
The Applications of Workload Characterization in The
World of Massive Data Storage

A THESIS

SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL

OF THE UNIVERSITY OF MINNESOTA

BY

Weiping He

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

Doctor of Philosophy

David H.C. Du

August, 2015

c© Weiping He 2015

ALL RIGHTS RESERVED

Acknowledgements

There are many people that have earned my gratitude for their contribution in my

journey to earning my Ph.D.. First and foremost, I would like to express my deepest

gratitude to my advisor Prof. David Hung-Chang Du for his training, guideline and

encouragement. I am extremely grateful to him for not only training me to be a better

researcher but also leading me to be a better person. I could not have focused on my

research and pushed the limit of my ability without his thought-provoking words.

I would like to thank my committee members, David Lilja, Abhishek Chandra,

Anand Tripathi and Gopalan Nadathur for their constructive advice and previous time. I

learned that persistence and patience are two important merits of being a good graduate

student.

I was lucky enough to have the opportunities to work with many smart and lovely

people in CRIS. I would like to thank Cory Devor, Chung-I Lin, Alireza Haghdoost,

Weijun Xiao, Guanlin Lu, Nohhyun Park, Dongchul Park, Youngjin Nam, Shanshan

Li, Peng Li, Anna Kryzhnyaya, Muthukumar Murugan, Joe Naps, Xiang Cao, Ziqi Fan,

Xiongzi Ge, Zhichao Cao, Meng Zou, Fenggang Wu, Hao Wen, Keerthi Palanivel, Rohan

Pasalkar, Brandon Ho�mann, Manas Minglani, Bingzhe Li, Jeremy Kieser, Jingwei Ma,

Shravya Rukmannagari and Kewal Panchputre for their engaging and inspiring discus-

sions. The numerous meetings we had together are the basis of my graduate life. Special

thanks go to Chung-I Lin and Alireza Haghdoost for motivating me to improve myself

and develop more friendship.

I also would like to thank Sai Narasimhamurthy and Giuseppe Congiu of Seagate

Technology for being a constant source of great thoughts. I could not have explored so

much in the �eld of high performance computing and parallel I/O without the stimulating

weekly meetings. I'm grateful for their invaluable time and e�orts.

i

I would like to thank Jerry Fredin of NetApp for being my mentor for the block I/O

workload replayer project and stan skelton of NetApp for o�ering me all kinds of help

during my internship. I also would like to thank Jim Rohde, Dan Oelke, Mike Klemm,

Jim Kmiec and Mark Bakke of Dell Compellent for their encouragement, advice and help

during my internship. The thinking and development skills contribute a lot in obtaining

my Ph.D..

Finally, I would like to thank NSF and CRIS sponsor companies for funding my

projects as well as Minnesota Supercomputing Institute for providing access to their

research facilities and o�ering timely support.

ii

Dedication

I dedicate this dissertation to those who held me up over the years, especially

To my parents, Qijin He and Yumei Ma, who made every possible e�ort that I can

never image to support me and o�oad any distraction. Their encouragement and faith

in me stimulated me to strive for my success. They are proud of me for every tiny success

I made and I am so grateful for that.

To my wife, Xin Wan, who has accompanies me through all the ups and downs, laughs

and tears during my journey to my Ph.D.. She has done an incredible job motivating

and cheering up me whenever I got frustrated. I feel so grateful for having her as my

wife and friend.

To my sister, Aiping He, who has encouraged me all along and who has undertaken

my part of responsibilities to take care of our parents. I am as much proud of her as she

is proud of me. I also would like to thank my brother-in-law, Zhigang Fang, for being a

great husband and father.

To my parents-in-law, Dacheng Wan and Shulan Zhao, for their constant encourage-

ment, cares and trust.

iii

Abstract

The digital world is expanding exponentially because of the growth of various applica-

tions in domains including scienti�c �elds, enterprise environment and internet services.

Importantly, these applications have drastically di�erent storage requirements including

parallel I/O performance and storage capacity.

Various technologies have been developed in order to better satisfy di�erent stor-

age requirements. I/O middleware software, parallel �le systems and storage arrays

are developed to improve I/O performance by increasing I/O parallelism at di�erent

levels. New storage media and data recording technologies such as shingled magnetic

recording (SMR) are also developed to increase the storage capacity. This work focuses

on improving existing technologies and designing new schemes based on I/O workload

characterizations in corresponding storage environments.

The contributions of this work can be summarized into four pieces, two on improving

parallel I/O performance and two on increasing storage capacity. First, we design a

comprehensive parallel I/O workload characterization and generation framework (called

PIONEER) which can be used to synthesize a particular parallel I/O workload with

desired I/O characteristics or precisely emulate a High Performance Computing (HPC)

application of interest. Second, we propose a non-intrusive I/O middleware (called

IO-Engine) to automatically improve a given parallel I/O workload in Lustre which is a

widely used HPC or parallel I/O system. IO-Engine can explore the correlations between

di�erent software layers in the deep I/O path, as well as workload patterns at runtime

to transparently transform the workload patterns and tune related I/O parameters in

the system. Third, we design several novel static address mapping schemes for shingled

write disks (SWDs) to minimize the write ampli�cation overhead in hard drives adopting

SMR technology. Fourth, we propose a track-level shingled translation layer (T-STL) for

SWDs with hybrid update strategy (in-place update plus out-of-place update). T-STL

uses dynamic address mapping scheme and performs garbage collection operations by

migrating selected disk tracks. This scheme can provider larger storage capacity and

better overall performance with the same e�ective storage percentages when compared

to the static address mapping schemes.

iv

Contents

Acknowledgements i

Dedication iii

Abstract iv

List of Tables ix

List of Figures x

1 Introduction 1

1.1 I/O in High Performance Computing . 3

1.2 Storage Systems with Large Capacity . 4

1.3 Contributions . 6

1.4 Organization . 7

2 Parallel I/O Characterizations and Generation 8

2.1 Introduction . 8

2.2 Background . 11

2.2.1 Parallel I/O Workloads . 11

2.2.2 Assumed HPC Environment . 12

2.2.3 Parallel I/O Software Applications 12

2.3 Related Work . 13

2.4 Characteristics of Parallel I/O Workloads 14

2.4.1 Inter-Process Correlations . 14

v

2.4.2 Complexities of I/O Libraries . 15

2.4.3 File Access Pattern . 18

2.5 Approaches to Uniqueness . 18

2.5.1 Generic Workload Path . 18

2.5.2 I/O Library Enforcement . 20

2.5.3 Framework of File Open Sessions 21

2.6 Procedure of A Complete Solution . 21

2.6.1 Sanitization Phase . 22

2.6.2 Generic Workload Path Extraction Phase 24

2.6.3 Characterization Phase . 25

2.6.4 Synthetic Generic Workload Path Generation Phase 26

2.6.5 Parallel I/O Generation Phase 29

2.7 Evaluation . 30

2.7.1 Target Applications and Traces 30

2.7.2 Comparison Metrics . 34

2.8 Conclusions . 36

3 Parallel I/O Optimizations 37

3.1 Introduction . 37

3.2 Background . 39

3.2.1 File Types and MPI-IO . 39

3.2.2 Access Patterns . 40

3.2.3 Parallel I/O Modes . 41

3.2.4 File Allocations . 43

3.3 Related Work . 43

3.4 Motivation and Problem De�nition . 45

3.5 Proposed Solution: IO-Engine . 46

3.5.1 Overview . 47

3.5.2 Heuristics Details and Justi�cations 47

3.5.3 Implementation . 59

3.6 Evaluation . 59

3.7 Extended Work . 65

vi

3.8 Conclusions . 66

4 In-place Update SWDs 68

4.1 Introduction . 68

4.2 SWD Layout . 71

4.3 Related Work . 71

4.4 Motivation . 73

4.4.1 Space Gain Tradeo� . 74

4.4.2 LBA-to-PBA mapping . 74

4.5 Novel Static Address Mapping Schemes 75

4.5.1 General Principles . 76

4.5.2 Mapping Scheme �R(4123)� . 77

4.5.3 Mapping Scheme �124R(3)� . 77

4.5.4 Mapping Scheme �14R(23)� . 77

4.5.5 Performance Prediction for Updates 78

4.6 Experimental Evaluations . 78

4.6.1 Enhanced DiskSim . 78

4.6.2 Traces . 78

4.6.3 Experiment Design . 79

4.6.4 Result Discussions . 81

4.7 Conclusions . 83

5 Out-of-place Update SWDs 84

5.1 Introduction . 85

5.2 The T-STL Scheme . 87

5.2.1 Aggressive Track Update . 87

5.2.2 Track Level Mapping Table . 87

5.2.3 Space Elements . 88

5.2.4 SWD Space Management . 89

5.2.5 T-STL for Cold Workload . 93

5.2.6 T-STL Reliability . 93

5.3 Evaluations . 94

5.3.1 T-STL Implementation . 94

vii

5.3.2 Schemes to Be Compared . 94

5.3.3 Experiment Design . 96

5.3.4 Result Discussions . 96

5.4 Conclusion . 102

6 Conclusion and Discussion 104

References 107

viii

List of Tables

2.1 Trace Snippet . 9

2.2 Operation Statistics for 32PE_N-N_448K 16

2.3 Trace Sanitization Before and After . 24

2.4 I/O Characteristics . 27

2.5 K-S Test Results . 35

4.1 Trace Statistics . 76

5.1 Tested Schemes . 95

5.2 Trace Statistics . 96

5.3 Scheme Comparison Summary . 102

ix

List of Figures

1.1 Massive Storage System Echo-system . 2

2.1 Parallel I/O Environment Abstraction 12

2.2 Enforcements for I/O Libraries . 17

2.3 Framework of File Open Sessions . 22

2.4 Work�ow of Our Solution and Trace Transformations 23

2.5 Example of Creating Framework of Open Sessions 28

2.6 I/O Throughput Evaluation . 31

2.7 File Data Operation Ratio Evaluation 32

2.8 Arrival Rate Evaluation . 33

3.1 HPC Environment Abstraction . 38

3.2 Parallel I/O Stack . 40

3.3 File Access Patterns . 41

3.4 IO-Engine Heuristic Logic . 46

3.5 I/O Mode Comparisons . 48

3.6 Collective I/O Breakdown . 49

3.7 OST Performance Variations . 52

3.8 Access Pattern Modeling . 53

3.9 Access Pattern Modeling . 54

3.10 Collective Bu�er Size Impacts . 57

3.11 co_ratio Impacts . 58

3.12 New Parallel I/O Flows with IO-Engine 60

3.13 Performance Evaluation for IOR2 . 61

3.14 Performance Evaluation for MPI-IO Test 62

3.15 Performance Evaluation for mpi-tile-io 63

x

3.16 Striping Count Impact . 66

3.17 Stripe Size Impact . 67

4.1 SWD Layouts . 72

4.2 Update Operation Performance Prediction 75

4.3 Average response time for four traces under di�erent SWD space usages 79

4.4 Write ampli�cation comparison for four traces under di�erent SWD space

usages . 80

5.1 SWD Usage State . 89

5.2 The Process of Smart . 91

5.3 Average Response Time Comparisons . 97

5.4 Gross Write Response Time Breakdown at 90GB Utilization 98

5.5 Write Ampli�cation Ratio at Di�erent Space Utilizations 98

5.6 Stack Distance for Track Updates . 99

5.7 Performance Under SYN . 100

5.8 Spatial Localities of Write Operations 101

xi

Chapter 1

Introduction

Traditionally, High Performance Computing (HPC) applications and big data applica-

tions ran in di�erent types of systems. HPC applications, due to their computational

intensive and/or I/O intensive nature, usually run in HPC systems with powerful com-

puting capability and high I/O bandwidth. Message Passing Interface (MPI), the de-

facto standard of distributed computing, is used for inter-process communication in these

large HPC systems, which also de�nes a subset of programming interfaces to parallelize

the concurrent I/O accesses to shared �les. Some HPC applications are so I/O intensive

that data access has to be highly parallelized to achieve satisfactory I/O throughput.

Therefore technologies including object storage based I/O servers and parallel �le sys-

tems are developed to satisfy these applications. Big data applications, on the other

hand, usually run on cluster systems consisting of commodity hardware. MapReduce [3]

and Hadoop [4] platforms are developed to e�ciently utilize these commodity hardware.

These applications generally process a large volume of data sets.

However, HPC applications and big data applications share common general goals

- to maximize the computing power utilization and minimize I/O overhead via optimal

task and data distribution. This common objective, in addition to the fast advances in

server technologies and the lower cost of HPC systems, is leading to the convergence of

the two types of systems. One major form of convergence is to run big data applica-

tions or MapReduce applications on top of HPC systems by interfacing Hadoop with a

parallel �le system instead of the traditional Hadoop Distributed File System (HDFS)

1

2

APP 1 APP 2

…

application

IO-middleware

Parallel file

system

Local file

system

Storage Device

Parallel IO StackHPC System Architecture

Computing
nodes

IO servers

MDS

Storage
infrastructure

High
performance
network

Chapter 2

Chapter 3

Chapter 3

Chapter 4, 5

MPI-IO
Map

Reduce

Figure 1.1: Massive Storage System Echo-system

[5]. As a result, there will be a mix of HPC application workloads and big data appli-

cation workloads running on the same set of computing nodes. Figure 1.1 shows the

overall hardware architecture and I/O software stack of a typical converged HPC sys-

tem. The hardware components include computing nodes, high performance network,

Metadata Server and I/O servers for parallel �le systems or distributed �le systems, as

well as backend storage infrastructure. The corresponding I/O software layers include

the application layer, I/O-middleware layer, parallel �le system, local �le system and

storage device drivers. This type of converged HPC system are becoming more and more

popular, especially in science �elds [5, 6, 7].

There are two major objectives in this work as our e�orts on improving the converged

HPC ecosystem. First, we aim to improve parallel I/O performance by characterizing

applications' I/O workloads and making optimizations in the application layer, I/O-

middleware and parallel �le system layer. Second, we target increasing the backend

storage capacity by introducing a new type of hard drives using Shingled Magnetic

Recording (SMR) technology [8]. The data management schemes in these new hard

drives also take into account of I/O workload characteristics.

3

1.1 I/O in High Performance Computing

Scienti�c applications from various �elds including climate studies, molecular dynamics,

earthquake predictions and genomic engineering usually run on HPC systems. Cur-

rent HPC systems have several tens to hundreds of thousands of processor cores which

is expected to increase into the future with the technological advances. Researchers

are already preparing for exascale systems with millions of cores [9]. As a result, I/O

performance and data parallelism are becoming more challenging. Understanding ap-

plication I/O workloads and system I/O capabilities is important for optimizing I/O

performance and designing new I/O systems. To achieve these goals, tools that can

e�ciently characterize workloads and generate realistic synthetic parallel I/O workloads

are often needed.

There are generally three ways of generating parallel I/O workloads. The �rst ap-

proach is to use existing parallel I/O benchmarks such as IOR2, MPI-IO Test, FLASH-IO

and NPB benchmark suite. Although most of these benchmarks provide a set of tunable

parameters, they can only produce simple I/O patterns which are often unable to truly

represent the fast evolving HPC I/O workloads. The second approach is replaying I/O

traces captured from existing HPC applications. This approach can produce precise

HPC I/O workloads of the target applications but is in�exible. Moreover, capturing

I/O traces can be di�cult in certain production environments. The third approach is

to generate synthetic parallel I/O workloads which is essentially a balance between the

prior two approaches. Synthetic workloads are generated based on a speci�ed workload

model and many I/O characteristics can be tuned using corresponding parameters. The

synthetic workload generator introduced in this work is such a tool.

On the other hand, parallel I/O or HPC I/O is very complex because of the deep I/O

stack and various I/O related system parameters along the I/O path. In order to fully

exploit the parallel I/O performance, many factors including the I/O access pattern,

I/O access mode, �le allocation scheme and I/O parameters, as well as their correlations

must be investigated. For example, �les in parallel �le systems are usually striped

over multiple I/O servers with a speci�ed striping width and stripe size. Signi�cant

inter-process overhead or locking overhead on the stripes can be incurred if the requests

issued by application processes are not coordinated well. Di�erent striping policies can

4

also have diverse read and write performance impacts. In this work, we thoroughly

investigate the existing parallel I/O stack via instrumenting the MPI-IO library and

conducting designed experiments. We also propose a comprehensive parallel I/O model

to discover the relationship between logical I/O access pattern and physical data layout.

Subsequently, an automatic parallel I/O optimization tool called �IO-Engine� is designed

to transparently improve the I/O performance by dynamically transforming incoming

workloads and tuning I/O parameters.

1.2 Storage Systems with Large Capacity

Data generated by all kinds of internet service, industrial applications and various insti-

tute is increasing exponentially. 5 exabytes (1018 bytes) of data were created by human

by 2003, which can be easily generated in two days today. In 2012, the data volume

of the digital world reached 2.72 zettabytes (1021 bytes), which is predicted to double

every two years reaching 8 zettabytes by 2015 [1]. Infographic, a social media, created a

chart to show how much data was generated every minute in 2014 [2]. According to the

chart, 72 hours of new video was uploaded to Youtube, 204 millions emails were sent,

2.5 millions pieces of messages were shared on Facebook and 216,000 new photos were

posted on Instagram, etc. These data has eventually to be stored on physical storage

devices.

In order to keep up with the pace of data generation, storage media capacity has

been growing over the year. Recently storage devices especially traditional hard disk

drives start to reach the maximum areal data density that the current perpendicular

recording can achieve. Instead of disk capacity doubling every 18-24 months as the disk

industry did in the 2000s, it is now only o�ering approximately 20% capacity growth

per year recently. Therefore di�erent magnetic recording designs have been proposed in-

cluding Heat-assisted magnetic recording (HAMR) [10], Bit-Patterned Media Recording

(BPMR) [11, 12] and Shingled Magnetic Recording (SMR) [8, 13, 14].

Among these new techniques, SMR is the most promising because it does not require

signi�cant changes to the current manufacturing techniques. It increases data capacity

by overlapping the adjacent tracks and thus packing more data tracks into platters

with the same physical dimensions. The asymmetric requirements for head width of

5

read and write requests make shingling technically feasible. Disk heads write a wide

track but only need a narrow track for reading. Thus SMR works by writing a wide

track then overwriting most of it when performing another write. The downside of this

technique is that random write to a particular track may overwrite the valid data on the

following tracks because data tracks are shingled. Hard drives using SMR techniques

are called Shingled Write Disks (SWDs) or SMR drives. The SWDs can only be applied

for cold write workloads or write-once-read-multiple-times workloads without addressing

the overhead incurred by random writes.

Two main physical layouts are being explored to address this problem which are

in-place update SWD (I-SWD) and out-of-place SWD (O-SWD). An In-place update

performs as follows. Assuming the updated data resides on a speci�c track, the data

on the following tracks will �rst be read out and written back to their original positions

later after the desired data has been written or updated. As a result, a single update

operation is ampli�ed to several read and write operations. The write ampli�cation

overhead generally increases with the number of following tracks that are a�ected.

An out-of-place update operation performs in a copy-on-write manner. The updated

data or the new data will be written to a new position and the old data will be invalidated.

An address mapping scheme must be used to keep track of the data movement and a

garbage collection scheme must be designed to reclaim the invalidated space later, which

are essentially other forms of write ampli�cation overhead.

The main challenge of designing a shingled write disk (SWD) is the balance between

write ampli�cation overhead minimization, space gain and overall I/O performance. Ac-

cording to system level that handles the write ampli�cation, address mapping and space

management, SWDs can also be classi�ed into drive-managed SWDs, host-aware SWDs

and host-managed SWDs. As the names suggest, drive-managed SWDs encapsulate all

these functions inside the drives themselves and provide transparent block interface to

the upper levels including �le systems and applications. While host-aware SWDs and

host-managed SWDs o�oad these functions to the host machines. To accomplish this,

the internal track layout must be reported to the host operating system via a set of

new commands newly de�ned in the T10 industrial standard [15]. The T10 standard

also speci�es that the tracks are grouped into zones of size 256 MB and that there are

three types of zones: conventional zone, sequential write preferred zone and sequential

6

write required zone. Conventional zone is optional for both host-aware SWDs and host-

managed SWDs. Sequential write preferred zone is exclusive to host-aware SWDs and

sequential write required zone is exclusive to host-managed SWDs.

This work focuses on drive-managed SWDs because they can be used in existing

storage systems in a drop-in manner which requires no modi�cation. For example, the

two SWDs on the market today, Seagate Archive HDD (8 TB) [16] and Western Digital

Ultrastar Archive Ha10 (10 TB) [17], are all autonomous drives. However, both of them

are targeted for only cold workloads and archive workloads due to the unresolved write

ampli�cation problem. Therefore, in this work, we propose two drive-managed SWD

designs, one based on the in-place update method and the other based on a combination

of in-place update and out-of-place update methods, in order to make SWDs that can

handle primary workloads instead of only cold workloads.

1.3 Contributions

The contributions of this work can be summarized into four pieces, two on improving

parallel I/O performance and two on increasing storage capacity. First, we design a

comprehensive parallel I/O workload characterization and generation framework (called

PIONEER) which can be used to synthesize a particular parallel I/O workload with

desired I/O characteristics and also precisely emulate an HPC application of interest.

Second, we propose a non-intrusive I/O middleware (called IO-Engine) to automatically

improve a given parallel I/O workload in Lustre system. IO-Engine can explore the

correlations between di�erent software layers in the deep I/O path, as well as workload

patterns at runtime to transparently transform the workload patterns and tune related

I/O parameters in the system. IIO-Engine can also be extended to support other parallel

�le systems. Third, we design several novel static address mapping schemes for SWDs

to minimize the write ampli�cation overhead in hard drives adopting SMR technology.

Fourth, we propose a track-level shingled translation layer (T-STL) for SWDs with hy-

brid update strategy (in-place update plus out-of-place update). T-STL uses a dynamic

address mapping scheme and performs garbage collection operations by migrating se-

lected disk tracks. This scheme can provide larger storage capacity and better overall

I/O performance under the same e�ective capacity percentages when compared to the

7

static address mapping schemes.

1.4 Organization

The rest of this work is organized as follows. Chapter 2 describes a complete solution

to parallel I/O workload characterization and synthesizing. Thoroughly understanding

parallel I/O workloads is the basis for optimizing existing storage systems and designing

new storage systems. Our solution not only introduces an e�cient workload characteriza-

tion framework but also contains a tool to synthetically generate parallel I/O workloads.

Based on this knowledge, Chapter 3 further discusses parallel I/O optimizations that can

be achieved with more in-depth I/O workload characterization. After discussing ways

to characterize parallel I/O workloads and optimize parallel I/O performance, Chapter

4 and 5 shift the gear and focus on the other storage requirement in converged HPC sys-

tems - storage capacity. Conventional hard disk drives comprise a signi�cant percentage

(up to 80%) of the total storage capacity in today's massive storage system but are hit-

ting their areal data density limit. SWDs using shingled magnetic recording will be the

optimal near-term solution. Chapter 4 describes several novel static address mapping

schemes for in-place update SWDs and Chapter 5 proposes a track-level translation layer

for out-of-place update SWDs. Finally, Chapter 6 makes some conclusions and states

future research directions.

Chapter 2

Parallel I/O Characterizations and

Generation

The demand for parallel I/O performance continues to grow. However, modeling and

generating parallel I/O workloads are challenging for several reasons including the large

number of processes, I/O request dependencies and workload scalability. In this chapter,

we propose the PIONEER, a complete solution to Parallel I/O workload characteri-

zatioN and gEnERation. The core of PIONEER is a proposed generic workload path,

which is essentially an abstract and dense representation of the parallel I/O patterns for

all processes in a High Performance Computing (HPC) application. The generic work-

load path can be built via exploring the inter-processes correlations, I/O dependencies

as well as �le open session properties. We demonstrate the e�ectiveness of PIONEER

by faithfully generating synthetic workloads for two popular HPC benchmarks and one

real HPC application.

2.1 Introduction

The computing scale is currently expanding from Petascale to Exascale. This will make

the data parallelism even more challenging. Thoroughly understanding parallel I/O

workloads is therefore critical for designing storage systems and improving their per-

formance. Synthetic parallel I/O workload generation tools are also greatly needed in

storage system performance tuning, testing and measurement.

8

9

Table 2.1: Trace Snippet

10:48:52.404754 MPI_File_open(92, 0x807a7f8, 34, 0x8078e38, 0xbf83b9e0 <un�n-
ished ...>
10:48:52.405470 SYS_statfs64(0x807a7f8, 84, 0xbf83b788, 0xbf83b788, 0x81d�4) =
0 <0.008302>
10:48:52.414801 SYS_umask(022) = 077 <0.000025>
10:48:52.414866 SYS_umask(077) = 022 <0.000017>
10:48:52.414936 SYS_open(�/panfs/caddypan.lanl.gov/scratch1/
nobody/tests/OUTPUT.1206553581.0�, 32768, 00) = 36 <0.000301>
10:48:52.416760 <... MPI_File_open resumed>) = 0 <0.011931>
10:48:52.416807 MPI_Wtime(0xf6000000, 0x41b419c7, 0x1dc50cea, 0x4067346f, 0
<un�nished ...>
10:48:52.417341 <... MPI_Wtime resumed>) = 0x6490a356 <0.000416>
10:48:52.417419 MPI_Wtime(0x75a0a0, 0x8053cc3, 0x45fe1127, 0x4041e0d0,
0x81f8b8 <un�nished ...>
10:48:52.417922 <... MPI_Wtime resumed>) = 0x2f661f1e <0.000401>
10:48:52.417986 MPI_File_seek(0x807a8a0, 0, 0, 600, 0x406734d6) = 0 <0.000195>
10:48:52.418364 MPI_File_iread(0x807a8a0, 0xa7d19008, 458752, 1, 0xbf83b898
<un�nished ...>
10:48:52.418681 SYS_read(36, �EDITED�..., 458752) = 458752 <0.029523>
10:48:52.449365 <... MPI_File_iread resumed>) = 0 <0.030849>

Many HPC benchmarks such as IOR2 [18], NPB [19], and FLASH-IO [20] are devel-

oped to help test system performance. HPC benchmarks are usually easy to use and can

be tweaked by the users. However, real HPC applications in many scienti�c domains

keep emerging such that system designers often have a hard time to �nd a benchmark

which can represent a particular I/O workload for their need. Furthermore, many HPC

benchmarks have little control on certain IO dimensions such as the IO arrival pattern

[21, 22].

On the other hand, synthetic parallel I/O workload generation based on existing

traces is more promising and practical as long as I/O tracing tools are enabled in a

production environment. There is no need to access the source code of a real HPC

application. Besides, the characteristics of the existing traces can be modi�ed and tuned

to generate a desired workload pattern.

However, parallel I/O workload modeling and synthesizing are very challenging. Raw

10

traces captured by tools like LANL-Trace framework tool [23] have to be sanitized be-

fore workload characterizing and modeling. For example, Table 2.1 shows a parallel I/O

trace snippet that is generated by a HPC benchmark application called MPI-IO Test [24]

which contains several <un�nished> and <resumed> tag pairs indicating the start and

completion of a particular I/O request. Each sanitized I/O record contains several im-

portant �elds including timestamp, request type, request argument list, execution time,

etc. A comprehensive workload modeling and generation framework should consider all

of these important factors.

A parallel I/O trace usually contains both POSIX-IO operations and MPI-IO oper-

ations, which may have quite di�erent syntaxes and arguments. For example, SYS_open

requires 3 arguments but MPI_File_iread needs 5 arguments. However, disk I/O work-

loads usually only deal with two operation types (READ and WRITE) with uni�ed syn-

tax and argument dimensions. Furthermore, there are all kinds of request dependencies

in both the POSIX-IO library and the MPI-IO library. For example, MPI_File_iread

depends on MPI_File_open since no process will be able to access the �le data without

opening it �rst. The challenges of modeling and generating synthetic parallel I/O work-

loads can be easily recognized when one realizes that actual parallel I/O workloads are

generated by hundreds or thousands of these processes and these processes are correlated

in speci�c ways.

Many prior studies such as [25, 9, 26, 27] have been done on parallel I/O characteri-

zation to acquire meaningful characteristics to unveil application behaviors and provide

valuable insights for parallel I/O workload synthesizing. However, as far as we know,

there are rarely any complete parallel I/O workload synthesizing solutions that gener-

ate realistic parallel I/O workloads. Most of the existing parallel I/O modeling and

synthesizing studies focus on a single dimension such as inter-arrival time [21, 22] or

request o�set [28]. The existing two-dimensional [29] or multi-dimensional characteriza-

tion schemes [30] for block I/O workloads cannot be applied to parallel I/O workload

modeling directly because they do not consider the uniqueness of parallel I/O workloads.

Our solution in this chapter handles these uniqueness and challenges with e�ective

approaches. We propose the concept of a �generic workload path� based on the inter-

process correlations to abstract and present the I/O patterns of all processes; we also set

11

library enforcement rules to deal with the I/O library complexities and request depen-

dencies; we develop the �le open session framework to describe the �le access patterns in

the generic workload path; we characterize all the I/O operations that appeared in the

generic workload path, the outcome of which can be tuned to generate a corresponding

synthetic generic workload path; and we also develop a workload generation engine to

expand a synthetic generic workload path into a complete parallel I/O workload, which

can be scaled with any desired number of processes. Details about these approaches will

be presented in Section V. These approaches together enable us to take the initial step

to propose a robust and scalable solution in this chapter. As demonstrated later, our

solution can signi�cantly reduce the overhead of workload tracing, characterization and

generation.

The structure of this chapter is as follows. We introduce some background and

related work in Section 2.2 and Section 2.3. In Section 2.4, we discuss the uniqueness

and characteristics of parallel I/O workloads and consequent challenges, followed by

corresponding approaches in Section 2.5. We then propose our comprehensive solution

of parallel I/O characterization and synthesizing in Section 2.6. We demonstrate the

e�ectiveness of our solution with experiments in Section 2.7. We �nally make some

conclusions in Section 2.8.

2.2 Background

In this section, we introduce the assumed HPC environment and the software applica-

tions that generate the parallel I/O workloads. We will also summarize the existing

work and show that major gaps exist in characterizing parallel I/O workloads and in

generating synthetic parallel I/O workloads.

2.2.1 Parallel I/O Workloads

The concept of �parallelism� exists in many layers of the HPC software stack, such as

application, I/O library, and �le system. Therefore it is important to de�ne parallel I/O

workload carefully. In the scope of this chapter, we de�ne parallel /IO as I/O workload

generated by HPC applications that use MPI-IO library or higher level I/O libraries built

on top of MPI-IO library. These I/O workloads may also contain POSIX-I/O requests.

12

…

APP 1

APP 2

Applications

Compute

nodes

storage

infrastructure

IO nodes

MDS

Figure 2.1: Parallel I/O Environment Abstraction

2.2.2 Assumed HPC Environment

A typical HPC system usually consists of several major components including computing

nodes, I/O nodes (I/O servers), metadata servers and back-end storage infrastructures as

shown in Figure 3.1. A real system may have di�erent implementations for each of these

components. For example, Lustre systems implement the I/O nodes as Object Storage

Servers (OSSs), which manage one or more Object Storage Targets (OSTs). Back-end

storage infrastructures could be ful�lled by a certain number of Storage Area Networks

(SANs), each of which can be dedicated to a single OST or shared by multiple OSTs.

Metadata servers in these systems maintain and manage a uni�ed logical namespace for

parallel �le systems.

2.2.3 Parallel I/O Software Applications

HPC applications typically execute hundreds or thousands of processes. These applica-

tions can be either computational intensive, I/O intensive or both. The I/O behaviors

and access patterns of these HPC applications depend, to a large degree, on the way they

access �les and the I/O libraries. Di�erent I/O libraries can be used such as POSIX-IO,

MPI-IO, HDF5, netCDF, etc. In the scope of this work, we de�ne parallel applications

as those utilizing MPI-IO libraries and higher level I/O libraries built on top of MPI-IO

libraries such as HDF5. The processes of these parallel applications, however, are also

technically allowed to access �les with POSIX-IO library. When a parallel application

13

runs, it will assign an MPI process rank to each process. The MPI process rank is es-

sentially an internal process ID used by the parallel application to identify each process.

The root process is assigned with rank 0.

In the HPC realm, there are generally three types of �les: root exclusive �les, shared

�les, and private �les. A shared �le is de�ned as a �le that is shared by all participating

processes, while a private �le means that every process has its own version of this �le,

usually with customized �le name. The naming convention for private �les is a common

pre�x string plus the MPI process rank. A root exclusive �le is only accessed by the

root process.

2.3 Related Work

I/O workload characterization is important for understanding the workload and improv-

ing system performance. Di�erent mathematical models were proposed to describe the

workload patterns, either temporally or spatially. For example, Poisson process have

been widely used to describe I/O arrival patterns until several prior studies indicated

that statistical properties including autocorrelations and self-similarity [31] exist in these

workloads due to their nature of burstiness [32, 33, 34]. Since then, various self-similarity

oriented models have been proposed to emulate the burstiness feature. For example,

FARIMA [33] and FBM [35] models were proposed to describe network tra�c workloads

and later applied to disk I/O workloads. Models that utilize multiple ON/OFF models

[36] or a combination of ON/OFF model and Cox's model [37] also have been used to

characterize the burstiness in storage systems. An I/O workload model based on the

Alpha-stable process was also proposed to generate synthetic disk I/O workloads and

parallel I/O workloads [21].

Although each of the above models has its own e�ectiveness in modeling the work-

load burstiness and temporal properties such as self-similarity, most of them are limited

to only one dimension such as inter-arrival time or request o�set. However, parallel I/O

workloads contain important information in other dimensions as well. Therefore, models

that can incorporate multiple dimensions become more preferred for workload characteri-

zation and generation. Wang et al. proposed a model that can model the spatio-temporal

14

correlation via an entropy plot of two-dimensional disk I/O request sequence [29]. An-

other work by Sriram and Kushagra utilizes the probabilistic state transition diagram

[38] to describe disk I/O workloads in a comprehensive way where multiple dimensions

including inter-arrival time, operation type, LBA o�set, etc. are all considered to some

degree. This work was then extended by Delimitrou in [30] to generate synthetic disk I/O

workloads in data centers. However, both the two-dimensional and multi-dimensional

characterization mechanisms are not suitable for parallel I/O workloads because they

did not consider parallel I/O dependencies, let alone inter-process correlations.

On the other hand, there exist several studies on characterizing parallel I/O work-

loads. For example, Wang et al. used a series of empirical distributions to characterize

parallel scienti�c applications in [25]. Distributions are presented independently though.

Carns et al. developed the Darshan I/O characterization tool that can unveil some I/O

behaviors of applications at extreme scale [9]. Carns et al. then outlined a methodology

for continuous, and scalable I/O characterization that instruments Darshan and utilizes

coarse-grained information from storage devices and �le systems to help further interpret

application level behaviors [26]. Cope et al. worked on the IOVIS project and proposed a

portable I/O tracing system and visualization method to help analyze captured parallel

I/O traces in an end-to-end manner [27]. However, most of these existing studies did

not address the parallel I/O generation problem.

As a result, in this chapter we take the initial step of proposing a complete solution to

parallel I/O characterization and synthesizing. We will demonstrate later in the chapter

that this solution is robust and scalable.

2.4 Characteristics of Parallel I/O Workloads

In this section, we describe the uniqueness and associated challenges of modeling parallel

I/O workload characterization and synthesizing.

2.4.1 Inter-Process Correlations

HPC applications usually execute hundreds or thousands of processes, with one root

process and a bunch of child processes. When characterizing the MPI-IO Test traces

that are published by LANL and IOR2 traces that we captured on a cluster system

15

at Minnesota Supercomputing Institute [39], we made some interesting observations on

inter-process correlations. In general, the child MPI processes always mimic the root

process. In other words, child processes share most of the I/O requests with the root

process except those root exclusive I/O requests which are unique to the root process

only. Table 2.2 shows the operational statistics of one root process and four child pro-

cesses in a captured parallel I/O trace. This trace (identi�ed as 32PE_N-N_448K) is a

running instance of MPI-IO Test published by LANL. The table shows the statistics for

selected major POSIX-IO and MPI-IO operations in the trace. The operational statis-

tics of the child processes are nearly identical with each other. There is also a great

similarity between the root process and child processes, except that the root process

issues more POSIX-IO operations. This is mainly because the root process has to man-

age the parallel I/O environment. Besides, HPC application developers tend to choose

the root process to perform temporary data management. This similarity can also be

validated by pro�ling the operation reuse distance, which is de�ned as the number of

operations between two successive appearances of same operation, for root process and

all child processes. There may exist some HPC applications that their child processes

are to be divided into several subgroups. The processes in each subgroup perform similar

operations.

Besides, HPC applications usually make performance gains by utilizing advanced I/O

features in MPI-IO and higher level I/O libraries such as collective I/O [40], when pro-

cesses are accessing shared �les. Shared �les therefore tend to show stronger inter-process

correlations than private �les. Behind these advanced I/O operations, inter-process com-

munications, data manipulation and synchronization are transparently managed by the

I/O libraries.

2.4.2 Complexities of I/O Libraries

Due to the I/O software stack depth in the parallel environment, parallel I/O workloads

generally involve more than one I/O library, which include, in most cases, both POSIX-

IO and MPI-IO [26]. Computational science applications also typically use higher level

I/O libraries such as HDF5 and parallel netCDF. The operations in these higher level

I/O libraries will be eventually translated into MPI-IO and POSIX-IO operations. The

16

Table 2.2: Operation Statistics for 32PE_N-N_448K

Operation child x1 child x2 child x3 child x4 root
SYS_open 195 195 195 195 257
SYS_close 82 79 76 77 126
SYS_read 10737 10309 10522 10306 11907
SYS_write 9905 9889 9891 9887 21995
SYS_fstat64 56 56 56 56 101
SYS_fcntl64 102 102 96 96 334
SYS_statfs64 4 4 4 4 5
MPI_File_seek 18724 18724 18724 18724 18724
MPI_File_iwrite 9362 9362 9362 9362 9362
MPI_File_iread 9362 9362 9362 9362 9362
MPIO_Wait 18724 18724 18724 18724 18724
MPI_File_close 2 2 2 2 2
MPI_Barrier 73 73 73 73 73
MPI_Wtime 56188 56188 56188 56188 56188

LANL-Trace framework tool [23, 41] can capture both POSIX-IO and MPI-IO com-

mands.

Besides, POSIX-IO library and MPI-IO library have a rich set of I/O operations.

They both contain metadata operations and �le data operations. Metadata operations

deal with �le manipulations such as create, delete, open, close, �le handler manipulation

and �le pointer manipulation. File data operation, on the other hand, do I/O transfer

jobs for either read or write. Metadata operations are important in a parallel I/O

environment. As explained in [42], the MDS servers play a critical role in large scale

I/O since they may potentially become the performance bottleneck. As a result, it is

important to characterize metadata operation patterns and the way they are related to

�le data operations as part of parallel I/O workload modeling.

Furthermore, unlike disk I/O operations, �le system level I/O operations have to

follow certain rules to be functional and meaningful. In this chapter, we classify these

rules into two categories: hard dependency and soft dependency. Hard dependency has to

be respected when generating synthetic �le system I/O workloads and thus is mandatory.

A simplest example for hard dependency will be that a process has to open a �le �rst

before it can read/write that �le. Soft dependency, on the other hand, is optional, yet

17

open

statfs64

stat64

fstat64

fcntl64

seek

write

read

mmap munmap

close

column1 column2 column3

unlink

(a) POSIX-IO

MPI_File_open

MPI_Barrier

MPI_File_get_info

MPI_File_get_size

MPI_File_get_view

MPI_File_seek

MPI_File_iwrite

MPI_File_iread

*_begin *_end

MPI_File_close

column1 column2 column3

MPI_File_delete

MPI_wait

(b) MPI-IO

Figure 2.2: Enforcements for I/O Libraries

18

important for creating meaningful and high quality synthetic workloads. For instance,

a process may need to seek to a speci�c o�set inside an opened �le in order to access

a particular data section. Both POSIX-IO and MPI-IO libraries have to consider these

dependencies.

2.4.3 File Access Pattern

File open session is one of the most important aspects because there are many impor-

tant properties associated with it, including sequentiality, ownership and access mode.

Sequentiality describes the �le o�set pattern and a �le session is said to show high sequen-

tiality when o�sets generally present monotonically increasing or decreasing patterns.

In regards to �le ownership, a �le can be shared by multiple processes or dedicated to a

single process during a given open session. Access mode controls categories of �le data

operations that can be made to an opened �le, such as read only, write only or both.

Besides, there are some general characteristics of �le open sessions, such as duration

of �le open sessions and frequencies of di�erent I/O requests. Furthermore, metadata

operation ratio and �le data operation ratio are also important characterization criteria

of �le access patterns, considering the potential bottleneck at metadata servers. In con-

clusion, the access pattern of parallel I/O workloads can be summarized as the question:

�which portion of which �le is accessed by which process at what time in which way?�

Our solution uses the framework of open session to answer this question and describe

the parallel I/O patterns.

2.5 Approaches to Uniqueness

In this subsection, we describe the proposed approaches to addressing the challenges of

the identi�ed uniqueness.

2.5.1 Generic Workload Path

The large number of processes in an HPC application makes it impractical to characterize

every single process separately although this is possible. Besides, even assuming that

signi�cant time and e�ort can be a�orded for characterizing all the processes, challenges

19

for scaling the workloads will be faced. Our proposed generic workload path provides a

more e�cient and better way to characterize parallel I/O workloads.

Simple HPC applications may require only two processes, one root process and one

child process, to create a generic workload path. In this chapter, we will consider this

simple case. However, the same technique can be applied if child processes are partitioned

into multiple subgroups. In other words, the generic workload path constructed with

a very small number of processes is a dense representation of all processes. We then

assign a global sequence ID to each of the operations in the generic workload path. The

global sequence ID is the index number of a request to indicate the request order and

position in the generic workload path or trace �le. For example, the �rst request has

global sequence ID 0.

There are generally three advantages creating a generic workload path. First of all,

by merging the root process and selected child processes into a single generic workload

path, we can characterize the correlation and mix patterns between their I/O requests

with the help of global sequence IDs.

Secondly, generic workload path makes our solution highly scalable and robust be-

cause it works like a workload template which will be customized for each process based

on their MPI process ranks when executed by our workload generation engine. Any

desired number of processes can be used during the execution so we can scale the work-

load by varying the number of processes. For example, we can synthesize a parallel I/O

workload of 1000 processes based on an original workload of 100 processes for scaling up,

or synthesize a workload of 50 processes for scaling down. The approach of extracting,

characterizing, synthesizing and executing generic workload path will be presented later

in Section V.

Another great bene�t of using generic workload path is that we may now only need to

capture I/O traces for a small number of processes instead of all the processes, which sig-

ni�cantly reduces the capturing overhead and resulting trace sizes. Besides, unnecessary

characterization on most child processes can also be avoided.

We use slack time as timing control mechanism for the generic workload path. Slack

time is de�ned as the time between the completion of a previous request and the start

of the next request. We compute the slack time based on <timestamp> and <execution

time>. The use of slack time enables a synthetic workload to be executed in storage

20

systems with di�erent performance without overloading them.

2.5.2 I/O Library Enforcement

Unlike the block level I/O workloads, parallel I/O workload generation has to respect

the inherent request dependencies of POSIX-IO library and MPI-IO library. As in-

dicated previously, we consider two types of dependencies: hard dependency and soft

dependency.

Figure 2.2a shows an enforcement diagram that represents these two types of request

dependencies for selected POSIX-IO operations. Column 1 contains independent oper-

ations that do not require opening a �le and are metadata operations. Column 2, on

the other hand, contains dependent operations that operate on opened �les, including

both metadata operations and �le data operations. The solid arrow means hard depen-

dencies; the dashed arrow means soft dependencies. Operations in grey boxes can be

unnecessary to be used together with their counterparts. For example, read/write may

or may not be preceded by a seek operation in practice. Each open session begins with

an open operation and ends with a close operation. For �les accessed by MPI-IO oper-

ations, we have constructed a similar enforcement diagram in Figure 2.2b to represent

the dependencies among selected MPI-IO operations.

In implementation, hard dependency is generally guaranteed by the framework of

�le open session described in Section IV. Dependent operations in Column 2 can only

exist in corresponding �le open sessions while independent operations are not limited by

this constraint. Soft dependency is preserved by replacing certain operations with newly

de�ned operations. For example, we replace seek and read operations with two new

operations: read0 and read1. read0 indicates a read operation not preceded by a seek

operation while read1 indicates a preceded read. This is especially useful for MPI-IO

library where more operation combinations are possible. For instance, the non-blocking

MPI_File_iread can be either preceded by MPI_File_seek, followed by MPIO_Wait or

both. New operations such as MPI_File_iread11 therefore can be de�ned to indicate

these soft dependencies. This technique can also be used to preserve some hard depen-

dencies such that no munmap should occur before a corresponding mmap operation. We

characterize these new operations in workload characterization to capture the operation

patterns.

21

2.5.3 Framework of File Open Sessions

The �le access patterns of parallel I/O workloads are complicated due to the fact that

parallel I/O workloads usually deal with multiple processes, multiple �les and multiple

I/O libraries. In order to model such a workload, we apply �le open session oriented

characterization. A �le open session describes the I/O request pattern during a speci�c

period which starts with opening this �le and ends with closing it. A �le can have

multiple open sessions throughout the workload.

We assign a global sequence ID to each request in the workload and represent them

into a framework of �le open sessions. Figure 2.3 shows such an example framework.

There are 4 �les in this example: A and B are private �les; C and D are shared �les.

Each rectangle represents an open session of its corresponding �le, where each numbered

circle inside rectangles is an I/O request accessing this �le. These operations are from

column 2 which require opening the �le �rst. Column 1 operations, on the other hand,

are independent and thus are not restricted to be inside �le open sessions. A number

of workload characteristics will be extracted as explained in Section V. Creating such

a framework of open sessions helps explore how the I/O requests to di�erent �les are

correlated and how the �le data operations and metadata operations are mingled.

2.6 Procedure of A Complete Solution

In this section, we describe a complete solution for parallel I/O workload characterization

and generation. All the proposed approaches described previously are included in this

implementation.

The whole procedure of our implemented solution has been summarized as �ve phases

in Figure 2.4, including sanitization phase, generic workload path extraction phase, char-

acterization phase, synthetic generic workload path generation phase and parallel I/O

generation phase. As the �owchart shows, we �rst sanitize and reformat the raw parallel

I/O traces, produced by LANL-Trace framework or captured by other tools, for the root

process and the selected child process or processes. We then extract generic workload

path using these sanitized traces. A framework of open session oriented I/O characteri-

zation on this generic workload path produces a set of characteristics which are later used

to create a synthetic generic workload path. We input this synthetic generic workload

22

Private Shared .

ISG

IRG

D

A B C D

I/O

se
q

u
e

n
ce

A and B are private files

C and D are shared files

IRG: Inter-Request Gap

ISG: Inter-Session Gap

D: Session Duration

1

3
5

6

8

2

9

7

4

10
11 12

14

18

16

20

24

15

19

21

17

13

22

23

Figure 2.3: Framework of File Open Sessions

path to our workload generation engine to generate the actual parallel I/O workload for

a desired number of processes. In the case that no original workload is provided, this

procedure starts with the synthetic generic workload path generation phase but requires

the user to specify the desired workload characteristics. Each of these steps is detailed

in the following subsections. The output of a previous phase is the input of the next

phase.

2.6.1 Sanitization Phase

The raw traces produced by LANL-Trace framework need to be sanitized due to the

following reasons. First, some POSIX-IO operations are not issued directly by the ap-

plication but instead are internally used by MPI-IO operations. However, due to the

fact that LANL-Trace framework tool is using ltrace to capture POSIX-IO operations,

it will just record any POSIX-IO operation it sees, irrespective of whether it is issued

by the application or internally called by MPI-IO operations. Therefore, these inter-

nally used POSIX-IO operations need to be masked by a script program. Fortunately,

23

Raw traces for

all processes

Reformatted

traces for the

root process

and 1 child

process

1 2 3 4 5

I/O

characteristics

Generic

workload path

Synthetic generic

workload path

Parallel I/O

workload for

a desired

number of

processes

1. Sanitization phase

2. Generic workload path extraction phase

3. Characterization phase

4. Synthetic generic workload path

generation phase

5. Parallel I/O generation phase

Figure 2.4: Work�ow of Our Solution and Trace Transformations

LANL-Trace framework tags those MPI-IO operations that internally call POSIX-IO

operations with <un�nished> and <resumed> tag pairs. Table 2.3 presents trace ex-

amples before and after trace sanitization. Before sanitization, there are four POSIX-IO

operations between the tag pair of MPI_File_open, which are actually internally called

by MPI_File_open itself. Thus we convert it into a single MPI-IO operation record line.

Besides, a uni�ed trace format is used to keep consistency which contains 7 dimensions:

<timestamp>, <operation type>, <�le name>, <o�set>, <request size>, <execution

time> and <extra>. We decode the �le descriptors or handlers into the actual �le names

for ease of characterization. These 7 dimensions help us to characterize the workload

later.

Only the traces of the root process and one child process need to be sanitized unless

the processes of a sophisticated HPC application are divided into multiple subgroups, in

which case we randomly choose one child process from each of the subgroups and sanitize

their traces. The number of required subgroups can be either provided by the application

owner or obtained by a bootstrap characterization. In bootstrap characterization, we

take a small portion of the traces, such as �rst 10% of the traces, to compare the similarity

between the child processes. Child processes are said to be in the same subgroup if their

traces show similar operational statistics and operation reuse distance pro�le as we

described in Section III. The number of subgroups can be decided as a result.

24

Table 2.3: Trace Sanitization Before and After

10:48:52.404754 MPI_File_open(92, 0x807a7f8, 34,
0x8078e38, 0xbf83b9e0 <un�nished ...>
10:48:52.405470 SYS_statfs64(0x807a7f8, 84, 0xbf83b788,
0xbf83b788, 0x81d�4) = 0 <0.008302>

Before 10:48:52.414801 SYS_umask(022) = 077 <0.000025>
10:48:52.414866 SYS_umask(077) = 022 <0.000017>
10:48:52.414936 SYS_open(�/panfs/caddypan.lanl.gov
/scratch1/nobody/tests/OUTPUT.1206553581.0�, 32768,
0600) = 36 <0.000301>
10:48:52.416760 <... MPI_File_open resumed>) = 0
<0.011931>

After 10:48:52.404754 MPI_File_open
/panfs/caddypan.lanl.gov/scratch1/nobody/tests/
OUTPUT.1206553581.0 NULL NULL 0.011931
MPI_COMM_SELF,34

2.6.2 Generic Workload Path Extraction Phase

The major task here is to separate the root exclusive I/O requests from mimicked I/O

operations by comparing the root process trace with the traces of the selected child

processes. To achieve this, we �rst create a shadow trace �le for each of these sanitized

traces. A shadow trace �le only contains the <operation type> and <�le name> di-

mensions of its original trace �le. The rank su�x in the shared �le names should be

removed though.

Let us denote the root shadow trace �le as R and denote the child shadow trace �le

as C. Then we compare R and C using native Linux utilities such as diff command

which will output the di�erences as line indices. Other comparison tools can also be

used here. These di�erences indicate root exclusive requests. The indices of these root

exclusive requests in R map them back to the original trace records in the root process

trace, which will be annotated with a root exclusive �ag in the <extra> dimension.

Other auxiliary annotations such as o�set of reads and writes to shared �les can also

be added to facilitate later characterization. This annotated root process trace becomes

the generic workload path.

The most important reason why we merge the I/O patterns of the root process and

25

child processes into a generic workload path, as discussed previously, is that it helps

model how the root I/O requests are correlated with those of child processes, as shown

in the next phase. If we characterize them separately, this connection information will

be lost.

2.6.3 Characterization Phase

We characterize the extracted generic workload path to obtain the characteristics of the

selected dimensions. The characteristics of the root exclusive �les, the shared �les and

the private �les will be stored separately to reduce the statistical interference among

them.

Requests in the generic workload path are organized into a framework of �le open ses-

sions according to the global sequence IDs and the speci�c request information. Requests

fall either inside or outside �le open sessions according to the request dependencies.

For workload pro�ling, we made a list of open session oriented characteristics as

well as their de�nitions in Table 2.4, which will be represented as empirical Probability

Distribution Functions or Probability Functions. We use these empirical distributions

for synthesizing although some dimensions such as slack time can be even �tted into

existing models like Pareto distribution. Many characteristics are measured by the

global sequence IDs in the generic workload path and therefore they can model the

correlations between the root process and the child processes inherently. For example in

Figure 2.3, there are 3 requests issued to �le A during its �rst open session. The second

request to �le A (with global sequence ID 4) will not be issued until two requests (with

global sequence IDs 2 and 3) are made to other �les. This kind of I/O behaviors can be

well represented by Inter Request Gap (IRG).

Similarly, Inter Session Gap (ISG) can control how many I/O requests should be

issued to other �les between two successive �le open sessions of a particular �le. Duration

(D) describes the number of I/O requests that are issued to a particular �le during one

open session. File Open Times (OT) means the frequency of opening a target �le. We

also use �le sequentiality (SEQ) and Access Mode (AM) to control the speci�c I/O

pattern of a particular �le open session. SEQ describes the I/O randomness and AM

controls the types of �le data operations. Some other standard characteristics such as

request size (SIZE) and request o�set (OFF) are also used. We use two characteristics

26

to count the I/O request type frequency with RT1 for the frequency of di�erent I/O

requests inside �le open sessions and RT2 for those outside �le open sessions. This

allows us to more precisely synthesize the generic workload path.

Furthermore, the characteristics can describe the I/O patterns more precisely when

used together. For example, characteristics IRG together with D can not only describe

how the requests to di�erent �les are mixed with each other, but also control the arrival

rate of requests to a particular �le. For instance, in Figure 2.3, �le A and �le B have

the same open duration (i.e., 3 requests) but the requests come to A in a more compact

manner and go to B at a slower pace. OT and ISG together can not only control the

opening frequency of a �le, but also manage when to open this �le.

2.6.4 Synthetic Generic Workload Path Generation Phase

The synthetic generic workload path can be constructed in a hierarchical manner with

all the input characteristics. The input characteristics can also be modi�ed or tuned to

generate desired workload patterns.

In general, we �rst create the framework of �le open sessions. I/O requests residing

in these open sessions will be assigned a global sequence ID, and then we sample based

on I/O characteristics previously discussed and determine the speci�c I/O request types

and their associated arguments according to the input characteristics. Finally, we handle

the I/O requests outside the �le open sessions, which are generally metadata operations

belonging to column 1 in Figure 2.2.

In practice, we use Algorithm 1 to create the basic framework of �le open sessions.

It is important to sample the dimensions in the right order so that the I/O enforcement

rules and the framework of �le open sessions are re�ected in the synthesized generic

workload path. We �rst set the number of �les in each �le type which can be the same

as that of original workload (OS) or speci�ed/modi�ed by user. Then for each �le, we

need to determine how many times it will be opened in the synthetic generic workload

path according to OT distribution. For each open session, we then decide their properties

including duration (D), sequentiality (SEQ), and access mode (AM) using corresponding

distributions. The global sequence ID of �le open request can be calculated by adding an

ISG to the global sequence ID of previous �le close request to the same �le. Specially, the

open request of the �rst open session of each �le assumes its previous �le close request

27

Table 2.4: I/O Characteristics

Terms Explanation
Inter �le session gap (ISG) The distance between the close of previous open session and

the open of next open session of the same �le, which is mea-
sured by the global sequence ID di�erence.

Inter request gap (IRG) The distance between the previous request and the next re-
quest in the same �le open session. It is also measured by
the global sequence ID di�erence.

File open duration (D) The duration of a �le open session, which is measured by the
number of requests belonging to this open session.

File open times (OT) The number of open sessions of a �le throughout the work-
load.

File sizes (FS) The �le size, which is set to the maximum sum of request
o�set and request size in the workload.

I/O request type (RT1) The frequency of di�erent I/O requests inside �le open ses-
sions

I/O request type (RT2) The frequency of di�erent I/O requests outside �le open ses-
sions

O�set (OFF) The I/O access o�set inside �les
Request size (SIZE) Simply the request size
File sequentiality (SEQ) The sequentiality of a �le open session, measured by the ratio

of sequential �le I/O requests.
File access mode (AM) The access mode of a �le open session. The same �le can

be opened multiple times, each of which can have a di�erent
mode. For example, a new �le can be created with write
only mode and reopened later with read only mode. Access
mode is important to synthetic workload generation because
it constrains the request types that are allowed on the target
�le.

Ownership (OS) The ownership of a �le, which can be either root exclusive
�le, private �le or shared �le. We count number of �les in
each of the three �le type.

Slack time (ST) Slack time, de�ned as the time between the completion of
the previous request and the start of the next request. It can
follow di�erent distributions such as the Pareto distribution.

28

Private Shared Root

A B C D E

G
lo

b
a

l

se
q

u
e

n
ce

ID

1

2

3

6

7

8

12

13

14

1
 2

 3
 6

 7
 8

 1
2

 1
3

 1
4

 1
5 15

8

15

A and B are private files

C and D are shared files

E is a root exclusive file

Figure 2.5: Example of Creating Framework of Open Sessions

has global sequence ID 0. Inside each �le open session, we already know the number of

requests (including �le close request) residing there and their global sequence IDs can

be easily calculated by adding an IRG to that of a previous request. Meanwhile, the

operation type can be decided by access mode (AM) of the �le open session and request

type (RT1) distribution together. The associated o�set (i.e., <o�set>) can be decide

by the OFF distribution and the sequentiality of the corresponding �le open session

together. The associated request size (i.e., <request size>) can be drawn from SIZE

distribution. <extra> dimension will be ful�lled with corresponding values or default

values when applicable. <slack time> can also be sampled based on a user speci�ed

distribution or the distribution in the original workload.

After we complete the framework of �le open sessions, we merge the requests to di�er-

ent �les into a single request stream according to their global sequence IDs. Throughout

the whole process, we make sure every global sequence ID is unique. This single request

stream might end up with �holes�, which indicate the missing global sequence IDs. For

example in Figure 2.5, the merged request stream is [1, 2, 3, 6, 7, 8, 12, 13, 14, 15, ...]

29

for each �le class do
determine number of �les (OS);
for each �le do

determine number of open sessions (OT);
for each open session do

determine open session properties (D, SEQ, AM);
compute �le open request sequence ID (ISG);
for each operation do

compute its request sequence ID (IRG);
determine its operation type (RT1,AM);
determine its argument list (OFF, SEQ, SIZE);

end
compute �le close request sequence ID;

end

end

end
Algorithm 1: Creating the framework of �le open sessions

with [4, 5], [9, 10, 11] missing. Requests in these holes are designated to be from col-

umn 1 in Figure 2.2 and they are metadata operations. This also shows how PIONEER

mingles the column 1 operations with other operations.

Now we need to sample the metadata operations that are outside the �le open ses-

sions. The operation type can be sampled according to RT2. If this metadata operation

requires a �lename, we �rst sample a �le type according to the sizes of RT2 of the three

�le types. We then randomly choose a �le in the selected �le type. Default values can

be used for the rest of the arguments. We can make this decision because these are

metadata operations that do not require �le descriptors and simply retrieve �le related

information.

The synthetic generic workload path is created at this point and ready to be executed

with the workload generation engine.

2.6.5 Parallel I/O Generation Phase

We develop and implement our own workload generation engine to actually schedule and

issue the requests in a real parallel I/O environment. The workload generation engine

is essentially an MPI program written in C. It takes a synthetic generic workload path

30

and the desired number of processes as input and generates corresponding parallel I/O

workloads. The principle of our execution engine is to convert the generic workload

path into an MPI program whose computing job is emulated by the slack time between

successive I/O requests and whose I/O job is represented by I/O requests in the synthetic

generic workload path.

The child processes spawned by the execution engine customize the generic workload

path based on their MPI process ranks and then issue I/O requests according to the

patterns in the synthetic generic workload path. Since �le descriptors will be reused in

execution, we use actual �le names as argument for those I/O requests requiring a �le

descriptor when generating the synthetic generic workload path in the previous phase.

As a result, the workload generation engine can keep track of the �le descriptor usage at

runtime and translate the �le names into the right �le descriptors or handlers for both

MPI-IO and POSIX-IO operations.

2.7 Evaluation

The goal of our evaluations is to demonstrate the e�ectiveness of our solution by com-

paring original workloads and synthetic workloads using popular HPC benchmarks and

applications, in a representative HPC environment.

2.7.1 Target Applications and Traces

In our experiments, we use two popularly used HPC benchmarks: MPI-IO Test and

IOR2, both of which are I/O-intensive. We also use a real HPC application called

iPic3D [43]. MPI-IO Test is developed by LANL and is written with parallel I/O and

scale in mind. As a result, it is popularly used to test parallel I/O performance at the

scale of big clusters. By default, MPI-IO Test will write a speci�c pattern to a �le,

close the �le, open the �le for read, read the data, check for data integrity and close

the �le. Access patterns can be tuned with several parameters. On the other hand,

IOR2 is part of the ASCI Purple Benchmarks developed at LLNL for evaluating parallel

I/O performance [44]. iPic3D, a three-dimensional parallel code, is a high performance

simulator of space weather. It uses HDF5 to store and access data.

We run the three applications using 1024 processes on Itasca [45], a cluster system

31

(a) IOR2

(b) MPI-IO Test

(c) iPic3D

Figure 2.6: I/O Throughput Evaluation

32

(a) IOR2

(b) MPI-IO Test

(c) iPic3D

Figure 2.7: File Data Operation Ratio Evaluation

33

(a) IOR2

(b) MPI-IO Test

(c) iPic3D

Figure 2.8: Arrival Rate Evaluation

34

at Minnesota Supercomputing Institute. We capture their traces with LANL-Trace

framework tool. LANL-Trace is also used when we synthesize corresponding parallel I/O

workloads with our workload generation engine using the same numbers of processes.

Itasca consists of more than 8000 compute cores and 24 TB of main memory. It also

has a large Lustre �le system storage (/lustre) of size more than 500 TB, which serves

as a large shared scratch space. In all of our experiments, principal data �les used by

both benchmarks reside on the Lustre �le system.

2.7.2 Comparison Metrics

For meaningful comparisons and evaluations, we use I/O throughput and �le data op-

eration ratio, which are orthogonal to input parameters but implicitly controlled by our

solution. We also use the request arrival rate to show the burstiness in the workload are

also emulated.

I/O Throughput

I/O throughput shows how fast data can be read or written which inherently indicates

the impact of slack time and request response time. We present in Figure 2.6 the

comparison between the original workloads and the synthetic workloads in terms of I/O

throughput in MB/ms. The general patterns show that synthetic workloads match the

original workloads well.

File Data Operation Ratio

Metadata operation overhead can have signi�cant impact on I/O performance due to

possible bottleneck at the metadata servers [42] so we choose �le data operation ratio

(1 - metadata operation ratio) as an evaluation metric. We present a comparison of

�le data operation ratio along time in Figure 2.7, after executing the generic workload

paths. Each plot includes two parts, the �le data operation ratio (red and blue lines,

measured by left Y axis) and the absolute number of �le data operations (green lines,

measured by right Y axis). We can observe that the green lines generally follow the

I/O throughput curves, meaning that I/O throughput is dominated by the number of

read/write requests and the read/write request sizes have small variations, which is true

35

Table 2.5: K-S Test Results

Application IO Throughput File Operation Ratio Arrival Rate
IOR2 0.08 0.097 0.084
MPI-IO Test 0.062 0.07 0.069
iPic3D 0.118 0.152 0.416

after inspecting the traces. As a result, we believe the synthetic workload emulate the

originals very well.

Arrival Rate

Figure 2.8 shows the arrival rate comparisons. X axis is the number of operations per

time unit. A larger X value means I/O is more bursty in that time period. Y axis is

the corresponding cumulative distribution function. MPI-IO Test has a more stable I/O

patterns than IOR2 and iPic3D, as seen in I/O throughput and �le data operation ratio

plottings. As a result, its arrival rate is relatively easier to preserve in the synthetic

workload. For IOR2 and iPic3D, the original workload and synthetic workload are close

to each other especially when the numbers of operations per time unit are large, meaning

that the burstiness is well modeled.

Plotting Measurement

We apply Kolmogorovâ��Smirnov test [46] to measure the similarity and closeness be-

tween the original and synthetic workload plottings. In statistics, the Kolmogorovâ��S-

mirnov test (Kâ��S test or KS test) is a nonparametric test. It can be used to compare

a sample with a reference probability distribution (one-sample Kâ��S test), or to com-

pare two samples (two-sample Kâ��S test). In particular, the two-sample Kâ��S test is

one of the most useful and general nonparametric methods for comparing the similarity

and closeness of empirical cumulative distribution functions of the two samples. It can

also be modi�ed to serve as a goodness of �t test. The smaller the K-S value, the more

similar the two distributions. The K-S test results for the three measure metrics and

three applications are shown in Table 2.5. The table demonstrates a good con�dence of

the synthetic workloads with all K-S values being smaller than 0.5.

36

2.8 Conclusions

In this chapter, we propose a complete solution to parallel I/O workload character-

ization and synthesizing. Unlike existing work, we deal with several uniqueness and

challenges with parallel I/O workloads, including inter-process correlations, I/O library

complexities and dependencies, as well as speci�c �le access patterns.

In our solution, we �rst shrink original parallel I/O workloads into a generic workload

path by exploiting and utilizing the inter-process correlations. Then we characterize and

model the resulting generic workload path, where we set enforcement rules to preserve

I/O request dependencies and we model �le access patterns by pro�ling �le open sessions.

We use the extracted characteristics to construct a synthetic generic workload path.

Our complete solution also includes a workload generation engine that can expand the

synthetic generic workload path into a complete parallel I/O workload for a desired

number of processes. Our solution is demonstrated to be e�ective via experimenting

with two popular HPC benchmarks and a real HPC application.

Chapter 3

Parallel I/O Optimizations

As mentioned in the previous chapter, I/O performance becomes increasingly challeng-

ing in HPC systems. I/O requests issued by the applications have to traverse through

several software layers to access the data in the storage system. Failing to respect the

correlations between many factors along this parallel I/O stack, including �le access pat-

tern, parallel I/O modes and �le allocations, will lead to undermined I/O performance.

Existing solutions consider only a subset of these factors or lack of e�ciency in some

aspect such as determining optimal I/O parameters.

Based on the knowledge we acquire from characterizing parallel I/O workloads and

the investigation of many I/O factors in this chapter, we introduce IO-Engine, an in-

telligent I/O middleware module built into the MPI-IO library, to optimize the parallel

I/O performance. IO-Engine can automatically and transparently optimize parallel I/O

performance in Lustre environment based on the workload characteristics. Key IO-

Engine features include I/O mode transformation, optimizing collective-I/O as well as

determining proper striping policies for new �les. Our experiments with three popu-

lar HPC benchmarks demonstrate that IO-Engine can constantly outperform an unen-

hanced MPI-IO library.

3.1 Introduction

The recent advances in High Performance Computing (HPC) realm have created more

challenges on scalable and sustainable parallel I/O performance. A typical HPC system

37

38

…

APP 1

APP 2

Applications

Compute
nodes

storage
infrastructure

IO Servers

MDS

Figure 3.1: HPC Environment Abstraction

consists of several hardware components including computing nodes, Metadata Server

(MDS), I/O servers, and background storage infrastructure, as shown in Figure 3.1.

The Lustre environment in this work also follows this architecture. Applications are

running on the computing nodes with hundreds or thousands of processes, which are

using Message Passing Interface (MPI), the de-facto standard of distributed computing,

for inter-process communications. The storage of a typical HPC system is managed by

a scalable parallel �le system such as Lustre [47], PVFS [48] and GPFS [49]. One or

more metadata servers are used to maintain a uni�ed �le system namespace and �le

metadata. Actual �le data is striped over multiple I/O servers to support concurrent

accesses to the same �le and improve aggregate I/O throughput.

HPC applications typically use the MPI-IO library or higher level I/O libraries such

as HDF5 [50] and Parallel netCDF [51] to access their data in the parallel �le system,

although POSIX-I/O is still supported. These parallel I/O requests have to traverse

through a deep I/O stack to access the physical storage devices as shown in Figure 3.2.

There are many factors along the I/O path that can a�ect parallel I/O performance.

These include I/O access patterns, parallel I/O access modes, parameter settings in the

MPI-IO layer and parallel �le systems, �le allocations as well as I/O server performance

impacts. If the correlations among these factors are not fully exploited, parallel I/O

performance will be constrained.

Some existing studies made attempts to improve parallel I/O performance by per-

forming a designated I/O behavior [40, 52, 53, 54, 55] or tuning I/O related parameters

39

[56, 57, 58, 59]. However, they either focus on a particular aspect of parallel I/O and a

small set of parameters, limit to speci�c platforms or represent only preliminary results.

We will distinguish our work more in Section 3.3. In this chapter, we investigate the im-

pacts of those aforementioned factors in an in-depth manner and propose IO-Engine, an

intelligent module built into the MPI-IO library that coordinates multiple I/O layers to

optimize parallel I/O performance in Lustre environment. Given a workload, IO-Engine

can automatically transform it I/O requests, tune speci�c system parameters and make

proper �le allocations based on the workload characteristics. Our experiments with

several popular benchmarks demonstrate that IO-Engine can constantly outperform an

unenhanced MPI-IO library.

Our contributions of this chapter can be summarized below. 1) we design a model for

exploring and understanding the relationships between request size, stripe size, region

size and access pattern; 2) correlations between application layers, MPI-IO layer and

parallel �le system, as well as the parameter impacts are explored and integrated as part

of the heuristic logics; 3) we instrument MPI-IO library to help explore the root causes

for low performance and bottlenecks;4) implementation of the non-intrusive IO-Engine.

The rest of this chapter is organized as follows. We introduce the parallel I/O

background in Section 3.2 and related work in Section 3.3. Motivations and problem

de�nition are presented in Section 3.4, followed by our proposed solution in Section 3.5.

We then discuss the experiment results in Section 3.6. We also describe some extended

work based on this study in Section 3.7. Finally we draw some conclusions in Section

3.8

3.2 Background

In this section, we introduce several important parallel I/O related concepts that will

be used in our problem de�nition and IO-Engine's optimization heuristics.

3.2.1 File Types and MPI-IO

There are generally two types of �les used by parallel applications: private �les and

shared �les. Private �les are accessed on a one-�le-per-process basis without inter-

process contentions. Although it is simple and e�ective for a small number of processes,

40

Parallel File System

Storage Infrastructure

IO Middleware

High Level IO Library

Application

Parallel File System

Storage Infrastructure

IO Middleware (MPI-IO)

High Level IO Library
(HDF5, PnetCDF)

Application

Figure 3.2: Parallel I/O Stack

it is limited in terms of scalability and portability when the number of processes is large.

Shared �les, on the other hand, are shared among all the participating processes and

hence may have inter-process contentions or performance issues when the processes are

not coordinated well. MPI de�nes a subset of programming interfaces to help address

concurrent accesses to shared �les, which are commonly referred to as MPI-IO. One

popular implementation of the MPI-IO standard is ROMIO [60], which is incorporated

in many MPI implementations including MPICH [61], Open-MPI [62], HP MPI, SGI

MPI, IBM MPI and NEC MPI.

Application processes can use MPI-IO library or higher level I/O libraries built on

top of MPI-IO (such as HDF5 and parallel netCDF) to access the shared �les. The

MPI-IO layer is an important software layer in the parallel I/O stack because it has the

capability to coordinate participating processes and optimize their I/O requests in favor

of parallel �le system performance.

3.2.2 Access Patterns

File access patterns can be classi�ed into strided and non-strided patterns. It is also

common that reading/writing a shared �le requires multiple I/O cycles to complete. In

41

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

p1 p2 p3 p4

p1 p2 p3 p4

File head File tail

File head File tail

1st cycle 2nd cycle 3rd cycle 4th cycle

(a) Strided Pattern

(b) Non-Strided Pattern

Figure 3.3: File Access Patterns

each cycle, only a portion of the �le data is transferred. Figure 3.3 illustrates the two

patterns using 4 processes. Assuming the �le consists of 16 stripes and the request size

is one stripe, it takes 4 I/O cycles for the processes to complete the whole �le access in

both patterns. In Figure 3.3(a), the 4 processes access stripes 1, 2, 3 and 4 respectively

during cycle 1 and access stripes 5, 6, 7 and 8 during cycle 2, and so forth. This pattern

is called strided because data belonging to the same process is separated by data of other

processes. In Figure 3.3(b), however, the 4 processes access stripes 1, 5, 9 and 13 during

cycle 1 and access stripes 2, 6, 10 and 14 during cycle 2, and so forth. Therefore, data

belonging to the same process is contiguous or non-strided.

3.2.3 Parallel I/O Modes

The MPI-IO operations or APIs can generally be categorized into independent I/O1

(e.g., MPI_File_write()) and collective I/O (e.g., MPI_File_write_all()). When

performing independent I/O, participating processes access data independently and do

not synchronize with each other when I/Os complete. In other words, the faster processes

1 Independent I/O is also named as non-collective I/O in some literature.

42

do not need to wait for the slower processes and they can proceed to the next application

instruction as soon as �nishing their own I/O tasks. But accordingly, independent I/O

operations lose I/O aggregation opportunities.

On the other hand, collective I/O operations utilize inter-process communications

and synchronizations to provide collaboration between the participating processes and

reorganize their I/O requests in the hope of achieving better aggregate performance.

Importantly, two-phase I/O [40] is a collective I/O optimization technique in ROMIO

which uses a subset of participating processes (named aggregators) to perform actual

I/O communications with the underlying parallel �le system on behalf of the rest of the

processes. As a result, collective I/O can be further divided into collective I/O with ag-

gregators and collective I/O without aggregators. Collective I/O without aggregators is

essentially independent I/O with synchronizations and thus is between actual indepen-

dent I/O and collective with aggregators. Therefore we do not discuss it in this chapter.

Collective I/O means collective I/O with aggregators thereafter in this chapter.

Two-phase I/O or collective I/O contains a shu�e phase and an I/O phase. It will

�rst gather request information from all processes and calculate the aggregate request

range. This aggregate request range will be properly partitioned into several so called

��le domains� which will be assigned to the aggregators. This partitioning and assigning

process is called ��le domain partitioning�.

Once this is done, shu�e phase and I/O phase will start. The sequence of the two

phases depends on the request type. Shu�e phase takes place �rst for writes and I/O

phase takes place �rst for reads. During a shu�e phase, data will be exchanged between

aggregators and other processes according to the assigned �le domains. During an I/O

phase, aggregators will issue actual I/O requests to the parallel �le system.

There are two parameters in the MPI-IO library used to control the two-phase I/O

activation: romio_cb_read and romio_cb_write. Both parameters default to value

automatic, which means two-phase I/O will only be activated when some requirements

are satis�ed. For example, the aggregate request range should be contiguous. Note that

two-phase I/O can also be enforced by setting the two values to enable or disabled by

setting the values to disable [63].

43

3.2.4 File Allocations

Files in a parallel �le system are striped over multiple I/O servers (or OSTs in Lustre

terminology) to achieve better aggregate I/O throughput. There are two striping policies

in Lustre �le system. The default is Round-Robin allocation. Once the �le stripe count

(SC) and stripe size (SS) are set, a �le will be striped across SC consecutive OSTs starting

at a particular OST which is chosen according the OST space capacity usage. By default,

an OST with lower usage is often chosen as the start OST so that all OSTs are guaranteed

to have similar space usage. However, users are allowed to set customized striping policy

for their working directories and �les (including starting OST, stripe count and stripe

size), which will make OSTs space capacities unevenly utilized. When the space usage

di�erence is bigger than a threshold (20% by default), the second striping policy will be

used which is called Weighted Random Allocation. The weighted allocation scheme will

give higher priorities to OSTs with lower space utilizations to gradually even the space

utilizations on all OSTs.

Parameters striping_factor, striping_unit and romio_lustre_start_iodevice can be

set to desired values through MPI hints to control the striping count, stripe size and

start OST respectively. Note that newly created �les will inherit the striping scheme of

the parent directory if these parameters are left unset.

3.3 Related Work

Process collaborations have long been considered as an e�ective method of improving

I/O performance. Seamons et al. introduced the server-directed I/O scheme [64] where

the I/O nodes collect requests from computing nodes to explore the I/O sequentiality

in favor of disk performance. The most widely used optimization for MPI collective I/O

is the two-phase I/O [40] algorithm. Two-phase I/O makes performance improvements

by selecting a subset of the application processes to collect requests from individual

processes and organize them into bigger contiguous requests. Two-phase I/O has been

the foundation for many other approaches including ParColl [52], LACI/O [53] and

view-based collective I/O [54], etc. Liao and Choudhary proposed several �le domain

partitioning algorithms [55] to improve two-phase I/O performance by reducing locking

overhead in the underlying �le system.

44

There are many parameters along the parallel I/O path (mostly in MPI-IO layer and

parallel �le systems) that will lead to undermined I/O performance when left to their

default values. There are some work focusing on improving I/O performance by tuning

these parameters include [56, 57, 58, 59].

For example, Chaarawi and Gabriel introduced a model [57] to choose the opti-

mal number of aggregators at runtime based on factors including the �le view, process

topology, the per-process write saturation point, and the actual amount of data written

in a collective write operation. However, their model does not take into account the

importance of physical �le layout.

Worringen implemented an approach in NEC's MPI implementation [59] to auto-

matically determine the optimal setting for �le hints related to collective MPI-IO op-

erations. Their approach considers �ve parameters (cb_pros, cb_con�g_list, cb_read

and cb_write and cb_bu�er_size) and is speci�c to NEC's MPI-2 implementation (i.e.,

NEC/SX) and NEC's GFS �le system. Their approach is in�exible in determining the

parameters' optimal values. For example, their approach replies on phase change detec-

tion to adapt the bu�er size.

Liu et al. evaluated several collective I/O and non-collective I/O related MPI param-

eters including romio_ds_read, romio_ds_write, and envisioned an automatic MPI-IO

tuning tool based on Periscope Tuning Framework [57]. The shorting coming of this

work is that they used a simpli�ed strategy which explores next tuning parameter based

on the best setting for previously explored parameters. This reduces the testing time but

does not visit all the parameter permutations, which will result in failure of recovering

correlations among I/O factors. Furthermore, this work only presented some parameter

space exploration results without theoretical analysis.

McLay et al. developed a model [56] for understanding MPI collective write on

Lustre and o�ered suggestions on selecting striping count to avoid �chasm� problem for

Lustre �le system. However, they did not study MPI collective read and non-collective

MPI-IO workloads.

Behzad et al. proposed an empirical parameter training based approach [65, 66] to

automatic parameter tuning for HDF5 applications. This approach searches for best

parameter values by repeatedly running the application with di�erent parameter value

combinations which is termed as �parameter space search� before the actual running. The

45

set of best parameter values are stored as an XML �le and will be loaded at runtime by

the application. The downside of this approach is that some trainings can take up to 12

hours without a prediction model or 2 hours when using a prediction model proposed in

[66]. This approach is also speci�c to HDF5 applications.

In contrast, the set of parameters crafted in our work is more complete than existing

studies which including both MPI-IO and Lustre �le system parameter. Besides, we

provide more e�cient ways for calculating the optimal parameter values based on a par-

allel I/O model that leads to a thorough understanding the relationships between these

parameters and the workload patterns. We also implemented our approach, i.e., IO-

Engine, in the MPI-IO library by extending the existing APIs to make it non-intrusive.

IO-Engine can be used by any applications using MPI-IO library and/or higher level

libraries built on top of MPI-IO library without modifying source code.

3.4 Motivation and Problem De�nition

Our work is motivated by the fact that the current parallel I/O stack does not fully

utilize the workload characteristics and exploit the correlations among the parallel I/O

related factors described in the previous section. In order to maximize the parallel I/O

performance, several conditions must be satis�ed. First, I/O access modes must match

the I/O access patterns. Second, logical I/O access from the application must match the

physical data layout in the parallel �le system or data striping across I/O severs. Third,

I/O related parameters in both MPI-IO layer and parallel �le system must be properly

tuned. Fourth, �le striping must be done according to the I/O characteristics. Last but

not the least, large performance variations among the I/O servers must be taken into

account for fast new �le allocations. Failing to respect the above factors will lead to

undermined parallel I/O performance. We formally de�ne our problem as follows.

Goal: Given a HPC application or a parallel I/O workload in Lustre environment,

design a non-intrusive tool that automatically optimizes I/O performance based on run-

time workload characteristics. Performance improvement is de�ned as increased I/O

throughput or reduced I/O latency.

General Inputs:

• Process topology: the total number of processes executed by the HPC application

46

New
file?

Read
type?

Strided
?

① Choose file
striping policy

③ Convert to
Independent IO
from collective

⑤ Convert to
Independent write

from collective

⑦ Convert to
collective write

from independent

⑧ Set co_ratio=1
Compute optimal collective buffer

④ Compute co_ratio

② Get file
striping policy

⑥ Set co_ratio=1

Yes

No

Yes

No

No

Yes

Issue
Request

Chasm?

Yes

No

Figure 3.4: IO-Engine Heuristic Logic

(#processes), the number of computing nodes used (#nodes), and the number of

CPU cores used on each computing node (#cores).

• I/O workload information: a sequence of I/O requests, each of which can be rep-

resented as a tuple (request type, request size, and request o�set). Request type

is de�ned by the MPI-IO APIs. Some APIs do not require explicit o�set as an

argument.

• Existing �le striping information: striping count, stripe size for existing �les. File

striping information can be retrieved from underlying parallel �le system through

ADIO layer [67] which is a software layer inside ROMIO to support di�erent under-

lying �le systems. For example, we can use ADIOI_LUSTRE_get_striping_info()

for this purpose in the Lustre �le system.

Outputs: A set of automatic optimizations that lead to increased I/O throughput

or reduced I/O latency.

3.5 Proposed Solution: IO-Engine

In this section, we describe the overview, design details and the implementation of IO-

Engine.

47

3.5.1 Overview

Through an in-depth analysis of the current parallel I/O stack and extensive experiments,

we organized several guidelines into a heuristic map as shown in Figure 3.4. IO-Engine

follows this heuristic map to automatically optimize a given workload.

When the application opens a �le, IO-Engine �rst determines whether this target �le

is a new �le to be created or an existing �le by checking the MPI_MODE_CREATE �ag in the

MPI_File_open() API. If this is a new �le, IO-Engine will decide a striping policy (Step

1). If the accessed �le is an existing �le, IO-Engine will retrieve the striping information

from the underlying parallel �le system which will be stored in ADIO �le handler of this

�le (Step 2). The striping information will be used later.

When the application issues an actual parallel I/O operation to access the �le data,

IO-Engine �rst checks the operation type. If it is a read operation, IO-Engine will

decide to use independent I/O mode and thus will convert a collective read into an

independent read2 (Step 3). Meanwhile, IO-Engine sets the parameter co_ratio =

min{#processes/#OSTs, 4} (Step 4). co_ratio controls Lustre parallelism which will

be discussed in Section 3.5.2. On the other hand, if the operation type is write, IO-

Engine will continue to check the access pattern by examining the request data ranges.

If the access pattern is non-strided, IO-Engine will convert the collective write into an

independent write (Step 5) and set co_ratio = 1 (Step 6). If the access pattern is

strided, IO-Engine will decide to use collective I/O and convert an independent write

into a collective write3 (Step 7) and meanwhile set co_ratio = 1 (Step 8). IO-Engine

will also �ne tune the collective I/O by calculating an optimal collective bu�er size and

tuning the bu�er size accordingly. When all the I/O tasks are done with the �le, this

�le can be closed in the traditional way.

3.5.2 Heuristics Details and Justi�cations

In this subsection, we describe the details of each heuristic step. The justi�cation for

each step includes a theoretical analysis and test experiment results.

For test experiments, we run three popularly used benchmarks, IOR2 [18], MPI-IO

2 If it is already an independent I/O operation, do nothing.
3 If it is already collective write, do nothing.

48

0

2000

4000

6000

8000

10000

12000

4k 8k 16k 32k 64k 128k 256k 512k 1m 2m 4m 8m

Th
ro

u
gh

p
u

t
in

 M
B

/s

Request Sizes

(a) Non-strided Pattern

IOR2

0

2000

4000

6000

8000

10000

12000

4k 8k 16k 32k 64k 128k256k512k 1m 2m 4m 8m

Request Sizes

(b) Strided Pattern

col-w

col-r

ind-w

ind-r

Figure 3.5: I/O Mode Comparisons

Test [24] and mpi-tile-io [68] on Itasca [45], a cluster system at Minnesota Supercomput-

ing Institute [39]. We show the plottings for IOR2 only due to a large volume of plottings

from experiments. IOR2 is part of the ASCI Purple Benchmarks developed at LLNL for

evaluating parallel I/O performance. Itasca consists of more than 8000 compute cores

and 24 TB of main memory. A large Lustre �le system storage (1 MDT and 60 OSTs)

of capacity over 500 TB is installed to serve as a large shared scratch space. In all of

our test experiments, we run the benchmarks with 128 processes. When not separately

stated, �les accessed by the benchmark applications are striped over 8 OSTs and stripe

size is 1 MB.

We now visit the details of the 8 steps in the following subsections.

Tuning File Striping (Steps 1 and 2)

For new �les to be created, HPC application developers can either use the striping policy

inherited from the parent directory or manually customize the striping policy by setting

desired values to striping_factor, stripe_size and start_iodevice.

These parameter may have impacts on independent I/O and collective I/O perfor-

mance. For example, McLay et al. showed that improperly con�gured striping count can

create �chasm� problem [56] and have adverse impacts on collective write performance.

This �chasm� problem will be introduced in Section 3.5.2 and the heuristic logic for step

1 is also described there because the discussion is strongly related to the collective I/O

internals.

49

0

0.05

0.1

0.15

0.2

0.25

0.3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Ti
m

e
in

 S
ec

o
n

d
s

Aggregator Index

(a) A Collective Write IO Cycle

wait

write

Shuffle

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Ti
m

e
in

 M
ili

se
co

n
d

s

Aggregator Index

(b) A Collective Read IO Cycle

wait

Shuffle

read

Figure 3.6: Collective I/O Breakdown

For existing �les, IO-Engine will retrieve striping information from the underlying

parallel �le system which can be stored in the corresponding ADIO �le handler data

structure (step 2). The striping information will be used in later optimizations which

can be retrieved with the ADIOI_LUSTRE_get_striping_info() API in Lustre.

I/O Mode Transformation (Steps 3-5)

As introduced previously, MPI-IO library provides di�erent I/O modes including inde-

pendent I/O (ind), collective I/O with aggregators (col). We identify suitable I/O access

pattern for each of these modes and make corresponding heuristic rules for IO-Engine.

We conduct permutation experiments that covers di�erent combinations of request

50

sizes, parallel I/O modes and �le access patterns using the three aforementioned bench-

marks and show the results for IOR2 in Figure 3.5. We can make several interesting

observations which are detailed as follows.

Observation 1: All reads are faster than corresponding writes, especially obvious

for the independent I/O case. This is mainly because of two following reasons. First,

locking overhead for writes is more expensive than reads. Lustre uses the extent-based

locking mechanism [69]. A write request usually will be granted a lock on an extent

larger than the request in order to reduce the overall lock overhead. If a second write

is accessing an extent that does not con�ict with the �rst write request, then the �rst

request will relinquish the corresponding extent to allow the second write to lock it.

If a write does con�ict with a current read or write request, its lock request will be

enqueued until the previous request completes. However, concurrent read requests are

allowed to have overlapped data section and do not have to go through the lock relinquish

process. Second, read performance greatly bene�ts from read-ahead [69] caching scheme

in Lustre.

Observation 2: Independent read is faster than collective reads for strided pat-

tern. In order to understand the causes, we instrument the MPI Pro�ling Environment

(MPE) [70] and install it to track the �ne-grained time costs inside each I/O mode.

Particularly, we break down the collective I/O execution time into shu�e cost, I/O cost

and synchronization cost. We �nd that shu�e cost is minimal compared to the I/O

and synchronization (or wait) costs as shown in Figure 3.6. Average shu�e cost is only

about 10 milliseconds for both read and write. An important observation here is that

great performance variations exist among the aggregators. Since collective I/O is syn-

chronized, fast aggregators have to wait for slow aggregators in each cycle. When there

are multiple I/O cycles, the total execution time is the sum of time costs of the slowest

aggregators in each cycle.

We suspect that the performance variations between aggregators is mainly caused

by the performance variations among the accessed OSTs. To verify that, we use 32 MPI

processes to write to 32 OSTs in a one-to-one mapping with each process writing an

individual 100 MB �le starting at the same time. The write latency in shown in Figure

3.7. Some OSTs are signi�cantly slower than others. Apparently, aggregators accessing

slow OSTs will fall behind those accessing fast OSTs.

51

And there are at least three reasons for the OST performance variations. First, data is

not evenly distributed because Lustre supports customized striping policy. Statistically,

OSTs with larger utilization or more data will be more frequently accessed assuming

data is evenly accessed. Second, �le hotness or the �le access frequency is di�erent

practically. Files or stripes stored on some OSTs may be more frequently accessed,

resulting in di�erent load on OSTs. Third, locking overhead and degree of inter-process

contentions can be di�erent, even if the same number of processes are accessing the

OSTs. These conclusions can be utilized for future studies such as OST load aware �le

allocation in Lustre.

Observation 3: Independent read is much faster than collective read for non-strided

access pattern. This can be explained easily given Observation 2. Assuming two-phase

I/O is enforced, the aggregation bene�t is less for non-strided pattern than for strided

pattern because the aggregated request range is contiguous under strided pattern and

thus �le domain partitioning algorithms can chunk it based on stripe boundary to re-

duce locking overhead. This is impossible in non-strided pattern. If two-phase I/O is

not used, then collective read without aggregators is essentially independent read with

synchronization overhead. Therefore, independent read is faster than collective read

here.

Observation 4: Independent write is faster than collective writes for non-strided

pattern. The reason is similar to that for Observation 3. Moreover, independent write

is suitable for non-strided pattern because requests are scattered and the processes will

merely contend on the same stripe. Of course, there are occasions where moderate

contentions can occur as discussed later.

Observation 5: Independent write is slower than collective write for strided pattern

when request size is smaller than the stripe size. For write requests larger than a stripe,

there is no big di�erence between the two modes. Strided pattern and small request size

can form a larger aggregate request range which is perfect for �le domain partitioning

algorithm to do stripe boundary aligned chunking. Independent write, on the other

hand, will su�er large locking overhead because multiple processes can contend on the

same stripe.

Observation 6: Independent I/O performance for non-strided pattern is generally

better than I/O performance for strided pattern. To explain this, we de�ne a model to

52

0

0.01

0.02

0.03

0.04

0.05

0.06

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

W
ri

te
 R

es
p

o
n

se
 T

im
e

in
 S

ec
o

n
d

s

OST Index

Figure 3.7: OST Performance Variations

better describe the access patterns. We use three concepts in this model: request size

(RS), region size (RE) and stripe size (SS) as shown in Figure 3.8. The region size is

only used in non-strided pattern and is de�ned as the size of the contiguous �le region

owned by a single process in the non-strided pattern. In the non-strided pattern, region

size is always multiple times larger than a request size.

Based on the relationships among RS and SS, there are three cases for the strided

pattern.

• RS > SS (illustrated as 3© in Figure 3.8(b)): A request will span multiple (at least

two) stripes at the same time, possibly producing contention for some of them if

RS is not a multiple of SS and the requests are not aligned with stripe boundary.

• RS = SS (illustrated as 2© in Figure 3.8(b)): Stripe aligned requests will not gen-

erate any contention. Nevertheless, there will be moderate contentions on stripes

if the request o�set is shifted and not aligned with stripe boundary. Each stripe

will be contended by two processes.

• RS < SS (illustrated as 1© in Figure 3.8(b)): This will generate the most con-

tentions among the three cases. At least two processes (or multiple processes in

the worst case) will contend on every stripe. Collective I/O with aggregators is

most desirable in this case because the aggregate request size for aggregators are

53

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

StripeRegion size

(a) Non-strided

Request sizes

①
②
③

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

(b) Strided

Total request size
In 1 cycle based on ②

Request sizes

Stripe①
③
②

Blue: Process 0
Green: Process 1
Pink: Process 2
Orange: Process 3

Figure 3.8: Access Pattern Modeling

possibly close to or larger than the stripe size, and appropriate �le domain par-

titioning algorithms can make the aggregators' requests aligned with the stripe

boundary. RS < SS thus converts to RS = SS or RS > SS.

Based on the relationships among RS, RE and SS, there are also three cases for the

non-strided pattern.

• SS <= RS < RE (illustrated as 2© and 3© in Figure 3.8(a)): There will be only

moderate contentions on the same stripe. Some data stripes can be contention free

and at most two processes will contend on a single stripe at any time.

• RS < SS < RE or RS < SS < RE (illustrated as 1© in Figure 3.8(a)): This will

produce the best I/O performance because requests in an I/O cycle are scattered

and processes are accessing separate data stripes. There is no contention on any

stripe.

• RS < RE <= SS (not illustrated): This is the worst case in non-strided pattern.

Every stripe will be contended by at least two processes or multiple processes in

the worst case.

54

16

64

256

1024

4096

16384

64k 256k 1m 2m 8m

IO
 T

h
ro

u
gh

p
u

t
in

 M
B

/s

Region Size
(a) RS=32KB, SC=8, SS=1MB

16

64

256

1024

4096

16384

1m 2m 4m 8m 16m

Region Size
(b) RS=256KB, SC=8, SS=2MB

16

32

64

128

256

512

1024

2048

4096

8192

16384

2m 4m 8m 12m 16m

Region Size
(c) RS=1MB, SC=8, SS=4MB

col-w

col-r

ind-w

ind-r

Figure 3.9: Access Pattern Modeling

As supplement to the theoretical analysis, we also study the RE size impact on the

I/O performance with test experiments. The results are shown in Figure 3.9. We �nd

that independent I/O performance generally increases as region size enlarges. This is

because when region size is small, the read-ahead bene�t is mostly consumed in the

current I/O cycle while a larger region size can carry more read-ahead bene�t to the

following I/O cycles for independent read. Independent write also bene�ts from larger

region size because larger region size can separate the independent write requests further

away from each other to avoid contentions on same stripes. However, these impact is

minimal when the request size is large. Particularly, we can observe that request sizes

64KB and 256KB in Figure 3.9(a) belong to the case of RS < RE <= SS and thus

produce the worst independent I/O performance. The same thing happens for 1MB in

Figure 3.9(b) and 2MB in Figure 3.9(c). On the other hand, we can observe collective

I/O performance decreases as region size increases. It is because the further the I/O

requests scatter, the harder for collective I/O to aggregate them.

We summarize all these discussions into two general guidelines in IO-Engine heuris-

tics for properly choosing I/O modes for a given workload.

• If operation type is read, use independent I/O under both access patterns.

• If operation type is write, use independent I/O under non-strided pattern and use

collective I/O under strided pattern.

55

Collective I/O Optimization (Step 8)

Assuming IO-Engine decides to use collective I/O mode, there are many parameters for

further tuning the collective I/O performance. For example, cb_bu�er_size (default to

16MB) and cb_nodes (default to the number of computing nodes) are most important

two-phase I/O related parameters. Leaving these parameters to their default values will

a�ect I/O performance.

cb_nodes controls the maximum number of aggregator processes. This value defaults

to the number of computing nodes (#nodes) used to run this application. Note that

ROMIO has another threshold for the number of aggregators which by default restricts

the number of aggregators per node to 1. The parameter is called cb_con�g_list. These

two conditions together make an upper bound of U = min{cb_nodes,#nodes}. In-

terestingly, ROMIO Lustre driver will set the actual number of aggregators to be the

largest integer less than or equal to U that is a multiple or divisor of the striping count

(SC). In other words, we can �nd this number by searching backward from U to 1 for

the �rst integer that is either a multiple of SC or a factor of SC.

Although not often, this implementation sometimes will create a �chasm� phenomenon

[56] if striping count and the upper bound U do not cooperate well. Assuming U is 12

and striping count is 13, then ROMIO Lustre driver will set the actual number of ag-

gregators to 1, which signi�cantly degrades the I/O performance because 1 aggregator

cannot fully use the I/O bandwidth of 13 OSTs and the shu�e cost (data exchange

between 1 aggregator and a large number of other processes) will be uselessly large.

Chasm problem will not happen if U ≥ SC or SC is multiple of U .

The solution to this problem proposed in [56] was to carefully choose SC when

creating a new �le. It is suggested that prime numbers and numbers that are small

multiples of prime numbers should not be used. We borrow this solution and implement

it in step 1 in the heuristic map. When IO-Engine detects the manually con�gured

or inherited striping count for a new �le is a prime number or a number that is small

multiples of a prime number, IO-Engine will automatically change the value to the

nearest number that is powers of 2. This approach, however, cannot solve the �chasm�

e�ect for the existing �les. Our supplemental solution to this problem in IO-Engine is

to transform the collective I/O to independent I/O once detecting the condition for a

chasm when accessing existing �les.

56

cb_bu�er_size controls the collective bu�er size for each aggregator. If this value is

smaller than the aggregate request size handled by a single aggregator, each aggregator

has to perform multiple pairs of shu�e phase and I/O phase to complete an I/O cycle,

which is ine�cient and time consuming. Moreover, it creates more RPC packets in the

Lustre network which may also increase I/O latency. For example, Figure 3.10 shows

the results for bu�er size impacts. IOR2 runs 128 processes in both cases but �xing

the number of aggregators to 4 in Figure 3.10(a) and 8 in Figure 3.10(b) respectively.

The request size is 1MB. Striping count is 8 and stripe size is 1 MB. Access pattern

is strided. The results show that when the collective bu�er size is set to the aggregate

request size for each aggregator, the performance is maximized for both read and write.

So the optimal collective bu�er size is 32 MB (= 1 MB * 32) for Figure 3.10(a) and

16 MB = (1MB * 16) in Figure 3.10(b). Setting bu�er size smaller than the aggregate

request size leads to suboptimal performance.

However, setting this value bigger than necessary is also harmful because of the

memory limit on computing nodes and a higher probability of causing paging out. As a

result, we apply an upper bound for the collective bu�er size which is set to 64 MB in

IO-Engine. At runtime, IO-Engine calculates the minimum aggregate request size based

on the actual number of aggregators that will be set in the ROMIO Lustre driver and

set the collective bu�er size accordingly.

Lustre Parallelism Control (Steps 6-8)

Additionally, romio_lustre_co_ratio (default to 1) is the parameter used to control the

maximum number of I/O clients for each OST [63]. When this ratio is set to 1 and

multiple processes are going to access the same OST, they must be serialized. In this

case only one process accesses the object, removing lock contentions from the whole

object. On the downside, parallelism is reduced.

Our experiment results in Figure 3.11 show that read performance (both independent

read and collective read) does increase with romio_lustre_co_ratio initially and becomes

less impacted after a certain value (4 in our tests). This is mainly due to read taking

advantages of the parallelism and merely su�ering from current read lock overhead.

However, we do not see a big improvement of I/O performance for writes mainly

because write requests have to go through the lock relinquish and sometimes need to be

57

0

1000

2000

3000

4000

5000

6000

4m 8m 16m 32m 64m

Th
ro

u
gh

p
u

t
in

 M
B

/s

Collective Buffer Size
(a) 4 Aggregators

write

read

0

1000

2000

3000

4000

5000

6000

4m 8m 16m 32m 64m

Th
ro

u
gh

p
u

t
in

 M
B

/s

Collective Buffer Size
(b) 8 Aggregators

write

read

Figure 3.10: Collective Bu�er Size Impacts

58

0

1000

2000

3000

4000

5000

6000

1 2 4 8 16

Th
ro

u
gh

p
u

t
in

 M
B

/s

co_ratio
(a) Strided Pattern

ind-w

ind-r

col-w

col-r

0

1000

2000

3000

4000

5000

6000

1 2 4 8 16

Th
ro

u
gh

p
u

t
in

 M
B

/s

co_ratio
(b) Non-strided Pattern

ind-w

ind-r

col-w

col-r

Figure 3.11: co_ratio Impacts

59

serialized if they contend on the same stripe. Therefore, when multiple aggregators are

writing to the same OST, lock overhead can surpass the bene�t of parallelism, causing

random performance impacts.

As a result, IO-Engine will set romio_lustre_co_ratio to min{#process/SC, 4} for
reads. Since IO-Engine prefers independent I/O mode for reads, the average number of

processes talking to each OST can be calculated with #process/SC. A proper co_ratio

should respect an upper bound which is 4. On the other hand, IO-Engine will simply

use default value for writes.

3.5.3 Implementation

IO-Engine is built into MPI-IO library by extending existing MPI-IO APIs. The trans-

forming between collective I/O and independent I/O are performed inside corresponding

APIs. API syntax is not changed. As a result, existing HPC application source codes

do not need to be modi�ed when using IO-Engine.

IO-Engine is logically a module over the native MPI-IO library as shown in Figure

3.12. When the application wants to read an existing �le, its I/O �ow follows Figure

3.12(a). 1© The application opens the �le in the traditional way, 2© IO-Engine queries for

the �le striping information, 3© Parallel �le system returns the striping information to

be stored by IO-Engine, 4© The application issues a MPI-IO request in the traditional

way 5© IO-Engine transforms the request and tunes speci�c parameters based on the

workload characteristics, 6© The native MPI-IO library sends the transformed request

to the parallel �le system 7© The application can either perform another cycle of I/O

request or close the �le. The counterpart for writing new �les is shown in Figure 3.12(b).

It is generally the same as the read I/O �ow except that IO-Engine does not query �le

striping information. However, a user-assisted IO-Engine that we are currently working

on will have the capability of deciding proper �le striping scheme based on some limited

future I/O access knowledge.

3.6 Evaluation

In this section, we describe the design of our experiments and some discussions on the

obtained results.

60
Our Proposed IO Stack

Application

Parallel File System

1

5

6

Native MPI-IO

Policy engine

MDS

IO servers

3

4

2

Enhanced
MPI-IO
Library

7

Application

Parallel File System

1

3

4

Native MPI-IO

Policy engine

MDS

IO servers

2
5

(a) Read Existing Files (b) Write New Files

Figure 3.12: New Parallel I/O Flows with IO-Engine

We use three parallel I/O benchmarks: IOR2, MPI-IO Test and mpi-tile-io. For

each of them, we compare the performance using a normal MPI implementation (mpich2

version 1.5 [61]) and an enhanced MPI implementation with IO-Engine. All benchmarks

are run with 128 processes (16 computing nodes and 8 cores per node) on the cluster

Itasca. The Lustre �le system is installed at /lustre and consists of 1 MDT and 60 OSTs.

Lustre version is 2.4. Again, our experiments cover all permutations using di�erent �le

access patterns (strided vs. non-strided), request sizes, and I/O modes (independent

I/O, collective I/O and IO-Engine mode).

The results are shown in Figures 3.13,3.14 and 3.15. Y axis is I/O throughput in

MB/s in log scale and X axis is the request size. The results demonstrate that IO-Engine

is able to constantly produce the best read and write performance as expected. Using its

heuristics, IO-Engine can identify the best I/O modes for a given workload and tune the

MPI-IO parameter based on the workload characteristics. For example, IO-Engine uses

independent read mode for all reads, which greatly outperforms collective read mode

61

4

8

16

32

64

128

256

512

1024

2048

4096

8192

16384

4k 8k 16k 32k 64k 128k256k512k 1m 2m 4m 8m

Th
ro

u
gh

p
u

t
in

 M
B

/s

Request Sizes
(a) Non-strided Pattern

col-w

col-r

ind-w

ind-r

engine-w

engine-r

4

8

16

32

64

128

256

512

1024

2048

4096

8192

4k 8k 16k 32k 64k 128k256k512k 1m 2m 4m 8m

Th
ro

u
gh

p
u

t
in

 M
B

/s

Request Sizes
(b) Strided Pattern

col-w

col-r

ind-w

ind-r

engine-w

engine-r

Figure 3.13: Performance Evaluation for IOR2

62

4

8

16

32

64

128

256

512

1024

2048

4096

8192

16384

4k 64k 128k 512k 1m 2m 4m 8m

Th
ro

u
gh

p
u

t
in

 M
B

/s

Request Sizes
(a) Non-strided Pattern

col-W

col-R

ind-W

ind-R

engine-w

engine-r

4

8

16

32

64

128

256

512

1024

2048

4096

8192

16384

4k 64k 128k 512k 1m 2m 4m 8m

Th
ro

u
gh

p
u

t
in

 M
B

/s

Request Sizes
(b) Strided Pattern

col-W

col-R

ind-W

ind-R

engine-w

engine-r

Figure 3.14: Performance Evaluation for MPI-IO Test

63

1
2
4
8

16
32
64

128
256
512

1024
2048
4096
8192

16384

4k 64k 128k 512k 1m 2m 4m 8m

Th
ro

u
gh

p
u

t
in

 M
B

/s

Request Sizes
(a) Non-strided Pattern

col-w

col-r

ind-w

ind-r

engine-w

engine-r

2

4

8

16

32

64

128

256

512

1024

2048

4096

8192

4k 64k 128k 512k 1m 2m 4m 8m

Th
ro

u
gh

p
u

t
in

 M
B

/s

Request Sizes
(b) Strided Pattern

col-w

col-r

ind-w

ind-r

engine-w

engine-r

Figure 3.15: Performance Evaluation for mpi-tile-io

64

under all request sizes and both access patterns. By tuning romio_lustre_co_ratio, IO-

Engine achieves better read performance than the default independent read performance.

When handling writes, IO-Engine chooses collective I/O mode under strided pattern and

independent I/O under non-strided pattern.

The bene�t of choosing collective write under strided pattern is obvious especially

when the request sizes are smaller than the stripe size (1 MB in our experiments). This

is because collective writes aggregate small write requests from individual processes into

larger requests using two-phase IO technique. Locking overhead therefore can also be

minimized. This is also the reason that performance di�erences between the two modes

start to decrease and independent writes are occasionally better as the request size gets

larger. According to the process topology and the striping count of the �les accessed by

the benchmarks, 16 aggregators will be used each of which manages 8 processes. When

the request size increases to 2 MB, the aggregate request size for each aggreagator is 16

MB which is equal to the default collective bu�er size. However, when request sizes are

set to 4 MB and 8 MB, the aggregate request size becomes larger than the collective

bu�er size, which requires multiple rounds of shu�e phases and I/O phases. This causes

the default collective write performance fall below IO-Engine's performance as shown in

the results.

On the other hand, IO-Engine uses independent writes under non-strided pattern to

achieve better performance. The results show that independent write performance for

IOR2 is constantly high which jumps to around 512 MB/s at 4 KB request size. The

same thing happens for independent read for IOR2 which jumps to over 4096 MB/s at

4 KB request size. However, independent read and write performance increase slowly

for MPI-IO Test and even more slowly for mpi-tile-io. The di�erences are caused by the

settings of region size. Region size is set to 16 MB for IOR2, 100× the request size for

MPI-IO Test and 10× the request size for mpi-tile-io. According to our I/O modeling,

I/O performance increases with region size and good I/O performance can be expected

when region size is larger than stripe size. As a result, independent read performance

jumps to 512 KB/s before 128 KB request size and independent write performance jumps

to 4096 KB/s as early as 64 KB for MPI-IO Test 4 . mpi-tile-io delayed both numbers

to 512 KB because of a smaller ratio 10. We can also observe that I/O performance is

4 64 KB * 100 = 6.4 MB

65

less impacted by the region size when the request size is larger than a certain value such

as 2 MB.

3.7 Extended Work

We are also working on a user-assisted IO-Engine discussed in Section 3.7 which requires

some user inputs to facilitate more intelligent �le striping. We de�ne a new MPI �le

open API MPI_File_open_s() which asks for extra parameters to learn some basic

characteristics of future I/O accesses to this �le. One of the considered characteristics

include read/write frequency because we observe that read performance tends to be more

a�ected by stripe size while write performance tends to be more a�ected by striping

count.

Our experiments in Figure 3.16 and Figure 3.17 show the impact of di�erent striping

counts and stripe sizes on collective I/O performance. In both cases, we use default

two-phase I/O parameters.

In Figure 3.16, we �x the stripe size to 1MB and 4MB, and change the striping

count from 1 to 16. Write performance generally improves as striping count increases

due to two reasons. The �rst reason is that the average write lock overhead on a single

OST will be smaller. For a simple example, if 20 stripes are accessed by 20 aggregator

processes (aggregate request is aligned with the stripe boundary) during a write I/O

cycle and are evenly distributed across 10 OSTs, then each OST has to perform a lock

relinquish. However, if the 20 stripes are evenly distributed across 20 OSTs, then no

lock relinquish needs to be done implying less lock overhead. The second reason is more

OSTs provide larger aggregate I/O throughput. Read performance is less impacted by

striping count because reads can be serviced with read-ahead cache in Lustre. As long as

the bandwidth of OSTs are not saturated, I/O throughput for read will be less impacted

by striping count.

However, read performance can bene�t from relatively larger stripe size because of

the read-ahead scheme in Lustre as shown in Figure 3.17, where we �x the stripe count to

4 and 8, and change the stripe size from 1MB to 16MB. Large stripe sizes can negatively

impact writes because statistically more processes will contend on stripes causing more

locking overhead.

66

0

200

400

600

800

1000

1200

1400

1 4 8 16

Striping Count
(b) Stripe Size = 4MB

write

read

0

200

400

600

800

1000

1200

1 4 8 16

Th
ro

u
gh

p
u

t
in

 M
B

/s

Striping Count
(a) Stripe Size = 1MB

Figure 3.16: Striping Count Impact

As a result, a proper heuristic logic would be that for write intensive �les, a larger

striping count and a default stripe size should be used. For example, checkpointing

�les created by HPC applications are mostly written once and thus would prefer larger

striping count. For read intensive �les, a relatively larger stripe size and a default

striping count should produce better performance. Of course, we need to carry out more

comprehensive experiments and thorough technical research in order to validate this

conclusion, which will also be our near future work.

Besides, another characteristic, the region size (the amount of contiguous data be-

longing to the same process), can also be used to help choose a stripe size such that RS

< SS < RE situation can be formed which theoretically should produce the best result

as discussed above.

Modi�cations must be made to MPI API syntax in order to pass these information.

Therefore we do not include this feature in the current non-intrusive IO-Engine, but will

integrate it in the user-assisted IO-Engine as part of step 1 in the heuristic map.

Moreover, this IO-Engine work can also be extended to optimize parallel I/O perfor-

mance for other parallel �le systems. We believe some heuristics can be shared among

them but the rest are �le system dependent.

3.8 Conclusions

Parallel I/O performance has been a challenge for HPC systems because of many factors

along the parallel I/O path. In this chapter, we motivate ourselves by investigating

67

0

500

1000

1500

2000

2500

1m 4m 8m 16m

Th
ro

u
gh

p
u

t
in

 M
B

/s

Stripe Size
(a) Striping Count = 4

0

500

1000

1500

2000

2500

3000

1m 4m 8m 16m

Stripe Size
(b) Striping Count = 8

write

read

Figure 3.17: Stripe Size Impact

the parallel I/O stack and exploring the correlations among factors such as �le access

pattern, parallel I/O modes and speci�c system parameters. Based this knowledge, we

propose IO-Engine, an intelligent I/O middleware module instrumented to the existing

MPI-IO library that can transparently optimize HPC I/O workloads in Lustre system.

Chapter 4

In-place Update SWDs

In contrast to parallel I/O performance, storage capacity is another major I/O require-

ment in converged HPC systems. Traditional hard drives, which store over 80% of data

in most of today's data centers and HPC systems [71], are reaching areal data density

limit. New technology must be developed to keep up with the data growth pace.

Shingled Write Disks (SWDs), one of the most promising new technologies, increase

the storage density by writing data in overlapping tracks. Consequently, data cannot be

updated freely in place without overwriting the valid data in subsequent tracks if any.

A write operation therefore may incur several extra read and write operations, which

creates a write ampli�cation problem. In this chapter, we propose several novel static

Logical Block Address (LBA) to Physical Block Address (PBA) mapping schemes for in-

place update SWDs which signi�cantly reduce the write ampli�cation. The experiments

with four traces demonstrate that our scheme can provide comparable performance to

that of regular Hard Disk Drives (HDDs) when the SWD space usage is no more than

75%.

4.1 Introduction

The low cost and big capacity make the traditional hard disk drives (HDDs) the most

popular storage devices in the past decades. However, perpendicular magnetic recording

technique used by traditional HDDs is reaching its areal data density limit. The data

density is determined by the superparamagnetic e�ect (SPE) which restricts data density

68

69

in HDDs to be below 1 Tb/in2 [72]. Therefore, several new recording technologies

have been proposed to solve this problem including Heat-Assisted Magnetic Recording

(HAMR) [73, 10, 74], Bit-Patterned Media Recording (BPMR) [11, 12] and Shingled

Magnetic Recording (SMR) [14, 13]. Among these new techniques, SMR is the most

promising technique because it does not require signi�cant changes to either magnetic

recording or manufacturing process. It can increase the data density to 2 Tb/in2 and

even to 10 Tb/in2 when enhanced with 2-D readback [75].

SWDs increase the drive capacity by overlapping the neighboring tracks. It increases

data capacity by overlapping the adjacent tracks and thus packing more data tracks into

platters with the same physical dimensions. The asymmetric requirements for head

width of read and write requests makes shingling technically feasible. Disk heads write

a wide track but only need a narrow track for reading. Thus SMR works by writing a

wide track then overwriting most of it when performing another write. The downside is

what is called write ampli�cation overhead. Assuming the write head is two-track wide,

a write will now impact 2 tracks. That is, writing to a track may destroy the valid data

in the following track. Consequently data is better to be written onto the tracks in a

sequential manner. However, random read is still supported in SWDs.

In order for the shingled write disks to be adopted in the existing storage systems

without signi�cant performance degradation, it is necessary to mitigate or circumvent

this write ampli�cation problem. The solutions to this problem can be di�erent depend-

ing on the speci�c type of SWD.

There are generally two types of SWDs: the autonomous SWDs and the host-

managed/host-aware SWDs. Autonomous SWDs maintain a logical block addresses

(LBAs) to physical block address (PBAs) mapping layer and therefore provide block in-

terface to the upper level applications such as �le systems and databases. On the other

hand, host-managed/host-aware SWDs are simply raw devices and rely on speci�c upper

level applications to interact with the PBAs directly. As an analogy, a solid state drive

(SSD) without a built-in �ash translation layer (FTL) has to rely on �ash �le systems

to manage its physical space.

Depending on the update strategy, autonomous SWDs can further be classi�ed into

in-place update SWDs (I-SWDs) and out-of-place update SWDs (O-SWDs). To perform

an update operation to a previously written track in an I-SWD, data on the following

70

tracks have to be safely read out �rst and then written back to their original positions

after the data on the targeted track has been updated. To minimize this overhead,

only a few tracks (4 or 5) per band are used. Besides, there will be enough separation

between adjacent bands such that writing to the last track of each band will not destroy

the valid data in the following band. An I-SWD maps LBAs to PBAs using a static

address mapping and therefore it does not require any mapping table and GC operations.

However, I-SWD space has to be organized into relatively small bands like 4 tracks per

band in order to keep the write ampli�cation overhead reasonably low as discussed in

our previous paper [76]. This also means at least 20% of the total space has to be used

as safety gaps between neighboring bands. Generally, bigger band size provides better

space gain but worse update performance.

On the other hand, O-SWDs can provide much more space gain because larger bands

(such as 100 tracks) are used. Only a neglectable amount of space is thus used for safety

gaps. However, O-SWDs have their own disadvantages including the metadata overhead

and the GC overhead. To perform an update operation in O-SWDs, the updated data

blocks will �rst be written to a new place and the old data will be invalidated. A mapping

table is necessary to keep track of these data movements. Besides, those invalidated data

blocks must be reclaimed later by GC operations so they can be reused.

In this chapter, we discuss our design for I-SWDs. And O-SWDs will be discussed

in the next chapter. Compared to O-SWDs, I-SWDs has its own advantage that it

is possible to not use any GC operations and complicated mapping tables. We show

that write ampli�cation overhead of in-place update SWDs can be greatly reduced with

novel static LBA-to-PBA mappings and these are simple mappings without incurring

large overheads. Experiments with four traces demonstrate our proposed schemes can

provide comparable performance to that of regular HDDs when space usage is no more

than 75%.

The remainder of the chapter is organized as follows. Section 4.2 describes two major

physical track layouts for SWDs. Section 4.3 discusses some related work and Section

4.4 shows the motivations for this work. Novel data mapping schemes with performance

predictions are discussed in Section 4.5. Experiments and result discussions are presented

in Section 4.6. Finally conclusion is made in Section 4.7.

71

4.2 SWD Layout

SWDs generally follow the geometry of regular HDDs except the tracks are overlapped.

Similar to HDDs, each SWD may contain several platters. Physical data blocks are also

addressed by Cylinder-Head-Sector (CHS). Obviously outer tracks are larger than inner

tracks, so the SWD space is divided into multiple zones. Tracks in outer zones are larger

than those in inner zones and have better performance too. Tracks in the same zone

have the same size. Each zone can be further organized into bands if needed. A small

portion (about 1% to 3%) of the total space is usually used as a random access zone

(RAZ) for maintaining metadata [77, 78, 79].

I-SWDs and O-SWDs organize and use the bulk shingled access zone (SAZ) di�er-

ently as shown in Figure 4.1. Autonomous I-SWDs usually organize the tracks into

small bands in order to achieve a good balance between space gain and performance

as discussed and evaluated in [76]. Figure 4.1a shows an example of using 4 tracks per

band. However, bigger band size can be used for host-managed I-SWDs. For example,

the shingled �le system [77] sets the band size to be 64MB or about 100 tracks based on

the track size.

Most existing work on O-SWDs divide the shingled access zone into an E-region and

an I-region as shown in Figure 4.1b. Sometimes multiple E-regions and I-regions may

be used. E-region is organized as a circular bu�er space and used for bu�ering incoming

writes, while I-region is used for permanent data storage and organized into big bands.

Obviously, writes to E-region and I-region have to be done in a sequential manner and

GC operations are required for both regions. The E-region size is suggested to be no

more than 3% [78, 79, 80, 81].

4.3 Related Work

Several studies have been done for out-of-place update SWDs. For example, Cassuto et

al. proposed two indirection systems in [80]. Both systems use two types of data regions,

one for caching incoming write requests and the other for permanent data storage. They

proposed an S-block concept in their second scheme. S-blocks have the same size and

each S-block consists of a pre-de�ned number of sequential regular blocks/sectors such

as 2000 blocks as used in [80]. GC operations have to be performed in both data regions

72

……

Random Access Zone Shingled Access Zone with Small Bands

…

Band 0 Band 1 Band M

… …

Zone 0 Zone N

(a) In-place Update SWD

Random Access Zone

…

E-region Shingled Access Zone with Big Bands (I-region)

……

Zone 0 Zone N

…

Band 0 Band 1 Band M

… … …

(b) Out-of-place Update SWD

Figure 4.1: SWD Layouts

in an on-demand way. Hall et al. proposed a background GC algorithm [81] to refresh

the tracks in the I-region while data is continuously written into the E-region bu�er.

The tracks in the I-region have to be sequentially refreshed at a very fast rate in order to

ensure enough space in the E-region, which is quite expensive and creates performance

and power consumption issues. Recently, Jin et al. proposed the HiSMRfs [82] which

is a host-managed solution. HiSMRfs pairs some amount of SSD with the SWD device

so that �le metadata (hot data) can be stored in the SSD while �le data (cold data)

73

can be stored in the SWD. HiSMRfs uses �le-based or band-based GC operations to

reclaim the invalid space created by �le deletions and �le updates. However, the details

of the GC operations are not discussed. Aghayev et al. designed a tool framework called

Skylight [83] to reverse-engineer a Seagate autonomous SWD. Skylight infers important

information such as drive type, persistent cache size and GC types by measuring the

latency of controlled I/O operations.

There are also some studies on in-place update SWDs. Wan et al. proposed two bold

track and sector layouts to reduce space waste and write ampli�cation overhead [84, 85].

The �rst is a wave-like shingling organization which lays out the tracks with partial

overlap in two opposite radial directions like wave so the space waste on safety gaps can

be reduced by about half compared to a traditional and practical shingling method. The

second bold idea is called segment-based data layout which divide a region into segments

in the radial direction such that the size of data rewritten can be limited to a segment

instead of a whole region. The closest work to ours in this chapter is the shingled �le

system [77], which is a host-managed design for in-place update SWDs. The shingled

�le system directly works on SWD PBAs. The SWD main space is organized into small

bands of size 64 MB. Files will be written sequentially from head to tail in a selected

band. When a �le is updated, impacted data in the subsequent tracks will be �rst read

out to a block cache and written back to the original locations afterwards. However this

work did not address the write ampli�cation problem. Another drawback is that popular

�le systems (like EXT4 and NTFS) as well as other data management software have to

be modi�ed in order to use these SWDs. As a result, we do not make comparisons to

this scheme. Our work improves the write ampli�cation problem with novel address

mapping schemes that make SWDs support general �le systems in a drop-in manner.

4.4 Motivation

In this section, we discuss two factors that motivate our work, one is the intrinsic tradeo�

in in-place update SWDs and the other is the conventional static address mapping used

in regular HDDs.

74

4.4.1 Space Gain Tradeo�

Figure 4.1a shows the physical layout of an in-place update SWD. It uses a write head

width of 2 tracks. There are k = 100 physical tracks in the random access zone, half of

which are e�ectively used to construct the random access zone. There are also 10000

physical tracks in the shingled access zone which form m = 2000 bands with band size of

4 tracks. Totally 2000 tracks are used as safety gaps to separate the bands. The space

e�ciency is therefore 0.8 = 4m/(4m+m). As the write head width is 2 tracks, the actual

space gain is 1.6 = 0.8*2. Although the outer tracks are bigger than inner tracks in a

real disk drive, we assume a �xed track size of 100 blocks or sectors for simplicity in this

example.

More generally, assume band size is N tracks and write head width is W tracks, then

the Space Gain (SG) and the expected Write Ampli�cation Ratio (WAR) for a single

update request to a full band can be calculated according to Equation (1) and (2). Other

discussions on areal density increase factor can also be found in [78, 86]. The WAR for

a single update request is de�ned as the total number of requests associated with an

ampli�ed update request. Ratio 1 means no ampli�cation is incurred. The equations

clearly indicate that the bigger the band size is, the bigger space gain is but the larger

write ampli�cation overhead is created at meantime. We assume in this chapter that

the band width is 4 tracks and the write head width is 2 tracks to balance this tradeo�.

Other con�gurations, such as band width of 5 tracks with write head width of 3 tracks,

can also be used as long as the tradeo� is balanced and manufacturing process allows.

SG = W
N

N +W − 1
(4.1)

WAR =
1

N

N−1∑
i=0

(1 + 2i) = N (4.2)

4.4.2 LBA-to-PBA mapping

Di�erent from [77], the LBA-to-PBA mapping function is built into the in-place update

SWDs in our design. As a result, sector-based �le systems such as EXT4 and NTFS

can be built on top of these SWDs nearly without any change. Write ampli�cation

management is transparent to the �le systems.

Following conventional static address mapping used in HDD for in-place update SWD

75

25% 50% 75% 100%

SWD Space Usage

U
p

d
a

te
 P

e
rf

o
rm

a
n

ce

HDD

R(4123)

124R(3)

14R(23)

1234

Figure 4.2: Update Operation Performance Prediction

and using Figure 4.1a for illustration, the conventional mapping scheme will sequentially

map LBAs [1-100] to physical track 1, LBAs [101-200] to physical track 2 and so on.

Physical track 5 is a safety gap so it is skipped. LBAs [401-500] will then be mapped to

physical track 6.

This mapping scheme is noted as �1234� in this chapter as tracks are utilized in a

left-to-right order. This scheme works �ne for workloads with a small update percentage

such as those �write once read multiple times� workloads or backup workloads. However,

it will be expensive to make data updates because of signi�cant write ampli�cation

overhead. As a result, better mapping schemes should be proposed for in-place update

SWDs.

4.5 Novel Static Address Mapping Schemes

In this section, we describe several new address mapping schemes for in-place update

SWDs and analyze their performance for update operations. The comparison result is

76
Trace Inter-Arrival Time Average Seek Distance MAX LBA MAX Request Size Write Ratio

web_0 297.9411468 6245717.249 71116454 3200 0.70123

hp_c2247 14.19225897 273730.0428 2049836 134 0.488449

Financial2_0 0.06453672 591141.4663 2676179 3072 0.096978

SYN 50.00721344 0 2399999 8 1

Table 4.1: Trace Statistics

shown in Figure 4.2 and is validated later by experiments in Section 5.

4.5.1 General Principles

A band can be used more e�ciently if we change the order of utilizing the tracks. Take

one band as an example, the overall performance will be improved if the tracks are

utilized in the order of �4123�. In other words, the 4th track will be �rst used, followed

by the 1st track, the 2nd track, and �nally the 3rd track. By doing so, when the space

utilization of this band is less than 25%, and if all data is made to be present only in

the last track then all the data can be updated freely. When the space utilization is

less than 50%, let data appear only in the �rst track and last track. The two tracks

(2nd and 3rd track) between them will work as a safety gap, therefore allowing both

�rst track and last track to be updated without incurring any extra cost. When space

utilization is no more than 75%, with same principle, the 2nd track and last track are

free to be updated. Only updates to the �rst track will incur 1 extra read and 1 extra

write. However, when the space utilization becomes close to 100%, then the overhead

becomes similar to the �1234� allocation. This observation triggers us to propose space

allocation schemes that take SWD space utilization into consideration since the space

in the SWD will be used (or allocated) gradually.

The story is similar for the entire SWD. The general principle is the third tracks of

all bands should be delayed for use until the SWD is 75% full. Although several static

LBA-to-PBA mapping schemes can be proposed using this principle, we will only present

three representative new address mapping schemes which are indicated respectively by

�R(4123)�, �124R(3)� and �14R(23)�.

77

4.5.2 Mapping Scheme �R(4123)�

Mapping scheme �R(4123)� maps LBAs to the tracks of all bands in a Round-Robin

fashion. It maps the �rst 25% LBAs to the 4th tracks across all bands. Similarly, the

second 25% LBAs are mapped to 1st tracks across all bands. The rest LBAs are mapped

in the same Round-Robin manner to 2nd and 3rd tracks. Symbol �R� therefore means

Round-Robin as a naming convention.

This mapping scheme makes sure no write ampli�cation will be incurred when SWD

usage is no more than 50%. When SWD usage becomes close to 75%, only 1 extra read

and 1 extra write request will be incurred if an update request is made to the 1st tracks.

However, SWD performance drops quickly when it is almost full.

4.5.3 Mapping Scheme �124R(3)�

Mapping scheme �124R(3)� is an alternate option, which maps the �rst 75% LBAs to the

1st, 2nd and 4th tracks in an ordered sequential manner but maps the rest 25% LBAs

to the 3rd tracks in a Round-Robin fashion, as the name suggests.

This scheme preserves better LBAs spatial locality than scheme �R(4123)� so less

seek overhead can be expected. However update requests may incur write ampli�cation

even when SWD usage is less than 50%. This actually indicates a tradeo� between

ampli�cation overhead and seek overhead.

4.5.4 Mapping Scheme �14R(23)�

This mapping scheme maps the �rst 50% LBAs to the 1st and 4th tracks in an ordered

sequential manner and maps the next 25% LBAs to the 2nd tracks in a Round-Robin

fashion. The last 25% LBAs will �nally be mapped to the 3rd tracks in a Round-Robin

fashion.

In terms of update performance, this scheme generally follows the prediction curve

of �R(4123)�in Figure 4.2 but may perform slightly better when SWD usage is less than

50% because of a little better LBAs locality. The actual performance, however, also

depends on the LBAs distribution in a given workload.

78

4.5.5 Performance Prediction for Updates

Assuming all factors are the same but the LBA-to-PBA mapping scheme di�erence,

Figure 4.2 roughly predicts the average update performance for all the mapping schemes

as the SWD space grows. This prediction will be validated later in our experiments.

4.6 Experimental Evaluations

The overall performance of SWDs with these new allocation schemes are evaluated with

several realistic traces and then compared to that of a SWD with the conventional scheme

and a regular HDD.

4.6.1 Enhanced DiskSim

We emulate the in-place update SWD with an enhanced DiskSim. We enhance the

DiskSim with two components: one is the address mapper component and the other

is the write ampli�er component. The address mapper translates a given LBA into a

PBA according to a speci�ed static mapping scheme and the write ampli�er converts

a write/update request into a set of read and write requests if write ampli�cation is

incurred. Whether a write/update request will be ampli�ed depends on the LBA and

the current SWD usage.

We are simulating a SWD based on the parameters of an hp_c3323a disk drive in the

DiskSim package. The SWD contains 3000 physical cylinders, each of which consists of

1000 blocks. Band size is 4 and write head width is 2. No obvious performance di�erence

is observed when we con�gure to use 1 or 2 disk surfaces. The results we show below

represents a single surface.

4.6.2 Traces

Four traces are used in our experiments, including one MSR trace (web_0)[87], one HP

trace (hp_c2247)[88], one Financial trace (volume 0 of Financial2)[89] and a synthetic

trace (SYN). The characteristics of these traces, including inter-arrival time (IAT) and

write ratio, are shown in table 5.2. Since write ampli�cation is essentially caused by

79

0

20

40

60

80

100

120

140

160

180

200

25% 50% 75% 100%

R
es

p
o

n
se

 T
im

e
 in

 m
s

Space Usage
(a) web_0

0

5

10

15

20

25

30

35

40

45

25% 50% 75% 100%

Space Usage
(b) Financial2

HDD

4123(N)

4123(1)

1234

1423

0

20

40

60

80

100

120

140

25% 50% 75% 100%

R
es

p
o

n
se

 T
im

e
in

 m
s

Space Usage
(c) hp_c2247a

0

2

4

6

8

10

12

75% 100%

Space Usage
(d) SYN

HDD

4123(N)

4123(1)

1234

1423

Figure 4.3: Average response time for four traces under di�erent SWD space usages

update operations, these traces are picked according the write/update operation ratio1

. For example, web_0 is an update intensive workload, hp_c2247 is a moderate update

workload, Financial2 (read intensive) and SYN (cold sequential write) are light update

workloads.

SYN is used to mimic a backup workload which continuously writes data to an empty

SWD until the space is fully used. Therefore this is a cold sequential write workload

with no update. Its average request size is 8 blocks and the inter-arrival time follows a

normal distribution of which mean is 50 ms with standard deviation 10 ms.

4.6.3 Experiment Design

As Figure 4.2 indicates, update operation performance changes as the SWD space usage

grows. We therefore choose 25%, 50%, 75% and 100% as the sampling points to make

performance comparisons. The synthetic trace only requires 75% and 100% as sampling
1 We logically convert writes into updates as shown in Section 5.3

80

0

1

2

3

4

5

6

25% 50% 75% 100%

A
m

p
lif

ic
at

io
n

 R
at

io

Space Usage
(a) web_0

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

25% 50% 75% 100%

Space Usage
(b) Financial2

HDD

4123(N)

4123(1)

1234

1423

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

25% 50% 75% 100%

A
m

p
lif

ic
at

io
n

 R
at

io

Space Usage
(c) hp_c2247a

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

75% 100%

Space Usage
(d) SYN

HDD

4123(N)

4123(1)

1234

1423

Figure 4.4: Write ampli�cation comparison for four traces under di�erent SWD space
usages

81

points because none of the allocation scheme incurs write ampli�cation overhead before

75% usage. We run 70 experiments in total, using di�erent mapping schemes, di�erent

SWD space usages and di�erent workloads combinations.

We run web_0, Financial2 and hp_c2247 with our enhanced DiskSim 4 times and

each time we pre-�ll the SWD with data to a particular usage (i.e., 25%, 50%, 75% and

100%). This will logically convert all writes in the workloads into updates. These traces

have to be adapted before input to the enhanced DiskSim. For example, LBAs larger

than the speci�ed SWD usage have to scale down with modulus operations. Besides,

request arrival rate has to be scaled down in order not to saturate the emulated SWD

because of two reasons. First, the traces we use represent workloads to the storage arrays

with multiple HDDs which have much better performance than a single SWD. Second,

write ampli�cation in a SWD incurs extra read and write operations, which results in

a much bursty workload to the SWD. Therefore, in our experiments, we increase the

inter-arrival time by 200 times for web_0, similarly, 5000 times for Finanical2 2 and 5

times for hp_2247.

We run SYN twice. The enhanced DiskSim runs the SYN workload and writes data

into an empty SWD until the SWD is 75% full in the �rst experiments. Data is contin-

uously written into an empty SWD until space is 100% full in the second experiments.

This is done to emulate a backup workload or cold sequential write workload.

4.6.4 Result Discussions

In this section, we make performance comparisons using average response time and

average write ampli�cation ratio.

When SWD Space Usage Is Less than 75%

The average response time for the four traces are shown in Figure 4.3 (a) (b) (c) (d)

respectively. It can be observed that SWDs using the three new mapping schemes con-

stantly outperform the SWD using �1234� scheme. The performance di�erence is espe-

cially signi�cant for moderate update and update intensive workloads such as hp_c2247

2
Financial2 has a huge variance in inter-arrival times. The workload is quite bursty from time to

time but mean IAT is bigger than expected.

82

and web_0. Besides, SWDs using new mapping schemes can provide a similar per-

formance to that of a regular HDD. Furthermore, �R(4123)� and �14R(23)� constantly

outperform �124R(3)� for traces with updates when SWD space usage is no more than

50%, which indicates that write ampli�cation overhead has more performance impact

than seek overhead in our experiments. This is because write ampli�cation incurs extra

operations to the SWD, which increases the number of outstanding requests and con-

sequently cause longer queuing time for other requests. In other words, the workload

becomes more bursty because of the extra requests.

The performance di�erence can be well explained with the average write ampli�cation

ratio graphs as shown in Figure 4.4 (a) (b) (c) (d). For example, due to the nature of

�1234� scheme, its average WARs always stay around 4 regardless of the SWD space

usages and traces. Note that SYN is a special case because it is a cold sequential write

trace and it contains no update request at all. Similarly, the average WARs for �124R(3)�

always stay around 1.67 when SWD space usage is no more than 75%, the average WARs

for �R(1234)� and �14R(23)� stay at 1 when SWD space usage is no more than 50% and

become around 1.67 when SWD space grows to 75%. These observations are consistent

with our theoretical performance analysis and prediction previously. A bigger average

WAR simply means a more bursty workload is resulted.

SYN is used to show that for backup-like workloads, the �1234� scheme does out-

perform the new mapping schemes when SWD space usage is over 75% full, although

nearly the same performance is achieved when usage is lower than 75%. This may in-

dicate a possible future direction of adaptive mapping schemes for multiple workloads

and multiple volumes case.

When SWD Space Usage Is Close to 100%

All SWDs produce an average WAR of 4 when SWD space usage is close to 100%

regardless of the mapping scheme used. Therefore the performance drops quickly and

signi�cantly bigger response time can be observed. This implies that when space usage

is over 75%, defragmentation should be performed to make more room in the 3rd tracks,

which will practically make SWDs maintain good performance.

Another observation is that when SWD space usage is close to 100%, every mapping

scheme including �1234� has a chance to win because the actual performance depends

83

on the LBAs distribution in the trace. For example, �R(1234)� works best for web_0

but performs worst for Financial2. The reason is that more updates happen to take

place in the 3rd and 4th tracks in web_0 but more go to the 1st and 2nd tracks in trace

Financial2.

4.7 Conclusions

In this chapter, we have presented several new address mapping schemes for in-place up-

date SWDs. By appropriately changing the order of space allocation, the new mapping

schemes can improve the write ampli�cation overhead signi�cantly. Our experiments

with four traces demonstrate that new mapping schemes provide comparable perfor-

mance to that of regular HDDs when SWD space usage is less than 75%.

Chapter 5

Out-of-place Update SWDs

Another approach to write ampli�cation problem is the out-of-place update strategy,

which means that data blocks will be written to new locations on updates and the

original blocks will be invalidated. LBA to PBA mapping table has to be maintained

to keep track the data movements. Besides, SWD will gradually become fragmented as

the number of invalid data blocks increases. As a result, garbage collection operations

are necessary to be performed to reclaim and reuse those invalid blocks.

In this chapter we introduce T-STL, a Track-based Shingled Translation Layer for

autonomous Shingled Write Disks (SWDs). T-STL minimizes the write ampli�cation

overhead by utilizing two unique properties of SWDs to handle workloads di�erently

according to the SWD space utilization. First, when SWD space utilization is less than

50%, T-STL turns the SWD into a HDD-like device by using every other track 1 .

The unused tracks work as safety gaps to avoid data overwriting. Therefore, in-place

updates are possible in this situation. The second property is a track-based mapping

instead of a typical block-based mapping. When SWD utilization is over 50%, tracks

that do not allow in-place updates are updated in a copy-on-write manner as out-of-

place updates. In a track-based mapping, when a track is invalidated, it becomes free

right away and can be immediately reused as long as the next track is free too, without

triggering an explicit garbage collection (GC) operation. Only when the free SWD space

becomes extremely fragmented, an explicit on-demand GC operation needs to be invoked
1 We assume the write head is 2-track wide in our discussions. However, our schemes can be adapted

for bigger write head width.

84

85

to create big contiguous free space by migrating some valid tracks.

E�cient track-level mapping and space management schemes are also designed to

fully utilize these two properties. We implement the T-STL scheme and compare it with

a regular HDD, an existing out-of-place update SWD (O-SWD) design and an in-place

update SWD (I-SWD). The experiments with several realistic traces and one synthetic

trace demonstrate that the T-STL scheme can perform much better than the existing

SWD designs and even nearly as good as regular HDDs when SWD space usage is less

than 50%.

5.1 Introduction

The decision on design tradeo�s are often based on many factors such as engineering

di�culties, drive reliability, workload characteristics and storage requirement. As dis-

cussed in the previous chapter, I-SWDs have the advantage of no mapping table and

garbage collection which reduce the potential reliability issues associated with all kinds

of additional metadata management. On the other hand, O-SWDs have minimal cost

on safety gaps and provides great space gain.

Similar to Solid State Drives (SSDs), the operation principles of out-of-place updates

make mapping table and garbage collection algorithms are necessary for SWDs. One

or more mapping tables can be used which tracks data movements caused by either

new data writing, data updating or garbage collections. Garbage collections are used

to reclaim the invalid data blocks or sectors created by out-of-place updates. Di�erent

from SSDs, tracks in SWDs do not have to be �erased� before being reused. In SSDs,

however, blocks must be erased and turned into clean blocks before being reused due to

the nature of �ash. This unique feature of SWDs is one of its properties that we utilize

to design our scheme.

In SSDs, a �rmware layer called Flash Translation Layer (FTL) is used to manage

the data mapping, garbage collection and wear-leveling. The three functions are tightly

coalesced and data mapping level is usually the cut-in angle to compare di�erent FTL

schemes. Choices for FTL mapping levels include page level, block level and hybrid level.

Nevertheless, FTLs can hardly be applied directly to SWDs without drastic modi�cations

due to the intrinsic media properties.

86

Simiarly, data mapping for SWDs can be done at di�erent granularities such as block

or sector level, track level, S-block level [80] and band level. Block level mapping is gen-

erally not preferred as it generates a huge mapping table and it turns logically sequential

reads into physically random reads, which performs awfully due to the high seek over-

head in hard drives. Band level mapping, on the other hand, requires a much smaller

mapping table. But it is very in�exible because it has high copy-on-write overhead.

S-block level mapping and track level mapping are therefore more promising levels to

design a Shingled Translation Layer (STL).

In order for O-SWDs to be adopted in the current storage systems, metadata over-

head and GC overhead must be minimized. In this chapter we propose the T-STL

scheme, a track-based shingled translation layer for autonomous SWDs. T-STL is moti-

vated by two unique properties of SWDs. First, an SWD can be turned into a HDD-like

device when the space utilization is less than 50% by using only every other track. The

unused tracks serve as safety gaps to prevent destroying tracks with valid data. As a

result, in-place updates can be performed in the used tracks. Second, an invalidated

track in SWD is essentially a free track and can be immediately reused as long as the

next track is free too. T-STL therefore takes advantage of this property to adopt an

aggressive track update strategy which maintains a loop of track invalidation and reuse

without triggering explicit on-demand GC operations. This greatly reduces the fre-

quency of on-demand GC operations which are invoked only when the free SWD space

becomes extremely fragmented.

Two major modules are designed in T-STL in order to fully exploit these two proper-

ties. One is a track level LBA-to-PBA mapping and the other is an e�cient SWD space

management scheme. The SWD space management module includes free track selection

and on-demand GC operation. During a GC operation, valid tracks are migrated in an

e�cient way to create bigger contiguous free space.

We implement the T-STL scheme and compare it to a regular HDD, an existing

O-SWD design (S-block based indirection system) [80] and an I-SWD scheme [76]. The

experiments with several workloads demonstrate that the T-STL scheme can perform

much better than the existing schemes.

The remainder of the chapter is organized as follows. The T-STL scheme is described

in Section 5.2. Experiments and evaluations are presented in Section 5.3 and some

87

conclusion is made in Section 5.3.4.

5.2 The T-STL Scheme

In this section, we describe the T-STL internals. Although T-STL follows the O-SWD

layout, it does not use an E-region and it allows in-place updates whenever possible.

There are two function modules in T-STL: the LBA-to-PBA mapping (Section 5.2.2)

and the space management scheme(Section 5.2.4).

5.2.1 Aggressive Track Update

T-STL handles update requests aggressively when SWD space usage is over 50%. If

an update request is made to a track whose next track is free, then T-STL performs

this update request in-place. However, if the next track is not free, T-STL will amplify

this request into a track update even if this update request modi�es only a partial of a

track. In this case, T-STL will read the existing data on this track, modify the blocks

in memory, write the track to a new track position and invalidate the original track. In

other words, the track is updated in a copy-on-write manner. Note that a track can only

be updated to a new position inside the same band due to track size di�erences from

band to band. The mapping table will be updated accordingly after the migration.

Track update has been proven to be bene�cial and a�ordable because it creates a

track invalidation and reuse loop. When a track is invalidated, it actually becomes a

free track and can be reused as long as its next track is free or as soon as its next track

becomes free. As a result, track updates in T-STL continuously invalidate tracks and

turn them into free tracks without triggering explicit on-demand GC operations. This

greatly reduces the frequency of invoking on-demand GCs which compensates for the

cost of the track update operations. Explicit on-demand GC operations are only invoked

when the free SWD space becomes too fragmented as discussed in Section 5.2.4.

5.2.2 Track Level Mapping Table

The �rst main functionality of T-STL is the LBA-to-PBA mapping at a track level which

enables SWDs to talk to upper level applications such as the �le systems using the block

interface. Therefore SWDs can be used in existing storage systems in a drop-in manner.

88

There is only a single track level mapping table for the whole SWD. The mapping table

is updated when: 1) an used track is updated to a new location, 2) used tracks are

migrated during an on-demand GC or 3) tracks are allocated for new data.

Given an LBA, T-STL will �rst calculate its corresponding logical track number

(LTN) and its o�set inside this track, based on the number of bands and the track size

in each band. It then looks up the mapping table and translates LTN into physical track

number (PTN). The �nal PBA can be easily computed with PTN and the o�set inside

the physical track.

Assuming an average track size of 1 MB, a 6 TB SWD requires at most a 48 MB track

level mapping table (assuming 4 bytes for each LTN or PTN). Besides, the mapping table

is empty in the beginning and gradually grows as the SWD space utilization increases.

Considering the fact that the standard DRAM size for a 6 TB HDD on the market

today is 128 MB, we claim the metadata overhead of the track level mapping table is

reasonably low.

5.2.3 Space Elements

There are two types of tracks in an SWD: the used (or valid) tracks and the free tracks.

When a used track is invalidated, it becomes a free track but it is not considered as a

usable free track if its following track is not free. However, a free but unusable track can

at least serve as a safety gap and allow its preceding track to be updated in place.

All the used tracks constitute the used space and all the free tracks constitute the

free space. We call a group of consecutive used tracks or free tracks a space element

which is used to describe the current track usage. For example, considering Figure 5.1,

we say the used space includes elements [0, 1, 2, 3], [6], [10, 11, 12], [14, 15, 16, 17] and

[20, 21] while the free space includes elements [4, 5], [7,8,9], [13], [18, 19] and [23, 24].

The size of a particular space element is de�ned as the number of tracks in it. The last

track in each free space element is not usable and can not be written because writing to

this last track will destroy the valid data on the following track which is a used track.

Particularly, free space element of size 1 contains no usable free track such as element

[13]. However, the number of elements and their sizes continuously change as incoming

requests are processed. A free track that is previously unusable can become usable later

as soon as its following track becomes free too. Accordingly the last track in a used

89

0 5 10 15 20

Free space: [4, 5], [7,8,9], [13], [18, 19], [23, 24]

Used space: [0, 1, 2, 3], [6], [10, 11, 12], [14, 15, 16, 17], [20, 21]

Fragmentation ratio = 10/5 = 2

Used track Free track

Figure 5.1: SWD Usage State

space element can be updated in place because its next track is a free track.

5.2.4 SWD Space Management

The second main functionality of T-STL is SWD space management which is responsible

for free track selection and free space consolidation. Free space consolidation is essentially

the on-demand GC operation for SWD that is mentioned previously. Space management

is done for each band separately.

We �rst present a simple space management scheme named as �Greedy� and then

describe another scheme called �Smart� in Section 5.2.4 which better utilizes the track

level mapping strategy. Smart supports automatic cold data 2 progression and reduces

GC overhead.

Free Track Selection

Free track selection means that when a track is updated, T-STL has to choose a new

track position inside the same band from the available usable free tracks.

To choose new track locations upon track updates or writes, T-STL based on Greedy

will search starting from the current SWD write head position in a greedy manner. It

tries to �nd the nearest free space element with a similar size to the request size. If no

free space element is found to be big enough to accommodate the data, multiple free
2 We de�ne the cold data as less frequently or not recently updated data.

90

space elements will be used with each selected in a greedy manner.

Fragmentation Ratio

We de�ne the free space fragmentation ratio to help decide when to invoke on-demand

GC in each band. Assuming the total number of free tracks in a selected band is F and

the total number of free space elements is N, the free space fragmentation ratio (R)

for this band can be computed according to Equation 5.1. In fact, the fragmentation

ratio is the percentage of usable free tracks in all the free tracks. Fragmentation ratio of

0 means the free space is too fragmented. In fact, 0 means all free space elements are of

size 1 and thus no track can be used.

R =
F −N

F
,where 1 ≤ N ≤ F (5.1)

A big R ratio is not suggested either since frequent unnecessary GCs will be invoked

even though the free space is not fragmented, which harms SWD performance. Further-

more, a larger ratio means a smaller N and thus a smaller number of tracks that support

in-place updates. Accordingly a smaller ratio may suggest a bigger N and thus a bigger

number of tracks supporting in-place updates. Our permutation tests suggest that 0.5

is a good option for the simulated SWD 3 . This way, T-STL can maintain relatively

big contiguous free space and trigger a GC only if necessary.

Free Space Consolidation (GC)

The fragmentation ratio will be checked upon each incoming write request. If it is equal

to or smaller than the threshold value, an on-demand GC operation will be invoked in

the targeted band to migrate used tracks and combine the small free space elements into

bigger elements. This will improve I/O performance for big writes and updates, as well

as increase usable free space.

The GC operations move small used space elements and append them to nearby used

space elements. Starting from the current SWD head position, T-STL based on Greedy

will search in both directions (i.e., left and right) for the nearest used space element of

3 Di�erent physical drive layouts require di�erent thresholds for best performance. A permutation
test can help decide the value for a particular layout.

91

Allocation
pool

Cold data migrations

Updated/hot track allocations

Shingling
directionBookmark

pointer

Figure 5.2: The Process of Smart

size smaller than a threshold W. W is initialized to be a small value based on the current

SWD space usage U . It can be calculated according to Equation 5.2. In fact, W has a

practical meaning and it stands for the used space to free space ratio. The theory behind

this equation is that the average used space element size is bigger when the SWD space

utilization is higher. For example, W will be initially set to 2 if the current SWD usage

is 60% or 4 if SWD usage is 80%.

If no element is found to be smaller than W, then W will be doubled and T-STL

will redo a search based on the new W. This will be repeated until a satisfying element

is found.

T-STL will then read this element and append it to the nearest neighboring element.

Usually the free space consolidation will immediately stop after one element has been

moved so as to minimize the overhead of a single GC operation. This will therefore min-

imize the performance interference on serving the following requests. The fragmentation

ratio sometimes remains below the threshold after the current GC operation. The next

GC operation in this band will continue to improve the fragmentation. Multiple elements

movement happens only when there is not enough usable free tracks to accommodate

the updated track(s) or new �les, which is infrequent in our experiments.

92

In Figure 5.1, R is 0.5 by Equation 5.1 and W is 2 by Equation 5.2. Assuming an

on-demand GC is triggered and the current write head is at track 5, T-STL will select

used space element [6] as the victim and append it to element [0, 1, 2, 3] since it is closer

than appending to element [10, 11, 12]. Consequently, free space element [4, 5] and [7, 8,

9] will be merged into a single bigger element [5, 6, 7, 8, 9]. The resulting fragmentation

ratio R is 0.6 (= (10-4)/10). T-STL will detect upon the next request that R is above

the threshold and thus it will not invoke another GC operation.

W = d U

1− U
e, where 0 < U < 1 (5.2)

The Smart Scheme

Track level mapping provides a good opportunity of automatic cold data progression.

This is achieved and embedded into the free track selection and free space consolidation

of the Smart scheme, without using dedicated hot/cold data identi�cation algorithms

and data migration schemes.

Smart maintains a dedicated track pointer called �bookmark pointer � for each band.

Assuming the shingling direction is from left to right, a bookmark pointer initially points

to the leftmost free track of the largest free space element (named as �allocation pool�).

The free tracks in this allocation pool are allocated to accommodate updated tracks in

a sequential manner. A modi�ed track is always written to the free track pointed by

the bookmark pointer, which will be incremented accordingly. After all the usable free

tracks are consumed, Smart will select the latest largest free space element to be the

next allocation pool and update the bookmark pointer.

Free space consolidation or GC in Smart is triggered in the same way as the greedy

T-STL and the victim used space element is also chosen in the same way. However,

Smart always migrates a victim element to the leftmost free space element larger than

the victim element4 instead of appending it to the nearest neighbour.

Smart is illustrated in Figure 5.2. The allocation pool accumulates the recently

updated tracks or hot tracks and naturally organizes them in large used space elements

which are less likely selected as victims during GC operations. As a result, it is the

cold data that mostly gets migrated against the shingling direction to the left by GC
4 The used space element containing track 0 is a special case.

93

operations. Eventually the cold data will stay untouched at the left side of the bands and

hot data gets updated and pushed to the right side of the bands which greatly reduces

unnecessary cold data movements during GC operations.

5.2.5 T-STL for Cold Workload

To adapt for cold workload such as backup and archive workload, T-STL only needs to

disable the alternating track strategy and enters the aggressive update mode directly.

As a result, data will be written sequentially into the SWD just like a regular HDD and

updated in the �copy-on-write� manner as needed. No changes to the space management

scheme are needed.

5.2.6 T-STL Reliability

Since the mapping table is loaded and operated in the DRAM, it can be lost during a

power failure. This problem can be solved by periodically checkpointing the mapping

table to a copy in the random access zone (RAZ) on the SWD. During the checkpointing,

all the dirty or updated mapping entries will be synchronized to the SWD.

Upon the completion of each checkpointing, T-STL will record the timestamp which

will be used during recovery. Free track allocation and space management are the same

as the basic T-STL schemes (Greedy and Smart) except that when writing a new track,

a backpointer to the logical track number (LTN) along with the current timestamp will

be stored together with the associated physical track. We assume there will be some

tiny spare space associated with each physical track that can be used to store the LTN

and the timestamp. Otherwise, we can simply reserve a sector or block in each physical

track to be used for storing the LTN.

In order to recover from a power failure, T-STL will scan all the timestamps and

identify those newer than the timestamp of the latest checkpointing. These newer times-

tamps indicate these tracks are updated or written after the latest checkpointing which

are not re�ected in the mapping table in RAZ yet. T-STL then reads their associated

LTNs and PTNs to construct the corresponding LTN-to-PTN mapping entries which

will be merged to the mapping table copy in RAZ so that the latest LTN-to-PTN table

will be restored.

94

Further improvement for the recovery time can be achieved by pre-allocating free

space to be used between two successive checkpointings [90]. This is a perfect for Smart

scheme because Smart always reserves an allocation pool in advance. Applying the

scheme here, a certain number of free tracks will be pre-allocated in each band whose

physical track numbers (PTNs) will be recorded and stored in a secure place. Note that

on-demand GC now can only be performed for tracks not pre-allocated. To recover from

a power failure, only the pre-allocated tracks or the allocation pools have to be scanned

which greatly reduces the recovery time.

5.3 Evaluations

In this section, we compare the performance of the T-STL scheme (based on Greedy

and Smart respectively), an existing O-SWD design (S-block based Indirection System

or IS), an I-SWD scheme and a regular HDD using several workloads.

5.3.1 T-STL Implementation

We implement these schemes on top of Disksim [88] to simulate SWDs and we simulate

an SWD based on the parameters of a Seagate Cheetah 15,000 RPM disk drive [91].

This is the newest validated disk model that is available to Disksim. It has a capacity

of 146GB (based on 512KB sector size) and 16MB of on-disk cache. We divide the total

capacity into 3 parts: one 2GB randome access zone, one 2GB E-region and the rest

142GB for persistent storage space.

The random access zone and the E-region are left untouched if they are not used in

a speci�c scheme. Speci�cally, both of the random access zone and the E-region are not

used in HDD. And the E-region is not used in I-SWD, O-SWD.

5.3.2 Schemes to Be Compared

Since our objective is to design SWDs that can perform well under general workloads

(not only for cold workloads) and can be used in existing storage systems, we choose the

regular HDD as the baseline for comparison. We are hoping the performance of the new

designs can be close to that of HDD.

95

Table 5.1: Tested Schemes

Scheme Type E�ective Capacity Band Size
HDD HDD 140GB N/A
Greedy O-SWD 140GB 100
Smart O-SWD 140GB 100
R(4123) I-SWD 112GB 4
IS O-SWD 140GB N/A

We then choose the �R(4123)� scheme for I-SWD [76] as the second competitor. Band

width is set to 4 and the write head width is set to 2. The main idea of �R(4123)� is

to reduce the write ampli�cation overhead for writes or updates by changing the order

of utilizing the tracks. �R(4123)� statically maps the 4th tracks in all bands to the �rst

25% LBAs, the 1st tracks to the second 25% LBAs, 2nd tracks to the next 25% and

�nally the 3rd tracks to the last 25% LBAs. This scheme can performs as good as a

regular HDD when e�ective SWD usage is no more than 50% but its performance drops

quickly when usage is larger than 75% of the e�ective SWD space capacity. Due to space

cost on safety gaps, the e�ective storage capacity of an I-SWD is 112GB5 .

We also compare to an existing O-SWD design, the S-block based indirection system

(IS) proposed in [80]. E-region in IS is named as cache bu�er and I-region is named

as S-block bu�er, both of which are organized in a circular log fashion. IS uses block-

level mapping for the cache bu�er and S-block level mapping for the S-block bu�er.

IS also adopts three types of garbage collections algorithms: cache_buffer_defrag,

group_destage and S_block_buffer_defrag. As the names suggest, cache_buffer_defrag

manages the garbage collections in cache bu�er, group_destage deals with the valid data

migration from cache bu�er to S-block bu�er and S_block_buffer_defrag garbage col-

lection the S-block bu�er.

The original IS frequently saturates the underlying Disksim in our tests due to unnec-

essary valid block movements in the E-region. It destages data from E-region to I-region

only when all blocks in the E-regions are valid. This can be improved by triggering data

destaging once we detect that the total eligible blocks (invalid blocks plus the free space

between head and tail pointers) is less than the sum of write request size and the safety

5 142GB × 0.8 = 113.2GB. We use 112GB for simplicity.

96

Table 5.2: Trace Statistics

Trace I.A.T. (ms) Average B.D. MAX LBA Average R.S. Write Ratio
mds_0 499.41 968339427.25 36417159175 18 0.8811
usr_0 270.25 1682254833.62 17077784583 45 0.5958
stg_0 297.79 1332575418.89 11612643455 23 0.8481
web_1 3757.39 2627690359.97 72831761927 58 0.4589

gap size between head and tail pointers. We use this improved indirection system as the

third competitor.

Information about all the tested schemes are summarized in Table 5.1 including the

scheme name, the corresponding type of SWD the maximum e�ective capacity used (in

GB) and the band size (in tracks if applicable).

5.3.3 Experiment Design

Four realistic MSR traces [87] and one synthetic trace are used in our experiments. The

characteristics of the MSR traces are shown in Table 5.2 which include the average inter-

arrival time (I.A.T.), the average block distance (B.D.), the maximum LBA, the average

request size (R.S.) and the write ratio.

MSR traces were captured on storage arrays of multiple modern HDDs, so the inter-

arrival time of these traces will have to be scaled properly. We increase the inter-arrival

time by 10 times for all the MSR traces in our experiments. Besides, LBAs beyond the

current SWD usage also have to be scaled down with modulus operations according to

the SWD space utilization.

The synthetic trace (SYN) is generated to mimic a backup workload that continu-

ously writes sequential data to the SWD. Its average request size is 8 blocks and the

inter-arrival time follows a normal distribution of which the mean is 5ms and the stan-

dard deviation is 2ms.

5.3.4 Result Discussions

We use overall average response time, write response time breakdown and write ampli�-

cation ratio as the main performance measurements. The overall average response time

97

4

8

16

32

64

128

256

30GB 60GB 90GB 120GB

R
es

p
o

n
se

 T
im

e
in

 m
s

Space Utilization
(a)

mds_0

4

8

16

32

64

128

30GB 60GB 90GB 120GB

Space Utilization
(b)

usr_0

16

32

64

128

256

512

1024

2048

30GB 60GB 90GB 120GB

Space Utilization
(c)

stg_0

4

8

16

32

64

128

256

512

30GB 60GB 90GB 120GB

Space Utilization
(d)

web_1

HDD

Smart

Greedy

R(4123)

IS

Figure 5.3: Average Response Time Comparisons

for di�erent schemes under di�erent workloads at di�erent SWD space utilizations are

shown in Figure 5.3. X-axis is the space utilization measured by GB and Y-axis is the

overall average response time in milliseconds at log scale. Note that the total e�ective

capacity of an I-SWD is only 112GB and therefore there is no plot for I-SWD at 120GB.

We also provide write response time breakdown in the case of 90GB space usage in

Figure 5.4 to further understand the write ampli�cation overhead and overall write per-

formance. Unlike 30GB and 60GB space usage where the T-STL schemes do not invoke

any GC operation, all schemes except the regular HDD are experiencing performance

penalties caused by GCs or write ampli�cations when the space usage is 90GB. Y axis

in the �gure stands for the gross write response time which is the time between a write

request getting queued and getting completed. Gross write response time consists of two

parts: the write ampli�cation overhead and the actual time to write the data. This is

because if a write request triggers a GC operation, it will not be serviced until the GC

completes.

Write ampli�cation ratio (WAR) is de�ned as the ratio between the total number of

incurred operations and the actual number of write operations. The results for WAR is

shown in Figure 5.5. Since all schemes except IS have a ratio of 1 at 30GB space usage

and I-SWD does not have a plot at 120GB space usage as explained previously, we only

show the results at 60GB and 90GB space utilizations. WAR can partly explain the

overall average response time results and the overhead associated with writes. Generally,

a larger WAR value implies worse performance. Of course, more factors such as request

size distribution and spatial locality of the extra operations incurred by GCs need to be

98

0

50

100

150

200

250

300

G
ro

ss
 W

ri
te

 T
im

e
in

 m
s

(a)

mds_0

0

50

100

150

200

250

300

(b)

usr_0

Actual Write Time

0

200

400

600

800

1000

1200

(c)

stg_0

Write Amplification Overhead

0

50

100

150

200

250

(d)

web_1

Figure 5.4: Gross Write Response Time Breakdown at 90GB Utilization

0

1

2

3

4

5

mds_0 usr_0 stg_0 web_1

W
ri

te
 A

m
p

lif
ic

at
io

n
 R

at
io

Traces
(a)

60GB Space Utilization

0
1
2
3
4
5
6
7
8
9

mds_0 usr_0 stg_0 web_1

Traces
(b)

90GB Space Utilization

HDD

Smart

Greedy

R(4123)

IS

Figure 5.5: Write Ampli�cation Ratio at Di�erent Space Utilizations

considered for a completely comprehensive explanation.

Smart vs. HDD

Among all the SWD designs, Smart scheme provides the closest performance to HDD.

Figure 5.3 shows that Smart can achieve HDD-like performance under MSR traces (rep-

resenting primary workloads) when space utilization is no more than 50% or 70GB. When

tested with the synthetic workload SYN, it constantly provides the same performance

as HDD at all the tested space utilizations.

Smart vs. Greedy

These two schemes act exactly the same except that Greedy uses simple greedy algo-

rithms for its space management while Smart better exploits the track level mapping.

99

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 10 20 30 40 50

C
D

F
 o

f S
D

mds_0

 0
 0.05

 0.1
 0.15

 0.2
 0.25

 0.3
 0.35

 0.4
 0.45

 0.5
 0.55

 0 10 20 30 40 50

usr_0

 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

 0 10 20 30 40 50

C
D

F
 o

f S
D

Stack Distance

stg_0

 0
 0.05

 0.1
 0.15

 0.2
 0.25

 0.3
 0.35

 0.4
 0.45

 0 10 20 30 40 50

Stack Distance

web_1

Figure 5.6: Stack Distance for Track Updates

By gradually separating the cold data from hot data and migrating the cold data to

the left side of the bands, Smart reduces unnecessary cold data movement during GC

operations and consequently the GC cost. We characterize all the available MSR traces

and �nd that all of them exhibit a good degree of temporal locality measured by the

stack distance between two successive updates to the same track, which indicates Smart

is suitable for these primary workloads. The temporal localities of the tested MSR traces

are shown in Figure 5.6. According to Figure 5.3, Smart improves the performance by

up to 25% when space utilization is over 50% or 70GB.

To exam the e�ectiveness of Smart for workloads with low temporal locality, we test

the two scheme using a synthetic workload with a uniform request o�set distribution. In

other words, data is evenly accessed and there is no hot or cold data. Again, its average

request size is 8 blocks and the inter-arrival time follows a normal distribution of which

the mean is 5ms and the standard deviation is 2ms. The result shows that the average

response time for Smart is about 5% longer at 90GB and about 6% longer at 120GB.

The main reason is that Smart incurs larger seek distances during GC operations while

100

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

30GB 60GB 90GB 120GB

R
es

p
o

n
se

 T
im

e
in

 m
s

Space Utilization

SYN

HDD

Smart

Greedy

R(4123)

IS

Figure 5.7: Performance Under SYN

Greedy only needs to append a victim to its nearest neighbour.

Smart vs. R(4123)

Our results show that the performance of Smart is more sustainable and better than

R(4123) after 30GB space utilization. This is mainly because R(4123) provides less

e�ective space than a Smart SWD and it su�ers write ampli�cation overhead much

earlier. For example, 60GB is over 50% of a R(4123) based I-SWD (112GB × 0.5 =

56GB) and thus it starts to incur write ampli�cations while 60GB is still less than 50%

of a Smart SWD. This can also be veri�ed by Figure 5.5 where the WAR for R(4123)

is already around 1.3 while Smart is still 1 at 60GB space utilization. This di�erence is

even more obvious when the space utilization is 90GB in our results.

Despite the fact that an I-SWD provides much less e�ective storage space and su�ers

write ampli�cations earlier, the bottom line is that it does not require any metadata such

as a mapping table.

Smart vs. IS

Figure 5.3 show that Smart can perform much better than the improved S-block based

indirection system (IS) under all space utilizations. The reasons are as follows.

101

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 2000
 4000

 6000
 8000

 10000

C
D

F
 o

f B
D

mds_0

 0
 0.02
 0.04
 0.06
 0.08

 0.1
 0.12
 0.14
 0.16
 0.18

 0 2000
 4000

 6000
 8000

 10000

usr_0

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 2000
 4000

 6000
 8000

 10000

C
D

F
 o

f B
D

Block distance in blocks

stg_0

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 2000
 4000

 6000
 8000

 10000

Block distance in blocks

web_1

Figure 5.8: Spatial Localities of Write Operations

First, due to the S-block organization, the IS scheme is not able to take advantage

of using alternate tracks when the space usage is no more than 50%. This means that

IS has to handle write ampli�cations since an empty drive.

Second, IS uses an E-region in the hope of accumulating small writes in it and later

destaging bulk data in the form of a (partial) S-block to the I-region during E-region

GCs. However, E-region GCs themselves come with performance overhead, let alone

small writes that belong to the same S-block are most likely scattered in the E-region

and require multiple reads. In fact, whether an E-region will eventually bene�t the

overall performance depends on the workload locality.

Our workload characterizations on the MSR traces �nd that these traces contain a

decent degree of spatial locality. Figure 5.8 plots the block distance between writes. A

distance of 10000 blocks is considered small enough when compared to the used Seagate

drive capacity. About 15% writes are within a distance of 10000 blocks for hm_0, usr_0,

stg_0 and about 30% for web_1. However, the performance data in Figure 5.3 shows

102

Table 5.3: Scheme Comparison Summary

Schemes E-region? Performance Sustainability Metadata Overhead Space Gain
HDD no best best no best
Smart no good good low good
O-SWD no good good low good
I-SWD no good fair no fair
IS yes not good not good high good

that IS is still far behind Smart. The write ampli�cation ratio of IS is also larger than

Smart according to Figure 5.5. This indicates that accumulating small writes in the

E-region does not o�set the overhead of E-region GCs in our experiments.

Besides, E-region requires a block level mapping table to track the blocks in it. A

6GB E-region (0.1% of a 6TB SWD) produces a mapping table of 96MB which imposes

additional challenges to the DRAM resource and metadata management. This is another

major reason that we do not use an E-region in T-STL.

Comparison Summary

We summarize the comparison results in Table 5.3. The schemes are compared according

to di�erent metrics including performance, performance sustainability and metadata

overhead. Smart is the most promising design which achieves a good balance among the

listed metrics. The table also shows that all the SWD designs are impacted by the space

utilization and their performance drops as the utilization grows (either faster or slower),

which needs to be further improved in the future studies.

5.4 Conclusion

In this chapter we propose a T-STL scheme for e�cient autonomous SWDs by exploiting

two unique properties in the SWDs. This new scheme performs copy-on-write updates

only when in-place updates is impossible. The track level mapping, when combined with

a novel space management scheme (Smart) can automatically �lter the cold data. The

Experiments with realistic workloads and a synthetic workload demonstrate that the

T-STL scheme can perform as good as regular HDDs under backup-like workload and

103

even under primary workloads when space usage is less than 50%.

Chapter 6

Conclusion and Discussion

An increasing number of organizations and researchers are migrating their big data

workloads to HPC systems for higher data processing e�ciency. Converged HPC systems

emerge to combine Hadoop/MapReduce framework with HPC system infrastructure.

Therefore, a mix of HPC workloads and big data workloads can be running in the same

converged HPC system. There are two major I/O and storage requirements in these

converged HPC systems: parallel I/O performance and storage capacity.

Parallel I/O performance is becoming more challenging as high performance comput-

ing techniques continuously evolve. Scalable and sustainable �le system and storage sys-

tems must be designed to bridge the speed gap between the demanding CPU throughput

and slower storage device performance. E�cient tools of I/O workload characterization

and generations are therefore needed to help redesign and tune these systems.

Therefore in this work, we propose a complete solution (called PIONNER) to parallel

I/O workload characterization and synthesizing which helps HPC system researchers and

developers understand parallel I/O workloads better. Unlike existing work, we deal with

several characteristics and challenges of parallel I/O workloads, including inter-process

correlations, I/O library complexities and dependencies, as well as speci�c �le access

patterns. In PIONEER, we �rst condense a given original parallel I/O workload into a

generic workload path by exploiting the inter-process correlations. Then we characterize

and model the resulting generic workload path to extract a set of parameters describing

all kinds of I/O characteristics. During this process, we build enforcement rules to

preserve I/O request dependencies and we model �le access patterns by pro�ling �le

104

105

open sessions. Next, we use the extracted characteristics to construct a synthetic generic

workload path based on desired parameter settings. PIONEER also includes a workload

generation engine that can expand the synthetic generic workload path into a complete

parallel I/O workload for a desired number of processes.

Parallel I/O performance is challenging for HPC systems mainly because of many

factors along the parallel I/O path. In this work, we motivate ourselves by investigating

the parallel I/O stack and exploring the correlations among factors such as �le access

pattern, parallel I/O modes and speci�c system parameters. We also propose a parallel

I/O model which takes into account multiple I/O factors including request size, I/O

access pattern, striping information to shed light on optimizing parallel I/O performance.

This model can also be used by other researchers and developers to facilitate their

work. Based on this knowledge, we propose IO-Engine, an intelligent I/O middleware

module instrumented to the existing MPI-IO library that can transparently optimize

HPC I/O workloads in Lustre system. IO-Engine can be extended to other parallel

�le systems using similar investigations. Moreover, IO-Engine can be further enhanced

with a certain amount of future I/O access pattern or workload knowledge, which can

be either provided by the developers/users or learned based on workload history using

machine learning techniques.

Another major function of converged HPC systems is high performance big data

analysis and one fundamental challenge in this aspect is the rapid data growth. The

demanding storage capacity requires new storage techniques to break the areal data den-

sity limit in the traditional perpendicular magnetic recording HDDs. SMR is the most

promising technique among several possible technologies due to its similar manufacturing

process to the traditional HDDs. SMR increases the areal data density by overlapping

neighbouring tracks and packing more tracks into disk platters with the same physical

dimension. The nature of shingling prefers writes to be done physically sequentially

which avoids overwriting tracks. In order to support random writes, two general ap-

proaches are investigated including the in-place update and out-of-place update, both

of which have to handle the write ampli�cation problem.

In this work, we �rst propose several new static address mapping schemes for in-

place update SWDs. Tracks in an SWD device are organized into logical concepts called

"Bands". One band is a group of neighbouring tracks. In-place update SWDs usually use

106

a smaller number of tracks per band to achieve a balance between space e�ciency and

overall performance. By appropriately changing the order of track allocations, the new

mapping schemes can reduce the write ampli�cation overhead signi�cantly compared to

a traditional track mapping scheme. Our experiments with four traces demonstrate that

new mapping schemes provide comparable performance to that of regular HDDs when

SWD space usage is less than 75%.

Next, we propose a T-STL scheme for e�cient autonomous SWDs by exploiting two

unique properties in the SWDs. This is motivated by the fact that in-place update SWDs

spend considerable amount of space on safety gaps that prevent writing to the last track

of a previous band from overwriting the tracks of the next band. T-STL solves this

problem by adopting an out-of-place oriented approach and using large bands. This new

scheme performs copy-on-write updates only when in-place update is impossible. The

track level mapping, when combined with a novel space management scheme (Smart)

can automatically �lter and migrate cold data to minimize garbage collection overhead.

The Experiments with realistic workloads and a synthetic workload demonstrate that

the T-STL scheme can perform as good as regular HDDs under backup-like workload

and even under primary workloads when space usage is less than 50%.

All the SWD schemes proposed in this work are designed for autonomous SWDs

because they can be incorporated into existing storage systems in a drop-in manner. On

the other hand, more research are needed to investigate the Host-managed and Host-

aware SWDs because it is believed that disk I/O performance can be maximized when the

host knowledge on workload characteristics are utilized for data management for SWDs.

The challenges of Host-managed and Host-aware SWDs lie in o�oading the physical

data management from the drives and incorporating into upper software layers. Typical

software layers include �le systems, databases and software RAID. To accomplish this,

an industrial standard must be proposed and agreed, new device commands need to be

de�ned in order to take advantage of SWD characteristics, and the software in the I/O

stack directly above SWDs must be revamped.

References

[1] Seref Sagiroglu and Duygu Sinanc. Big data: A review. In Collaboration Technolo-

gies and Systems (CTS), 2013 International Conference on, pages 42�47. IEEE,

2013.

[2] Infographic. https://www.domo.com/blog/2014/04/data-never-sleeps-2-0/.

[3] Je�rey Dean and Sanjay Ghemawat. Mapreduce: Simpli�ed data processing on

large clusters. In Proceedings of the 6th Conference on Symposium on Opearting

Systems Design & Implementation - Volume 6, OSDI'04, pages 10�10, Berkeley,

CA, USA, 2004. USENIX Association.

[4] Infographic. https://www.domo.com/blog/2014/04/data-never-sleeps-2-0/.

[5] Alex Wright. Big data meets big science. Communications of the ACM, 57(7):13�15,

2014.

[6] Daniel A Reed and Jack Dongarra. Exascale computing and big data. Communi-

cations of the ACM, 58(7):56�68, 2015.

[7] Sidharth N Kashyap, Ade J Fewings, Jay Davies, Ian Morris, Andrew

Thomas Thomas Green, and Martyn F Guest. Big data at hpc wales. arXiv

preprint arXiv:1506.08907, 2015.

[8] I. Tagawa and M. Williams. High density data-storage using shingled-write. Pro-

ceedings of the IEEE International Magnetics Conference (INTERMAG), 2009.

[9] Philip Carns, Robert Latham, Robert Ross, Kamil Iskra, Samuel Lang, and Kather-

ine Riley. 24/7 characterization of petascale i/o workloads. In Cluster Computing

107

https://www.domo.com/blog/2014/04/data-never-sleeps-2-0/
https://www.domo.com/blog/2014/04/data-never-sleeps-2-0/

108

and Workshops, 2009. CLUSTER'09. IEEE International Conference on, pages 1�

10. IEEE, 2009.

[10] Mark H Kryder, Edward C Gage, Terry W McDaniel, William A Challener,

Robert E Rottmayer, Ganping Ju, Yiao-Tee Hsia, and M Fatih Erden. Heat assisted

magnetic recording. Proceedings of the IEEE, 96(11):1810�1835, 2008.

[11] Elizabeth A Dobisz, Zvonomir Z Bandic, Tsai-Wei Wu, and Thomas Albrecht. Pat-

terned media: nanofabrication challenges of future disk drives. Proceedings of the

IEEE, 96(11):1836�1846, 2008.

[12] Akira Kikitsu, Yoshiyuki Kamata, Masatoshi Sakurai, and Katsuyuki Naito. Recent

progress of patterned media. Magnetics, IEEE Transactions on, 43(9):3685�3688,

2007.

[13] Prakash Kasiraj, Richard MH New, Jorge Campello De Souza, and Mason Lamar

Williams. System and method for writing data to dedicated bands of a hard disk

drive, February 10 2009. US Patent 7,490,212.

[14] Garth Gibson and Milo Polte. Directions for shingled-write and twodimensional

magnetic recording system architectures: Synergies with solid-state disks. Parallel

Data Lab, Carnegie Mellon Univ., Pittsburgh, PA, Tech. Rep. CMU-PDL-09-014,

2009.

[15] T10 Standard. http://www.t10.org.

[16] Seagate Archive HDD. http://www.seagate.com/products/

enterprise-servers-storage/nearline-storage/archive-hdd/.

[17] WD UltraStar Ha10. http://www.hgst.com/products/hard-drives/

ultrastar-archive-ha10.

[18] IOR2. http://sourceforge.net/projects/ior-sio/.

[19] NPB. http://www.nas.nasa.gov/publications/npb.html.

[20] FLASH-IO. http://www.mcs.anl.gov/research/projects/pio-benchmark.

http://www.t10.org
http://www.seagate.com/products/enterprise-servers-storage/nearline-storage/archive-hdd/
http://www.seagate.com/products/enterprise-servers-storage/nearline-storage/archive-hdd/
http://www.hgst.com/products/hard-drives/ultrastar-archive-ha10
http://www.hgst.com/products/hard-drives/ultrastar-archive-ha10
http://sourceforge.net/projects/ior-sio/
http://www.nas.nasa.gov/publications/npb.html
http://www.mcs.anl.gov/research/projects/pio-benchmark

109

[21] Dan Feng, Qiang Zou, Hong Jiang, and Yifeng Zhu. A novel model for synthesizing

parallel i/o workloads in scienti�c applications. In Cluster Computing, 2008 IEEE

International Conference on, pages 252�261. IEEE, 2008.

[22] Qiang Zou, Yifeng Zhu, and Dan Feng. A study of self-similarity in parallel i/o

workloads. In Mass Storage Systems and Technologies (MSST), 2010 IEEE 26th

Symposium on, pages 1�6. IEEE, 2010.

[23] LANL-Trace Framework. http://institute.lanl.gov/data/software/

#lanl-trace.

[24] MPI-IO Test. http://institutes.lanl.gov/data/software/index.php#mpi-io.

[25] Feng Wang, Qin Xin, Bo Hong, Scott A Brandt, Ethan L Miller, Darrell DE Long,

and Tyce T McLarty. File system workload analysis for large scale scienti�c comput-

ing applications. In Proceedings of the 21st IEEE/12th NASA Goddard Conference

on Mass Storage Systems and Technologies, pages 139�152, 2004.

[26] Philip Carns, Kevin Harms, William Allcock, Charles Bacon, Samuel Lang, Robert

Latham, and Robert Ross. Understanding and improving computational science

storage access through continuous characterization. ACM Transactions on Storage

(TOS), 7(3):8, 2011.

[27] Christopher Muelder, Carmen Sigovan, Kwan-Liu Ma, Jason Cope, Sam Lang,

Kamil Iskra, Pete Beckman, and Robert Ross. Visual analysis of i/o system behav-

ior for high-end computing. In Proceedings of the third international workshop on

Large-scale system and application performance, pages 19�26. ACM, 2011.

[28] James Oly and Daniel A Reed. Markov model prediction of i/o requests for scienti�c

applications. In Proceedings of the 16th international conference on Supercomputing,

pages 147�155. ACM, 2002.

[29] Mengzhi Wang, Anastassia Ailamaki, and Christos Faloutsos. Capturing the spatio-

temporal behavior of real tra�c data. Performance Evaluation, 49(1):147�163, 2002.

http://institute.lanl.gov/data/software/#lanl-trace
http://institute.lanl.gov/data/software/#lanl-trace
http://institutes.lanl.gov/data/software/index.php#mpi-io

110

[30] Christina Delimitrou, Sriram Sankar, Kushagra Vaid, and Christos Kozyrakis. Ac-

curate modeling and generation of storage i/o for datacenter workloads. In Pro-

ceedings of the 2nd Workshop on Exascale Evaluation and Research Techniques,

EXERT, Newport Beach, CA (March 2011), 2011.

[31] G Horn, Amund Kvalbein, J Blomskøld, and E Nilsen. An empirical comparison of

generators for self similar simulated tra�c. Performance Evaluation, 64(2):162�190,

2007.

[32] Will E Leland, Murad S Taqqu, Walter Willinger, and Daniel V Wilson. On the

self-similar nature of ethernet tra�c (extended version). Networking, IEEE/ACM

Transactions on, 2(1):1�15, 1994.

[33] Mark E Crovella and Azer Bestavros. Self-similarity in world wide web tra�c:

evidence and possible causes. Networking, IEEE/ACM Transactions on, 5(6):835�

846, 1997.

[34] Priscilla ASM Barreto, Paulo HP de Carvalho, Jose AM Soares, and H Abdalla Jr.

A tra�c characterization procedure for multimedia applications in converged net-

works. In Modeling, Analysis, and Simulation of Computer and Telecommunication

Systems, 2005. 13th IEEE International Symposium on, pages 153�160. IEEE, 2005.

[35] Christos Stathis and Basil Maglaris. Modelling the self-similar behaviour of network

tra�c. Computer Networks, 34(1):37�47, 2000.

[36] Maria E Gomez and Vicente Santonja. Analysis of self-similarity in i/o workload

using structural modeling. In Modeling, Analysis and Simulation of Computer and

Telecommunication Systems, 1999. Proceedings. 7th International Symposium on,

pages 234�242. IEEE, 1999.

[37] Vern Paxson and Sally Floyd. Wide area tra�c: the failure of poisson modeling.

IEEE/ACM Transactions on Networking (ToN), 3(3):226�244, 1995.

[38] Sriram Sankar and Kushagra Vaid. Storage characterization for unstructured data

in online services applications. In Workload Characterization, 2009. IISWC 2009.

IEEE International Symposium on, pages 148�157. IEEE, 2009.

111

[39] Minnesota Supercomputing Institute. https://www.msi.umn.edu/.

[40] Rajeev Thakur, William Gropp, and Ewing Lusk. Data sieving and collective i/o

in romio. In Frontiers of Massively Parallel Computation, 1999. Frontiers' 99. The

Seventh Symposium on the, pages 182�189. IEEE, 1999.

[41] Andy Konwinski, John Bent, James Nunez, and Meghan Quist. Towards an i/o

tracing framework taxonomy. In Proceedings of the 2nd international workshop on

Petascale data storage: held in conjunction with Supercomputing'07, pages 56�62.

ACM, 2007.

[42] Swapnil V Patil, Garth A Gibson, Sam Lang, and Milo Polte. Giga+: scalable

directories for shared �le systems. In Proceedings of the 2nd international workshop

on Petascale data storage: held in conjunction with Supercomputing'07, pages 26�29.

ACM, 2007.

[43] iPic3D. https://github.com/CmPA/iPic3D.

[44] Hongzhang Shan and John Shalf. Using ior to analyze the i/o performance for hpc

platforms. 2007.

[45] Itasca. https://www.msi.umn.edu/hpc/itasca.

[46] Gregory W Corder and Dale I Foreman. Nonparametric statistics: A step-by-step

approach. John Wiley & Sons, 2014.

[47] S Donovan, G Huizenga, AJ Hutton, CC Ross, MK Petersen, and P Schwan. Lus-

tre: Building a �le system for 1000-node clusters. In Proceedings of the Linux

Symposium, 2003.

[48] Robert B Ross, Rajeev Thakur, et al. Pvfs: A parallel �le system for linux clusters.

In Proceedings of the 4th annual Linux showcase and conference, pages 391�430,

2000.

[49] Frank B Schmuck and Roger L Haskin. Gpfs: A shared-disk �le system for large

computing clusters. In FAST, volume 2, page 19, 2002.

[50] HDF5 homepage. http://www.hdfgroup.org/HDF5/.

https://www.msi.umn.edu/
https://github.com/CmPA/iPic3D
https://www.msi.umn.edu/hpc/itasca
http://www.hdfgroup.org/HDF5/

112

[51] Jianwei Li, Wei-keng Liao, Alok Choudhary, Robert Ross, Rajeev Thakur, William

Gropp, Rob Latham, Andrew Siegel, Brad Gallagher, and Michael Zingale. Par-

allel netcdf: A high-performance scienti�c i/o interface. In Supercomputing, 2003

ACM/IEEE Conference, pages 39�39. IEEE, 2003.

[52] Weikuan Yu and Je�rey Vetter. Parcoll: Partitioned collective i/o on the cray

xt. In Parallel Processing, 2008. ICPP'08. 37th International Conference on, pages

562�569. IEEE, 2008.

[53] Yong Chen, Xian-He Sun, Rajeev Thakur, Philip C Roth, and William D Gropp.

Lacio: A new collective i/o strategy for parallel i/o systems. In Parallel & Dis-

tributed Processing Symposium (IPDPS), 2011 IEEE International, pages 794�804.

IEEE, 2011.

[54] JG Bias, Florin Isail , David E Singh, and Jesús Carretero. View-based collective

i/o for mpi-io. In Cluster Computing and the Grid, 2008. CCGRID'08. 8th IEEE

International Symposium on, pages 409�416. IEEE, 2008.

[55] Wei-keng Liao and Alok Choudhary. Dynamically adapting �le domain partitioning

methods for collective i/o based on underlying parallel �le system locking protocols.

In High Performance Computing, Networking, Storage and Analysis, 2008. SC 2008.

International Conference for, pages 1�12. IEEE, 2008.

[56] Robert McLay, Doug James, Si Liu, John Cazes, and William Barth. A user-friendly

approach for tuning parallel �le operations. In High Performance Computing, Net-

working, Storage and Analysis, SC14: International Conference for, pages 229�236.

IEEE, 2014.

[57] Mohamad Chaarawi and Edgar Gabriel. Automatically selecting the number of

aggregators for collective i/o operations. In Cluster Computing (CLUSTER), 2011

IEEE International Conference on, pages 428�437. IEEE, 2011.

[58] Weifeng Liu, Isaias A Urena, Michael Gerndt, and Bin Gong. Automatic mpi-io

tuning with the periscope tuning framework. In Parallel & Distributed Processing

Symposium Workshops (IPDPSW), 2014 IEEE International, pages 352�360. IEEE,

2014.

113

[59] Joachim Worringen. Self-adaptive hints for collective i/o. In Recent Advances in

Parallel Virtual Machine and Message Passing Interface, pages 202�211. Springer,

2006.

[60] Rajeev Thakur, William Gropp, and Ewing Lusk. On implementing mpi-io portably

and with high performance. In Proceedings of the sixth workshop on I/O in parallel

and distributed systems, pages 23�32. ACM, 1999.

[61] mpich2 versions. http://www.mpich.org/.

[62] Open-MPI. http://www.open-mpi.org/.

[63] Rajeev Thakur, Ewing Lusk, and William Gropp. Users guide for romio: A high-

performance, portable mpi-io implementation. Technical report, Technical Report

ANL/MCS-TM-234, Mathematics and Computer Science Division, Argonne Na-

tional Laboratory, 1997.

[64] Kent E Seamons, Ying Chen, P Jones, J Jozwiak, and Marianne Winslett. Server-

directed collective i/o in panda. In Supercomputing, 1995. Proceedings of the

IEEE/ACM SC95 Conference, pages 57�57. IEEE, 1995.

[65] Babak Behzad, Huong Vu Thanh Luu, Joseph Huchette, Surendra Byna, Ruth

Aydt, Quincey Koziol, Marc Snir, et al. Taming parallel i/o complexity with auto-

tuning. In Proceedings of the International Conference on High Performance Com-

puting, Networking, Storage and Analysis, page 68. ACM, 2013.

[66] Babak Behzad, Surendra Byna, Stefan M Wild, Mr Prabhat, and Marc Snir. Im-

proving parallel i/o autotuning with performance modeling. In Proceedings of the

23rd international symposium on High-performance parallel and distributed comput-

ing, pages 253�256. ACM, 2014.

[67] Rajeev Thakur, William Gropp, and Ewing Lusk. An abstract-device interface for

implementing portable parallel-i/o interfaces. In Frontiers of Massively Parallel

Computing, 1996. Proceedings Frontiers' 96., Sixth Symposium on the, pages 180�

187. IEEE, 1996.

[68] mpi-tile-io. http://www.mcs.anl.gov/~thakur/pio-benchmarks.html.

http://www.mpich.org/
http://www.open-mpi.org/
http://www.mcs.anl.gov/~thakur/pio-benchmarks.html

114

[69] Feiyi Wang, Sarp Oral, Galen Shipman, Oleg Drokin, Tom Wang, and Isaac Huang.

Understanding lustre �lesystem internals. Oak Ridge National Laboratory, National

Center for Computational Sciences, Tech. Rep, 2009.

[70] Anthony Chan, William Gropp, and Ewing Lusk. User's guide for mpe exten-

sions for mpi programs. Technical report, Technical Report ANL-98/xx, Ar-

gonne National Laboratory, 1998. The updated version is at ftp://ftp. mcs. anl.

gov/pub/mpi/mpeman. ps, 1998.

[71] HDD Doinate Data Storage. http://seekingalpha.com/article/

1481641-how-long-will-the-hdd-dominate-data-storage-more-than-long-enough.

[72] Ahmed Amer, JoAnne Holliday, Darrell DE Long, Ethan L Miller, J Paris, and

Thomas Schwarz. Data management and layout for shingled magnetic recording.

Magnetics, IEEE Transactions on, 47(10):3691�3697, 2011.

[73] WA Challener, C Peng, AV Itagi, D Karns, Y Peng, X Yang, X Zhu, NJ Gokemeijer,

Y-T Hsia, G Ju, et al. The road to hamr. In Magnetic Recording Conference, 2009.

APMRC'09. Asia-Paci�c, pages 1�2. IEEE, 2009.

[74] Robert E Rottmayer, Sharat Batra, Dorothea Buechel, William A Challener, Julius

Hohlfeld, Yukiko Kubota, Lei Li, Bin Lu, Christophe Mihalcea, Keith Mount-

�eld, et al. Heat-assisted magnetic recording. Magnetics, IEEE Transactions on,

42(10):2417�2421, 2006.

[75] Roger Wood, Mason Williams, Aleksandar Kavcic, and Jim Miles. The feasibility of

magnetic recording at 10 terabits per square inch on conventional media. Magnetics,

IEEE Transactions on, 45(2):917�923, 2009.

[76] Weiping He and David HC Du. Novel address mappings for shingled write disks.

In 6th USENIX Workshop on Hot Topics in Storage and File Systems (HotStorage

14). USENIX Association.

[77] Damien Le Moal, Zvonimir Bandic, and Cyril Guyot. Shingled �le system host-

side management of shingled magnetic recording disks. In Consumer Electronics

(ICCE), 2012 IEEE International Conference on, pages 425�426. IEEE, 2012.

http://seekingalpha.com/article/1481641-how-long-will-the-hdd-dominate-data-storage-more-than-long-enough
http://seekingalpha.com/article/1481641-how-long-will-the-hdd-dominate-data-storage-more-than-long-enough

115

[78] Ahmed Amer, Darrell DE Long, Ethan LMiller, J-F Paris, and SJT Schwarz. Design

issues for a shingled write disk system. In Mass Storage Systems and Technologies

(MSST), 2010 IEEE 26th Symposium on, pages 1�12. IEEE, 2010.

[79] Chung-I Lin, Dongchul Park, Weiping He, and David HC Du. H-swd: Incorporating

hot data identi�cation into shingled write disks. In Modeling, Analysis & Simula-

tion of Computer and Telecommunication Systems (MASCOTS), 2012 IEEE 20th

International Symposium on, pages 321�330. IEEE, 2012.

[80] Yuval Cassuto, Marco AA Sanvido, Cyril Guyot, David R Hall, and Zvonimir Z

Bandic. Indirection systems for shingled-recording disk drives. In Mass Storage

Systems and Technologies (MSST), 2010 IEEE 26th Symposium on, pages 1�14.

IEEE, 2010.

[81] David Hall, John H Marcos, and Jonathan D Coker. Data handling algorithms for

autonomous shingled magnetic recording hdds. Magnetics, IEEE Transactions on,

48(5):1777�1781, 2012.

[82] Chao Jin, Wei-Ya Xi, Zhi-Yong Ching, Feng Huo, and Chun-Teck Lim. Hismrfs: A

high performance �le system for shingled storage array. In Mass Storage Systems

and Technologies (MSST), 2014 30th Symposium on, pages 1�6. IEEE, 2014.

[83] Abutalib Aghayev and Peter Desnoyers. Skylightâ��a window on shingled disk

operation. In Proceedings of the 13th USENIX Conference on File and Storage

Technologies, FAST 2015, Santa Clara, CA, USA, February 16-19, pages 135�149,

2015.

[84] Jiguang Wan, Nannan Zhao, Yifeng Zhu, Jibin Wang, Yu Mao, Peng Chen, and

Changsheng Xie. High performance and high capacity hybrid shingled-recording

disk system. In Cluster Computing (CLUSTER), 2012 IEEE International Confer-

ence on, pages 173�181. IEEE, 2012.

[85] D. Luo, J. Wan, Y. Zhu, N. Zhao, F. Li, and C. Xie. Design and implementation

of a hybrid shingled write disk system. Parallel and Distributed Systems, IEEE

Transactions on, PP(99):1�1, 2015.

116

[86] Garth Gibson and Greg Ganger. Principles of operation for shingled disk devices.

Technical report, Tech. Rep. CMU-PDL-11-107, Carnegie Mellon University, 2011.

[87] MSR Cambridge Block I /O Traces. http://iotta.snia.org/traces/list/

BlockIO.

[88] DiskSim. http://www.pdl.cmu.edu/DiskSim/.

[89] University of Massachusetts Amhesrst Storage Traces. http://traces.cs.umass.

edu/index.php/Storage/Storage.

[90] Youyou Lu, Jiwu Shu, Weimin Zheng, et al. Extending the lifetime of �ash-based

storage through reducing write ampli�cation from �le systems. In FAST, pages

257�270, 2013.

[91] Seagate Cheetah 15K.5 FC product manual. http://www.seagate.

com/staticfiles/support/disc/manuals/enterprise/cheetah/15K.5/FC/

100384772f.pdf.

http://iotta.snia.org/traces/list/BlockIO
http://iotta.snia.org/traces/list/BlockIO
http://www.pdl.cmu.edu/DiskSim/
http://traces.cs.umass.edu/index.php/Storage/Storage
http://traces.cs.umass.edu/index.php/Storage/Storage
http://www.seagate.com/staticfiles/support/disc/manuals/enterprise/cheetah/15K.5/FC/100384772f.pdf
http://www.seagate.com/staticfiles/support/disc/manuals/enterprise/cheetah/15K.5/FC/100384772f.pdf
http://www.seagate.com/staticfiles/support/disc/manuals/enterprise/cheetah/15K.5/FC/100384772f.pdf

	Acknowledgements
	Dedication
	Abstract
	List of Tables
	List of Figures
	Introduction
	I/O in High Performance Computing
	Storage Systems with Large Capacity
	Contributions
	Organization

	Parallel I/O Characterizations and Generation
	Introduction
	Background
	Parallel I/O Workloads
	Assumed HPC Environment
	Parallel I/O Software Applications

	Related Work
	Characteristics of Parallel I/O Workloads
	Inter-Process Correlations
	Complexities of I/O Libraries
	File Access Pattern

	Approaches to Uniqueness
	Generic Workload Path
	I/O Library Enforcement
	Framework of File Open Sessions

	Procedure of A Complete Solution
	Sanitization Phase
	Generic Workload Path Extraction Phase
	Characterization Phase
	Synthetic Generic Workload Path Generation Phase
	Parallel I/O Generation Phase

	Evaluation
	Target Applications and Traces
	Comparison Metrics

	Conclusions

	Parallel I/O Optimizations
	Introduction
	Background
	File Types and MPI-IO
	Access Patterns
	Parallel I/O Modes
	File Allocations

	Related Work
	Motivation and Problem Definition
	Proposed Solution: IO-Engine
	Overview
	Heuristics Details and Justifications
	Implementation

	Evaluation
	Extended Work
	Conclusions

	In-place Update SWDs
	Introduction
	SWD Layout
	Related Work
	Motivation
	Space Gain Tradeoff
	LBA-to-PBA mapping

	Novel Static Address Mapping Schemes
	General Principles
	Mapping Scheme ``R(4123)''
	Mapping Scheme ``124R(3)''
	Mapping Scheme ``14R(23)''
	Performance Prediction for Updates

	Experimental Evaluations
	Enhanced DiskSim
	Traces
	Experiment Design
	Result Discussions

	Conclusions

	Out-of-place Update SWDs
	Introduction
	The T-STL Scheme
	Aggressive Track Update
	Track Level Mapping Table
	Space Elements
	SWD Space Management
	T-STL for Cold Workload
	T-STL Reliability

	Evaluations
	T-STL Implementation
	Schemes to Be Compared
	Experiment Design
	Result Discussions

	Conclusion

	Conclusion and Discussion
	References

