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training data, the more complicated models perform about as well as the simple ones when the latter are true.
We also apply the PrAGMaTiSt to the important problem of sleep scoring of mice based on video data. Our
procedure provides more accurate differentiation of the NREM and REM sleep states compared to any
previous method in the field. The improvements in REM classification are particularly beneficial, as the
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ABSTRACT

MACHINE LEARNING METHODS WITH TIME SERIES DEPENDENCE

Blakeley B. McShane

Abraham J. Wyner (Advisor)

We introduce the PrAGMaTiSt: Prediction and Analysis for Generalized Markov

Time Series of States, a methodology which enhances classification algorithms so

that they can accommodate sequential data. The PrAGMaTiSt can model a wide

variety of time series structures including arbitrary order Markov chains, generalized

and transition dependent generalized Markov chains, and variable length Markov

chains. We subject our method as well as competitor methods to a rigorous set of

simulations in order to understand its properties. We find, for very low or high levels

of noise in Yt|Xt, complexity of Yt|Xt, or complexity of the time series structure,

simple methods that either ignore the time series structure or model it as first order

Markov can perform as well or better than more complicated models even when the

latter are true; however, in moderate settings, the more complicated models tend to

dominate. Furthermore, even with little training data, the more complicated models

perform about as well as the simple ones when the latter are true. We also apply
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the PrAGMaTiSt to the important problem of sleep scoring of mice based on video

data. Our procedure provides more accurate differentiation of the NREM and REM

sleep states compared to any previous method in the field. The improvements in

REM classification are particularly beneficial, as the dynamics of REM sleep are of

special interest to sleep scientists. Furthermore, our procedure provides substantial

improvements in capturing the sleep state bout duration distributions relative to

other methods.
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Chapter 1

Introduction: Classification and

Application

1.1 Statistical Learning: Classification

Classification is the task of using a set of input variables, whose values are known,

to predict one or more output variables, whose values are known in sample but are

unknown out of sample. Statisticians have typically called the input variables the

covariates, the predictors, or the independent variables while they have typically

called the output variable(s) the response(s) or dependent variable(s). Regardless

of the terminology, the goal is the same: use the inputs to predict the value of the

output(s).

While output variable(s) can be continuous, classical machine learning focuses

1



on the problem of predicting a single, unordered categorical output from a set of

continuous and/or categorical inputs (categorical variables are interchangeably re-

ferred to as qualitative variables, discrete variables, factors, or classes). The canon-

ical example in statistics would be R. A. Fisher’s work on Iris species discrimination

(Anderson, 1935; Fisher, 1936). In this example, the output is a random variable

Y which takes on values y ∈ S ≡ {Virginica, Setosa, Versicolor} (we often assume

y ∈ S ≡ {1, 2, ..., k} except when k = 2 in which case we assume S ≡ {0, 1} or

S ≡ {±1}; however, this is not always the case as shown by this Iris example).

Input variables are denoted by X and in this example X takes on values X = x, a

vector of four continuous variables corresponding to measurements of a particular

flower’s petal length, petal width, sepal length, and sepal width (in general, we let

X and x denote a scalar or vector of length p; all vectors are assumed to be column

vectors). The training data consists of N = 150 (yi, xi)
N
i=1 pairs where yi is the

species of a particular flower and xi are its covariates (in general, we will denote by

yyy the column vector (y1, . . . , yN)T of outputs; we assume yyy is a realization of the

vector random variable Y1:N . We denote byXXX the N x p matrix whose rows are each

of the xTi covariate vectors and also assume it is a realization of the matrix random

variable X1:N ; when necessary, we will use xxxj to refer to vector of N observations

of the jth covariate, similarly a realization of the random variable Xj
1:N .). Fisher

assumed each of the (yi, xi) were drawn i.i.d. from a joint distribution P(Y,X) and

modeled them via linear discriminant analysis.

2



4 1. Introduction

FIGURE 1.2. Examples of handwritten digits from U.S. postal envelopes.

prostate specific antigen (PSA) and a number of clinical measures, in 97
men who were about to receive a radical prostatectomy.

The goal is to predict the log of PSA (lpsa) from a number of measure-
ments including log cancer volume (lcavol), log prostate weight lweight,
age, log of benign prostatic hyperplasia amount lbph, seminal vesicle in-
vasion svi, log of capsular penetration lcp, Gleason score gleason, and
percent of Gleason scores 4 or 5 pgg45. Figure 1.1 is a scatterplot matrix
of the variables. Some correlations with lpsa are evident, but a good pre-
dictive model is difficult to construct by eye.

This is a supervised learning problem, known as a regression problem,
because the outcome measurement is quantitative.

Example 3: Handwritten Digit Recognition

The data from this example come from the handwritten ZIP codes on
envelopes from U.S. postal mail. Each image is a segment from a five digit
ZIP code, isolating a single digit. The images are 16×16 eight-bit grayscale
maps, with each pixel ranging in intensity from 0 to 255. Some sample
images are shown in Figure 1.2.

The images have been normalized to have approximately the same size
and orientation. The task is to predict, from the 16 × 16 matrix of pixel
intensities, the identity of each image (0, 1, . . . , 9) quickly and accurately. If
it is accurate enough, the resulting algorithm would be used as part of an
automatic sorting procedure for envelopes. This is a classification problem
for which the error rate needs to be kept very low to avoid misdirection of

Figure 1.1: Examples of handwritten digits from U.S. postal envelopes. Source:
Figure 1.2 in Hastie et al. (2001).

A standard machine learning example would be correctly identifying the letter

y ∈ S ≡ {A, B, ..., Z} or y ∈ S ≡ {0, 1, ..., 9} based on covariates culled

from a hand-written image X as in Figure 1.1 where the goal is to automatically

read zip code digits from envelopes for the purpose of automated mail-sorting.

What makes this example stand out as a classic machine learning one are three

things. First, the number of covariates is potentially enormous and could include

the grayscale values of the image over a large grid of pixels plus any other covariates

one might create from these. Second, a ”complex” function is likely required to map

from the covariates to the predicted class; simple linear methods are unlikely to be

suitable. Third, and perhaps most important and most in contrast with statistical

problems, the signal to noise ratio for this problem is extremely high, possibly even

infinite. This is clear because a human being could perform this task with near

100% accuracy. In contrast, in many statistical problems, the signal to noise ratio
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is not nearly so high and often the noise dominates the signal.

A classifier is a function f : X → Y which maps from covariates X to classes Y

and the goal of classification is to find a function f̂ which correctly predicts the class

of new (y, x) pairs via ŷ = f̂(x). This is usually accomplished by restricting oneself

to a class of functions f̂ ∈ F and choosing a classifier which performs well on the

training data without overfitting. For instance, in Fisher’s example, he restricted

himself to linear classifiers arising from the assumption that the covariates came

from a three-component mixture of four-dimensional Gaussian distributions (three

referring to the number of classes and four to the number of covariates).

1.2 Statistical Learning: Sequential Classification

While the classification paradigm is rich and fits many examples, it is also quite

limited. Consider the example of predicting letters based on an image. If these are

random letters, then the classification paradigm holds. However, if we suppose that

these letters come in order from a word, then they follow a natural sequence and the

i.i.d. assumption is clearly false. Rather than being drawn i.i.d. from P(Y,X), the

(y, x) pairs are sequences which exhibit correlation from item to item. This case,

where the Y random variables form a categorical sequence or time series Y1, Y2, ...,

is the sequential learning paradigm.

Many popular machine learning applications such as part-of-speech tagging,

text-to-speech mapping, biological sequence analysis, and information extraction
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from web pages fit this case. For instance, one might be interested in part-of-speech

tagging where each X random variable is a word in a sentence and each Y random

variable is the part of speech of that word (e.g., noun, adjective, verb, etc.). Or,

perhaps one is interested in fraud detection where each X is the use of a credit card

and Y takes on the value zero or one depending on whether the use was legitimate

or fraudulent. Finally, Y could be one of the three sleep states (NREM, REM, and

WAKE) and X could be data from video recordings, electroencephalographic (EEG)

recordings, electromyographic (EMG) recordings, and piezoelectric recordings. In

the sequel, we will focus on this problem using video recordings as our covariates.

In the part-of-speech example, English grammar (or that of any other language)

enforces certain patterns on the data and makes others impossible or unlikely (e.g.,

the pattern ”verb verb noun verb” is highly unlikely in English). In the fraud case,

the sequence is likely to be all zeroes before a credit card is stolen and all ones

after. For sleep states, biological mechanisms rule out certain sequences (e.g., no

transitions from WAKE to REM). These temporal correlations can be harnessed to

improve predictions.

Formally, the sequential classification task is defined as follows. We assume we

have a set of N training sequences {(yyyi,XXX i)
N
i=1} (often, N = 1) where training

sequence i is measured for Ti time periods. For example, we might have consecutive

sleep states and video recordings for several mice. Each training sequence consists

of a sequence of outputs yyyi = (yi,1, yi,2, . . . , yi,Ti
)T and covariates XXX i, the Ti x p
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matrix whose rows are the xTi,t (where xi,t is the vector of covariates from training

sequence i at time t). Here, the goal is to find a classifier f̂ that correctly predicts

a new sequence yyy given a new covariate sequence XXX.

We assume each training sequence yyyi is a realization of the vector valued random

variable Yi,1:Ti
= (Yi,1, ..., Yi,Ti

)T . Likewise, we assume the covariate matrix XXX i is

a realization of the random variable Xi,1:Ti
which has rows equal to XT

i,t. In the

sequential case, we assume Yi,1:Ti
and Xi,1:Ti

are drawn jointly from the distribution

P(Y1:T , X1:T ) which returns the (1 + p) ·Ti random variables that make up Y1:Ti
and

X1:Ti
.

The sequential learning task differs in important ways from two closely-related

tasks. The first is time-series prediction where the typical goal is to predict Yt+1

given Y1, ..., Yt (and possibly covariates X1, ..., Xt+1). There are two key differences.

First, in the sequential case, one has the whole time series of covariates X1:T with

rows {XT
t }Tt=1 available for predicting future values Yt+1; in the time series case,

one typically only has X1, ..., Xt+1 available for predicting Yt+1. Utilization of the

entire sequence X1:T can improve performance. Second, in sequential learning, we

know none of the true values Y1, ..., YT (except in our training data) whereas, in

time series forecasting, one typically knows the true Y1, ..., Yt before predicting Yt+1

(or at least before predicting Yt+k).

The second related task is sequence classification: predicting a single label Y

for a whole sequence X1:T . For example, X1:T could be a sequence of images of
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hand-written letters and Y could be the word those letters form. Or, X1:T could be

a sequence of images of hand-written letters and Y could be the person who wrote

them (i.e., hand-writing identification). Clearly these problems are related to the

problem of sequential learning. In fact, in the former case, a successful strategy

for classifying words might be to sequentially classify letters and then string them

together to form a word. However, no such strategy would work for the hand-writing

identification task.

We note that both the generic learning task as well as the sequential learning task

have unsupervised equivalents. That is, Yt is assumed to belong to S ≡ {1, 2, ..., k}

however it is unknown and latent, even in the training data. Often, some form of

the Expectation-Maximization (EM) algorithm (Dempster et al., 1977) is used on

the training data. The latent Yt are estimated in the E-step and then the likelihood

is maximized with respect to these estimates in the M-step. In the sequel, Yt will

be assumed to be known for the training data and hence we will be working in the

supervised case.

1.3 Application to Sleep Data

Approximately 40 million Americans are afflicted with various sleep disorders such

as insomnia, sleep apnea, and narcolepsy. As knowledge of these disorders grows

amongst the populace, sleep medicine is becoming an increasingly important field of

medical inquiry. Sleep scientists wish to establish the genetic basis of sleep behavior

7



in humans, but a typical sleep study using human subjects is incredibly expensive

and time-consuming.

Mice are increasingly becoming the animal model for studying sleep. The advan-

tages of using mice are the accessibility of many inbred strains as well as many re-

combinant inbreds which facilitate the identification of quantitative trait loci. Other

advantages are the availability of congenics and consomics to facilitate gene identifi-

cation and large-scale ethylnitrosourea (ENU) mutagenesis projects that have been

and are being conducted in mice. All of these strategies are being undertaken to

identify genes regulating biological processes such as sleep.

Genetic differences cause strains of mice to differ in both sleep behavior and

prevalence of sleep disorders. Sleep researchers are particularly interested in which

genes contribute to wakefulness versus sleep and, within sleep, REM sleep versus

non-REM sleep. Sleep scientists are especially interested in the REM state of sleep

which occurs much less frequently than either non-REM sleep or wakefulness.

Large-scale sleep studies of mice are not currently feasible because the gold

standard methodology for the study of sleep behavior is invasive, expensive, and

time-consuming. First, researchers implant a wire into the mouse’s head for the pur-

pose of electroencephalographic (EEG) and electromyographic (EMG) recordings.

After waiting ten to fourteen days for the mouse to recover from surgery, EEG and

EMG signals are recorded for twenty-four hours at 256Hz. These continuous EEG

and EMG recordings are broken into ten second blocks (termed ”epochs”). Each of
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the 8,640 epochs that make up a day are then manually classified by trained tech-

nicians into three stages: REM sleep, non-REM (NREM) sleep, and wakefulness

(WAKE).

The EEG/EMG system is besot with problems in addition to high cost and im-

practicality. Manual-scoring is internally and externally inconsistent. That is, there

are disagreement rates between scorers: different scorers can disagree by as much

as 8% overall and up to 15% within the important REM sleep stage. Moreover,

the same person frequently scores the same epoch differently when he revisits the

data at different times. Consequently, an automated procedure would have the ad-

ditional benefit of following a fixed set of rules and producing internally consistent

scores. Still, the high ”human error” rate is a feature of this problem generally

not encountered in the sequential classification literature (in contrast, a difficult se-

quential classification problem is part-of-speech tagging, where the human or Bayes

error rate is essentially zero).

There is substantial interest in replacing this invasive, manual process with

a high-throughput system based on video recordings of mice. In addition to vast

savings in time and money, use of video data would avoid the costly surgery, recovery

time, and confounding effects of the wire implantation. This is a very important

problem for scientists who require accurate phenotypic screening of different genetic

strains of mice.

The accurate classification of sleep states based on this video data is a daunting
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Figure 1.2: A time-series plot of the mean aspect ratio for one mouse, with colors
corresponding to the manually scored sleep state.

proposition. Sleep scientists have already made initial efforts towards replacing

manual EEG/EMG scoring with automated classification of sleep states based on

video data alone using the so-called ”40-second Rule”(Pack et al., 2007). These

results are useful for a limited set of purposes but are nevertheless quite inaccurate.

These attempts have only been able to differentiate between sleep and wake, whereas

the main interest of sleep researchers is differentiation between the NREM and REM

sleep states. Sleep researchers are especially interested in the dynamics of the REM

sleep state in different strains of mice. Unfortunately, REM and NREM behavior

are very similar, a problem that is compounded by the fact that the REM sleep

state is rare, occurring in only 5% of the manually-scored epochs. We shall show

that with a more sophisticated analysis, this differentiation can be accomplished.
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Despite these challenges, there is some hope that aspects of the data that could

be used to differentiate NREM and REM. In Figure 1.2, the aspect ratio of the

mouse gives evidence of subtle signal between REM and NREM. For instance, REM

epochs appear to have lower aspect ratios than the corresponding NREM epochs

just before and after it. Marginally, the discriminatory power of this feature is very

limited, but there is clearly a time dependent error structure.

1.4 Overview

In the sequel, we will provide an overview of various statistical methods currently in

use (Chapter 2). We will then discuss various difficulties these methods encounter in

practice (Chapters 3 and 4). Next, we will introduce the PrAGMaTiSt: Prediction

and Analysis for Generalized Markov Time Series of States in Chapter 5 and

discuss how it overcomes some of these difficulties.

We subject our methods and various competitors to rigorous tests on both simu-

lated data (Chapter 6) and sleep data (Chapter 7). Finally, in Chapter 8, we provide

a brief discussion of the main results of this work and areas for future research.
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Chapter 2

Extant Methods

There is a vast literature on classification methods which we briefly review in this

section. This review is by no means exhaustive. For a more thorough review on

classification in general, we suggest Hastie et al. (2001) and Duda et al. (2001). For

sequential classification, no classic texts exist though Dietterich (2002) provides a

brief review.

2.1 Classification Methods

2.1.1 Classical Methods

The classical statistical workhouse for classification is logistic regression. Logistic

regression models the probability of each of the k classes via linear functions of the

covariates x. The model arbitrarily chooses one class (here the kth) as the base class
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and linearly models the log-odds of the other classes with respect to this class

log
P(Y = 1|X = x)

P(Y = k|X = x)
= xT · β1

log
P(Y = 2|X = x)

P(Y = k|X = x)
= xT · β2

. . .

log
P(Y = k − 1|X = x)

P(Y = k|X = x)
= xT · βk−1.

Here, a column of ones is usually joined to the observed covariate matrix XXX so that

each βk is of length p + 1. Under this model, we can recover the conditional class

probabilities as

P(Y = i|X = x) =
exp(xT · βi)

1 +
∑k−1

j=1 exp(xT · βj)
, i = 1..., k − 1

P(Y = k|X = x) =
1

1 +
∑k−1

j=1 exp(xT · βj)
.

Logistic regression is typically estimated via maximization of its multinomial like-

lihood.

Though we do not use it here, it is also worth mentioning another classical

statistical method, linear discriminant analysis (LDA), for it offers a parallel

we will see when we discuss sequential methods. LDA models the class-conditional

distribution of the covariate X as multivariate Gaussian with a covariance matrix
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that is common across all classes. That is,

X|Y = i ∼ N(µi,Σ), i = 1, ..., k

where µi is a mean vector of length p and Σ is the common p x p covariance matrix.

It also assumes the prior probability of each class is P(Y = i) = πi, i = 1, ..., k. By

Bayes Theorem,

P(Y = i|X = x) =
φ(x|µi,Σ) · πi∑k
j=1 φ(x|µj,Σ) · πj

where φ(.|µ,Σ) is the multivariate normal probability density function with mean

µ and covariance matrix Σ. As in logistic regression, the model is typically fit

via maximum likelihood (equivalent to moment estimation) and a linear decision

boundary is formed.

Whereas logistic regression is a discriminative model, linear discriminant analy-

sis is a generative model (despite the name). The difference is as follows. Generative

classifiers model the joint distribution P(Y,X) of the classes and covariates and fac-

tor that distribution as P(Y )P(X|Y ). Typically, models are fit via maximization of

the joint likelihood P(Y )P(X|Y ). On the other hand, discriminative classifiers such

as logistic regression model only the conditional distribution of the classes given

the covariates P(Y |X) and are typically fit via maximization of this conditional

likelihood P(Y |X).

More specifically, in the former, the distribution of the covariates is a mixture
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of Gaussians, P(X) =
∑k

i=1 πi · φ(X|µi,Σ). In the latter, though it appears P(X)

is ignored, it is not: ”we can think of this marginal density as being estimated

in a fully nonparametric and unrestricted fashion, using the empirical distribution

which places mass 1/N at each observation” (Hastie et al., 2001). The former, by

relying on these additional assumptions, can provide more efficient estimates of the

model parameters. In fact, logistic regression requires 30% more data to do as well

as LDA when the conditional covariate distributions are Gaussian (Efron, 1975).

As a prelude, we will see a similar difference between generative Hidden Markov

Models (HMMs) on the one hand and discriminative Maximum Entropy Markov

Models (MEMMs) and Conditional Random Fields (CRFs) on the other hand. A

pivotal contribution of this research is to fit Markov models in a discriminative fash-

ion, thus allowing the addition of assumptions on the state duration distributions

not possible in MEMMs and CRFs and also providing increased efficiency.

2.1.2 CART

Tree-based methods split the space of the predictors into hyper-rectangles and then

fit simple models to each one1. We will briefly discuss CART trees (Breiman et al.,

1984) in this section. Though we do not use CART for classification, CART trees

form the basis for many of the algorithms we consider in the sequel. Furthermore,

while CART trees are one of the most popular tree-growing algorithms, we note

1This section relies substantially on Hastie et al. (2001)
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Figure 2.1: Partitions and CART. The top left panel shows a partition of a two-
dimensional covariate space which cannot be obtained from recursive binary split-
ting. The top right shows one which can. The bottom panel shows the tree cor-
responding to the partition in the top right. Source: Figure 9.2 in Hastie et al.
(2001).

that others exist (e.g., C4.5 (Quinlan, 1993)).

We start with a simple example. Consider a categorical response Y and two

predictors X1 and X2. Figure 2.1 shows partitions of the covariate space. Within

each partition, one could model the probability that Y takes on the various classes

differently. For example, suppose there are Nm datapoints within partition Rm

(corresponding to node m of a tree). Then, we could model P(Y = i|X ∈ Rm), the

probability of that Y equals class i when the covariates are found in partition Rm
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as

p̂mi =
1

Nm

∑
yj |xj∈Rm

I(yj = i). (2.1.1)

We can also classify all observations in partition Rm to class î(m) = argmaxi p̂mi.

For simplicity, we only consider recursive binary partitions as in the top right

panel of Figure 2.1. That is, we first split the space on one variable into two regions

and then model Y within each of those two regions. The variable and the split point

are both chosen to provide the best fit. Then, one or both of these regions is split

into two regions and the process is continued until some stopping rule is applied.

Such a procedure can be viewed in partition form in the top right panel of Figure

2.1 and in tree form by the lower panel. First, X1 is chosen as the split variable

at split point t1. Then, the partition corresponding to X1 ≤ t1 is split again at

X2 = t2 while the partition corresponding to X1 > t1 is split at X1 ≤ t3. Finally,

the partition given by X1 ≤ t3 is split at X2 = t4.

A major question is how to determine which variable to split on and where to

split. Usually, this is done in a greedy fashion. Given a dataset and no tree, we

form the first split as follows. First, we restrict ourself to only splitting at values

that are observed in our dataset. We can then consider all possible splits on all

of our p variables (assuming continuous predictors with no ties, we would consider

p · N splits). Each variable / split-point combination induces two nodes for which

we can obtain probability predictions p̂mi and class estimates as above.

In order to select among the p ·N variable / split-point combinations, we utilize
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an ”impurity function” Qm(T ) (to be defined below) for terminal node m of our

tree T (here, since we are considering the first split, there are two terminal nodes).

We then define the total tree impurity as Q(T ) =
∑|T |

m=1NmQm(T ) where |T | is the

number of terminal nodes of tree T (again, since we are considering the first split,

|T | = 2). Then, we select the variable / split point combination that minimizes

total impurity. Finally, we repeat this process on the resulting two regions and

repeat again on all the resulting regions.

This leaves two questions: what should our impurity function be and when do

we stop growing the tree? There are three commonly used impurity measures:

Misclassification Error:
1

Nm

∑
yj |xj∈Rm

I(yj 6= î(m)) = 1− p̂mî(m)

Gini Index:
∑
i 6=i′

p̂mip̂mi′ =
k∑
i=1

p̂mi(1− p̂mi)

Cross-entropy or Deviance:
k∑
i=1

p̂mi log p̂mi.

A more extensive discussion of impurity measures is beyond the scope of this work.

However, we note the latter two are typically employed because they are differen-

tiable and therefore more tractable for numerical optimization (Hastie et al., 2001).

As for stopping, there are several competing approaches. One simple approach

involves recursively splitting until a split will produce a terminal node with fewer

than some pre-specified number of observations. Another approach involves speci-

fying a maximum number of terminal bins or a maximum depth size for the tree.
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Finally, the cost-complexity approach grows a very large tree and then ”prunes” it

backwards. If we let T0 be a large tree, we can define any subtree T ⊂ T0 as a tree

which can be obtained from T0 by collapsing any number of non-terminal nodes.

We can then define the cost-complexity of a subtree as

Cα(T ) =

|T |∑
m=1

NmQm(T ) + α|T | = Q(T ) + α|T |. (2.1.2)

α ≥ 0 is a parameter that governs the penalty due to the size of the tree, thus

enforcing a tradeoff between goodness of fit to the training data and complexity of

the tree. The goal is to find, for each α, the subtree Tα ⊆ T0 which minimizes Cα(T ).

Typically, the value α = α̂ is chosen via cross-validation and then Tα̂ is chosen as

the final tree (see Breiman et al. (1984) and Ripley (1996) for more details). For

more technical issues such as categorical predictors, unequal misclassification costs,

missing data, non-binary splits, splitting on linear combinations of predictors, and

issues examining instability of trees, their lack of smoothness, and their difficulty

in capturing additive structure, see Hastie et al. (2001).

2.1.3 Ensemble Methods

CART trees can form the building blocks to the four methods discussed in this

section: bagged trees (Breiman, 1996), Adaboost (Freund and Schapire, 1996),

LogitBoost (Friedman et al., 2000a), and Random forests (Breiman, 2001). These

methods form an ”ensemble” or ”forest” of trees and allow the trees to ”vote” in
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order to estimate probabilities and classify. They all work in different ways and are

reviewed.

Two caveats are in order. First, these methods are primarily ensemble methods

that consist of generating many ”weak” or ”base” learners. CART trees are one

such base learner from which an ensemble can be formed but they are by no means

the only one even if they are quite common. Second, this is not an exhaustive list of

ensemble methods though they do include two of the most common kinds: random-

ized algorithms which use repeated bootstrap samples to reduce variance and avoid

overfitting (bagged trees and Random forests) and adaptive, recursively weighted

algorithms which minimize loss functions (AdaBoost and LogitBoost). Such meth-

ods stand in stark contrast to model-based approaches like logistic regression and

LDA.

We begin with the simplest method, bagged trees. Before discussing this

method, we must discuss the non-parametric bootstrap (Efron, 1979; Efron and

Tibshirani, 1994). Given data ZZZ = {(y1, x1), ..., (yN , xN)}, a bootstrap sample ZZZ∗

is obtained by taking a sample of (x, y) pairs from ZZZ. Typically (and here), the the

sample is of size N and sampling is done with replacement (see Buja and Stuetzle

(2006) for other possibilities); furthermore, by convention we usually let the first

bootstrapped sample be the original data ZZZ itself.

In bagged trees, B bootstrap samplesZZZ∗b, b = 1, ..., B are taken and a CART tree

is fit to each one yielding an estimator f̂ ∗b(x) (f̂(x) returns the class estimate î(m)
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for the terminal node m in which datapoint x lands). The bagged tree estimator

f̂bag(x) is a vector of length k giving the proportion of the B trees which predicted

class i, i = 1, ..., k. That is, each bootstrapped tree is given one ”vote”: the esti-

mated class is the class that obtains the most votes and the estimated probabilities

are the votes normalized by B, the number of bootstrap samples2.

Now, each bootstrapped tree will typically use different variables and splitting

points. Furthermore, they are also likely to have varying numbers of terminal

bins. Hence, even though each tree is a ”step function” (i.e., it returns a fixed

class estimate or probability vector for each region), the bagged estimator which

averages them can form complex, non-linear patterns. This can have the effect of

reducing the variance of the procedure and thus improving prediction. That said,

one of the primary advantages of CART trees is their interpretability and this is

lost by bagging.

Where bagging forms a democratic committee whose members are all the same

(i.e., they are all bootstrapped trees who each get one vote), boosting algorithms

attempt to to combine many ”weak learners” into a strong committee by varying

both the individual committee members themselves as well as the number of votes

each receives (Schapire, 1990; Freund, 1995; Freund and Schapire, 1997). The most

popular such algorithm is AdaBoost (Freund and Schapire, 1996) which is also

called AdaBoost.M1 and is termed Discrete AdaBoost in the seminal Friedman et al.

2Alternatively, rather than using the class predictions î(m) at the terminal bin of each of the
bootstrapped trees, one can use the probability predictions p̂mi, i = 1, ..., k and average these over
the B trees. For large B, these typically give similar results.
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Algorithm 2.1 AdaBoost.M1 (Source: Hastie et al. (2009)).

1. Initialize weights wi = 1/N , i = 1, ..., N .
2. For m = 1 to M :

(a) Fit classifier fm to the training data using weights wi.
(b) Compute

errm =

∑N
i=1wiI(yi 6= fm(xi))∑N

i=1 wi
.

(c) Compute αm = log((1− errm)/errm).
(d) Set wi ← wi · exp[αm · I(yi 6= fm(xi))], i = 1, ..., N .

3. Output FM(x) = sign[
∑M

m=1 αmfm(x)].

(2000a) paper3. Though various modifications and improvements to the AdaBoost

procedure have been proposed (Freund and Schapire, 1996; Breiman, 1998; Schapire

and Singer, 1998; Friedman et al., 2000a), we will focus on Discrete AdaBoost for

the two-class problem and generalize later.

AdaBoost has had tremendous success in classification in real-world data set-

tings, leading Breiman (1996) to call it the ”best off-the-shelf classifier in the world”.

In addition to this, it has shown a remarkable resistance to overfitting in both sim-

ulated and real world datasets (Mease and Wyner, 2008; McShane, 2007). In fact,

this was mentioned by three of the discussants (Breiman, 2000; Freund and Schapire,

2000; Buja, 2000) of Friedman et al. (2000a) (and one other discussant worked to

construct counter-examples where it did not hold (Ridgeway, 2000)).

The AdaBoost algorithm is presented in Algorithm 2.1. It works by repeatedly

applying a ”weak” classifier to re-weighted versions of the data and thereby pro-

3The algorithm is called ”discrete” because each weak learner returns a class estimate y ∈ {±1}.
In the case that the weak learner returns a probability estimate p̂(x) = P(Y = 1|X = x), there is
a modification to the algorithm known as Real AdaBoost (Friedman et al., 2000a).
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ducing classifiers f1(x), ..., fM(x). These are combined via weighted majority vote

to form FM(x) = sign[
∑M

m=1 αmfm(x)] where each classifier gets weight αm.

Boosting is successful because, at each iteration, the datapoints which were

incorrectly classified have their weights increased while those which were correctly

classified have their weights decreased. Therefore, observations which are difficult to

classify receive successively more weight and each new classifier focuses more heavily

on those observations which have been missed by the previous ones. In addition

to re-weighting observations, the individual classifiers are themselves weighted (by

αm) such that the more successful classifiers in the sequence (i.e., those with lower

overall error) receive more votes and those that are less successful receive less.

Friedman et al. (2000a) show a number of important theoretical results about

boosting which we briefly review. An additive model is one that can expressed as a

basis expansion, F (x) =
∑M

m=1 βmb(x|γm) where βm are the basis coefficients, b(x|γ)

is a simple real-valued function, and γ are parameters of that function. In boosting,

we typically let b(x|γ) be a CART tree; therefore, γ gives the split variables, split

points, and terminal node probabilities p̂mi and/or classifications î(m).

Since optimizing over all {βm}Mm=1 and {γm}Mm=1 is computationally infeasible,

boosting fits the additive model in a forward, stagewise fashion. That is, rather

than minimizing

({βm}Mm=1, {γm}Mm=1) = argmin
{βj},{γj}

N∑
i=1

L(yi, F (xi))
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where F (x) =
∑M

m=1 βmb(x|γm), boosting proceeds incrementally and inductively.

It sets f0(x) = 0 and, at each iteration m = 1, ...,M , it minimizes

(βm, γm) = argmin
β,γ

N∑
i=1

L(yi, Fm−1(xi) + βb(xi|γ))

where Fm(x) = Fm−1(xi) + βb(xi|γ).

Given that boosting is forward, stagewise additive modeling, a natural question

is to ask what loss function is being minimized. Friedman et al. (2000a) show that

AdaBoosts minimizes the exponential loss function, L(y, f(x)) = exp(−yf(x)). At

each stage, AdaBoost solves

(βm, fm) = argmin
β,f

N∑
i=1

exp[−yi(Fm−1(xi) + βf(xi))] (2.1.3)

= argmin
β,f

N∑
i=1

wmi exp[−βyif(xi)] (2.1.4)

where f is a ”weak learner” CART tree and wmi = exp(−yiFm−1(xi)). This is

because, for any β > 0, the solution to Equation 2.1.3 is

fm(x) = argmin
f

N∑
i=1

wmi I(yi 6= f(xi))

and, for this fm, the solution for β is

errm =

∑N
i=1w

m
i I(yi 6= fm(xi))∑N

i=1w
m
i

.
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Hence, AdaBoost approximately minimizes exponential loss in a forward, stagewise,

additive manner.

Naturally, one might ask why the exponential loss function and not some other

one. Friedman et al. (2000a) also posed this question, leading them to develop a

new algorithm, LogitBoost. It can be easily shown that the population minimizer

of exponential loss is

F (x) = argmin
G

E(e−Y G(x)|X = x) =
1

2
log

P(Y = 1|x)

P(Y = −1|x)

implying P(Y = 1|x) = e2F (x)/(1 + e2F (x)). This provides justification for the use of

exponential loss for classification.

However, there is another popular loss function which has exactly the same

minimizer: the negative of the binomial log likelihood (equivalent to the deviance or

cross-entropy). If Ỹ = Y/2+1/2 ∈ {0, 1}, then this loss is L(y, p(x)) = Ỹ log p(x)+

(1− Ỹ ) log(1− p(x)) where p(x) = e2F (x)/(1 + e2F (x)). Though both binomial and

exponential loss have the same population minimizer, they clearly will not have the

same minimizer in a finite population, particularly when approximated via forward,

stagewise additive modeling.

In classification when Y ∈ {±1}, the margin yf(x) plays a similar role to re-

gression residuals (y − f(x)). Positive margin datapoints are classified correctly

whereas negative margin ones are classified incorrectly. Since the goal of classifica-

tion is to produce good class estimates, negative margins should receive a greater
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FIGURE 10.4. Loss functions for two-class classification. The response is
y = ±1; the prediction is f , with class prediction sign(f). The losses are
misclassification: I(sign(f) != y); exponential: exp(−yf); binomial deviance:
log(1 + exp(−2yf)); squared error: (y − f)2; and support vector: (1− yf)+ (see
Section 12.3). Each function has been scaled so that it passes through the point
(0, 1).

f(x) = 0. The goal of the classification algorithm is to produce positive
margins as frequently as possible. Any loss criterion used for classification
should penalize negative margins more heavily than positive ones since
positive margin observations are already correctly classified.

Figure 10.4 shows both the exponential (10.8) and binomial deviance
criteria as a function of the margin y · f(x). Also shown is misclassification
loss L(y, f(x)) = I(y ·f(x) < 0), which gives unit penalty for negative mar-
gin values, and no penalty at all for positive ones. Both the exponential
and deviance loss can be viewed as monotone continuous approximations
to misclassification loss. They continuously penalize increasingly negative
margin values more heavily than they reward increasingly positive ones.
The difference between them is in degree. The penalty associated with bi-
nomial deviance increases linearly for large increasingly negative margin,
whereas the exponential criterion increases the influence of such observa-
tions exponentially.

At any point in the training process the exponential criterion concen-
trates much more influence on observations with large negative margins.
Binomial deviance concentrates relatively less influence on such observa-

Figure 2.2: Loss functions for two-class classification. The response is y = ±1;
the prediction is f , with class prediction sign(f). The losses are misclassification:
I(sign(f) 6= y); exponential: exp(−yf); binomial deviance: log(1 + exp(−2yf));
squared error: (y − f)2; and support vector: (1 − yf)+ Each function has been
scaled so that it passes through the point (0,1). Source: Figure 10.4 in Hastie et al.
(2009).
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Algorithm 2.2 LogitBoost (Source: Friedman et al. (2000a)).

1. Start with weights wi = 1/N , i = 1, ..., N , F0(x) = 0, and probability estimates
p(xi) = 1/2. Let yi ∈ {±1} and y∗i = yi/2 + 1/2 ∈ {0, 1}.
2. Repeat for m = 1, ...,M :

(a) Compute the working response and weights

zi =
y∗i − p(xi)

p(xi)(1− p(xi))
wi = p(xi)(1− p(xi)).

(b) Fit the function fm(x) by a weighted least-squares regression of zi to xi
using weights wi.

(c) Set Fm(x) = Fm−1(x) + 1
2
fm(x) and update p(xi)← e2F (x)/(1 + e2F (x)).

3. Output the classifier sign[FM(x)] = sign[
∑M

m=1 fm(x)].

penalty than positive ones. Various loss functions appear in Figure 2.2 and all can

be viewed as convex approximations of misclassification loss, with all being contin-

uous except for support vector loss and all being monotonically decreasing except

squared error loss.

As can be seen from Figure 2.2, exponential loss places a much larger penalty on

large negative margin observations than binomial deviance. Hence, it is suggested

that it is sensitive to outliers. Binomial deviance will not place as much influence

on such observations: ”It is therefore far more robust in noisy settings where the

Bayes error rate is not close to zero, and especially in situations where there is mis-

specification of the class labels in the training data. The performance of AdaBoost

has been empirically observed to dramatically degrade in such settings” (Hastie

et al., 2009). Hence, Friedman et al. (2000a) suggest LogitBoost (Algorithm 2.2)

as a robust alternative to AdaBoost which does not suffer from such features.
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Before proceeding, we note that we have focused on the binary classification task.

Both AdaBoost and LogitBoost can be extended to deal with multiple classes. One

way to do this is simply to fit k classifiers where each is fit to response yik = I(yi =

k). This is the ”one versus every other” approach which is essentially equivalent

to the augmented data approach of AdaBoost.MH (Schapire and Singer, 1998). In

this case, one predicts the class which has the maximal FMi(x). Another approach,

which can be computationally demanding for large k, is the pairwise comparison

approach where the classifier is fit to each (i, i′) pair such that i 6= i; besides

computational difficulty, this approach does not enforce transitivity and thus it is

possible for one class to beat a second, the second a third, but the third to beat the

first. For LogitBoost, Friedman et al. (2000a) propose the natural modification of

the algorithm which uses multinomial loss instead of binomial.

Also, there are vast numbers of details we have omitted: why to boost trees,

other forms of boosting and choices of gradients (gradient boosting, steepest descent,

stochastic gradient boosting, etc.), regularization of the individual trees (via mini-

mum bin size, maximum number of terminal nodes, penalized complexity functions,

etc.), and regularization of the ensemble (via shrinkage of the step size, sampling

or subsampling the data at each iteration, etc.). There is a wide literature on these

topics but detailed treatment is beyond the scope of this paper.

The last algorithm we consider in depth is Random forests (Breiman, 2001).

Random forests are a form of bagged trees grown in a very special way (see Algo-
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Algorithm 2.3 Random Forests for Regression or Classification (Source: Hastie
et al. (2009)).

1. For b = 1, ..., B:
(a) Draw bootstrap sample ZZZ∗ of size N from the training data.
(b) Grow a Random forest tree Tb to the bootsrapped data, by recursively

repeating the following steps for each terminal node of the tree, until the minimum
node size nmin is reached.

(i) Select m variables at random from the p variables.
(ii) Pick the best variable / split point among the m.
(iii) Split the node into two daughter nodes.

2. Output the ensemble of trees {Tb}Bb=1.

To make a prediction at a new point x:

Regression: f̂Brf (x) = 1
B

∑B
b=1 Tb(x).

Classification: Let Ĉb(x) be the class prediction of the bth Random forest tree.
Then ĈB

rf (x) = majority vote {Cb(x)}Bb=1. Similarly, probability estimates can be
obtained by normalizing the votes by B.

rithm 2.3). The evolution of Random forests proceeded as follows. Bagging creates

a committee of members trained in the same way, each receiving one vote. Boosting

generalized this by training the committee members each in a different way (via the

ever-changing weights) and allowing each member a different number of votes; it

appears to dominate bagging on a panoply of applied problems. Random forests

was invented as an implementation of bagging that appears to perform similarly to

boosting but with the added advantage that it is easier to train and requires fewer

tuning parameters.

Random forests are easier to train because, among other things, the trees can

be grown in parallel (unlike in boosting where the iterative re-weighting requires

the trees to be grown serially). Moreover, there are few tuning parameters: m,

nmin, B. In fact, B is hardly a tuning parameter since the algorithm appears
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relatively insensitive to changes in B provided it is ”large enough”. Furthermore,

for classification, Breiman (2001) suggests using a default values of nmin = 1 and

m = p1/2 (for regression, he suggests nmin = 5 and m = p/3). They can be treated

as tuning parameters or simply fixed to these defaults.

Further simplifying computational matters is the notion of out of bag (OOB)

samples. For each sample datapoint (yi, xi), one can construct a Random forest

predictor by only considering the trees for which it was omitted from the bootstrap

samples. It turns out that OOB error estimates are very similar to those obtained

by multiple K-fold cross-validation. Hence, unlike other algorithms, one can fit a

single Random forest sequence and cross-validate along that sequence. Thus, one

can fix B (i.e., stop the algorithm) once the OOB error rate flattens.

It is thought that the advantage of a Random forest over bagged trees comes

from the fact that the trees in a Random forest are less correlated with one another

than a set of bagged trees. This is because at each split point a random m < p

variables are chosen to split on. That is, there is an additional layer of randomness:

not only is there the randomness of the bootstrap sample ZZZ∗ itself, but also there

is randomness due to sampling m covariates at each split (of course there is also

randomness due to the sampling distribution of ZZZ, the original sample data, itself).

As in bagged trees, the bias of a Random forest ensemble is the same as that of any

particular tree.

To conclude, though there are a vast number of algorithms (for example, the
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gradient boosting machine (Friedman, 2001), stochastic gradient boosting (Fried-

man, 2002), MART (Friedman, 2001), and mboost (Hothorn and Buhlmann, 2002))

we have not considered in this section, we have considered several of the main con-

tenders from the various classes: model based methods like logistic regression, it-

eratively re-weighted methods like AdaBoost and LogitBoost, and randomization

algorithms like bagged trees and Random forests. In the sequel, we will apply these

methods to various simulated and real world datasets.

2.2 Sequential Classification Methods

In this section, we return to the focus of this paper: classification for sequential

data. To review, our dataset consists of N training sequences {(yyyi,XXX i)
N
i=1} (often,

N = 1) each of length Ti. Each training sequence consists of a sequence of outputs

yyyi = (yi,1, yi,2, . . . , yi,Ti
)T and covariates given by the Ti x p matrix XXX i whose rows

are the xTi,t. We take yyyi and XXX i to be realizations of the random variables Yi,1:Ti

and Xi,1:Ti
who have joint distribution P(Y1:T , X1:T ). Finally, the goal is to find a

classifier f̂ that correctly predicts a new sequence yyy given a new observed covariate

sequence XXX.

2.2.1 Data Augmentation Methods

The simplest approach to sequential classification involves augmenting the covariate

space and applying standard classification methods. That is, the sequential learning
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problem is converted into a classical learning problem. This approach is termed the

sliding window method. Each covariate vector Xi,t = xi,t is augmented with the

d = (w − 1)/2 (w must be odd) preceding covariate vectors and the d = (w − 1)/2

succeeding covariate vectors: x̃i,t = (xTi,t−d, x
T
i,t−d+1, ..., x

T
i,t, ..., x

T
i,t+d−1, x

T
i,t+d)

T (the

first d and last d observations of the covariate vector can either be discarded or

augmented with sensible values like the means). Hence, the covariates now follow

a sliding window of window size w and the number of covariates increases from p

to w · p.

Now, any standard classification algorithm can be applied to the augmented

dataset {(yyyi, X̃XX i)
N
i=1} where X̃XX i is the Ti x p ·w matrix whose rows are the x̃Ti,t. This

will give a prediction for each yi,t which can be strung together to form a prediction

for yyyi.

If one is concerned about the number of parameters being too large, one can

modify this approach. For instance, instead of augmenting with all d preceding

and succeeding values, one could consider functions of them. For example, one

could consider using forward and backward moving averages of order d, thus only

increasing the number of covariates from p to 3p rather than w · p.

While major advantages of the sliding window approach include the ability to use

any standard classification algorithm as well as the fact that standard classification

algorithms in general have lower computational costs than sequential classification

algorithms (even when the former are trained on the augmented covariate space and
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the latter are not), there are some drawbacks. Mainly, sliding window approaches

cannot capture any correlation among the Yt which are independent of the neigh-

boring Xt: the only intertemporal correlations among the Yt that are captured are

those which are predictable from local Xt.

A potential remedy to this is provided by recurrent sliding windows. In

this case, one not only augments the covariates with local preceding and suc-

ceeding covariates, but also with local preceding predictions ŷi,t such that x̃i,t =

(ŷi,t−d, ŷi,t−d+1, ..., ŷi,t−1, x
T
i,t−d, x

T
i,t−d+1, ..., x

T
i,t, ..., x

T
i,t+d−1, x

T
i,t+d)

T and X̃XX i is now a

matrix of size Ti x (d + p · w) (alternatively, one can use the d succeeding predic-

tions ŷi,t+1, ..., ŷi,t+d; both preceding and succeeding predictions cannot be used).

As with sliding windows, one can now apply standard classification algorithms.

A major question for recurrent sliding windows is what ŷi,t should be used when

training the algorithm. One popular approach is to use the actual yi,t themselves

and then one can apply standard classification algorithms with no modifications

whatsoever. Another approach is to first fit using a non-recurrent sliding window

approach; then one uses the predictions ŷi,t from that to train a recurrent sliding

window classifier. Finally, one iterates until the ŷi,t stabilize.
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Algorithm 2.4 Generating Data From a Hidden Markov Model

1. Draw Y1 from the initialization distribution, P(Y1).
2. Draw X1 from the covariate emission distribution, P(X1|Y1).
2. For t = 2, ..., T :

(a) Draw Yt from the transition probability distribution, P(Yt|Yt−1).
(b) Draw Xt from the covariate emission distribution, P(Xt|Yt).

2.2.2 Hidden Markov Models

A Hidden Markov Model (HMM)4 is a joint probability model for the distribution

of the Yi,1:Ti
and Xi,1:Ti

(going forward, for simplicity, we will assume we observe

one sequence and drop the subscript i). HMMs decompose the joint distribution

P(Y1:T , X1:T ) into three components: (i) an initialization distribution, P(Y1); (ii)

a time-homogeneous transition probability distribution, P(Yt|Yt−1); and (iii) a set

of (potentially multivariate) time-homogeneous conditional covariate distributions,

P(Xt|Yt), which are also known as the observation distributions or emission dis-

tributions. This is a fully generative model in the sense that, given these three

distributions, one can generate sequences yyy and XXX from the model as visualized in

Figure 2.3 and provided in algorithmic form in Algorithm 2.4.

In the supervised version of the sequential learning problem, estimation is rela-

tively straightforward because the Yt are only ”hidden” in the test set but are ob-

served in the training set5. We can estimate the initialization distribution, P(Y1), by

4In this subsection, we will consistently refer to the model as a Hidden Markov Model (HMM)
following Rabiner (1989). However, in the sequel, since the Yt will be observed in sample, we will
typically drop the ”Hidden” and refer to it as a first order Markov model since the Yt are only
”hidden” out of sample.

5In the unsupervised case, the Yt are hidden in both the training set as well the test set either
because they are unavailable or are latent and therefore by definition unobservable.
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Figure 2.3: Graphical structures of HMMs (left), MEMMs (center), and CRFs
(right) for sequences. A red circle indicates that the variable is not generated by
the model.

the empirical frequency of each of the k classes (or by the empirical frequency of the

Yi,1’s if we observe multiple sequences) and the transition distribution, P(Yt|Yt−1),

by the empirical rate of transition from state i to state j (of course, more sophisti-

cated strategies, for example shrinking to a common distribution, are possible).

Estimation of the covariate emission distribution is more complex. Oftentimes,

one assumes the components Xtj of Xt = (xt1, ..., xtp)
T are independent. In this

case, if Xtj is discrete, one can estimate the parameters of a multinomial distri-

bution conditional on the observed Yt. For continuous Xtj, a normal distribution

is often assumed. More sophisticated strategies include estimating Xt conditional

on Yt as (i) multivariate normal, (ii) a mixture of multivariate normals (often with

constrained covariance matrix), or (iii) via kernel density estimators. One is faced

with a difficult tradeoff: estimate more complex, realistic models or estimate sim-

pler, incorrect models with fewer parameters. This is particularly an issue when

the number of observations of Xt conditional on Yt is small, an issue which will not

be mitigated in large datasets if there are one or more rare classes.
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We now introduce some notation. First, we let π = (π1, ..., πk)
T denote the

vector of initial probabilities, P(Y1 = i). Second, we letAAA = [ai,j]i=1,...,k;j=1,...,k be the

transition probability matrix whose entries are ai,j = P(Yt+1 = j|Yt = i). Finally,

let µµµ = (µ1(x), ..., µk(x))T be a vector of probability measures on the covariate space

such that each µi gives the conditional covariate probability µi(x) = P(Xt = x|Yt =

i). We let ΘΘΘ = (πππ,AAA,µµµ) denote the collection of these distributions.

In the classic reference on HMMs, Rabiner (1989) identifies three basic problems

for HMMs:

1. Given an observed covariate sequence x1, ..., xT and a model ΘΘΘ = (πππ,AAA,µµµ),

how does one efficiently compute P(XXX|ΘΘΘ), the probability of observing the

covariates one did given the model? This allows one to judge how well a

model matches the covariate sequence and thus compare competing models.

2. Given an observed covariate sequence x1, ..., xT and a model ΘΘΘ = (πππ,AAA,µµµ),

how does one choose a state sequence yyy = (y1, ..., yT )T which is optimal in

some meaningful sense? This allows us to predict the yyy (on the training data

for the unsupervised case and on new test data for the supervised case).

3. How do we adjust the model parameters ΘΘΘ = (πππ,AAA,µµµ) to maximize P(X1:T =

XXX|ΘΘΘ)? This allows us to train the HMM to best reflect the covariate sequence.

The solutions to the first two problems are critical to our work and will be

presented below. The third problem is less relevant because it is exclusively for the
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unsupervised case where the Yt are not even known in the training sample (Rabiner

(1989) solves it, via the EM algorithm, only for the case of scalar, discrete Xt). We

will discuss the analogue for the supervised case in Chapter 5.

Calculating P(X1:T |ΘΘΘ) is a daunting proposition. However, calculating P(X1:T |yyy,ΘΘΘ)

is a seemingly trivial matter

P(X1:T |yyy,ΘΘΘ) =
T∏
t=1

P(Xt|Yt,ΘΘΘ)

=
T∏
t=1

µYt(Xt).

Furthermore, calculating P(Y1:T |ΘΘΘ) is also easy

P(Y1:T |ΘΘΘ) = πY1 · aY1,Y2 · aY2,Y3 · · · aYT−1,YT
.

Now, since P(X1:T |ΘΘΘ) = P(X1:T |Y1:T ,ΘΘΘ)P(Y1:t|ΘΘΘ), then it clear that

P(X1:T |ΘΘΘ) =
∑

all Y1:T =yyy

P(X1:T |Y1:T = yyy,ΘΘΘ)P(Y1:T = yyy|ΘΘΘ)

=
∑

all Y1:T =yyy

πY1µY1(X1)aY1,Y2µY2X2 · · · aYT−1,YT
µYT

XT .

Unfortunately, this is computationally unfeasible (it requires ≈ 2T ·kT calculations).

Thus, a more efficient approach is requisite. Fortunately, such an approach,

the Forward-Backward Algorithm, exists (Rabiner, 1989) and is presented in

Algorithms 2.5 and 2.6. Technically, only the forward portion is required to compute
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Algorithm 2.5 The Forward Algorithm (Source: Rabiner (1989)).

Define αt(i) = P(X1 = x1, ..., XT = xt, Yt = i|ΘΘΘ).
1. Initialization: α1(i) = πiµi(x1), i = 1, ..., k.

2. Induction: αt+1(j) =
[∑k

i=1 αt(i)ai,j

]
µj(xt+1), t = 1, ..., T − 1; i = 1, ..., k.

3. Termination: P(X1:T = XXX|ΘΘΘ) =
∑k

i=1 αT (i).

Algorithm 2.6 The Backward Algorithm (Source: Rabiner (1989)).

Define βt(i) = P(Xt+1 = xt+1, ..., XT = xT |Yt = i,ΘΘΘ).
1. Initialization: βT (i) = 1, i = 1, ..., k.
2. Induction: βt(i) =

∑k
j=1 ai,jµj(xt+1)βt+1(j), t = T − 1, ..., 1; i = 1, ..., k.

P(X1:T |ΘΘΘ) (the backward portion is used for the solution to problem two but it

makes sense to present them together). Each portion of the algorithm requires only

≈ k2T calculations, thus resulting in substantial savings over the naive method.

Unlike with the first problem where there is an exact solution, the second prob-

lem is more tricky. Not only will what is ”optimal” depend on context (i.e., loss

function), but it also might be the case that several sequences Y1:T = yyy are equally

optimal. That said, two approaches are usually considered. The first finds the state

which is most likely at each time t (i.e., yielding the pointwise modal sequence)

and the second finds a most likely sequence (i.e., a sequence yyy which maximizes

P(Y1:T = yyy|X1:T = XXX,ΘΘΘ) and which may or may not be unique).

To find the pointwise modal sequence, we first define γt(i) = P(Yt = i|ΘΘΘ). Once

one has run the forward-backward algorithm, it is easy to calculate γt(i) because

γt(i) =
αt(i)βt(i)

P(X1:T = XXX|ΘΘΘ)
=

αt(i)βt(i)∑k
j=1 αt(j)βt(j)

.
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Algorithm 2.7 The Viterbi Algorithm (Source: Rabiner (1989)).

Define δt(i) = maxy1,...,yt−1 P(Y1 = y1, Y2 = y2, ..., Yt−1 = yt−1, Yt = i,X1 =
x1, X2 = x2, ..., XT = xt|ΘΘΘ).
1. Initialization:

δ1(i) = πiµi(x1) i = 1, ..., k
ψ1(i) = 0 i = 1, ..., k.

2. Recursion:

δt(j) = maxi=1,...,k[δt−1(i)ai,j]µj(xt) t = 2, ..., T ; j = 1, ..., k
ψt(j) = argmaxi=1,...,k[δt−1(i)ai,j] t = 2, ..., T ; j = 1, ..., k.

3. Termination:
P ∗ = maxi=1,...,k δT (i)
y∗T = argmaxi=1,...,k δT (i).

4. Path (state sequence) backtracking: y∗t = ψt+1(y∗t+1), t = T − 1, ..., 1.

Using this, the most likely state for each t is simply yt = argmaxi=1,...,k γt(i).

A sequence yyy∗ which maximizes the conditional likelihood P(Y1:T = yyy|X1:T =

XXX,ΘΘΘ) can be found by the Viterbi Algorithm (Algorithm 2.7). Because this sequence

is ”most likely” in a reasonable sense, it is useful for many problems. However, it

is not a complete panacea because, depending on one’s loss function, the Viterbi

sequence might not be optimal.

Now, because an HMM is a full representation of the joint probability P(Y1:T , X1:T ),

one can compute the probability of any sequence yyy given a covariate sequence XXX

using P(Y1:T , X1:T ). Equipped with this, for any arbitrary loss function L(Y1:T , ŷyy),

one can predict the optimal sequence ŷyy by

ŷyy = argmin
ỹyy

∑
Y1:T =yyy

P(Y1:T = yyy|X1:T = XXX)L(Y1:t = yyy, ỹyy)
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Unfortunately, this requires ≈ kT calculations which is usually infeasible. Hence,

we must rely on more computationally feasible ŷyy’s such as the modal or Viterbi

sequence.

Although HMMs are a clean and elegant model, they have a number of draw-

backs which stem from the fact that their structure is often not indicative of the data

generating processes encountered in applied problems. For instance, due to the first

order Markov property, long-term dependencies in the Yt’s cannot be captured: any

relationship between Yt and Yt+k must be ”communicated” via Yt+1, Yt+2, ..., Yt+k−1.

Sliding windows are able to avoid this problem somewhat by using a window of Xt

values to predict Yt but this cannot be done with an HMM: since an HMM gener-

ates Xt conditional on Yt it is difficult to use a sliding window. While one could

consider replacing the conditional covariate distribution P(Xt|Yt) by a more compli-

cated distribution P(Xt|Yt−d, ..., Yt, ..., Yt+d) (which would imply a sliding window

of covariates), it would be difficult to model and estimate such a distribution. A

final difficulty is that, when the dimension of the covariate space p is large (even

without sliding windows), it is difficult to model and estimate µµµ, the k vector of

p-variate probability measures.

In the sequel, we will overcome these difficulties in several ways. First, we will

allow richer dependence structures among the Yt: in addition to first order Markov

chains, we will allow for higher order Markov chains, generalized Markov chains, and

variable length Markov chains. Second, by training our model in a discriminative
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fashion rather than a generative fashion, we will avoid the issues involved with

estimating a k vector of p-variate probability measures as well as the intractability

of adding sliding windows of covariates.

2.2.3 Conditional Approaches

The methods presented in this section, Maximum Entropy Markov Models (MEMMs)

(McCallum et al., 2000) and Conditional Random Fields (CRFs) (Lafferty et al.,

2001), attempt to overcome some of the limitations of HMMs by maximizing a

conditional likelihood rather than the joint likelihood P(Y1:T = yyy,X1:T = XXX) that

HMMs maximize.

The distinction is similar to that between logistic regression (which maximizes

the conditional likelihood P(Y |X)) on the one hand and linear discriminant anal-

ysis (which maximizes the joint likelihood P(Y,X) = P(Y )P(X|Y )) on the other.

We have seen that the extra distributional assumptions on the covariates presumed

by linear discriminant analysis and the concomitant maximization of the joint like-

lihood can yield large efficiency gains in appropriate settings. Something similar

holds here with HMMs as compared to both MEMMs and CRFs but obviously

depends on the those assumptions being correct.

Maximum Entropy Markov Models (McCallum et al., 2000) maximize the

conditional likelihood P(Y1:T |X1:T ) via learning of P(Yt|Yt−1, Xt). Hence, it has

different dependency structure than HMMs (compare the first and second panels of
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Figure 2.3). In particular, MEMMs model P(Yt|Yt−1, Xt) as

P(Yt|Yt−1, X1:T ) =
1

Z(Yt−1, X1:T )
exp

[
p̃∑
j=1

βjfj(Yt, X1:T )

]

where Z(Yt−1, X1:T ) is a normalizing constant which ensures the probabilities sum

to one.

Of note and unlike HMMs, MEMMs are not constrained to use only Xt to

predict Yt because they maximize the conditional rather than joint likelihood. In

fact, the entire X1:T = XXX sequence (or, typically, functions extracted from it) can

be used to predict Yt. In particular, the fj(Yt, X1:T ) are functions that can depend

on Yt and the entire covariate sequence X1:T = XXX and are the ”real” covariates

used by the MEMM at time t (i.e., they take the place of Xt = xt in an HMM

thus the number of fj are denoted by p̃ in place of the usual p). This is important

because it may be that ”long-distance features” are important for predicting Yt

(for instance, in classifying letters which occur within words which occur within

sentences, it might matter whether that word starts with a capital letter or whether

the sentence ends with a question mark). Finally, the βj are analogous to regression

slopes on the covariates fj and are found by maximizing the conditional likelihood

P(Y1:T |X1:T ) = P(Y1|X1:T )
∏T

t=2 P(Yt|Yt−1, X1:T ).

MEMMs have fallen out of favor because they suffer from something known as

the label bias problem (Bottou, 1991; Lafferty et al., 2001). The label bias means

that any probability that ”arrives” at one state Yt must be ”passed on” to all k
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possible successors Yt+1. That is, covariates can affect how much probability each

Yt+1 = i gets, but they cannot affect total probability given across all states, causing

a bias towards states with fewer outgoing transitions. Unlike in HMMs, the Viterbi

algorithm cannot downweight an entire sequence of states based on covariates.

The label bias problem is perhaps best understood in the context of an example

and the classic one involves two input or covariate strings: X1:T = XXX = rib which

is correctly classified by Y1:T = yyy = 111 and X1:T = XXX = rob which is correctly

classified by Y1:T = yyy = 222. After observation of X1 = r, the probability of Y1 is

evenly split amongst the two sequences: P(Y1 = 1|X1 = r) = P(Y1 = 2|X1 = r) =

1/2. Now, suppose we observe X2 = i; then we know X1:T = rib and Y1:T = 111.

However, according to the MEMM, the probability is still evenly split: because

the transition from Y1 = 1 to Y2 = 2 has probability zero, the 50% probability of

P(Y1 = 1|X1 = r) must be passed on to P(Y2 = 1|X1 = r,X2 = i) (and likewise

for Y1 = 2 and Y2 = 2 respectively). Finally, even after observing the X3 = b,

the probabilities for Y3 = 1 and Y3 = 2 remain tied at 50%. Thus, MEMM has

essentially ignored the ”i”.

Conditional Random Fields (Lafferty et al., 2001) were proposed to rem-

edy the label bias problem. CRFs model the relationship between Yt and Yt+1 as

a Markov Random Field conditional on the sequence X1:T . They represent the
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graphical structure of Figure 2.3 as a set of potentials:

Mt(Yt−1, Yt|X1:T ) = exp

[
p̃1∑
j=1

β
(1)
j f

(1)
j (Yt, X1:T ) +

p̃2∑
j=1

β
(2)
j f

(2)
j (Yt−1, Yt, X1:T )

]
.

(2.2.1)

As with MEMMs, any function of the sequence X1:T = XXX can be incorporated as

covariates. However, here there are p̃1 + p̃2 covariates where the first p̃1 provide

information about Yt and X1:T and the last p̃2 provide information about Yt−1, Yt,

and X1:T . This allows for the possibility of ”long-distance features”. Also, as with

MEMMs, the β
(1)
j and β

(2)
j are the slopes on the effective covariates f

(1)
j and f

(2)
j .

CRFs compute the conditional probability of Y1:T given X1:T as

P(Y1:T |X1:T ) =

∏T+1
t=1 Mt(Yt−1, Yt|X1:T )[∏T+1
t=1 Mt(X1:T )

]
0,k+1

where, for computational reasons, Y0 is set to 0 and YT+1 is set to k + 1 and the

denominator is a normalizing constant equal to the (0,k + 1) entry of the matrix

product of the potential matrices Mt. This formulation, where the entire conditional

likelihood P(Y1:T |X1:T ) is maximized (as opposed to the MEMM specification which

maximizes P(Y1:T |X1:T ) as a product of the P(Yt|Yt−1, X1:T )) overcomes the label

bias problem though it is computationally intensive.

Because of the label bias problem, we do not consider MEMMs as competitor

models in this paper: CRFs have proven to be superior and therefore we use them.

In the sequel, we will use two implementations of CRF. The first is MALLET
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(McCallum, 2003) and it implements the linear model in Equation 2.2.1. The

second is known as TreeCRF (Dietterich et al., 2004) which trains the TreeCRF via

the Friedman (2001) gradient tree boosting method.
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Chapter 3

Probability Estimation

3.1 Introduction

Our focus in the previous chapters has been on classification. A related, more

general problem is that of probability estimation. In the non-sequential case, this

involves estimating the conditional class probability distribution P(Y = j|X = x)

for j = 1, . . . , k. For the sequential task, this probability estimation involves either

estimating the marginal conditional class probability distribution P(Yt = j|X1:T =

XXX) for j = 1, . . . , k or the more difficult task of estimating the joint conditional

class probability distribution P(Y1:T = yyy|X1:T = XXX) where Y1:T is the vector-valued

random variable (Y1, ..., YT )T .

In this chapter, we will focus the discussion on the non-sequential learning task

and in particular on the binary case. We do this because the literature on probability
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estimation is quite small. The area is under-explored for several reasons. First,

probability estimation is very difficult. We shall see that successful classification

simply requires the ability to provide good estimates of one particular quantile

(usually the median). On the contrary, successful probability estimation requires

good estimates of all arbitrary quantiles. Second, one typically only knows the

true conditional class probabilities in simulated data. Hence, it is very difficult to

evaluate probability estimates on real world data. While so called proper scoring

rules (Savage, 1971) are minimized at the true probabilities when one uses the labels

Yi ∈ {0, 1} in place of them, they can only serve to evaluate models in a comparative

sense.

Finally, another reason conditional class probability estimation is under-explored

is that it is, in a sense, the Holy Grail of machine learning. Good probability

estimates are a panacea: they solve all problems in all contexts. For example, if one

has good estimates of the conditional class probabilities, one can easily form a good

classifier (e.g., classify using the most likely class). Furthermore, good estimates

of the conditional class probabilities allow one to minimize any loss function: ŷ =

argmini
∑

j P(Y = j|X) · ci,j where ci,j gives the cost of assigning class i to an

observation whose true class is j. In most applications, however, one is usually only

concerned with doing well on some particular facet of the problem: one may seek

to do well at estimating one of the k classes or identifying the observations with

conditional class probability above some threshold q for example. Solving the more
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general and difficult problem is therefore not typically required in practice.

Since the literature on this topic is sparse, we entirely omit discussion of the

multi-class non-sequential problem and both the binary and multi-class sequential

problems. We note, however, that the insights discussed here are relevant for and

apply to these more difficult settings.

3.2 Quantile Estimation

Before discussing the general problem of estimating the entire conditional class

probability distribution, we first narrow our focus even further to discussion of esti-

mating the boundary or region for a particular quantile. That is, we are interested

in identifying X such that P(Y = 1|X = x) > q where q is the quantile of interest.

We will show that this subproblem is quite important in its own right and that

methods exist which solve it reasonably well.

3.2.1 Unequal Costs

In the standard binary classification task (i.e., k = 2), classifiers are usually judged

by misclassification error. Minimizing misclassification error is equivalent to mini-

mizing the loss function which gives equal costs to false positives and false negatives;

it is also equivalent to classifying at the 1/2 quantile of the conditional class prob-

ability function P(Y = 1|x).

For many problems, equal costs are not correct and, since misclassification er-
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ror assumes equal costs, it is an inappropriate loss function. For instance, in the

classic courtroom setting, sending an innocent man to prison is considered worse

than failing to convict a guilty man; likewise, in many medical applications, false

negatives are more serious than false positives.

Without loss of generality, we can assume the cost of a false positive and the

cost of false negative sum to one and that they equal c and 1 − c respectively. If

p(x) = P(Y = 1|x) and 1 − p(x) = P(Y = 0|x) are the conditional probabilities of

a positive and negative respectively, then, the risk, or expected loss, of classifying

a positive is (1 − p(x))c and the risk of classifying a negative is p(x)(1 − c). In

order to minimize risk, we classify as a positive when (1 − p(x))c < p(x)(1 − c)

which is equivalent to c < p(x). This shows that binary classification with unequal

costs is equivalent to quantile estimation, estimating the region p(x) > q = c. Most

classifiers, which implicitly assume equal costs, are therefore median classifiers since

they estimate the region p(x) > q = 1/2.

A final point is that, besides arising from unequal misclassification costs, quantile

classification can also be formulated as an end in itself. For instance, in an internet

marketing campaign, one may only want to serve an ad on a particular website if

the probability of a user clicking the ad is greater than some threshold probability

q.
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3.2.2 Imbalanced Base Rates

The problem of imbalanced base rates occurs when one applies a classifier trained

on one dataset with one set of base rate probabilities to a dataset with a different set

of base rate probabilities. For example, one might train a classifier on a population

with 20% positives but apply it to a population with 50% positives. Below, we

show that a change in the base rate is equivalent to changing the quantile at which

to threshold the calculations. Hence, imbalanced base rates, quantile classification,

and classifying with unequal costs of false positives and negatives are equivalent to

one another (Elkan, 2001; Mease et al., 2007). Let

p(x) = P(Y = 1|X = x)

π = P(Y = 1)

f1(x) = P(X = x|Y = 1)

f0(x) = P(X = x|Y = 0).

By Bayes Theorem

p(x) =
f1(x)π

f1(x)π + f0(x)(1− π)
.

Equivalently,

p(x)

1− p(x)
=

f1(x)π

f0(x)(1− π)
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or

p(x)

1− p(x)
/

π

1− π =
f1(x)

f0(x)
. (3.2.1)

Now, assume there is another population which is the same in all respects except

that the base rates π and 1 − π are different. Assume in this new population, the

base rates are π∗ and 1− π∗. If we let p∗(x) = P(Y = 1|X = x) be the conditional

probability that Y = 1 in this new population, Equation 3.2.1 implies that p(x)

and p∗(x) can be related as follows:

p(x)

1− p(x)
/

π

1− π =
f1(x)

f0(x)
=

p∗(x)

1− p∗(x)
/

π∗

1− π∗ .

Hence,

p∗(x)

1− p∗(x)
=

p(x)

1− p(x)

1− π
π

π∗

1− π∗ . (3.2.2)

Thus, we can obtain a classifier on the new population by adjusting the old one

for the new base rates. This has a profound implication: while it is obvious that

an algorithm that produces good probability estimates will also produce good class

estimates, Equation 3.2.2 suggests an algorithm that produces good class estimates

will also produce good probability estimates if the base rate distribution is ”tilted”

in the proper way (in fact, this is the motivation Jittered Over/Under-Sampling-

Boost (JOUS-Boost) technique of Mease et al. (2007)). That is, there may be an

isomorphism of sorts between the space of good classifiers and the space of good

probability estimators.

51



3.2.3 Machine Learning Approaches to Quantile Estimation

Binary classification with unequal costs or for populations with imbalanced base

rates is common in the literature. A classic example of the latter is bankruptcy

prediction where there are vast numbers of negatives but very few positives (Foster

and Stine, 2004); one must correct for this discrepancy in order to make accurate

predictions.

Algorithms such as AdaBoost (Freund and Schapire, 1996), which have proven

exceptional at classification at the 1/2 quantile, have been modified to classify

with unequal costs. Such modifications include Slipper (Cohen and Singer, 1999),

AdaCost (Fan et al., 1999), CSB1 and CSB2 (Ting, 2000), and RareBoost (Joshi

et al., 2001). All have shown some improvement over AdaBoost, but no method

appears to dominate.

Another approach for dealing with the triply equivalent problem of unequal costs

/ quantile thresholding / imbalanced base rates that is popular in the computer sci-

ence literature involves under-sampling and over-sampling (Chan and Stolfo, 1998;

Elkan, 2001; Estabrooks et al., 2004). One typically over-samples the rare class

with replacement and/or under-samples the dominant class without replacement.

Sampling with replacement carries with it the concomitant issue of ties in the sam-

ple (i.e., repeated datapoints). Tie-breaking is necessary for certain algorithms

which are driven more by the set of unique datapoints than by number of tied ones

(Mease et al., 2007). An interesting approach for dealing with this issue is the Syn-
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thetic Minority Over-Sampling TEchnique (SMOTE) of Chawla et al. (2002, 2003)

which avoids ties in over-sampled classes by moving the sampled covariates towards

neighbors of the same class.

3.3 Conditional Class Probability Estimation

3.3.1 Introduction

Conditional class probability estimation extends the problem of quantile classifica-

tion from estimating at a particular quantile q to estimating at all arbitrary quantiles

q ∈ [0, 1]. While machine learning methods have been adapted from estimating at

q = 1/2 in order to estimate at a particular q ∈ [0, 1], estimating at all quantiles is

a significantly greater challenge.

Rather than proceeding from a single q to all q as has been done in the machine

learning literature, the general approach in statistics has been to proceed in the

opposite direction. First, estimate the entire conditional class probability function.

Then, use this function to achieve classification at a particular quantile. For in-

stance, model-based approaches such as logistic regression give an estimate of the

conditional class probability function which can easily be transformed into an arbi-

trary quantile classifier by thresholding the probability function. Such approaches

are indeed very successful but under very restrictive conditions: they require knowl-

edge of the functional form of P(Y = 1|X = x) and also sufficient data for estimating
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the parameters accurately.

When the functional form is unknown or data is scarce, conditional class prob-

ability estimation is extremely difficult. Whereas quantile classifiers only have to

be accurate at one particular quantile, probability estimators must be accurate at

every quantile. That is, probability estimators not only have to perform the task of

a good quantile classifier, they must perform the tasks of all quantile classifiers and

perform them well. In order to classify, both methods typically work by utilizing a

score function and thresholding it (usually, arbitrarily at zero). Quantile classifiers,

by focusing on one particular quantile, thus only need to be accurate up to the sign

of the classifier to provide good performance on test sets; a conditional probability

estimator, on the contrary, must be accurate at all thresholds and therefore the

absolute value of the score function is also critical, not just the sign of it. Hence,

probability estimators face a much more difficult task.

3.3.2 Machine Learning Methods and Probability Estima-

tion

Many of the machine learning methods discussed in Chapter 2 can be used to form

conditional class probability estimates as well as classifications. We briefly review

some of the known results pertaining to these.

Not surprisingly, individual CART trees tend to give fairly poor conditional class

probability estimates. This is a consequence of the fact that CART trees fit the
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same conditional class probabilities for all points that fall within a given terminal

node, thus ignoring any heterogeneity among them. This unrealistic property is not

shared by the methods which combine trees such as boosting and Random forests

and therefore those methods hold greater hope for providing successful probability

estimates.

The forward, stage-wise additive view of boosting presented in Chapter 2 sug-

gests that AdaBoost can be transformed into an estimator of the conditional class

probability distribution via a link function (Friedman et al., 2000a). It also led to

the development of other algorithms like LogitBoost which use the same forward,

stage-wise additive optimization but for other loss functions; these other algorithms

are therefore also equipped with link functions to obtain conditional class probabil-

ity estimates (Friedman et al., 2000a).

Logistic regression also uses a link function and is known to provide good prob-

ability estimates (and therefore good classifications) when the functional form is

known. Since AdaBoost provides good classifications even when the function form

is unknown, it was hoped that the link function of Friedman et al. (2000a) would

transform it into a good probability estimator in such cases.

Unfortunately, it has been shown by several studies that AdaBoost and Logit-

Boost provide poor estimates of the conditional class probability distribution (Mease

et al., 2007; Mease and Wyner, 2008; McShane, 2007). Typically, when AdaBoost

has been run for enough iterations to produce good class estimates, its correspond-
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ing probability estimates via the link function have diverged to near zero or one.

Furthermore, the same is true of LogitBoost despite the fact that estimation of class

probabilities via log-likelihood loss provided the motivation for this algorithm.

One of the reasons boosting is so successful at classification is that the ”score

function” (i.e., the weighted sum of base learners) tends to be very large in absolute

value: this leads to overfit probability estimates that diverge to zero or one (and

which are therefore quite poor) whereas it does not lead to overfit classifications

(because, for classification, only the sign of the score function–not its absolute

value–matters). Since providing probability estimates requires being a good quantile

classifier for all quantiles (i.e., the absolute value of the score function does matter),

AdaBoost tends to fail at probability estimation.

The apparent failure of boosting to estimate probabilities and the theoretical

view of it as a forward, stagewise additive model have led to a number of refinements

of the algorithm. Obviously one such refinement is LogitBoost (Friedman et al.,

2000a), but there are also suggestions for early stopping (Dettling and Buhlmann,

2003), shrinkage (Friedman et al., 2000b), regularization methods (Bickel et al.,

2006; Jiang, 2004; Lugosi and Vayatis, 2004), and using shallower trees / weaker

base learners (Friedman et al., 2000a; Hastie et al., 2001). But, given that boosting

overfits probability estimates but not median estimates, it is questionable whether

boosting’s success is due to similarity with logistic regression as suggested in Fried-

man et al. (2000a). Thus, the practical suggestions derived from this view might
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be misguided (Mease and Wyner, 2008).

If one wants to retain the forward, stagewise additive logistic regression view-

point, it thus seems one must temper it by noting that overfit probability estimates

may be required to attain optimal classifications. Furthermore, in the presence of

unequal misclassification costs (or imbalanced base rates or classification at quan-

tiles different from 1/2), this view may lead to poor performance: one must hope

one stops the boosting algorithm early enough such that the score function has not

diverged (and therefore produces bad probability estimates) but late enough that

the algorithm has sufficiently learned the data structure (and therefore produces

good class estimates).

A final point is that bagging, and in particular Random forests, tend to produce

much more reasonable and sometimes even quite good probability estimates as

is shown by Bostrom (2007) and Bostrom (2008) (particularly when calibrated)

and by our own results presented in Chapter 6. It is thought that, since these

techniques do not recursively re-weight the individual datapoints but instead rely

on the bootstrap, they avoid the overfitting tendency of boosting methods. Much

exploration is still needed, however.

3.4 Proper Scoring Rules

We have discussed some of the difficulties involved with quantile classification and

probability estimation. In this section, we briefly discuss proper scoring rules (Sav-
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age, 1971) which allow us to evaluate whether these probability estimates are indeed

successful, either on an absolute or a relative basis and, in particular, for real world

data. Since there is no single established method for evaluating probability esti-

mates (Zadrozny and Elkan, 2001), it is essential we evaluate our estimates using

proper scoring rules.

A proper scoring rule for the binary class problem is one that is Fisher consistent,

that is one such that the argminp̂(x) EY∼Bernoulli(p)L(Y, p̂(x)) = p for all p ∈ [0, 1]

and pointwise at all x. With proper scoring rules, the loss is minimized at p̂ = p

when one is required to use I(Y = 1) in place of the true p because the latter is

unknown (i.e., as is often the case when one uses real as opposed to simulated data).

Several popular examples of proper scoring rules are given by

Misclassification Loss:
1

n

n∑
i=1

I[p(xi) > 1/2 & p̂(xi) > 1/2]

Squared Error Loss:
1

n

n∑
i=1

[p(xi)− p̂(xi)]2

Log Loss: − 1

n

n∑
i=1

[p(xi) log(p̂(xi))− (1− p(xi)) log(1− p̂(xi))]

Exponential Loss:
1

n

n∑
i=1

[
p(xi)

√
1− p̂(xi)
p̂(xi)

+ (1− p(xi))
√

p̂(xi)

1− p̂(xi)

]

where the {xi}ni=1 form a hold-out sample. In all of these cases, one can substitute

yi for p(xi) and the loss is still minimized at the true p̂(xi) = p(xi). This is vital

because, except in the case of simulated data, p(xi) is rarely known whereas yi often

is. Hence, when using a proper scoring rule, we are assured that our loss function
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is minimized at the ”right” place. Still, we can only show how various methods

perform relative to one another using proper scoring rules. We have little sense how

methods perform in an absolute sense without knowledge of p(x) so even evaluation

of model fits using proper scoring rules is quite limited.

The above loss functions are not the only possible proper scoring rules, however

they do cover a range of popular ones (Buja et al., 2005). The first loss function

is very popular in computer science whereas the second and third are popular in

statistics. The fourth is interesting because it is the proper scoring rule correspond-

ing to the Friedman et al. (2000a) AdaBoost link function (Buja et al., 2005). Two

counter-examples which are often used but are not in fact proper scoring rules are

absolute loss, 1
n

∑n
i=1 |p(xi)− p̂(xi)|, and power loss for powers α not equal to two,

1
n

∑n
i=1 [p(xi)− p̂(xi)]α. One should in general avoid such loss functions, except

when the p(xi) are known, if one wants to obtain good estimates of the conditional

class probability distribution.

3.5 Conclusion

Conditional class probability estimation is machine learning’s Holy Grail: long

sought-after, difficult to find, and priceless (because probability estimates can solve

all problems). Many methods fail at the task of probability estimation even when

they provide good classifications. Boosting methods in particular fall prey to this

weakness. A principal difficulty concerns evaluating probability estimates on real
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world data, where often only the class labels and not the underlying conditional

probabilities are available. Proper scoring rules provide some help here, but it is of

a limited nature.

Quantile estimation, a sub-problem of probability estimation, involves finding

the region P(Y = 1|X = x) > q for some q ∈ [0, 1]. We have shown that this

problem is equivalent to both classifying with unequal costs of misclassification

and to classifying on a population with varying base rates. Various methods can be

adapted with great success on this problem and the main strategies typically involve

”tilting” the base rate distribution by over-sampling or under-sampling some of the

classes. However, it has proven difficult to extend these strategies for classifying at

one particular q to all q and it remains an important area for future research.
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Chapter 4

Difficulties for Sequential Methods

4.1 Loss Functions and Probability Estimates

There are several difficulties for sequential learning which require mention. First and

foremost is the notion of probability estimation and loss function. We have seen that

standard classification methods generally focus on misclassification loss. However,

in Chapter 2, we saw that by focusing on other loss functions such as exponential

loss, binomial negative log likelihood, and squared error loss, classifications can be

improved. Furthermore, in Chapter 3, we saw that different costs for false positives

and false negatives require arbitrary quantile classification rather than the median

classification implied by using misclassification loss on a binary problem.

Issues regarding probability estimation are even more difficult in the sequential

case. For some problems, it may be sufficient to estimate the marginal distribu-
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tion of the labels conditional on the entire covariate sequence, P(Yt|X1:T ) (this is

the analogue to estimating the conditional class probability function, P(Y |X), in

the standard case) and we have seen the forward-backwards algorithm can pro-

vide estimates of these marginal probabilities conditional on the model. However,

the difficulties encountered in accurately estimating class probabilities for the non-

sequential binary case are vastly compounded in the sequential multi-class case.

Even more daunting is the fact that some problems might require estimation

of the joint distribution of the labels conditional on the entire covariate sequence,

P(Y1:T |X1:T ), a quantity which has no analogue in the non-sequential case. Though

this is generally difficult to compute, the Viterbi algorithm can be used to efficiently

obtain argmaxyyy P(Y1:T = yyy|X1:T = XXX) conditional on the model.

These issues are important because only with good estimates of the full joint

distribution P(Y1:T |X1:T ) can we minimize an arbitrary loss function. But, not only

is obtaining good estimates of this distribution extremely difficult, it is also not

even sufficient: equipped with a good estimate of it, we still might not be able to

choose the yyy sequence which minimizes loss because computing the optimal yyy given

the joint distribution (or an estimate of it) may be computationally too taxing.

There are losses, however, which depend only on either the marginal probabil-

ities or classifying the entire sequence in which case the forwards-backwards γt(i)

probabilities or the Viterbi yyy∗ sequence respectively suffice. For an example of the

former, consider an arbitrary loss matrix C = [ci,j]i=1,...,k,;j=1,...,k where ci,j gives the
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cost of assigning class i to an observation whose true class is j (usually ci,i = 0). As

in the standard case, the solution in the sequential case is to predict at each time t

the class with minimum expected cost:

ŷt = argmin
i

∑
j

P(Yt = j|X1:T = XXX) · ci,j

In this case, the marginal probabilities suffice. One can also imagine situations

where there is 0-1 loss on the entire sequence: either you correctly classify the

entire sequence and have no loss or you make one or more mistakes and obtain a

loss of one. In this case, the Viterbi sequence is optimal.

However, there are many cases which fall in between these two. For example,

consider the detection of a rare class in a sequence and, for simplicity, assume

there are only two classes. One could imagine generalizing the arbitrary binary loss

matrix C with (normalized) costs c and 1 − c assigned to false positives and false

negatives respectively for the entire sequence. But, such a loss may not in fact be

realistic. Perhaps, if the rare class is detected at time s ”close enough” to the true

time t, zero or low cost is incurred while missed events (false negatives) incur some

other cost and false positives incur a third cost.

Or consider the case of detecting credit card fraud where the goal is to predict

the time t when the card was stolen. This is a sequential problem with Y1 = Y2 =

... = Yt−1 = 0 and Yt = Yt+1 = ... = YT = 1, that is, it is a change-point detection

problem. Now, after fitting a sequential classifier, there are many strategies to
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estimate t: one can estimate t by some time period s where s might be the first

time the P(Yt = 1|X1:T ) > z for some threshold z1, the last time P(Yt = 1|X1:T ) < z2

for some threshold z2, the first time at which the those probabilities remain above a

certain threshold for some number of consecutive periods, or some other estimate.

For estimates s where s < t, one might incur a loss cearly of an early alarm; for

estimates s where s > t, one might incur a loss clate or even clate · (s − t) for

late detection. More complicated loss functions are possible (for instance, ones

that estimate how much business was lost due to an early alarm or the total cost of

fraudulent purchases on the card after a late alarm or failure to detect). Regardless,

the marginal probabilities and the Viterbi path will not suffice.

Finally, consider the example of hyphenation. Given a word, one seeks a se-

quence of zeroes and ones of the same length of the word where the ones denote

letters after which it is permissible to hyphenate. Clearly, false positives are very

costly since they cause confusion to readers. False negatives are not nearly as costly

since the word will just be moved to the next line and a small amount of space will

be wasted (or, if the word is polysyllabic and other hyphenation points are correctly

identified, then the word will be hyphenated at a different place). An additional

consideration is that hyphens in the middle of a long word are more useful than ones

at the beginning or end. Hence ci,j is really ci,j(t) and is thus time-inhomogenous

(i.e., depends on t).

For many problems, the marginal probabilities and most likely sequence given
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by the forwards-backwards algorithm and Viterbi algorithm will be sufficient or at

least useful, provided they are estimated accurately. But, for several others, these

will not suffice. While, theoretically, a good estimate of P(Y1:T |X1:T ) can solve all

problems for all loss functions, estimation of this quantity is extremely difficult.

Furthermore, good estimates may not suffice in practice due to the computational

difficulties associated with finding the optimal yyy given P(Y1:T |X1:T ) (or estimates

thereof) and a loss function.

4.2 Variable Selection and ”Long-Distance Fea-

tures”

In the traditional regression setting, we are often faced with the task of variable

selection, that is selecting some subset of the p covariates in order to predict Y .

There is a vast literature on this topic of three broad flavors: penalized likeli-

hood, regularization, and Bayesian (Bayes, 1764). Penalized likelihood methods

including the Akaike Information Criterion (Akaike, 1974), Mallows’ Cp (Mallows,

1973), the Bayesian Information Criterion (Schwarz, 1978), Minimum Description

Length (Rissanen, 1978), the Risk Inflation Criterion (Foster and George, 1994),

hard-thresholding (Donoho and Johnstone, 1994), and the Empirical Bayes Infor-

mation Criterion (George and Foster, 2000). These correspond to thresholding the

t-statistics in an orthogonal regression at
√

2,
√

2,
√

log n,
√

log n,
√

2 log p,
√

2 log p,
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and
√

2 log q/p respectively (Foster and Stine, 1997) (q is the number of variable

selected so far). There are also regularization methods which put penalties on the

size of the estimated parameters; such methods include L2 penalization via ridge

regression (Hoerl, 1962), L1 penalization via the Lasso (Tibshirani, 1996), combined

L1 and L2 penalization via the elastic net (Zou and Hastie, 2005), L1 penalization

via the Dantzig selector (Candes and Tao, 2007), and many others. Finally, there

are also Bayesian methods such Bayes factors, the Deviance Information Criterion

(Spiegelhalter et al., 2002), and the mixture model approach of George and McCul-

loch (1997).

Clearly, variable selection is an important and well-explored problem in the non-

sequential literature and it is particularly salient for more model-based approaches.

It is even more important in the sequential case. This is because, as is evident for

sliding window and recurrent sliding window approaches as well as MEMMs and

CRFs (and as will be shown for the variant of HMMs we introduce), the covariates

used at any time t can depend on the entire sequence of covariates X1:T . Hence,

there are p · T potential covariates rather than the usual p (plus, as in the non-

sequential case, any functions or transformations of those covariates).

In the sequential case, one can in theory pursue strategies which are similar to the

non-sequential case. For instance, one can generate large numbers of features from

X1:T = XXX to be used at each time t and then run a forward or backward stepwise

procedure, selecting the model at each stage which performs best according to a
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criterion such as AIC. Alternatively, one can enter all of the features to the model

and use L1 penalization on the parameters. While both of these are possible, the

computational cost involved in fitting sequential models makes them impractical.

Another strategy involves pre-screening covariates. One can compute measures

of relevance between a given covariate Xj
1:T and the class labels Y1:T and then

remove covariates with low relevance. Such measures might include the mutual

information of Xj
1:T and Y1:T or the classification error of the model when using

a given covariate and no others. This is similar to what is done when growing

CART trees. Unfortunately, this method ignores interactions between features and

therefore can miss important ones.

A final method consists of fitting (or possibly over-fitting) a simple model to the

dataset and using that model to identify important covariates before proceeding to

a more complex model. In the non-sequential setting, this might involve fitting a

large (potentially over-grown or under-pruned) CART tree to the data; then, the

subset of the variables selected by the CART tree could be used in more complicated

methods such as AdaBoost or stepwise logistic regression. In the sequential setting,

similar approaches are possible.

In practice, researchers often apply a fixed window-width, say of size w, and

augment the covariates in the manner of the sliding window approach. While this

may be fine for many problems, it is unsuitable in other cases and has several

important drawbacks. First, it is unlikely that all w · p covariates used at time t
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are helpful for predicting Yt. Second, and perhaps more important, there may be

”long-distance features” which are important (e.g., the features X1:T ”begins with

a number”, ”ends with a questions mark”, and ”is shorter than thirty” used in

McCallum et al. (2000)).

4.3 Computational Complexity

A final consideration, which has come up several times above, is computational

complexity and the runtimes of these algorithms. Many algorithms such as CRFs

are difficult to fit, thus compounding issues of variable selection. Furthermore,

while the forward-backward algorithm and the Viterbi algorithm are very efficient,

they can still be slow to apply for complicated model structures. Furthermore, as

mentioned above, they do not give a sequence yyy which minimizes arbitrary loss

functions: only when the loss depends on the individual yt (forward-backward) or

requires correct classification of the entire sequence (Viterbi) are they optimal.

Finally, even if one does settle on a model, one fits it, and it provides excellent

probability estimates of P(Y1:T |X1:T ), one still may be unable to find the sequence

yyy which minimizes the expected loss for arbitrary loss functions. That is, com-

puting the optimal yyy given the joint distribution (or an estimate of it) may be

computationally too taxing.
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Chapter 5

PrAGMaTiSt: Prediction and

Analysis for Generalized Markov

Time Series of States

5.1 Introduction

In Chapter 2, we presented a number of limitations of the standard Markov mod-

els and Hidden Markov Models. First, estimation of k multivariate probabilities

µµµ is a difficult task, particularly when the number of covariates p is large or in

the presence of rare classes. Second, long term dependencies are difficult to model

in an first order Markov setting because (i) any relationship between Yt and Yt+k

must be ”communicated” via Yt+1, ..., Yt+k−1 and because (ii) introducing a sliding
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Figure 5.1: A First Order Markov Model. In the first part, we observe both Yt and
Xt. In the second part, we observe Xt and must predict the Yt.

window of covariates would involve replacing the modeling of the conditional co-

variate distribution P(Xt|Yt) with modeling of the more complicated distribution

P(Xt|Yt−d, ..., Yt, ..., Yt+d).

In this chapter, we attempt to mitigate these problems whilst remaining in the

model-based Markov model setting. We solve the first problem, that of estimating

µµµ, by training the model in a discriminative fashion. This will also allow us to

partially solve the second problem as it will allow the use of a sliding window of

covariates. A second approach to solving the second problem is introducing longer-

term dependence structures directly into the Yt themselves.

5.2 Discriminative Markov Models

The structure of a supervised Markov model is given in Figure 5.1. To refresh, π =

(π1, ..., πk)
T is the vector of initial probabilities, P(Y1 = i); AAA = [ai,j]i=1,...,k;j=1,...,k is

the transition probability matrix whose entries are ai,j = P(Yt+1 = j|Yt = i); and

µµµ = (µ1(x), ..., µk(x))T is vector of probability measures on the covariate space such
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that each µi gives the conditional covariate probability µi(x) = P(Xt = x|Yt = i).

We let ΘΘΘ = (πππ,AAA,µµµ) denote the collection of these distributions.

It is easy to see that the likelihood for this model is given by

L(Y1:T , X1:T |ΘΘΘ) = P(Y1)P(X1|Y1) · P(Y2|Y1)P(X2|Y2) · · ·P(YT |YT−1)P(XT |YT )

= πY1µY1(X1) · aY1,Y2µY2(X2) · · · aYT−1,YT
µYT

(XT )

= πY1

[
T∏
t=2

aYt−1,Yt

] [
T∏
t=1

µYt(Xt)

]
.

The likelihood factorizes nicely. It is clear that we can estimate the transition dis-

tribution, P(Yt|Yt−1) = aYt−1,Yt , by the empirical rate of transition from state i to

state j, that these are the maximum likelihood estimates, and that they are there-

fore asymptotically consistent (of course, more sophisticated estimation strategies,

for example shrinking to a common distribution, are possible). The MLE for the

initialization P(Y1) = πY1 would be to place all of the mass on the state which

actually did come first but this is clearly a poor estimate and therefore one usually

uses the empirical frequency of each of the k classes. It is interesting to note that

there are two cases for out of sample prediction. The first case is illustrated in Fig-

ure 5.1 and occurs when the out of sample sequence continues from the in sample

sequence: in this case, since YT is known, the initialization distribution for YT+1

is the appropriate row of transition probability matrix AAA. The second case occurs

when the out of sample sequence is an entirely new one in which case an estimate
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of πππ is required.

The difficulty in estimating πππ can be resolved if we have multiple training se-

quences, {(yyyi,XXX i)}Ni=1 in which case the likelihood above becomes

L({(Yi,1:T , Xi,1:T )}Ni=1|ΘΘΘ) =
N∏
i=1

[
πYi,1

[
Ti∏
t=2

aYi,t−1,Yi,t

] [
Ti∏
t=1

µYi,t
(Xi,t)

]]

=

[
N∏
i=1

πYi,1

] [
N∏
i=1

Ti∏
t=2

aYi,t−1,Yi,t

] [
N∏
i=1

Ti∏
t=1

µYi,t
(Xi,t)

]
.

Again, the likelihood factorizes and we now have multiple observations with which

to estimate πππ. In the sequel, we assume a single training sequence for simplicity

though it is conceptually trivial to extend to the case of multiple training sequences

as above.

The factorization of the likelihood shown above demonstrates that µµµ can be

estimated by estimating each of its component parts µ1, ..., µk individually condi-

tional on the set of (Yt, Xt) for which Yt = i. As noted, a principal difficulty for

Markov models is the estimation of several multivariate distributions conditional

on categorical Yt. However, the inverse problem of classifying categorical Yt based

on a high-dimensional Xt is the ideal situation for the classification methods we

encountered in Chapter 2. We can adapt these classification methods to address
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our model estimation by using Bayes theorem

µi(Xt) = P(Xt = xt|Yt = i)

=

Classification Methods︷ ︸︸ ︷
P(Yt = i |Xt = xt) ·

Constant︷ ︸︸ ︷
P(Xt = xt)

P(Yt = i)︸ ︷︷ ︸
Marginal Probabilities

.

With this in mind, we see that we can rewrite the likelihood as

L(Y1:T , X1:T |ΘΘΘ) = P(Y1)P(X1|Y1) · P(Y2|Y1)P(X2|Y2) · · ·P(YT |YT−1)P(XT |YT )

= P(Y1)

[
T∏
t=2

P(Yt|Yt−1)

] [
T∏
t=1

P(Xt|Yt)
]

= P(Y1)

[
T∏
t=2

P(Yt|Yt−1)

] [
T∏
t=1

P(Yt|Xt) · P(Xt)

P(Yt)

]

= πY1

[
T∏
t=2

aYt−1,Yt

] [
T∏
t=1

fYt(Xt) · P(Xt)

pYt

]

∝ πY1

[
T∏
t=2

aYt−1,Yt

] [
T∏
t=1

1

pYt

] [
T∏
t=1

fYt(Xt)

]
= L(Y1:T , X1:T |Θ̃ΘΘ)

where fi(Xt) = P(Yt = i|Xt) is the conditional class probability distribution and

pi = P(Yt = i) are the marginal probabilities of the Yt. Hence, we have trans-

formed the difficult problem of estimating k p-variate probability distributions

µµµ into the easier problem of estimating a k-dimensional probability vector fff =

(f1(x), ..., fk(x))T and the marginal probabilities ppp = (p1, ..., pk)
T . There are clearly

many ways to estimate fff . We typically estimate ppp by either (i) the empirical fre-
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quency in each of the k states or (ii) the stationary distribution corresponding to

the estimate of AAA.

Thus, rather than training the Markov model generatively, we are training it

discriminatively (Smyth, 1994). Consequently, we substitute estimation of ΘΘΘ =

(πππ,AAA,µµµ) for estimation of Θ̃ΘΘ = (πππ,AAA,fff,ppp).

There are two principal advantages of training the Markov model in a discrim-

inative fashion. First, as mentioned above, it is easier to estimate a k-dimensional

probability vector than k p-variate probability measures. Second, it is now easy to

accommodate ”long distance features”: sliding windows as well as any other feature

of the sequence X1:T = XXX can easily be incorporated into Xt = xt when the model

is trained in a discriminative fashion. A further advantage is that, under certain

assumptions, we can show our estimates are maximum likelihood estimates. While

it is possible for estimates of the generative Markov models to be MLEs, this re-

quires restrictive (and likely untestable) assumptions on the µi. However, for the

discriminative version, we need only make assumptions about the fi. For instance,

if we assume they are linear functions of the covariates as in multinomial logistic

regression, our likelihood becomes

L(Y1:T , X1:T |Θ̃ΘΘ) ∝ πY1

[
T∏
t=2

aYt−1,Yt

] [
T∏
t=1

exp(Xt · βYt)/
∑k

j=1 exp(Xt · βj)
pYt

]

= πY1

[
T∏
t=2

aYt−1,Yt

] [
T∏
t=1

1

pYt

] [
T∏
t=1

exp(Xt · βYt)∑k
j=1 exp(Xt · βj)

]
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Algorithm 5.1 The Discriminative Forward Algorithm.

Begin with estimates
̂̃
ΘΘΘ = (π̂ππ, ÂAA, f̂ff, p̂pp) where π̂ππ = p̂pp or π̂ππ is the proper row of ÂAA.

Define αt(i) = P(X1 = x1, ..., Xt = xt, Yt = i| ̂̃ΘΘΘ).

1. Initialization: α1(i) = π̂i
f̂i(x1)
p̂i

, i = 1, ..., k.

2. Induction: αt+1(j) =
[∑k

i=1 αt(i)âi,j

]
f̂j(xt+1)

p̂j
, t = 1, ..., T − 1; i = 1, ..., k.

3. Termination: P(X1:T = XXX| ̂̃ΘΘΘ) =
∑k

i=1 αT (i).

Algorithm 5.2 The Discriminative Backward Algorithm.

Begin with estimates
̂̃
ΘΘΘ = (π̂ππ, ÂAA, f̂ff, p̂pp) where π̂ππ = p̂pp or π̂ππ is the proper row of ÂAA.

Define βt(i) = P(Xt+1 = xt+1, ..., Xt = xT |Yt = i,
̂̃
ΘΘΘ).

1. Initialization: βT (i) = 1, i = 1, ..., k.

2. Induction: βt(i) =
∑k

j=1 âi,jβt+1(j)
f̂j(xt+1)

p̂j
, t = T − 1, ..., 1; i = 1, ..., k.

where, as usual, βk = 0 by definition. Due to the way the likelihood factors, it

is clear our estimation strategy will maximize the three bracketed terms (and, as

above, it is not desirable to maximize the first term πY1 .). In general, any procedure

which provides an MLE for the fi will also provide an MLE for Θ̃ΘΘ when used in

conjunction with the strategy outlined above. Hence, since all of our parameters

can be estimated as MLEs, all the guarantees that apply to MLEs apply to our

model estimates.

Now that we have shown how to transform the generative Markov modeling

problem into a discriminative one and how to estimate parameters in an MLE

manner, we must modify the forward-backward and Viterbi algorithms to apply

to our estimates of
̂̃
ΘΘΘ = (π̂ππ, ÂAA, f̂ff, p̂pp) rather than estimates of ΘΘΘ. These modified

algorithms are given in Algorithms 5.1, 5.2, and 5.3.

As before, we can use the forward-backward algorithm to find the marginal
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Algorithm 5.3 The Discriminative Viterbi Algorithm.

Begin with estimates
̂̃
ΘΘΘ = (π̂ππ, ÂAA, f̂ff, p̂pp) where π̂ππ = p̂pp or π̂ππ is the proper row of ÂAA.

Define δt(i) = maxy1,...,yt−1 P(Y1 = y1, Y2 = y2, ..., Yt = i,X1 = x1, X2 =

x2, ..., Xt = xt| ̂̃ΘΘΘ).
1. Initialization:

δ1(i) = π̂i
f̂i(x1)
p̂i

i = 1, ..., k

ψ1(i) = 0 i = 1, ..., k.

2. Recursion:

δt(j) = maxi=1,...,k[δt−1(i)âi,j]
f̂j(xt)

p̂j
t = 2, ..., T ; j = 1, ..., k

ψt(j) = argmaxi=1,...,k[δt−1(i)âi,j] t = 2, ..., T ; j = 1, ..., k.

3. Termination:
P ∗ = maxi=1,...,k δT (i)
y∗T = argmaxi=1,...,k δT (i).

4. Path (state sequence) backtracking: y∗t = ψt+1(y∗t+1), t = T − 1, ..., 1.

conditional probability γt(i) = P(Yt = i| ̂̃ΘΘΘ):

γ̂t(i) =
αt(i)βt(i)

P(X1:T = XXX| ̂̃ΘΘΘ)
=

αt(i)βt(i)∑k
j=1 αt(j)βt(j)

.

Also before, our best estimate of Yt is ŷt = argmaxi=1,...,k γ̂t(i).

Training a Markov model in a discriminative fashion provides many benefits

such as (i) the ability to include long-distance, sliding window covariates in Xt,

(ii) avoiding the estimation of k p-variate probability measures, (iii) the ability to

convert any standard classification methodology into a sequential one, and (iv) the

vast computation savings associated with doing so (as compared to using methods

such as CRFs). However, there is still one major problem: any relationship between

Yt and Yt+k still must be communicated via Yt+1, Yt+2, ..., Yt+k−1 (except insofar as
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they are predictable from long-distance and sliding window covariates introduced

into Xt). While this disadvantage is common to MEMMs and CRFs as well as

Markov models, it is one we would like to avoid. Methods for extending the dis-

criminative Markov approach to accommodate this feature are introduced in the

next section.

However, before proceeding, we note the following. Whether we use the gener-

ative parameters ΘΘΘ = (πππ,AAA,µµµ) or the discriminative parameters Θ̃ΘΘ = (πππ,AAA,fff,ppp),

there are really only two parameters to estimate: AAA and either µµµ or fff . It should

be clear that πππ is not really an additional parameter which needs to be estimated

because, if the out of sample sequence continues from the in sample sequence as in

Figure 5.1, then the estimate of πππ is the row of the estimate of AAA corresponding to

YT ; if it does not, then the estimate of πππ is the estimate of ppp. Furthermore, espe-

cially for the generalizations of the model considered below, ppp is typically estimated

as the stationary distribution of AAA. Thus, while there are many parameters, the

task may not be as daunting as it first seems.

5.3 Generalized Time Series Structures

In theory, it is straightforward to incorporate higher order dependencies among

the Yt into a probability model. The difficulty is in computation. In Chapter 2,

we saw that the forward-backward algorithm gave us a relatively efficient recipe

for computing γt(i) = P(Yt = i|X1:T = XXX,ΘΘΘ) and the Viterbi algorithm for a

77



most likely sample path yyy∗. These algorithms, however, are only applicable to first

order Markov chains. Hence, it might seem that, for computational reasons, we

are limited to forcing dependencies between Yt and Yt+k to be communicated via

Yt+1, Yt+2, ..., Yt+k−1.

It turns out, however, that the first order Markov structure can be made very

rich by considering various augmentations and transformations of the state space

S = {1, ..., k}. Hence, we can incorporate very general patterns of dependence

among the Yt into our model and retain use of the efficient forward-backward and

Viterbi algorithms by embedding these more complex structures into a first order

Markov chain structure. Below, we will consider several generalizations.

5.3.1 Higher Order Markov Models

We first generalize from a first order Markov chain to an mth order Markov chain.

In this case, our initialization probability distribution πππ and our covariate emission

distributions µµµ (or, in the discriminative case, the conditional class probability

function fff and the marginal probabilities ppp) remain conceptually the same. The

only thing that is different is the transition probability matrix, AAA.

For mth order Markov chains, it is no longer the case that P(Yt|Yt−1, ..., Y1) =

P(Yt|Yt−1) (and therefore that the distribution can be represented as a k x k tran-

sition probability matrix). Rather, we have P(Yt|Yt−1, ..., Y1) = P(Yt|Yt−1, ..., Yt−m)

for t > m.
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If we wish to use forward-backward and Viterbi algorithms, we must convert

the mth order Markov chain into a first order Markov chain. Fortunately, this is

a relatively straightforward affair. We move to an augmented state space S ′ =∏m
i=1 S (i.e., the Cartesian product of the state space S m times with itself) with

Y ′t = (Yt−m, ..., Yt). Our transition probability distribution P(Yt|Yt−1, ..., Yt−m), t >

m can now be represented by a km x km matrix, AAA′ (which, as we will see, is

relatively sparse) and initialization distribution πππ′ = P(Y1, ..., Ym) = P(Y ′m) by a

vector of length km. Finally, we now have km covariate emission distributions µµµ′

corresponding to each class in the augmented state space (or, in the discriminative

case, we have a conditional class probability function fff ′ which returns a vector of

length km and the marginal probability vector ppp′ also of length km).

The likelihood is now given by

L(Y1:T , X1:T |ΘΘΘ′) = P(Y1, ..., Ym, X1, ..., Xm) ·[
T∏

t=m+1

P(Yt|Yt−1, ..., Yt−m)

] [
T∏

t=m+1

P(Xt|Yt, ..., Yt−m+1)

]

= P(Y1:m, X1:m)

[
T∏

t=m+1

P(Y ′t |Y ′t−1)

] [
T∏

t=m+1

P(Xt|Y ′t )
]

= P(Y1:m, X1:m)

[
T∏

t=m+1

a′Y ′t |Y ′t−1

] [
T∏

t=m+1

µ′Y ′t (Xt)

]
.

where P(Y1:m, X1:m) is the asymptotically-irrelevant joint distribution of (Y1:m, X1:m),

the first m states and covariate vectors. Typically, in practice, we simply dis-
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card the first m observations for which we cannot create the concatenated value

Y ′t = (Yt−m, ..., Yt).

We can also easily write this in the discriminative fashion as

L(Y1:T , X1:T |ΘΘΘ′) = P(Y1:m, X1:m)

[
T∏

t=m+1

P(Y ′t |Y ′t−1)

] [
T∏

t=m+1

P(Xt|Y ′t )
]

= P(Y1:m, X1:m)

[
T∏

t=m+1

P(Y ′t |Y ′t−1)

] [
T∏
t=1

P(Y ′t |Xt) · P(Xt)

P(Y ′t )

]
∝ P(Y1:m, X1:m) ·[

T∏
t=m+1

P(Y ′t |Y ′t−1)

]
·
[

T∏
t=m+1

1

P(Y ′t )

] [
T∏

t=m+1

P(Y ′t |Xt)

]
= P(Y1:m, X1:m) ·[

T∏
t=m+1

a′Y ′t |Y ′t−1

]
·
[

T∏
t=m+1

1

p′Y ′t

] [
T∏

t=m+1

f ′Y ′t (Xt)

]
= L(Y1:T , X1:T |Θ̃ΘΘ′).

In both the generative and discriminative cases, just as our estimates in the first

order Markov model were MLEs, so too are our estimates for the mth order Markov

model since we have effectively transformed or embedded the mth order Markov

model into a first order Markov model.

As in the first order case, we can estimate AAA′ by the empirical frequency of tran-

sitions amongst the Y ′t . Similarly, ppp′ can be estimated by the stationary distribution

of AAA′ and πππ′ by either the appropriate row of AAA′ or by ppp′ as appropriate. Finally, as

in the first order case, we can pursue whatever strategy we like to estimate µµµ′ or fff ′.

To see how this structure embeds the mth order Markov model into a first order

80



Markov model, we give an example. Let m = 2 and let the original state space

be given by S = {a, b, c}. Then, the augmented state space has nine states and is

given by S ′ = {aa, ab, ac, ba, bb, bc, ca, cb, cc}. We now have a nine by nine transition

probability matrix. However, many of these entries are zeroes because certain state

transitions are impossible. For instance, if we are in the state ba, we can only

transition to aa, ab, ac due to the fact that y′t = (yt−1, yt). Hence, there are

substantial restrictions on the transition distribution.

In a sense, this is all a device: the ”real” random variables are still the Yt (rather

than the Y ′t ) and the ”real” state space is S (rather than S ′). Generalizing to an mth

Markov model was simply a way of directly inducing higher order dependence into

the Yt series, a dependence we do not necessarily want to force on the covariates.

Realization of this fact yields some further restrictions on the model parameters

which help with estimation. Though they are not strictly required, they make sense

in practice.

The further restrictions are put directly on the µ′Y ′t in the generative case or the

f ′Y ′t (Xt) = P(Y ′t |Xt). For instance, typically we would set µ′Y ′t = µYt (i.e., estimate

the conditional covariate distribution as in the first order case). For example, using

the toy model above, if Y ′t = ba then Yt = a. Rather than assuming a separate

covariate emission distribution for ba and, say ca, we simply assume a covariate

emission distribution for a (as well as the other two states in S).

For the discriminative case, we typically train the classifier on the random
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variable Yt rather than Y ′t to get fYt(Xt) = P(Yt|Xt) and then set f ′Y ′t (Xt) =

fYt(Xt)
P(Y ′t )P

Y ′t |Yt=i P(Y ′t )
where the Yt corresponding to Y ′t equals i. That is, we must

normalize the probability estimates from our classifier trained on S to reflect the

marginal probabilities of S ′. For instance, using our example above, if Y ′t = ba

then Yt = a and we would set the probability of ba equal to the k-class classifier’s

probability of a normalized by the ratio of (i) the probability of Y ′t = ba and (ii)

the sum of the probabilities of all Y ′t such that Yt = a (in this case, the sum over

the probabilities of aa, ba, and ca).

Using this restriction, the model follows exactly the same structure as Figure 5.1

with one exception: the transition probabilities are a function of the m+ 1 random

variables (Yt−m, ..., Yt) in the mth order case rather than the two random variables

(Yt−1, Yt) as in the first order case.

It is worth noting that these restrictions can be thought of as either (i) restric-

tions on the model itself or as (ii) restrictions on our estimates. We may be willing

to assume the former when the covariates really do seem to be ”emitted” based on

the contemporaneous state of the system. For instance, perhaps a mouse in NREM

will give off the same velocity no matter whether he was previously in REM, NREM,

or WAKE. The second case might apply when we feel we simply do not have enough

data to estimate the parameters for a km class classifier and require a natural way

to reduce the size of the parameter space given the fact that there are only k ”true”

classes.
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In the sequel, we will always make this simplifying assumption, typically be-

cause we believe the restrictions apply to the model itself. However, it is really a

simplification without loss of generality because the unrestricted model really is a

first order Markov model on the state space S ′. Hence, everything we covered in the

previous section holds. Furthermore, we will simply work with the discriminative

case going forward. This again is without loss of generality since the two approaches

are equivalent via Bayes’ Theorem and it is always easy to recover the generative

version by swapping the likelihoods as shown in this section and the previous. Fur-

thermore, the code that estimates these models (and subsequent ones) also makes

this assumption: the user must only supply an estimate of the augmented transi-

tion probability matrix and the k-classifier conditional class probability estimates

(and, optionally, the last m states if the test data continues in sequence from the

training data so the code knows to set the initialization distribution to equal to the

appropriate row of the transition probability matrix; the marginal probabilities are

calculated from the stationary distribution of the transition probability matrix).

Though the mth order Markov approach is rather elegant, it has a principal

and debilitating difficulty: for m large, it is difficult to estimate AAA′ even with the

sparsity required by the fact that S ′ =
∏m

i=1 S. Therefore, it is also difficult to

estimate ppp′, the stationary distribution of AAA′. Consequently, in the (restricted)

discriminative case (the case with which we are most concerned), even if we have

good estimates of fYt(Xt), our estimates of f ′Y ′t (Xt) may suffer quite substantially
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Figure 5.2: The transition diagram corresponding to a first order Markov chain
with state space S = {a, b, c} and transition probabilities given by aij.

due to their dependence on P(Y ′t |Yt = i) (which clearly depends on ppp′ = P(Y ′t )).

Hence, it is usually only feasible with small m and therefore is of limited use in

inducing long-term dependence structures directly into the Yt. In the next section,

we consider methods which allow for very long-term dependence structures in the

Yt that do not require the estimation of as many parameters as the Markov chains

considered here when m is large.

5.3.2 Generalized Markov Models

In Figure 5.2 we present the state space transition diagram for a first order Markov

chain. There are three states S = {a, b, c} and therefore a 3 x 3 transition probability

matrix given by the aij in the diagram. Such a model implies the holding times

in each state i are geometrically distributed with parameter (1− aii). That is, the

probability of staying in state i for τ epochs is Pi(τ) = aτ−1
ii (1− aii).

In many real data applications, the geometric distribution is not plausible. For
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Fig. 2. Representation of a VDHMM.

with a more complicated model and with larger number of un-
knowns.
A different parameterization of the state duration can be

achieved by allowing all the transition probabilities to be
functions of , which we denote by . More specifically,

is the probability that the system will switch from to
, given that the system has already been in the state for

consecutive time units [29], [31], that is

The transitional probabilities are thus functions of time, and
therefore, we refer to these HMMs as nonstationary HMMs
(NSHMMs).
The generation of states according to the NSHMM proceeds

in a different way, and it can be summarized as follows.
1) Generate from the initial state distribution , and set

.
2) Record the duration of the current state .
3) Draw the next state from , where , and

.
4) If , set , and go back to 2; otherwise,
terminate the procedure.

A graphic representation of the generation of an NSHMM is
shown in Fig. 3.
Proposition 1: The relationship between the duration proba-

bility mass functions and the self-transition probabilities
is given by

(1)

Proof: It is straightforward to write

(2)

Since, in (2), is represented by the duration specific
for each , the probabilities can be expressed

...

Fig. 3. Representation of an NSHMM.

or in general

Here, we point out that the self-transition probability is
defined as the ratio of probabilities of two events: the probability
that the state duration is greater than and the probability that
the state duration is greater than or

duration of
duration of

In [31], the s were expressed in terms of the cumulative
distribution function of the state duration
only, or

(3)

which leads to biased state durations. To verify this, we per-
formed a simple experiment of generating states whose dura-
tion distribution is Poisson with mean 15. For the self-transition
probabilities, we used (1) and (3). The obtained durations are
represented by the histograms given in Fig. 4(b) and (c), respec-
tively, which clearly show that (3) should not be used.
The outward state transition probabilities can be

obtained from , where is the transition
weight for state from , given that the duration of has been
. For all and all , the weights have to satisfy

The s do not necessarily have to be functions of . Of
course, there is a tradeoff between using time varying transition
weights and constant weights . With time-varying
weights, one can capture more subtle features of the hidden
stochastic process, but the estimation of these weights is much
more tedious than that of the constant weights. In this paper,
the transition weights are regarded as constant parameters, and
therefore, we write

(4)

Proposition 2: The NSHMM with constant state transition
weights is equivalent to Ferguson’s [11] type VDHMM.
The proof is omitted because it is straightforward, and in-

stead, a simple example is provided. Suppose we have a state
sequence . Its joint probability obtained by
the VDHMM is

(5)
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Figure 5.3: A Generalized Markov Model with states given by q∈ {1, 2, 3} and co-
variates yt. The amount of time spent in state i depends on the duration distribution
Pi(τ). Source: Djuric and Chun (2002).

Algorithm 5.4 Generating Data From a Generalized Markov Model

1. Draw Y1 from the initialization distribution, P(Y1).
2. Draw duration τ1 from duration distribution, PY1(τ) and set Y2, ..., Yτ1 equal
to Y1.
3. Draw X1, ..., Xτ1 from the covariate emission distribution,
P(X1, ..., Xτ1|Y1) which we assume is equal to

∏τ1
t=1 P(Xt|Yt).

4. Transition to state Yτ1+1 according to transition probability distribution
P(Yt+1|Yt) which has zero probability of a self-transition.
5. Repeat steps 2-4 mutatis mutandis until time T is reached.

instance, in credit card fraud detection, where the Yt are equal to zero before the

card is stolen and one afterwards, the geometric distribution is clearly inappropriate.

In sleep, the memoryless property of the geometric distribution also makes it an

absurd choice at least in theory.

Thus, one might ask whether one can build more general holding time distribu-

tions into the model and whether this can be embedded into the first order Markov

framework so that the forward-backward and Viterbi algorithms can be used. Such

a model is called a Generalized Markov Model (GMM), and it is visualized in

Figure 5.3. As we will show shortly, the answer to both questions is yes.

The GMM is parameterized by ΘΘΘ = (πππ,AAA,µµµ,δδδ) in the generative case or Θ̃ΘΘ =
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(πππ,AAA,fff,ppp, δδδ) in the discriminative case. πππ, AAA, µµµ, fff , and ppp are exactly as before,

now with one exception: AAA must have zeroes on its diagonal (i.e., no self-transitions

because self-transitions are governed by δδδ in this model). The new parameter is δδδ =

(δ1(τ), ..., δk(τ))T , a vector of probability distributions (”duration distributions”)

where each element δi(τ) = Pi(τ) gives the probability of remaining in state i for

length τ = 1, 2, ...,Mi <∞ where Mi is the maximal consecutive time that can be

spent in state i (we let M = maxi=1,...kMi). Data can be generated from this model

according to Algorithm 5.4.

Before proceeding to the likelihood and estimation strategies, we discuss how to

embed this model into a first order Markov structure. For any sequence {Yt}∞t=−∞

let us assume we observe {Yt}Tt=1 and define the sequence of variables {Zt}Tt=1 as

follows. First, we assume that Y1 is the first episode of its state i and YT is the

last episode of its state j (i.e., we assume Y0 6= Y1 and YT 6= YT+1). Then, let

Zt = argmaxτ{Yt = Yt+1 = ... = Yt+τ−1 6= Yt+τ}. That is, Zt gives how much longer

the sequence remains in the current state. Finally, we let Y ′t = (Yt, Zt). Hence, we

have moved from state space S = {1, ..., k} to

S ′ = {(1, 1), (1, 2), ..., (1,M1),

(2, 1), (2, 2), ..., (2,M2),

...,

(k, 1), (k, 2), ..., (k,Mk)}
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which we sometimes for simplicity define as

S ′ = {(1, 1), (1, 2), ..., (1,M),

(2, 1), (2, 2), ..., (2,M),

...,

(k, 1), (k, 2), ..., (k,M)}.

As an example, the sequence a, a, b, b, b, b, c, c, a would be transformed into

(a, 2), (a, 1), (b, 4), (b, 3), (b, 2), (b, 1), (c, 2), (c, 1), (a, 1).

Now, we can form the augmented transition probability matrix AAA′ as follows.

Each transition from (i, τ) to (i, τ − 1) has probability one for τ > 1 and all other

transitions have probability zero. For τ = 1 (that is, Y ′t = (i, 1)) there are two

cases: (i) transitions to (i, n) have probability zero for all n = 1, ...,Mi and (ii)

transitions to (j, n) have probability ai,jδj(n) for i 6= j and n = 1, ...,Mj. This is

perhaps better explained via an example which we give in Figure 5.4.
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Figure 5.4: The transition diagram corresponding to a generalized Markov chain
with state space S = {a, b, c}, maximal durations Ma = 2 and Mb = Mc =
2, transition probabilities given by AAA whose entries are aij, and duration dis-
tributions given by δδδ = (δa, δb, δc)

T . The augmented state space is S ′ =
{(a, 2), (a, 1), (b, 3), (b, 2), (b, 1), (c, 3), (c, 2), (c, 1)} and is indicated in blue. The
augmented transition probabilities AAA′ which are equal to one are given in black.
Those that are equal to the products of the ai,j and δi(τ) and which originate from
(b, 1) are given in red. Similar transitions from (a, 1) to each (b, n) and (c, n) and
from (c, 1) to each (a, n) and (b, n) are omitted for aesthetic reasons but are formed
in an way analogous to that shown in the picture and described in the main text.
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Now, similar to before, the likelihood is given by

L(Y1:T , X1:T |Θ̃ΘΘ′) = P(Y1)PY1(Z1) · ∏
t|Yt 6=Yt−1

P(Yt|Yt−1)PYt(Zt)

 [
T∏
t=1

P(Yt|Xt) · P(Xt)

P(Yt)

]
= P(Y1)PY1(Z1) · ∏

t|Yt 6=Yt−1

P(Yt|Yt−1)PYt(Zt)

 [
T∏
t=1

P(Y ′t |Xt) · P(Xt)

P(Y ′t )

]

∝ P(Y1)

[
T∏
t=2

P(Y ′t |Y ′t−1)

] [
T∏
t=1

1

P(Y ′t )

] [
T∏
t=1

P(Y ′t |Xt)

]

= πY1

[
T∏
t=2

a′Y ′t |Y ′t−1

] [
T∏
t=1

1

p′Y ′t

] [
T∏
t=1

fY ′t (Xt)

]
.

Now, the first bracketed term is the augmented transition probability matrix. An

MLE estimate for this is given by the empirical frequencies of the Y ′t transitions.

However, this is typically not very efficient. Rather, it is better (i) to estimate the

non-augmented transition probability matrix with zero diagonal entries by empir-

ical frequencies and (ii) to parameterize the duration distributions (for example,

as negative binomial distributions) and then estimate parameters based on the ob-

served durations spent in each state. This, of course, will also be MLE provided the

assumed parameterizations are correct. The second bracketed term is the marginal

probabilities of the augmented state which can be estimated as the stationary dis-

tribution of the estimate of the augmented transition probability matrix.

Finally, the last bracketed term is the conditional class probability estimates

89



from our classifier. This requires special explanation because, in general, the move

from the first line of the above equation to the second requires

T∏
t=1

P(Yt|Xt) · P(Xt)

P(Yt)
=

T∏
t=1

P(Y ′t |Xt) · P(Xt)

P(Y ′t )
(5.3.1)

which is not in general true. In our case, it is true because

P(Yt|Xt)

P(Yt)
=

P(Y ′t |Xt)

P(Y ′t )
∀t. (5.3.2)

To see why this is the case, we should consider that fY ′t (Xt) = P(Y ′t |Xt), as written,

returns the conditional probability of each class in the state space S ′ given Xt.

However, since the underlying space is S of size k rather than S ′ of size
∑k

i=1Mi, we

estimate our classifier f as a k-classifier on the space S and adjust it to accommodate

the augmented state space S ′. As discussed in the previous section, this is reasonable

both because the true state space is S and because it makes estimation easier.

The adjustment is the same as the one we presented for mth order Markov

models. In particular, we let fi(Xt) = P(Yt = i|Xt) which we estimate by fitting a

classifier to the original labels. Then, f ′i(Xt) = P(Y ′t = i|Xt) is simply a normalized

version: f ′Y ′t (Xt) = fYt(Xt)
P(Y ′t )P

Y ′t |Yt=i P(Y ′t )
where the Yt corresponding to Y ′t equals i.
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Hence

P(Y ′t |Xt)

P(Y ′t )
=

P(Yt|Xt)
P(Y ′t )P

Y ′t |Yt=i P(Y ′t )

P(Y ′t )

=
P(Yt|Xt)∑
Y ′t |Yt=i

P(Y ′t )

=
P(Yt|Xt)

P(Yt)

As in the first order Markov case, if we believe our classifier is a maximum likelihood

estimator for the true conditional class probability function and we believe the

emissions depend only on the contemporaneous state Yt, then this procedure returns

a maximum likelihood estimate for fff ′ and hence our parameter estimates Θ̃ΘΘ
′

are

maximum likelihood.

In sum, the GMM is parameterized by ΘΘΘ = (πππ,AAA,µµµ,δδδ) or Θ̃ΘΘ = (πππ,AAA,fff,ppp, δδδ). In

order to fit the model, one typically estimates the following three parameters. First,

one estimates the ”standard” k x k transition probability matrix AAA by using the

empirical frequencies of the Yt transitions, setting the self-transition probabilities

to zero and normalizing the rows to sum to one. Second, one parameterizes the

duration distributions δδδ and then estimates them using the observed durations for

each class. Third, one fits a classifier to the Yt to obtain an estimated k-vector of

probabilities for each Xt = xt.

Using these, we can obtain the full parameter estimates. The estimate of AAA and

δδδ combine to form an estimate of AAA′. This can be used to obtain an estimate of ppp′;
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the estimate of πππ′ is either the estimate of ppp′ or a row of the estimated AAA′. Finally,

the full augmented conditional class probability estimate fff ′ can be obtained via the

procedure discussed above by combining the estimated k-class classifier and the

estimate of ppp′.

5.3.3 Transition Dependent GMMs

In this section, we consider a small generalization of the GMM termed the Tran-

sition Dependent Generalized Markov Model (TDGMM). This model is al-

most equivalent to a GMM and is parameterized by the same list of parameters:

ΘΘΘ = (πππ,AAA,µµµ,δδδ) in the generative case or Θ̃ΘΘ = (πππ,AAA,fff,ppp, δδδ) in the discriminative

case. However, now, δδδ is no longer a vector of k duration distributions of the form

δi(τ),i = 1, ..., k; rather, it is a vector of k · (k − 1) duration distribution δi,j(τ)

i = 1, ..., k, j = 1, ..., k, i 6= j where each δi,j(τ) = Pi,j(τ) gives the probability of

arriving in and remaining for τ consecutive periods in state j having come from

state i, τ = 1, 2, ...,Mi,j < ∞ (where again Mi,j is the maximum amount of time

spent in state j when arriving from state i and M = maxi,j(Mi,j)).

That is, in this case, the amount of time spent in state j depends not just on the

state j itself but also the state i from which state j was reached. This is incredibly

useful in practice because often state duration distributions do indeed depend on

the previous state. The visualization for this model (as well as the data-generating

algorithm) are extremely similar to those in Figure 5.3 and Algorithm 5.4 using δi,j

92



rather than δi.

We now explain how to embed this model into a first order Markov structure.

For any sequence ..., Y1, Y2, ..., YT , ... let us define the sequence of variables Z1, ..., ZT

as follows. First, we assume that Y1 is the first episode of its state i and YT is the

last episode of its state j (i.e., we assume Y0 6= Y1 and YT 6= YT+1). For simplicity,

we also assume Y0 is known.

As for GMMs, let Zt = argmaxτ{Yt = Yt+1 = ... = Yt+τ−1 6= Yt+τ} (i.e., the

length of time the sequence will remain in the current state). Now, let Ut = Yσt

where σt = argmins(Ys 6= Ys+1 = Ys+2 = ... = Yt) (i.e., it is the last state the

sequence was in before it got to the one it is currently in). Finally, we let Y ′t =

(Ut, Yt, Zt) (this triplet represents the state the sequence came from, the state it is

currently in, and how much longer it will remain in the current state). Hence, we
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have moved from state space S = {1, ..., k} to

S ′ = {(2, 1, 1), (2, 1, 2), ..., (2, 1,M2,1),

(3, 1, 1), (3, 1, 2), ..., (3, 1,M3,1),

...,

(k, 1, 1), (k, 1, 2), ..., (k, 1,Mk,1),

(1, 2, 1), (1, 2, 2), ..., (1, 2,M1,2),

(3, 2, 1), (3, 2, 2), ..., (3, 2,M3,2),

...,

(k, 2, 1), (k, 2, 2), ..., (k, 2,Mk,1),

...,

(1, k, 1), (1, k, 2), , ..., (1, k,M1,k),

(2, k, 1), (2, k, 2), , ..., (2, k,M2,k),

...,

(k − 1, k, 1), (k − 1, k, 2), ..., (k − 1, k,Mk−1,k)}

94



which for simplicity we sometimes write as

S ′ = {(2, 1, 1), (2, 1, 2), ..., (2, 1,M),

(3, 1, 1), (3, 1, 2), ..., (3, 1,M),

...,

(k, 1, 1), (k, 1, 2), ..., (k, 1,M),

(1, 2, 1), (1, 2, 2), ..., (1, 2,M),

(3, 2, 1), (3, 2, 2), ..., (3, 2,M),

...,

(k, 2, 1), (k, 2, 2), ..., (k, 2,M),

...,

(1, k, 1), (1, k, 2), , ..., (1, k,M),

(2, k, 1), (2, k, 2), , ..., (2, k,M),

...,

(k − 1, k, 1), (k − 1, k, 2), ..., (k − 1, k,M)}

as we did for GMMs. For example, consider the sequence a, a, b, b, b, b, c, c, a and

suppose it came from b; it gets transformed into

(b, a, 2), (b, a, 1), (a, b, 4), (a, b, 3), (a, b, 2), (a, b, 1), (b, c, 2), (b, c, 1), (c, a, 1).
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Figure 5.5: The transition diagram corresponding to a generalized Markov
chain with state space S = {a, b, c}, maximal durations Mb,a = Ma,b =
Mc,b = 3, Mc,a = Ma,c = Mb,c = 2, transition probabilities
given by AAA whose entries are aij, and duration distributions given by
δδδ = (δb,a, δc,a, δa,b, δc,b, δa,c, δb,c)

T . The augmented state space is S ′ =
{(b, a, 3), (b, a, 2), (b, a, 1), (c, a, 2), (c, a, 1), (a, b, 3), (a, b, 2), (a, b, 1), (c, b, 3), (c, b, 2),
(c, b, 1), (a, c, 2), (a, c, 1), (b, c, 2), (b, c, 1)} and is indicated in blue. The augmented
transition probabilities AAA′ which are equal to one are given in black. Those that
are equal to the products of the ai,j and δi,j(τ) and which originate from (b, a, 1)
are given in red. Similar transitions from (c, a, 1) to each (a, b, n) and (a, c, n); from
(a, b, 1) to each (b, a, n) and (b, c, n); from (c, b, 1) to each (b, a, n) and (b, c, n); from
(a, c, 1) to each (c, a, n) and (c, b, n); and from (b, c, 1) to each (c, a, n) and (c, b, n)
are omitted for aesthetic reasons but are formed in an way analogous to that shown
in the picture and described in the main text.

Now, we can form the augmented transition probability matrix AAA′ as follows.

Each transition from (i, j, τ) to (i, j, τ − 1) has probability one for τ > 1 and all

other transitions have probability zero. For τ = 1 (that is, Y ′t = (i, j, 1)) there are

three cases: (i) transitions to (i, j, n) have probability zero for all n = 1, ...,Mi,j; (ii)

transitions to (i′, j′, n) have probability zero for all n = 1, ...,Mi′,j′ and all i′ 6= j;

and (iii) transitions to (i′, j′, n) have probability ai′,j′δi′,j′(n) for i′ = j, j′ 6= j, and

n = 1, ...,Mi′,j′ . This is perhaps better explained via an example which we give in

Figure 5.5.
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The likelihood is practically identical to the GMM case and is therefore omitted.

The estimation of either ΘΘΘ = (πππ,AAA,µµµ,δδδ) or Θ̃ΘΘ = (πππ,AAA,fff,ppp, δδδ) is also quite similar

to the GMM case and the same three parameters. First, one estimates the ”stan-

dard” k x k transition probability matrix AAA by using the empirical frequencies of

the Yt transitions, setting the self-transition probabilities to zero and normalizing

the row sums to one. Second, one parameterizes the duration distributions δδδ and

then estimates them using the observed durations for each class conditional on the

previous class. Third, one fits a classifier to the Yt to obtain an estimated k-vector

of probabilities for each Xt = xt.

Using these, we can obtain the full parameter estimates. The estimate of AAA and

δδδ combine to form an estimate of AAA′. This can be used to obtain an estimate of ppp′;

the estimate of πππ′ is either the estimate of ppp′ or a row of the estimated AAA′. Finally,

the full augmented conditional class probability estimate fff ′ can be obtained via

the procedure discussed above by combining the estimate k-class classifier and the

estimate of ppp′.

5.3.4 GMMs and TDGMMs With Infinite State Durations

A disadvantage of the proposed methodology is that, thus far, we have required

each duration distribution to have finite support. This has been necessary in order

to embed the generalized models into the first order Markov structure so that the

forward-backward and Viterbi algorithms can be used.
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In this brief section, we relax that assumption. Our duration distributions now

can have support on the positive integers provided that, in the tail, the distribution

is geometric. Formally, let δ(τ) be a duration distribution. Then we can write δ as

δ(τ |θ, q, s,M) = qf(τ |θ)I(τ ≤M) + (1− q)g(τ |s)I(τ > M). (5.3.3)

Here, f is any probability density on 1, ...,M parameterized by θ. The probability

of being in the tail is given by 1− q ∈ [0, 1] and g is a shifted geometric distribution

supported on M + 1,M + 2, ... with g(M + n|s) = sn−1 · (1− s) for n = 1, 2, ....

We provide an in-depth explanation for the GMM with infinite duration (which

we term the GMM+) noting that it applies analogously to the TDGMM (termed the

TDGMM+). The augmented state space is just like that of the GMM except with

one augmented state for each original state which corresponds to the tail. Namely,

for S = {1, ..., k} we get

S ′ = {(1, 1), (1, 2), ..., (1,M1), (1,M+
1 = M1 + 1),

(2, 1), (2, 2), ..., (2,M2), (2,M+
2 = M2 + 1),

...,

(k, 1), (k, 2), ..., (k,Mk)(k,M
+
k = Mk + 1), }
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Figure 5.6: The transition diagram corresponding to a generalized Markov chain
with state space S = {a, b, c}, tail definition Ma = 2 and Mb = Mc = 3, tran-
sition probabilities given by AAA whose entries are aij, duration distributions given
by ddd = (da, db, dc)

T , tail self-transition probabilities given by si, and tail mass
given by qqq = (qa, qb, qc)

T where qi =
∑Mi

τ=1 di(τ). The augmented state space is
S ′ = {(a, 3), (a, 2), (a, 1), (b, 4), (b, 3), (b, 2), (b, 1), (c, 4), (c, 3), (c, 2), (c, 1)} and is in-
dicated in blue. The augmented transition probabilities AAA′ which are equal to one
are given in black. Those that are equal to the products of the ai,j and δi(τ) and
which originate from (b, 1) are given in red. Similar transitions from (a, 1) to each
(b, n) and (c, n) and from (c, 1) to each (a, n) and (b, n) are omitted for aesthetic rea-
sons but are formed in an way analogous to that shown in the picture and described
in the main text. Most importantly, the ”tail self-transition probabilities” which
allow for an infinite duration distribution as well as their corresponding ”out-of-tail
transition probabilities” are given in green. This figure is the GMM+ analogue of
the GMM given in Figure 5.4.
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which we sometimes for simplicity define as

S ′ = {(1, 1), (1, 2), ..., (1,M), (1,M+ = M + 1),

(2, 1), (2, 2), ..., (2,M), (2,M+ = M + 1),

...,

(k, 1), (k, 2), ..., (k,M)(k,M+ = M + 1), }.

Since each state has its own δ, we have a collection δδδ = (δ1, ..., δk)
T with

δi(τ |θi, qi, si,Mi) = qifi(τ |θi)I(τ ≤Mi) + (1− qi)g(τ |si)I(τ > Mi)

for i = 1, ..., k. And, for convenience, we define ddd = (d1(τ), ..., dk(τ))T where di(τ)

is a vector of size Mi giving qifi(τ |θi) for τ = 1, ...,Mi.

The augmented transition probability matrix AAA′ is formed in a way very similar

to the GMM. Each transition from (i, τ) to (i, τ − 1) has probability one for τ =

2, ...,Mi and all other transitions have probability zero. For τ = 1 (that is, Y ′t =

(i, 1)) there are two cases: (i) transitions to (i, n) have probability zero for all n =

1, ...,Mi and (ii) transitions to (j, n) have probability ai,jδj(n) = qifi(τ |θi) = di(τ)

for i 6= j and n = 1, ...,Mj. For (i,M+
i = Mi + 1) there is a self-transition with

probability si and a transition to (i,Mi) with probability (1 − si). An example is

illustrated in Figure 5.6.

The augmented matrix AAA′ yields πππ′ and ppp as above. Furthermore, the likelihood
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is equivalent to the GMM case. However, the parameter estimation strategy is

usually a bit different.

The GMM+ model is parameterized by ΘΘΘ = (πππ,AAA,µµµ,δδδ) or Θ̃ΘΘ = (πππ,AAA,fff,ppp, δδδ)

where each δi is as above. We usually use the equivalent parameterization ΘΘΘ =

(πππ,AAA,µµµ,ddd,sss, qqq) or Θ̃ΘΘ = (πππ,AAA,fff,ppp,ddd,sss, qqq) instead. In this parameterization, ddd =

(d1(τ), ..., dk(τ))T and each di(τ) is a vector of size Mi giving qifi(τ |θi) for τ =

1, ...,Mi. Similarly, sss = (s1, ..., sk)
T where each si is the self-transition probability

for the tail state (i,M+
i ). Finally, qqq = (q1, ..., qk)

T is the total mass in the non-tail

portion of each state given by
∑Mi

τ=1 δi(τ) =
∑Mi

τ=1 di(τ).

In order to fit the model, one typically estimates the following three parameters.

First, one estimates the ”standard” k x k transition probability matrix AAA by using

the empirical frequencies of the Yt transitions, setting the self-transition probabili-

ties to zero. Second, one parameterizes the duration distributions δδδ as in Equation

5.3.3 and then estimates them using the observed durations for each class, saving

the di and si components from each δi to yield ddd, sss, and qqq. Third, one fits a classifier

to the Yt to obtain an estimated k-vector of probabilities for each Xt = xt.

Using these, we can obtain the full parameter estimates. The estimates of AAA, ddd,

sss, and qqq combine to form an estimate of AAA′. This can be used to obtain an estimate

of ppp′; the estimate of πππ′ is either the estimate of ppp′ or a row of the estimated AAA′.

Finally, the full augmented conditional class probability estimate fff ′ can be obtained

via the procedure discussed above by combining the estimate k-class classifier and
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the estimate of ppp′.

A very similar strategy can be applied to form a TDGMM+.

5.3.5 Other Approches to Extending Markov Models

We are not the first to generalize Markov models to accommodate duration dis-

tributions other than the geometric. For example, Ferguson (1980) allowed for

non-parametric probability mass functions for each duration and Levinson (1981)

allowed for the continuous durations given by normal and gamma distributions

(truncated to have finite minima and maxima). Such variants on the Markov model,

which we have termed here a GMM, are also referred to as explicit-duration Markov

models, variable duration Markov models, Markov models with explicit duration,

and semi-Markov models.

As should be evident, these are all more or less variants of the same broad GMM

approach. To our knowledge, no one however has combined these strategies with the

discriminative approach, extended it to a TDGMM, allowed for infinite durations

(via GMM+ and TDGMM+ geometric tails), or embedded the more general model

in first order Markov chain as above allowing for use of the forward-backward and

Viterbi algorithms.

Another approach, which appears quite different is that of the non-stationary

Markov model (NSMM) (Sin and Kim, 1995; Vaseghi, 1995; Brillinger et al., 2000;

Djuric and Chun, 2002)1. The NSMM is parameterized in exactly the same way

1Djuric and Chun (2002) is particularly interesting because it estimates the model in a Bayesian
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Fig. 2. Representation of a VDHMM.

with a more complicated model and with larger number of un-
knowns.
A different parameterization of the state duration can be

achieved by allowing all the transition probabilities to be
functions of , which we denote by . More specifically,

is the probability that the system will switch from to
, given that the system has already been in the state for

consecutive time units [29], [31], that is

The transitional probabilities are thus functions of time, and
therefore, we refer to these HMMs as nonstationary HMMs
(NSHMMs).
The generation of states according to the NSHMM proceeds

in a different way, and it can be summarized as follows.
1) Generate from the initial state distribution , and set

.
2) Record the duration of the current state .
3) Draw the next state from , where , and

.
4) If , set , and go back to 2; otherwise,
terminate the procedure.

A graphic representation of the generation of an NSHMM is
shown in Fig. 3.
Proposition 1: The relationship between the duration proba-

bility mass functions and the self-transition probabilities
is given by

(1)

Proof: It is straightforward to write

(2)

Since, in (2), is represented by the duration specific
for each , the probabilities can be expressed

...

Fig. 3. Representation of an NSHMM.

or in general

Here, we point out that the self-transition probability is
defined as the ratio of probabilities of two events: the probability
that the state duration is greater than and the probability that
the state duration is greater than or

duration of
duration of

In [31], the s were expressed in terms of the cumulative
distribution function of the state duration
only, or

(3)

which leads to biased state durations. To verify this, we per-
formed a simple experiment of generating states whose dura-
tion distribution is Poisson with mean 15. For the self-transition
probabilities, we used (1) and (3). The obtained durations are
represented by the histograms given in Fig. 4(b) and (c), respec-
tively, which clearly show that (3) should not be used.
The outward state transition probabilities can be

obtained from , where is the transition
weight for state from , given that the duration of has been
. For all and all , the weights have to satisfy

The s do not necessarily have to be functions of . Of
course, there is a tradeoff between using time varying transition
weights and constant weights . With time-varying
weights, one can capture more subtle features of the hidden
stochastic process, but the estimation of these weights is much
more tedious than that of the constant weights. In this paper,
the transition weights are regarded as constant parameters, and
therefore, we write

(4)

Proposition 2: The NSHMM with constant state transition
weights is equivalent to Ferguson’s [11] type VDHMM.
The proof is omitted because it is straightforward, and in-

stead, a simple example is provided. Suppose we have a state
sequence . Its joint probability obtained by
the VDHMM is

(5)

Authorized licensed use limited to: University of Pennsylvania. Downloaded on February 17,2010 at 09:53:33 EST from IEEE Xplore.  Restrictions apply. 

Figure 5.7: A Non-Stationary Markov Model with states given by q∈ {1, 2, 3} and
covariates yt. At each time, the transition probabilities are determined by which
state the process is currently in and how long it has been there. Source: Djuric and
Chun (2002).

Algorithm 5.5 Generating Data From a Non-Stationary Markov Model

1. Draw Y1 from the initialization distribution, P(X1).
2. Record the duration of the current state (i.e., dt=1).
3. Draw X1 from the covariate emission distribution, P(X1|Y1).
4. For t = 2, ..., T :

(a) Draw Yt from the transition probability distribution, Pdt−1(Yt|Yt−1 = ... =
Yt−dt−1).

(b) Record the duration of the current state as dt.
(c) Draw Xt from the covariate emission distribution, P(Xt|Yt).

as the standard Markov model with one exception: instead of a k x k transition

probability matrix AAA, there are now a sequence of them {AAAτ}τ=1,...,M≤∞ where the

entries aτi,j = Pτ (Yt = j|Yt−1 = Yt−2 = ... = Yt−τ = i) give the probability of

transitioning from state i to state j given that the sequence has spent τ consecutive

periods in state i. We can generate data from this model using Algorithm 5.5 and

it is illustrated in Figure 5.7.

While it should be clear that diagonal entries of the transition probability matrix

sequence {AAAτ}τ induce duration distributions on each of the states, what may be

surprising is that the NSMM is actually equivalent to a GMM (Djuric and Chun,

fashion using Markov chain Monte Carlo (MCMC) methods including the Gibbs (Geman and
Geman, 1984) and Metropolis-Hastings (Metropolis et al., 1953; Hastings, 1970) samplers.
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2002) and that the former can sometimes be more tractably implemented. Hence,

many of the other approaches explored in the literature are special cases of or are

equivalent to the GMM approach laid out here (and therefore can also be embedded

in a first order Markov model).

It should be clear that one could also represent a TDGMM as a NSMM if

we make the transition matrix more general, {AAAi,τ}i=1,...,k,τ=1,...,M≤∞ where τ is as

above and i is the unique state the sequence was previously in before arriving at

the current state j.

5.3.6 Variable Length Markov Models

The final extension we consider is the Variable Length Markov Model (VLMM)

(Buhlmann and Wyner, 1999). These are perhaps best described by trees as is

done in Figure 5.8. Essentially, a VLMM is like an mth order Markov model where

m depends on the most recent sequence one has observed. Using the example of

Figure 5.8, if the Yt−1 and Yt−2 were both a, then the process resembles a third order

Markov chain because the distribution of Yt given (Yt−1, Yt−2, Yt−3) equals (a, a, a),

(a, a, b), and (a, a, c) differ from one another (i.e., α1 6= α2 6= α3). If (Yt−1,Yt−2) were

(a,b) or (a,c), the process resembles a second order Markov chain. When Yt−1 = b,

it is like a first order Markov chain and when Yt−1 = c it is like a second order

Markov chain.

In fact, a VLMM is a special case of themth order Markov model with restrictions
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Figure 5.8: A Variable Length Markov Model on the state space S = {a, b, c}. Each
terminal node αj is a vector of length 3 giving the transition probabilities to each
of the three states in S. One reads from the top down such that α3 = P(Yt|Yt−1 =
a, Yt−2 = a, Yt−3 = c). In general, each of the αj will be unique though this does
not necessarily have to be the case and estimation strategies which shrink them to
a common distribution can be effective.

Figure 5.9: The Variable Length Markov Model from Figure 5.8 represented as a
Third Order Markov Model.
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on the distribution of P(Yt|Yt−1, ..., Yt−m). To see this, let m be the maximum depth

of the tree corresponding to VLMM (in the case of Figure 5.8, m = 3). Now,

consider a tree fully grown to depth m such that it has km terminal nodes. For each

terminal node in the new tree, give it the terminal distribution α if an equivalent

terminal node exists in the original tree and has terminal distribution α. If there

is no such corresponding node in the original tree, use the α corresponding to the

closest parent, grandparent, etc. which does exist. For instance, in the example

of Figure 5.8, in terminal node (a, a, c) of the fully grown new tree would have

terminal distribution α3 since this node exists in the original tree; on the other

hand, node (a, b, a) has no equivalent in the original tree but has closest parent

(a, b) and therefore would receive terminal distribution α4. The fully grown tree

which gives the VLMM of Figure 5.8 as an m = 3 order Markov model is given by

Figure 5.9.

Now, since we know how to express mth order Markov chains as first order

Markov chains, we can easily accommodate VLMMs using the methodology dis-

cussed above2. This is quite advantageous as it overcomes the principal, critical

flaw of mth order Markov models: for large m, it is difficult to estimate AAA′ even

with the sparsity required by the fact that S ′ =
∏m

i=1 S.

Estimation of the VLMM tree structure is conceptually similar to that of CART

trees: we want to recursively partition a space and return a probability distribution

2There are clearly more computationally efficient ways to implement a VLMM than by ex-
tending it to a higher order Markov model. However, this representation is clean and elegant and
computational efficiency is not the focus of this work.
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on S that depends on that partition. There are two principal differences however.

First, in a VLMMs, our data is a sequence yyy whereas in CART trees our data is

a set of (y, x) pairs drawn i.i.d. from some joint distribution. This leads to the

second difference: in CART trees the partitions are of the space of the covariates x

whereas in VLMMs the partitions depend on the most recent values of the sequence

yyy. Nonetheless, similar strategies can be followed. One can continue to partition

until fewer than some number of observations would lie in a terminal bin. One can

also estimate to some maximal depth size or maximum number of terminal bins.

Finally, one can grow a large tree and prune based on various criteria. For an

in-depth study of estimation of VLMMs, see Buhlmann and Wyner (1999).

While we do not fit VLMMs in this study, we discuss them because GMMs and

TDGMMs (and GMM+s and TDGMM+s) can be expressed as VLMMs with a very

strong set of restrictions placed on them. Namely, GMMs are VLMMs with each

split after the first being a binary split. It is binary reflecting the fact that, in a

GMM, the transition from state i to state j only depends on how long the sequence

has spent in state i: hence, after the first split (which is a k-split, that is, has k

branches), all splits are binary and of the form state i versus ”all other states”

(where state i refers to the branch of the first split). This is shown in Figure 5.10.

There are even further restrictions: at each terminal node, the α probability

vectors are not free to vary unrestricted. Rather, they have structure imposed on

them by the duration distributions δδδ which are typically heavily parameterized.
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Figure 5.10: The Generalized Markov Model with Geometric Tail from Figure 5.6
represented as a Variable Length Markov Model. By !i, we denote all other states
except state i. For example, α2 = P(Yt|Yt−1 = a, Yt−2 = a, Yt−3 6= a)
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Since GMMs are equivalent to NSMMs (that is, the δi of the GMM are reflected in

the {AAAτ}τ of the NSMM), we will describe the α in terms of the latter since it is

more straightforward. Namely, at each terminal node, the transition probabilities

are given by the ith row of AAAτ from an NSMM where τ is the depth of the terminal

node and i reflects the initial branch. The distinction between a GMM and GMM+

is reflected in the terminal node at depth Mi: if the self-transition probability is

zero, the VLMM is a GMM whereas, if it is non-zero, it is a GMM+.

Similarly, TDGMMs can be represented as VLMMs. However, in this case, the

trees are grown fully as in an mth order Markov chain. However, due to the fact that

the transition probabilities at each t can only depend on how long the sequence has

been in the current state j and the previous state i the sequence was in before j, one

must take the jth row of the more complicated NSMM formulation with transition

probability matrices {AAAi,τ}i,τ touched on at the end of the previous section. As

above, the distinction between a TDGMM and TDGMM+ will depend on whether

there are self-transitions at terminal nodes.

5.4 Conclusion

In conclusion, we have presented the PrAGMaTiSt, a methodology which overcomes

some of the principal disadvantages of standard first order Markov models. Using

our discriminative training formulation, we no longer have to estimate k p-variate

probability distributions. This also allows us to introduce sliding window and long-
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term features into the covariate space Xt. Furthermore, it allows us to use any

standard classification algorithm to train the Markov model. Finally, by consid-

ering various generalizations of the first order Markov structure, we can introduce

dependence directly into the Yt sequence itself, no longer requiring the relationship

between Yt and Yt+k to be indirect via Yt+1, ..., Yt+k−1.

We have also seen that it is possible to embed very complicated and general

dependence structures into a first order Markov model, thereby allowing use of

the forward-backward and Viterbi algorithms. This is absolutely critical to our

endeavor because, otherwise, our model could be specified and estimated but we

would be unable to apply it to test samples.

We have also seen that our most general model, the TDGMM+, is related to and

can embed many models considered in the literature. In fact, the only more general

models than TDGMM+ are the mth order Markov chain and the VLMM which both

embed it. The former is intractable in terms of both estimation and computation

for large m. The latter, while quite useful, is also difficult to estimate when the

dependence structures go back far in time. The PrAGMaTiSt has no trouble with

long dependence structures because we can parameterize the δi,j(τ) and efficiently

estimate parametric distributions. While something similar in principle could be

achieved by a ”hierarchical” VLMM where the α in each branch are shrunk towards

a common distribution, no methods exist currently to implement such a strategy.

In the sequel, we apply the PrAGMaTiSt to both simulated data and sleep
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data. The former is useful to explore the properties of our methodology and, in

particular, in what situations it thrives and fails. The results of this exploration

are both interesting in their own right and also useful for understanding how the

model performs on the sleep data. In the latter section, we show increased ability

to provide automatic sleep scores based on video data and demonstrate notable

success versus other methods on the difficult, rare, and interesting REM state.
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Chapter 6

Simulations

6.1 Simulation Design

In this chapter, we evaluate the PrAGMaTiSt on simulated data considering various

permutations of the base classifier (e.g., logistic regression, Random forests, etc.)

and time series structure (first order Markov model, GMM, etc.) and compare

its performance to competing methods. By using simulated data, we can see how

well the true model performs when estimated as well how various incorrect models

perform. Simulations also provide knowledge of the true marginal probabilities

P(Yt = i|X1:T = XXX) on hold-out samples thus allowing us to evaluate our model’s

ability to estimate probabilities as well as classify. We lay out the simulation design

in broad detail below.

For each simulation, we set the training sample size at n = 100, n = 1000,
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and n = 10000 successively and fix the test set size at 200. We then repeat each

simulation 100 times and average over the results in order to get (i) a better estimate

of the expected errors and (ii) a measure of their variability. Our simulation features

two covariate distributions (One and Two) for which we vary the amount of noise

in the distribution and four time series structures (A, B, C, and D). All simulations

use the state space S = {a, b, c}. In all simulations, the test data ”continues” from

the training data as in Figure 5.1 so that the test set initialization distribution can

be obtained from the estimate of AAA′.

In simulation one, the covariate structure µµµ is Xt ∼ N(µYt , σ
2) where µa = 0,

µb = 1, and µc = 2. We set σ to thirteen different values: 0, 1/4, 1/2, ..., 3. The

competing methodologies we consider are multinomial logistic regression; first order

Markov models, GMMs, and TDGMMs (or their infinite geometric tail + equivalents

where appropriate) trained discriminatively using multinomial logistic regression as

the base classifier; and the MALLET implementation of CRFs.

In simulation two, the covariate structure µµµ follows a complicated checkerboard

pattern with five different levels of noise. The covariate vector Xt is ten-dimensional

with two active dimensions and eight inactive, noise dimensions which are dis-

tributed U(0, 1) regardless of Yt. The conditional distributions of the two active

dimensions for the five noise levels are shown in Figure 6.1. The unit square is

divided into nine sub-squares and each of the three classes have three sub-squares

for which they are the ”dominant” class. Within each square, the dominant class
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y = c: Dominant Class = 83.33%
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y = b: Dominant Class = 50%
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Figure 6.1: The covariate emission distribution for Simulation Two. Each column
gives the distribution of the active two covariates conditional of the state Yt. The
rows show the five levels of noise considered. The eight inactive covariates are
distributed U(0, 1).
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receives successively 100%, 83.33%, 66.67%, 50%, and 33.33% of the probability,

with the other two classes receiving half of the remaining probability each. These

probabilities correspond to a Bayes Error rate of 0%, 16.67%, 33.33%, 50%, and

66.67% in the non-sequential learning task where each of the three classes has equal

marginal base rate 1/3.

The competing methodologies we consider for simulation two are multinomial

logistic regression, AdaBoost, and Random forests; Markov models, GMMs, and

TDGMMs (or their + equivalents where appropriate) trained discriminatively using

multinomial logistic regression, AdaBoost, and Random forests respectively as the

base classifiers; the MALLET implementation of CRFs (since the decision boundary

is highly non-linear, we trained MALLET in three ways: once on the original covari-

ates, once on the response surface of order two formed from the original covariates,

and once on the response surface of order three formed from the covariates1); and

TreeCRF, a tree-based version of CRFs2.

The time series structure for simulation A is no time series structure at all,

but the three classes have marginal base rates of ppp = (.3, .2, .5)T respectively. Our

initialization distribution is the uniform distribution πππ = (1/3, 1/3, 1/3)T .

For simulation B, the time series structure is a first order Markov Model with

1For n = 10000, training MALLET on the response surface of order three was computationally
infeasible.

2TreeCRF can only accommodate binary features. We formed binary features from our contin-
uous ones by binning the unit interval into equally sized bins for each dimension of the covariate
space and creating an indicator for whether the covariate fell in the bin. Since there was no ex
ante way to know how many to use, we tried 5, 10, 25, and 100. In addition, TreeCRF has a
parameter for the number of terminal nodes or leaves. We set this to 8, 16, 32, 64, 128, and 256
and tried all combinations of bin and leave numbers.
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Figure 6.2: The duration distributions for Simulation C, a GMM. Each distribution
is Discrete Beta with M = 10 and (α, β) set to (0, 0), (−15, 0), and (.75, 1.5)
respectively.

transition probability matrix given by

AAA =


3
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1
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1
3

1
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 .

The initialization distribution is given by the uniform distribution πππ = (1/3, 1/3, 1/3)T .

For simulation C, the time series structure is a GMM with transition probability

matrix given by

AAA =


0 1

2
1
2

3
4

0 1
4

1
3

2
3

0

 .

The duration distributions δi are given by a discretized version of the Beta distri-

bution. The discrete Beta takes two parameters, the usual Beta parameters α and

β, and is supported on 1, ...,M where M is a pre-specified integer. The probabil-
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Figure 6.3: The duration distributions for Simulation D, a TDGMM+. Each dis-
tribution is Beta Negative Binomial with Geometric Tail. See the main text for a
description of the probability mass function and the parameter values. The label
i -> j denotes distribution for the length of time spent in state j when arrived at
from state i.

ity mass function given by pi/
∑M

j=1 pj, i = 1, ...,M where pi is value of the Beta

probability density function with parameters α and β evaluated at xi and where

{xi}Mi=1 is the equally-spaced sequence of length M from 1/2M to 1 − 1/2M . In

this simulation, we set M to ten for all three states and set the parameters (α, β)

to (0, 0), (−15, 0), and (.75, 1.5) for states a, b, and c. The probability mass values

are shown in Figure 6.2. The initialization distribution is given by the uniform

distribution πππ = (1/3, 1/3, 1/3)T .

For simulation D, the time series structure is a TDGMM+ with transition prob-

ability matrix given as in Simulation C. The duration distributions δi,j are of the

117



form

δ(τ |α, β, r, q, s,M) = q
1

c(M)
f(τ |α, β, r)I(τ ≤M) + (1− q)g(τ |s)I(τ > M) (6.1.1)

with M set to 10 and f set to the Beta Negative Binomial distribution,

f(τ |α, β, r) =
Γ(α + β)Γ(α + r)Γ(τ + r − 1)Γ(τ + β − 1)

Γ(r)Γ(α)Γ(β)Γ(τ)Γ(τ + r + α + β − 1)
, x = 1, ...,M. (6.1.2)

As always, g is the geometric distribution (shifted to M + 1,M + 2, ...) and we

define the constant c(M) =
∑M

τ=1 f(τ |α, β, r). The parameters (α, β, r, q, s) for the

distributions δi,j were set to

State ααα βββ r q s

a -> b 0.00 1.00 442413 1.00 0.00

a -> c 0.00 1.65 0.45 1.00 0.00

b -> a 1808 148.41 33.12 1.00 0.00

b -> c 0.00 7.39 7.39 0.50 0.69

c -> a 0.00 22026 0.61 0.62 0.90

c -> b 0.00 1.00 442413 0.50 0.90

and were chosen to provide a diversity of shapes (see Figure 6.3), some with finite

support and some with infinite support. The initialization distribution is given by

the uniform distribution πππ = (1/3, 1/3, 1/3)T .
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In Simulations A, B, and D, the GMM and TDGMM models assume a Beta

Negative Binomial with Geometric Tail for the δ duration distributions with M

fixed to 10. In Simulation C, they assume a discrete Beta distribution with M

again fixed to 10. In the sequel, we will not in general make the distinction between

a (TD)GMM and a (TD)GMM+ noting that context makes it obvious which one

applies (e.g., Simulations A, B, and D feature duration distributions with infinite

support and therefore utilize the (TD)GMM+ whereas Simulation C features finite

support duration distributions and therefore uses the (TD)GMM).

We evaluate our simulations in three ways. First, we look at the classification

error of the various methods as well as that of the Bayes Rule which uses the true

marginal probabilities P(Yt|X1:T ) and average over the 200 test observations and

100 repetitions. Second, we look at the classification error relative to the Bayes

Rule. Since the Bayes Rule is the ”gold standard”, it is free of the noise in the Yt

and gives optimal classifications. Therefore, it is informative to see how well the

various methods replicate it. Finally, we compare the probability estimates of the

various methods and report the RMSE of the probability averaged over the 200 test

observations and 100 repetitions. We also examined other probability loss functions

including log loss and exponential loss and all yielded qualitatively similar results.
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6.2 Simulation One Results

Simulation one is deliberately simple (one covariate, linear decision boundary) so

that we can study how the model performs with variations in the sample size, time

series structure, and noise level. This will lead to some interesting insights about

model performance in real world settings.

6.2.1 Simulation 1A

Simulation 1A features a linear decision boundary and no time series structure.

Hence, all the models considered are capable of fitting the truth. The results are

given in Figure 6.4. A key feature evident in the first row is that, as the noise

level σ increases, all methods converge to predicting the dominant class and giving

probability estimates equal to the base rates: that is, the covariates are effectively

useless when there is a large amount of noise. The second and third rows demon-

strate that, for large samples, all methods replicate the Bayes Rule: as we move

from the n = 100 plot towards the n = 10000 plot, the classification and probability

errors are converging to zero for all noise levels.

An interesting feature of this simulation, particularly evident in the n = 100

plots for classification error relative to the Bayes Rule and for probability error,

is efficiency of estimation. Since all models are capable of fitting the true distri-

bution (because there is no time series structure), multinomial logistic regression

performs by far the best since it is the simplest model and has the fewest num-
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Figure 6.4: Results for Simulation 1A. The first row gives the Classification Error,
the second row the Classification Error Relative to the Bayes Rule, and the third
row the Root Mean Square Error of the Probability Estimates. The columns show
results for training set size of n = 100, n = 1000, and n = 10000 respectively.
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ber of parameters. It is followed by the standard Markov model, then the GMM,

then the TDGMM, and finally by MALLET, the exact ordering of model complex-

ity (By complexity we mean number of parameters estimated. There is no fully

nested structure here. That is, while GMMs, TDGMMs, and MALLET all nest

first order Markov models, MALLET does not nest GMMs or TDGMMs nor do

they MALLET. Of course, TDGMMs nest GMMs, they both nest standard first

order Markov models, and all three nest the no time series model.). That said, the

more complicated models (and particularly the variants of the Markov model) do

not do much worse even with n = 100 suggesting that not much is lost by fitting

a more complicated structure even when it does not exist. This is due to the fact

that the duration distributions are parameterized in our model and therefore can

be estimated efficiently.

6.2.2 Simulation 1B

For Simulation 1B, all models except multinomial logistic regression are capable of

fitting the truth. This is without a doubt the most prominent feature of the results,

which are plotted in Figure 6.5. It is also of note that the GMM and TDGMM are

almost as efficient as the simple Markov model (which in this case is the correct

model); MALLET lags only slightly behind.

The models appear to be converging on the true probabilities. However, when

the noise level is high, they cannot quite mimic the Bayes Rule classifications even
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Figure 6.5: Results for Simulation 1B. The first row gives the Classification Error,
the second row the Classification Error Relative to the Bayes Rule, and the third
row the Root Mean Square Error of the Probability Estimates. The columns show
results for training set size of n = 100, n = 1000, and n = 10000 respectively.
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with n = 10000 suggesting that massive amounts of training data may be required

in very high noise settings, even when the model structure is as simple as a linear

decision boundary in one dimension coupled with a simple Markov structure.

The trade-off between noise, model complexity, and training set size is interesting

and difficult and the lower left panel demonstrates this. With fixed sample size

n = 100, as the noise level increases, the incorrect logistic regression provides better

probability estimates than MALLET, which is a complex model nesting the true

structure. As σ → ∞, logistic regression (and all models for that matter) will

correctly estimate the true probabilities and hence the Bayes Rule classification

(since the correct probabilities are the marginal base rates (i.e., the covariates are

effectively useless with high enough noise)). Conversely, as σ → 0, all models do

well because the distribution of Yt|Xt places all probability on the dominant class

(i.e., the covariates are effectively ”oracles” when the noise is very low).

More interestingly, the more complicated variants of the Markov model (i.e.,

GMM and TDGMM) do almost as well as the standard one even with n = 100

suggesting that not much is lost by fitting a more complicated structure even when

it does not exist.

6.2.3 Simulation 1C

A key feature of the results of Simulation 1C (Figure 6.6) is the fact that both the

standard Markov model and MALLET (in addition to logistic regression) cannot
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Figure 6.6: Results for Simulation 1C. The first row gives the Classification Error,
the second row the Classification Error Relative to the Bayes Rule, and the third
row the Root Mean Square Error of the Probability Estimates. The columns show
results for training set size of n = 100, n = 1000, and n = 10000 respectively.
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estimate the true model. However, they do seem to be estimating the same thing

and this provides improvement over a logistic regression which ignores the time

series structure, particularly for moderate σ.

Again, the trade-off between model complexity and sample size proves interest-

ing. For n = 100, the standard Markov is doing about as well as the GMM even

though the former is false and the latter is true; on the other hand, the TDGMM

which nests the truth is fairly uncompetitive. However, by n = 1000, both the

GMM and the TDGMM seem to capture the true structure whereas the incorrectly

specified models cannot. Also interesting is the fact that the incorrect models seem

not to improve as n is increased from 1000 to 10000 whereas the two correct models

do.

6.2.4 Simulation 1D

Most interesting and fruitful of all simulations are the results of Simulation 1D

shown in Figure 6.7 where the true underlying model is a TDGMM+. In terms

of classification error, the correctly-specified TDGMM model does best for large

sample sizes. However, even n = 10000 does not seem to be large enough for it to

match the Bayes Rule for high noise levels. Again, the standard Markov model and

MALLET seem to be estimating the same thing and they are fairly competitive.

The GMM does not do very well, in this case because it is trying to estimate a

single duration distribution for each state when here there are two (i.e., each state i
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Figure 6.7: Results for Simulation 1D. The first row gives the Classification Error,
the second row the Classification Error Relative to the Bayes Rule, and the third
row the Root Mean Square Error of the Probability Estimates. The columns show
results for training set size of n = 100, n = 1000, and n = 10000 respectively.
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Figure 6.8: Results for Simulation 1D with Large σ. The first plot gives the Classi-
fication Error, the second plot the Classification Error Relative to the Bayes Rule,
and the third plot the Root Mean Square Error of the Probability Estimates. In all
simulations, the training set size was set to n = 10000.

has duration distribution which is actually a mixture of two distributions, reflecting

the two other states j which the sequence previously was in before state i). While

the Markov model does this (with the further restriction that the distribution is

geometric), the simplified assumptions seem to allow it to perform better at least

in this case.

The probability error plots are by far the most interesting. With large samples,

the TDGMM appears to give the best results for a range of σ. However, eventually,

once the noise level is high enough, simpler models such as the first order Markov

model provide better probability estimates. This seems peculiar since the TDGMM

is estimating the truth whereas these models are not.

This fact warranted further investigation so we fixed n = 10000, extended σ
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out from 3 to 50, and estimated the models again (we excluded MALLET for these

tests both because of the computational cost and the fact that it was effectively

equivalent to the first order Markov model). These results are shown in Figure 6.8.

For all σ, the TDGMM is still the best at matching the Bayes Rule classifications.

However, for large σ, the first order Markov model and multinomial logistic regres-

sion produce equivalent probability estimates which are better than those produced

by the TDGMM.

This is very peculiar because we saw the TDGMM produces the best probability

estimates for low and moderate σ. Now, the TDGMM is composed of two sets

of estimates: (i) the conditional class probability estimates of P(Yt|Xt) and (ii)

estimates of the time series structure (i.e., the duration distributions). The first set

of estimates are the multinomial logistic regression estimates (i.e., these are fed into

the Markov model and its variants). This suggests that for large σ, the TDGMM

is making these estimates worse. This is compounded by another fact. Since the

sample size is fixed at n = 10000 in these plots, the second set of estimates (of the

time series structure) are just as good for low and moderate σ (when the TDGMM

wins) as for high σ (when it loses). So, for large σ, the same time series estimates

can degrade multinomial logistic regression probability estimates while, for low and

moderate σ, they enhance them.

We conducted a further investigation of this phenomenon by considering vari-

ous permutations on ”oracle” models. Since the TDGMM is composed of two es-
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Figure 6.9: Results for Oracle Simulation 1D with Large σ. The first plot gives the
Classification Error, the second plot the Classification Error Relative to the Bayes
Rule, and the third plot the Root Mean Square Error of the Probability Estimates.
In all simulations, the training set size was set to n = 10000. For a complete
description of the models, see the main text.
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timates, that of the conditional class probabilities and of the time series structure,

we considered four versions of the TDGMM: (i) using the true probabilities for each

(TDGMM.true.true, which is the true model or Bayes Rule in this case), (ii) using

the true conditional class probabilities and estimates of the time series structure

(TDGMM.true.est), (iii) using estimates of the conditional class probabilities and

the true time series structure (TDGMM.est.true), and (iv) using estimates of both

(TDGMM.est.est, a fully estimated TDGMM which we have labeled TDGMM and

we have been considering in the previous plots). We did the same for the standard

first order Markov model (there is no true first order Markov here since the model

is TDGMM; however, the TDGMM induces a first order transition probability ma-

trix on the sequence and this is what is titled the ”true” Markov model time series

structure here). Finally, we used two versions of multinomial logistic regression, the

true model and the estimated one. These results are presented in Figure 6.9.

This first thing that is apparent is that the Markov model and TDGMM model

which combine estimated probabilities and true probabilities perform by far the

worst (i.e., the green, blue, yellow, and gray lines in the figure). Second, the doubly-

estimated TDGMM provides the best classifications (almost matching those of the

Bayes Rule or doubly-true TDGMM); however, for large σ, the doubly-true and

doubly-estimated Markov model as well as the true and estimated multinomial

logistic regression come close to it.

When we move to probability estimation, we see something similar to what we
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saw in Figure 6.8: for large σ, the doubly-estimated TDGMM simply is not com-

petitive. Simpler estimated models like the doubly-estimated Markov model and

estimated logistic regression dominate (i.e., this is the equivalent to what was said

of the results presented in Figure 6.8). More interesting is what happens to these

simpler models. As σ gets large, the probabilities from the true multinomial logis-

tic regression approach those of the ”true” Markov model and likewise those of the

estimated multinomial logistic regression approach those of the doubly-estimated

Markov model. These latter two are quite close to the former two and would obvi-

ously equal them with infinite training data.

6.3 Simulation Two Results

Simulation two features a much more difficult decision boundary as well as eight

covariates which behave identically regardless of the value of Yt. These features,

in tandem with the insights gleaned from simulation one about simpler, incorrect

models performing better in noisy settings, suggest that the benefits of adding a

time series approach may not be as dramatic for this setting or in the real world

insofar as this simulation is representative of real world phenomenon.

In this simulation, however, there are two sources of ”noise”. The first is noise

in the true sense (i.e., randomness) and corresponds to the decreasing prominence

of the dominant class as one moves down the rows of Figure 6.1; this is the analogue

of increasing σ in the first simulation. The other source of ”noise” is not noise in
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the statistical sense but rather is the uncertainty introduced by a difficult model-

ing phenomenon and the imprecise probability estimates which result from it: the

checkerboard-like pattern of Figure 6.1 is simply difficult to fit.

6.3.1 Simulation 2A

Since there is no time series structure in this simulation, we see in Figure 6.10 that

all the various methods that use a given classifier (e.g., Random forests, a first order

Markov model trained discriminatively by Random forests, GMM trained discrim-

inatively by Random forests, and TDGMM trained discriminatively by Random

forests) perform almost identically. This means that not much is lost by fitting the

more complicated structure even when it does not exist (as we will see in the sequel,

this may be as much a curse as a blessing).

Other than that, it seems the linear methods (MLR, MLR.MM, MLR.GMM,

MLR.TDGMM, and MALLET) fail completely. Even when MALLET is augmented

with higher order terms (i.e., MALLET2 and MALLET3), these methods fail. On

the other hand, the tree-based methods (Random forests, AdaBoost, and their

various Markov model counterparts) appear to perform fairly equally at classifica-

tion and, with sufficient training data, provide reasonable error rates relative to

the Bayes Rule (all methods perform well relative to the Bayes Rule for the highest

noise setting because the Bayes Rule always chooses the class with highest marginal

base rate regardless of Xt and all methods do indeed do this).
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Figure 6.10: Results for Simulation 2A. The first row gives the Classification Error,
the second row the Classification Error Relative to the Bayes Rule, and the third
row the Root Mean Square Error of the Probability Estimates. The columns show
results for training set size of n = 100, n = 1000, and n = 10000 respectively.
The x-axis is a general measure of the noise level and gives the Bayes Error rate
that would be encountered in a non-sequential learning task with the covariate
emission distribution given in Figure 6.1 and where each of the three classes has
equal marginal base rate 1/3.
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As suggested in Chapter 3, AdaBoost tends to push probability estimates to-

wards zero or one. Hence, in the zero noise setting, it provides good probability

estimates. However, when there is noise, Random forests produces superior prob-

ability estimates. In the highest noise setting and with sufficient training data, all

methods other than AdaBoost provide good estimates of the probabilities because

the true probabilities are the base rates; AdaBoost nonetheless overfits.

In Figure 6.11 we provide the same plots for various permutations of TreeCRF.

We also provide our preferred model, RF.TDGMM, as a reference point. Our

method dominates despite the number of variants of the TreeCRF methodology.

Even though TreeCRFs nest the true model, they are not very successful at fitting

it here.

6.3.2 Simulation 2B

Figure 6.12 shows the results for the simulation when the Yt sequence exhibits an

first order Markov structure. Again, there is a great deal of ”clumping” for all the

various methods that use a given classifier (e.g., Random forests, first order Markov

model trained discriminatively by Random forests, GMM trained discriminatively

by Random forests, and TDGMM trained discriminatively by Random forests). It

seems of the two kinds of estimates entered into the models (i.e., the conditional class

probability estimates and the time series estimates), the former play the dominant

role. This is akin to what we saw with Simulation 1D where the simpler, incorrect
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Figure 6.11: TreeCRF Results for Simulation 2A. The first row gives the Classifi-
cation Error, the second row the Classification Error Relative to the Bayes Rule,
and the third row the Root Mean Square Error of the Probability Estimates. The
columns show results for training set size of n = 100, n = 1000, and n = 10000
respectively. B denotes number of bins and L number of leaves. The x-axis is a
general measure of the noise level and gives the Bayes Error rate that would be en-
countered in a non-sequential learning task with the covariate emission distribution
given in Figure 6.1 and where each of the three classes has equal marginal base rate
1/3. RF.TDGMM from Figure 6.10 is provided in green as a point of reference.
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Figure 6.12: Results for Simulation 2B. The first row gives the Classification Error,
the second row the Classification Error Relative to the Bayes Rule, and the third
row the Root Mean Square Error of the Probability Estimates. The columns show
results for training set size of n = 100, n = 1000, and n = 10000 respectively.
The x-axis is a general measure of the noise level and gives the Bayes Error rate
that would be encountered in a non-sequential learning task with the covariate
emission distribution given in Figure 6.1 and where each of the three classes has
equal marginal base rate 1/3.
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models were beating the correct model.

Again, the linear and augmented linear methods fail. The RF.MM appears to

provide a small gain in classification for the large, n = 10000 sample size. However,

this gain is accompanied by a small loss in terms of probability estimation. On the

whole, however, Random forests and its variants appear to be the most successful.

An interesting feature is shown in the n = 10000 classification error relative

to the Bayes Rule and probability estimation plots. AB.MM sticks out slightly

from AB, AB.GMM, and AB.TDGMM. However, it sticks out much less than the

corresponding RF.MM lines do from the RF, RF.GMM, and RF.TDGMM lines.

There is a simple explanation for this. Since AdaBoost pushes probabilities towards

zero and one, adding the time series probability model can accomplish little: the

probability estimates are so far towards the extreme that they are insensitive to

time series modification.

The TreeCRF results are given in Figure 6.13 and, again, our preferred method,

RF.TDGMM, dominates. Again, TreeCRFs can nest the underlying structure of

this simulation, but appear unable to provide good fits here.

6.3.3 Simulation 2C

In this simulation, where the underlying time series structure is GMM, we begin to

notice greater variation among methods as seen in Figure 6.14. Again, the linear

and augmented linear methods all perform more or less equally poorly.
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Figure 6.13: TreeCRF Results for Simulation 2B. The first row gives the Classifi-
cation Error, the second row the Classification Error Relative to the Bayes Rule,
and the third row the Root Mean Square Error of the Probability Estimates. The
columns show results for training set size of n = 100, n = 1000, and n = 10000
respectively. B denotes number of bins and L number of leaves. The x-axis is a
general measure of the noise level and gives the Bayes Error rate that would be en-
countered in a non-sequential learning task with the covariate emission distribution
given in Figure 6.1 and where each of the three classes has equal marginal base rate
1/3. RF.TDGMM from Figure 6.12 is provided in green as a point of reference.
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Figure 6.14: Results for Simulation 2C. The first row gives the Classification Error,
the second row the Classification Error Relative to the Bayes Rule, and the third
row the Root Mean Square Error of the Probability Estimates. The columns show
results for training set size of n = 100, n = 1000, and n = 10000 respectively.
The x-axis is a general measure of the noise level and gives the Bayes Error rate
that would be encountered in a non-sequential learning task with the covariate
emission distribution given in Figure 6.1 and where each of the three classes has
equal marginal base rate 1/3.

140



Interestingly, AdaBoost and its variants perform terribly as the noise level in-

creases, even with large sample sizes. Again, due to the overfit probability estimates,

the Markov variants of AdaBoost provide almost identical fits to plain vanilla Ad-

aBoost.

The Markov variants of Random forests now perform differently than plain

vanilla Random forests, providing moderate improvement in relative classification

error and large improvements in probability error. Though the GMM and TDGMM

are the only methods capable of nesting the true structure and though they do beat

the first order Markov model, they do so by only slight amounts. That is, in the

presence of such a difficult covariate pattern, the incorrect first order model provides

substantial improvement over the non-sequential model but adding more complex

time series structure such as that found in a GMM and TDGMM is not particularly

helpful even when it exists and is well-estimated.

The TreeCRF results are given in Figure 6.15 and, again, our preferred method,

RF.TDGMM, wins in almost all categories. Only with little data or very high

noise are variants of the TreeCRF superior and even this is unclear due to the

”snooping” resulting from running many permutations of TreeCRFs. At least in

this case, however, the TreeCRF is unable to fit the true functional form of the

data. Hence, it is not surprising it is defeated by a method which can.
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Figure 6.15: TreeCRF Results for Simulation 2C. The first row gives the Classifi-
cation Error, the second row the Classification Error Relative to the Bayes Rule,
and the third row the Root Mean Square Error of the Probability Estimates. The
columns show results for training set size of n = 100, n = 1000, and n = 10000
respectively. B denotes number of bins and L number of leaves. The x-axis is a
general measure of the noise level and gives the Bayes Error rate that would be en-
countered in a non-sequential learning task with the covariate emission distribution
given in Figure 6.1 and where each of the three classes has equal marginal base rate
1/3. RF.TDGMM from Figure 6.14 is provided in green as a point of reference.
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Figure 6.16: Results for Simulation 2D. The first row gives the Classification Error,
the second row the Classification Error Relative to the Bayes Rule, and the third
row the Root Mean Square Error of the Probability Estimates. The columns show
results for training set size of n = 100, n = 1000, and n = 10000 respectively.
The x-axis is a general measure of the noise level and gives the Bayes Error rate
that would be encountered in a non-sequential learning task with the covariate
emission distribution given in Figure 6.1 and where each of the three classes has
equal marginal base rate 1/3.
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6.3.4 Simulation 2D

The fascinating results of this simulation appear in Figure 6.16. As the time series

structure becomes increasingly complicated, we see less and less clumping of each

method around its base classifier. There are substantial differences amongst the

variations of AdaBoost and Random forests.

Again, the linear methods and their augmented counterparts fare poorly which

is not surprising given the nature of the covariate emission distribution. Also,

again, AdaBoost does poorly at classification. However, what is interesting is the

distribution of its probability errors by method: plain AdaBoost performs similarly

to or beats AB.TDGMM (which has the right time series structure) and these

two are followed by AB.GMM and AB.MM respectively. Given the way AdaBoost

overfits the probabilities, this degree of separation is somewhat surprising and shows

the time series structure is having an effect. It also demonstrates the ”garbage in,

garbage out” principle: feeding the discriminative Markov model (or one of its

more general variants) bad conditional class probability estimates might lead to

even worse ones even if the times series estimates are reasonably good.

Again, Random forests and its variants perform best however, here, the time

series structure performs more or less as anticipated. The non-sequential Random

forest performs the worst, particularly on probability estimation. The three times

series variants provide substantial improvement with the RF.MM and RF.TDGMM

more or less tied, marginally beating out the RF.GMM. Now, it is not necessarily
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surprising that the first order Markov model beats the GMM. Something similar

happened in Simulation 1D where we saw that estimating a single geometric can

beat estimating a single more complicated distribution when the true distribution

is actually a mixture of complicated distributions (i.e., when both are wrong; here

each state duration distribution is a mixture of two Beta Negative Binomials with

Geometric Tails). Given what we have seen so far, it is also not surprising that the

incorrect first order model is competitive with the correctly-specified TDGMM.

Finally, the TreeCRF results are given in Figure 6.17 and, again, our preferred

method, RF.TDGMM, wins in almost all categories. Again, the TreeCRF is unable

to fit the true functional form of the data so perhaps it is not surprising it gets beat

by a method which can. That said, it is a bit staggering how uncompetitive this

sophisticated method has been through these simulations.

6.4 Conclusion

In conclusion, the simulation study has revealed some very interesting facts about

the performance of the PrAGMaTiSt, most pertaining to how variants of it (as well

as other methodologies) perform as the noise level in Yt|Xt varies. In particular,

for very high noise settings or settings where the conditional distribution of Yt|Xt is

very difficult to model, the covariates become rather useless for prediction and the

base rates of the classes yield good classifications and probability estimates, even

in the presence of time series structure. This has a further implication: since all
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Figure 6.17: TreeCRF Results for Simulation 2D. The first row gives the Classifi-
cation Error, the second row the Classification Error Relative to the Bayes Rule,
and the third row the Root Mean Square Error of the Probability Estimates. The
columns show results for training set size of n = 100, n = 1000, and n = 10000
respectively. B denotes number of bins and L number of leaves. The x-axis is a
general measure of the noise level and gives the Bayes Error rate that would be en-
countered in a non-sequential learning task with the covariate emission distribution
given in Figure 6.1 and where each of the three classes has equal marginal base rate
1/3. RF.TDGMM from Figure 6.16 is provided in green as a point of reference.
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methods will perform more or less the same in high noise settings, simple methods

will tend to dominate with finite data because they can provide better estimates.

On the contrary, in very low noise settings, all methods also perform the same

regardless of the time series structure because Yt|Xt puts almost all of its mass on

one class. Hence, at the extremes, simple methods, even ones which lack time series

structure, seem best.

The A and B simulations showed that we do not lose much with a moderate

amount of data if we fit GMMs and TDGMMs when the truth either has no time

series structure or is first order Markov. However, the C and D simulations showed

a contrary result: with sufficient noise, complexity of Yt|Xt, or complexity of the

time series structure, the first order model can perform as well as or even beat the

GMM or TDGMM even when the latter is true. Hence, there is a delicate tradeoff

and sometimes one will want to fit a model which one knows to be incorrect.

Finally, we saw that AdaBoost in general performed poorly and, due to the fact

that it overfits the probability estimates, it was generally insensitive to variants of

the Markov model. Random forests was in general very competitive and probably

the best method overall when combined with various Markov models. Finally,

TreeCRF was not particularly competitive on these simulations.
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Chapter 7

Sleep Data

7.1 Introduction

In Chapter 1, we noted that scientists are interested in the genetic bases for sleep

and use mice as a model organism for this purpose. The existence of various strains

and the ease of breeding knock-out mice means mice can differ markedly in both

sleep behavior and prevalence of sleep disorders. In particular, sleep researchers are

interested in which genes contribute to wakefulness versus sleep and, within sleep,

REM sleep versus non-REM sleep. Sleep scientists are especially interested in the

REM state of sleep which occurs much less frequently than either non-REM sleep

or wakefulness.

This is important because approximately 40 million Americans are afflicted with

various sleep disorders such as insomnia, sleep apnea, and narcolepsy. As knowl-
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edge of these disorders grows amongst the populace, sleep medicine is becoming an

increasingly important field of medical inquiry.

Unfortunately, large-scale sleep studies of mice are not currently feasible because

the gold standard methodology for the study of sleep behavior–manual scoring of

10-second sleep epochs as REM, NREM, and WAKE based on EEG and EMG

recordings–is invasive, expensive, and time-consuming. Furthermore, manual scor-

ing is both internally and externally inconsistent: different scorers can disagree by

as much as 8% overall and up to 15% within the important REM sleep stage and

even the same scorer frequently disagrees with himself when he revisits the data at

different times.

Initial forays into replacing the manual scoring process with an automated pro-

cess based on video data have had only limited success: they can differentiate

wakefulness from sleep but have no power to detect REM versus NREM (Pack

et al., 2007). Nevertheless, subtle, if noisy, signal does exist in the data as shown

in Figure 1.2 and there is hope that more sophisticated methods will be able to

accomplish this discrimination.

7.1.1 Data Collection

One inbred strain of male mice was used in this study: C57BL/6J (n=8), age: 10-12

weeks, weight: 18-23 gm., purchased from Jackson Laboratory, Inc. (Bar Harbor,

ME). Mice were individually housed in Plexiglas cages (4” wide x 8” long x 12” high)
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and maintained on a 12-hour light/dark cycle (lights on 0700; 80 Lux at the floor of

the cage) in a sound attenuated recording room, temperature 22-24 ◦C. Food and

water were available ad libitum. Animals were acclimated to these conditions for

10-14 days before beginning any studies. All animal experiments were performed in

accordance with the guidelines published in the NIH Guide for the Care and Use of

Laboratory Animals and were approved by the University of Pennsylvania Animal

Care and Use Committee.

Mice were implanted with EEG/EMG electrodes under deep anesthesia (i.p.

injection of Ketamine (100 mg/kg)/Xylazine (10 mg/kg)). For EEG recordings,

three stainless steel miniature screws (0-80 x 1/16, Plastics One, Inc., Roanoke,

VA) were placed epidurally in the following locations: (1) right frontal cortex (1.7

mm lateral to midline and 1.5 mm anterior to Bregma), (2) right parietal cortex

(1.7 mm lateral to midline and 1 mm anterior to lambda), and (3) a reference

electrode over the cerebellum (1 mm posterior lambda on the midline). Two EMG

electrodes were sutured onto the dorsal surface of the nuchal muscles immediately

posterior to the skull. All leads from the electrodes were connected to an 8-pin

plastic connector/pedestal (Plastics One, Inc., Roanoke, VA) and then bonded to

the skull with dental acrylic. After the bonding agent cured, the animals were

connected to our signal amplifier system using a connecting cable and swivel-contact

(Plastics One, Inc., Roanoke, VA) mounted above each cage. All mice had a 10-14

day post surgery recovery and habituation period before beginning any recording.
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EEG and EMG signal were amplified using the Neurodata amplifier system

(Model M15, Astro-Med, Inc., West Warwick, RI). Signals were amplified (2000x)

and conditioned using the following settings for EEG signals: low cut off frequency

(-6dB), 0.3 Hz and high cut-off frequency (-6dB), 30 Hz; for EMG signals: low cut-

off frequency (-6dB), 10 Hz and high cut-off frequency (-6dB), 100 Hz. Signals were

digitized at 100 Hz. All data were acquired and analyzed using Gamma software

(Astro-Med, Inc., West Warwick, RI) and converted to European Data Format

(EDF) for manual scoring and analysis in the Somnologica science software (Embla,

Inc., Denver, CO).

WAKE, NREM, and REM sleep were manually scored in 10-second epochs dur-

ing 24-hour baseline recordings. Stages were determined as follows: epochs were

scored as wake when the EMG amplitude ranged from activity slightly higher than

baseline during quiet wakefulness to higher amplitude activity during exploratory

behavior. EEG amplitude was low with frequencies mostly above 10 Hz. NREM

was characterized by high amplitude delta (1-4 Hz). EMG was constant with low

amplitude activity. REM was characterized by low amplitude rhythmic theta waves

(6-9 Hz) with the EMG remaining at baseline levels.

Twenty-four hours of data divided into 10-second epochs implies 8,640 epochs for

each of the eight mice1. Thus, we have a total of 69,120 epochs manually scored as

REM, NREM, or WAKE by trained technicians examining EEG and EMG waves.

1Our mice are named M1, M2, ..., M9. M7 died after surgery and therefore we do not have
data for him, thus bringing the total number of mice to eight.
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Figure 7.1: One frame of video data with an ellipse imposed by the tracking pro-
gram that is used to calculate size, aspect ratio, and velocity of the mouse. Subtle
differences between the three states can be detected visually suggesting some hope
for the endeavor of automated sleep scoring.

In addition to this, we have video recordings captured at 10 frames per second.

Thus, for a given epoch, there are 100 corresponding frames of video data, an

example of which is given in Figure 7.1. Tracking software is used to calculate six

numerical features Xt: the within-epoch mean and standard deviation of velocity,

aspect ratio, and size of the mouse (where the mouse is approximated by a tracking

ellipse). For velocity and size, we used the natural logarithms of the means and

standard deviations rather than the raw ones as covariates. We also had one binary

feature which indicates whether or not the light in the cage was turned on (lights

were on from 7AM - 7PM).
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Table 7.1: Summary Statistics By Sleep State

Sleep Fraction Number Average
State of Time of Bouts Duration
NREM 44.00% 1,998 15.19
REM 4.83% 451 7.39
WAKE 51.17% 1,904 18.53

Table 7.2: Summary Statistics By Conditional Sleep State

Sleep Fraction Number Average
State of Time of Bouts Duration
NREM->REM 4.87% 446 7.45
WAKE->REM 0.01% 5 1.80
REM->NREM 3.10% 101 20.90
WAKE->NREM 41.35% 1,895 14.88
NREM->WAKE 48.08% 1,548 21.18
REM->WAKE 2.59% 350 5.04

7.2 Exploratory Data Analysis

7.2.1 Introduction

In Figure 1.2, we presented evidence that there was some marginal signal in Xt

useful for predicting the three classes of Yt. In this section, we continue exploring

our data but focus on the Yt themselves. To give an overall sense of the data, we

first computed some summary statistics for the three sleep states (REM, NREM,

and WAKE) and present them in Table 7.1. As mentioned above, REM sleep is

a very rare state occupying less than 5% of all epochs. Furthermore, it has many

fewer bouts and a lower average bout duration.
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Taking inspiration from the distinction between a GMM and a TDGMM, we

computed the same set of summary statistics across all mice for the three sleep

states conditional on the previous state. These are given in Table 7.2 and reveal

some interesting differences. For REM, almost all of the bouts come from NREM.

This is actually a biological necessity as transitions from WAKE to REM are more

or less impossible2. For NREM, the bouts seem to be longer when entered into from

REM as opposed to WAKE whereas WAKE bouts tend to be longer when entered

into from NREM rather than REM.

Since these summary statistics suggest a difference in state duration depending

on the previous state, we examined the entire distribution of bout durations condi-

tional on the previous state via Q-Q plots. In Figure 7.2, we show the Q-Q plots for

the three states along with null bands formed by taking non-parametric bootstrap

samples which permute the true labels. As can be seen, for REM and WAKE (i.e.,

the upper left and lower left plots), the black Q-Q lines depart from the gray regions

for large portions of the plot allowing us to reject the null hypothesis of same bout

duration regardless of the previous state. For NREM, the Q-Q line teeters on the

edge of the null bands and even departs from it briefly thus suggesting the null

hypothesis is false.

Another feature evident in these plots is the length of the bout durations, with

2They are indicative of sleep disorders, incorrectly scored epochs, or are so-called DREM bouts.
DREM is a direct transition from WAKE to REM that occasionally occurs in wildtype mice. Such
episodes occur almost exclusively during the lights on period and are the result of brief awakenings
interrupting a sustained period of REM sleep (Fujikia et al., 2009).
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Figure 7.2: Bout duration Q-Q plots for each sleep state conditional on the previous
state. The Q-Q line is given in black and the y=x line in red. The gray region
represents null bands formed from non-parametric bootstrap samples which permute
the true labels.

155



some bouts lasting many times the length of the mean durations presented in Tables

7.1 and 7.2. In fact, mouse sleep bout durations are distributed according to a ”spike

and slab” distribution which feature (i) most of the probability mass at one or two

epochs and (ii) long right tails (McShane et al., 2010). These features actually

make the summary statistics presented in Tables 7.1 and 7.2 misleading (or at least

highly variable) because they (in particular, the number of bouts and average bout

duration) can be tremendously influenced by one or two aberrantly long bouts.

Thus, the Q-Q approach presented here is much more appropriate.

7.2.2 Mouse-to-Mouse Variation

The conditional approach appears to be superior to the unconditional approach.

However, the plots we considered combined data for all mice. It is possible that the

mice themselves display vastly different behavior and that this could be the cause

of the results above. In order to see whether this was the case, we made Q-Q plots

for each mouse against each other mouse for each of the six conditional states listed

in Table 7.2. For reasons of space, we do not include all such plots; however, we

show them for mice one, three, and nine for every state (except, for obvious reasons,

REM from WAKE) in Figures 7.3, 7.4, 7.5, 7.6, 7.7.

Generally, the null hypothesis of equal bout duration distributions cannot be

rejected. While the black lines occasionally depart from the gray null regions, these

departures tend to be rare. This fact also held up when looking at the plots for all
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Figure 7.3: NREM->REM bout duration Q-Q plots for three mice. The Q-Q line
is given in black and the y=x line in red. The gray region represents null bands
formed from non-parametric bootstrap samples which permute the true labels.
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Figure 7.4: REM->NREM bout duration Q-Q plots for three mice. The Q-Q line
is given in black and the y=x line in red. The gray region represents null bands
formed from non-parametric bootstrap samples which permute the true labels.
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Figure 7.5: WAKE->NREM bout duration Q-Q plots for three mice. The Q-Q line
is given in black and the y=x line in red. The gray region represents null bands
formed from non-parametric bootstrap samples which permute the true labels.
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Figure 7.6: NREM->WAKE bout duration Q-Q plots for three mice. The Q-Q line
is given in black and the y=x line in red. The gray region represents null bands
formed from non-parametric bootstrap samples which permute the true labels.
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Figure 7.7: REM->WAKE bout duration Q-Q plots for three mice. The Q-Q line
is given in black and the y=x line in red. The gray region represents null bands
formed from non-parametric bootstrap samples which permute the true labels.
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eight mice: the general pattern was that the null hypothesis of equal bout duration

distributions for various mice-conditional state combinations could not be rejected.

There were some exceptions: mouse five, for instance, seemed to display vastly

different behavior for several conditional states. However, since the general pattern

was equality of distribution, we assume it for the remainder of this chapter. An

interesting direction for future research would be to allow for heterogeneity among

mice in terms of these duration distributions.

7.2.3 Fitting Distributions

In order to use a TDGMM, we must first fit distributions to the bout duration

sequences. Since the various mice appear to have relatively similar conditional state

bout duration distributions, we can combine data across mice in order to do this. We

first start with the simplest possible distribution: the geometric (all distributions

considered in this section are shifted to have support on 1, 2, ...). We again use

Q-Q plots to assess the quality of the fit, this time providing null bands based on

the parametric bootstrap. Each distribution is fit using the maximum likelihood

estimate and then repeated bootstrap samples are drawn from that distribution

using the MLE as a plug-in estimate.

Geometric fit results are shown in Figure 7.8. As can be seen, the geometric

seems to provide quite a good fit for both NREM states. However, it is woefully

inadequate for REM and WAKE. For REM, the empirical bouts are in general much
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Figure 7.8: Q-Q plots for Geometric Distribution Fits to the Conditional States.
The Q-Q line is given in black and the y=x line in red. The gray region repre-
sents null bands formed from parametric bootstrap samples based on the maximum
likelihood estimate.
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shorter than the theoretical ones obtained from resampling based on the MLE. On

the other hand, for both WAKE states, the opposite is true: the geometric cannot

accommodate the long bouts observed in practice.

Since the geometric is incapable of fitting these distributions, we consider two

generalizations of it: the negative binomial distribution and the beta geometric

distribution. The former generalizes the geometric as a sum of an arbitrary num-

ber of geometrics whereas the latter adds heterogeneity by forming a mixture of

geometrics (with the beta distribution providing the mixture distribution).

We begin with the NBD fits in Figure 7.9. Not surprisingly, the NBD fits the

NREM states well because it generalizes the geometric and the geometric fit them

well. It also, however, fits REM surprisingly well. Again, the theoretical quantiles

are a bit larger than the empirical ones but they are now within the range of

sampling variability. However, the two WAKE states are still off: the NBD does

not accommodate the long bouts observed in practice.

The beta geometric fits are given in Figure 7.10. Unfortunately, the beta geo-

metric does not provide particularly good fits to the data.

Finally, we consider a more complicated generalization of the geometric (which

also generalizes both the NBD and the beta geometric), the beta negative binomial

distribution. This distribution generalizes the geometric both with a beta mixture

distribution on the underlying parameter and by allowing for an arbitrary sum. The

results are shown in Figure 7.11 and appear somewhat promising. The REM and
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Figure 7.9: Q-Q plots for Negative Binomial Distribution Fits to the Conditional
States. The Q-Q line is given in black and the y=x line in red. The gray re-
gion represents null bands formed from parametric bootstrap samples based on the
maximum likelihood estimate.
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Figure 7.10: Q-Q plots for Beta Geometric Distribution Fits to the Conditional
States. The Q-Q line is given in black and the y=x line in red. The gray re-
gion represents null bands formed from parametric bootstrap samples based on the
maximum likelihood estimate.
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Figure 7.11: Q-Q plots for Beta Negative Binomial Distribution Fits to the Con-
ditional States. The Q-Q line is given in black and the y=x line in red. The gray
region represents null bands formed from parametric bootstrap samples based on
the maximum likelihood estimate.
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NREM plots seem to fit reasonably well. The WAKE plots are hard to examine

due to scale issues: there are mismatches between the maximum empirical and

maximum theoretical observations.

Now, technically, none of these distributions other than the geometric can be

accommodated by our framework. The TDGMM requires duration distributions

with either finite support or geometric tails beyond some threshold value. Hence,

since the beta negative binomial seemed to provide the best fits, we consider using

this as the base distribution as in Simulation D (see Equations 6.1.1 and 6.1.2).

The first step in this process was to provide a definition for the ”tail” of the

distribution. We did this based on empirical quantiles and fit the beta negative

binomial distribution with geometric tails for tail definitions of 50%, 60%, 70%, 80%,

90%, 95%, and 99%. After examining the Q-Q plots, we chose the tail definition

of 95% for both NREM->REM and WAKE->REM, 50% for REM->NREM, 90%

for WAKE->NREM, and 99% for both NREM->WAKE and REM->WAKE states

(the empirical quantiles were 16, 2, 14, 38, 352, and 99 respectively).

These fits are shown in Figure 7.12. As can be seen, this distribution appears

to fit all six conditional states quite well, with all Q-Q lines staying within the

gray null region. As a final consideration, we provide the same plot again, however,

only plotting durations less than or equal to ten epochs in Figure 7.13. That is,

we zoom in on the short bouts allowing us to examine the ”spike” part of the

distribution (McShane et al., 2010). As can be seen, the beta negative binomial
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Figure 7.12: Q-Q plots for Beta Negative Binomial Distribution with Geometric
Tail Fits to the Conditional States. The Q-Q line is given in black and the y=x line
in red. The gray region represents null bands formed from parametric bootstrap
samples based on the maximum likelihood estimate. The black horizontal and
vertical lines show the tail cut-off.

169



2 4 6 8 10

2
4

6
8

10

Zoomed BNBD + Geom Tail (95%) QQ Plot: NREM−>REM

Theoretical Quantile

E
m

pi
ric

al
 Q

ua
nt

ile

2 4 6 8 10

2
4

6
8

10

Zoomed BNBD + Geom Tail (95%) QQ Plot: WAKE−>REM

Theoretical Quantile

E
m

pi
ric

al
 Q

ua
nt

ile

2 4 6 8 10

2
4

6
8

10

Zoomed BNBD + Geom Tail (50%) QQ Plot: REM−>NREM

Theoretical Quantile

E
m

pi
ric

al
 Q

ua
nt

ile

2 4 6 8 10

2
4

6
8

10

Zoomed BNBD + Geom Tail (90%) QQ Plot: WAKE−>NREM

Theoretical Quantile

E
m

pi
ric

al
 Q

ua
nt

ile

2 4 6 8 10

2
4

6
8

10

Zoomed BNBD + Geom Tail (99%) QQ Plot: NREM−>WAKE

Theoretical Quantile

E
m

pi
ric

al
 Q

ua
nt

ile

2 4 6 8 10

2
4

6
8

10

Zoomed BNBD + Geom Tail (99%) QQ Plot: REM−>WAKE

Theoretical Quantile

E
m

pi
ric

al
 Q

ua
nt

ile

Figure 7.13: Zoomed Q-Q plots for Beta Negative Binomial Distribution with Ge-
ometric Tail Fits to the Conditional States. The Q-Q line is given in black and
the y=x line in red. The gray region represents null bands formed from parametric
bootstrap samples based on the maximum likelihood estimate. The black horizontal
and vertical lines show the tail cut-off.
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distribution with a geometric tail does quite well on the spike: the black Q-Q lines

are contained fully within the null regions. Hence, we can conclude this distribution

provides an adequate fit and we use it for our TDGMM.

7.3 Methods Considered

7.3.1 Competing Methods

As discussed in Chapter 2, there are a variety of approaches used to fit sequential

time series data. Here, we briefly go over the methods we apply to the sleep data.

Since the PrAGMaTiSt is a hybrid machine learning / Markov model approach,

we first consider its two isolated components: standard machine learning methods

and stand-alone Markov models. The non-sequential machine learning procedures

we consider are logistic regression, Random forests, AdaBoost, LogitBoost, bagged

classification trees, and bagged probability trees. These methods ignore the sequen-

tial nature of the data and therefore we expect them to perform poorly because they

lack the power to take advantage of correlations that exist among nearby Yt and

Xt. We also fit standard generative Markov models, implemented as both an un-

constrained multivariate Gaussian and as a three-component mixture of Gaussians

with covariance matrices constrained to be diagonal. These methods should also

perform poorly but for the opposite reason: though they take the time series nature

of the data into account, they will be unable to capture the complex structure of the
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conditional covariate distributions (i.e., the multidimensional µi cannot be modeled

as a simple distribution).

We also consider a variety of methods which have been proposed for sequential

data. Since these methods have been applied with success to a variety of tasks such

as part-of-speech tagging, text-to-speech mapping, biological sequence analysis, and

information extraction from web pages, they may indeed perform well on sleep data.

The principle method we consider are CRFs implemented in the same two ways as

in Chapter 6. Again, in a standard implementation, CRFs are a linear method

and we would not expect them do well in the noisy, non-linear setting of sleep

behavior in mice. Higher order terms can be added to the feature space of CRFs to

capture non-linearities. However, this augmentation strategy vastly increases the

dimensionality of the parameter space (sometimes even to the point that the model

cannot be estimated) and risks over-fitting to extreme probabilities. Thus, we also

consider the TreeCRF approach.

For the linear MALLET CRF, we used the default parameter settings and

trained the CRF three times: once using the data described above, once augmenting

the data to form a response surface of order two, and once augmenting the data to

form a response surface of order three. TreeCRF requires discrete data. We binned

our data using normal quantiles for each feature; bin numbers considered were 5,

10, 25, and 100. TreeCRF also has a number of leaves parameter which we set to

8, 16, 32, 64, 128, and 256. For brevity, only the subset of the TreeCRF results
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which showed the best performance are given, so that the results shown represent

the best-case scenario for this method.

7.3.2 PrAGMaTiSt

Sequential classification and class probability estimation procedures, such as the

neural networks used in Smyth (1994), are known for producing probability esti-

mates close to zero or one. In many applications, such as the original one of signal

failure detection, overfit conditional class probability estimates are not problematic

since the true conditional class probabilities P(Yt|X1:T ) are often close to zero or one

(that is, the signal is strong). In these settings, combining machine learning meth-

ods with an Markov model for time dependence serves to locally smooth conditional

class probability estimates.

Many applications have much more noise. Sleep stages, as noted earlier, are

hard to classify even with EEG/EMG data. Consequently, over-fit estimates of the

conditional class probabilities that are driven to the 0/1 boundary will be insen-

sitive to the remaining, less influential local time series dependence in the data.

This problem is compounded by the fact that transitions between states are quite

frequent in mouse sleep. Mice transition between sleep states on average 550 times

per day (i.e., about 4-10% of all epochs). We therefore rely on the Random for-

est procedure that is known to produce reasonably-calibrated probability estimates

(Bostrom, 2007, 2008), which will form a more effective combination with the time
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series dependence in the data.

We combine the Random forest with the TDGMM as discussed above. In par-

ticular, we estimate each conditional state duration distribution as beta negative bi-

nomial with geometric tail where the definition of the tail depends on the state. We

also combine the Random forest with an first order Markov model since, in Chapter

6, we saw that sometimes the mis-specified first order model can outperform more

complicated models even when the latter are correct. We omit consideration of

the GMM since Figure 7.2 showed that the states had duration distributions which

differed depending on the previous state.

We prefer the proposed PrAGMaTiSt methodology to the three broad classes

of methods–standard machine learning algorithms, generative Markov models, and

sequential machine learning methods like CRFs–for several reasons. Our method

should be superior to standard machine learning algorithms since it updates them

with information about the sequential nature of the problem. It should also out-

perform generative Markov models because it does not make covariate emission

distribution assumptions which are likely to be false in practice.

We have several reasons to prefer the PrAGMaTiSt to other sequential machine

learning methods like CRFs. First, the generative or ”emission” assumptions of the

Markov model are quite natural for our particular application. That is, it is natural,

for example, to assume that a mouse ”emits” a velocity based on its current sleep

stage. While generative models can often be inferior to discriminative ones, this is
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a setting where the generative approach is appropriate (and we get the benefits of

discrimination via the Random forest). In addition, the classification boundaries in

this application are highly non-linear, a drawback for standard CRFs, though tree-

trained CRFs as well as our procedure based on Random forests should adequately

handle non-linearities.

Our general Markov modeling approach is also naturally generalizable to higher

order Markov chains, variable length Markov chains, and generalized Markov Mod-

els. Hence, we can accommodate complicated dependence patterns in the Yt that

CRFs cannot. We saw this was important in Simulations 1C, 1D, 2C, and 2D and

have reason to believe it is important for the sleep application.

7.4 Evaluation Criteria

We evaluate the various methodologies by training on the full set of time-points from

one mouse and then testing our classifications on the full set of time-points from

every other mouse. This validation scheme is designed to match the experimental

situation, in which a model would be trained on time segments for one (or more)

mouse and used completely out of sample on data obtained from different mice. Of

course it is possible to train on randomly selected subsets of data (ideally, blocked

subsets) from one mouse and test on hold out subsets reserved from the same mouse.

The comparative performance of ”same mouse but out-of-sample” is much better,

but also irrelevant to the scientific enterprise.
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There are only 8 mice in the data set. However, we train on one, fit to the

other seven, and then repeat this procedure over all eight mice yielding nearly

500,000 out of sample epochs. Thus, all results presented are statistically significant

under the standard multinomial models, even though these models do not apply in

the presence of strongly autocorrelated time series data. Consequently, we do not

provide standard errors because it is not clear what the probability model is for the

test statistic.

The EEG/EMG-based manual scoring of these eight mice is the ”gold standard”

for classification. There is an issue with internal inconsistency of manual scoring:

classifications from different scorers agree in only about 92% of the epochs. Never-

theless, any model classifications which did not substantially match manual scoring

would not be considered useful by sleep researchers. In addition to this overall

error rate, we also consider the false positive and false negative rate for the rare

and important REM state which is of special interest to sleep researchers. They

prefer a low REM false negative rate but can tolerate a high REM false positive

rate because there are so few REM epochs.

A second way we evaluate our predictions is by comparing the fitted duration

distributions to the actual ones. This is important because sleep researchers are

sometimes interested in estimating the parameters of these distributions and seeing

how they vary across mice (McShane et al., 2010). In this case, fitting the distribu-

tions well is what is important, even if the epoch-by-epoch classifications themselves
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are not particularly accurate. We did this via χ2 goodness-of-fit statistics. First,

we formed bins for each of the six conditional states based on the empirical dis-

tributions. We started with a single bin for durations of length one and added

individual durations until the bin had greater than 5% of the empirical bouts in it.

We iterated this process ensuring that all bins (including the terminal bin) had 5%

or more data.

As an example, consider the state NREM->WAKE. 44.83% of the empirical

NREM->WAKE bouts were of length one hence this became its own bin. Likewise

19.57% and 6.13% were of length two and three epochs respectively thus leading

to those durations being their own bins. 5.81% of empirical bouts had duration of

either four or five epochs thus defining the fourth bin. 5.56% had durations of six,

seven, eight or nine epochs yielding the fifth bin. 5.04% had durations between ten

and twenty-three epochs and 5.10% were between twenty-four and sixty-five epochs

yielding the sixth and seven bins respectively. Finally, the last 7.95% of epochs

were sixty-six epochs or longer in duration thus defining the terminal bin.

For each of the eight mice, we fit the model. We then computed the observed

empirical duration distributions and fitted durations distributions on the other seven

mice for each of the six conditional states. From these fits and the bins described

above, we obtained six χ2 statistics (one for each conditional state). We averaged

each of these six across the eight mice used to fit the model yielding six average χ2

statistics per method considered.
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Figure 7.14: Error Rates for Various Methods. The black horizontal lines indicate
the mean across all methods and the black vertical lines denote ±1 standard error.
Random forests error rates are given in green, Random forests with Markov model
in blue, and Random forests with TDGMM in red.

These two sets of metrics, the three error rates and the six χ2 statistics, allow

us to evaluate the various methods ”locally” and ”globally”. The error rates show

how well the methods perform on an epoch-by-epoch basis, something which is

important for replicating EEG/EMG-based manual scoring. On the other hand,

the χ2 statistics show how the methods perform in terms of fitting the entire curve

of duration distributions, a task also relevant for sleep scientists and one that does

not necessarily require good fits on an epoch-by-epoch basis.

7.5 Results

The three error rates for the various methods on held-out epochs are presented

in Table 7.3 and Figure 7.14. This table reveals what is already well known to
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Table 7.3: Error Rates for Various Methods

Method Overall REM False REM False
Error Positive Negative

RF 0.161 0.779 0.910
RF + MM Mode 0.237 0.872 0.605
RF + TDGMM Mode 0.233 0.857 0.543
Logistic Regression 0.149 0.723 0.953
LogitBoost 0.205 0.860 0.869
AdaBoost 0.169 0.787 0.908
Bagged Classification Trees 0.152 0.749 0.934
Bagged Probability Trees 0.151 0.756 0.934
Gaussian Markov Model 0.262 0.865 0.571
Mixture Markov Model 0.242 0.859 0.568
TreeCRF: Bins=5, Leaves=32 0.172 0.863 0.867
TreeCRF: Bins=5, Leaves=64 0.175 0.872 0.878
TreeCRF: Bins=10, Leaves=32 0.173 0.853 0.882
TreeCRF: Bins=10, Leaves=64 0.169 0.847 0.893
MALLET CRF 0.151 0.639 0.852
MALLET CRF Order 2 0.175 0.784 0.802
MALLET CRF Order 3 0.187 0.793 0.785
40 Second Rule 0.146 NA NA
Gold Standard EEG ≈0.080 NA NA

sleep scientists: REM is very difficult to classify correctly, with high false positive

and false negative rates across all methods relative to the overall error rates. The

challenge here is to discover a method which has power to detect REM sleep, a task

which sleep scientists believed to be impossible through video analysis alone.

Our methodology (RF + MM and RF + TDGMM) is competitive at the overall

classification task. More importantly, we see dramatic improvement over other

methods in terms of false negative predictions for the REM state. By accounting

for the local time-series dependence of the data, our procedure is able to capture
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a much greater proportion of the subtle REM signal. Furthermore, as shown in

Figure 7.14, our procedure retains a reasonable false positive rate relative to the

other methods, suggesting that specificity is not being sacrificed in order to gain

substantial improvements in sensitivity. In fact, there is a dramatic improvement

in REM false negative rates obtained by moving from the standard Random forest

to the random-forest trained Markov model; the benefits of moving from the first

order Markov model to the TDGMM are modest but certainly non-trivial.

One interesting result is the performance of the so called ”40-second Rule”,

prominent in the sleep literature (Pack et al., 2007). The 40-second Rule considers

a mouse inactive in a given 10s epoch if the mean intra-epoch velocity is less than

3 pixels/second and rules a mouse asleep when there are four or more consecutive

inactive epochs. The 40-second Rule does not distinguish between REM and NREM

sleep. For ease of comparison, all epochs classified as sleep by this method were

labeled as NREM. Thus, the 40-second Rule is not applicable to REM detection

at all. On the other hand, this simple rule has the best overall error rate. This

suggests that methods which simply ignore the REM state can do very well on the

overall error rate even though they perform dreadfully on the state of most interest

to sleep researchers.

We evaluate the distributional fits on held-out data in Table 7.4 and Figure

7.15. Here the advantage of the TDGMM over the first order Markov model be-

comes more apparent: the TDGMM tends to provide dramatic improvement in the
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Table 7.4: χ2 Goodness of Fit Statistics for Various Methods

Method NREM-> WAKE-> REM-> WAKE-> NREM-> REM->
REM REM NREM NREM WAKE WAKE

RF 335.4 4.1 88.2 543.2 89.4 18.5
RF + MM 208.7 44.8 18.5 112.4 369.2 135
RF + TDGMM 209.9 4.7 19.3 71.6 164.5 40.5
Logistic Regression 108.8 2.4 45.5 421.1 93 41.7
LogitBoost 900.1 7.6 161.3 1049.7 181.4 83.3
AdaBoost 238.1 5.3 72.1 520.1 91.9 32.2
Bagged Classification Trees 121.9 2.5 64.6 487.3 95.6 24.5
Bagged Probability Trees 131.6 2.2 61.9 478.6 95.7 22.6
Gaussian Markov Model 177.5 10.4 18.5 81.4 206.5 71.8
Mixture Markov Model 143.5 9.8 19.9 156.8 174.4 72
TreeCRF: Bins=5, Leaves=32 52.5 6.7 20.1 71.8 241.1 97.2
TreeCRF: Bins=5, Leaves=64 50.6 6.2 21.9 61.1 228.9 96.4
TreeCRF: Bins=10, Leaves=32 36.5 7.2 23.1 65.5 273.4 106.8
TreeCRF: Bins=10, Leaves=64 35 8.8 22.1 77.4 272.6 95.9
MALLET CRF 125.2 2.9 13.6 122.3 213.8 52.4
MALLET CRF Order 2 119.8 5.5 16.6 93 160.4 49.6
MALLET CRF Order 3 111.8 5 18.2 86.2 206.8 62
40 Second Rule NA NA NA 125.7 1408.4 NA
Gold Standard EEG NA NA NA NA NA NA

NREM−>REM WAKE−>REM REM−>NREM WAKE−>NREM NREM−>WAKE REM−>WAKE

0
20

0
40

0
60

0
80

0
10

00

Chi−Square Statistics: Contemporaneous Covariates

●

●

●

●

●

●●

●

●

●●

●

●

●●
●●

●●●

●

●
●●●●●●●●●●●●●●●●●●

●

●●●
●●●

●

●●●

●●●●●●●●●

●

●
●

●

●

●●

●

●

●●

●

●

●●●
●

●
●● ●

●

●

●

●

●●

●

●●●

●

●

●●

●●

●

●

●

●

●●

●●●●

●

●●●

●●
●●●●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

Figure 7.15: χ2 Statistics for Various Methods. The black horizontal lines indicate
the mean across all methods and the black vertical lines denote ±1 standard error.
Random forests is given in green, Random forests with Markov model in blue, and
Random forests with TDGMM in red.
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χ2 goodness-of-fit statistic relative to the simpler model. Thus, the more compli-

cated distribution information captured by a TDGMM really does matter quite

considerably for this more ”global” task. Figure 7.15 prominently shows another

feature of the TDGMM approach: it is consistently near or better than the mean

performance for all six states. No other method is able to do this. All seem to

provide good fits to one or two states at the expense of the other states. Hence, our

method is quite successful.

7.6 Results: Augmented Covariates

One principal advantage of standard machine learning methods, CRFs, and our

discriminatively-trained Markov models had over standard Markov models was the

ability to introduce sliding-window and long-distance features into the covariate

space in a natural way. In this section, we explore whether such features are helpful

here and how they affect the relative performance of the various methods.

The standard covariates consist of six continuous variables (means and standard

deviations of intra-epoch velocity, aspect, ratio and size; log mean and log standard

deviation for velocity and size) and one binary feature (whether or not the light in

the cage is turned on or off). To this space, we added twelve additional covariates:

forward moving averages of order ten and backward moving averages of order ten of

each of the six continuous covariates. These features should be helpful particularly

to the non-sequential methods because they will allow them to capture some of the
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Table 7.5: Error Rates for Various Methods Using Augmented Covariates

Method Overall REM False REM False
Error Positive Negative

RF 0.131 0.641 0.869
RF + MM Mode 0.260 0.833 0.320
RF + TDGMM Mode 0.235 0.819 0.328
Logistic Regression 0.126 0.542 0.782
LogitBoost 0.172 0.736 0.784
AdaBoost 0.135 0.626 0.826
Bagged Classification Trees 0.126 0.723 0.943
Bagged Probability Trees 0.126 0.709 0.948
Gaussian Markov Model 0.218 0.764 0.590
Mixture Markov Model 0.234 0.841 0.472
TreeCRF: Bins=5, Leaves=32 0.140 0.741 0.862
TreeCRF: Bins=5, Leaves=64 0.138 0.741 0.876
TreeCRF: Bins=10, Leaves=32 0.139 0.702 0.893
TreeCRF: Bins=10, Leaves=64 0.140 0.729 0.905
MALLET CRF NA NA NA
MALLET CRF Order 2 NA NA NA
MALLET CRF Order 3 NA NA NA
40 Second Rule 0.146 NA NA
Gold Standard EEG ≈0.080 NA NA

time series structure in the Yt via nearby Xt (note, MALLET would not run on this

higher-dimensional dataset).

The three error rates for the various methods trained on the augmented covari-

ate space are presented in Table 7.5 and Figure 7.16. All methods demonstrate

improvement to some degree.

Our RF + TDGMM is particularly interesting. It has an approximately equiva-

lent overall error rate compared to when it was fit using only the standard covariates.

However, the REM false negative rate has dramatically improved with even a small
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Figure 7.16: Error Rates for Various Methods Using Augmented Covariates. The
black horizontal lines indicate the mean across all methods and the black vertical
lines denote ±1 standard error. Random forests error rates are given in green,
Random forests with Markov model in blue, and Random forests with TDGMM in
red.

decrease in REM false positive rate. It is rare for a method to yield improvements

in both the false positive and negative rates for a class. Interestingly, with the

augmented covariates, the TDGMM and first order Markov model perform simi-

larly on the two REM rates suggesting that, whatever longer-term information is

provided by the TDGMM’s beta negative binomial distribution, it can be more or

less captured via local covariates and a simple first order Markov model geometric

distribution, at least for REM; the better performance of the TDGMM on the over-

all error rate demonstrates that this is not necessarily the case for the other two

states. This makes good sense since REM is by far the shortest duration state.

Also, with the augmented covariates, several methods beat the 40-second rule

on overall error rates, even coming fairly close to the EEG error rates. While this
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Table 7.6: χ2 Goodness of Fit Statistics for Various Methods Using Augmented
Covariates

Method NREM-> WAKE-> REM-> WAKE-> NREM-> REM->
REM REM NREM NREM WAKE WAKE

RF 189.9 2 54.7 104.4 37.7 10.7
RF + MM 271.6 23.1 31.8 152.9 287 191.1
RF + TDGMM 299.2 5 32.1 143.9 259.6 96.5
Logistic Regression 226.7 3.4 28.6 280.6 31.1 90.2
LogitBoost 486.9 3.9 84.9 473 66.3 57.8
AdaBoost 311.6 2.1 61.2 186.9 32.1 18
Bagged Classification Trees 104.1 2.3 44.1 148.7 26.4 29.6
Bagged Probability Trees 99.6 2.2 42.3 155.5 26.2 25.7
Gaussian Markov Model 72.5 2.4 39.2 94.7 165.4 76.9
Mixture Markov Model 150.7 14.3 40.4 80.4 121.9 79.4
TreeCRF: Bins=5, Leaves=32 35.1 5.9 24.5 165.1 74.5 29.9
TreeCRF: Bins=5, Leaves=64 28.7 6.6 21.5 182.4 76.5 35.8
TreeCRF: Bins=10, Leaves=32 32.7 5.6 22.3 187.5 64.5 43.1
TreeCRF: Bins=10, Leaves=64 50.5 3.7 23 170.9 60.7 40.7
MALLET CRF NA NA NA NA NA NA
MALLET CRF Order 2 NA NA NA NA NA NA
MALLET CRF Order 3 NA NA NA NA NA NA
40 Second Rule NA NA NA 125.7 1408.4 NA
Gold Standard EEG NA NA NA NA NA NA

is promising, it is not necessarily helpful for sleep scientists: these methods, like

the 40-second rule, are able to perform so well on the overall error rate largely by

ignoring the REM state and hence demonstrate extremely high REM false negative

rates.

Finally, in Table 7.6 and Figure 7.17, we examine the performance of the various

methods at fitting the full duration distributions. These results are rather less

promising. First, as with the error rates, the first order Markov and TDGMM

variants of the PrAGMaTiSt perform quite similarly. Second, it seems augmenting

the covariate space has actually degraded the predictions of our two methods, at

least in terms of relative performance: rather than performing better than average

across each of the six states, they tend to perform considerably worse than average.
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Figure 7.17: χ2 Statistics for Various Methods Using Augmented Covariates. The
black horizontal lines indicate the mean across all methods and the black vertical
lines denote ±1 standard error. Random forests is given in green, Random forests
with Markov model in blue, and Random forests with TDGMM in red.

In fact, it seems the degradation on the distributional fits is not only relative but

also absolute. For many of the states, the χ2 statistics are worse than those in Table

7.4.

On the other hand, the plain Random forest demonstrates very strong per-

formance, among the best methods for almost every state. In other words, local

Xt seem to serve as a strong proxy for the dependence structure of the Yt, and,

therefore, using standard sequential methods on an augmented covariate space is

a reasonable strategy for this endeavor. Nevertheless, this should be done with

caution as such an approach will tend to ignore the REM state.
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7.7 Variation by Fit Mouse

The error rates and χ2 statistics presented in the previous section were aggregated

across all out-of-sample fit mouse / test mouse combinations. Namely, we trained

on one mouse and fit on all other seven, repeating this procedure over all eight mice

and averaging.

It is interesting to examine, however, how these rates vary by the fit mouse / test

mouse pair. We do this for the RF + TDGMM trained on the original covariates

in Figure 7.18. There are several features of note. First, the in-sample fits are in

general very good. This is a feature of the Random forest base classifier. Second,

when considering overall error rate, some mice seem difficult to predict (e.g., mouse

four) no matter which mouse is used to train the algorithm. Likewise, some mice

are consistently well-predicted (e.g., mice six and nine). Third, when training using

some mice (e.g., mouse four), the error rates for the other mice tend to be on average

lower and less variable.

Similar variation also applies to REM false positive rates. Mouse three appears

difficult to predict and mouse five appears easy predict. However, in general, the

variation for REM false positive is much less dramatic than for overall error or

REM false negative. Furthermore, it does not appear that one fit mouse tends to

dominate the others in terms of average error on the other mice.

For REM false negative rates, there is some systematic difference between easy

and hard to predict mice, but it is much less prominent than for the other two error
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Figure 7.18: Error Rates by Fit Mouse. The first plot gives the overall error rate, the
second the REM false positive rate, and the third the REM false negative rate. The
mouse used to train the RF+TDGMM is given on the x-axis and the appropriate
error when applied to all other mice is plotted on the y-axis.
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rates. The most prominent feature of this plot is the wide variability among test

mice for a given fit mouse. Furthermore, there appears to be a general trend in the

average false positive rate on test mice for a given fit mouse and this general trend

seems to be inversely related to that for the overall error rate. For instance, fitting

with mouse four gives among the lower overall error rates yet among the highest

overall REM false negative rates. Fitting with mouse nine provides the worst overall

error rates but comparably good REM false negative rates.

Similar patterns hold when estimating the RF + TDGMM using the augmented

covariates and are presented in Figure 7.19. A couple of contrasts stand out, how-

ever. The overall error rate and REM false positive rate plots appear to have a

similar level to those using the standard covariates. However, the variability across

test mice for a give fit mouse seems to have increased a bit. On the other hand, the

REM false negative rates have dropped considerably for all mice and there appears

to be starker differences as the fit mouse is varied.

These results suggest that combining models fit on different mice in a hierarchical

fashion might be a useful strategy for future research. If one can adaptively tune the

model to provide fits based on a given training mouse which is ”most like” a given

test mouse, substantial improvements in accuracy could be obtained. Furthermore,

the right training mouse might depend on the goal: for example, for a given test

mouse, it might be optimal to use one training mouse to minimize overall error and

another training mouse to minimize REM false negative rates.
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Figure 7.19: Error Rates by Fit Mouse Using Augmented Covariates. The first plot
gives the overall error rate, the second the REM false positive rate, and the third
the REM false negative rate. The mouse used to train the RF+TDGMM is given
on the x-axis and the appropriate error when applied to all other mice is plotted on
the y-axis.
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7.8 Conclusion

In conclusion, the automated classification of sleep states based on video data is a

difficult task: the Yt are labeled in a noisy fashion, there are complicated dependence

structures in the Yt, the Xt are weak predictors of the Yt for some states, and the

important REM state is not only rare but also similar in terms of Xt to NREM. The

PrAGMaTiSt was able to make dramatic improvements in the REM false negative

rate relative to other methods while retaining reasonable REM false positive and

overall error rates. It also provided among the best fits to the empirical sleep state

duration distributions as evidenced by the χ2 statistics.

However, when an augmented covariate space was considered, the results were

somewhat less promising, particularly on a relative basis. The ”local” evaluation

by error rates remained strong: the REM false negative rate improved substantially

with both a small decrease in the REM false positive rate and no concomitant rise

in the overall error rate. However, the ”global” distributional fits were weaker in

both an absolute and a relative sense.

We also saw that there is considerable variability in the error rates among various

fit mouse / test mouse pairs. While this should not necessarily be surprising as some

mice are more likely to resemble one another than others, the degree of difference

seemed quite large. Furthermore, it seems surprising that some mice were just in

general easier or more difficult to classify regardless of the mouse used to train the

algorithm.
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As a final point, it is not surprising that non-sequential methods have the most

to gain from augmenting the covariate space. However, the relative improvements

of these other methods raises the question of whether more would be gained (i)

by further augmenting the covariate space (either by considering functions of the

current covariates or by obtaining additional ones via higher-resolution cameras, eye

goggles for the mice, or piezo-electric recordings) or (ii) by focusing on modeling

improvements and which of these two broad strategies is more efficient or effective.

Such efforts are currently underway and are proceeding in tandem.
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Chapter 8

Conclusion

8.1 Summation

We have discussed the statistical learning task of classification and its extension

to sequential classification. Standard machine learning methods were considered

as well as strategies for adapting them to the sequential case. Also, some popu-

lar sequential methods were presented. Finally, various difficulties involving class

estimation, conditional class probability estimation, optimizing for arbitrary loss

functions, variable selection, augmented covariates, and computational complexity

have also been presented.

Most notably, we presented the PrAGMaTiSt, our strategy for sequential learn-

ing. Our method adapts non-sequential learning algorithms to account for local

time series dependence. We do this by training a Markov model in a discrimina-
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tive fashion using these base algorithms as an input. This strategy seems effective

despite the fact that many machine learning classification tools are not very good

at giving well-calibrated estimates of the probabilities for each state. Continuing

research into improving the calibration of these probability estimates would provide

further improvement to our methodology.

This methodology overcomes some of the principal disadvantages of standard

first order Markov models. Using our discriminative training formulation, we no

longer have to estimate k p-variate probability distributions. It also allows us to

introduce sliding window and long-term features into the covariate space Xt. Fur-

thermore, it allows us to use any standard classification algorithm to train the

Markov model. Finally, by considering various generalizations of the first order

Markov structure, we can introduce dependence directly into the Yt sequence it-

self, no longer requiring the relationship between Yt and Yt+k to be indirect via

Yt+1, ..., Yt+k−1.

Our Markovian model for the local time dependence is relatively simple and easy

to estimate relative to alternative strategies for modeling time series dependence.

The naive sliding window approach augments the covariate space for each time

period with covariates from the surrounding time periods and then uses conventional

machine learning methods on the augmented set of covariates. However, relative

to our simple Markovian structure, this direct modeling can be extremely difficult

in terms of the number of parameters to estimate, especially since Xt alone will be
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high dimensional in many applications. Furthermore, this strategy can be ineffective

when the dependence among the Yt is not well-captured by neighboring Xt.

By embedding higher order, generalized, and variable length Markov structures

into a first order Markov model, we can directly model very complicated Yt de-

pendence structures in a way that first order Markov models and sequential meth-

ods such as MEMMs and CRFs cannot. Moreover, the embedding allows use of

the forward-backward and Viterbi algorithms. This is absolutely critical to our

endeavor because, otherwise, our model could be specified and estimated but we

would be unable to apply it to test data.

A thorough simulation study revealed some very interesting facts about the per-

formance of various methods, most pertaining to how they perform as the noise level

in Yt|Xt varies. In particular, for very high noise settings, the covariates become

rather useless for prediction and the base rates of the classes yield good classifica-

tions and probability estimates, even in the presence of time series structure. This

has a further implication: since all methods will perform more or less the same in

high noise settings, simple methods will tend to dominate with finite data because

they can provide better estimates. On the contrary, in very low noise settings, all

methods also perform the same regardless of the time series structure because Yt|Xt

puts almost all of its mass on one class. Hence, at the extremes, simple methods,

even ones which lack time series structure, seem best.

The A and B simulations showed that we do not lose much with a moderate
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amount of data if we fit GMMs and TDGMMs when the truth has either no time

series structure or is first order Markov. However, the C and D simulations showed

a contrary result. With sufficient noise, complexity of Yt|Xt, or complexity of the

time series structure, the standard Markov model can perform as well as or even

better than the GMM or TDGMM even when the latter are true. Hence, there is

a delicate tradeoff and sometimes one will want to fit a model which one knows to

be incorrect.

When applied to the classification of the sleep states in mice, our procedure

provides more accurate differentiation of the NREM and REM sleep states compared

to any previous method in the field. The improvements in REM classification

are especially beneficial, as the dynamics of REM sleep are of special interest to

sleep scientists. Furthermore, our procedure provides substantial improvements in

capturing the sleep state bout duration distributions relative to other methods.

However, the improvements were not uniform across all metrics nor were other

methods completely uncompetitive. In particular, when a variant of a sliding win-

dow approach using forward and backward moving averages of the covariates was

used, the PrAGMaTiSt was still quite strong on the ”local” error rate task but

suffered both absolutely and relative to other methods on the task of estimating

sleep state bout duration distributions.
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8.2 Future Research

Future research is proceeding on several fronts, with three main focuses: further

exploration of the methodology as it stands, generalization of the methodology, and

advances specific to sleep science. In terms of exploring the current methodology, a

more elaborate series of simulations that follow an experimental design framework

would be useful. We have started to get at this by varying the noise level, but

there are other aspects of the simulations which would also be worth varying such

as the number of the noise dimensions, the complexity of the underlying conditional

covariate distributions, and the complexity of the time series model. In particular, if

these latter two could be varied in a more ”continuous” fashion, we could conduct

an analysis of variance of our errors in order to determine which aspects of the

simulation were having the largest effects. This may also provide some insight into

whether there are summary statistics which could be calculated from the data in

order to guide whether more complex variants of the model such as the TDGMM or

whether the simpler variants such as the first order one should be used in practice.

Relatedly, it would be useful to understand exactly why the combined true and

estimated models in Simulation 1D performed so poorly, particularly as the noise

level increased. This may provide substantial intuition about the model which would

also be useful for selecting between simpler and more complicated structures.

More advanced studies of computation times particularly relative to other meth-

ods are also worth considering. Anecdotally, all of the computations for our most
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complicated method (i.e., RF + TDGMM) took well under a day when applied to

the mice data. On the other hand, MALLET and TreeCRF, the competitors which

are most similar in the sense that they are sequential methods, each took several

days. Thus, the PrAGMaTiSt provides substantial computational savings as well

as performance enhancements.

There are a number of extensions of the model we are considering. For instance,

a hybrid VLMM/TDGMM approach that uses a VLMM in the ”spike” followed by

a TDGMM in the ”slab” is currently underway. Also, extending our model from

a one-dimensional lattice to two or more dimensions (i.e., from time to space) is

another project under consideration.

We are also interested in shrinkage and hierarchical extensions of our model. For

instance, modeling of the transition probabilities, duration distributions, and con-

ditional class probability functions could be done in a way that pools, for example,

mice together in some hierarchical fashion. This might provide better estimates at

least of the variance of our fits and perhaps of the fit itself.

It would be also be interesting to consider some variations in the Yt and Xt. For

example, it would be useful to extend to cases where the Xt are either measured

with error or, more saliently, when they are set strategically to some levels. Also,

the case where the state space S of the Yt is at least partially unknown would be

interesting to consider (this is, of course, different than the fully unsupervised case).

We are also working on methodology to improve conditional class probability
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estimates (i.e., the non-sequential case); since these estimates feed directly into

our model, improvements in these non-sequential estimates would also improve our

sequential estimates.

Continuing efforts on the sleep application are advancing on two fronts. First,

various devices are being utilized to provide additional covariates which more ac-

curately capture differences among NREM and REM (e.g., heart rates, respiratory

rates, eye movements, etc.). Second, more accurate modeling of the Yt dependence

structure (e.g., VLMM in the ”spike” followed by TDGMM in the ”slab”) may

indeed provide further benefits.

Nonetheless, the PrAGMaTiSt provides a real advance for sequential classifica-

tion. It allows (i) quick and efficient estimation of sequential models that incor-

porate (ii) complex Yt dependencies as well as the benefit of using (iii) any base

classifier. By tying these three features together in a way that preserves their

fundamental independence, our method can directly benefit from advances on any

individual front in a way that standard sequential methods such as CRFs cannot.

As we have seen with both simulated data and sleep data, these advances can yield

tremendous benefit in practice.
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