-
ets would result in the constant unwarranted penalization of certain
flows. Instead, a finer-grain, e.g., at the flow level, description of
normal behavior would be needed. In the next section, we consider
a specific flow level defense system, namely, the RED-PD system.
By directly addressing traffic anomalies at the flow level, the RED-
PD system is expected to yield a greater detection capability, espe-
cially in the presence of attackers such as the “bandwidth soaking”
attacker that ends up with an abnormally large bandwidth usage.

5. PERFORMANCE OF FLOW LEVEL
DEFENSES: SINGLE ATTACKER

In this section, we evaluate the effectiveness of the RED-PD sys-
tem against “intelligent” DoS attacks. Our first step is to validate
that the RED-PD system can indeed thwart a single “bandwidth
soaking” attacker.

5.1 RED-PD Defense versus Bandwidth Soak-
ing Attacker

Recall that the RED-PD system periodically scans the loss trace
and in every scanning interval marks as TCP-unfriendly flows los-
ing more packets than a “regular” TCP flow, i.e., experiencing losses
in at least K out of M scanning lists in a scanning interval (period).
A “bandwidth soaking” attacker needs to grab a large portion of the
link capacity in order to be disruptive, and for a given loss rate this
is likely to generate many lost packets evenly distributed over time.
As a result, the attacker will have losses in most scanning lists dur-
ing a RED-PD scanning period, which should ensure that it is de-
tected and, therefore, mostly filtered out. To verify this hypothesis,
we conducted a number of experiments, which showed that when a
single “bandwidth soaking” attacker targeted a RED-PD link, long-
lived TCP flows were able to retain on average about 95% of their
initial throughput, while the response time of short-lived TCP flows
grew only by less than 15%.

5.2 Periodical Blasting Attacker

5.2.1 Intuition and Basic Behavior
Although the RED-PD system can successfully throttle slowly

increasing attacking traffic, it may not perform well in the presence
of more rapid adaptation patterns. In this sub-section, we examine
the potential damage of a highly transient attacker that deliberately
alternates between burst (ON) and idle (OFF) periods to avoid de-
tection. Intuitively, in order for such an attacker to be effective, it
would blast traffic long enough to create congestion, switch to idle
before incurring enough losses to be detected, and remain silent un-
til congestion had subsided at which point the attack cycle could re-
sume. By creating sufficient congestion, the attacker would ensure
that TCP flows experience an increase in losses, and by remaining
silent for a sufficient amount of time, the attacker would presum-
ably minimize its chances of being detected and filtered. We use
the name “periodical blasting” to capture the ON-OFF behavior of
this type of attacker. The main challenge with configuring a “pe-
riodical blasting” attacker, is in determining how long to stay ON
and how long to stay OFF, so as to create congestion while avoiding
regulation.

5.2.2 Attacking Strategy
We decompose the activity of a “periodical blasting” attacker

into a series of ON-OFF periods. In each ON period, the attacker
blasts at a rate R for a duration of b. Once the attacker turns OFF,
it remains silent for a fixed amount of time I . The full specification
of such an attacking scheme calls for determining how all three
parameters < R, b, I > are chosen.

Because the RED queue randomly drops incoming packets, it is
highly likely that as congestion increases while an attacker is ON,
the attacker itself would experience losses. The attacker would then
be flagged as having incurred losses in the associated scanning lists
maintained by the RED-PD system. In order to avoid detection, an
attacker should stop transmitting before it overlaps with K scan-
ning lists. From an attacking strategy standpoint, this means that
the attacker will want to send as many packets as it can before turn-
ing itself OFF, in order to leave behind the highest possible level
of congestion. This calls for using a reasonably high transmission
rate R, i.e., larger than the link capacity C. An added benefit of
driving congestion up reasonably fast, is that it leaves little time for
TCP flows to react and adapt their rate, so that they are likely to
encounter severe congestion, which then translates into substantial
throughput reductions. In this section, we mainly test a value of
R = 4.5 × C.

When it comes to selecting values for b and I , it is useful to
consider the two separately. In particular, the criteria for selecting
the ON period duration are that it needs to be long enough to create
sufficient congestion, but not so long that the attacker contributes
losses in more than K scanning lists. In contrast, an OFF period
only needs to be long enough to ensure that the attack does not
resume while the RED-PD system is still within the same scanning
interval. Based on the expression of T (r, p) given in Section 2.2,
and considering all possible phases between an ON period and a
RED-PD scanning interval, the above conditions require that:

b ≤ (K − 2)Kr

M
√

1.5p
(3)

b + I ≥
Kr√
1.5p

(4)

Note that Equations (3) and (4) represent a set of sufficient con-
ditions for an attacker to avoid detection and thus regulation. It is
still possible for an attacker to circumvent the RED-PD defense us-
ing a larger b or a smaller I . This can happen in two cases. First,

even if the OFF period I is not long enough to prevent multiple ON
periods from falling within one scanning interval, the attacker may
still avoid detection if its ON period b is small enough. For exam-
ple, if b ≤ KT (r,p)

M
, the attacker will not be detected as long as it

appears at most � K−1
2 � times in each scanning interval. However,

I cannot be too small, since otherwise burst periods will appear in
every scanning list, ensuring that the attack traffic is detected. Con-
versely, if an ON period overlaps with K or more scanning lists
in a particular scanning interval, the attacker will be detected but
not necessarily affected. This is because the RED-PD system starts
filtering only in the next scanning interval. Then, if the OFF period
I extends over a sufficiently large number of scanning intervals,
the attacking flow will ultimately be removed from the monitored
list without having had any of its packets filtered. Nevertheless,
note that if an ON period spans multiple scanning intervals, the at-
tacking traffic will be heavily filtered no matter how large the idle
period is, since every ON period will have a major fraction of its
traffic subjected to pre-filtering. As we will see later, a large I is
especially important for evading the RED-PD system, especially in
cases where completely avoiding detection is not possible.

From the perspective of the attacker, a smaller b and a larger I are
always “safer.” However, they also mean a smaller impact. There
exists, therefore, a tradeoff between maximizing impact and avoid-
ing detection. Next, we show that as long as the attacker manages
to elude pre-filtering, its impact is not very sensitive to the exact
values of b and I .

5.3 RED-PD Defense versus Periodical Blast-
ing Attacker

5.3.1 Impact of ON Period Duration
In Figure 6, we illustrate the impact of a “periodical blasting”

attacker for different durations of its ON period b. We fix the OFF
period duration I at a reasonably large value, i.e., I = 1600 msec,
while varying b from 10 msec to 1000 msec. Unless stated other-
wise, the RED-PD parameters used in this and other experiments
were set to their default values, i.e., r = 40 msec, K = 3 and
M = 5. Each data point on the figure corresponds to the aver-
age value computed over ten independent experiments. Figure 6(a)
shows the fraction of the attacking traffic passing the RED-PD pre-
filter, as a function of the ON period duration. From the figure,
we observe that when the ON period duration is relatively small,
i.e., b ≤ 200 msec, the RED-PD system can only filter out negli-
gible amount of the attack traffic. In contrast, when the ON peri-
ods last longer than 300 msec, the RED-PD defense can effectively
identify and throttle the attacker. As mentioned before, this is be-
cause when the ON period is sufficiently long, the attacker’s traffic
is filtered for a major portion of its ON period. Figure 6(b) further
plots the variations of the total TCP throughput. As expected, when
b ≥ 300 msec, TCP throughput is hardly affected. In contrast,
when b ≤ 200 msec, the RED-PD system failed to provide effec-
tive protection to TCP flows. In particular, an ON-period duration
of just 10 msec is sufficient to induce a TCP throughput reduction
of more than 50%. This is mainly due to the high flooding rate of
the attacker, which enables it to dump a very large amount of data
in a short amount of time and thus instantly drive the link loss rate
to a high level. An off-line inspection of the traces reveals that this
sudden increase in loss rate forced a large fraction of the TCP flows
to enter a time-out state. Increasing b further introduces only minor
differences, as most of the additional attacking packets would be
dropped at the target link because of the already high loss rate.

5.3.2 Impact of OFF Period Duration

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ON period b (ms)

P
ro

ba
bi

lit
y

of
 p

as
si

ng
 th

ro
ug

h
th

e
pr

e−
fil

te
r

(a) Prob.of passing through

10
1

10
2

10
3

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ON period b (ms)

T
h(

af
te

r)
/T

h(
be

fo
re

)
(b) TCP Throughput Change

Figure 6: On the Impact of ON Period Durations

200 400 600 800 1000 1200 1400 1600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

OFF period I (ms)

P
ro

ba
bi

lit
y

of
 p

as
si

ng
 th

ro
ug

h
th

e
pr

e−
fil

te
r

(a) Prob.of passing through

200 400 600 800 1000 1200 1400 1600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

OFF period I (ms)

T
h(

af
te

r)
/T

h(
be

fo
re

)

(b) TCP Throughput Change

Figure 7: On the Impact of OFF Period Durations

Figure 7 investigates the effect of changing the duration of the
attacker’s OFF-period I . Specifically, we chose an ON period of
20 msec, while varying the OFF period I from 100ms to 1600ms.
As the duration of every ON period is roughly equal to the min-
imum possible length of a scanning list8, an attacker will remain
undetected as long as its OFF period is not too short. This can
be verified in Figure 7(a), which shows that once the attacker se-
lects a large enough OFF period, i.e., I ≥ 500 msec, it can con-
sistently elude the RED-PD defense. However, if an aggressive
attacker resumes its attack too quickly, i.e., selects an OFF period
I < 400 msec, it will be detected and rate-limited by the RED-PD
system. Therefore, as can be seen from Figure 7(b), it only has min-
imal impact on TCP performance. In contrast, when I ≥ 500 msec
the throughput of TCP flows decreases dramatically, as all attack-
ing traffic manages to pass through the pre-filter and affect TCP
traffic. Obviously, increasing I further only extends the length of
the attack cycle, which means that TCP flows are affected less fre-
quently. However, this effect is relatively gradual, and even when
I is 1600 msec, TCP throughput reduction still exceeds 50%. Note
that figure 7(b) also identifies two dips in the TCP throughput curve
at I = 600ms and I = 1100 msec, respectively. This is because at
these two values, the attack cycle synchronizes with the 1-second
TCP minimum timeout duration, so that many TCP flows are peri-
odically affected and never recover from their time-out state9.

5.4 Comments and Discussions
In summary, while a RED-PD defense system can readily han-

dle a “bandwidth soaking” attack, it is vulnerable to the so called
“periodical blasting” attacks that rely on ON-OFF traffic patterns.
In particular, Section 5.3.1 and 5.3.2 demonstrated that even with-
out careful selection of its ON and OFF periods, an attacker can
have a substantial impact on TCP throughput. The only require-
ment is to select a reasonably short ON-period and a sufficiently
large OFF-period, and the results are relatively insensitive to the
choice of specific values.

The failure of the RED-PD system with ON-OFF patterns is be-
cause they are able to exploit inherent weaknesses in both the de-
tection and the regulation mechanisms it uses. In particular, the
use of scanning lists and scanning intervals allows short periods of
intense losses to be overlooked. Even when attackers are occasion-
ally detected, no immediate actions are taken. Consequently, all
8The minimal scanning list duration K

M
T (r, p) is achieved when

the link loss rate is 1. Under the default RED-PD configuration,
this corresponds to 3

5
T (0.04, 1) ≈ 20msec.

9Such synchronization phenomenon was first reported and ana-
lyzed in [15].

TCP flows significantly reduce their transmission rate. Although
they are able to slowly build it back up once the attacker turns
silent, it still translates into a substantial drop in overall through-
put, as the attack cycle is allowed to repeat periodically. This being
said, it should be noted that the RED-PD system still performs bet-
ter than an aggregate defense system. As we recall from Section 4,
an aggregate defense system allowed TCP throughput drops in ex-
cess of 80% in the presence of a single “bandwidth soaking” at-
tacker. In contrast, RED-PD manages to shut-off “bandwidth soak-
ing” attackers, and in many cases limits TCP throughput decreases
to less than 55% in the presence of a single “periodical blasting”
attacker. However, as we shall see in the next section, the situa-
tion can rapidly turn bleaker. In particular, TCP flows will almost
be shut-off when attackers are capable of enrolling even a modest
number of hosts (or identities), and merely relying on other RED-
PD configurations will hardly fix the problem.

6. PERFORMANCE OF FLOW LEVEL
DEFENSES: MULTIPLE ATTACKERS

In this section, we further evaluate the performance of flow level
defenses in scenarios where an attacker is capable of compromis-
ing multiple host machines to mount distributed denial-of-service
(DDoS) attacks. Intuitively, defending against an arbitrarily large
number of host machines is beyond the capability of any flow level
defense system. However, as mentioned earlier, the growing de-
ployment of protective measures and the increasing scrutiny of net-
work and system administrators can make it more difficult for an
attacker to compromise a large number of hosts. Hence, it is rea-
sonable to assume that an attacker will want to launch an attack
using the smallest possible number of host machines. Our goal is,
therefore, to assess how well flow based defenses can protect le-
gitimate users against increasing numbers of attackers. Ideally, the
defense system should limit the impact of attackers to a level that
is no more than that of a corresponding number of regular TCP
flows, independent of the flooding strategy they use. As a result,
the throughput of TCP flows should only diminish gradually as the
number of attacking hosts grows. Exploring the extent to which
this is the case for a RED-PD defense, is our focus in this section.

In addition to scenarios involving multiple hosts, we also explore
cases where an attacker uses multiple identities (spoofed or legal
IP source addresses) in an attempt to disguise itself as multiple dis-
tinct users. Since most flow-level defense systems, including the
RED-PD system, classify data packets into users/flows based on
a combination of source and destination addresses, using multiple
source addresses enables an attacker to fool those systems into be-

10 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Sources

P
ro

ba
bi

lit
y

of
 P

as
si

ng
 T

hr
ou

gh
 th

e
P

re
−

fil
te

r

dumb−0.2C
dumb−1.2C
Bandwidth Soaking
Periodical Blasting

(a) Prob. of passing through

10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Number of Sources

T
h(

af
te

r)
/T

h(
be

fo
re

)

dumb−0.2C
dumb−1.2C
Bandwidth Soaking
Periodical Blasting

(b) TCP Throughput Change

Figure 8: Multiple Independent Hosts

5 10 20 40 100 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Addresses

P
ro

ba
bi

lit
y

of
 p

as
si

ng
 th

ro
ug

h
th

e
pr

e−
fil

te
r

b=10ms
b=40ms
b=100ms
b=400ms
b=1000ms
Per Packet

(a) Prob. of passing through

5 10 20 40 100 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Number of Addresses

T
h(

af
te

r)
/T

h(
be

fo
re

)

b=10ms
b=40ms
b=100ms
b=400ms
b=1000ms
Per Packet

(b) TCP Throughput Change

Figure 9: Random Spoofing vs. Continuous Cycle

lieving that its traffic belongs to distinct flows. As with multiple
hosts, we assume that securing a large number of addresses may be
difficult10, so that an attacker has an incentive to use the smallest
number of addresses to achieve a given impact.

6.1 Multiple Independent Hosts
We first consider the case where a RED-PD defense system is at-

tacked by multiple compromised hosts. We assume that each host
has been infected with a daemon program that can be comman-
deered by a master machine controlled by the real attacker. Except
for communicating with their master, hosts do not exchange in-
formation with each other. We assume that during an attack, all
compromised hosts uniformly choose one of the following three
flooding strategies:

I “Dumb”: A “dumb” flooding strategy mimics today’s brute-
force attacks. For simplicity, we assume that brute-force at-
tackers are traffic sources that constantly flood at their high-
est possible rates. In particular, we assume that all attacking
sources are constant bit rate (CBR) sources flooding at a rate
R. In our experiments, R can be either equal to 0.2C or
equal to 1.2C, representing two different data points for the
flooding ability of an individual machine.

II “Bandwidth Soaking”: This strategy is akin to the “band-
width soaking” strategy of Section 4. In this case, the attack-
ing daemon in each host runs its own probing and rate adjust-
ment process. The loss rate target pthres is set to the same
value, e.g., 4%, in all hosts. To ensure that the aggregate
probing rate stays low, each daemon host probes at a fixed
rate equal to rpro

N
, where N is the number of hosts involved

in the attack. In our experiments, we set rpro = 100Kb/sec.

III “Periodical Blasting”: This last strategy is the “periodical
blasting” strategy of Section 5, where attackers are assumed
to select their ON and OFF periods conservatively. Specifi-
cally, we chose a small ON period equal to 40ms, and a large
OFF period equal to 1600ms so that consecutive ON periods
were sufficiently far apart. We also assume that each attack-
ing host is connected to the network through a high-speed
access link over which it can burst at a rate of 1.2C when
active.

10In the case of spoofed addresses, more and more service providers
and private network domains are deploying techniques such as
ingress filtering [7] to limit their use. Conversely, when valid ad-
dresses are used, securing a large enough block can also be difficult
and certainly expensive.

We test the above three attacking strategies on the RED-PD sys-
tem. Figure 8 reports the corresponding results for the default
RED-PD parameter setting. First, Figure 8(a) plots the fraction
of the attack traffic that manages to pass through the RED-PD pre-
filter, as a function of the number of attackers. As shown in the
figure, the RED-PD system can essentially shut-off “dumb” attack-
ers. For example, when each host floods at 0.2C, less than 20%
of its traffic passes through, and this number drops down to less
than 5% when the flooding rate is 1.2C. As mentioned before, the
successful regulation of “dumb” attackers by the RED-PD mech-
anism is because of their high, constant transmission rates, which
result in losses in all scanning lists and therefore easy detection.
The figure also illustrates that as the number of attackers increases,
the amount of attacking traffic passing through the RED-PD system
actually goes down. This is because a larger number of attackers
triggers a higher link loss rate, which also reduces the traffic that
each legitimate TCP user is allowed to send, i.e., f(r, p).

In contrast, the added intelligence of both the “bandwidth soak-
ing” and the “periodical blasting” attackers, allows them to read-
ily evade detection by the RED-PD scheme. Although “bandwidth
soaking” attackers are still detected, their adaptive nature ensures
that unlike dumb attackers that keep blasting at their maximum rate,
they stop increasing their rate once they sense that the loss rate in
the RED-PD system reaches the target 4%. This ensures that the
amount of pre-filtering received by “bandwidth soaking” attackers
never exceeds 5%.

As for “periodical blasting” attackers, their highly transient na-
ture allows them to evade RED-PD regulation most of the time.
In particular, when the number of attackers is small (no more than
20), periodically blasting for a short duration of 40ms will not trig-
ger losses in K (K=3) or more scanning lists in a scanning inter-
val, which guarantees that no attacking host is detected. When
the number of attacking hosts increases, the length of the RED-
PD scanning list (K

M
T (r, p)) decreases because of the higher link

loss rate, which enables the defense system to occasionally identify
the attackers. This notwithstanding, the amount of attacking traffic
subjected to pre-filtering is still small, i.e., ≤ 12%. This is mainly
due to the long 1600ms idle period, which prevents attacking hosts
from reappearing too quickly after they are detected. As a result,
attackers avoid periods of time during which their dropping proba-
bility in the pre-filter is high, and only resume transmission when
this probability has dropped back down to a low enough level. As
we shall see in Section 6.3, even when attackers are always de-
tected, a long idle period of 1600ms is still sufficient to allow a
substantial fraction of the attacking traffic to evade pre-filtering.

Figure 8(b) demonstrates the RED-PD system’s ability to pre-
serve TCP throughput, in the presence of the three different types of
attackers we have just investigated. The figure plots TCP through-
put as a function of the number of attackers of each type. As can
be seen from the figure, the RED-PD system is somewhat effective
at protecting TCP users from both “dumb” attackers and “band-
width soaking” attackers, as the impact of both types of attackers
only increases gradually with the number of attacking hosts. For
example, with 10 attackers, TCP flows maintain from 60% to 80%
of their original throughput, but this number drops down to 10%
to 60% when the number of attackers reaches 4011. The underly-
ing reasons are, however, different for the two types of attackers.
The RED-PD system is efficient against “dumb” attackers because
it can readily detect them and, therefore, filter a large fraction of
their traffic. For “bandwidth soaking” attackers, the RED-PD sys-
tem only needs to take advantage of their adaptive nature as they
immediately back-off as soon as it applies a slight increase in their
drop probability.

Figure 8(b) further confirms that the RED-PD system is quite
vulnerable to “periodical blasting” attackers. Specifically, because
the RED-PD system filters out only a fraction of the attacking traf-
fic, a total of just 10 attackers manages to reduce the throughput
of 32 TCP flows by more than 70%. This is comparable to the
effect of injecting 75 additional legitimate TCP flows and is far
greater than what can be achieved by a similar number of attack-
ers with any of the other attacking strategies 12. As the number of
attacker increases, the corresponding impact increases further due
to the presence of more attacking traffic. As can be shown in the
figure, merely 40 “periodical blasting” attackers can almost com-
pletely “shut off” the TCP flows.

6.2 Multiple Spoofed Addresses
We now proceed to explore cases where an attacker is capable of

assuming multiple identities by switching its source address among
either a number of spoofed addresses or a block of regular IP ad-
dresses it has acquired. As mentioned before, switching source ad-
dress enables an attacker to fool the RED-PD system into believing
that lost packets from the attacker actually belong to different flows.
This helps reduce the odds that any of the attacker’s identities loses
enough packets to be detected by the RED-PD system. Further-
more, even when the RED-PD system successfully identifies one
identity, only that identity is affected and, therefore, only a small
fraction of the attacking traffic will be dropped. Additionally, a sin-

11Note that “dumb” attacker are seen as more effective than “band-
width soaking” attackers because of their much higher transmis-
sion rate. Consequently, even though they are subjected to much
steeper penalties, e.g., a pre-filtering rate that often exceeds 90%,
their residual traffic remains larger than that of “bandwidth soak-
ing” attackers and, therefore, has a bigger impact on the through-
put of TCP flows. However, it should be pointed out that because
“dumb” attackers are easily identifiable (they lose huge numbers
of packets), one could opt to shut them off entirely instead of only
filtering a fraction of their traffic, thereby completely eliminating
their impact on TCP flows.

12It is worth noting that a higher flooding rate R, translates into an
even bigger impact. In particular, recall that in Section 5.3, a single
“periodical blasting” attacker was able to decrease TCP through-
put by more than 50%, which is not far from the 70% reduction
obtained in this experiment. This is mainly because of the higher
peak rate used in that earlier experiment, i.e., R = 4.5C, instead
of R = 1.2C assumed here. This allowed attackers to transmit
more packets faster in each of their ON periods. It is expected that
increasing the flooding rate to this larger value would allow 10 at-
tackers to trigger an even larger reduction in the throughput of TCP
flows.

gle host assuming multiple identities can create arbitrary traffic pat-
terns for each identity, simply by controlling how it switches among
them. For example, the attacker could cycle through its available
addresses on a packet-by-packet basis, or after a certain number of
packets have been transmitted from a given address. This added
dimension can make it even harder for defense systems to spot the
multiple identities of an attacker. In this sub-section, we assess the
RED-PD system’s efficiency against an attacker with multiple iden-
tities, as the number of identities available to the attacker varies and
for different strategies for switching among them.

We again consider an attacker flooding at a constant rate R =
1.2C. The attacker is assumed to have access to N distinct ad-
dresses, and uses it according to one of the two strategies below:

I Random Spoofing: For each transmitted packet, its source
address is randomly selected (with equal probability) from
the N available addresses.

II Continuous Cycle: In this scenario, the attacker determin-
istically cycles through the N addresses, and uses each ad-
dress for a fixed duration b before moving on to the next ad-
dress. The attack cycle is assumed to repeat continuously 13.
Specifically, as soon as the attacker completes one cycle,
which has duration LC = Nb, it immediately starts a new
one. Such a strategy essentially generates a number of stag-
gered ON-OFF sources that each have an ON period of dura-
tion b and an OFF period of duration (N −1)b. Based on our
earlier discussions, we expect that as long as the ON period
b is short and the number of available addresses N is large
enough such that the duration of the OFF period is “long”
enough, such a strategy will allow the attacker to avoid de-
tection altogether.

We compare the impact of the continuous cycle and random
spoofing strategies in Figure 9. The dashed line curve corresponds
to the random spoofing strategy, while the solid line curves repre-
sent the continuous cycle strategy for different values of b varying
from 10 msec to 1000 msec. In Figure 9(a), we first plot as a func-
tion of the number of available addresses the percentage of the at-
tack traffic that is unfiltered. The impact of this remaining traffic
on TCP throughput is then shown in Figure 9(b).

From the figure, we see that when source addresses are selected
randomly, the fraction of the attacking traffic surviving pre-filtering
grows essentially linearly with the number of available addresses.
This is because each address is seen as sending at a roughly con-
stant rate of R/N , out of which the RED-PD scheme only lets
through an amount consistent with what it considers to be TCP-
friendly. Each time a new address is added, the attacker is able to
get the equivalence of one more TCP flow worth of traffic through
the RED-PD system. Consequently, its impact on the throughput
of TCP flows also grows linearly with N .

In contrast, the RED-PD system is more vulnerable to the ON-
OFF behavior of the continuous cycle strategy, as it succeeds in
consistently getting more traffic to pass through the RED-PD sys-
tem, and therefore achieving a greater impact on the throughput

13In [28], we also evaluate a slightly different “padded cycle” strat-
egy, which fills idle periods between two consecutive addresses in
order to ensure that every attack cycle is long enough. It can be
shown that by guaranteeing a minimum spacing between each at-
tack cycle, the attacker can achieve a bigger impact than the con-
tinuous cycle strategy when the number of available addresses is
small. However, due to the added idle periods, this strategy also
needs a larger address pool to achieve the maximal impact. Hence,
overall speaking it performs similarly as its continuous version. For
simplicity, we omit reporting the details here.

10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Sources

P
ro

ba
bi

lit
y

of
 p

as
si

ng
 th

ro
ug

h
th

e
pr

e−
fil

te
r

(a) Prob. of passing through

10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Number of Sources

T
h(

af
te

r)
/T

h(
be

fo
re

)
(b) TCP Throughput Change

Figure 10: Periodical Blasting Attackers

5 10 20 40 100 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Addresses

P
ro

ba
bi

lit
y

of
 p

as
si

ng
 th

ro
ug

h
th

e
pr

e−
fil

te
r

b=10ms
b=40ms
b=100ms
b=400ms
b=1000ms

(a) Prob. of passing through

5 10 20 40 100 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Number of Addresses

T
h(

af
te

r)
/T

h(
be

fo
re

)

b=10ms
b=40ms
b=100ms
b=400ms
b=1000ms

(b) TCP Throughput Change

Figure 11: Cycling Through Addresses

of TCP flows. The figure actually shows that this can happen in
two different scenarios. Specifically, when the attacker selects rel-
atively small values for b, e.g., from 10 to 100 msec, it is typically
sure to avoid losing packets in K scanning lists or more during
a given ON period. However, when N is small, the correspond-
ing cycle duration Nb will usually be too small, so that the next
ON period of a particular address ends up falling within the same
scanning interval. That address will then have losses in enough
scanning lists and be detected and filtered by the RED-PD defense.
When the number of available addresses increases, the correspond-
ing cycle length eventually becomes large enough to ensure that
successive ON periods fall in different scanning intervals. This
then results in the attacker’s traffic avoiding detection altogether.
This behavior is illustrated in Figure 9(a) by the sharp increase in
traffic passing through for curves associated with small values of b
when N grows large, and the corresponding impact on the through-
put of TCP flows shown in Figure 9(b). As expected, the smaller
the value of b, the larger N is needed to ensure that all the attacker’s
traffic gets through. A very different scenario arises when the at-
tacker chooses a large value for b. When b is large, each individual
address will nearly always contribute losses in K or more scanning
lists, and therefore be identified by the RED-PD system. However,
because b is large, the cycle duration Nb will also be large even
for relatively small values of N . As a result, this usually ensures
that by the time the address is reused again, it has already been
“forgotten” by the RED-PD system. However, when the loss rate
p is high and the duration of a scanning interval is short, a large
enough b can often by itself occupy multiple scanning intervals.
This therefore results in some fraction of the attacking traffic be-
ing always dropped, no matter how many addresses are available.
This explains why the curves associated with b = 400 msec and
b = 1000 msec in Figure 9(a) cannot reach a probability of passing
through equal to 1 even when N is large.

6.3 Single List RED-PD Configuration
So far, we have demonstrated that the default RED-PD setting

is particularly vulnerable to a small number of ON-OFF traffic
sources (identities). In the last set of experiments, we investigate
whether this weakness can be eliminated via simple modifications
to the default RED-PD configuration.

As pointed out earlier, the reason behind the RED-PD system’s
susceptibility to bursty ON-OFF traffic is in part due to the design
of its detection mechanism, which overlooks lossy periods that fall
within (K − 1) scanning lists. From Equation (3), it is easy to see
such situations will occur less frequently when M grows larger. In
particular, if M is large enough, each scanning list will become so

short that any significant traffic burst will span over more than K
lists and thus get detected. However, maintaining a large number
of scanning lists raises management overhead and storage require-
ment. In fact, the RED-PD system can be modified to provide a
similar level of detection using only a single scanning list. Specif-
ically, the system can treat an entire scanning interval as a single
scanning list and then directly count the actual number of losses
associated with each flow in that interval. If a flow contributes
more than K lost packets in a scanning interval, it will be marked
as malicious. Intuitively, directly counting losses achieves the same
effect as using an infinite number of scanning lists. This is because
when M → ∞, each loss typically falls in a separate scanning
list, so that the number of losses in an interval is equal to the num-
ber of lists containing lost packets. Although using a single list can
increase false positives in certain cases [18], it can dramatically im-
prove detection capabilities with only a relatively small additional
cost. Therefore, we focus on this approach in the next set of experi-
ments. It should be clear that an approach based on counting losses
can always identify high-rate ON-OFF sources, as each ON-period
will usually contribute many lost packets. However, it is unclear if
this will translate into enough regulation of the attacking traffic to
eliminate or even minimize its impact. We test a single list RED-
PD system with a configuration of K = 3 and r = 40ms. We
consider the cases of either multiple attackers using the “periodical
blasting” strategy, and of one attacker that employs the “continuous
cycle” strategy to switch beetween multiple addresses.

Figure 10 shows results for an increasing number of indepen-
dent “periodical blasting” attacking hosts. The traffic profile of
each attacking host is kept identical to that of the earlier “multi-
host” scenario, i.e., R = 1.2C, b = 40ms and I = 1600ms. As
can be observed from Figure 10(a), the single list design is indeed
capable of detecting the attackers and dropping part of their traf-
fic. In comparison to the multi-list scheme of Figure 8, the amount
of filtered attacking traffic is seemingly larger, as all attackers are
now correctly identified by the RED-PD defense. However, even
this increase is not sufficient, as the “proportion” of traffic actu-
ally filtered remains small, i.e., no more than 25%. This is again
because of the latency between the time when an attacker is first
detected and when the system starts actually throttling its traffic.
As pointed out in Section 5.2.2, the RED-PD system only starts pe-
nalizing flows classified as non-conformant in the scanning interval
following their detection. Moreover, even after the filtering process
starts, not every packet of the malicious flow is dropped. Instead,
the dropping probability grows gradually, which further limits the
responsiveness of the RED-PD regulation scheme. As a result, a
highly transient attacking source with a small ON period and large

OFF period is likely to disappear before the drop probability be-
comes large, an will remain silent until it is almost “forgotten” by
the defense system. Because the single list configuration of the
RED-PD system does not result in substantially more stringent reg-
ulation, the impact of the attackers is essentially the same as in the
multi-list scenarios. As reported in Figure 10(b), given that most
of their packets are still passing through the pre-filter, 10 attacking
sources are again sufficient to significantly reduce TCP throughput.
Increasing this number to 40 results in TCP flows losing more than
95% of their original throughput.

The case of an attacker that spoofs its source address based on the
“continuous cycle” strategy is considered in Figure 11. We assume
that the ON-period for each identity varies from 10ms to 1000msec.
From the figure, we see that using the single list configuration helps
improve the system’s efficiency for scenarios where b ≤ 100ms. In
these cases, the number of distinct addresses the attacker needs to
avoid filtering rises by a non-negligible amount. Specifically, for a
value of b = 10ms, it takes more than 100 addresses to completely
avoid detection. When b = 40ms, the attacker needs at least 40
addresses to make 90% of its traffic pass through the pre-filter, and
this number drops down to 20 for b = 100ms. For small values of
b, the attack cycle is short so that since the RED-PD now detects all
attackers, it still remembers them when the cycle repeats. A larger
b increases the attack cycle, and therefore calls for fewer addresses
to ensure that previously detected identities have been forgotten by
the RED-PD system. When b becomes very large (b ≥ 400ms), the
use of a single list configuration does not yield significant improve-
ments, because long ON periods are detected by both the single list
and the multi-list systems. Note that in spite of the improved ef-
ficiency of the single list system, it is again still not able to filter
enough of the attacking traffic to meaningfully protect TCP flows
against it. For example, as is shown in Figure 11(b), as long as
b ≥ 40ms, the attacker needs only 40 addresses to reduce TCP
throughput by more than 90%. This is again because of the latency
with which the RED-PD regulation mechanism responds once an
attacker has been identified.

7. RELATED STUDIES ON UNORTHODOX
ATTACKS

There have been several recent studies aimed at exploring the
vulnerabilities of existing network infrastructure to emerging DoS
attacks. These investigation were mostly carried out from the stand-
point of the attacking schemes, namely, to examine the extent to
which attack schemes other than brute-force flooding might be able
to disrupt various network services. The two most relevant ones
are “Shrew” attacks [15] that exploit a specific vulnerability in the
design of the TCP protocol, and Reduction of Quality (RoQ) at-
tacks [11] that take advantage of dynamic system behaviors to de-
grade the performance of TCP users. Our work differs from those
studies not only in that it covers a broader range of approaches,
but also because its main goal is to expose the vulnerabilities of
existing defense mechanisms, in order to understand how to build
better ones. In particular, we explicitly considered both aggregate
level and flow level defense systems, for which we explored differ-
ent attacking schemes whose design was directly motivated by the
weaknesses identified in those systems. In the following, we ex-
pand briefly on the similarities and differences between the attack
strategies considered in this paper and those of “Shrew” and RoQ.

7.1 “Shrew” Attacks
The “Shrew” attack described in [15] exploits the fact that TCP

retransmission time-out settings are globally uniform across many

TCP versions. By periodically sending out a burst of packets with a
period that matches the minimum TCP time-out duration, “Shrew”
attackers can prevent TCP flows from receiving any retransmis-
sion acknowledgments, thus causing them to repeatedly time-out.
Due to its highly transient behavior, “Shrew” attackers can circum-
vent the RED-PD defense in typical configurations. When studying
the RED-PD system, we also explore the threat posed by properly
tuned traffic bursts, i.e., our “Periodical Blasting” scheme. How-
ever, our primary focus is on understanding whether and how such
ON-OFF traffic patterns can be used to avoid detection by the RED-
PD system, and only when those conditions are met are we inter-
ested in how they impact TCP performance. This is in contrast
to the “Shrew” design, which exclusively focuses on maximizing
the impact on TCP. Specifically, the “Periodical Blasting” scheme
makes no effort to explicitly synchronize its attack cycle with TCP.
Instead, our main purpose is to demonstrate that by properly craft-
ing its ON-OFF behavior, such an attacker can exploit inherent
weaknesses of the RED-PD design to avoid regulation, so that it
can significantly degrade the performance of TCP flows.

7.2 RoQ Attacks
In [11], the authors investigate a form of attacks that is capable of

degrading performance at a target network element, e.g., a network
queue, by forcing it to operate in a region with a high degree of
transient variations. The RoQ attacks rely on bursty ON-OFF traf-
fic sources with fixed periods, and impact performance by creating
intense queue fluctuations at the targeted link. The generic notion
of RoQ attacks is essentially similar to our “Periodical Blasting”
strategy. We acknowledge the influence that the RoQ attacks had
on enhancing our understanding of why such sources could effec-
tively disrupt TCP traffic. However, the study in [11] is primarily
concerned with traffic sources that do not violate the TCP-friendly
criterion. Although such sources will normally sail through the
RED-PD defense, their impact typically amounts to limited service
degradations. In contrast, we investigated a much broader range
of ON-OFF attacks to better understand when they could foil the
RED-PD defense, and showed that more aggressive “Periodical
Blasting” attackers can reduce the throughput of TCP flows sub-
stantially.

8. CONCLUSIONS AND FUTURE WORK
This paper is aimed at understanding the extent to which exist-

ing router-based defense mechanisms can be defeated by attack-
ers employing traffic flooding strategies more complex than today’s
“brute-force” attacks. This was accomplished by focusing on two
representative systems for which we developed attacking strategies
that highlighted some of their intrinsic weaknesses. Specifically,
we studied both aggregate defense systems that rely on the defini-
tion of a malicious “aggregate” to regulate traffic, and flow level de-
fenses that continuously monitor individual flows for conformance
with a pre-defined “normal” user behavior. We showed that de-
fending against DoS attacks at the aggregate level cannot eliminate
malicious behaviors at the flow level. A single malicious “band-
width soaking” attacker can gradually nudge out legitimate TCP
flows and grab a major fraction of the link capacity without causing
anomalies at the level of the entire system. Based on this, we ex-
pect that some level of ”flow-level information” is needed in order
to built effective aggregate schemes, e.g., by combining informa-
tion about flows that belong to a common aggregate. In particular,
flow level defenses such as RED-PD can efficiently contain this
type of attacker. However, RED-PD remains vulnerable to highly
transient traffic patterns such as those used by the “periodical blast-
ing” attackers. Specifically, as these attackers blast traffic for only

a short amount of time and then stay idle for a long period, they
are often overlooked by the defense system if it only focuses on
the long-term characteristics of a flow. Even when the defense sys-
tem is able to identify the attacking traffic, this is often not enough
because of the latency with which the defense system responds.
When combined with the fact that the system has finite memory,
and therefore forgets attackers after a certain period of time, this
allows even a small number of such attackers to still inflict signifi-
cant damage on the performance of TCP traffic.

This paper is a first step in an effort towards designing more
robust defense mechanisms. The understanding derived from ex-
ploring the weaknesses of the ACC-Pushback and the RED-PD de-
fenses is currently being leveraged [27] to devise more effective
schemes. As indicated by our findings, building effective defenses
calls for both accurate and rapid identification of “abnormal” traf-
fic at the flow level, followed by prompt regulation of that traffic.
In [27], we are using RED-PD as our starting point, and improv-
ing it in a number of directions. A design similar to the “single
list” RED-PD system that counts the number of lost packets, pro-
vides a reasonably effective solution for the detection of malicious
traffic. However, there is an inherent trade-off in that ensuring the
fast detection of attackers also increases the likelihood of false pos-
itives. This effect is then compounded depending on the type of
regulation being used. Ideally, one would like to apply the most
stringent filter, i.e., dropping all packets belonging to flows iden-
tified as abnormal, but this will also have the effect of increasing
sensitivity to occurrences of false positives. A more progressive
filter, as used in RED-PD, minimizes this problem but at the cost of
increased exposure to very bursty attackers, as we have shown. A
possible approach for accommodating this dilemma is to rely on a
combination of mechanisms operating at different time-scales. We
are currently prototyping such a double time scale design. At the
short time scale, we rely on a stringent regulation mechanism, but
with a detection component that is based on a looser definition of
traffic abnormality than strict TCP conformance, i.e., by allowing
a higher rate than that of a regular TCP flow. At the longer time
scale, we rely on a progressive preferential dropping mechanism
combined with a detection component that enforces rigorous TCP
conformance. We hope to report on the performance and complex-
ity of this design shortly.

9. REFERENCES
[1] Arbor networks.

http://www.arbornetworks.com/resources overview.php.
[2] Mazu profiler. http://www.mazunetworks.com/white papers/.
[3] The network simulator – ns-2. http://www.isi.edu/nsnam/ns/.
[4] Riverhead networks. http://www.riverhead.com/index2.html.
[5] D. Bansal and H. Balakrishnan. Binomial congestion control

algorithms. In Proc. IEEE INFOCOM’01, pages 631–640,
Anchorage, AK, April 2001.

[6] S. M. Bellovin. ICMP traceback messages. Internet draft
(work in progress), IETF, 2000.
http://www1.cs.columbia.edu/ smb/papers/draft-bellovin-
itrace-00.txt.

[7] P. Ferguson and D. Senie. Network ingress filtering:
Defeating denial of service attacks which employ IP source
address spoofing. Request For Comments (Proposed
Standard) RFC 2267, IETF, January 1998.

[8] S. Floyd and K. Fall. Promoting the use of end-to-end
congestion control in the Internet. IEEE/ACM Trans. Netw.,
7(4):458–472, 1999.

[9] S. Floyd and V. Jacobson. Random early detection gateways

for congestion avoidance. IEEE/ACM Trans. Netw.,
1(4):397–413, 1993.

[10] T. M. Gil and M. Poletto. MULTOPS: A data-structure for
bandwidth attack detection. In Proc. USENIX Security
Symposium, pages 23–28, Washington, DC, July 2001.

[11] M. Guirguis, A. Bestavros, and I. Matta. Exploiting the
transients of adaptation for RoQ attacks on internet
resources. In Proc. IEEE ICNP’04, pages 184–195, 2004.

[12] J. Ioannidis and S. M. Bellovin. Implementing pushback:
Router-based defense against DDoS attacks. In Proc.
NDSS’02, February 2002.

[13] H. Jiang and C. Dovrolis. Guardian: A router mechanism for
extreme overload prevention. In Proc. ITCOM’02, August
2002.

[14] R. R. Kompella, S. Singh, and G. Varghese. On scalable
attack detection in the network. In Proc. IMC’ 2004, pages
187–200, Taormina, Sicily, Italy, October 2004.

[15] A. Kuzmanovic and E. W. Knightly. Low-rate TCP-targeted
denial of service attacks: the shrew vs. the mice and
elephants. In Proc. ACM SIGCOMM’03, pages 75–86, 2003.

[16] D. Lin and R. Morris. Dynamics of random early detection.
In Proc. ACM SIGCOMM’97, pages 127–137, 1997.

[17] R. Mahajan, S. M. Bellovin, S. Floyd, J. Ioannidis,
V. Paxson, and S. Shenker. Controlling high bandwidth
aggregates in the network. SIGCOMM Comput. Commun.
Rev., 32(3):62–73, 2002.

[18] R. Mahajan and S. Floyd. Controlling high-bandwidth flows
at the congested router. In Proc. IEEE ICNP’01, pages
192–201, 2001.

[19] J. Mirkovic, G. Prier, and P. Reiher. Attacking DDoS at the
source. In Proc. IEEE ICNP’02, Noverber 2002.

[20] J. Mirkovic and P. Reiher. A taxonomy of DDoS attack and
DDoS defense mechanisms. SIGCOMM Comput. Commun.
Rev., 34(2):39–53, 2004.

[21] R. Pan, L. Breslau, B. Prabhakar, and S. Shenker.
Approximate fairness through differential dropping.
SIGCOMM Comput. Commun. Rev., 33(2):23–39, 2003.

[22] R. Pan, B. Prabhakar, and K. Psounis. CHOKe, a stateless
active queue management scheme for approximating fair
bandwidth allocation. In Proc. IEEE INFOCOM’00, pages
942–951, Tel-Aviv, Israel, March 2000.

[23] S. Savage, D. Wetherall, A. Karlin, and T. Anderson.
Practical network support for IP traceback. In Proc. ACM
SIGCOMM’00, pages 295–306, 2000.

[24] I. Stoica, S. Shenker, and H. Zhang. Core-stateless fair
queueing: achieving approximately fair bandwidth
allocations in high speed networks. In Proc. ACM
SIGCOMM’98, pages 118–130, 1998.

[25] H. Wang, D. Zhang, and K. G. Shin. Detecting SYN flooding
attacks. In Proc. IEEE INFOCOM’2002, pages 1530–1539,
New York, NY, June 2002.

[26] K. Xu, Z. Zhang, and S. Bhattacharyya. Profiling internet
backbone traffic: Behavior models and applications. In Proc.
ACM SIGCOMM’05, Philadelphia, PA, August 2005.

[27] Y. Xu and R. Guerin. A double horizon defense scheme for
robust regulation of malicious traffic. Technical report in
preparation, University of Pennsylvania, 2005.

[28] Y. Xu and R. Guerin. On the robustness of router-based
denial-of-service (DoS) defense systems. Technical report,
University of Pennsylvania, March 2005. Available at:
http://einstein.seas.upenn.edu/mnlab/publications.html.

	University of Pennsylvania
	ScholarlyCommons
	July 2005

	On the Robustness of Router-based Denial-of-Service (DoS) Defense Systems
	Ying Xu
	Roch A. Guérin
	Recommended Citation

	On the Robustness of Router-based Denial-of-Service (DoS) Defense Systems
	Abstract
	Keywords
	Comments

	tmp.1121709658.pdf.sy6yp

