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Resident plant diversity and introduced earthworms have
contrasting effects on the success of invasive plants
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Abstract Theoretical predictions and empirical

studies suggest that resident species diversity is an

important driver of community invasibility. Through

trait-based processes, plants in communities with high

resident species diversity occupy a wider range of

ecological niches and are more productive than low

diversity communities, potentially reducing the oppor-

tunities for invasion through niche preemption. In

terrestrial plant communities, biotic ecosystem engi-

neers such as earthworms can also affect invasibility

by reducing leaf litter stocks and influencing soil

conditions. In a greenhouse experiment, we simulta-

neously manipulated resident species diversity and

earthworm presence to investigate independent and

interactive effects of these two variables on the

success of several invasive plants. Higher diversity

of resident species was associated with lower biomass

of invasives, with the effect mediated through resident

species biomass. The presence of earthworms had a

strong positive effect on the biomass of invasive

species across all levels of resident species diversity

and a weaker indirect negative effect via decreased

soil moisture. Earthworms also weakened the positive

correlation between resident species diversity and

productivity. We did not observe any interactive

effects of resident species biomass and earthworms on

invasive species success. Partitioning the net biodi-

versity effect indicated that selection effects increased

with resident species diversity whereas complemen-

tarity effects did not. Results suggest that managing

for diverse forest communities may decrease the

susceptibility of these communities to invasions.

However, the presence of introduced earthworms in

previously earthworm-free sites may undermine these

efforts. Furthermore, future studies of plant commu-

nity invasibility should account for the effects of

introduced earthworms.
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Introduction

The ecological consequences and economic impacts

of invasive species have been documented by several

generations of ecologists (Elton 1958; Vitousek et al.

1996; Davis et al. 2000; Pimentel et al. 2005; Gilliam

2007; Thuiller 2007; Corbin and D’Antonio 2012), but

a predictive general synthesis of invasive species

presence across the landscape remains elusive. Under-

standing why some communities are more susceptible

to invasion than others could help inform management

decisions that preempt or reduce the level of invasion

at a given site. This is especially important as the pace

of invasive species spread increases due to climate

change and an expansion of human mobility (Vitousek

et al. 1996; Pyšek et al. 2010), and because post-

invasion control of these species is difficult and

expensive.

Resident species diversity is one site characteristic

predicted to affect the susceptibility of natural com-

munities to invasion by introduced species (Elton

1958; Lodge 1993; Levine and D’Antonio 1999;

Kennedy et al. 2002; Davis et al. 2005; Fridley et al.

2007). Diverse communities are hypothesized to have

greater competition for light, space, and nutrients, and

the theory of fluctuating resources suggests this should

make them less susceptible to invasion (Davis et al.

2000). Whether or not this theoretical prediction is

observed in natural communities is debatable, with

previous studies reporting both negative (Brown and

Peet 2003; Frankow-Lindberg 2012) and positive

relationships (Cleland et al. 2004; Stohlgren et al.

2006) between resident species diversity and invasive

species success. The spatial scale under investigation

also complicates the question of how resident species

richness affects invasibility, resulting in an ‘‘invasion

paradox’’ (Knight and Reich 2005; Fridley et al.

2007). Patterns at the small scale tend to suggest a

negative relationship while at larger scales the oppo-

site may be true (Tilman 1997; Naeem et al. 2000;

Kennedy et al. 2002; Knight and Reich 2005; Esch-

truth and Battles 2009).

Species richness is a potentially important predictor

of invasibility, but it accounts for only a portion of

biological variation in a community (Srivastava et al.

2012). Communities may be composed of close

relatives, distant relatives, or a mixture of the two so

that not all groups of species with equal richness are

functionally equivalent. Communities with high

functional diversity may be able to use resources

more effectively, leaving fewer unfilled ‘‘trait-niches’’

for potential invaders (Davis et al. 2000; Cavender-

Bares et al. 2004; Eisenhauer et al. 2013). In addition,

more functionally diverse communities tend to be

more productive (Cadotte et al. 2008, 2009; Reich

et al. 2012) because the taxa making up the community

collectively capture a greater percentage of resources

over space and time (Hooper et al. 2005), leaving less

opportunity for invaders to establish.

Resident species richness and diversity are not the

only factors determining the success of invasive

species. Abiotic factors such as soil moisture, light

levels, and disturbance also affect where invasive

species are likely to be successful (Huston 2004).

Heterogeneity in these factors may explain why, at

large scales, resident species diversity is often posi-

tively related to invasive diversity (Knight and Reich

2005; Eschtruth and Battles 2009). These site charac-

teristics may be influenced by large-scale environ-

mental conditions and land use history, but can also be

impacted by introduced biotic ecosystem engineers.

Well-documented examples of ecosystem engineers

are reviewed in Crooks (2002) and include the

introduction of nitrogen fixing plants (Vitousek et al.

1987), rooting pigs (Singer et al. 1984), and, in

formerly glaciated regions of North America, invasive

earthworms (Frelich et al. 2006; Hendrix et al. 2008;

Nuzzo et al. 2009). Earthworms cause a well docu-

mented cascade of ecological effects on soil microbial

processes and biomass (Eisenhauer et al. 2011), water

and nutrient cycling, soil structure, and seedbed

conditions (McRill and Sagar 1973; Frelich et al.

2006; Eisenhauer et al. 2009), as well as decreasing

soil moisture by forming preferential flow pathways

(Shipitalo et al. 2004). The overall impact of these

environmental changes is often a decline in diversity

and cover of native plants (Hale et al. 2008) and

potential large-scale ‘‘invasional meltdown’’ scenarios

(Heimpel et al. 2010). Earthworms also influence

community composition and plant demography by

impacting competitive interactions between plant

species in the short term (Wurst et al. 2005; Laossi

et al. 2009) and long term (Laossi et al. 2011).

The overall impact of earthworm invasion depends

on their ecological group, but their combined effects

are significant enough to facilitate subsequent plant

invasions (Eisenhauer et al. 2012a; Frelich et al.

2012). Direct links between earthworms and invasive
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plant abundance have been documented (Heneghan

et al. 2007; Madritch and Lindroth 2009), and

earthworm biomass is positively associated with

invasive plant biomass (Nuzzo et al. 2009). The

effects of earthworms and resident species diversity on

invasive species success have been examined in

isolation (e.g., Fridley et al. 2007; Wurst et al. 2011;

Eisenhauer et al. 2012a) but their combined effects are

only rarely documented (Eisenhauer et al. 2008). Both

influence soil moisture and nutrients, so their com-

bined effects may be additive, synergistic or antago-

nistic. To examine the possible interactive effects of

earthworms and resident plant diversity on invasibil-

ity, we established a greenhouse-based microcosm

experiment to mimic conditions in a temperate North

American mesic hardwood forest community. We

manipulated diversity of the experimental plant com-

munity and also the presence of earthworms to

investigate the following questions: (1) Does

increased resident plant diversity reduce the success

of invaders? (2) Does the presence of earthworms

increase the success of invaders? (3) Do earthworms

and resident species diversity interactively affect the

success of invaders?

Methods

Experimental design

We set up microcosms using PVC tubes with an inner

diameter of 10 cm, an area similar to the foraging zone

of the anecic earthworm species used in this experi-

ment (Nuutinen and Butt 2005), and height of 25 cm.

We taped 5 mm mesh to the bottom of each tube and

added 5 cm of perlite to allow for drainage. A clear

plastic sleeve (10 cm height) was taped to the top of

each pot to prevent earthworms from escaping. The

138 microcosms were then filled to within 3 cm of the

top with sieved and homogenized soil (DeMontreville

loamy fine sand; texture: 69 % sand, 23 % silt, 8 %

clay; pH 5.06) collected from the surface layer of a

nearby mesic hardwood forest. To mimic local

growing season conditions, microcosms were placed

in a greenhouse that was lit and heated with a day/

night regime of 16/8 h and 20/16 �C. While small-

scale microcosm studies are somewhat abstracted

from reality, they provide a unique opportunity to

isolate and explore potential mechanisms that may

operate in nature. Their use in testing hypotheses

related to ecosystem dynamics is well established

(Partsch et al. 2006; Milcu et al. 2011; Eisenhauer

et al. 2012b).

Before establishing the experimental communities

of resident species, we kept the soil moist in the

microcosms for 8 weeks and removed any seedlings

germinating from the seedbank. The resident species

communities consisted of different combinations of six

herbaceous taxa including two legumes (Lathyrus sp.,

Desmodium glutinosum), two graminoids (Carex blan-

da, Elymus hystrix), and two non-leguminous forbs

(Eurybia macrophylla, Asclepias exaltata). These taxa

represent a functional cross section of herbaceous

plants and were selected based on their high frequency

and abundance in a 67-site vegetation field survey in

the Eastern Broadleaf Forest province of Minnesota,

USA (Whitfeld et al. 2013). We germinated the

resident species from local seeds (Prairie Moon

Nursery, Winona, Minnesota, USA) prior to the start

of the experiment. Once established, we transplanted

the seedlings into the microcosms. There was poor

germination for two species (Lathyrus venosus and L.

palustris), and too few seedlings of either species were

available for them to be included individually. The two

species belong to a well supported, recently diverged

clade (*2.5 million years ago) nested within the genus

Lathyrus (Schaefer et al. 2012). We felt justified in

combining them in our analyses based on the assump-

tion of niche conservatism (reviewed in Wiens et al.

2010) and because congeners are likely to be func-

tionally similar with a high probability of being

affected by comparable suites of biotic and abiotic

influences (Gilbert et al. 2012).

Each microcosm contained six seedlings and was

randomly assigned to one of four diversity treatments

(Supplementary Material Table 1). Monoculture treat-

ments contained six seedlings of one species (one

functional group). Two different two-species treat-

ments contained either three seedlings each of two

species from the same functional group or three

seedlings each of two species from different functional

groups. Six-species treatments contained three func-

tional groups, with one seedling per species. To allow

the seedlings to establish in the microcosms, we

maintained them for one month before starting the

experiment.

A 3.5 g leaf litter layer, composed of sugar maple

(Acer saccharum), basswood (Tilia americana), and
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northern red oak (Quercus rubra), collected from the

same site as the soil and cut into pieces 1–2 cm long,

was placed on the soil surface in each microcosm to

simulate conditions in a natural community. We also

added a single specimen of the invasive night-crawler

(Lumbricus terrestris), purchased from Blue Ribbon

Bait and Tackle Shop, Hugo, Minnesota, USA, to half

of the microcosms in each diversity treatment. L.

terretris is a burrowing anecic species that signifi-

cantly impacts the leaf litter and soil processes we

were investigating (Holdsworth et al. 2008). The

earthworms were acclimated in buckets of the exper-

imental soil for 2 weeks prior to the start of the

experiment, a protocol used successfully in previous

studies (Eisenhauer et al. 2012a). Once the microcosm

communities, with earthworms and leaf litter, had

established we added 10 seeds each of four invasive

plants (common buckthorn, Rhamnus cathartica;

Japanese barberry, Berberis thunbergii; garlic mus-

tard, Alliaria petiolata; and dandelion, Taraxacum

officinale) on top of the leaf litter to simulate seed rain

in a natural community. Seeds of dandelion were

purchased, but those of the other invasive species were

collected from local forests.

The experiment ran for 9 weeks, giving the inva-

sive species time to germinate and establish. Since we

focused on germination and early establishment of

invasive seedlings, this duration was reasonable, and

avoided possible microcosm-effects on resident spe-

cies’ root growth. Each week, we randomized the

position of the microcosms, and watered every other

day with increasing volumes of deionized water (from

50 to 150 ml) as plant biomass increased. This

standardized watering regime allowed us to measure

treatment-induced differences in soil moisture, e.g.,

higher water uptake in microcosms with greater

biomass of resident species and/or preferential flow

through earthworm burrows.

Harvest

After 9 weeks we harvested aboveground biomass of

all species in each microcosm and dried it at 70 �C for

3 days. Prior to harvest, we measured the light level

(% transmittance) at the soil surface in each micro-

cosm (LI-190 quantum sensor, Licor). Following

harvest of the aboveground biomass, we broke up

the soil core in each microcosm and took a soil sample

(*60 g fresh weight) from the top 5 cm of the soil

column. These samples were dried for 3 days at 70 �C

and soil moisture was calculated by taking the

difference between fresh and dry weight and dividing

by dry weight. We rinsed all remaining soil from the

roots and separated the shallow-rooted invasive seed-

lings from the deeper-rooted resident species. Roots

were dried for 3 days at 70 �C then weighed. Since

none of the garlic mustard seeds (invader species)

germinated in the control or experimental microcosms

despite cold stratification prior to the start of the

experiment (Baskin and Baskin 1992), all analyses

focus on the remaining three invasives. At least one

buckthorn seed germinated in 103 of the 138 micro-

cosms (74.6 %), whereas barberry seeds germinated in

only 24 microcosms (17 %) and dandelion seeds in 35

(25.3 %). There were also unidentifiable emerging

cotyledons of either buckthorn or barberry in 60

microcosms (43.5 %).

Analyses

We performed ANOVAs to investigate the effects of

resident species diversity, earthworms (presence/

absence), and the interaction of diversity and earth-

worms on total invasive species biomass, total resident

species biomass, percent light transmittance, and soil

moisture. As resident species diversity incorporated

variation in species number and functional group,

diversity was characterized by four nominal treat-

ments ranging from least to most diverse (1 species

and 1 functional group, 2 species and 1 functional

group, 2 species and 2 functional groups, 6 species and

3 functional groups). We compared mean values with

Tukey’s HSD test. Although our statistical analyses

addressed effects of earthworm treatments, plant

diversity treatments, and their interaction, given the

focus on understanding and contrasting their effects,

we largely present results visually (in figures) sepa-

rated by earthworm treatments.

We included all predictor variables (resident spe-

cies diversity, earthworm presence/absence, resident

species aboveground biomass, light transmittance, soil

moisture, remaining litter dry weight) in a general

linear model (GLM) to examine their combined

effects on invasive species biomass. Because we were

interested in potential ecological interactions between

earthworms and resident species diversity we included

the interaction term for these two variables in addition

to interaction terms for earthworms and all other
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measured variables (except leaf litter which we

predicted would not change in microcosms without

earthworms). The best-fit model was chosen based on

minimum Akaike Information Criteria (AIC) scores.

ANOVA and GLM analyses were performed using

JMP ver. 9.0.2 (SAS Institute, Inc., Cary, NC, USA).

Path analysis allowed us to simultaneously examine

potential direct and indirect relationships between

resident species diversity, earthworm presence/

absence (exogenous variables) and their effects on

total invasive species biomass (endogenous variable).

Earthworm presence/absence was included in the path

analysis as a dichotomous categorical predictor. It

functions in the path diagram similar to a factor

variable in a standard regression model (Hoyle 2012),

represented as 0 when earthworms were absent and 1

when earthworms were present. The resulting path

estimate is therefore the effect when earthworms were

present, and would be zero when earthworms were

absent. The four levels of diversity were arranged in

order of increasing overall diversity (monocul-

ture = 1; two species/one functional group = 2; two

species/two functional groups = 3; six species = 4)

and treated as a continuous variable in the path

analysis. While other statistical methods do exist for

treating ordinal variables differently in path analysis,

for large numbers of categories (four or more), the

literature suggests that treatment of ordinal variables

as continuous is reasonable (Bentler and Chou 1987;

Byrne 2010). Our initial model (Supplementary

Material Figure S1) was based on prior knowledge

and observations from ANOVA analyses. Further-

more, we tested the indirect relationships of the

exogenous variables via total resident species biomass

and soil moisture. Model fits were determined by non-

significant Chi squared tests (P [ 0.05) and AIC

scores (Grace 2006; Arbuckle 2012). We used step-

wise removal of unimportant variables to improve the

model fit based on the indices mentioned above. We

retained only relationships with a plausible ecological

basis. Path analyses were performed in Amos 5 (Amos

Development Corporation, Crawfordsville, FL, USA).

To assess the overall effect of diversity on produc-

tivity we partitioned the net diversity effect of the two

different two-species treatments and the six-species

treatment into selection and complementarity effects

with the additive partitioning biodiversity effect

equation (Loreau and Hector 2001). The selection

effect is quantified as the covariance function relating

yield of a species in a mixture with its yield in

monoculture, and acts through interspecific competi-

tion leading to dominance of certain species with

particular traits (Loreau and Hector 2001). A positive

selection effect indicates that the most productive

species in monoculture overyielded in mixtures and so

benefits more from inter- rather than intraspecific

interactions (Reich et al. 2012). Complementarity

effects measure changes in the average relative yield

in a species mixture (Loreau and Hector 2001; Byun

et al. 2013), and are related to niche differentiation or

facilitation that lead to positive species interactions in

mixed communities (e.g., Reich et al. 2012). These

calculations were performed in R version 2.15.3 (R

Development Core Team 2009) based on code orig-

inally written for analysis in Reich et al. (2012).

Results

By the end of the experiment, leaf litter biomass and

soil moisture were significantly lower in microcosms

with earthworms (29 and 21 % lower respectively)

indicating that earthworms were active during the

course of the experiment despite 82 % earthworm

mortality by its end. Based on weekly observations of

earthworm activity (casts/middens), continuously

declining leaf litter until the end of the experiment,

and the presence of partially decomposed earthworms

we were able to verify that the mortality occurred

during a heat wave over the last 3 days of the

experiment, which the cooling system in the green-

house was unable to mitigate. It is possible that the

dead earthworms released a pulse of nutrients but

since the mortality occurred in the last days of the

experiment effects on either resident or invasive plants

is likely to have been minimal. In control pots (which

did not contain earthworms, resident species, or leaf

litter), common buckthorn, barberry, and dandelion

(invader species) germinated at rates of 90, 80, and

64 % respectively.

As our resident diversity treatments included var-

iation in both species richness and functional group

richness, they are considered nominal for analyses.

There were significant relationships between resident

species diversity and percent light transmittance,

percent soil moisture, and the total biomass (root and

shoot) of both resident species and invasive species

(Table 1). Earthworm presence was related to invasive
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species biomass and soil moisture but we observed no

significant interactions between resident species diver-

sity or earthworms and the measured variables

(Table 1).

Total biomass (root and shoot) of resident species

increased with diversity and was unaffected by

earthworms (Table 1; Fig. 1a). There was also no

interactive effect of earthworm presence/absence and

resident species diversity on the total biomass of

resident species (Table 1). By contrast, total invasive

species biomass decreased with higher resident

diversity and increased markedly (by 100 % across

all diversity treatments) in the presence of earthworms

(Table 1; Fig. 1b) although there was no interaction

between earthworms and resident species diversity

(Table 1). We observed no difference in the success of

invasive species in monocultures of the two Lathyrus

species (F(3, 8) = 1.02, P = 0.43) suggesting their

effects on invasive species’ establishment were sim-

ilar. Across all diversity treatments, those containing a

graminoid species (Carex blanda or Elymus hystrix)

had higher biomass than those without graminoids.

This was true whether earthworms were present (F(1, 67)

= 113.77, P \ 0.0001) or absent (F(1, 67) = 117.56,

P \ 0.0001). Mean biomass, by earthworm treatment,

of each invasive and resident species is presented in the

Supplementary Material (Fig. S2).

We also examined the relationship between total

invasive and resident species biomass across all

microcosms (Fig. 2). These variables showed a

highly significant negative relationship (earthworms

absent: F(1, 67) = 42.39, P \ 0.0001; earthworms

present F(1, 67) = 39.18, P \ 0.0001), and addition-

ally, invasive biomass at any given level of resident

biomass was higher in the presence of earthworms

(F(3, 134) = 70. 11, P \ 0.0001) (Fig. 2). Moreover,

invasive species germinated in all but one microcosm

containing earthworms. By contrast, 20 of the 69

microcosms (28 %) without earthworms had no

invasive species germination. In addition, across all

levels of resident species diversity, root biomass was

higher for invasive species when earthworms were

present (F(1, 136) = 14.44, P = 0.0002), but this was

not the case for resident species (F(1, 136) = 0.01,

P = 0.93). At the same time, due to the increase in

aboveground biomass, the root-to-shoot ratio of

invasive species decreased in the presence of earth-

worms (F(1, 115) = 7.37, P = 0.008), and was mar-

ginally lower for resident species (F(1, 136) = 3.20,

P = 0.08). We also observed higher germination

rates of invasives (i.e., the number of seedlings)

across all levels of resident species diversity when

earthworms where present (F(3, 134) = 341.74,

P \ 0.0001).

Because we were interested in the effects of

resident plant diversity on a suite of common herba-

ceous and woody invasive species we report results

that combined the biomass of all invasive species.

Common buckthorn was the most successful invasive

species so we also analyzed the treatment effects on

this species alone and found similar results. The

biomass of barberry and dandelion alone also

decreased as resident species diversity increased

(F(7, 136) = 3.83, P = 0.0115) but the presence of

earthworms did not influence their success.

GLM suggested that the best-fit model

(R2 = 0.58) predicting invasive species biomass

included total resident species biomass together

with the effects of earthworms and soil moisture.

Also included in the model were interaction terms

between earthworms and soil moisture, and earth-

worms and light transmittance (Table 2). A model

with only resident species biomass, earthworms, and

soil moisture explained 54 % of the variance in

Table 1 Analysis of variance to examine the effects of resident species diversity, earthworms, and the interaction of diversity and

earthworms on resident species biomass, invasive species biomass, soil moisture, and light transmittance

Resident species diversity Earthworms present/absent Resident diversity 9 earthworms

F(1,1) P F(1,1) P F(1,1) P

Resident species biomass 27.51 <0.0001 2.25 0.14 1.20 0.28

Invasive species biomass 37.54 0.0001 37.54 <0.0001 0.03 0.85

Percent light transmittance 5.56 0.02 1.82 0.18 1.06 0.30

Soil moisture 27.52 <0.0001 11.96 0.0007 0.001 0.97

Significant relationships are indicated in bold. Resident species include graminoids (Carex blanda, Elymus hystrix), legumes

(Lathyrus sp., Desmodium glutinosum), and non-leguminous forbs (Eurybia macrophylla, Asclepias exaltata)
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invasive biomass, indicating the importance of these

variables in this model.

Path analysis supported results from the ANOVA

and GLM and indicated possible mechanisms for the

observed effects of resident species functional diver-

sity on invasive species success. The initial model

(Supplementary Material Figure S1) fitted the data

(v2
6 = 7.39, P = 0.29; AIC = 51.39) but could be

improved. The final model (Fig. 3, v2
2 = 0.139,

P = 0.93; AIC = 26.14) indicated that resident spe-

cies diversity had a significant negative effect on

invasive species biomass via total resident species

biomass and soil moisture. Earthworms had a direct

positive effect on invasive species biomass, and a

Fig. 1 Separate one way analyses of variance to examine a the

effects of resident species diversity on total resident species

biomass (earthworms absent: F(3, 65) = 6.27, P = 0.0008;

earthworms present: F(3, 65) = 3.33, P = 0.02) and b the effects

of resident species diversity on total invasive species biomass

(earthworms absent: F(3, 65) = 2.18, P = 0.10; earthworms

present: F(3, 65) = 4.29, P = 0.008). Filled and open bars (with

sample sizes) represent microcosms with and without earth-

worms respectively (±SE). Across diversity levels, within each

earthworm treatment, bars labeled with different letters

(earthworms absent = lower case, earthworms present = upper

case) are significantly different from one another. Resident

species include graminoids (Carex blanda, Elymus hystrix),

legumes (Lathyrus sp., Desmodium glutinosum), and non-

leguminous forbs (Eurybia macrophylla, Asclepias exaltata)

Fig. 2 Resident species biomass versus invasive species

biomass with (dashed line) and without earthworms (solid

line). Resident species include graminoids (Carex blanda,

Elymus hystrix), legumes (Lathyrus sp., Desmodium glutino-

sum), and non-leguminous forbs (Eurybia macrophylla,

Asclepias exaltata). Open circles = earthworms absent,

R2 = 0.39, F(1, 67) = 42.39, P \ 0.0001); crosses = earth-

worms present, R2 = 0.37, F(1, 67) = 39.18, P \ 0.0001

Table 2 General linear model predicting invasive species

biomass in 138 microcosm communities with varying resident

species diversity

SS F P

Earthworms 1.80 33.90 <0.0001

Total resident species biomass 0.43 24.24 <0.0001

Soil moisture 0.36 10.14 <0.0001

Resident species diversity 0.004 0.24 0.62

Light transmittance 0.001 0.06 0.80

Litter mass 0.03 1.78 0.18

Soil moisture 9 earthworms 0.14 8.28 0.005

Light transmittance 9 earthworms 0.09 4.82 0.03

Resident species

diversity 9 earthworms

0.03 0.88 0.62

Total resident species

biomass 9 earthworms

0.01 0.67 0.41

Best-fit model was chosen based on minimum AIC scores. Total

R2 = 0.58. Significant relationships are indicated in bold.

Functional groups include graminoids (Carex blanda, Elymus

hystrix), legumes (Lathyrus sp., Desmodium glutinosum), and

non-leguminous forbs (Eurybia macrophylla, Asclepias exaltata)
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weaker, indirect negative effect via decreased soil

moisture. We found similar effects when biomass of

buckthorn alone was considered (Supplementary

Material Figure S1). By partitioning the net biodiver-

sity effect (Fig. 4a–c), we found the positive relation-

ship between resident species diversity and biomass

was due to a significant, positive selection effect

(Fig. 4c). The net biodiversity effect and selection

effect increased as invasive biomass decreased (Sup-

plementary Material Figure S3). These relationships

were mediated through resident species biomass

(Supplementary Material Figure S4), which was

correlated with resident species diversity (Fig. 1).

Discussion

Experimental manipulation of resident species diver-

sity and the presence or absence of earthworms

resulted in varied effects on the success of invading

plants. Below we address the following questions

pertinent to those findings.

Question 1: Does increased resident plant

functional diversity reduce the success

of invaders?

Invasive plant biomass and abundance were lower in

microcosms with higher resident plant diversity and

biomass, suggesting that resident diversity does influ-

ence both the germination and establishment of

invaders. This supports theoretical predictions of the

diversity resistance hypothesis (Elton 1958; Case

1990), and results of previous studies investigating

similar, fine-scale relationships (Tilman 1997; Naeem

et al. 2000; Kennedy et al. 2002; Brown and Peet 2003;

Frankow-Lindberg 2012). The effect of increasing

resident species richness is normally explained in

terms of greater resource use in more diverse commu-

nities (Davis et al. 2000) leading to higher productivity

(Cadotte et al. 2009; Tilman et al. 2012) that leaves

invaders with fewer opportunities to be successful.

Our study indicates that increased resident plant

diversity was positively related to total resident species

biomass. By partitioning this net biodiversity effect

into complementarity and selection effects we were

able to examine possible mechanisms driving the

pattern. The observed increase in selection effects with

increasing diversity suggests one or more species were

dominating the six species microcosms (Cardinale

et al. 2006). In fact, across all diversity treatments,

microcosms containing a graminoid species (Carex

blanda or Elymus hystrix) had higher biomass than

those without graminoids, whether or not earthworms

were present, and these species appear to be driving the

observed selection effect. By contrast, similar micro-

cosm studies (Eisenhauer et al. 2012b; Byun et al.

2013) concluded that complementarity effects were

more important than selection effects, and this pattern

was also observed in previous large scale plot studies

(Loreau and Hector 2001; Reich et al. 2012). Our

results suggest the diversity effect was mediated

through resident species biomass (indicated by the

path analysis) that was strongly influenced by the

graminoid species we included. The experimental

design we used may have influenced the observed

selection effects, and future studies with different

resident species would be useful to determine whether

or not this is the case. However, it is likely that higher

resident species diversity in a natural plant community

would increase the likelihood of there being some

species that will have this effect (Levine and D’Anto-

nio 1999). The effects we observed were focused on the

early stages of invader success because we were

interested in this potential bottleneck stage of invasive

species establishment. A longer-term approach would

be required to test whether the effects of resident

species diversity persist (Laossi et al. 2011).

Fig. 3 Best-fit path analysis of causal influences of earthworm

presence/absence and resident plant species functional diversity

(exogenous variables) on total invasive plant species biomass,

soil moisture, and total resident plant species biomass (endog-

enous variables). Numbers on arrows are standardized path

coefficients (equivalent to correlation coefficients). Solid and

dashed lines indicate negative and positive relationships

respectively. Bold lines indicate significant standardized path

coefficients (P \ 0.05), and the fine dashed line indicates non-

significant path coefficient (P [ 0.05). Circles indicate error

terms (E1-E3). Model fitted the data: Chi square = 0.106,

probability level = 0.948, AIC = 26.106
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Question 2: Does the presence of earthworms

increase the success of invaders?

Invasive species successfully germinated in all but one

of the microcosms that contained earthworms (indicated

by the single ‘‘?’’ in the zero gram invasive biomass on

Fig. 2). Furthermore, across all levels of resident plant

diversity, invader biomass and abundance were higher

when earthworms were present, supporting the hypoth-

esis that earthworms promote the germination and

establishment of invaders. Conversely, the effect of

earthworms on resident species included in the exper-

iment was neutral with the exception of Elymus hystrix,

which had slightly higher biomass in monocultures in

the presence of earthworms. In natural plant communi-

ties, the presence of earthworms may benefit a subset of

resident plant species, particularly grasses and sedges

(Nuzzo et al. 2009) that may be pre-adapted by chance to

earthworm-induced environmental conditions. Earth-

worms also positively influenced grasses in previous

microcosm studies (Wurst et al. 2005; Laossi et al.

2009), suggesting a relationship worthy of more detailed

investigation.

The best-fit GLM to explain the success of invasive

species included the presence of earthworms. In

addition, path analysis indicated a direct (unex-

plained), positive effect of earthworms on invasive

species biomass that was stronger than the indirect

negative impact that arose via changes in soil mois-

ture. Our analyses indicated that the success of

invasive plants was related to the presence of earth-

worms. The increase in total invasive species biomass

(roots and shoots) in the presence of earthworms (even

at the highest level of resident species diversity)

suggests these belowground invaders may diminish

the resistance to invasion that arises from higher

resident species diversity. As a result, management

efforts that seek to maximize resident plant diversity

may be undermined by the ubiquitous presence of

invasive earthworms that simultaneously reduce res-

ident plant richness in natural communities (Holds-

worth et al. 2007) and increase invader success.

The positive relationship between earthworms and

success of the invasive plant species in our experiment

may have occurred because the introduced plants have a

long history of co-evolution with earthworms (Forey

et al. 2011). These species can take advantage of the

post-earthworm invasion environment that includes

reduced leaf litter and increased bare mineral soil. Plant

Fig. 4 One-way analysis of variance to examine a net biodiversity

effects, b complementarity effects, and c selection effects across

three levels of resident species diversity, with and without

earthworms (gray bars/white bars respectively). P values reflect

significance tests for the main effects of diversity and earthworms

(presence/absence). Interaction terms were not significant in any case
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species that evolved outside the influence of earthworms

often require an organic duff layer for germination,

making them less successful in sites where earthworms

are now present (Frelich et al. 2006).

Earthworms are also known to impact seeds and

seedling survival in other ways (reviewed in Forey

et al. 2011). They can influence long-term germination

rates through maternal effects (Laossi et al. 2010) and

by moving seeds below the soil surface, thereby

reducing the chances of seed predation and desiccation

(Azcarate and Peco 2006). It should also be mentioned

that earthworms might reduce germination if the seeds

are moved below a critical depth (Thompson et al.

1994) and negative effects have also been documented

in very small-seeded species (McCormick et al. 2013).

In addition, their castings provide nutrient rich mineral

soil substrate for germinating invasive seeds (Eisen-

hauer and Scheu 2008), a phenomenon we observed in

the greenhouse microcosms and in nearby field sites.

Earthworms may have also influenced competitive

interactions and relative growth rates of the included

plants even though this was a short-term experiment

(Wurst et al. 2005; Laossi et al. 2009). The effects we

observed do not necessarily reflect long term impacts of

earthworms on natural plant communities if earth-

worms affect fecundity and germination of plants as

predicted by Laossi et al. (2009). As with the patterns

related to resident species diversity, longer-term exper-

iments or observations are required to examine whether

earthworm effects on invasive species persist.

Another noteworthy result from this study is that

despite observing no significant change in the com-

plementarity effect as resident species diversity

increased, earthworms did significantly increase this

component of net biodiversity by 300 % across all

diversity treatments (Fig. 4). The net biodiversity

effect also increased in the presence of earthworms by

155 %, whereas the selection effect was not signifi-

cantly affected. A possible mechanism for the

observed increase in net and complementarity biodi-

versity effects might include earthworms’ positive

impact on nutrient availability (Eisenhauer 2012).

Question 3: Do earthworms and resident species

diversity interactively affect the success

of invaders?

Since earthworms and resident species diversity both

influence soil moisture and nutrients their combined

effects may be additive, synergistic or antagonistic.

We observed a negative effect of resident species

diversity on invasive species success, but the impact of

earthworms on this relationship was similar across all

levels of diversity and there was no interaction

between these two variables. Previous studies have

found significant, interactive effects on plant commu-

nity composition when earthworms and warming

treatments were combined (Eisenhauer et al. 2012a).

Others have predicted synergistic effects on plant

community invasibility from deer herbivory and

earthworms (Frelich et al. 2006). That we observed

no interacting effects of earthworms and resident

species diversity—despite significant independent

effects—may reflect the inherent limitations of micro-

cosm studies such as this, indicate that interactions

occurs via long-term field processes, or both. Other

longer term studies report earthworms facilitate inva-

sion at intermediate levels of resident plant diversity

but not under monoculture or high diversity conditions

(Eisenhauer et al. 2008). Since we observed indepen-

dent impacts of resident plant diversity and earth-

worms on the same processes (plant biomass and soil

moisture), interactions may develop over a longer

time. Also in the longer term, resident plant diversity

may influence earthworm performance (Eisenhauer

et al. 2008) initiating feedbacks that affect plant

community performance and invasibility.

Despite the lack of interaction between earthworms

and resident species biomass, we did observe interac-

tions between soil moisture and earthworms as well as

light transmittance and earthworms. The difference in

invasive species biomass between earthworm treat-

ments was highest at low levels of soil moisture (high

species diversity) and high soil surface light levels

(low species diversity). In both cases, the tendency for

earthworms to bury seeds is likely to reduce desicca-

tion and so increase invasive species germination.

Earthworms also provide moist soil in castings around

their burrows where we observed much of the invasive

species germination. Taken together, these interac-

tions suggest that earthworm activity will benefit

invasive species across all levels of resident species

diversity through interactions with multiple environ-

mental factors.

A fruitful avenue for future research would be to

examine natural communities across full factorial

combinations of earthworm abundance and resident

species diversity gradients. However, this approach is
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difficult in practice because sites with low earthworm

abundance are virtually non-existent in the Upper

Midwest, USA.

In conclusion, we demonstrated that resident spe-

cies diversity and earthworms have opposing influ-

ences on a bottleneck stage of invasive plant

establishment. Furthermore, our results suggest the

ubiquitous presence of earthworms may undermine

the possible reduction in plant community invasibility

conferred by high resident species diversity. The

results of our experiment provide insights into the

combined effects of resident species diversity and

earthworms on invasive plants. Based on our results, it

is also clear that future studies of plant community

invasibility in previously earthworm free regions of

North America should account for the effects of

introduced earthworms.
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