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Abstract

Recent years have seen enormous growth in collection and curation of datasets in various

domains which often involve thousands or even millions of variables. Examples include so-

cial networking websites, geophysical sensor networks, cancer genomics, climate science, and

many more. In many applications, it is of prime interest to understand the dependencies between

variables, such that predictive models may be designed from knowledge of such dependencies.

However, traditional statistical methods, such as least squares regression, are often inapplicable

for such tasks, since the available sample size is much smaller than problem dimensionality.

Therefore we require new models and methods for statistical data analysis which provide prov-

able estimation guarantees even in such high dimensional scenarios. Further, we also require

that such models provide efficient implementation and optimization routines. Statistical mod-

els which satisfy both these criteria will be important for solving prediction problems in many

scientific domains.

High dimensional statistical models have attracted interest from both the theoretical and

applied machine learning communities in recent years. Of particular interest are parametric

models, which considers estimation of coefficient vectors in the scenario where sample size is

much smaller than the dimensionality of the problem. Although most existing work focuses

on analyzing sparse regression methods using L1 norm regularizers, there exist other “struc-

tured” norm regularizers that encode more interesting structure in the sparsity induced on the

estimated regression coefficients. In the first part of this thesis, we conduct a theoretical study

of such structured regression methods. First, we prove statistical consistency of regression with

hierarchical tree-structured norm regularizer known as hiLasso. Second, we formulate a gen-

eralization of the popular Dantzig Selector for sparse linear regression to any norm regularizer,

called Generalized Dantzig Selector, and provide statistical consistency guarantees of estima-

tion. Further, we provide the first known results on non-asymptotic rates of consistency for the

recently proposed k-support norm regularizer. Finally, we show that in the presence of mea-

surement errors in covariates, the tools we use for proving consistency in the noiseless setting

are inadequate in proving statistical consistency.

In the second part of the thesis, we consider application of regularized regression methods

to statistical modeling problems in climate science. First, we consider application of Sparse
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Group Lasso, a special case of hiLasso, for predictive modeling of land climate variables from

measurements of atmospheric variables over oceans. Extensive experiments illustrate that struc-

tured sparse regression provides both better performance and more interpretable models than

unregularized regression and even unstructured sparse regression methods. Second, we con-

sider application of regularized regression methods for discovering stable factors for predictive

modeling in climate. Specifically, we consider the problem of determining dominant factors

influencing winter precipitation over the Great Lakes Region of the US. Using a sparse linear

regression method, followed by random permutation tests, we mine stable sets of predictive

features from a pool of possible predictors. Some of the stable factors discovered through this

process are shown to relate to known physical processes influencing precipitation over Great

Lakes.
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Chapter 1

Introduction

Recent years have seen vast increase in the rate of data generation and storage in various fields

of science and technology. For example, deployment of new sensors and satellite have had a ma-

jor impact on high quality atmospheric and geological data collection. The multitude of rapidly

expanding social network sites store petabytes of user generated content in servers across the

globe. Owing to the massive size of data available, high dimensional statistical models are in-

creasingly being used in various machine learning and data mining tasks. Often, such datasets

involve measurements of certain variables over space and time. and there is growing interest

in understanding statistical dependencies between such variables. Moreover, many domains

require modeling multi-resolution and correlated variables, and such inherent structure in the

data needs consideration when designing and learning the models. Modern machine learning

approaches for high dimensional modeling have successfully been applied to multiple such do-

mains, such as signal processing [3, 4, 5], bioinformatics [6, 7], computational biology [8, 9],

astronomy [10], web data analysis [11, 12], querying [13, 14], and many more. Further, new

applications of these models are increasingly finding novel applications in scientific domains,

such as climate science [15, 16], brain imaging [17, 18], sensor networks [19, 20], where clas-

sical analysis techniques are being challenged when dealing with high dimensional data and the

generative complex phenomena .

1
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1.1 Modeling in high dimensions with few samples

The central goal of statistical modeling is to capture the dependencies or “relatedness” between

variables. For example, consider the problem of understanding the variation of precipitation

over North America with the variations in sea surface temperature (SST) over the tropical Pacific

Ocean [21]. We want to understand, first, whether there exists any dependence between these

two quantities. Second, if there exists any, we want to quantify the degree to which these

are dependent. Now, there are a number of climate processes and variables which influence

precipitation over the U.S., and influence over precipitation is a combined effect of all such

variables. In general, we often encounter such regression problems, where the goal is to model

a response variable y with multiple predictors or covariates x1, . . . , xp.

The central challenge in high dimensional modeling arises from the small sample size n

relative to the dimensionality p of the problem. For example, in a high dimensional regression

problem, often the set of possible predictors can run into thousands or even millions [22], while

the number of samples available to train a model is much smaller, often by orders of magnitude.

Consider the Ordinary Least Squares (OLS) estimator. Given samples (y,X) from the response

and the covariates, OLS estimates the following regression coefficient vector

β̂ =
(
XTX

)−1
XTy . (1.1)

However, when n < p, the estimation problem is ill-posed, and OLS estimation does not work.

In general, problem arises when one tries to analyze traditional statistical estimators in the

context of high dimensional models. Often, the traditional estimators require that the model be

fully determined, i.e. n ≫ p, and provide asymptotic bounds on estimation error when n → ∞.

Both these assumptions fail in the high dimensional regime, and given the small sample size n.

Scientific domains, such as climate science, are often plagued with such ill-posed estimation

problems. For example, the number of possible covariates for predicting precipitation is huge.

However, the availability of high quality climate data is limited to only the past few decades.

Therefore, high dimensional statistical models are the key to understanding and modeling the

dependencies between different climate variables. Further, we also require that the estimates

be stable, so that we can draw interpretable physical hypotheses from the statistical estimates.

Moreover, we often understand qualitative structures about the model. For example, it is well

known that convective precipitation is dependent on the land surface temperature and moisture
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availability at a location. Such constraints should inform the estimator of possible dependencies.

The motivation of this work lies in developing analyzing methods to solve these problems.

1.2 A Brief History

Modern machine learning approaches aim to solve the ill-posed estimation problems by im-

posing structural constraints on the parameter to be estimated. One of the earliest examples

is in high dimensional regression, where it was suggested to constrain or bound the L2 norm

of the regression parameter . It is known as the ridge regression problem, and is widely used

for solving under-determined regression problems [23, 24]. However, although constraining

the L2 norm as in ridge regression enables us to solve a high dimensional regression problem,

it does not impose any control on model complexity since all features in X are typically as-

signed non-zero weights. One way of controlling model complexity is to restrict the number of

coefficients that are assigned non-zero weights, viz. doing feature-selection while fitting the re-

gression model. This can be achieved by constraining the L0 norm of the regression coefficient

as ∥β∥0 ≤ k, where ∥β∥0 denotes the number of non-zero elements in β.

The formulation is closely related to the basis pursuit problem in signal processing where

one wants to reconstruct a sparse signal from a few measurements, given a fixed sampling matrix

X. The above sparse regression problem, though, suffers from a serious drawback. It is non-

convex, and for large p, practically impossible to solve directly. Much effort has been spent to

design approximations of this problem, and to show that such approximations yield comparable

results. The major breakthrough in machine learning and statistics has been to show that under

some mild conditions, the sparse regression problem can be exactly and efficiently solved by

considering the L1 norm to be a relaxation of the L0 norm and therefore constraining the L1

norm of the estimate. It is known as the Least Absolute Shrinkage and Selection Operator, or

commonly, LASSO [25, 26, 27]. The LASSO method has found great success in applications

to various domains [26]. In particular, sparsity as a structural constraint is now extensively used

for feature selection to control model complexity.
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1.3 Theoretical Advances

Scientific fields, such as climate science, often deal with complex phenomena, where simple

structural constraints, such as imposed by L1 norm, are inadequate, and/or require additional

procedures in order to ensure stable parameter estimation. For example, if there exist cer-

tain groups of covariates G ∈ G, G ⊆ {1, 2, . . . , p} which jointly activate and influence the

response y, L1 norm regularization may lead to unstructured sparsity, so that only certain mem-

bers of a group are assigned non-zero coefficients. Therefore, recent work has concentrated on

developing regularizers which respect such structure in the data. For example, the group-Lasso

regularizer [28, 29] considers a mixed L1/L2 penalty

∥β∥(1,G) =
∑
G∈G

∥βG∥2 , (1.2)

which considers penalization over groups of coefficients rather than singletons, so that feature

selection occurs over groups and the resulting model is more interpretable and often has bet-

ter prediction performance [29]. More generally, one may consider different norm regularizers

R(β) over the regression coefficient vector β where R encodes an appropriate structure. Such

structures may be qualitatively known from domain knowledge (e.g. groups over spatial lo-

cations considered in Chapter6) or even latent structures over coefficients (e.g., the k-support

norm in Chapter 4).

For any such regularized regression problem, we are often interested in the “quality of

estimation”, i.e. assuming a generative model for the data, whether the estimated β̂ is “close”

to the statistical parameter. For example, often assumed is a linear model:

y = Xβ∗ + ϵ , (1.3)

where β∗ is the statistical parameter, and ϵ is an additive random noise variable. Under this

model, we aim to upper bound the error in estimation ∥β∗ − β̂∥2. For the high dimensional

regime, of particular interest are non-asymptotic upper bounds on the estimation error. Such

bounds hold for finite n and p, and decrease with a certain rate F (n, p) with high probability.

The rate F (n, p) is called the “rate of consistency”. For example, if β∗ is an s-sparse vec-

tor and we solve the LASSO problem to obtain β̂ , we obtain the following bound with high

probability [30, 31]

∥β∗ − β̂∥2 = O

(√
s log p

n

)
. (1.4)
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The limitation of existing methods lies in the type of structures that can be modeled in

the estimation problem. For most of the research conducted in this domain, the focus was on

sparsity, or group-sparsity. However, there exists more involved structures, such as hierarchies,

which cannot be modeled by sparse or group-sparse regularizers. Some recent developments

suggest using structured regularizers, such as hiLasso [32, 33], or k-support norm to alleviate

this problem. However, no theory of consistency exists for such structured regularizers. Further,

it is unknown whether the existing statistical tools are adequate for analyzing such estimators.

For certain estimators, such as the Dantzig Selector [34, 35], it is not even known how to modify

the estimators to incorporate general structured norm regularizers R.

1.4 Applications to Climate Science

A core research question in climate science is improved understanding of interactions of geo-

physical, atmospheric and ocean variables in order to more accurately simulate future climate

system of the earth. To this effect, General Circulation Models (GCM) [36] have been developed

in the climate science community to simulate future climate, and obtain an overview of possible

climate scenarios. However, the output resolutions of these models are typically too coarse in

scale to be useful in practical comprehensive planning situations, such as applying hydrologi-

cal modeling in flood-risk analysis [37, 38]. One possible solution is to downscale the output

of the GCMs to a higher resolution in space/time, and using the high-resolution downscaled

data for use in climate-change impact assessment studies. Traditionally, downscaling has been

done by constructing higher resolution physical dynamical models, and executing simulations

with boundary conditions forced by either the GCMs or observed measurements [39, 40]. Such

dynamical downscaling suffers from the limitation that each simulation run is computationally

expensive even for relatively small regions on the globe. Therefore, statistical downscaling,

which tries to find statistical relationships between coarse resolution GCM outputs and high

resolution predictands is increasingly becoming popular for climate downscaling [41, 42, 43].

A variable of considerable interest is precipitation, which is known to be difficult to simu-

late in GCMs [44, 45]. Therefore, statistical downscaling of precipitation is an area of active

research in the climate science community [41, 43]. The key requirement in statistical down-

scaling of precipitation is improved understanding of dependencies between local precipitation

large scale climate variables and processes. Regression methods, which consider large scale
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climate variables are predictors, and the local variable as predictand, often face the problem of

high dimensionality, because of the enormous number of possible predictor variables, and lim-

ited high quality observational data available from the past thirty years [33]. Although various

machine learning methods have previously been used in climate science for improved predic-

tion performance [46, 24], there are two key issues the belie the gain in predictive performance.

First, the models often require extensive data pre-processing and manual selection of covari-

ates [47, 48, 49] in order to show improvements. Second, training complex models on small

datasets often leads to overfitting, and therefore lack of interpretability. Since a key goal is

development of physical hypothesis on mechanisms affecting climate phenomenon, both these

issues demand attention for advancing statistical modeling in climate science.

1.5 Roadmap of the thesis

In this thesis, we try to address the theoretical limitations discussed in Section 1.3, and develop

method for solving statistical modeling problems in climate science, as discussed in Section 1.4.

We start by reviewing the state of the art and related work in theory and applications in Chap-

ter 2. The rest of the thesis is divided into two parts: (1) Theoretical Developments and (2)

Applications.

In Part I we study structured regression methods, and associated non-asymptotic statistical

consistency guarantees. In chapter 3, we consider hierarchical tree-norms which generalize

the sparse and group-sparse norms. The estimator, called the hierarchical Lasso (hiLasso),

encodes a tree-structure hierarchy in the sparsity induced on the regression coefficient β. Using

some recently developed analysis tools in statistics and machine learning, we prove rates of

convergence for estimators regularized by the hiLasso regularizer. The Sparse Group Lasso is

a special case of hiLasso, and empirical results have shown that it performs better than LASSO

in a number of application domains. We prove statistical consistency for the hiLasso and the

Sparse Group Lasso, and discuss existing methods for efficient optimization.

The Dantzig Selector is an estimator for sparse linear regression problems, and was formu-

lated as an alternative to LASSO. Particularly, it involves solving the following linear program

min
β∈Rp

∥β∥1 (1.5)

s. t. ∥XT (y −Xβ)∥∞ ≤ λn . (1.6)
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Interestingly, the analysis of the Dantzig Selector shows close similarities to LASSO in the rates

of consistency obtained on the estimation error ∥β∗ − β̂∥2 [35]. In Chapter 4, we consider a

generalization of the Dantzig Selector by considering any norm regularization R(β) instead of

the L1 norm. Particularly, we show that the Generalized Dantzig Selector (GDS) [50] is sta-

tistically consistent, and we derive non-asymptiotic rates of convergence for some well-known

structured regularizers, such as the group-lasso norm. Further, we consider the recently pro-

posed k-support norm, which considers sparsity over latent groups of coefficients. This norm is

of particular interest, since empirical results have shown that predictive performance improves

with the k-support norm estimator over LASSO, in scenarios with correlated covariates. We

prove sharp rates of consistency for the k-support norm, and also provide numerical simula-

tions to illustrate its properties.

Statistical analysis of regularized estimators require that samples X,y are not corrupted by

noise. However, in real world, one often encounters scenarios where such assumptions fail.

For example, miscalibration of sensors in a sensor network may lead to incorrect, noisy or

biased measurements. It is unknown whether the statistical analysis of estimators still provides

consistency guarantees under such noisy scenarios. In Chapter 5, we consider the scenario when

the predictors X may themselves be corrupted with additive noise. Particularly, we show that

in the noisy setting, the current analysis tools fail to provide consistency, and the error bound

obtained does not decrease to zero with increasing sample size. However, we also show that

if an estimate of the noise covariance is available, then with an appropriate correction, GDS

provides consistent estimates.

In Part II of the thesis, we consider applications of structured regression methods to sta-

tistical modeling in climate science. The goal is to use such statistical models, trained on ob-

servation data, to extend our understanding of predictability in climate, and providing insights

for improving the physical models whose simulation outputs are the only available data for fu-

ture climate scenarios. As the first application, in Chapter 6, we study the interaction between

climate variables on land and over oceans. We model the problem as a regression problem

where each variable over land is a response, while multiple gridded variables over oceans are

predictors. The resulting model is high dimensional, and therefore lends itself to the structured

regularizers we develop in earlier chapters. Particularly, we consider the Sparse Group Lasso

regularizer and consider groups of predictors over each geographical grid point on oceans. Ex-

tensive experiments are conducted on data obtained from the NCEP Reanalysis project [51],
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and we illustrate that adding structured regularizers not only improves model interpretability,

but also provides better predictive performance than both unregularized models and unstruc-

tured regularizers.

The second study considers an important question in applying statistical modeling in climate

science: how can statistical modeling be used to generate physical hypotheses on dependencies

between climate processes? As a use case, we consider winter precipitation over the Great

Lakes region in the US, with the goal of finding the dominant factors for precipitation from

among local, regional and global climate processes. In order to identify the dominant factors,

we utilize a random permutation test to obtain “stable” sets of features selected from a large

pool of possible predictors. Extensive experiments and analysis carried out using data obtained

from weather stations, reanalysis products [51] and derived climate indices illustrate two cen-

tral observations. First, regularized statistical models, aided by stability tests, are powerful tools

which can mine dominant factors for complex phenomenon such as precipitation. For example,

700hPa pressure level differences over the north pacific and north america in autumn were dis-

covered to be important drivers of winter precipitation over the Eastern Great Lakes. Further,

winter minimum temperature over the Great Lakes was also determined to be a dominant factor

for variations in snowfall. These discovered factors can be further studied as possible hypothe-

ses from the point of view of climate science for further verification and possible insights into

climate processes that affecting precipitation. Second, and more importantly, rich representative

features are the most important component of designing useful statistical models. For example,

in order to capture the effect of an ocean oscillation such as El-Nino [51], it is of utmost impor-

tance to include indices that are rich representations of this phenomenon. If the features do not

adequately represent the phenomenon, no statistical model may be powerful enough to capture

the influence. Finally, we end with conclusions in Chapter 8.



Chapter 2

Related Work

2.1 Theory of High Dimensional Models

One of the earliest research to devote attention to solving ill-posed regression problems can

be attributed to Tikhonov [52], who proposed using the L2 norm regularization. It has since

then been called ridge regression [23] and Tikhonov regularization [53]. Specifically, given a

response vector y ∈ Rn and a matrix of covariates X ∈ Rn×p, we solve the following regression

problem

min
β∈Rp

1

2n
∥y −Xβ∥22 (2.1)

s. t. ∥β∥2 ≤ λ , (2.2)

where β is a regression parameter to be estimated, and λ > 0 is a regularization parameter that

can be chosen by the user. This particular problem and its equivalent counterpart

min
β∈Rp

1

2n
∥y −Xβ∥22 + λ∥β∥22 , (2.3)

are known as the ridge regression problem.

However, although constraining the L2 norm as in ridge regression enables us to solve

a high dimensional regression problem, it does not impose any control on model complexity

since all features in X are typically assigned non-zero weights. One way of controlling model

complexity is to restrict the number of coefficients that are assigned non-zero weights, viz.

doing feature-selection while fitting the regression model. This can be achieved by constraining

9
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the L0 norm of the regression coefficient

min
β∈Rp

1

2n
∥y −Xβ∥22 (2.4)

s. t. ∥β∥2 ≤ 1, ∥β∥0 ≤ k , (2.5)

where ∥β∥0 denotes the number of non-zero elements in β.

The above sparse regression problem, though, suffers from a serious drawback. It is non-

convex, and for large p, practically impossible to solve directly. Much effort has been spent to

design approximations of this problem, and to show that such approximations yield comparable

results. The major breakthrough in machine learning and statistics has been to show that under

some mild conditions, the sparse regression problem can be exactly and efficiently solved by

considering the L1 norm to be a relaxation of the L0 norm and solving the following convex

relaxation:

min
β∈Rp

1

2n
∥y −Xβ∥22 (2.6)

s. t. ∥β∥2 ≤ 1, ∥β∥1 ≤ λn , (2.7)

where λn > 0 is a regularization parameter. The equivalent unconstrained problem

min
β∈Rp

1

2n
∥y −Xβ∥22 + λn∥β∥1 (2.8)

is known as the Least Absolute Shrinkage and Selection Operator, or commonly, LASSO [27,

25]. However, the idea of feature selection, where one selects a subset of the features in a

regression problem, is not new, but has received attention from the machine learning commu-

nity [54, 55, 56, 57]. However, most of these methods suffered from non-convexity and lack of

efficient optimization algorithms, and often provided sub-optimal solutions.

In a parallel development, the basis pursuit algorithm was developed in the context of com-

pressed sensing to recover sparse signals in under-determined systems [3, 58]. The basis pursuit

problem proposes solving the following optimization problem:

min
β

∥β∥1 (2.9)

s.t. y = Xβ . (2.10)

This problem may be understood as solving the sparse regression problem in the absence of the

additive noise ϵ = 0. It was shown that under certain conditions, called the restricted isometry
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property (RIP), of the matrix X, basis pursuit can exactly recover the s-sparse parameter β∗

which generated the data y = Xβ∗ [58]. Specifically, the RIP property requires that the singular

values of the all sub-matrices XS of matrix X with s columns be bounded as

(1− δS)∥βS∥22 < ∥XSβS∥22 < (1 + δS)∥βS∥22 , (2.11)

for all vectors βS ∈ Rs and for some δS > 0. However, the compressed sensing community

did not consider random design matrices X.

No proof of consistency existed for sparse regression with random design matrices till the

first proof of the statistical consistency of LASSO was provided in [59]. Although [60] had

shown that LASSO is consistent in estimating the support of β∗, consistency with respect to the

error ∥β∗ − β̂∥2 was not yet proved. [59] proved that under assumptions of Gaussianity of the

covariate or design matrix X, and the noise ϵ, LASSO is consistent.

In the following years, there has been increasing interest in designing regularizers that en-

code more complex structures than simple sparsity. For example, [28] proposed the group-lasso

regularizer, which considers sparsity over groups of variables. Further, they proved statistical

consistency of regularized estimators with the group-lasso norm. A number of papers in the

following years extended this work to groups with overlaps and proposed efficient methods for

optimization [29, 61, 62, 63]. The hierarchical group Lasso, and its special case, the Sparse

Group Lasso, were proposed in [64, 32]. Such hierarchical norms encoded a tree-structured

hierarchy in the sparsity induced in the regression estimate. Further, fast optimization methods

were developed in [65, 66] for efficient proximal projections with the hierarchical lasso norm.

However, although much progress was made in terms of developing novel sparse regularizers

and associated optimization methods, no consistency results existed in the literature for such

regularizers.

In a parallel development in the statistics community, the Dantzig Selector was proposed as

a non maximum likelihood estimator for sparse linear regression [34]. In contrast to LASSO,

which involves an unconstrained optimization problem, the Dantzig Selector is similar in spirit

to the basis pursuit method [58] and involves the following estimation problem:

min
β∈Rp

∥β∥1 (2.12)

s.t. ∥XT (y −Xβ)∥∞ ≤ λn . (2.13)
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Similar to LASSO, the Dantzig Selector has been extended to group-sparse norms [67]. Fur-

ther, [35] has analyzed and compared the Dantzig Selector with LASSO to show that for sparse

regression problems, they behave similarly, and one obtains similar statistical consistency guar-

antees. However, the Dantzig Selector has not been extended to other norm regularizers, and in

Chapter 4 we provide the first results on generalizing Dantzig Selector to any norm R.

Although multiple papers were written proving the statistical consistency of LASSO, group-

lasso etc. there did not exist a unified framework for proving statistical consistency of sparse

regression methods. [30] provided the first unified framework for analyzing sparse, or in gen-

eral, decomposable regularizers. A decomposable norm regularizer R is such that if M is

a subspace in Rp, and M⊥ is its orthogonal space, then for any vector β = βM + βM⊥ ,

R(β) = R(βM ) + R(βM⊥). The paper presented two key conditions required for proving

consistency of regularized estimators. The first condition was the notion of the error cone,

which shows that for an appropriate choice of the regularization parameter λn, the error vector

∆ = β̂ − β∗ lies in a cone CR, whose shape depends on the regularizer R. The second key

condition is known as Restricted Eigenvalue (RE) condition, which requires the design matrix

X to satisfy the lower bound

∥X∆∥2 ≥ κ∥∆∥2 , ∀∆ ∈ C (2.14)

such that κ > 0. This condition is less strict than the RIP condition described before, but

is essential in determining the sample complexity for consistent estimation. Their analysis

borrowed results from [68], which showed that Gaussian random matrices satisfy this condition

with high probability. However, the analysis technique did not extend to non-decomposable

norms, such as the overlapping group lasso norm.

The framework for analyzing general norm regularizers was put forward in [69], albeit in a

different form. [69] considered a class of norms known as atomic norms, which have previously

been proposed in the context of basis pursuit [58]. For a set of atoms A = {a} , a ∈ Rp, the

atomic norm is defined as

∥β∥A = inf

{∑
a∈A

ca : ca ≥ 0,
∑
a∈A

caa = β

}
. (2.15)
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[69] proposed the following minimization problem to recover a statistical parameter β∗ sup-

ported on a small number of atoms A∗ ⊆ A:

min
β∈Rp

∥β∥A (2.16)

s. t. ∥y −Xβ∥2 ≤ λn . (2.17)

The key idea developed in this paper was to analyze the sample complexity of estimation us-

ing the Gaussian width of a set [70, 71, 72, 73]. The Gaussian width provides a measure of

complexity of sets, particularly norm balls of the regularizer R. [71, 72, 73] has shown that

the Gaussian width also arises in showing the RE condition for Gaussian design matrices. [69]

provided some new results on bounding the Gaussian width with some analytical quantities

dependent on the dimensionality p, and the sample size n.

2.2 Optimization Methods

Optimization methods for regularized regression has received much attention from the machine

learning community in recent years. The LARS algorithm for LASSO [25] was seminal in that

it provided understanding of the geometry of LASSO solutions. Development of efficient meth-

ods started with increasing interest in proximal gradient methods [74, 75, 76, 77]. LASSO, for

example, provided fast algorithms through iterative shrinkage [78], since the lasso proximal op-

erator can be computed in closed form [79]. The proximal method has been shown to be efficient

for many other norm regularized regression problems. For example, [76] developed an efficient

dual ascent algorithm for hierarchical sparse norms based on an efficient proximal operator of

the dual norm. On a similar note, [65] developed a fast primal algorithm based on proximal

updates for hierarchical and group-structured norm regularizers, with efficient projections on

the hierarchical tree encoded by the regularizer. In context of online learning [80, 81], forward-

backward splitting algorithms are based on proximal methods, and provide fast stochastic opti-

mization methods for large scale problems. Further, alternating direction method of multipliers

(ADMM) [82, 83] provide an alternative to splitting methods for efficient optimization.

The Orthogonal Matching pursuit algorithm [4] was developed as a greedy algorithm for

solving the noisy basis pursuit problem. The method greedily selects each dimension (or atom)
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which minimizes the residual of a linear regression problem while being orthogonal to previ-

ously selected dimensions (or atoms). In the same vein the greedy forward-backward algo-

rithm [84] aims to solve the L1 regularized least squares problem by successively adding and

removing features from a feature set, such that the residual norm is minimized.

More recently, coordinate descent [85] methods are receiving attention from the community.

Although coordinate descent methods for lasso have previously been developed [86], recent re-

search illustrates the ability to parallelize coordinate descent methods for sparse regression [87].

Further, randomized block coordinate methods [88] offer scope for massive parallelism for solv-

ing regularized regression problems. Taken together, such methods hold promise for efficient

implementation in large scale problems.

2.3 Applications of Machine Learning models to climate

In recent years statistical modeling is receiving attention from the climate science commu-

nity for improving predictive performance of traditional physical models [89], as well as for

statistical downscaling [90]. Ridge regression, particularly, has been widely used for multi-

model ensemble forecasting with General Circulation Models (GCM) [46, 24, 89], and for

modeling transformation functions for computing surface temperature from satellite data [91].

However, regression with dimensionality reduction or feature selection has often been used in

the context of statistical downscaling [47]. Most commonly, regression methodologies involve

application of principal component analysis (PCA) to covariates to reduce dimensionality, fol-

lowed by multivariate linear or non-parametric regression models on the principal component

scores [47, 48, 49, 92, 15]. Feature selection, however, has received less attention in the com-

munity, and few papers exist on this topic [16].



Part I

Theoretical Developments
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Chapter 3

Hierarchical Sparse Models

3.1 Introduction

The success of data mining techniques in complementing and supplementing findings from

several topics of scientific research is well documented [6, 93, 94]. Often, the problems of

interest involve learning relationships among the response and predictor variables, where the

set of predictor variables may be very large. Recent work has proved the utility of having

parsimony in the inferred dependency structure. Efforts in this direction have been successful

in developing sparse models, which promote sparsity within the dependencies characterized by

the model. These models have been applied successfully in a number of fields, such as signal

processing [95], bioinformatics [96], computer vision [97] etc. Incorporating sparsity within a

statistical model provides a natural control over the complexity of the model.

The classical statistical model trains from the training data at hand by defining a loss func-

tion to measure the discrepancy between its predictions and observations of the response vari-

ables. Optimization routines are used to obtain an optimal parameter set for the model so that

the loss function is minimized. Sparsity is induced within the optimal parameter set by adding

a sparsity-inducing regularizer function to the loss and optimizing this combination over the

parameter set. The regularizer is usually a norm function of the parameter vector. This con-

struction gives rise to a family of sparse statistical models with a convex loss function and a

convex norm regularizer [26, 27]. Building on this literature, recent work has shown the utility

of imposing structure among the dependencies through the use of group [28] and hierarchical

norm regularizers [98, 64]. These structures can be learnt from some external sources, such

16
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as domain experts, and are useful in obtaining more robust and interpretable predictive mod-

els. Efficient optimization algorithms have been proposed to solve such estimation problems

[65]. Recent results [30, 59] have proved statistical consistency guarantees for a class of sparse

estimators under fairly mild conditions.

In this chapter, we consider structured sparse estimator called the hierarchical Lasso (hi-

Lasso), which encodes a tree-structured hierarchy in the induced sparsity. Using the analysis

method developed in [30], we prove statistical consistency guarantees for the class of tree-

structured hierarchical norm regularized estimation problems [65]. The chapter is arranged as

follows. We formally describe the regression model, and the hiLasso estimation problem in

Section 3.2. In Section 3.3, we discuss techniques for proving consistency of high-dimensional

estimators, and prove the statistical consistency of hiLasso. Finally, we briefly describe some

efficient optimization methods for solving the hiLasso problem in Section 3.4.

3.2 Problem Statement

3.2.1 Regression Model

Consider a linear statistical model defined as:

y ∼ Xθ∗ + w, (3.1)

where y ∈ Rn is an n-dimensional vector of observations of a response variable, θ∗ ∈ Rp is the

coefficient vector associated with p covariates, X ∈ Rn×p is the covariate or design matrix, and

w ∈ Rn is the noise vector. Our goal is two-fold:

1. understand which covariates are relevant/important for predicting the response variable,

and

2. build a suitable regressor based on these relevant variables.

Assuming that the noise vector w follows a Gaussian distribution, estimating the vector θ∗

amounts to solving the “ordinary least squares” (OLS) problem:

θ̂OLS = arg,min
θ∈Rp

{
1

2n
∥y −Xθ∥22

}
. (3.2)

Clearly, when n < p, the system is unidentifiable and we will obtain multiple solutions θ̂OLS .

Moreover, in general, all coefficients of θ̂OLS will be non-zero, signifying statistical dependency
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of the “response” variable on all covariates. As is well known in statistical literature [26], the

OLS estimate has large variance and hence, is not robust. Also, the estimate is not interpretable

in terms of the particular application domain under consideration due to the presence of many

spurious dependencies.

In such cases, a regularizer r(θ) is added to the squared loss function in order to have a

more robust estimate of θ∗ [26]. In many applications, such as climate, the dependencies are,

in general, sparse, meaning that most of the coefficients of θ̂ are zero [99, 100]. To promote

sparsity in the estimate, sparsity-inducing convex norm regularizers are commonly used [27,

101]. These sparse methods offer significant computational benefits over traditional feature

selection methods and some have been proven to be statistically consistent [59, 101].

As an example, consider the problem of predicting land climate variables using variables

measured over oceans. The covariates in our problem are multiple climate variables measured

at different geographical locations. This spatial structure of the data indicates a natural “group-

ing” of the variables at each ocean location. Simple sparse regularizers, such as the LASSO

penalty [27] do not respect this structure inherent in the data. Therein arises the need to have

regularizers which impose structured sparsity that respects this spatial nature. The model that

we use incorporates such a regularizer and is called Hierarchical Lasso, or hiLasso[32]. The

next subsection describes the model.

3.2.2 The hiLasso

HiLasso solves a regularized estimation problem which utilizes a convex norm regularization

function that enforces structured sparsity. The structure enforced by this norm is encoded by

a hierarchical tree within the dimensions {1, . . . , p}. This norm is called a tree norm and is

defined as follows. Consider a grouping G if the dimensions {1, . . . , p}, where the groups form

a tree-hierarchy, such that groups at each level of the tree are disjoint, and sibling groups at each

level share only one parent.

Note that the root node consisting of all the dimensions {1, ..., p} is not considered here.

Let the height of the tree be h+1, with the leaves having a height 0 and the root having a height

h + 1. Let the maximum size of a group at height i be mi. Let the nodes (groups) at height i

be denoted by Gi := {Gi
j} , j = 1, . . . , ni. Note that n0 = p and m0 = 1. The group norm at
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height i is computed as:

∥θ∥(Gi,ν) :=

ni∑
j=1

∥θGi
j
∥ν (3.3)

For any (α0, α1, . . . , αh) such that 1 > αi > 0 ,∀i and α0 + α1 + . . .+ αh = 1, the tree-norm

regularizer is formally defined as

r(θ) := rtree(θ) :=

h∑
i=0

αi∥θ∥(Gi,ν) . (3.4)

The regularized estimation problem that hiLasso solves is of the form

θ̂ = arg,min
θ∈Rp

{
1

2N
∥y −Xθ∥2 + λr(θ)

}
, (3.5)

3.2.3 Special Cases of hiLasso

Many popular sparse regression problems are special cases of the hiLasso. The L1-regularized

least squares estimation problem, known as LASSO [27], is a special case where h = 0, and

the groups at the leaves are singletons {1, . . . , p}. In this case, the regularizer r is simply the

L1 norm of the coefficient θ and the regularized estimation problem is of the form:

θ̂Lasso = arg,min
θ∈Rp

{
1

2N
∥y −Xθ∥2 + λ∥θ∥1

}
(3.6)

The Group LASSO [28] is another special case where h = 0, and the leaves of the tree

are non-overlapping groups formed from the set {1, . . . , p}. In this case, the problem takes the

form

θ̂gpLasso = arg,min
θ∈Rp

{
1

2N
∥y −Xθ∥2 + λ∥θ∥1,G

}
, (3.7)

where

∥θ∥1,G =

T∑
k=1

∥θGk
∥2 (3.8)

is the group Lasso norm.

For a two-level tree hierarchy, the regularizer r consists of a convex combination of a group

lasso norm [28], and an L1 norm. This estimator is called the Sparse Group Lasso (SGL), and

is defined as

θ̂SGL = arg,min
θ∈Rp

{
1

2N
∥y −Xθ∥22 + λr(θ)

}
, (3.9)
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Figure 3.1: The hierarchical structure of the SGL norm. G1, . . . , GT are groups of variables,

where Vk,1 . . . , Vk,m are variables in Gk.

where r is the SGL regularizer given by

r(θ) := r(1,G2,α) = α∥θ∥1 + (1− α)∥θ∥1,G , (3.10)

where G = {G1, . . . , GT } are the groups of variables (Fig. 3.1. The mixed norm ∥θ∥1,G pe-

nalizes groups of variables, while the L1 norm ∥θ∥1 promotes sparsity among variables within

each group.

In the next section, following the analysis technique developed in [30], we prove that, under

fairly general conditions, hiLasso is statistically consistent in estimating the true parameter θ∗

of the distribution from which the data samples (X, y) were generated. For the special case of

SGL, we provide explicit bounds for the consistency of SGL.

3.3 Consistency of Hierarchical Lasso

3.3.1 Formulation

Let Zn1 := {Z1, . . . , Zn} denote n observations drawn i.i.d. according to some distribution

P, and suppose that we are interested in estimating the parameter θ of the distribution P. Let

L(θ;Zn1 ) = ∥y−Xθ∥2 be the squared loss function. Given the hiLasso regularizer r : Rp 7→ R,

the hiLasso estimator is given by

θ̂λn ∈ arg,min
θ∈Rp

{L(θ;Zn1 ) + λnr(θ)} , (3.11)
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where λn > 0 is a user-defined regularization penalty.

In this work, we assume that the noise vector w is zero mean and has sub-Gaussian tails,

i.e., there is a constant σ > 0 such that for any v, ∥v∥2 = 1, we have

P(|⟨v, w⟩| ≥ δ) ≤ 2 exp

(
− δ2

2σ2

)
, for all δ > 0 . (3.12)

The condition holds in the special case of Gaussian noise; it also holds whenever the noise

vector w consists of independent bounded random variables.

3.3.2 Assumptions on Regularizer and Loss Function

Following [30], the first key requirement for the analysis is a property of the regularizer r. Let us

assume that the optimal statistical parameter θ∗ lies in a subspace A of dimensionality sA. Let

A⊥ be the orthogonal subspace of the space A. The regularizer r is defined to be decomposable

w.r.t. the subspace pair (A,A⊥) if, for any α ∈ A and β ∈ A⊥,

r(α+ β) = r(α) + r(β) . (3.13)

Let us define the error vector ∆̂λn := θ̂λn − θ∗, and the projection operator ΠA : Rp 7→ A,

such that

ΠA(u) = arg,min
v∈A

∥u− v∥∗ ,

for some given error norm ∥ · ∥∗. [30] showed that for a decomposable regularizer r, and

choosing λn satisfying

λn ≥ 2r∗(∇L(θ∗;Zn1 )) ,

the error ∆̂ lies in the set

C(A; θ∗) := {∆ ∈ Rp|r(ΠA⊥(∆)) ≤ 3r(ΠA(∆))} , (3.14)

The second key requirement, as stated in [30], is that the loss function L should satisfy the

Restricted Strong Convexity (RSC) property. Let us define δL(∆, θ∗) := L(θ∗ + ∆;Zn1 ) −
L(θ∗;Zn1 ) − ⟨∇L(θ∗;Zn1 ),∆⟩. L satisfies RSC with curvature κL > 0 and tolerance function

τL if, for all ∆ ∈ C(A,B; θ∗),

δL(∆, θ∗) ≥ κL∥∆∥2∗ − τ2L(θ
∗) . (3.15)
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Further, [30] defines a subspace compatibility constant with respect to the pair (r, ∥ · ∥∗) for

any subspace B ⊆ Rp as follows:

Ψ(B) := sup
u∈B\{0}

r(u)

∥u∥∗
. (3.16)

For the squared loss, it can be shown that with high probability, δL satisfies

δL(∆, θ∗) ≥ κ1∥∆∥2∗ − κ2 g(n, p)r
2(∆), ∀ ∥∆∥∗ ≤ 1 , (3.17)

where g(n, p) is a function of the sample size n and dimensionality p . As shown in [30] ,

this implies restricted strong convexity under mild conditions on the sample size. We would

illustrate in Section 3.3.3 that this form of RSC holds for hiLasso.

Based on the assumption that the norm regularizer r is decomposable w.r.t. a subspace pair

(A,A⊥), [30] presents the following key result:

Theorem 1 Consider the convex program in (3.11) based on a strictly positive regularization

constant

λn ≥ 2r∗(∇L(θ∗;Zn1 )) . (3.18)

Then any optimal solution θ̂λn to (3.11) satisfies the bound

∥θ̂λn − θ∗∥2∗ ≤ 9
λ2
n

κ2L
Ψ2(B) +

2λn
κL

τ2L(θ
∗) . (3.19)

3.3.3 Analysis for hiLasso

Our analysis consists of three key parts: (i) Showing that the regularizer rtree is decomposable,

(ii) Showing that the loss function satisfies the RSC condition, and (iii) Choosing a λn which

satisfies the prescribed lower bound.

Following [30], we assume that for each k = 1, . . . , p

∥Xk∥2√
n

≤ 1 . (3.20)

Note that the assumption can be satisfied by simply rescaling the data, and is hence without loss

of generality. Further, the above assumption implies that

∥XGi
j
∥ν→2

√
n

≤ 1 , (3.21)
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where the operator norm

∥XGt∥ν→2 := max
∥θ∥ν=1

∥XGtθ∥2 .

Decomposability of Regularizer

We may note that the group norm at a particular height in the tree, ∥θ∥(Gi,ν) is over groups

which are disjoint. Hence it decomposes over the subspace spanned by each group. Therefore,

following the definitions and arguments in [30], the tree-norm is decomposable.

Restricted Strong Convexity

As shown in [30] , if X is formed by sampling each row Xi ∼ N(0,Σ), referred to as the

Σ-Gaussian ensemble, then there exists constants (κ1,i, κ2,i) , such that, with high probability

∥Xθ∥22
n

≥ κ1,i∥θ∥22 − κ2,i∥θ∥2(Gi,ν) , (3.22)

for groups at height i . Now, from the definition of the hierarchical tree structure norm, we have

r2(θ) =

(∑
i

αi∥θ∥(Gi,ν)

)2

=
∑
i

α2
i ∥θ∥2(Gi,ν) +

∑
i,j:i ̸=j

αiαj∥θ∥(Gi,ν)∥θ∥(Gj ,ν)

≥
∑
i

α2
i ∥θ∥2(Gi,ν) ,

(3.23)

where the inequality follows from the non-negativity of α and group norms.

From (3.22) , we can conclude that with high probability,(∑
i

α2
i

)
∥Xθ∥22

n

≥

(∑
i

α2
i κ1,i

)
∥θ∥22 − (max

i
κ2,i)

(∑
i

α2
i ∥θ∥2(Gi,ν)

)

⇒ ∥Xθ∥22
n

≥ κ1∥θ∥22 − κ2r
2(θ) ,

(3.24)

and RSC follows from the discussion in Section 3.3.2 .
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Bounds for λn

Recall from Theorem 1 that the λn needs to satisfy the following lower bound:

λn ≥ 2r∗tree(∇L(θ∗;Zn1 )) . (3.25)

A key issue with the above lower bound is that it is a random variable depending on Zn1 . A

second issue is that the conjugate r∗tree for the mixed norm rtree(v) may not be obtainable in

closed (non-variational) form. So we first obtain an upper bound r̄∗tree on r∗tree, and choose a λn
which will satisfy the lower bound in (3.25) with high probability over choices of Zn1 .

By definition

r∗tree(v)

= sup
u∈Rp\{0}

⟨u, v⟩
rtree(u)

= sup
u∈Rp\{0}

⟨u, v⟩∑h
i=0 αi∥uGi∥(1,ν)

(a)

≤ sup
u∈Rp\{0}

[
h∑
i=0

αi
⟨u, v⟩

∥uGi∥(1,ν)

]

≤
h∑
i=0

αi sup
u∈Rp\{0}

⟨u, v⟩
∥uGi∥(1,ν)

=

h∑
i=0

αir
∗
Gi
ν
(v) = r̄∗tree(v) ,

(3.26)

where (a) follows from Jensen’s inequality and r∗Gi
ν

is the conjugate norm of rGi
ν
(v) =

∑ni
j=1 ∥vGi

j
∥ν

given by

r∗Gi
ν
(v) = max

j=1,...,ni

∥vGi
j
∥ν∗ , (3.27)

where ν∗ > 0 satisfies 1
ν + 1

ν∗ = 1.

By definition, we have ∇L(θ∗;Zn1 ) = XTw
n where w = y − Xθ∗ is a zero mean sub-

Gaussian random variable. As a result, it is sufficient to choose λn satisfying:

λn ≥ 2

[
h∑
i=0

αi

(
max

j=1,...,ni

∥∥∥∥∥∥
XT
Gi

j
w

n

∥∥∥∥∥∥
ν∗

)]
. (3.28)

We make use of the following Lemma in our subsequent analysis for choosing λn appropriately.
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Lemma 1 At any height i of the tree, with probability at least 1− 2 exp(−nδ2

2σ2 ), we have

max
j=1,...,ni

∥∥∥∥∥∥
XT
Gi

j
w

n

∥∥∥∥∥∥
ν∗

≤ 2σ
m

1−1/ν
i√
n

+ δ , (3.29)

where mi is the size of the largest group at height i.

Proof: For any j ∈ {1, . . . , ni} and i ∈ {0, . . . , h} , consider the random variable:

Y i
j = Y i

j (w) =

∥∥∥∥∥∥
XT
Gi

j
w

n

∥∥∥∥∥∥
ν∗

.

Following exactly similar arguments as in [30], we can show that Y i
j (w) is a Lipschitz function

of w with constant 1√
n

. It follows that

P
[
Y i
j ≥ E[Y i

j ] + δ
]
≤ 2 exp(−nδ2

2σ2
) . (3.30)

Suitably applying the Sudakov-Fernique comparison principle [102, 103] shows that:

E[Y i
j ] = E

∥∥∥∥∥∥
XT
Gi

j
w

n

∥∥∥∥∥∥
ν∗

 ≤ 2σ
m

1−1/ν
i√
n

, (3.31)

so that we have

P

[
Y i
j ≥ 2σ

m
1−1/ν
i√
n

+ δ

]
≤ 2 exp(−nδ2

2σ2
) , (3.32)

for each j ∈ {1, . . . , ni} . Hence, we have

P

[
max

j=1,...,ni

Y i
j ≥ 2σ

m
1−1/ν
i√
n

+ δ

]
≤ 2 exp(−nδ2

2σ2
) . (3.33)

Next we use Lemma 1 to obtain a choice of λn such that (3.28) holds with high probability.

Multiplying both sides of (3.33) by αi and applying the union bound over i = 0, . . . , h we

obtain

P

{
h∑
i=0

αi

(
max

j=1,...,ni

Y i
j

)
≥ 2σ

∑h
i=0 αim

1−1/ν
i√

n
+ δ

}

≤ 2 exp

[
−nδ2

2σ2
+ log(h+ 1)

]
.

(3.34)
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For any k > 0, choosing

δ = σ

√
2(k + 1) log(h+ 1) + k log p

n
, (3.35)

we get the following result:

Lemma 2 If

λn ≥ 2σ

{
2
∑h

i=0 αim
1−1/ν
i√

n

+

√
2(k + 1) log(h+ 1) + k log p

n

}
,

then

P [λn ≥ 2r∗(∇L(θ∗;Zn1 ))] ≥ 1− 2

pk(h+ 1)k
.

3.3.4 Analysis of Sparse Group Lasso

The Sparse Group Lasso is a special case of hiLasso, when the height of the tree is 2. The first

level of the tree contains nodes corresponding to the T disjoint groups G = {G1, . . . , GT },

while the second level contains the singletons. It combines a group-structured norm with a

element-wise norm (3.10). For ease of exposition, we assume the groups Gt are of the same

size, say of m indices, so we have T groups of size m, and p = Tm.

A direct analysis for SGL using the proof method just described provides the following

lemma:

Lemma 3 If

λn ≥ 2σ

{
2(1 +m1−1/ν)√

n
+

√
k log p

n

}
, (3.36)

then

P [λn ≥ 2r∗(∇L(θ∗;Zn1 ))] ≥ 1− 2

pk
. (3.37)
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3.3.5 Main Result

A direct application of Theorem 1 now gives the following result:

Theorem 2 Let A be any subspace of Rp of dimension sA which contains θ∗, the optimal (un-

known) regression parameter. Then, if λn satisfies the lower bound in Lemma 2, with probability

at least
(
1− 2

pk(h+1)k

)
, we have

∥θ̂λn − θ∗∥22 ≤
9λ2

n

k2L
sA = O

(
log p

n

)
, (3.38)

where θ̂λn is the hiLasso estimator.

Note that the bound on the error scales as the logarithm of the problem dimensionality

and inversely as the sample. The scale of the bound is consistent with known rates in sparse

regression [30]. In the next section, we discuss some optimization methods for sparse group

lasso.

3.4 Optimization Method

Our analysis in the previous section illustrates that SGL encodes a tree-structured hierarchy in

grouping covariates which leads to sparsity at two levels: groups and singletons. The different

sparsity structures induced by hierarchical norms have been explored in [98] and [65]. The

authors have independently proposed methods for optimization.

We follow the proximal method proposed by [65] which solves the primal SGL problem.

Note that (3.9) is the sum of two convex functions [104], where the squared loss L is smooth

and the regularizer r is non-smooth. At each iteration t, the proximal algorithm computes the

following updates

θt+ 1
2
= θt − ηt∇L

θt+1 = arg,min
θ∈Rp

1

2
∥θ − θt+ 1

2
∥22 + λnrtree(θ) ,

(3.39)

where ηk is the learning rate. [65] shows that the proximal step can be performed efficiently by

one pass through all the groups encoded by the tree hierarchy. The algorithm is initialized at the

leaves of the tree and terminates at the root. In essence, the proximal step involves successive
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projections into the subspaces spanned by the groups Gi at height i . As mentioned earlier,

these groups Gi are mutually disjoint. Hence, the algorithm simply performs iterative shrinkage

at each step. Since SGL constitutes of a depth-2 hierarchical tree, the proposed algorithm

is expected to be fast. Theoretically, it achieves a global convergence rate of O( 1k ) after k

iterations [65].

The authors of [65] have done an efficient implementation of their algorithm in a MATLAB

interfaced module called SLEP [66].

3.5 Conclusion

In this chapter, we described the hierarchical tree-structured norm regularizer, and estimation

with hiLasso. We illustrated that the Sparse Group Lasso is a special case of hiLasso. We

proved non-asymptotic rates of consistency for hiLasso, and showed that the scale of derived

error bounds is similar to existing bounds for sparse regression. Finally, we discussed some

efficient optimization methods for hiLasso using proximal methods.



Chapter 4

Generalized Dantzig Selector

4.1 Introduction

The Dantzig Selector (DS) [35, 34] provides an alternative to regularized regression approaches

such as Lasso [27, 59] for sparse estimation. Although DS does not consider a regularized

maximum likelihood approach, [35] has established clear similarities between the estimates

from DS and Lasso. While norm regularized regression approaches have been generalized

to more general norms, such as decomposable norms [30], the literature on DS has primarily

focused on the sparse L1 norm case, with a few notable exceptions which have considered

extensions to sparse group-structured norms [67].

In this chapter, we consider linear models of the form y = Xθ∗ + w, where y ∈ Rn is a

set of observations, X ∈ Rn×p is a design matrix, and w ∈ Rn is i.i.d. noise. For any given

norm R(·), the parameter θ∗ is assumed to structured in terms of having a low value of R(θ∗).

For this setting, we propose the following Generalized Dantzig Selector (GDS) for parameter

estimation:

θ̂ = arg,min
θ∈Rp

R(θ)

s.t. R∗(XT (y −Xθ)
)
≤ λp ,

(4.1)

where R∗(·) is the dual norm of R(·), and λp is a suitable constant. If R(·) is the L1 norm,

(4.1) reduces to standard DS [34]. A key novel aspect of GDS is that the constraint is in terms

of the dual norm R∗(·) of the original structure inducing norm R(·). It is instructive to contrast

GDS with the recently proposed atomic norm based estimation framework [69] which, unlike

29
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GDS, considers constraints based on the L2 norm of the error ∥y−Xθ∥2, and focuses only on

atomic norms.

In this chapter, we consider statistical aspects of the GDS. We establish non-asymptotic

high-probability bounds on the estimation error ∥θ̂−θ∗∥2. Interestingly, the bound depends on

the Gaussian width of the unit norm ball of R(·) as well as the Gaussian width of suitable set

where the estimation error belongs [69, 105]. As a non-trivial example of the GDS framework,

we consider estimation using the recently proposed k-support norm [106, 107]. We provide

upper bounds for the Gaussian widths of the unit norm ball and the error set as needed in

the GDS framework, yielding the first statistical recovery guarantee for estimation with the

k-support norm.

The rest of the chapter is organized as follows: We establish statistical recovery results for

GDS for any norm in Section 4.2. In Section 4.3, we present estimation error bounds for the

k-support norm. We present experimental results in Section 4.4 and conclude in Section 4.5.

All technical analyses and proofs are in the supplement.

4.2 Statistical Recovery

Our goal is to provide error bounds on ∥θ̂− θ∗∥2 between the population parameter θ∗ and the

minimizer θ̂ of (4.1). Let the error vector be defined as ∆̂ = θ̂ − θ∗. For any set Ω ⊆ Rp,
we would measure the size of this set using its Gaussian width [73, 69], which is defined as

ω(Ω) = Eg [supz∈Ω⟨g, z⟩] , where g is a vector of i.i.d. standard Gaussian entries. We also

consider the error cone TR(θ∗), generated by the set of possible error vectors ∆ and containing

the error vector ∆̂, defined as

TR(θ∗) := cone {∆ ∈ Rp : R(θ∗ +∆) ≤ R(θ∗)} . (4.2)

Note that this set contains a restricted set of directions and does not in general span the entire

space of Rp. Further, let ΩR := {u : R(u) ≤ 1}. With these definitions, we obtain our main

result.

Theorem 3 Suppose the design matrix X consists of i.i.d. Gaussian entries with zero mean

variance 1, and we solve the optimization problem (4.1) with

λp ≥ cE
[
R∗(XTw)

]
. (4.3)
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Then, with probability at least (1− η1 exp(−η2n)), we have

∥θ̂ − θ∗∥2 ≤
4cΨRω(ΩR)

κL
√
n

, (4.4)

where ω(TR(θ∗) ∩ Sp−1) is the Gaussian width of the intersection of TR(θ∗) and the unit

spherical shell Sp−1, ω(ΩR) is the Gaussian width of the unit norm ball, κL > 0 is the gain

given by

κL =
1

n

(
ℓn − ω(TR(θ∗) ∩ Sp−1)

)2
, (4.5)

ΨR = sup∆∈TR R(∆)/∥∆∥2 is a norm compatibility factor, ℓn is the expected length of a

length n i.i.d. standard Gaussian vector with n√
n+1

< ℓn <
√
n, and c > 1, η1, η2 > 0 are

constants.

Remark: The choice of λp is also intimately connected to the notion of Gaussian width.

Note that for X i.i.d. Gaussian entries, and w i.i.d. standard Gaussian vector, XTw =

∥w∥2
(
XT w

∥w∥2

)
= ∥w∥2z where z is an i.i.d. standard Gaussian vector. Therefore,

λp ≥ cE
[
R∗(XTw)

]
= cEw[∥w∥2] ·EX

[
R∗(XT w

∥w∥2
)

]
(4.6)

= cEw[∥w∥2]Ez

[
sup

u: R(u)≤1
⟨u, z⟩

]
(4.7)

= cℓnω (ΩR) , (4.8)

which is a scaled Gaussian width of the unit ball of the norm R(·).

4.2.1 Examples

L1-norm Dantzig Selector

When R(·) is chosen to be L1 norm, the dual norm is the L∞ norm, and (4.1) is reduced to the

standard DS, given by

θ̂ = arg,min
θ∈Rp

∥θ∥1 s.t. ∥XT (y −Xθ)∥∞ ≤ λ . (4.9)

For statistical recovery, we assume that θ∗ is s-sparse, i.e., contains s non-zero entries, and

that ∥θ∗∥2 = 1, so that ∥θ∗∥1 ≤ s. It was shown in [69] that the Gaussian width of the set

(TL1(θ
∗) ∩ Sp−1) is upper bounded as ω(TL1(θ

∗) ∩ Sp−1)2 ≤ 2s log
(p
s

)
+ 5

4s. Also note
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that E
[
R∗(XTw)

]
= E[∥w∥2]E[∥g∥∞] ≤

√
n
√
log p, where g is a vector of i.i.d. standard

Gaussian entries [34]. Further, [30] has shown that ΨR =
√
s. Therefore, if we solve (4.12)

with λp = c
√
n log p, then

∥θ̂ − θ∗∥2 ≤ 4c

√
s log p

κL
√
n

= O

(√
s log p

n

)
(4.10)

with high probability, which agrees with known results for DS [35, 34].

Group-sparse norm Dantzig Selector

Next, consider R to be the group-sparse mixed L1/L2 norm

R(θ) = ∥θ∥(2,G) =
∑
G∈G

∥θG∥2 , (4.11)

where G := {G : G ⊆ {1, 2, . . . , p}, Gi ∩Gj = ϕ , ∪G = {1, 2, . . . , p}} is a set of disjoint

groups of features. The regularized regression method based on this norm is known as the group

lasso [28]. In this case, (4.1) is reduced to

θ̂ = arg,min
θ∈Rp

∥θ∥(2,G) s.t. ∥XT (y −Xθ)∥(2,G,∞) ≤ λ , (4.12)

where ∥θ∥(2,G,∞) is the dual of the group sparse norm

∥θ∥(2,G,∞) = max
G∈G

∥θG∥2 (4.13)

Assuming that θ∗ is sG group sparse, i.e. supported by sG groups, and θ∗ = 1, we obtain

∥θ∗∥(2,G) ≤ s. Further, we can show that the Gaussian width of the set (T(2,G)(θ∗) ∩ Sp−1) is

upper bounded as

ω(T(2,G)(θ∗) ∩ Sp−1)2 ≤ (
√

2 log(|G| − sG) +
√
mG)

2sG + sGmG , (4.14)

where mG is the size of the largest group. Further, we can also show that

E
[
R∗(XTw)

]
≤ 2

√
n(
√
mG + log |G|) , (4.15)

and ΦR =
√
sG . Therefore, if we solve (4.12) with λp = c

√
n(
√
mG + log |G|), then

∥θ̂ − θ∗∥2 ≤ 4c

√
sG(

√
mG + log |G|)
κL

√
n

(4.16)

with high probability.
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4.3 Dantzig Selection with k-support norm

We first introduce some notations. Given any θ ∈ Rp, let |θ| denote its absolute-valued coun-

terpart and θ↓ denote the permutation of θ with its elements arranged in decreasing order. In

previous work [106, 107], the k-support norm is defined as

∥θ∥spk = min

 ∑
I∈G(k)

∥vI∥2 : supp(vI) ⊆ I,
∑
I∈G(k)

vI = θ

 , (4.17)

where G(k) denotes the set of subsets of {1, . . . , p} of cardinality at most k. The unit ball of this

norm is the set Ck = conv {θ ∈ Rp : ∥θ∥0 ≤ k, ∥θ∥2 ≤ 1} . The dual norm of the k-support

norm is given by

∥θ∥sp
∗

k = max
{
∥θG∥2 : G ∈ G(k)

}
=

(
k∑
i=1

|θ|↓
2

i

) 1
2

. (4.18)

The k-support norm was proposed in order to overcome some of the empirical shortcom-

ings of the elastic net [108] and the (group)-sparse regularizers. It was shown in [106] to behave

similarly as the elastic net in the sense that the unit norm ball of the k-support norm is within a

constant factor of
√
2 of the unit elastic net ball. Although multiple papers have reported good

empirical performance of the k-support norm on selecting highly correlated features, wherein

L1 regularization fails, there exists no statistical analysis of the k-support norm. Besides, cur-

rent computational methods consider square of k-support norm in their formulation, which

might fail to work out in certain cases.

In the rest of this section, we focus on GDS with R(θ) = ∥θ∥spk given as

θ̂ = arg,min
θ∈Rp

∥θ∥spk s.t. ∥XT (y −Xθ)∥sp
∗

k ≤ λp . (4.19)

We prove statistical recovery bounds for k-support norm Dantzig selection, which hold even for

a high-dimensional scenario, where n < p.

4.3.1 Statistical Recovery Guarantees for k-support norm

The analysis of the generalized Dantzig Selector for k-support norm consists of addressing two

key challenges. First, note that Theorem 3 requires an appropriate choice of λp. Second, one

needs to compute the Gaussian width of the subset of the error set TR(θ∗) ∩ Sp−1. For the
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k-support norm, we can get upper bounds to both of these quantities. We start by defining some

notations. Let G∗ ⊆ G(k) be the set of groups intersecting with the support of θ∗, and let S be

the union of groups in G∗, such that s = |S|. Then, we have the following bounds which are

used for choosing λp, and bounding the Gaussian width.

Theorem 4 For the k-support norm Generalized Dantzig Selection problem (4.19), we obtain

For the k-support norm Generalized Dantzig Selection problem (4.19), we obtain

E
[
R∗(XTw)

]
≤

√
n

(√
2k log

(pe
k

)
+

√
k

)
(4.20)

ω(ΩR) ≤
(√

2k log
(pe
k

)
+

√
k

)
(4.21)

ω(TA(θ∗) ∩ Sp−1)2 ≤
(√

2k log
(
p− k −

⌈ s
k

⌉
+ 2
)
+

√
k

)2

·
⌈ s
k

⌉
+ s . (4.22)

We prove these two bounds using the analysis technique for group lasso with overlaps developed

in [105]. Thereafter, choosing λp =
√
n
(√

2k log
(pe
k

)
+

√
k
)

, and under the assumptions of

Theorem 3, we obtain the following result on the error bound for the minimizer of (4.19).

Corollary 1 Suppose that all conditions of Theorem 3 hold, and we solve (4.19) with λp chosen

as above. Then, with high probability, we obtain

∥θ̂ − θ∗∥2 ≤
4cΨR

(√
2k log

(pe
k

)
+

√
k
)

κL
√
n

(4.23)

Remark The error bound provides a natural interpretation for the two special cases of the k-

support norm, viz. k = 1 and k = p. First, for k = 1 the k-support norm is exactly the same as

the L1 norm, and the error bound obtained will be O
(√

s log p
n

)
, the same as known results of

DS, and shown in Section 2.2. Second, for k = p, the k-support norm is equal to the L2 norm,

and the error cone (4.2) is then simply a half space (there is no structural constraint). Therefore,

ΨR = O(1), and the error bound scales as O
(√

p
n

)
.
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Figure 4.1: (a) The true positive rate reaches 1 quite early for k = 1, 10. When k = 50, the

ROC gets worse due to the strong smoothing effect introduced by large k. (b) For each k, the L2

error is large when the sample is inadequate. As n increases, the error decreases dramatically for

k = 1, 10 and becomes stable afterwards, while the decrease is not that significant for k = 50

and the error remains relatively large. (c) Both mean and standard deviation of L2 error are

decreasing as k increases until it exceeds the number of nonzero entries in θ∗, and then the

error goes up for larger k, which matches our analysis quite well. The result also shows that the

k-support-norm GDS with suitable k outperforms the L1 DS when correlated variables present

in data (Note that k = 1 corresponds to standard DS).

4.4 Numerical Simulations

In this section, we consider the behavior and performance of GDS with k-support norm. For

solving (4.19), we use the inexact ADMM algorithm developed in [50]. All experiments are

implemented in MATLAB.

Data generation We fixed p = 600, and θ∗ = (10, . . . , 10︸ ︷︷ ︸
10

, 10, . . . , 10︸ ︷︷ ︸
10

, 10, . . . , 10︸ ︷︷ ︸
10

, 0, 0, . . . , 0︸ ︷︷ ︸
570

)

throughout the experiment, in which nonzero entries were divided equally into three groups.

The design matrix X were generated from a normal distribution such that the entries in the

same group have the same mean sampled from N (0, 1). X was normalized afterwards. The

response vector y was given by y = Xθ∗ + 0.01 × N (0, 1). The number of samples n is

specified later.

ROC curves with different k We fixed n = 400 to obtain the ROC plot for k = {1, 10, 50}
as shown in Figure 4.1(a). λp ranged from 10−2 to 103.
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L2 error vs. n We investigated how the L2 error ∥θ̂ − θ∗∥2 of Dantzig selector changes as

the number of samples increases, where k = {1, 10, 50} and n = {30, 60, 90, . . . , 300}. The

plot is shown in Figure 4.1(b).

L2 error vs. k We also looked at the L2 error with different k. We again fixed n = 400

and varied k from 1 to 39. For each k, we repeated the experiment 100 times, and obtained the

mean and standard deviation plot in Figure 4.1(c).

4.5 Conclusion

In this chapter, we introduced the GDS, which generalizes the standard L1-norm Dantzig Se-

lector to estimation with any norm, such that structural information encoded in the norm can be

efficiently exploited. We provide a unified statistical analysis framework for the GDS, which

utilizes Gaussian widths of certain restricted sets for proving consistency. In the non-trivial ex-

ample of k-support norm, our statistical analysis for the k-support norm provides the first result

of consistency of this structured norm. Last, experimental results provided sound support to the

theoretical development.



Chapter 5

Regression with Noisy Covariates

5.1 Introduction

The study of regression models with error in covariates has gathered some attention in recent

literature. In such models we assume that instead of observing (xi, yi) from the linear model

yi = ⟨β∗,xi⟩+ ϵi, (zi, yi) is observed, where zi = f(xi,wi) is a noisy version of xi corrupted

by wi. Given {(zi, yi)}ni=1 we want to compute β̂, which is l2 consistent i.e., for the error

vector ∆ = β̂ − β∗, ∥∆∥2 is bounded above and the bound shrinks as the number of samples

increases.

These models are known as measurement error, errors-in-variables, or noisy covariates and

have applications in various areas of science and engineering [109, 110, 111]. The importance

of measurement error models is amplified in the era of big data, since large scale and high

dimensional data are more prone to noise [111, 112]. In high dimensional setting where p ≫ n

the classical assumptions required for treatment of measurement error break down [109, 110]

and new estimators and methods are required to consistently estimate β∗. Such challenges have

revived measurement error research and several papers have addressed high dimensional issues

of those models in recent years [111, 112, 113, 114, 115].

Many recent work reported unstable behavior of standard sparse estimators like LASSO

[27] and Dantzig selector (DS) [95] under measurement error which resulted in proposal of new

estimators for which some knowledge of noise wi, and/or β∗ are required for consistent esti-

mation [111, 112, 113, 114, 115]. Although literature has reached consensus on the inability

of classical estimators in dealing with noisy measurements, there is a lack of theoretical results
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to describe this phenomenon. In this work, we exactly characterize inconsistency of estimators

lacking any knowledge of the measurement noise by showing that the error is bounded by two

terms one of which shrinks as the number of samples increases and the other one is irreducible

and depends on the covariance of the noise. Our analysis substantially generalizes the exist-

ing estimators in the noisy setting, which have only considered sparse regression and l1 norm

regularization.

Most of the work in high dimensional measurement error models assume sparsity on param-

eter β∗. However, other structures of β∗ are of interest in different applications [30, 69]. These

structures are formalized as having a small value for R(β∗) where R is a suitable norm. Almost

none of the previous work in high dimensional measurement error literature has considered

structures other than sparsity. In this work, we consider the constrained (DS type) estimators

with general norms R, when the design matrix X , with xi as its rows, is corrupted by additive

independent sub-Gaussian noise matrix W . We study the properties of such estimators where

no knowledge of noise W is available. This is in the sharp contrast to the recent literature

[111, 112, 114] where the noise covariance Σw = E[W TW ] or an estimate of it is required as

a part of estimator. [112] uses a maximum likelihood estimator, which always requires estima-

tion of Σw in order to establish restricted eigenvalue conditions [72, 116, 68] on the estimated

sample covariance Σx. [114] showed that for sparse recovery using OMP, although support

recovery is possible without any knowledge of Σw, but it is not possible to establish l2 con-

sistency without estimating Σw directly. Our analysis shows an explicit characterization of the

upper bound on ∥∆∥2, when Σw is unknown, which decays as O(1/
√
n) to the variance of the

noise. Thus statistical error does not decay to zero, but remains bounded within a norm ball.

Our work advances the understanding of the behavior of high dimensional estimators in the

presence of the noise in two key directions. First, our analysis sheds light on the limit of standard

estimators under the additive independent sub-Gaussian measurement error model. Second, our

results holds for any structured norm R, where DS is a special case when R(·) = ∥ · ∥1.

The rest of the chapter is organized as follows. First we introduce the notation and preliminary

definitions. Next, we briefly review related work in Section 5.2. In Section 5.3 we formulate the

structured estimation problem under noisy designs assumption using constrained optimization

and establish non-asymptotic bounds on the error for sub-Gaussian designs and sub-Gaussian

noise. Finally, we conclude in Section 5.5.
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Table 5.1: Comparison of estimators for design corrupted with additive sub-Gaussian noise

Name Estimator Conditions Bound for ∥∆∥2

MU

[111]

min ∥β∥1 s.t.

∥ 1
n
ZT (y − Zβ)∥∞ ≤ (1 + δ)δ∥β∥1 + τ

∥ 1
n
ZT ϵ∥∞ ≤ τ

∀Wij , |Wij | ≤ δ
c
√
s(δ + δ2)∥β∗∥1 + C

√
s log p

n

IMU

[113]

min ∥β∥1 s.t.

∥ 1
n
ZT (y − Zβ) + Σ̂wβ∥∞ ≤ µ∥β∥1 + τ

σ2
j = 1

n

∑n
i=1 E(W

2
ij)

Σw = diag(σ1, . . . , σp)

wi ∼ Subg(0,Σw,Kw)

C∥β∗∥1
√

s log p
n

NCL

[112]

min 1
2
βT

(
1
n
ZTZ − Σ̂w

)
β − 1

n
βTZTy

+λ∥β∥1 s.t. ∥β∥1 ≤ b1
wi ∼ Subg(0,Σw,Kw) max{c

√
sλ,C∥β∗∥2

√
s log p

n
}

NCC

[112]

min 1
2
βT

(
1
n
ZTZ − Σ̂w

)
β − 1

n
βTZTy

s.t. ∥β∥1 ≤ b2
wi ∼ Subg(0,Σw,Kw) C∥β∗∥2

√
s log p

n

OMP

[114]

OMP for recovery of support indecies S:

β̂S = (ZT
S ZS − ΣS

w)(ZT
S y)

wi ∼ Subg(0,Σw,Kw)

∀β∗
i ̸= 0

|β∗
i | ≥ (c∥β∥2 + C)

√
log p
n

(c+ C∥β∗∥2)
√

s log p
n

NOTATION AND PRELIMINARIES : We denote matrices by capital letters V , random

variables by small letters v and random vectors with bold symbols v. Throughout the chapter

cis and C are positive constants. Consider following norm of random variable v: ∥v∥ψ2 =

supp≥1 p
−1/2(E(|v|p))1/p. Then v is sub-Gaussian if ∥v∥ψ2 ≤ K2 for a constant K2. Random

vector v ∈ Rp is sub-Gaussian if the one-dimensional marginals ⟨v, v⟩ are sub-Gaussian for

all v ∈ R. The sub-Gaussian norm of v is defined as ∥v∥ψ2 = supv∈Sp−1 ∥⟨v, v⟩∥ψ2 . We use

shorthand v ∼ Subg(0,Σv,Kv) for zero mean sub-Gaussian random vector with covariance

Σv and parameter Kv. For any set A ∈ Rp, the Gaussian width of the set is defined as: ω(A) =

E(supu∈A⟨g, u⟩), where the expectation is over g ∼ N(0, Ip×p), a vector of independent zero-

mean unit-variance Gaussians.

5.2 Related Work

Over the past decade considerable progress has been made on sparse and structured estimation

problems for linear models. Such models assume that the observed pair (xi, yi) follows yi =

⟨β∗,xi⟩ + ϵi, where β∗ is sparse or suitably structured according to a norm R [69]. In real
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world settings, often covariates are noisy, and one observes “noisy” versions zi of covariates

xi corrupted by noise wi, where zi = f(xi,wi). Two popular model for f are additive, zi =

xi + wi, and multiplicative noise zi = xi ◦ wi [111, 112, 114] where ◦ is the Hadamard

product. Two common choices of wi for additive noise case are uniformly bounded [111, 115]

and centered subgaussian [112, 114]. In noisy models, a key challenge is to develop estimation

methods that are robust to corrupted data, particularly in the high-dimensional regime. Recent

work [111, 114] has illustrated experimentally that standard estimators like LASSO and DS

perform poorly in the presence of measurement errors. Thus, many recent papers proposed

modifications of LASSO, DS or Orthogonal Matching Pursuit (OMP) [111, 112, 114, 113, 115]

for handling noisy covariates. However, such estimators may become non-convex [112], or

require extra information about optimal β∗ [112, 114]. Further, most of proposed estimators for

sub-Gaussian additive noise require an estimate of the noise covariance Σw in order to establish

statistical consistency [113, 112, 114, 115] or impose more stringent condition, like element-

wise boundedness on W [111, 115].

Recent literature on regression with additive measurement error in high dimensions has

focused on sparsity, Table 5.1 presents key recent works in this area. The first paper in this

line of work [111] introduces matrix uncertainty selector (MU) which belongs to constraint

family of estimators. As the first attempt for addressing estimation with measurement error in

high dimension, MU imposes restrictive conditions on noise W , namely each element of matrix

W needs to be bounded. It worth mentioning that MU does not need any information about

noise covariance Σw and as presented in Table 5.1, it is not consistent, i.e. c
√
s(δ + δ2)∥β∗∥1

term in the upper bound is independent of the number of samples n. This theme repeats in

the literature: when Σw is available proposed estimators are consistent otherwise there is no l2

recovery guarantee.

Same authors has proposed improved matrix uncertainty selector (IMU) [113] which as-

sumes availability of the diagonal matrix Σ̂w as the covariance of the noise and use it to com-

pensate the effect of the noise. The compensation idea also recurs in the literature where one

mitigates ZTZ by subtracting Σw and as the result the estimator becomes consistent. Note that

both MU and IMU are modification of DS where ∥β∥1 appears in both constraint and objective

of the program. For IMU each row of noise matrix wi is sub-Gaussian and independent of wj ,

xi and ϵi and off diagonal of Σw are zero i.e., Wij are uncorrelated. Following IMU all subse-

quent work assume sub-Gaussian independent noise and MU and [115] are only estimators that
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allows general dependence in noise.

Loh and Wainwright [112] proposed a non-convex modification of LASSO (NCL) along

with constraint version of it (NCC) which are equivalent by Lagrangian duality (Table 5.1). In

both estimators they substitute the quadratic term XTX of the LASSO objective with ZTZ −
Σw which makes the problem non-convex. An interesting aspect of this method is that although

a projected gradient algorithm can only reach a local minima, yet any such local minima is

guaranteed to have consistency guarantee. Note that for the feasibility of both objectives, [112]

requires extra information about the unknown parameter β∗, particularly b1 and b2 should be

set to a value greater than ∥β∗∥1.

In [114], Chen and Caramanis use the OMP [116] for support recovery of a sparse regression

problem without knowing the noise covariance. They established non-asymptotic guarantees

for support recovery while imposing element-wise lower bound on the absolute value of the

support. However, for achieving l2 consistently, [114] still requires an estimate of the noise

covariance Σw, which is in accordance with the requirements of other estimators mentioned

above.

Although literature on regression with noisy covariates has only focused on sparsity, the ma-

chine learning community recently has made tremendous progress on structured regression that

has led to several key publications. [30] provided a general framework for analyzing regularized

estimators with decomposable norm of the form minβ L(β;y, X) + λR(β), and established

theoretical guarantees for Gaussian covariates. A number of recent papers [117, 118] have gen-

eralized this framework for analyzing estimators with hierarchical structures [33], atomic norms

[118] and graphical model structure learning [117]. Recently, [31] established a framework for

analyzing regularized estimators with any norm R and sub-Gaussian covariates. On the other

hand for constraint estimators [50] has recently generalized the DS for any norm R.

5.3 Noisy Dantzig Selector

We consider the linear model, where covariates are corrupted by additive noise yi = ⟨xi,β∗⟩+
ϵi, zi = xi + wi, where xi ∼ Subg(0,Σx,Kx), ϵi ∼ Subg(0, σϵ,Kϵ) are i.i.d and also

independent from one another. Error vector wi ∼ Subg(0,Σw,Kw) is independent from both

xi and ϵi. Since zi and xi are independent, we have Σz = Σx +Σw and zi ∼ Subg(0,Σz,Kz)

for Kz ≤ c1Kx + c2Kw. In matrix notation, given samples {(xi, yi)}ni=1, we obtain y =
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Xβ∗ + ϵ and Z = X +W . The Generalized Dantzig Selector (GDS) with noisy covariates is

the following modification of the GDS defined in Chapter 4:

β̂c = arg,min
β

R(β) s.t. R∗
(
1

n
ZT (y − Zβ)

)
≤ λc, (5.1)

where λc > 0 is a penalty parameter. R encodes the structure of β∗. For example, if β∗ is

sparse, i.e. has many zeros, R(β) = ∥β∥1 and GDS (5.1) is the original Dantzig Selector

[34]. When Z = X , statistical consistency of GDS has been shown for general norms [50].

However, in the next section, we illustrate that the analysis of [31, 50] can be conducted on

GDS with noisy design Z = X + W , with similar assumptions, but the resulting estimate is

inconsistent.

5.4 Statistical Properties

For noiseless designs, considerable progress has been made in recent years in the analysis of

non-asymptotic estimation error ∥∆∥2 = ∥β̂ − β∗∥2. Here, we follow the established analysis

techniques, while discussing some of the subtle differences in the results obtained due to pres-

ence of the noise in covariates. First we discuss the set of directions which contain the error

∆.

Lemma 4 (The Error Set [69, 31]) For large enough λc and for any feasible point β̂c of GDS

(5.1) the error vector ∆c belongs to a restricted error set Ec:

λc ≥ αR∗(
1

n
ZT (y − Zβ∗)) ⇒ Ec = {∆c : R(∆c + β∗) ≤ R(β∗)} . (5.2)

We name the cone of Ec as Cc = Cone(Ec).

Proof of the statement is straightforward and only depends on the optimality of β̂. In the

following, we drop the subscript on λc, and simply write λ for ease of notation. Next, we

discuss the Restricted Eigenvalue (RE) condition on the design matrix that almost all of the

high-dimensional consistency analysis relies on [111, 113, 112, 31].

Definition 1 (Restricted Eigenvalue) The design matrix Zn×p satisfies the restricted eigen-

value condition on the spherical cap A ⊂ Sp−1 if 1√
n
infv∈A ∥Xv∥2 ≥ κ > 0 or in other

words, for γ =
√
nκ:

inf
v∈A

∥Zv∥2 ≥ γ > 0 . (5.3)
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Intuitively RE condition means that although for p ≫ n the matrix Z is not positive definite

and the corresponding quadratic form is not strongly convex but in the certain desirable direc-

tions represented by A, Z is strongly convex. In GDS the error vector ∆ directions is given by

Ac = Cc ∩ Sp−1.

For noiseless case Z = X when xi are Gaussian or sub-Gaussian RE condition is satisfied

with high probability after a certain sample size n > n0 is reached, where n0 determines the

sample complexity [31]. Interestingly, recent work has shown that the sample complexity is the

square of the Gaussian width of A, n0 = O(ω2(A)) [31, 71].

Theorem 5 (Deterministic Error Bound) Assuming λ satisfies the bound in (5.2) and with

sample size n > n0 such that RE condition (5.3) holds over the error direction A, the following

deterministic bounds holds for RME and GDS:

∥∆c∥2 ≤ 4αΨ(Cc)
λc
κ

, (5.4)

where Ψ(C) = supu∈C
R(u)
∥u∥2 is the norm compatibility constant.

Next, we analyze the additive noise case, by obtaining suitable bounds for λ, which sets

the scaling of the error bound. Without loss of generality, we will assume ∥β∗∥2 = 1 for the

analysis, noting that the general case follows by a direct scaling of the analysis presented.

5.4.1 Restricted Eigenvalue Condition

For linear models with the square loss function, RE condition is satisfied if (5.3) holds, where

A ⊆ Sp−1 is a restricted set of directions. Recent literature [31] has proved that the RE condition

holds for both Gaussian and sub-Gaussian design matrices. The following theorem shows that

RE condition holds for additive noise in measurement with high probability:

Theorem 6 For the design matrix of the additive noise in measurement Z = X +W where in-

dependent rows of X and W are drawn from xi ∼ Subg(0,Σx,Kx), and wi ∼ Subg(0,Σw,Kw),

and any τ > 0 with probability 1− 2 exp(−η1τ
2) we have:

inf
v∈A

∥Zv∥2 ≥
√
ν
√
n− η0Λmax(Σx +Σw)ω(A)− τ (5.5)

where A ⊆ Sp−1,
√
ν = infu∈A ∥(Σx + Σw)

1/2u∥2, Λmax is the largest eigenvalue function,

and η0, η1 > 0 are constants depending on Kx and Kw.
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5.4.2 Regularization Parameter

The statistical analysis requires λ ≥ αR∗( 1nZ
T (y − Zβ∗)). For the noiseless case, we note

that y − Zβ∗ = y −Xβ∗ = ϵ, the noise vector, so that R∗( 1nZ
T (y − Zβ∗)) = R∗( 1nX

T ϵ).

Using the fact that X and ϵ are sub-Gaussian and independent, recent work has shown that

E[R∗( 1nX
T ϵ)] ≤ c√

n
ω(ΩR), where ΩR = {u ∈ Rp|R(u) ≤ 1}. For l1 norm, i.e., LASSO,

ΩR is the unit l1 ball, and ω(ΩR) ≤ c2
√
log p. Here we have the following bound on λ:

Theorem 7 Assume that X and W are zero mean sub-Gaussian matrices. Then,

E

[
R∗
(
1

n
ZT (y − Zβ∗)

)]
≤ νR(β∗) +

Cω(ΩR)√
n

, (5.6)

where ν = supu∈ΩR
∥Σ1/2

w u∥22, and C > 0 is a constant dependent on the sub-Gaussian norms

of the X and W .

Remark 1: Theorem 7 illustrates that λ does not decay to 0 with increasing sample size,

but approaches the operator norm of the covariance matrix Σw. Particularly, when the noise

W is i.i.d. with variance σ2
w, the error is bounded above by σ2

w. Remark 2: The main

consequence of Theorem 7 is an inconsistency result for the statistical error ∥∆∥2. We note

that in (5.4), when n > n0, κ is a positive quantity that approaches the minimum eigenvalue of

Σx +Σw with increasing sample size. Therefore, the scaling of λ determines the error bounds.

Theorem 7 proves that the error bound can be as small as the variance of the noise. When

W = 0, consistency rates are exactly the same as the noiseless case.

5.4.3 Consistency with Noise Covariance Estimates

Theorem 7 shows that with no informations about the noise, current analyses can not guaran-

tee statistical consistency for noisy covariates model. At the same time, appearance of Σw in

the upper bound of (5.6), suggests to use noise covariance estimate to reduce the Motivated

by this observation and recent line of work, we focused on scenarios in which an estimate

of the noise covariance matrix Σ̂w is available, e.g. from repeated measurements Z for the

same design matrix X , or from independent samples of W . We follow [112] and assume

that independent observation from W is possible, and form Σ̂w = 1
nW

T
0 W0. Each element

of Σ̂w − Σw is a centered sub-exponential random variable for which Σ̂w concentrates as
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P

[
∥Σw − Σ̂w∥max ≥ C

√
log p
n

]
≤ p−c [72, 22]. Having Σ̂w in hand we modify GDS es-

timator in the following way. Consider the matrix Γ̂ = 1
nZ

TZ − Σ̂w where Σ̂w compensates

the effect of noise W , then:

Noisy GDS: β̂c = arg,minβ R(β) s.t. R∗
(

1
nZ

Ty − Γ̂β
)
≤ λc. (5.7)

The following theorems show that the noisy GDS (5.7), rectified with the sample noise

covariance Σ̂w, provides consistent estimate of β∗.

Theorem 8 For the design matrix of the additive noise in measurement Z = X +W where in-

dependent rows of X and W are drawn from xi ∼ Subg(0,Σx,Kx), and wi ∼ Subg(0,Σw,Kw),

and for the noise covariance estimate Σ̂w discussed above, we have the following high proba-

bility error bound for the constrained estimator (5.7):

∥∆c∥2 ≤
4αΨ(Cc)

κ

[
cω(ΩR)√

n
+ C

√
log p

n

]
(5.8)

Remark: Note that when R is the vector l1-norm ω(ΩR) ≤
√
s log p, and we get the rate

of O(
√

s log p
n ) for (5.8) which matches the IMU bound of [113]. The decaying term of the

bound in (5.8) comes from λ, the following lemma clarifies this fact:

Lemma 5 (Bound on λ knowing Σ̂w) With high probability, the lower bound R∗
(

1
nZ

Ty − Γ̂β∗
)

of λ in (5.7) is cω(ΩR)√
n

+ C
√

log p
n .

5.5 Conclusion

In this work we investigate consistency of the constrained estimators for structured estimation

in high dimensional scaling when covariates are corrupted by additive sub-Gaussian noise. Our

analysis holds for any norm R, and shows that when no knowledge of noise statistics exists, es-

tablished methods are inconsistent, but the statistical error can be bounded by the covariance of

the noise. Further, when an estimate of the noise covariance is available, the estimator achieves

consistent statistical recovery.



Part II

Applications
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Chapter 6

Land Variable Regression

6.1 Introduction

Statistical models are being increasingly used to study relationships among climate variables,

and develop predictive models based on such relationships. However, climate science problems

have some singular challenges, which makes the issue of scientifically meaningful prediction

a complex process. Several climate variables are observed at various location on the planet on

multiple occasions, thus creating a very large dataset. These variables are dependent between

themselves, and across space. However, scientific interpretability and parsimony demands that

any discovered relationship among climate variables be simultaneously eclectic and selective.

It is not viable to work out such complex dependencies from the first principles of physics, and

data mining discovery of potential climate variable relations can be of immense benefit to the

climate science community.

The Sparse Group Lasso (SGL), discussed in Chapter 3, method is of considerable impor-

tance in this context. For a target climate variable in a given location, it allows the selection

of other locations that may have an influence through one or more variables, and then allows

for a choice of variables at that location. Inherent in this technique is the notion of sparsity, by

which only important variables at important locations are selected, from the plethora of potential

covariates at various spatial locations.

In this chapter, we discuss the application of sparse modeling to a particular climate predic-

tion task - prediction of land climate variables from measurements of ocean climate variables.
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Figure 6.1: Land regions chosen for predictions (picture from [1]).

Through extensive experiments, we illustrate the value of using structured regression for pre-

diction tasks. These experiments consider prediction of mean monthly temperature and mean

monthly precipitation over 9 land regions around the world, using covariates which are at-

mospheric variables measured over the oceans. We show that SGL provides better predictive

accuracy and a more interpretable prediction model than the state-of-the-art in climate science.

Further, we show that SGL is robust in covariate selection through an empirical analysis of its

regularization path, and provide climatological insights into the dependencies discovered by

SGL.

6.2 Dataset

We begin by describing he dataset used and the preprocessing required for the task. We used

the NCEP/NCAR Reanalysis 1 dataset, where we considered the monthly means for 1948-

present [51]. The data is arranged as points(locations) on the globe and is available at a

2.5◦ × 2.5◦ resolution level. Our main goal is to highlight the utility of using sparse methods

to model complex dependencies in climate. Since we trying to model dependencies between

target variables and ocean regions, we coarsened the data to 10◦ × 10◦ resolution. In total we

have data over N = 756 time steps. The 6 variables over oceans, considered as covariates, are
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(i)Temperature, (ii) Sea Level Pressure, (iii) Precipitation, (iv) Relative Humidity, (v) Horizon-

tal Wind Speed and (vi)Vertical Wind Speed.

We considered 9 “target regions” on land, viz., Brazil, Peru, Western USA, Eastern USA,

Western Europe, Sahel, South Africa, Central India and Southeast Asia, as shown in Fig. 6.1.

Prediction was done for surface air temperature (SAT) (in ◦C) and (b) precipitable water (in

kg/m2) at each of these 9 locations. So, in total, we had 18 response variables. These regions

were chosen following [1] because of their diverse geological properties and their impact on

human interests.

In total, the dataset contains L = 439 locations on the oceans, so that we had p = 6 ×
L = 2634 covariates in our regression model. We considered the data from January,1948 -

December,1997 as the training data and from January,1998 - December,2007 as the test data in

our experiments. So, our training set had ntrain = 600 samples and the test set had ntest = 120

samples. We used the SLEP package [66] for MATLAB to run Sparse Group Lasso on our

dataset. It may be noted that we do not take into account temporal relationships that exist in

climate data. Moreover, since we consider monthly means, temporal lags of less than a month

are typically not present in the data. However, the data does allow us to capture more long-term

dependencies present in climate.

6.3 Removing Seasonality and Trend:

As illustrated in [1], seasonality and autocorrelation within climate data at different time points

often dominate the signal present in it. Hence, when trying to utilize such data to capture

dependency, we look at series of anomaly values, i.e., the deviation at a location from the

‘normal’ value. Firstly, we remove the seasonal component present in the data by subtracting the

monthly mean from each data-point and then normalize by dividing it by the monthly standard

deviation. At each location we calculate the monthly mean µm and standard deviation σm for

each month m = 1, . . . , 12 (i.e. separately for January, February,. . . etc.) for the entire time

series. Finally, we obtain the anomaly series for location A as the z-score of the variable at

location A for month m over the time series.

Further, we need to detrend the data to remove any trend components in the time-series,

which might also dominate the signal present in it and bias our regression estimate. Therefore,
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Table 6.1: Optimal Choices of (λ1, λ2) obtained through 20-fold Cross-Validation.

Region Variable λ1 λ2

Brazil
Temperature 1 1

Precipitation 1 1

Peru
Temperature 1 1

Precipitation 1 1

Western USA
Temperature 1 1

Precipitation 1 1

Eastern USA
Temperature 1 1

Precipitation 10 10

Western Europe
Temperature 1 1

Precipitation 1 1

Sahel
Temperature 1 1

Precipitation 10 10

South Africa
Temperature 1 1

Precipitation 10 10

Central India
Temperature 1 1

Precipitation 1 1

SE Asia
Temperature 1 1

Precipitation 1 1

we fit a linear trend to the anomaly series at each location over the entire time period 1948-

2010 and take the residuals by subtracting the trend. We use this deseasonalized and detrended

residuals as the dataset for all our subsequent experiments.

6.4 Choice of penalty parameter (λ):

Table 6.1 shows the optimal choices obtained from cross-validation. The values for different

target variables are similar, with the exception of three, which correspond to precipitation in

Africa and East USA.
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Table 6.2: RMSE scores for prediction of SAT (in ◦C) and precipitable water (in kg/m2)

using SGL, LASSO, network clusters [1] and OLS. The number in brackets indicate number of

covariates selected by SGL from among the 2634 covariates. The lowest RMSE value in each

task is denoted as bold.
Variable Region SGL LASSO Network Clusters OLS

A
ir

Te
m

pe
ra

tu
re

Brazil 0.198 (651) 0.211 0.534 0.348

Peru 0.247 (589) 0.259 0.468 0.387

West USA 0.270 (630) 0.291 0.767 0.402

East USA 0.304 (752) 0.307 0.815 0.348

W Europe 0.379 (835) 0.367 0.936 0.493

Sahel 0.320 (829) 0.322 0.685 0.413

S Africa 0.136 (685) 0.130 0.726 0.267

India 0.205 (664) 0.206 0.649 0.3

SE Asia 0.298 (596) 0.277 0.541 0.383

Pr
ec

ip
ita

bl
e

W
at

er

Brazil 0.261 (762) 0.307 0.509 0.413

Peru 0.312 (739) 0.344 0.864 0.523

West USA 0.451 (824) 0.481 0.605 0.549

East USA 0.365 (133) 0.367 0.686 0.413

W Europe 0.358 (820) 0.321 0.450 0.551

Sahel 0.427 (94) 0.413 0.533 0.523

S Africa 0.235 (34) 0.215 0.697 0.378

India 0.146 (593) 0.143 0.672 0.264

SE Asia 0.159 (571) 0.168 0.665 0.312

6.5 Prediction Accuracy

Evaluation of our predictions was done by computing the root mean square errors (RMSE) on

the test data and comparing the results against those obtained in [1], using OLS estimates, and

using Lasso. Note that the problem is high dimensional, since the number of samples (∼ 600)

for training is much less than the problem dimensionality (∼ 2400). [1] uses a correlation

based approach to separately cluster each ocean variable into regions using a k-means cluster-

ing algorithm. The regions (78 clusters in total) for all ocean variables are used as covariates

for doing linear regression on response variables. Their model is referred to as the Network

Clusters model. RMSE values were computed, as mentioned earlier, by predicting monthly
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mean anomaly for each response variable over the test set for 10 years. The RMSE scores

are summarized in Table 6.2. We observed that SGL consistently performs better than both

the Network Clusters method and the OLS method. The higher prediction accuracy might be

explained through the model parsimony that SGL provides. Applying SGL, only the most rele-

vant predictor variables are given non-zero coefficients and any irrelevant variable is considered

as noise and suppressed. Since such parsimony will be absent in OLS, the noise contribution

is large and therefore the predictions are more erroneous. Further, SGL often performs better

than Lasso, although Lasso also provides model parsimony, and has more freedom in selecting

relevant covariates. Moreover, structured variable selection provided by SGL often has greater

interpretability than Lasso.

The high prediction accuracy of SGL brings to light the inherent power of the model to

select appropriate variables (or features) from the covariates during its training phase. To quan-

titatively elaborate on this aspect, we select two scenarios: (i) Temperature prediction in Brazil

and (ii) Temperature prediction in India.

In order to evaluate the covariates which consistently get selected from the set, we repeat the

hold out cross-validation experiment with the optimal choices of (λ1, λ2) determined earlier for

each scenario. During the training phase, an ocean variable was considered selected, if it had a

corresponding non-zero coefficient. So, in each run of cross-validation, some of the covariates

were selected, while others were not. We illustrate our findings in the following subsections.

6.5.1 Region: Brazil

In Fig.6.2, we plot, in descending order of magnitude, the number of times each covariate was

selected during cross-validation for temperature prediction in Brazil. We observe that there

are ∼ 60 covariates among the 2634 covariates that are selected in every single run of cross-

validation. In Fig. 6.5, we plot the covariates which are given high coefficient magnitudes by

SGL by training on the training dataset from years 1948-1997, in order to illustrate that SGL

consistently selects relevant covariates. It turns out that these covariates are exactly those which

were selected in every cross-validation run. Most of these covariates lie off the coast of Brazil.

The influences of horizontal wind speed and pressure is captured, which is consistent with the

fact that the ocean currents affect land climate typically through horizontal wind. The tropical

climate over Brazil is expected to be influenced by the Inter-tropical Convergence from the

north, Polar Fronts from the south, and disturbances in ocean currents from the west, as well as
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Figure 6.2: Temperature prediction in Brazil: Variables vs. No. of times selected.

the influence of Easterlies from the east and immediate south. It is interesting to see that SGL

model captures these influences, as well as the spatial autocorrelation present in climate data,

without having any explicit assumptions.

In order to do a comparison, in Fig. 6.6 we plot the variables selected by Lasso in every

cross-validation run. There is overlap between this set of variables and the ones selected by

SGL, particularly similar variables are selected off the coast of Brazil. However, Lasso has

less discretion in the geographic spread of variables chosen. Thus wind, pressure and relative

humidity at various locations around the globe are also selected, as shown in the figure. These

variables are hard to interpret climatologically, and the model learnt by Lasso, as shown in

Table 6.2, often performs worse than SGL

6.5.2 Region: India

Similarly as before, for temperature prediction in India, we construct a histogram of the number

of times covariates get selected during cross-validation (Fig. 6.3).

Among the 2634 covariates considered, in this case ∼ 65 covariates were chosen in every
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Figure 6.3: Temperature prediction in India: Variables vs. No. of times selected.

single run of cross-validation. These are plotted in Fig. 6.7. Again, these were the covariates

with largest coefficient magnitudes during training on the entire training-set.

We observe the impact of Arabian Sea and Bay of Bengal on the Indian climate. Interest-

ingly, there are some teleconnections which are captured by SGL over the Pacific Ocean, which

may be due to the connections between Indian Monsoon and El-Nino [119] and SE Asian and

Australian monsoons. This may be an interesting observation for further investigation by do-

main scientists.

It should be noted that the dataset is a set of discrete samples from variables which vary

continuously over space and time. This gives rise to ‘sampling noise’, which is manifested in

some variables being selected by SGL, which might not have physical interpretations. Handling

such data appropriately is a topic of future research.

6.5.3 Neighborhood Influence in Linear Prediction:

The previous discussion indicates that neighborhood sea locations play one of the most crucial

roles in determining climate on land. We further investigate this fact through the following

experiments.



55

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0.15

0.2

0.25

0.3

0.35

0.4

Distance from "target" location

R
M

S
E

SGL prediction RMSE vs. radius: Temperature in Brazil

(a) Temperature prediction in Brazil.
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(b) Precipitation prediction in Brazil.
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(c) Temperature prediction in India.
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(d) Precipitation prediction in India.

Figure 6.4: Comparison of SGL RMSE with distance (R beyond which all ocean locations are

discarded. For small values of R, informative covariate locations are not included, and hence the

predictive error is high. Adding more nearby informative locations decreases predictive error.

Further addition of locations includes noisy covariates, leading to larger error in prediction.

We observe the RMSE on the test set from SGL regression by considering only those ocean

variables which lie within a certain (geodesic) distance R from the target land region. We

increase R from the ‘smallest’ distance, where only immediate neighborhood ocean locations

of the target land region are considered, to the ‘largest’, when all locations on the earth are

considered and note the change in RMSE of SGL prediction. Figs.6.4(a)-6.4(b) show the plots

obtained for temperature and precipitation prediction in Brazil, while Figs.6.4(c)-6.4(d) show

the same for India. The x-axis denotes the geodesic radius in kilometers from the target region

within which all ocean covariates are considered, while disregarding all other ocean covariates

outside this radius. The y-axis denotes the corresponding RMSE.
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Figure 6.5: Temperature prediction in Brazil: SGL selected variables. All the plotted variables

are selected in every single run of cross-validation.

The plots show that the least error in prediction is obtained when we include covariates in

locations which are in the immediate neighborhood of the target variable. Omitting some of

the locations leads to a sharp decrease in predictive power. This is consistent with our previous

observation that SGL captures high proximity-dependence of the target variables. Covariates

which are far away lead to a small increase in RMSE. It may be because most of these covariates

are irrelevant to our prediction task and appear as “noise”. However, the power of the SGL

model lies in the fact that it can “filter” out this noise by having much smaller weight on some of

these covariates and zero weight on others. The RMSE curve shows a number of ‘dips’, which

might denote that there exist covariates with high predictive power at that distance, which, on

being included, increase predictive accuracy of the model.

6.6 Variable Selection by SGL

As we noted earlier, the regularization parameters (α, λ) play a crucial role in variable selection.

It is, therefore, noteworthy to study how variable selection changes with the change in the

parameter values. For each covariate, we can compute and plot the coefficient value for a set
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Figure 6.6: Temperature prediction in Brazil: LASSO selected variables. All the plotted vari-

ables are selected in every single run of cross-validation.

of chosen (α, λ). Thus, this plot, referred to as the Regularization Path of the SGL solutions

[25], illustrates how the coefficient values change with change in penalty λ acts as a “tuning”

parameter for the model. With higher penalties, we obtain a sparser model. However, it usually

corresponds to a gain in RMSE. Most importantly, though, we obtain a quantitative view of

the complexity of the model. In particular, the covariates which persist over considerably large

ranges of λ and α are the most robust covariates in our regression task.

For the chosen training and test datasets, we compute the regularization path for temperature

and precipitation predictions in Brazil and India. We fix α = 0.5, so that λ1 = λ2 = λ
2 .

Figs.6.8(a) - 6.8(b) show the regularization paths for prediction in Brazil. The most ‘stable’

covariates, viz. temperature and precipitation in location(s) just off the coast of Brazil, have

been earlier reported as among the most relevant covariates obtained through cross-validation

on the training set.

The regularization paths for prediction in India are plotted in Figs.6.8(c) - 6.8(d). We ob-

serve that in this case too, the most stable covariates are among the relevant ones obtained

through cross-validation. It is interesting to note that in all the plots, for low values in penalty,

a mild increase in penalty dramatically changes the selected model. However, in higher ranges,



58

v  t  

rh r  

r  

hv hv 

tr h  p  tv tv rs 

v  h  

hv h  hs ts ths tv tp tp 

tp tp tphvstp tv tp tp 

trv t  pr pr 

h  

hv 

tph

t = Air temperature 
p = Precipitation   
r = Rel. Humidity   
h = Hor. Wind Speed 
v = Vert. Wind Speed
s = Sea Level Press.

Figure 6.7: Temperature prediction in India: Variables chosen through cross-validation.

since the only covariates which survive are the relevant and stable ones, the change in model

selection is more gradual.

6.7 Regularization Paths

As we noted earlier, the regularization parameters (α, λ) play a crucial role in variable selection.

It is, therefore, noteworthy to study how variable selection changes with the change in the

parameter values. For each covariate, we can compute and plot the coefficient value for a set

of chosen (α, λ). Thus, this plot, referred to as the Regularization Path of the SGL solutions

[25], illustrates how the coefficient values change with change in penalty λ acts as a “tuning”

parameter for the model. With higher penalties, we obtain a sparser model. However, it usually

corresponds to a gain in RMSE. Most importantly, though, we obtain a quantitative view of

the complexity of the model. In particular, the covariates which persist over considerably large

ranges of λ and α are the most robust covariates in our regression task.

For the chosen training and test datasets, we compute the regularization path for temperature

and precipitation predictions in Brazil and India. We fix α = 0.5, so that λ1 = λ2 = λ
2 .

Figs.6.8(a) - 6.8(b) show the regularization paths for prediction in Brazil. The most ‘stable’
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Figure 6.8: Regularization Paths for SGL on four use cases

covariates, viz. temperature and precipitation in location(s) just off the coast of Brazil, have

been earlier reported as among the most relevant covariates obtained through cross-validation

on the training set.

The regularization paths for prediction in India are plotted in Figs.6.8(c) - 6.8(d). We ob-

serve that in this case too, the most stable covariates are among the relevant ones obtained

through cross-validation. It is interesting to note that in all the plots, for low values in penalty,

a mild increase in penalty dramatically changes the selected model. However, in higher ranges,

since the only covariates which survive are the relevant and stable ones, the change in model

selection is more gradual.

6.8 Conclusion

Structured regression methods provide powerful tools for high dimensional data analysis prob-

lems encountered in climate science. In this chapter, we considered the task of predicting
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climate variables over land regions using climate variables measured over oceans. We illus-

trated that the sparse group lasso (SGL) can encode sparsity arising from the natural grouping

within covariates, using a hierarchical norm regularizer. Experiments prove improved predic-

tion accuracy, and interpretable model selection by SGL compared to ordinary least squares.

Further, feature selection was robust, and more interpretable than unstructured regularization

using Lasso. Thus structured estimation methods hold enormous promise for applications to

statistical modeling tasks in varied climate science problems.



Chapter 7

Understanding Dominant Factors for
Precipitation over the Great Lakes
Region

7.1 Motivation

Understanding climate change and its impacts on policy and infrastructure involves prediction

of state of earth’s climate under different forcing scenarios [120]. One of the most important

variables of interest in modeling climate is precipitation, particularly at regional or local scales.

Earth System Models (ESM) [121] that model the physics and dynamics of climate, are known

to have deficiencies in modeling local precipitation [122, 123, 124]. This shortcoming is mainly

due to the spatial resolution of the models, which is often too coarse to accurately model local

and regional precipitation [123]. Therefore, although the physics of how precipitation occurs is

well known, there exists a gap in understanding of the factors affecting precipitation over small

scale regions on the globe.

Increasingly, statistical models are being considered to inform climate science research on

factors which may affect precipitation [16]. The goal is to discover statistical dependencies

between precipitation and covariates of interest, and then try to gain a mechanistic physical

understanding of how the covariates affect precipitation. The covariates or predictors are often

multi-scale climate variables and processes, which may manifest their effect with some temporal

61
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Figure 7.1: U.S. Standard Climatological Regions [2]. The Great Lakes consist of the three

marked regions.

lags, or in conjunction with each other [125]. For a given region of interest, there is a plethora of

possible influencing factors for precipitation, such as ocean oscillations, atmospheric variables,

and long-term ocean-atmosphere coupled processes [38]. Therefore, it is of interest to the

climate research and modeling community to understand the most influential factors in this

pool of predictors, and derive climatological insights from such a discovery process.

In this work, we consider prediction of precipitation over the Great Lakes region of the US

(Fig. 7.1), using predictor variables at multiple spatial scales with temporal lags. The predic-

tors include atmospheric variables at local and regional scales, as well as multiple global cli-

mate indices [126] that capture climate processes and oscillations. We consider the December-

January-February (DJF) or winter mean precipitation at a given weather station in the region as

the response. The goal, therefore, is to understand the dominant factors for precipitation from

among the large pool of possible predictors.

Sparse regression methods, such as LASSO [27], are useful in this scenario. Such methods

allow simultaneous feature selection and regression, and are often supported by theoretical guar-

antees [30, 31]. LASSO has been found to perform well empirically in multiple other domains,

and also provides fast solvers for efficient implementation [65]. However, often predictors have
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Figure 7.2: Temporal Autocorrelations in climate indices. Some indices, such as TSA have

significant correlations for upto 11 months.

temporal auto-correlations (Fig. 7.2), and since stations located in a region have geographical

proximity, the data samples are also spatially correlated. Further, different climate indices re-

lated to the same climate phenomenon may be mutually correlated (Figs. 7.3(b) and 7.3(a)). In

presence of such correlations, the set of features selected by LASSO may exhibit instability,

and may include spurious predictors. In order to address this issue, we consider significance

testing of selected set of predictors, to obtain stable and statistically significant covariates as

dominant predictors. We use a random permutation test [127], to test the significance of each

selected predictor, followed by composite analysis to gain a physical understanding of the effect

of covariates on precipitation.

The rest of the chapter is arranged as follows. In Section 7.2, we overview the sparse re-

gression methodology, and the random permutation testing framework. We describe the dataset

used and pre-processing techniques in Section 7.3. In Section 7.4, we present experimental

results, and discussions. Finally, we conclude in Section 7.5.
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Figure 7.3: Climate Indices over Pacific which capture the El-Nino Southern Oscillation

(ENSO)

7.2 Sparse Regression for Feature Selection

Sparse regression allows one to simultaneously conduct feature selection and regression, thus

enabling selection of the most predictive set of features. We consider a linear model

y = Xβ∗ + ϵ , (7.1)

where y ∈ Rn,X ∈ Rn×p are samples and β∗ is a p-dimensional coefficient vector. The

LASSO [27] method estimates a sparse β̂, by solving the following estimation problem:

β̂ = arg,min
β

1

2n
∥y −Xβ∥22 + λ∥β∥1 , (7.2)

where λ > 0 is a regularization parameter. In the context of discovering the dominant factors,

often there is no prior bias on the sparsity imposed on the coefficients, although some of the

covariates considered in the model may have strong correlations among each other, and tem-

poral autocorrelation within itself over monthly or seasonal values. For example, consider the

Nino4 index (Fig. 7.3(b)), which is computed from sea surface temperature, and the SOI index

(Fig. 7.3(a)), which is derived from sea level pressure. Both indices carry information regarding

the El-Nino Southern Oscillation (ENSO) [128], albeit from different climate variables. Hence

they exhibit a high negative correlation (about −0.6). Some of the indices also show high

temporal autocorrelations (Fig 7.2).

In presence of such correlations in covariates and samples, the set of features selected by

LASSO often have instability [129]. Further, for finite samples, there is a non-zero probability
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that for a given training set and a chosen penalty parameter LASSO selects a non-zero coeffi-

cient for a non-informative predictor by random chance. Therefore, we require a significance

testing method to test each non-zero coefficient estimated by LASSO on training data, and

compute a p-value for significance of each feature.

Testing significance of covariates has been considered in various problems of applied statis-

tics, and the most commonly used testing methodology is random permutation test [130, 131,

132]. Such a test is a nonparametric hypothesis testing framework, which measures the sig-

nificance of every non-zero coefficient value by constructing a random distribution over the

coefficient using random permutations of the data. We adopted a variation of the methodology

developed in [127] that we discuss next.

Permutation Test

We fix λ at a particular value. On the training data, we first compute the LASSO estimate β̂

by solving (7.2). Next, keeping X constant, we randomly permute the response y to obtain a

vector ỹ. The random permutation of the response destroys any statistical relationship existing

between the covariates in X and the response ỹ. Thereafter, we run LASSO with X and ỹ

in order to obtain a random coefficient vector β̃, which represents random causal relationships

between the covariates and the response. Executing this strategy multiple (ν ≥ 1000) times, for

the i-th non-zero coefficient in β̂, we compute the probability that a random value |β̃i| exceeds

the estimated value |β̂i| given by

pi =
count(|β̃i| ≥ |β̂i|)

ν + 1
. (7.3)

It represents the p-value associated with the corresponding coefficient β̂i.

Fig. 7.4 illustrates the results of permutation test on two coefficients i and j. the coefficient i

is stable since it lies at the tail of the empirical distribution and thus has low p-value (< 0.05) so

that we can reject the null hypothesis that the estimated value occurred due to random chance.

However, for coefficient j, the estimated value lies near the mode, and hence obtains a high

p-value.

In Fig. 7.5, we plot the stable features that are selected using LASSO and permutation test

in the training set. Evidently, increasing the regularization parameter λ in LASSO leads to

pruning and we obtain a smaller set of stable parameters. However, note that the permutation



66

-0.1 -0.05 0 0.05 0.1 0.15 0.2
0

50

100

150

200

250

300

0

0.2

0.4

0.6

0.8

1

STABLE 

(a) Stable coefficient i

-0.3 -0.2 -0.1 0 0.1 0.2 0.3
0

50

100

150

200

250

300

0

0.2

0.4

0.6

0.8

1

UNSTABLE 

(b) Unstable coefficient j

Figure 7.4: Behavior of Stable and Unstable variables during random permutation test. The

histogram represents an empirical approximation of the distribution of the coefficient value

under the null hypothesis that y is exchangeable. A low p-value (a) shows that the estimated

value lies to the tail of the distribution.

test for each value of λ is independent, and therefore the pruning exhibited in Fig. 7.5 is a sign

of stability of the selected features, rather than an artifact of the LASSO solution.

7.3 Dataset

We compiled datasets from two sources: (1) United States Historical Climatological Network

(USHCN) [133], and (2) North American Regional Reanalysis (NARR) [134]. We considered

the following 8 states as consisting the Great Lakes region of the USA: (i) Minnesota (MN), (ii)

Wisconsin (WI), (iii) Illinois (IL), (iv) Indiana (IN), (v) Michigan (MI), (vi) Ohio (OH), (vii)

Pennsylvania (PA) and (viii) New York (NY). We further aggregated the states to lie in one of

the three climatological regions in the Great Lakes (Fig. 7.1). For each state, station level data

for daily maximum/minimum temperature, and precipitation was available for each station in

the state. We considered the average winter (DJF) precipitation for each station as a response.

Therefore, for every region, we had winter precipitation data for stations for 1979-2011.

The covariates consisted of local, regional and global climate variables (listed in Table 7.1).

We considered local and regional surface temperature and pressure (SLP) and convective avail-

able potential energy (CAPE) over winter (DJF) and autumn (SON) as covariates. For each
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Figure 7.5: Stability of dominant factors at different penalization values. At higher penalization

values, the set of coefficients is pruned, but no additional coefficients are introduced into the

set.
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Table 7.1: Covariates for Precipitation prediction
Type Variables

Atmospheric
(Station
level)

Winter Minimum Temperature (DJF Tmin), Winter Maximum Tempera-

ture (DJF Tmax), Autumn Minimum Temperature (SON Tmin), Autumn

Maximum Temperature (SON Tmax), Sea Level Pressure (SLP), Con-

vective Available Potential Energy (CAPE), Air Temperature at 500mb

(AIR 500)

Atmospheric
(Regional
averages)

Regional Average Winter Minimum Temperature (DJF TRegmin), Re-

gional Average Winter Maximum Temperature (DJF TRegmax), Regional

Average Autumn Minimum Temperature (SON TRegmin), Regional Aver-

age Autumn Maximum Temperature (SON TRegmax), Regional Average

Sea Level Pressure (SLPReg), Regional Average Convective Available Po-

tential Energy (CAPEReg), Regional Average Air Temperature at 500mb

(Reg AIR 500)

Large-Scale
Climate
Indices

North Atlantic Oscillation (NAO), East Atlantic Pattern (EA), West

Pacific Pattern (WP), East Pacific/North Pacific Pattern (EPNP), Pa-

cific/North American Pattern (PNA), East Atlantic/West Russia Pattern

(EAWR),Scandinavia Pattern (SCA), Tropical/Northern Hemisphere Pat-

tern (TNH), Polar/Eurasia Pattern (POL), Pacific Transition Pattern (PT),

Nino 1+2, Nino 3, Nino 3.4, Nino 4, Southern Oscillation Index (SOI),

Pacific Decadal Oscillation (PDO), Northern Pacific Oscillation (NP),

Tropical/Northern Atlantic Index (TNA), Tropical/Southern Atlantic Index

(TSA), Western Hemisphere Warm Pool (WHWP)

global climate index, we considered all 12 preceding values (from Jan to Dec. of a year) as co-

variates. We discarded the lower and upper one percentile of the precipitation data since these

correspond to very low and very high precipitation, and therefore are “extreme events” [16],

which often have very different mechanisms than normal precipitation [135, 136]. In total, the

dataset had 2200 samples over 32 years, where we discarded samples which contained missing

values. We divided the data into two sets. The first, comprising of 22 years’ data, was used for

finding dominant factors. The second set, with the remaining 10 years’ data, was used to test
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predictive performance. We discuss these in detail in the next section.

7.4 Results and Discussion

We used a randomly selected 22 years’ data for obtaining the dominant features. Further, we

conducted leave-one-out crossvalidation on the remaining 10 years’ data to test the predictive

performance of the dominant predictors.

7.4.1 Predictive Performance

All Dominant Climatology
0
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4390
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All Dominant Climatology
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3803
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15000

4494 4557

7560North-East

Figure 7.6: Mean Square Error on precipitation measured at hundredths of an inch of Ordinary

Least Squares regression using only dominant factors and using all covariates. The prediction

errors from long-term climatology is also plotted. The error bars denote one standard deviation.

It is important to assess the predictive performance of the dominant factors found by the
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Figure 7.7: Geographical Spread of Errors (MSE) over the region. The North-East has higher

errors than inland regions.

proposed method against the climatology of each region. The climatology denotes the long-

term average of precipitation over the region. Predictive covariates need to show improvement

upon the prediction from long-term climatology, in order to be considered for further hypothesis

generation on the mechanism of precipitation.

We conducted leave-one-year-out cross-validation on held out test set described earlier.

Fig. 7.6 shows the mean square error (MSE) from ordinary least squares regression using dom-

inant factors (less than 25 factors in each region) vs. the entire pool of 232 predictors. The

performance is identical (2-sample t-test p-value more than 0.8 on all three cases), and much

better than simply predicting the climatological mean. This illustrates that the dominant predic-

tors carry almost all predictive information available in the set of covariates.

Further, for each station, we computed the MSE in the test set during crossvalidation. In

Fig. 7.7, we have plotted MSE at each geographic location of the stations. MSE in the inland lo-

cations (Central and East-North-Central region) are lower than in the North-East region. Higher

MSE in the North-East is understandable due to the complex processes which affect variation of

precipitation in this region. The north pacific jet stream and the Lake Effect often causes large
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variation, along with influences of winds from Atlantic, since the area is near the coast.

7.4.2 Dominant Factors

For each climatological region, we obtained a subset of features as the dominant factors, which

are plotted in Fig. 7.8. We fix λ at a value which provides low prediction mean square error

(MSE) on a small validation set. In Fig. 7.8, for each selected factor, we also plot the mean and

standard deviation (as error bars) of the coefficient obtained during the leave-one-out crossval-

idation. It is evident from the thin error bars that each factor gets assigned stable coefficients.

Some interesting patterns emerge from these figures. Surface air temperature in winter plays

a prominent role in precipitation during the winter season. It is well known that high snow-

fall years typically experience lower than normal minimum temperature. Moreover this effect

is more pronounced in inland regions (East-North-Central and Central). However, note that

since heavy precipitation may itself lower the surface temperature, the relationship may depict

correlation rather than causation.

Sea level pressure (SLP), which is a dominant factor in the ENC and Central regions, has

great influence on the surface level winds that carry moisture from the Pacific across the con-

tinent to the Great Lakes. Lower SLP over the region is often associated with higher moisture

flow and thus higher precipitation. However, since variations of SLP is a surface phenomenon,

it is more noisy as a predictor in seasonal scales than higher atmospheric variables. Therefore,

we obtain higher variance in the weights for SLP over crossvalidation runs.

The North-East region behaves differently in that only a single local atmospheric variable is

selected as dominant factor. This may be indicative of the fact that the North-East region, due to

its proximity to the ocean, is influenced heavily by oceanic effects. As noted earlier, it is known

that there are multiple factors for variation of precipitation over this region. For example, the

Lake Effect [137] has substantial impact on snowfall during winter, which is influenced by the

Pacific jet stream. Due to this phenomenon, often the region experiences very heavy snowfall

over only a few days or hours.

Atlantic and Pacific influences are prominent across the entire Great Lakes region. More-

over, comparison of the three panels of Fig. 7.8 shows that Atlantic influences become more

prominent on the eastern part of the Great Lakes, while most stable indices in the ENC region

are computed over Pacific. Particularly, consider the dominant factors of precipitation over the

ENC region. The dominant climate indices are mainly EA (East Atlantic Pattern), WP (West
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Figure 7.8: Dominant factors for precipitation in each region. The standard abbreviation for

each index has been used, along with the month represented as a number. Influences from

Atlantic and Pacific are evident in all three regions, mainly from tropical and east pacific, and

north atlantic. Multiple summer index values are deemed significant. Further local atmospheric

influences are deemed more predictive for inland regions, while oceanic indices are the sole

dominant factors in the maritime region.
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(a) High precipitation (b) Low precipitation

Figure 7.9: Average 700mb Geopotential height anomalies in December over (a) 10 highest

precipitation years, and (b) 10 lowest precipitation years. Note the strong negative anomaly

(low pressure) in the years with high precipitation which causes increased moisture to flow in

from the Pacific.

Pacific Pattern), SCA (Scandinavian Pattern), TNH (Tropical/Northern Hemisphere Pattern),

POL (Polar/Eurasia Pattern), PDO (Pacific Decadal Oscillation) and NP (Northern Pacific Os-

cillation). All of these indices are computed from or have high correlation with 700mb – 500

mb geopotential height anomalies. Therefore, we construct composites for geopotential height

anomalies in order to further investigate the processes leading to precip variations across the

ENC region.

7.4.3 Composites over Geopotential Height Anomalies

In Fig. 7.9, we plot average December 700mb geopotential height anomalies over the northern

hemisphere, where the average is taken over the 10 highest and 10 lowest precipitation years.

Fig. 7.9(a) shows a strong negative anomaly over Canada and north-central U.S. denoting ex-

istence of a low pressure system. The strong low pressure system is conducive for increased
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wind flow from northern Pacific, which picks up moisture from the Pacific ocean and thus fa-

vors higher moisture content in the air. In the presence of colder temperatures over much of the

region, this may lead to increased precipitation.

In stark contrast, Fig. 7.9(b) illustrates that a positive anomaly exists over the entire U.S.

for seasons with low precipitation. Such anomalies are associated with higher than average

pressure system over the region, and may adversely affect precipitation in two ways. First,

since the Pacific has negative anomalies (Fig. 7.9(b)), the system is not conducive for wind

flowing into the continent from the Pacific. Thus it leads to less moisture flow into the region.

Second, the positive anomalies at higher levels (700mb) may also lead to down drafts from the

upper atmosphere, thus decreasing convective precipitation.

The two panels in Fig. 7.9 represent typical patterns for geopotential height anomalies over

the northern hemisphere for high and low precipitation seasons. The climate indices discussed

previously seem to capture these typical patterns and provide predictive information using such

patterns. That such typical patterns have predictive information is clear from Fig. 7.6, since

otherwise the performance of the predictive model would not be better than the climatology of

the region. Further such patterns are often persistent over months leading to winter. Fig. 7.10

illustrates the geopotential height anomalies averaged over 10 highest precipitation years over

ENC region. The low pressure region moves East from over Pacific in September to over U.S.

in December, which is consistent with the movement of the Westerlies.

In Fig. 7.11, we plot the anomalies in geopotential height, similarly, for averaged over the

10 lowest precipitation years in the ENC region. Note the high pressure system which moves

from Siberia in September to North America across the Pacific Ocean. The high pressure system

obstructs moisture flow into the Great Lakes, and also causes downdraft from upper atmosphere,

thus reducing convection.

7.5 Conclusions

In this chapter, we proposed a method for discovery of dominant factors for precipitation over

the Great Lakes region using a sparse regression method, in conjunction with permutation test

for significance. Dominant factors discovered through this process showed high predictive

power and produced lower error than obtained from climatology. Further, composite analysis
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Figure 7.10: Geopotential height anomalies averaged over 10 highest precipitation years over

ENC region in months leading to winter. The low pressure region shifts from Pacific to over the

U.S. over the Fall months along the westerlies.

of some of the discovered factors shows that atmospheric patterns persisting over entire sea-

sons may affect precipitation over the region, and is consistent with understanding from climate

science. Thus, the proposed method may be useful for deriving hypotheses over how stable

atmospheric patterns, such as variations in geopotential heights, may produce scenarios which

influence wind and moisture flow, and thus precipitation. In general, the method will be useful

for constructing such hypothesis in various statistical modeling scenarios in climate, which can

then be further investigated for statistical and physical significance.
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Figure 7.11: Average Geopotential height anomalies over the 10 lowest precipitation years in

ENC region for the months leading upto winter. Note the high pressure system over Siberia

moves across the Pacific into North America. The Polar Pattern (POL) is a dominant factor for

the ENC region and is closely related to this pressure system.



Chapter 8

Conclusions

In this thesis, we have presented our research on high dimensional models that advances under-

standing in two directions: theoretical advancements in regularized regression with structured

regularizers, and applications of structured regression to statistical modeling problems in cli-

mate science.

In Chapter 3, we considered structured regression with hierarchical tree-structured norm

regularizers. We illustrated that the hierarchical norm is a decomposable norm regularizer,

which includes the popular group-lasso norm as a special case. We proved that estimation with

hierarchical regularization is statistically consistent, and provided rates of consistency for the

hierarchical Lasso, and the special case, Sparse Group Lasso.

In Chapter 4, we considered the Dantzig Selector for sparse linear regression, and gen-

eralized it to incorporate any norm regularizer. We illustrated that analysis of the General-

ized Dantzig Selector requires two conditions, the restricted eigenvalue condition and an upper

bound on the Gaussian width of the unit norm ball. Further, we considered the k-support norm,

which enables selection of latent groups of covariates. We proved the first result on statistical

consistency of estimation with the k-support norm using GDS. We also showed that for LASSO

and ridge regression, which are special cases of k-support norm, the rates match existing results.

Real world scenarios often involve estimation with covariates corrupted with noise. In

Chapter 5, we studied GDS estimation with noisy covariates. We showed that the analysis

tools for the noiseless setting fail to prove statistical consistency in presence of noise. However,

with an appropriate correction in the covariance matrix, GDS is provable consistent.

In the second part of the thesis, we provided two applications of high dimensional modeling

77
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in climate science. First, we considered the modeling of interactions between land atmospheric

variables and ocean variables in Chapter 6. The spatial nature of covariates lend itself to the

grouping structure encoded by Sparse Group Lasso (SGL). We illustrated that sparse regression

methods provide better prediction accuracy than unregularized regression. Further, structured

regression with SGL provided more interpretable results than LASSO, while maintaining simi-

lar predictive performance, which is further validated by the regularization paths for SGL.

Lastly, in Chapter 7, we applied the sparse regression methodology to the task of discov-

ering dominant factors for winter precipitation over the Great Lakes region. Due to temporal

and spatial correlation existing within the climate variables, we required a significance test-

ing framework using random permutation tests for selecting stable sets of predictors over a

climatological region. Crossvalidation tests illustrated that dominant predictors have signifi-

cant predictive information, and have stable regression coefficients. Further analysis of some

of the selected predictors with climate composites showed that the predictors are related to at-

mospheric patterns that have known relationships to North American precipitation. Thus the

feature selection methodology provides interpretable results, and looks promising for further

exploration.

Outlook

Application of machine learning to statistical modeling problems in climate science has the pos-

sibility of opening new doors in climate data analysis. An example is extending the framework

proposed in Chapter 7 to generate physical hypotheses on the mechanism(s) of precipitation,

particularly in various climatological regions across the globe. However, there exist three fun-

damental limitations to the current methods in the context of climate data.

First, precipitation and other climate variables rarely follow a Gaussian distribution. For

example, Fig. 8.1 illustrates the empirical precipitation distribution over the East-North-Central

region over the Great Lakes. There are multiple seasons and stations where very low precip-

itation was recorded. On the other extreme, the distribution has a heavy tail in the positive

direction. Therefore, one needs transformation of the data to approximate gaussianity such that

the theoretical guarantees of the regression methods continue to hold.
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Figure 8.1: Empirical probability density function of average winter (DJF) precipitation (in

inches) over the East-North-Central region.

Second, existing optimization of LASSO and other sparse regression methods mainly uti-

lize proximal gradient descent or coordinate descent type algorithms, which rely on well-

conditioned design matrix X for stable estimates. In presence of correlated covariates, the

estimates are often unstable. However, climate indices often have high temporal autocorrela-

tion, and are also mutually correlated. In presence of such multi-collinearity, designing efficient

algorithms, as well as proving theoretical results are challenging.

Third, theoretical understanding of permutation tests for significance is, unfortunately, fairly

limited. In presence of correlation within samples, such as spatial correlation between precip-

itation at nearby locations, it is unclear if and when permutation test fails to provide stable

estimates. Understanding the conditions under which permutation tests may fail and designing

tests for such conditions in climate datasets will greatly strengthen the results obtained in this

domain.
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Appendix A

Proof of Theorems in Chapter 4

A.1 Proof of Theorem 3

Statement of Theorem: Suppose the design matrix X consists of i.i.d. Gaussian entries with

zero mean variance 1, and we solve the optimization problem (4.1) with

λp ≥ cE
[
R∗(XTw)

]
. (A.1)

Then, with probability at least (1− η1 exp(−η2n)), we have

∥θ̂ − θ∗∥2 ≤
4cΨRω(ΩR)

κL
√
n

, (A.2)

where ω(TR(θ∗) ∩ Sp−1) is the Gaussian width of the intersection of TR(θ∗) and the unit

spherical shell Sp−1, ω(ΩR) is the Gaussian width of the unit norm ball, κL > 0 is the gain

given by

κL =
1

n

(
ℓn − ω(TR(θ∗) ∩ Sp−1)

)2
, (A.3)

ΨR = sup∆∈TR R(∆)/∥∆∥2 is a norm compatibility factor, ℓn is the expected length of a

length n i.i.d. standard Gaussian vector with n√
n+1

< ℓn <
√
n, and c > 1, η1, η2 > 0 are

constants.

Proof: We use the following lemma for the proof.

Lemma 6 Suppose we solve the minimization problem (4.1) with λp ≥ R∗ (XTw
)
. Then the

error vector ∆̂ belongs to the set

TR(θ∗) := cone {∆ ∈ Rp : R(θ∗ +∆) ≤ R(θ∗)} , (A.4)
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and the error ∆̂ = θ̂ − θ∗ satisfies the following bound

R∗
(
XTX∆̂

)
≤ 2λp (A.5)

Proof: By our choice of λp, both θ∗ and θ̂ lie in the feasible set of (4.1) , and by optimality of

θ̂,

R
(
θ∗ + ∆̂

)
= R(θ̂) ≤ R(θ∗) . (A.6)

Also, by triangle inequality

R∗
(
XTX∆̂

)
= R∗

(
XTX(θ̂ − θ∗)

)
(A.7)

≤ R∗ (XT (y −Xθ∗)
)
+R∗

(
XT (y −Xθ̂)

)
≤ 2λp . (A.8)

Now, note that X and w are independent and we can rewrite

EX,w

[
R∗(XTw)

]
= Ew

[
EX

[
R∗(XTw)|w

]]
= Ew

[
∥w∥2EX

[
R∗
(
XT w

∥w∥2

)
|w
] ]

.

(A.9)

Since w/∥w∥2 is an isotropic unit vector uniformly distributed over the surface of the unit

sphere,
(
XT w

∥w∥2

)
= g is an i.i.d. N (0, 1) Gaussian vector. Therefore

EX,w

[
R∗(XTw)

]
= Ew[∥w∥2]Eg[R∗(g)] . (A.10)

Also, note that R∗(·) is Lipschitz continuous with Lipschitz constant of 1 w.r.t. the norm R∗,

and hence by Gaussian concentration of Lipschitz functions [138],

P (R∗(g) ≥ Eg[R∗(g)] + τ) ≤ exp

[
−τ2

2

]
, (A.11)

and similarly ∥w∥2 ≤ ℓn+τ with probability at least 1−exp(−τ2/2), where n√
n+1

≤ ℓn ≤
√
n

is the expected length of w. Therefore, for some c > 1 choosing λp ≥ cE
[
R∗(XTw)

]
=

c ℓnEg[R∗(g)] implies that

P
(
λp ≥ R∗(XTw)

)
≥

(
1− exp

[
−
c1E

2
g[R∗(g)]

2

])(
1− exp

[
−c2ℓ

2
n

2

])
= 1−η′1 exp(−η′2n) ,

(A.12)
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for some constant c1, c2, η′1, η
′
2 > 0. Further, note that Eg[R∗(g)] = ω(ΩR), the Gaussian

width of the unit ball of norm R.

Also, from Lemma 6, we have

R∗
(
XTX∆̂

)
≤ 2λp (A.13)

Now, note that

∥X∆̂∥22 = ⟨∆̂,XTX∆̂⟩ ≤ |⟨∆̂,XTX∆̂⟩| ≤ R(∆̂)R∗
(
XTX∆̂

)
≤ 2λpR(∆̂) , (A.14)

where we have used Hölder’s inequality, and the bound R∗
(
XTX∆̂

)
≤ 2λp from above.

Next, we use Gordon’s theorem, which states that for X with i.i.d. Gaussian (0, 1) entries,

E

[
min

z∈TR(θ∗)∩Sp−1
∥Xz∥2

]
≥ ℓn − ω

(
TR(θ∗) ∩ Sp−1

)
, (A.15)

where ℓn is the expected length of an i.i.d. Gaussian random vector of length n, and ω
(
TR(θ∗) ∩ Sp−1

)
is the Gaussian width of the set Ω =

(
TR(θ∗) ∩ Sp−1

)
. Now, since the function X →

minz∈Ω ∥Xz∥2 is Lipschitz continuous with constant 1 over the set Ω, we can use Gaussian

concentration of Lipschitz functions [138] to obtain

∥X∆∥2 ≥
1

2

(
ℓn − ω(TR(θ∗) ∩ Sp−1)

)
∥∆∥2 (A.16)

⇒ 1√
n
∥X∆∥2 ≥

(
ℓn − ω(TR(θ∗) ∩ Sp−1)

)
2
√
n

∥∆∥2 (A.17)

⇒ 1

n
∥X∆∥22 ≥

κL
2
∥∆∥22 , (A.18)

with probability greater than 1− exp
(
−1

8

(
ℓn − ω(TR(θ∗) ∩ Sp−1)

)2)
= 1− η′′1 exp(−η′′2n),

where κL =
(
ℓn − ω(TR(θ∗) ∩ Sp−1)

)2
/n > 0 is the gain, and η′′1 , η

′′
2 > 0 are constants .

Combining (A.18) and (A.14), and using the choice of λp, we obtain

∥θ̂n − θ∗∥2 = ∥∆̂∥2 ≤
4cE

[
R∗(XTw)

]
κLn

R(∆)

∥∆∥2
≤ 4cΨRω(ΩR)

κL
√
n

(A.19)

with probability greater than (1 − η′1 exp(−η′2n))(1 − η′′1 exp(−η′′2n)) = 1 − η1 exp(−η2n),

for constants η1, η2 where

ΨR = sup
∆∈TR

R(∆)

∥∆∥2
. (A.20)

The statement of the theorem follows.
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A.2 Proof of Theorem 4

Statement of Theorem: For the k-support norm Generalized Dantzig Selection problem (4.19),

we obtain

E
[
R∗(XTw)

]
≤

√
n

(√
2k log

(pe
k

)
+

√
k

)
(A.21)

ω(ΩR) ≤
(√

2k log
(pe
k

)
+

√
k

)
(A.22)

ω(TA(θ∗) ∩ Sp−1)2 ≤
(√

2k log
(
p− k −

⌈ s
k

⌉
+ 2
)
+
√
k

)2

·
⌈ s
k

⌉
+ s . (A.23)

Proof: We first illustrate that the k-support norm is an atomic norm, and then prove Theo-

rem 4.

A.2.1 k-Support norm as an Atomic Norm

Here we show that k-support norm satisfies the definition of atomic norms [69]. Consider Gj to

be the set of all subsets of {1, 2, . . . , p} of size j, so that

G(k) = {Gj}kj=1 . (A.24)

For every j, consider the set

Aj = {w : ∥(wGj )∥2 = 1, Gj ∈ Gj , wi =
1√
j
, ∀i ∈ Gj , wi = 0, ∀i /∈ Gj} , (A.25)

corresponding to Gj , and the union of such sets

A = {Aj}j∈{1,...,k} . (A.26)

Note that since every non-zero element in a vector in Aj is 1√
j
, such an element cannot be

represented as a convex combination of elements of the set Al, l < j, whose non-zero elements

are 1√
l
. Therefore none of the elements w in the set A lies in the convex hull of the other

elements A \ {w}. Further, note that

conv(A) = Ck , (A.27)

and the k-support norm defines the gauge function of the A. Thus the k-support norm is an

atomic norm.
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A.2.2 The Error set and its Gaussian width

Note that the cardinality of the set G(k) is

M =

(
p

k

)
+

(
p

k − 1

)
+

(
p

k − 2

)
+ · · ·+

(
p

1

)
(A.28)

The error set is given by

TA(θ∗) = cone{∆ ∈ Rp : ∥∆+ θ∗∥spk ≤ ∥θ∗∥spk } . (A.29)

Note that this set is a cone, and we can define the normal cone of this set as

NA(θ
∗) = {u : ⟨u,∆⟩ ≤ 0, ∀∆ ∈ TA(θ∗)} (A.30)

(A.31)

The following proposition, shown in [105], shows that the normal cone can be written in terms

of the dual norm of the k-support norm.

Proposition 1 The normal cone to the tangent cone defined in (A.29) can written as

NA(θ
∗) = {u : ∃t > 0 s.t. ⟨u,θ∗⟩ = t∥θ∗∥spk , ∥u∥sp

∗

k ≤ t} . (A.32)

We provide a simple proof of this statement for our case for ease of understanding.

Proof: We re-write the definition of the normal cone in terms of the estimated parameter θ̂ as

NA(θ
∗) = {u ∈ Rp : ⟨u,θ − θ∗⟩ ≤ 0, ∀θ − θ∗ ∈ TA(θ∗)} . (A.33)

Note that this means that u ∈ NA(θ
∗) if and only if

⟨u,θ − θ∗⟩ ≤ 0, ∀∥θ∥spk ≤ ∥θ∗∥spk (A.34)

⇒⟨u,θ⟩ ≤ ⟨u,θ∗⟩ ∀∥θ∥spk ≤ ∥θ∗∥spk . (A.35)

Now, we claim that ⟨u,θ∗⟩ ≥ 0 for all such u. This can be shown as follows. Assume the

contrary, i.e. there exists a û ∈ NA(θ
∗) such that ⟨û,θ∗⟩ < 0. Now, noting that (−θ∗) ∈

TA(θ∗), we have

⟨û,−θ∗⟩ = −⟨û,θ∗⟩ > 0 , (A.36)

so that û /∈ NA(θ
∗), which is a contradiction, and the claim follows.
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Therefore, we can write

⟨u,θ∗⟩ = t∥θ∗∥spk (A.37)

for some t ≥ 0. Then, u ∈ NA(θ
∗) if and only if

∃t ≥ 0 , ⟨u,θ∗⟩ = t∥θ∗∥spk , ⟨u,θ⟩ ≤ t∥θ∗∥spk ∀∥θ∥spk ≤ ∥θ∗∥spk . (A.38)

Since

⟨u,θ⟩ ≤ t∥θ∗∥spk , ∀∥θ∥spk ≤ ∥θ∗∥spk ⇒ ∥u∥sp
∗

k ≤ t , (A.39)

the statement follows.

The k-support norm can be thought of as a group sparse norm with overlaps, such as

been dealt with in [105]. Therefore, we can utilize some of the analysis techniques developed

in [105], specialized to the structure of the k-support norm. We begin by stating a theorem which

enables us to bound the Gaussian width of the error set. Henceforth, we write NA = NA(θ
∗)

and TA = TA(θ∗) where the dependence on θ∗ is understood.

First, we define sets that involve the support set of θ∗. Let us define the set G∗ ⊆ G(k) to be

the set of all groups in G(k) which overlap with the support of θ∗, i.e.

G∗ = {G ∈ G(k) : G ∩ supp(θ∗) ̸= ∅} . (A.40)

Let S be the union of all groups in G∗, i.e. S =
∪
G∈G∗ G, and the size of S be |S| = s. We are

going to use three lemmas in order to prove the above bound. The first lemma, proved in [69],

upper bounds the Gaussian width by an expected distance to the normal cone as follows.

Lemma 7 ([69] Proposition 3.6) Let C be any nonempty convex in Rp, and g ∼ N (0, Ip) be

a random gaussian vector. Then

ω(C ∩ Sp−1) ≤ Eg[dist(g,C∗)] , (A.41)

where C∗ is the polar cone of C.

Note that NA is the polar cone of TA by definition. Therefore, using Jensen’s inequality, we

obtain

ω(TA ∩ Sp−1)2 ≤ E2
g[dist(g,NA)] ≤ Eg[dist(g,NA)

2] ≤ Eg[∥g − z(g)∥22] , (A.42)
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where z(g) ∈ NA is a (random) vector constructed to lie always in the normal cone. The

construction proceeds as follows.

Constructing z(g): Note that θ∗
Sc = 0. Let us choose a vector v ∈ NA such that

∥v∥sp
∗

k = 1 and vSc = 0 . (A.43)

We can choose an appropriately scaled v so that

⟨v,θ∗⟩ = ∥θ∗∥spk , (A.44)

and let us write without loss of generality v = [vS vSc ].

Next, let g ∼ N (0, Ip), and write g = [gS gSc ]. We define the quantity

t(g) = max
{
∥gG∥2 : G ∈ G(k), G ⊆ Sc

}
= max


(∑
i∈G

g2
i

) 1
2

: G ∈ G(k), G ⊆ Sc

 ,

(A.45)

and let z = z(g) = [zS zSc ] such that

zS = t(g)vS , zSc = gSc . (A.46)

Note that

⟨z,θ∗⟩ = t(g)⟨vS ,θ∗
S⟩ = t(g)∥θ∗∥spk , (A.47)

and

∥z∥sp
∗

k = max
{
∥zG∥2 : G ∈ G(k)

}
(A.48)

= max
{
max{∥zG∥2 : G ∈ G(k), G ⊆ S} , max{∥zG∥2 : G ∈ G(k), G ⊆ Sc}

}
(A.49)

(a)
= max

{
t(g)∥v∥sp

∗

k , t(g)
}

(A.50)

= t(g) (A.51)

where (a) follows from the definition of t(g) and the fact that

max{∥zG∥2 : G ∈ G(k), G ⊆ S} = t(g)max{∥vG∥2 : G ∈ G(k), G ⊆ S} = t(g)∥v∥sp
∗

k ,

(A.52)

and since ∥v∥sp
∗

k = 1. Therefore, z(g) ∈ NA(θ
∗) by definition in (A.32) .

In order to upper bound the expectation of t(g), we use the following comparison inequality

from [105].
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Lemma 8 ([105] Lemma 3.2) Let q1, q2, . . . , qL be L, χ-squared random variables with d de-

grees of freedom. Then

E

[
max
1≤i≤L

qi

]
≤
(√

2 logL+
√
d
)2

. (A.53)

Last, we prove an upper bound on the expected value of t(g), as shown in the following

lemma.

Lemma 9 Consider G∗ ⊆ G(k) to be the set of groups intersecting with the support of θ∗, and

let S be the union of groups in G∗, such that s = |S|. Then,

Eg[t(g)
2] ≤

(√
2k log

(
p− k −

⌈ s
k

⌉
+ 2
)
+

√
k

)2

. (A.54)

Proof: Note that

Eg[t(g)
2] = Eg

[(
max

{
∥gG∥2 : G ∈ G(k), G ⊆ Sc

})2]
(A.55)

≤ Eg

[
max

{
∥gG∥22 : G ∈ G(k), G ⊆ Sc

}]
(A.56)

Each term ∥gG∥22 is a χ-squared variable with at most k degrees of freedom. Since the set

S has size s, the set G∗ has to contain at least sk =
⌈
s
k

⌉
groups of size k. Therefore,

s = |S| ≥ k + (sk − 1) , (A.57)

and therefore the size of its complement is upper bounded by

|Sc| ≤ p− k − sk + 1 . (A.58)

Therefore the following inequality provides an upper bound on the number of groups in-

volved in computing the maximum in (A.56)∣∣∣{G ∈ G(k), G ⊆ Sc
}∣∣∣ ≤ (p− k − sk + 1

k

)
+

(
p− k − sk + 1

k − 1

)
+ · · ·+

(
p− k − sk + 1

1

)
(A.59)

≤ (p− k − sk + 2)k (A.60)

where we have used the following inequality(
n

h

)
≤ nh

h!
, ∀n ≥ h ≥ 0 , (A.61)
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which also provides
k∑

h=1

(
n

h

)
≤ (n+ 1)k . (A.62)

Therefore, we can upper bound (A.56) using Lemma 8 as

Eg[t(g)
2] ≤ Eg

[
max

{
∥gG∥22 : G ∈ G(k), G ⊆ Sc

}]
(A.63)

≤
(√

2 log
(
(p− k −

⌈ s
k

⌉
+ 2)k

)
+

√
k

)2

(A.64)

and the statement follows.

Now we are ready to prove the upper bound on the Gaussian width. First, note that

ω(TA(θ∗) ∩ Sp−1)2 ≤ Eg[dist(g,NA(θ
∗))2] (A.65)

(a)
≤ Eg[∥g − z(g)∥22] (A.66)

= Ew[∥zS − gS∥22] (A.67)

(b)
= E[∥zS∥22] +E[∥gS∥22] (A.68)

(c)
= E[t(g)2] · ∥vS∥22 + |S| (A.69)

(d)
≤

(√
2k log

(
(p− k −

⌈ s
k

⌉
+ 2)

)
+

√
k

)2

·
⌈ s
k

⌉
+ s , (A.70)

where (a) follows from the definition of distance to a set, (b) follows from the independence

of gS and gSc , (c) follows from the fact that the expected length of an |S| length random i.i.d.

Gaussian vector is
√

|S|, and (d) follows since |S| = ks
k , and that ∥vS∥2 ≤

√⌈
s
k

⌉
∥vS∥sp

∗

k =√⌈
s
k

⌉
. Thus inequality (A.23) follows.

Next, we prove inequality (A.21). Let us denote t = XT
(

w
∥w∥2

)
, and note that t ∼

N (0, Ip). Also note that E
[
R∗(XTw)

]
= E[∥w∥2∥]E[R∗(t)], and

∥t∥sp
∗

k = max{∥tG∥2 : G ∈ G(k)} . (A.71)
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Therefore, we can use Lemma 8 in order to bound the expectation E[∥t∥sp
∗

k ] as

E[∥t∥sp
∗

k ] = E[max{∥tG∥2 : G ∈ G(k)}] (A.72)

= E[max{∥tG∥2 : G ∈ G(k), |G| = k} (A.73)

≤

(√
2 log

(
p

k

)
+

√
k

)
(A.74)

≤
(√

2k log
(pe
k

)
+

√
k

)
, (A.75)

where we have used the following inequality obtained using Stirling’s approximation(
p

k

)
≤
(pe
k

)k
. (A.76)

Therefore, inequality (A.21) follows, and by our choice of λp, with high probability, θ∗ lies in

the feasible set.

Last, note that

ω(ΩR) = E[∥t∥sp
∗

k ] ≤
(√

2k log
(pe
k

)
+

√
k

)
, (A.77)

as proved above.
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