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Abstract

Constructing prediction models for real-world domains often involves practical complexities

that must be addressed to achieve good prediction results. Often, there are too many sources of

data (features). Limiting the set of features in the prediction model is essential for good perfor-

mance, but prediction accuracy may be degraded by the inadvertent removal of relevant features.

The problem is even more acute in situations where the number of training instances is limited,

as limited sample size and domain complexity are often attributes of real-world problems. This

thesis explores the practical challenges of building regression models in large multivariate time-

series domains with known relationships between variables. Further, we explore the conventional

wisdom related to preparing datasets for model calibration in machine learning, and discuss best

practices for learning time-varying concepts from data.

The core contribution of this work is a novel wrapper-based feature selection framework called

Developer-Guided Feature Selection (DGFS). It systematically incorporates domain knowledge

for domains characterized by a large number of observable features. The observable features may

be related to each other by logical, temporal, or spatial relationships, some of which are known to

the model developer a priori. The approach relies on limited domain-specific knowledge but can

replace or improve upon more elaborate domain specific models and on fully automated feature

selection for many applications. As a wrapper-based approach, DGFS can augment existing

multivariate techniques used in high-dimensional domains to produce improved modeling results

particularly in situations where the volume of training data is limited. We demonstrate the

viability of our method in several complex domains (natural and synthetic) that have significant

temporal aspects and many observable features.
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Chapter 1

Introduction

The task of learning concepts automatically from data is changing rapidly in the era of “big

data”. More and more data is being collected about natural phenomena, social processes,

and business decisions than ever before. It is essential to find new methods and application

domains to fully unlock the new opportunities for improved decision-making enabled by this

new era of knowledge. This work is a step toward developing systematic learning techniques for

domains with many relevant sources of information. The contributions here can systematically

augment already very powerful domain independent learning algorithms with additional domain

knowledge. The existing body of work on machine learning models is extensive and many

methods have desirable theoretical properties. We propose to leverage these existing benefits

while simultaneously improving models built for difficult learning scenarios by leveraging domain

knowledge. This allows for more accurate models in challenging scenarios in which there are

both many potential inputs and when the amount of observation instances is limited (possibly

due to availability challenges or expense).

Traditional machine learning models applied to real-world data involving many data sources

(“multivariate domains”) perform best when all variables used in prediction are relevant and

informative. Early prediction models were driven significantly by human expert advice both in

model selection (the approximating function) and in feature selection (the variables provided to

the function). As the scope of available data and available processing power have both increased,

both general algorithms and automated feature selection methods have come to the forefront.

Feature selection is often formulated as an optimization process that prunes the set of in-

put variables prior to calibrating the final learning model used for prediction. Some machine

learning algorithms perform feature selection internally by implementing a decision model that

only considers a subset of the features (decision trees and “LASSO” are examples of such meth-

ods). Some feature selection methods are external to the learning model and do not consider

1
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the learning model at all for determining a feature subset. Automated methods can give the

impression that there is no need to limit the variables used for learning as excess features can

be pruned by feature selection (external or internal). However, even with automated feature

selection, including all potentially relevant variables in the feature set can degrade prediction

performance when compared to using a more minimal and relevant subset. External feature

selection methods from the literature are often fully automated (except for some tuning pa-

rameters) and consider all variables as equally likely to be predictive. In practice, all variables

are not equally informative. There is significant information contained in the relationships be-

tween variables in many domains. For example, Bayesian networks are a method where a prior

distribution is used to encode such knowledge.

To leverage this information in feature selection, we propose a framework for feature se-

lection designed for domains that have a strong temporal or spatial component with a large

number of (possibly) related variables. The framework, called Developer-Guided Feature Selec-

tion (DGFS)1, systematically incorporates domain knowledge into the feature selection process

to improve performance of the prediction model. This method is valuable in cases where learning

efficiency is a concern, such as when the number of training samples is limited or the number of

feature set evaluations must be constrained. A diagram showing the evaluation process is shown

in Figure 1.1.

We validate this approach with empirical results in four domains:

• First, we present experiments in an artificial data domain for the purpose of testing the

properties of our method. Synthetic data provides great opportunities to systematically

study the power of the proposed methods in a controlled environment. We encode specific

relationships in a noisy multivariate dataset and embark on a model recovery experiment

to show the efficacy of our approach. Variable relevance and time-offset relationships

can also be inferred based on the results of the feature selection search. The discussion

outlines the additional domain knowledge to be discovered through the feature selection

search process.

This domain mimics the spatial and temporal properties of real-world time series data. In

particular, two artificial datasets are used to examine (1) the effect of reduced training set

size (which can make calibration harder) and (2) the effect of many irrelevant variables

in prediction. As these are artificial datasets, long observation sequences are generated,

and many complete datasets generated from unique initial random seeds are used in the

analysis. The ability to generate samples with no limits allows for thorough statistical

analyses to be performed when comparing methods (which is often not possible in natural

1In our previous work [Groves and Gini, 2013b], this framework is called User-Guided Feature Selection. The
change more accurately reflects the source of knowledge used in the bias.
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Figure 1.1: A diagram showing the information flow in the feature selection search process using
Developer-Guided Feature Selection (DGFS). Dotted lines show domain knowledge provided by
the practitioner when building a model. A “∗” denotes information specific to model construction
with DGFS.

domains).

• The second application shows the promise of the proposed method in a decision making

context. In the real-world domain of airline ticket price prediction, we show how the

method can reduce consumer purchase costs. While there are existing studies of the airline

ticket purchasing task, there are many limitations of the existing works. Our methods

significantly extend the state-of-the-art in this domain in terms of prediction performance

(with the objective of reducing costs for customers) and in terms of the specificity of the

models (by showing the effect of modeling specific user preferences such as non-stop only

flights on a specific airline). These prediction improvements are achieved in our method

by grouping the many observable variables in the domain based on specificity (i.e. how

much aggregation is involved in each statistic). The feature selection process balances

complexity with accuracy in a domain with few observation instances (≈ 250) in relation

to the number of variables (≈ 92). The computed models achieve an average purchase

cost reduction of 7% over the näıve (“earliest purchase”) strategy.

This natural data domain involving optimal airline ticket purchasing from the consumer’s

perspective is challenging principally because buyers have insufficient information for rea-

soning about future price movements. Our model uses historical price quotes to compute
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expected future price statistics for all available flights on specific routes and dates. Ad-

ditionally, we extend the modeling to predict itineraries with specific desirable properties

such as flights from a specific airline, non-stop only flights, or multi-segment flights. These

models are facilitated by a large corpus of data collected from an automated data collec-

tion process that yielded a daily price quotes for a 109 day period from all airlines for 7

different origin-destination pairs (including both US domestic and international routes).

Each query returned on average 1,200 unique round trip itineraries from all airlines; most

queries returned results from more than 10 airlines. Because of the high level of detail of

this data set, it is possible to leverage price trends as well as competitive pricing relation-

ships between airlines to improve prediction. Our results show that users can lower the

average cost of purchases in the 2 month period prior to a desired departure. Our method

compares favorably with a deployed commercial web site providing similar purchase policy

recommendations [Groves and Gini, 2015].

• The third domain is from the real-world application of river/stream flow prediction. Hu-

man activities can effect the natural environment and efficient modeling of these changing

natural processes is an important contribution for improving decision making. DGFS is

utilized to find a regression model that incorporates multiple data sources (stream flow

measurements and future precipitation predictions) and time lagged variables. The model

has improved prediction accuracy over conventional machine learning models. We make

predictions about flows on the Mississippi River network using hourly flow measurements

and precipitation data from the US NOAA (National Oceanic and Aeronautical Adminis-

tration) using two years of data.

This domain is characterized by a strong interaction of spatial and temporal features. In

this domain, predictions are made for future river flows from 12 to 120 hours ahead at a

specific measurement site in the river network. Previously observed flow information at

upstream sites as well as predicted precipitation information are the features available for

prediction. Physical relationships between sites are the source of the constraints leveraged

to improve prediction. The dataset contains over two years of flow and precipitation

prediction samples at one hour resolution at each of the measurement sites.

• Our fourth application is on price prediction in a multi-agent supply chain management

simulation and competition. Decision making for manufacturing is becoming more system-

atic (e.g. by employing statistical techniques for determining optimal decision making).

Future needs in sales, production, and procurement can be anticipated through automated

analysis of the changing market environment. The Trading Agent Competition in Supply

Chain Management is a multi-agent competition which is designed to test fully automated
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business strategies. Our experiments in this domain involve estimating future prices for

products based on price information from 10 manufacturing inputs and 15 manufactured

product outputs. All of these prices are themselves varying over time due to market

forces that are emergent from the actions of other manufacturers and from environmen-

tal stochasticity. The DGFS framework is applied to find a relevant feature subset that

improves price prediction accuracy. This approach finds statistically significant improve-

ments in future (20 days ahead) manufacturing input prices that are better than existing

published state-of-the-art approaches for this domain. This domain is well studied by

others in the development of automated trading agents, but this prediction problem is

challenging due to the large number of possibly relevant variables, few observations (220

time units per simulation which approximates one year of daily decision making), and

rapid price changes due to competition.

Economic analysis [Groves et al., 2009] and prediction [Groves and Gini, 2013a] relevant to

the Trading Agent Competition for Supply Chain Management (TAC SCM) is a challeng-

ing application domain due to the many specially tuned processes already implemented for

competition. TAC SCM is a multi-agent supply chain simulation involving an oligopoly of

competing, fully autonomous agents who seek to maximize profit. In the simulation, agents

purchase component parts from suppliers, construct computers with the component parts,

and sell the computers to customers. This is a complex simulation competition with an an-

nual tournament that has attracted since 2003 teams from around the world [Collins et al.,

2006]. In each tournament year, there are many (usually 18) repeated tournament rounds

with the same mixture of manufacturing agents but with different stochastic environmental

conditions. Data available from a single agent’s perspective in these repeated encounters

is used as the data source for these experiments. A stylized information flow diagram for

the supply chain domain is shown in Figure 1.2.

The key features of our Developer-Guided Feature Selection (DGFS) method are (1) that

instances of time-delayed features are included, (2) a domain-specific feature similarity hierarchy

is leveraged, and (3) the features used in prediction are added or pruned based on in-situ

performance. Because of these novel features, our method is able to perform well relative to

other machine-learning models on high-dimensional datasets when the amount of training data

is limited.
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Figure 1.2: A diagram showing the information flow in the supply chain domain. The solid
lines represent complete information flows, and the dotted lines represent indirect or partially
observable information flows.

1.1 Contributions

The essential contributions of this thesis include:

• Providing an overview of feature selection methods applicable to regression and classifi-

cation on real data. While our focus is on the regression case, many methods applied to

classification are also relevant to feature selection in regression, so they are also included.

• Measuring the effectiveness of using time-delayed observations as elements in the feature

vector for learning.

• Demonstrating feature categorization using a feature class hierarchy which guides the

inclusion of variables into the feature set selection process.

• Extracting domain knowledge from the resulting models (both from the model parameters,

depending on support from the model, and from the selected feature set).

• Discussing fully-automated approaches to feature selection that have become popular in

the literature for use in domains with many variables.

• Systematically demonstrating the use of a hierarchical feature set on temporal data.

• Showing how hierarchical feature set selection can contribute to improved prediction

modeling (over fully automated, domain-independent methods) in airline ticket prices,

river/stream flow, and supply chain domains. These domains are characterized by 1)

known relationships (possibly spatial or logical) between variables, 2) a large number of

variables potentially relevant to prediction, and 3) a relatively small number of observa-

tions relative to the number of variables.
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• Discovering, specifically in the airline ticket domain, general airline pricing principles based

on specific airlines and purchase preferences.

1.2 Chapter Summary

• Chapter 1 introduces the analytic goals pursued in this thesis. We motivate our discussion

and analysis approach.

• Chapter 2 discusses related work both for general feature selection approaches and for

prediction models in the domains studied.

• Chapter 3 provides the algorithmic details of the proposed feature selection framework

used in the application domains.

• Chapter 4 introduces a synthetic data domain which is used to experimentally validate

properties of the proposed method. We examine topics including sensitivity to non-

stationary concepts, training set size, and irrelevant variables. This domain mimics the

relationships observed in both the physical and the economic real-world application do-

mains.

• Chapter 5 applies the proposed DGFS framework to airline ticket price prediction.

• Chapter 6 introduces the river-flow application domain. This domain has significant spatial

and temporal relationships between features.

• Chapter 7 demonstrates DGFS applied to price prediction in a supply chain domain.

• Chapter 8 concludes the thesis with thoughts on the future of feature selection with

developer-guided and data-driven methods.

• Appendix A provides extended experimental results for the synthetic data domain.

• Appendix B shows additional result details from the river flow domain for the interested

reader.



Chapter 2

Literature Review

This chapter provides a general survey of feature selection approaches relevant for classification

and regression in real-world application domains. Much of the existing work on large multivariate

problems is in the context of classification (i.e. assigning a class label to each sample), but many

of these principles are also readily applicable to the regression context (i.e. assigning a real or

integer value as a label to each sample) as well. On the topic of feature selection, we examine

the available data and the types of variable relationships that are commonly observed in real

data.

We later survey the learning models that have been applied to real-world multivariate do-

mains. Feature selection can also be posed as an algorithm parameter setting task (“hyperpa-

rameter optimization”), and we discuss the state-of-the-art approaches for this process. Finally,

the design of the experimental protocols is also discussed related to both the dataset splitting

(cross-validation) approach and prediction model evaluation.

2.1 Feature Selection

The process of feature selection involves finding a subset of features (variables) from the original

set that is then used for machine learning from data. The intent is to find a feature subset that

is more desirable than the original large set. For a comprehensive overview of the historical

context and of the range of existing approaches see [Guyon and Elisseeff, 2003] and [Hall, 1999].

Methods of feature selection in machine learning exist along a continuum based on the degree

of automation and developer input required (Figure 2.1). Studying the degree of automation is

a particular focus of this thesis.

In the simplest case, the developer encodes a feature selection implicitly in the choices of

features provided to the learning algorithm (i.e. a developer driven approach). The developer

8
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Figure 2.1: Feature selection continuum based on the degree of developer input

(fully automated)
Data Driven

(manual)
User Driven

(biased)
Model Developer Guided

Expert/Ad−hoc Methods Developer Guided Feature Selection (DGFS)Correlation−based Feature Selection (CFS)
Best−first Feature Seleciton (BFS)

may tune the model by experimenting with additions and removals of features until some per-

formance level is reached. The choice of learning model is often varied in the quest for improved

performance as well. Domain practitioners often have knowledge of the basic underlying phys-

ical or social processes which generate the data, so they may be well suited to perform some

optimization in both model choice and feature selection.

At the other end of the spectrum, feature selection can be handled by a specialized algorithm

for this purpose. This is particularly useful in domains where there are many features (100s or

1000s) that are potentially relevant to the prediction. Some amount of feature selection may be

performed implicitly in the chosen learning algorithm through a weighting of variables.

This work proposes a middle path in which domain knowledge about relationships between

features is incorporated in a systematic way with an explicit feature selection process, called

Developer-Guided Feature Selection (DGFS). But first, we will discuss advances in fully auto-

mated methods that consider only the dataset itself.

2.1.1 Data Driven Feature Selection

In the machine learning literature, considerable effort has been directed towards building robust

models and calibration methods that work well in large multivariate domains and are resistant

to the presence of non-predictive variables. These learning algorithms perform feature selection

internally by building models that operate over only a subset of the variables. In the terminology

of Hall [1999], these are called embedded methods. Additionally, there are two types of explicit

methods performing feature selection as a separate process: filter approaches (the feature set

chosen is independent of the learning algorithm used), and wrapper approaches (the feature set

is chosen through performance evaluation of the calibrated learning algorithm). Table 2.1 briefly

compares these three categories of data driven feature selection methods.

2.1.2 Black-Box/Wrapper Methods

Wrapper-based feature selection refers to methods that use the final learning model as a black-

box to measure the fitness of candidate feature subsets. This is implemented often as an outer-

loop optimization process involving many evaluations of candidate subsets to arrive at a good
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Table 2.1: Taxonomy of data driven feature selection methods.

Wrapper Methods

• Measures performance of feature set using chosen ML algorithm
and picks the set using the measured performance.
• Survey Reference: [Kohavi and John, 1997]
• Algorithms: Best-First Search [Kohavi and John, 1997], Simulated
Annealing, Genetic Algorithms, Random Forest, Developer-Guided
Feature Selection [Groves, 2013]

Filter Methods
• Feature selection is independent of ML algorithm.
• Survey Reference: [Hall, 1999]
• Algorithms: Variable Ranking, Correlation-based Feature Selection
[Hall, 2000], RELIEF [Kira and Rendell, 1992], one (simple) algo-
rithm as filter for another (complex)

Embedded Methods
• Feature selection is performed implicitly within a learning algo-
rithm.
• Survey References: [Guyon and Elisseeff, 2003; Hastie et al., 2001]
• Algorithms: Decision Trees, Neural Networks, LASSO, . . .

candidate. At a high level, these methods generate a candidate feature subset which is then

used to train a model. The model is then evaluated. This evaluation is repeated many times

until some stopping criteria is met. The best observed candidate subset is then chosen as the

final augmented feature set. The benefit of this approach is that the evaluation criteria is

relevant to the learning algorithm. This is in contrast to the filter-based approach: the learning

algorithm (e.g. multivariate regression) may be very different from the feature selection criteria

(e.g. correlation).

The Developer-Guided Feature Selection (DGFS) method, presented in this thesis, is a

wrapper-based approach. In the feature selection process, many candidate feature sets are

evaluated using the chosen learning algorithm. These evaluations are used to determine the

final feature set. From the literature, the Best-first Feature Selection (BFS) algorithm is also an

example of a wrapper method and uses a similar evaluation process [Kohavi and John, 1997].

DGFS extends BFS in several ways: first, by constraining the search space of candidate feature

sets, second, through the choice of search process, and third, through the addition of time shifted

variables to the feature set. Both of these methods are examined in detail in Chapter 3.

It is important to note that feature selection can also be formulated as an algorithm pa-

rameter (hyperparameter) optimization process as well (see also Section 2.4). There are many

parallels between these classes of methods.

2.1.3 Filter Methods

Filter-based feature selection uses an inexpensive to compute heuristic that is learning algorithm

independent to construct a feature subset which is then passed to the learning algorithm. Filter

methods are machine learning algorithm agnostic and are not tuned for any particular algorithm.
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Also, there is no need for a validation set (unlike in the wrapper approach), so the validation

set instances can be used to supplement the training set instances.

Filter methods often correlation-based and, therefore, work best on categorical or binary

variables. The RELIEF algorithm (in the binary classification case) measures the relevance

of each feature relative to the target using correlation Kira and Rendell [1992]. It is a ran-

domized algorithm that iteratively selects a training sample. It updates the relevance weight

of each feature using distance information computed from the nearest same-class sample and

the nearest different-class sample. Features are relevant if they exceed a relevance threshold.

This method is simple, but it cannot handle dependencies between features. For example,

multi-feature dependencies present in a two-variable XOR problem cannot be handled with this

approach Guyon and Elisseeff [2003].

In Correlation-Based Feature Selection (CFS), the heuristic used is Pearson’s correlation

which is measured both between independent variable-dependent variable pairs and between

pairs of independent variables. It measures the fitness of subsets of variables in its search

process [Hall, 1999]. The final feature set used for learning is found through a best first search

of possible subsets. The final feature set does not depend on the choice of machine learning

algorithm which may be an advantage because the final algorithm used can be very expensive

to calibrate.

This approach is not optimal in general and cannot determine dependencies between vari-

ables: it assumes the covariance matrix between independent variables is diagonal. One advan-

tage is that this approach is readily parallelizable is inexpensive to evaluate (a worse case of

O(n2) in terms of the number of variables but each evaluation is inexpensive and need only be

performed once during the search). This method is used as a benchmark and is discussed in

implementation-level detail in Chapter 3.

2.1.4 Embedded Methods

Learning algorithms with embedded feature selection are methods that build a model that only

uses a subset of the input variables to compute the response. Many popular machine learning

algorithms have this property including decision trees, artificial neural networks, and LASSO.

The embedded approach to feature selection has several advantages. Embedded methods

can use the full training set for calibration and avoids the use of an out-of-sample validation

set. By calibrating using as much data as possible for training, the model may be able to learn

concepts more fully than wrapper methods which require a hold out set to evaluate candidate

subsets. Also because of the tight integration between feature selection and learning, the learner

may be more computationally efficient than filter or wrapper methods.
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Feature selection and learning model complexity are related. In machine learning, the expres-

sive power of the model is well understood for many algorithms. Even from simple components,

the expressiveness of many models can fully encode an almost unlimited range of relationships

between independent variables and the dependent variable. For example, neural network mod-

els of sufficient complexity, in terms of the number of hidden nodes and layers, can encode

any arbitrary mathematical function [Russell and Norvig, 1995]. The central challenges of ap-

plied machine learning are in 1) choosing the model to calibrate, and 2) to calibrate the model

successfully given (possibly limited or noisy) data.

In the general area of Statistical Learning Theory, the concept of Structural risk minimization

(SRM) addresses the tradeoff between goodness-of-fit of the model to the training data and the

complexity of the model [Vapnik, 1998]. SRM prescribes that models should be evaluated using

a single loss measure that encompasses both concepts:

model score = empirical risk + complexity penalty (2.1)

Applying the statistical learning theory concepts also allows for comparisons of models with

different structures or construction techniques. Two general measures of machine learning al-

gorithm complexity are degrees-of-freedom and VC (Vapnik-Chervonenkis) dimension. Degrees

of freedom (df) for a linear regression model is computed as the number of parameters of the

model m plus one:

Y = β1X1 + β2X2 + . . . βmXm, (2.2)

where βi is the weight coefficient for variable Xi. VC dimension is an alternative measure that

can more accurately measure the expressive power of a model [Abu-Mostafa, 1989]. It is a

measure of the maximum number of dichotomies (mutually exclusive divisions of d points) that

the model is able to divide in the classification case. A model with d degrees of freedom is able

to divide d+ 1 specifically placed points in the hyperspace and arbitrarily assign specific labels

(e.g. +1 or -1) to each of them. The VC dimension of many popular methods is known: the

value can be computed exactly based on the model structure for linear regression, decision tree,

and SVM; VC dimension is infinite for k-nearest neighbor; no accurate estimate is known for

non-linear neural network models.

A common approach for balancing model complexity and model parameter tuning is to

fix one and optimize the other. For example, if the degrees of freedom is set a priori in the

calibration process, the calibration attempts to find the best model given this limit on the

model complexity [Guyon and Elisseeff, 2003]. As all models have the same limit on complexity,

making model comparisons based on accuracy is valid. Choosing the best among these based on

accuracy is a reasonable choice. SRM is relevant to the methods proposed in this thesis because
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1) we similarly fix or limit number of features as input to the ML algorithm and 2) we employ

ML methods with a fixed number of degrees-of-freedom. These aspects allow direct comparisons

among models of different composition.

Decision tree models are an embedded method. The prediction label for each observation

to predict is often computed using just a small subset of the available variables. Decision trees

are most commonly applied in the classification case but can also be used for regression. The

straight forward approach of regression using decision trees (e.g. using the C4.5 algorithm)

involves computing the response value for each leaf node as the mean of the samples belonging

to the node [Loh, 2011]. Decision trees have many advantages: the method is robust to irrelevant

variables (irrelevant variable are not included in decision nodes), the resulting model can be easily

understood, it can natively handle missing values in the input, and it can model conditional

dependence between variables. Trees can be sensitive to the input data (small changes to the

input can result in large changes to the output) and the performance can be degraded when

there are few training samples relative to the number of variables. Alternative methods that

have a smoother response model tend to perform better in the regression case. Decision trees

are well suited for modeling non-linear responses because the model can react non-linearly to

small changes in the input variables.

Ordinary Least Squares (OLS) is a linear regression model in which the target variable is

computed as the sum of weighted input variables. It finds the weights by minimizing the sum of

squares of errors for each training set observation (Equation 2.3). Least squares is a standard

solution for overdetermined systems (more equations than unknowns). OLS provides a simple,

explainable model. However, it cannot automatically fit data for which the target variable is

not the result of a linear combination of input features, and it is highly sensitive to errors in the

input dataset and prone to overfitting.

min
x

f(x) = ‖Aβ − b‖22
︸ ︷︷ ︸

residual error

, (2.3)

where A is the training matrix, b is the vector of actual true labels, β is the weight vector for

the regression model, where ‖•‖2 is the Euclidean norm.

Regularization is the process of adding a penalty term to the minimization which incorporates

additional information about the problem to prevent overfitting, to enable solving of an ill-posed

(i.e. singular) problem, or to bias the parameter optimization using a distribution prior. Ridge

regression is one type (using the L2-norm over the variable coefficients). Ridge Regression

(Equation 2.4) addresses some problems of OLS by imposing a penalty (or regularization term).

Ridge regression uses a L2-norm regularization which biases the coefficient weights to be close

to zero. The regularization parameter α can be optimized for a given prediction domain through
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cross-validation.

min
x

f(x) = ‖Aβ − b‖22
︸ ︷︷ ︸

residual error

+α‖I ∗ β‖22
︸ ︷︷ ︸

regularizer

, (2.4)

where I is the identity matrix. Ridge can reduce overfitting and make underconstrained systems

solvable. But the optimization produces all non-zero coefficients (i.e. no feature selection occurs)

and is effected by outliers.

LASSO (Least Absolute Shrinkage and Selection Operator) is another linear regression al-

gorithm which instead adds an L1-norm penalty over the variable coefficients (Equation 2.5).

More generally, this can be used to add a prior distribution over the choice of parameter values

and specifically biases the coefficients to be exactly zero [Tibshirani, 1996].

min
x

f(x) = ‖Aβ − b‖22 + α‖β‖1, (2.5)

where ‖•‖1 is the Manhattan norm. LASSO incorporates feature selection implicitly due to

the assignment of many zero-value coefficients and it is not strongly effected by outliers because

the optimization process converges to median. However, LASSO is more expensive to compute

than OLS or Ridge because it cannot be solved in closed-form due to being non-convex.

Hastie et al. [2001] present a framework for decomposing the sources of prediction error when

calibrating a model from data. A trained model will invariably be some distance from the true

model when learning from data due to noise and also due to bias induced both from the model

choice as well as from the model estimation process (Figure 2.2). In the case where the model

can be of arbitrary complexity (any number of features, internal parameters, etc.), the variance

of the estimation process can be large. By restricting the model space further (e.g. by reducing

the number of features), it is possible to reduce this variance. This restriction is worthwhile (the

mean error is reduced when predicting on new samples) if the decrease in variance exceeds the

increase in the square of the bias. This is applicable to machine learning in general either with

or without feature selection as an explicit step.

Many methods also adjust the relative importance of the input features which is effectively

a kind of embedded feature selection. Artificial neural networks are an example of this. The

methods assign weights to each input in the model network which sets the contribution of each

variable.

Economic data generally features a large number of simultaneously observable variables

that contain potentially relevant information for prediction. Many types of multivariate al-

gorithms can capture relationships between sets of variables that can be used for prediction.

[Martens and Næs, 1992] provides an excellent overview of multivariate techniques. There are

also many types of time series prediction methods that perform prediction for temporal data.
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Figure 2.2: A stylized diagram showing sources of error in model estimation from data. By
limiting calibration to a subset of the model space that also has reduced model complexity, it is
possible to reduce the variance of the constructed model [Hastie et al., 2001].

2.2 Application Domains for Feature Selection

We present an overview of prediction techniques applied to several domains where feature selec-

tion would be beneficial for dimensionality reduction. We seek both to examine the challenges

in real-world prediction domains and to examine the prediction approaches that perform well.

As time series prediction is a topic with a long history, the focus of our analysis is on domains

similar to the airline ticket price and supply chain domains.

2.2.1 Airline Ticket Prices

Airline ticket pricing is a complex but promising domain for price prediction because it pos-

sesses several distinct market characteristics. In the airline ticket price domain, Etzioni et al.

[2003] compare the effectiveness of data mining (Ripper and Q-learning), time series, and expert

knowledge rule-based prediction techniques on prices for a specific set of airline flight itineraries.

The primary purpose of prediction in their work is to provide guidance on optimizing the timing

of ticket purchases based on historical trends. While this domain clearly possesses a spatial

component (e.g. the airline network can be represented as a graph or the physical distance of

each itinerary are spatial in nature), the spatial aspects of the prediction task are not directly

considered. This is likely because the non-spatial aspects of the prediction domain including
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airline network operational structure, traffic density, and long-term strategic decision-making

are more significant factors in price behavior. The variables for each daily price observation

that are condition the model output are the current price, number of hours until departure, and

identifying information about the flight (route, flight number, and airline).

Bachis and Piga [2007] address the spatial aspects of the airline ticket price domain in search

of price arbitrage relationships. The authors find cases of persistent mispricing by airlines serving

continental Europe. In these cases, customers can reduce their costs by buying individual flight

legs of a trip instead of purchasing an entire multi-leg trip as a package. In particular, the

authors provide evidence that these mispricing events are prevalent due to price discrimination

based on the currency and geographic origin of the price quote. In related work, it is found that

there exists an artificial price premium for itineraries starting or ending at “hub” airports. This

indicates that market power plays a significant part in airline pricing strategy [Bachis and Piga,

2006].

2.2.2 Supply Chain Management

Because studying detailed information from a real supply chain is difficult due to its special-

ized and proprietary nature, there has been a significant body of research on a highly-detailed

simulated multi-agent supply chain scenario that mimics the complexities of real-world supply

chain management [Sadeh et al., 2003]. The advantage of studying a simulated scenario lies in

the ability to fully instrument the underlying processes as they happen for later analysis and to

be able to rapidly test novel management strategies.

The current iteration of the Trading Agent Competition for Supply Chain Management (TAC

SCM)1 simulates a one-year product life-cycle (modeled as 220 days) in a three-tier supply chain,

including parts suppliers, end customers, and a set of competing manufacturing agents. Each

agent must purchase parts in a competitive procurement market, manufacture finished goods,

and sell them in a competitive sales market. This kind of market scenario is common to many

fast moving electronic goods makers, such as the Dell Computer Corporation. Significant effort

has gone into producing top-performing agents in the competition (for instance, [Benisch et al.,

2004, 2009; Kiekintveld et al., 2006; Pardoe and Stone, 2007; Stan et al., 2006]).

In the supply chain scenario, there are two different markets where price prediction is rele-

vant. In the component market, agents are purchasing parts from suppliers. And in the customer

market, agents are selling finished goods to customers. The two markets differ in three funda-

mental ways: 1) agents are selling in the customer market but are buying in the component

market, 2) the lead time2 of requests made in the component market is specified by the agents,

1For more information on TAC SCM, please see http://tac.cs.umn.edu/ .
2Lead time is the amount of time (e.g. in days) between when a request is made and when the goods are
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and 3) the range of lead times can be much longer in the component market (1 to 200 days)

than in the customer market (3 to 13 days). Several agents use highly tuned models for pre-

dicting future customer market prices because this information is needed to drive a profitable

sales strategy. The methods used to predict supply market prices tend to be less sophisticated

than the methods used for customer market predictions, but the competitors have addressed

the supply market prediction using a variety of approaches.

For instance, the TacTex agent [Pardoe and Stone, 2007] relies on a domain specific approach

to component price prediction by modeling the latent variables used in the actual supplier price

computation and making requests that maximize the confidence in the latent variable estimates.

In domains where the underlying price generation process is not known, this kind of method

has no traction. While the prediction method is not generalizable, the notion that, in situations

where the ability to make observations is constrained or costly, requests should be specifically

crafted to maximize observability is a useful approach.

Other agents in this application domain use non-parametric methods for prediction. Benisch et al.

[2006] introduce a nearest neighbor (kNN) approach to computing supplier prices by taking set

of recent price observations seen by the agent and computing price forecasts for possible future

component requests. This prediction technique has been adopted by other top teams in the

competition as well [Collins et al., 2009; Kiekintveld et al., 2007]. This is a model-free on-line

prediction method that attempts to address the lack of sufficient observed data density over the

range of lead-times.

The DeepMaize agent [Kiekintveld et al., 2007] uses an on-line learning method over recent

observations to compute a linear interpolation over the lead-time range from the price observa-

tions seen. This line of best fit is then fed into a decision tree classifier, trained off-line on a large

corpus of previous games, which produces an accurate price prediction function. It should also

be noted that the decision tree classifier also stores sufficient data to make predictions about

changes in prices many days in the future. This model enables the agent to predict how com-

ponent prices will vary into the future, and therefore, provides sufficient information to decide

to defer or accelerate procurement scheduling based on the predicted changes in prices. The

prediction model used in DeepMaize is the most expressive prediction model of any published

TAC SCM agent architecture.

In many of these agents, domain specific features of the market are used to guide or improve

the predictions.

scheduled to be delivered.
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2.2.3 TAC Travel

TAC Travel is a multi-agent travel brokering tournament in which a group of 8 competing agents

must purchase airline tickets, hotel rooms, and entertainment tickets in response to customer

requests. Each agent does its best to procure complete travel packages for its small set of

customers that best align with stated customer preferences and at lowest cost. Each type of

ticket has its own separate market and the agents must trade in all three markets to successfully

fulfill customer requests before each tournament completes.

While the TAC Travel agent competition seems to be a reasonable point of comparison

for price prediction methods in a multi-agent environment, several aspects of the competition

make the methods employed not directly transferable to a temporal, dynamic pricing scenario.

Analysis of this game has shown that there is little useful information revealed to agents during

the tournament run so the game functions similarly to a one-shot tournament.

In particular, the hotel room bidding portion reduces to a sealed-bid auction occurring at the

end of the game: each agents best strategy is to defer bidding their true preferences until the last

possible moment [Stone and Greenwald, 2005]. The prices quoted in the airline ticket market are

insensitive to competitive agent behavior and the entertainment market, while inextricably tied

to agent behavior, does not significantly effect the outcome. This lack of significant additional

information revealed in the middle of each game run makes the price prediction approaches used

in this domain less interesting. the Many agents form price predictions of the final hotel prices

based on the initial conditions of each game. These predictions are often based on historical

information from previous games, adjusted using the current initial conditions, and form the

basis of decision-making.

The analysis of Wellman et al. [2004] specifically considers the mechanisms agents use to

predict final hotel auction prices in the TAC Travel tournament. The authors’ analysis finds that

tournament agents used three categories of techniques for the hotel prediction task: historical,

machine learning, and competitive analysis. Each of the three types performs as follows: the

historical type performs basic aggregation of prices in previous games, the machine learning type

formulates price prediction as a machine learning problem using observable initial airline ticket

prices as features, and the competitive analysis type uses an idealized model of the scenario to

compute hotel prices at the competitive equilibrium.

This is in contrast to the TAC SCM scenario where recently observed information of the

current market condition is significantly more important for decision-making than aggregate

historical data from previous games. However, given the repeated nature of this game, it is a

valuable point of comparison.
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2.2.4 Stock Market Trading Simulation

Another real-time multi-agent competition whose competitors employ price prediction in some

fashion is the Penn-Lehman Automated Trading (PLAT) competition [Kearns and Ortiz, 2003].

The PLAT was a market micro-structure simulation designed to examine competitive behavior

when trading a single stock. The simulated market is very similar to real open-market trading

because the simulated exchange matches buyers and sellers using an order book modeled on

the mechanisms used in actual electronic stock exchanges. Agents not only see the sequence

of completed trades as they occur but can also see the current bids and offers (including the

corresponding prices and quantities) in the order book. Many agents in this domain predict by

computing an estimate of the future trade price using time series methods; in some agents, this

is the only source of information used from the environment. Kearns and Ortiz also examine

participants in the 2003 competition and find that only 9 of the 14 autonomous agents partici-

pating used information from the order book in their strategy. The fact that the top agents were

variants of the static order book imbalance (SOBI) strategy3 suggests that order book strategies

that incorporate additional information beyond the price series may be more robust to changes

in the market environment such as variations in volatility and trend behavior.

Additional evidence of this is provided by Sherstov and Stone [2004] which present several

price time-series based strategies. The paper presents a comparison of several automated stock

trading agents with significantly different strategies. The first is a reinforcement learning based

agent that decides its action based on the exponential average of previous prices and the last

price seen. The degree of smoothing for the exponential average was chosen based on off-line

training. This second and third agents examined the trend seen in the observations of recent

trades. The market making agent entered trades in the direction of the current trend but limited

its overall position size by simultaneously placing the corresponding exit order. The agent places

its exit order taking into account the current order book price. In all three cases, the agents use

the time series of recent trades to determine behavior and ignore other available information

(which is somewhat limited in this domain) about the market. None of these strategies are able

to compete against the SOBI strategy in terms of performance (particularly when measured by

the Sharpe ratio4). Of course, manipulation of the market structure by individual agents can in

some cases overcome this robustness.

3Strategic order book imbalance is a market-making strategy where an agent will add offers into the order
book when one side (long or short) is significantly smaller than the other side. This is a trading strategy known
to work in real world markets.

4The Sharpe ratio is a measure of reward-to-risk (higher is better). This is often used to compare performance
of trading strategies in portfolio selection and other finance applications.
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2.2.5 Electricity Market Price Prediction

Another application of price prediction involves pricing for electricity generation in the public

utilities market. Contreras et al. [2003] use time series (e.g. ARIMA) methods to perform both

“real-time” (1 hour) and “day ahead” (24 hours) future electricity price prediction. This domain

differs significantly from the other applications discussed here in that the electricity markets

possess strong multiple seasonality and calendar effects. Due to this feature, the authors find

ARIMA models are particularly well suited due to the autoregressive aspect of the data. Some

general periodic tendencies in the data facilitate the use of rules such as the following: electricity

prices are low at night and high during the day, more electricity is used during week days than on

weekends, and more electricity is used in the summer than in the winter. Also, unlike in goods

markets, electricity produce must be immediately consumed or it is lost. Overall, the features

of this application domain differ significantly from commodity and supply chain management

markets.

2.2.6 River-flow and Effluent Density Prediction

The set of prediction methods popular for river-flow and effluent applications has undergone

significant changes in recent years. The primary goal of research in prediction of river-flow is to

precisely predict peak flows. This information is then used to determine flood stage (water height

at a specific location) and to predict flow to facilitate efficient water usage. Before the 1980s, the

most popular methods for this task were deterministic hydrologic models [Kitanidis and Bras,

1980]. These methods require significant domain expertise and the model parameters must

be explicitly calculated for the particular target location. The advantage of such models is

that the recomputing the output based on new input data is relatively inexpensive due to the

deterministic nature of the model. As these models were unable to provide highly accurate

predictions, computationally expensive methods began to be used that could capture greater

granularity. Another disadvantage of deterministic models is that expensive reconstruction of

the model using hydrologic principles is required when the physical characteristics of the river

basin changes due to natural or human-initiated changes.

As research on artificial neural networks (ANNs) became popular in the 1990s, their ap-

plication to river-flow prediction was studied [Li et al., 2003]. While application of ANNs to

this domain was relatively straightforward, authors in [Imrie et al., 2000] highlight some criti-

cal weaknesses in the straightforward approach. First, ANN models cannot reliably generalize

for input values outside the ranges seen the training data. Second, the structure (number of

hidden layers, number of nodes) of the ANN model must be decided a priori. Without any
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algorithmic guidance to determine network structure, it is possible the optimal network struc-

ture may be missed. Lastly, the method provides no implicit way of determining the fitness

of individual inputs in the optimal feature set. The authors attempt to remedy the first prob-

lem by applying an iterative network construction strategy and a novel technique for training

stopping criteria. The iterative construction method called the cascade-correlation learning

architecture [Fahlman and Lebiere, 1990] starts with a simple network of one layer and adds

randomly-weighted hidden nodes iteratively until the stopping criterion is reached. Leahy et.

al. provide research that addresses the problem of determining input fitness [Leahy et al., 2008].

Their automated method performs complexity reduction through a genetic algorithm technique;

specifically, the method works by randomly removing internal edges to determine a minimal

structure that still provides a good prediction result. The above two methods outline two dif-

fering approaches to producing an ANN with minimal complexity to maximize generalization:

the former uses iterative construction, while the latter uses a complexity reduction technique.

Several techniques for reducing network complexity were pioneered outside the spatial domain

using genetic algorithms [Sexton et al., 2004], optimal brain damage [Cun et al., 1990], and

weight decay procedures [Weigend et al., 1990]. Overall, we consider the prediction task for a

small target network with a small number (< 10) of gauge sites.

Commodity and Foreign Exchange Futures Market Prediction. Trading in commodity

markets often involves using time series analysis to model changes in price. Barbosa and Belo

[2008] show the promise of using time series models to optimally time entries and exits from the

spot market in foreign currency trading. Kaufman [2005] provides an overview of the time-series,

pattern recognition, and event-driven techniques popular in building commodity trading agents.

Many of the techniques discussed rely on domain-specific features in the model formulation and

are difficult to generalize to other domains.

2.2.7 Real Estate Price Prediction

Another application domain for prediction which possesses a potentially complex spatio-temporal

component is real estate pricing. At first glance, real estate price modeling appears to be a chal-

lenging environment for prediction due to significant property heterogeneity and data sparsity.

In spite of these challenges, several models have been developed for this domain [Pace et al.,

1998]. Perhaps surprisingly, models in this domain are able to achieve prediction error rates of

10 to 15% RMSE when compared to actual sale prices. Models in this domain have the benefit

of transaction data that is of consistently high data quality due to the needs of the stakeholders

involved. Also, significant training data will exist for nearly any target region to be modeled.

Cold starting can be a problem in this domain. A data bootstrapping process is needed for

regions with little data (e.g. new development or areas with a slump in sales).
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Pace et al. [2000] construct a regression model that achieves sufficient performance over 14

variables with as little as 160 training samples. This set of 14 features is obtained from a full set

of 211 observable variables in their dataset. A parameter selection process examines the fitness

of each input, and if relevant, it is added to the model. In feature-selection terminology, this is

a filter-based feature selection approach.

2.3 Prediction Models

This section examines the range of prediction models used in the application domains discussed

in the experiments of chapters 4-7.

2.3.1 Spatial-Temporal Methods

An area of prediction research most similar to the feature selection framework presented in this

thesis is in the area of sensor network data analysis and prediction. Work by Rodrigues et al.

[2008] introduces Online Divisive-Agglomerative Clustering (ODAC), a novel hierarchical clus-

tering algorithm that computes a clustering tree of the variables in settings with a large number

(hundreds) of variables. The algorithm is a divisive clustering process that builds a hierarchy

from the set of data streams (variables) by considering similarity using a single pass. At the

beginning, all variables are assigned to one cluster. When processing each cluster, there is a

possible division of each cluster followed by a potential agglomeration of each pair of children

based on statistical threshold criteria. The algorithm is favorably compared against k-means

clustering for the same task and is found to be better at finding a high quality tree. The quality

of the generated hierarchies from both ODAC and from k-means clustering are compared against

the ground truth hierarchy for several synthetic datasets. The primary application of this work

is for efficient on-line processing processing of large numbers of incoming data streams.

The problem of predicting the aggregate of several spatially correlated variables is addressed

in [Giacomini and Granger, 2004]. Specifically, 4 alternative approaches are discussed each

having a different the amount of spatial relationship information available to the model. These

models are tested on synthetic data with spatial and temporal relationships specified a priori.

The authors find that the Space-Time AR (autoregressive) time series model improves prediction

accuracy especially in cases where the maximum amount of spatial correlation is bounded. Our

proposed model framework’s output can be encoded as a Space-Time AR time series model for

spatial data domains.

A survey discussing the particular issues associated with many types of spatial data is avail-

able in [Shekhar et al., 2011]. In particular, the authors indicate that spatial relationships are

often not explicitly stored during data collection. Unlike non-spatial relationships which are
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often explicitly stored, it may be possible to infer non-spatial relationships from spatial data

but information is often lost. Our proposed work seeks to improve on this problem by allowing

some encoding of spatial information in model construction.

2.3.2 Multivariate Techniques

The literature contains several classes of methods that systematically leverage information from

multiple related time series including vector autoregressive moving average (vector ARMA) and

multivariate regression methods.

Vector ARMA is the multivariate analog of the ARMA time-series predictor presented

in [Box et al., 1994; Tiao and Box, 1981]. Vector ARMA is applied in [Olason and Watt, 1986]

using the MISO TFN algorithm (Multiple Input Single Output Transfer Function-Noise model)

to improve river flow predictions on a network of hydropower generating stations. Given daily

flow data from 3 upstream and one downstream reservoir, the authors developed an improved

flow prediction model for both next-day and two day ahead predictions. The improvement was

made using three years of daily flow measurements from all four sites and reduced standard

error over the conventional approach of using separate time-series ARMA models for each site.

The vector ARMA also appears to be effective in domains with a small sample size. Dis-

advantages of vector ARMA stem from its sensitivity to collinearity in the input variables; the

examples from the literature use only a small number (3-5) of input variables.

The family of related methods, multiple linear regression (MLR), principal component regres-

sion (PCR) and PLS regression are techniques first used with significant success in chemometrics,

social science, and econometrics [Martens and Næs, 1992]. PLS regression is particularly suc-

cessful on problems having a large number of highly collinear variables and a small number of

samples [Wold et al., 1983].

Both PLS and PCR are types of bi-linear5 calibration methods used for multivariate regres-

sion. Both also perform a mapping from the k-dimensional input vector X into an adjustable

and lower-dimensional space T̂ using a linear mapping V̂. Another set of loadings P̂ are used to

map from the intermediate space T̂ to the target scalar variable Y . In PCR, the mapping from

the input features to the intermediate space with dimensionality α (the number of principal

components to use in prediction, a parameter in the model) is performed using the principal

components computed from the training set observations X. The PCs can be computed iter-

atively using the NIPALS algorithm [Martens and Næs, 1992]. The first principal component

represents the direction of maximal variance in the input set X. When the contribution of this

vector is removed, the second principal component represents the direction of maximal variance

5Bi-linear methods have two sets of linear mappings: the first is from a original space to a latent variable
space, the second is from the latent variable space to the response space.
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of the residual. This iteration is performed α times.

The loadings directions (e.g. the PCs) of the input matrix X used in PCR or PLS can be

computed directly using eigendecomposition, singular value decomposition (SVD), probabilis-

tically using maximum likelihood, or iteratively using the Non-linear Iterative PArtial Least

Squares (NIPALS) approach Wold [1966]. NIPALS results in nearly identical results to SVD

(within numerical precision). The advantage of the NIPALS approach is efficiency. There is no

need to compute the full covariance matrix or inverse which are needed in the case of eigende-

composition. SVD requires a large convex optimization system to be solved as well. Maximum

likelihood requires a full specification model (the stochastic properties of the residual must be

computed) which is hard to model due to interdependencies between variables.

The disadvantage of PCR is that the variations captured by each PC may be irrelevant

for predicting the variable of interest y. PLS is generally preferred over PCR because the

computation of scores t̂i in PLS takes into account variations in the y value, where as in PCR t̂i

is computed with no regard for the y values in the training set. The details of PLS are discussed

in the next section.

2.3.3 Partial Least Squares Regression (PLS)

The methodology presented here does not make alterations to the core PLS algorithm, so our

treatment of PLS will not be exhaustive. Several implementations of PLS exist [de Jong, 1993;

Dayal and MacGregor, 1997; Martens and Næs, 1992, for example, ]; each with its own perfor-

mance characteristics. The implementations differ mostly in the way the scores (similar to the

principle component directions in PCA terminology) are chosen: the score vectors can be orthog-

onal or not, normalized or not, etc.6 This thesis uses the orthogonalized PLS with Non-Linear7

Iterative Partial Least Squares of [Wold et al., 1983]. PLS was chosen over similar multivariate

techniques including multiple linear regression, ridge regression [Hoerl and Kennard, 2000], and

principal component regression [Jolliffe, 1982] because it produces generally equivalent or better

performance than the others and has the ability to adjust model complexity. Specific advantages

of this algorithm are presented.

Partial least squares regression is particularly applicable to modeling economic phenomena.

First, PLS regression is able to handle very high-dimensionality inputs by performing an implicit

6It may be useful to have orthogonal scores vectors because factors are often independent in many application
domains. This can alleviate model calibration difficulties due to many collinear variables Abdi [2010]. Alter-
natively, it may be useful to have orthogonal loadings for factor analysis. Finally, both can be orthogonal as
in [Ergon, 2002].

7The NIPALS approach is called non-linear because it is a systematic method to linearize the estimation of a
non-linear model. The non-linear model being linearized is usually a system of principal components but could be
another representation such as canonical correlations. The NIPALS estimate is of the form yi =

∑k
a=1 βi,axa+e,

for a k component model, where e is the model residual. At each of the k iterations
∑

i ei
2 is minimizedWold

[1966].
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dimensionality reduction from the number of inputs to the number of PLS factors. Second, the

model complexity can be adjusted by changing the number of PLS factors to use in computing

the regression result. This value is adjusted in our experiments to determine the optimal model

complexity in each prediction class. Third, the algorithm is generally robust to many collinear

or irrelevant features.

Mathematically, PLS regression deterministically computes a linear function that maps a

vector of the input features xi into the output variable yi (the label). Using a PLS regression

model for a particular variable y requires a calibration to be performed over a set of training

samples to determine the model as computed using Algorithm 1. The model can be used for

prediction as described mathematically in Algorithm 2.

Algorithm 1: PLS1 (one response variable) Calibration

input : A matrix X containing n training samples, n rows each with m features. The
corresponding vector y containing n labels for the training set. Model complexity Amax

chosen so that a = 1, . . . , Amax.
output: Loading arrays Ŵ , Q̂, and P̂ .

STEP 1 X0 = X − 1x̄′, where x̄′ is a vector of the
mean values of the variables in X.
y0 = y − 1ȳ, where ȳ is the mean value of y

optional Normalize columns in X0 to have equivalent variance. (Divide each column by its variance.)
for a = 1→ Amax do

STEP 2.1 Using least squares, compute normalized local model ŵa

ŵa = X′

a−1ya−1/‖X′

a−1ya−1‖

STEP 2.2 Estimate scores t̂a using model ŵa.

t̂a = Xa−1ŵa ( since ŵ′
aŵa = 1)

STEP 2.3 Estimate x-loadings pa using scores t̂a.

p̂′a = X′

a−1t̂a/t̂
′
a t̂a

STEP 2.4 Estimate y-loadings qa using scores t̂a.

ya−1 = t̂aqa + f

q̂a = y′a−1t̂a/t̂
′
a t̂a

STEP 2.5 Update X and y with contribution of current a.

Xa = Xa−1 − t̂ap̂′a
ya = ya−1 − t̂aq̂a

An often ignored aspect of PLS and PCR methods is the ability to perform implicit error

checking by examining the residual values from each prediction. Sample outliers are much

more likely to have large magnitude residual values even if their y value maps to the generally

observed range. When a sample with a large residual is found, the resulting prediction may

have low confidence relative to other samples.

The behavior of PLS, MLR, and PCR regression techniques differ from the time-series based

techniques due to the absence of a “memory” component. Time series models like ARMA can

be affected by outliers in the input data, and the effect of an outlier can persist in the output

prediction long after the outlier was first observed [Hillmer et al., 1983]. This is in contrast
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Algorithm 2: PLS1 Prediction

input : Populated feature vector xi, calibration x̄, calibration ȳ, loading weights Ŵ , loadings P̂ ,
loadings Q̂

output: Prediction of ŷi

STEP 1 Center observation of feature vector xi.
xi,0 = xi − 1x̄′

optional Normalize variance x′

i,0 by dividing each value by its column variance in calibration X.

for a = 1→ Amax do
STEP 2.1 Compute contribution of ŵa to yi.

t̂i,a = x′

i,a − 1ŵa

xi,a = xi,a−1 − t̂i,ap̂′a

STEP 3 Compute prediction of yi
ŷi = ȳ + ΣA

a=1t̂i,aq̂a

Alt. Alternative formulation in 1 step using b̂.

b̂0 = ȳ − x̄′b̂

B̂ = Ŵ (P̂ ′Ŵ )−1Q̂

ŷi = 1b̂0 + x′

iB̂

to the regression techniques: input observations that are outliers will only affect the output

variable when the outlier is still in the input set. In adversarial settings like TAC SCM, where

opponents have the ability to temporarily affect the input data to a prediction computation, the

long term effect of outliers in time-series predictors is particularly undesirable.

2.4 Algorithm Parameter (“hyperparameter”) Setting

A significant and under-explored area of machine learning is in principled techniques for setting

algorithm parameters in model-based machine learning. This is commonly referred to as hyper-

parameter optimization. Many learning algorithms possess parameters which must be assigned

a priori for the algorithm to be used. There are conventions for specific model parameters in

many cases, but an automated exploration of the parameter space may be beneficial to maximize

model performance. Analysis of the hyperparameter search may also be useful for determining

a method’s sensitivity to parameter choices. Automated model configuration forms an integral

part of this thesis and is discussed extensively in Chapter 3.

At a high-level, there are several techniques from the literature. A common approach is to

discretize the range of values for each parameter and exhaustively search all combinations; this

is commonly known as a grid search [Larochelle et al., 2007]. Choosing the grid resolution for

each parameter involves tradeoffs: too fine a resolution makes exhaustive solution infeasible and

too coarse a resolution may cause a suitable configuration to be missed.

Non-exhaustive search schemes are applied to feature selection to ensure that a search can be

performed even for very large search spaces. The non-exhaustive search schemes can also have an
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additional benefit in preventing oversearching. In model-based machine learning, it is possible

that searching a very large space of possible configurations can lead to poor generalization

performance of the model. Quinlan and Cameron-Jones [1995] note that “expanding search leads

eventually to a decline in predictive accuracy as idiosyncrasies of the training set are uncovered

and exploited.” In the experiments, the algorithm’s search extent is varied by setting the

beam width in a beam search (a memory-limited variant of best-first search). The oversearching

problem is orthogonal to the problem of overtraining (increasing model precision and complexity

to the extent that generalization performance on new samples is degraded) as oversearching can

occur even for simple models.

Another approach is to sample randomly in the hyperparameter space to rapidly find good

configurations [Bergstra and Bengio, 2012]. Sampling efficiency can be further improved by

using a directed sampling process in which the model’s performance is modeled as a black-box

using a high-dimensional function approximation [Bergstra et al., 2011]. This response function

approximation approach requires fewer configuration evaluations compared to other methods.

It leverages the smoothness of the response surface to discover systematic trends which can

prevent unneeded evaluations in uninteresting (i.e. not varying) regions of the response surface.

2.5 Model Testing Configuration – Experimental Protocol

When applying machine learning to time-series datasets, paying special attention to the method

of dividing the data into training, testing, and validation sets is important for obtaining results

that can generalize for novel, not yet observed, instances. Gama and Gaber [2007] provide an

in-depth discussion of training set selection with an eye toward on-line learning scenarios where

the concept to be learned may be changing over time. The choice of splitting approach can

dramatically effect the prediction performance. For example, in a changing concept environment,

the performance differences between a percentage split and cross-validation can be large. This is

especially important in time series data and when lagged variables are used to predict trends. In

such a dataset, adjacent samples are not independent and identically distributed (i.i.d.) which

is a core assumption of many machine learning algorithms.

To address this topic further, we empirically evaluate several common approaches for cross

validation for time-series data in Section 4.2.

2.6 Performance Measures and Comparisons

A wide range of statistical approaches exist for comparing prediction model performance in a

regression setting. We examine several modern approaches and show the rationale behind the
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methods used for our application domains.

An ubiquitous evaluation method for prediction models is in measuring accuracy. Specifically,

many works minimize the mean error (distance between a sample’s true value acti and the

model’s prediction esti for the sample) over all samples in some evaluation dataset (with n

samples). It is also possible to normalize the errors so that each sample contributes equally

which is the case with mean relative error.

mean error =
1

n

n∑

i=1

|esti − acti| (2.6)

mean relative error =
1

n

n∑

i=1

∣
∣
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∣
∣
∣
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The above approach is good because as a statistic it is relatively robust to outliers, it is

invariant to the length of the dataset, and it tries to balance errors over all samples. Often it

is valuable to minimize large errors (outliers) by preferring methods that penalize large errors.

This can be accomplished by using the root mean square error (RMSE) measure. It is also

possible to normalize the statistic so that each sample contributes equally (rRMSE) even if the

magnitude of the samples is very different.

RMSE =

√
√
√
√

1

n

n∑

i=1

(esti − acti)2 (2.8)

rRMSE =

√
√
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1
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n∑
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(
esti − acti

acti

)2

(2.9)

The accuracy measurement approach for performance evaluation is used in several of the

application areas in this thesis. However, the ultimate purpose of many prediction tasks is to

build accurate models for input into a decision-making processes. Another evaluation approach is

to determine the cost of using a particular model for a particular decision process. By comparing

the costs incurred from using different competing models, a best (i.e. least cost) model can be

determined among the alternatives.

An absolute benchmark that can be computed in many cost-motivated domains is the ex-

pected value of perfect prediction (EVPP) measure Wellman et al. [2004]. Choosing the alter-

native that can achieve costs closest to the optimal decision (in hindsight) is desirable in many

decision processes while accuracy is a secondary criteria. The cost measurement approach is

taken for the airline ticket price prediction task presented in this work (Chapter 5) as well as in

previous work in the domain Etzioni et al. [2003].
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Another factor to consider in performance evaluation is the model complexity. Balancing

error and model complexity can be achieved using methods such as AIC (Akaike Information

Criterion, [Akaike, 1974]) or BIC (Bayesian Information Criterion, [Yang, 2005]). These methods

balance model complexity (in terms of the number of free parameters, in linear models, or degrees

of freedom, generally) against accuracy (deviation of the predictions from the true labels on the

test set) on the test set. AIC is useful for comparing among several possible calibrated model

choices using a single measure. BIC is a Bayesian approach and assumes the true model exists

among the set of choices. Of course, if the true model does not exist or is not among the set of

alternatives, the statistical results will not be correct.

In conclusion, there are a wide variety of performance measures that are applicable to pre-

diction model evaluation. Invariably, the “best” model found will depend on the performance

measure in many cases. It is critically important to determine a good evaluation criteria prior to

embarking on prediction model comparison. While accuracy may seem appropriate for almost

all domains, the most accurate model for a domain may not produce the best empirical decision

outcomes. In the next section, we show the implementation-level details of the feature selec-

tion framework used in the experiments and formalize the discussion with precise mathematical

notation.



Chapter 3

Methods

Making future time series predictions in a regression setting using information from recent

observations is the focus of this thesis. The supervised regression setting we consider involves

predicting a value for a continuous target variable using observations of other variables in the

system. A regression model is useful for predicting ordinal, interval, or ratio variable types. This

is in contrast to the supervised classification setting where the prediction involves assigning one

of several (nominal) group labels to each sample.1 In the classification case (with nominal type

variables), there is often no meaningful order to the class labels, and the model needs only to

be precise enough to obtain the correct label among the choices. Regression is often a harder

learning task because the precision of the target value is important.

A major challenge common to both regression and classification is choosing a subset of

variables to use in the model given a large number of possible variables in an application set-

ting. At a high level, this problem of choosing the subset of variables to use as input to the

learning algorithm is the problem of feature selection. This chapter proposes several search

strategies for feature selection that can improve prediction model performance. This chapter

discusses six methods for feature selection specifically relevant for regression domains with a

time series component and known (possibly spatial) relationships between variables. Two fully

automated methods are presented from the literature: CFS and BFS. Four methods utilizing

domain knowledge as part of the Developer-Guided Feature Selection (DGFS) framework are

presented as well: DGFS subtypes Exhaustive, Greedy, Random, and Guided. Using each of the

proposed methods, we seek to build a regression model, a mathematical function that takes as

input a set of observations from a set of independent variables and estimates the value of some

1The group assignments in classification tasks are usually disjoint, but there are many problem areas where
multi-label classification is useful such as attributing musical sound clips to specific instruments [Xioufis et al.,
2011].
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dependent variable (target).

When calibrating such a supervised regression model, it can be beneficial to use many input

variables to maximize prediction accuracy. Generally, adding more relevant variables to the

feature set of a model to improve the accuracy of a prediction model seems to be an attractive

idea. Observations from many environments are naturally noisy and the underlying generating

function to be modeled is often complex, so having additional relevant inputs should reduce the

uncertainty caused by noise. However, in practice, learning algorithms can perform well when the

input data are limited to a small set of highly relevant variables. Adding more relevant variables

can have diminishing returns and can even degrade performance. For example, if a group of

variables is highly collinear (i.e. all pairs have high covariance), some learning algorithms will

apportion equal importance to these. Each individual variable in this case may appear to

not be very relevant because of the low importance assigned. Unintuitively, the addition of

weakly relevant and even irrelevant variables can instead improve prediction performance on

real data [John et al., 1994]. This can occur due to correlations that can occur between input

variables. The feature selection process chosen can constrain or otherwise affect the outcome of

the model selection and calibration. This is referred to as the feature selection bias. As these

observations illustrate, feature selection is complex and involves tradeoffs.

Optimal model performance with respect to the learning algorithm, data set, and feature

selection bias can be measured through the feature selection search methods in this chapter.

Presenting a range of methods for determining a subset of input variables to achieve this ideal

is the purpose of this chapter. The novel methods proposed serve to bias the feature selection

by incorporating domain knowledge from the model developer (specifically knowledge of the

relationships between variables).

We begin with a formal description of the feature selection task and terminology used in

the feature selection domain. First, consider an idealized multivariate (multiple input vari-

ables) learning scenario with an unbounded (an unlimited number of samples can be observed)

dataset drawn from the same underlying generating function. It is possible to classify each

variable in the scenario into one of three types: strongly relevant, weakly relevant, or irrele-

vant [Kohavi and John, 1997]. A regression model can be constructed as a function of zero or

more (and possibly all) of the variables. The best performing model in the model space for any

subset of input variables is called the optimal model with respect to the learning algorithm and

dataset. It is important to note that the optimal model may or may not be unique. There could

be many different subsets of variables which satisfy this requirement based on the performance

objective. A variable is strongly relevant if it is always present in each of the optimal models. A

variable is weakly relevant if it is present in at least one of the optimal model equivalence class.

The weakly relevant variable may be among a group of variables that are correlated but are not
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uniquely informative so are interchangeable. Finally, an irrelevant variable is one that is not

present in any of the optimal models.

In non-idealized scenarios where noise is present and the amount of data is not unbounded,

it is possible (and likely) that conceptually irrelevant2 variables can be found to be useful for

prediction (and therefore relevant). When the number of observations in the training set is

very limited and the number of variables is large, irrelevant variables can appear to be very

informative due to random chance which induces spurious correlations. Such relationships do

not generalize. Learning scenarios with many irrelevant variables make the calibration task

difficult, and might make the learning algorithm likely to include variables that provide no

predictive information when applied to new data. Feature selection can reduce the likelihood

that ephemeral (e.g. highly irregular and unexpected) relationships will be used in the model.

This is the argument in favor of using feature selection as a preprocessing step.

Next we will formalize our terminology for learning and feature selection with some precise

notation.

3.1 Notation

The task we study in this chapter is supervised learning. We are given a data set D which

contains a set of observations containing values of a consistent set of m features (independent

variables): X = {X(1), X(2), . . . , X(m)}. Each element in the dataset D is a tuple 〈X, Y 〉 where

Y is the value of the dependent variable (target) for the corresponding observation X. Each

instance X is an element in the feature space V (1)×V (2)× . . .×V (m), where V (i) is the domain

of the ith feature. In our experiments, we consider datasets with V (i) in R or N, but in principle

there is no restriction.

Formally, the algorithm calibrates through induction I a model M using dataset D: M =

I(D). It builds a function M which can predict a label Ŷ for an instance X: Ŷ = M(X).

The model can generalize for instances of X not observed in D (i.e. the incoming instance to

be labeled may never have been previously observed). The above supervised learning scenario

involves learning over the set of all known features from the dataset D but a model is often

built using an altered dataset as well DS′ which may include both time delayed variables and a

subset of the original variables.

We denote this set as SD which is the feature set having all variables: SD = {V (1), V (2), . . . , V (m)}.

It is also valuable to calibrate a model using a subset of the m features: S′

D ⊆ SD. A new dataset

formed using a subset of features is called an altered dataset DS′ and is made of instances of

2Conceptually irrelevant variables have no relationship to the target variable in the generating function (i.e.
the variable does not appear in the generating function for the target). If the underlying generating function is
known such as in the case of the synthetic data used in this chapter, it is possible to determine this.
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〈XS′

D
, Y 〉 where XS′

D
= {X(i)|V (i) ∈ S′

D}.

The variables used in the model can be classified as strongly relevant, weakly relevant or

irrelevant.

Definition 1 (Strongly relevant feature). A feature is strongly relevant if and only if removing

it from the optimal feature set3 will decrease the model’s performance (Equation 3.1).

p(Y = y|X(i) = x, Si = si) 6= p(Y = y|S(i) = si) (3.1)

S(i) = {X(1), . . . , X(i−1), X(i+1), . . . , X(m)} , (3.2)

where S(i) is the set of all features except X(i) (Equation 3.2). x(i) denotes a value assignment

of feature i. Similarly, s(i) denotes an assignment of values to all features in S(i).

Definition 2 (Weakly relevant feature). A feature is weakly relevant if it is not strongly relevant

and it can sometimes contribute to model performance (Equation 3.3).

Weakly relevant variables will appear in one or more of the optimal feature sets.

p(Y = y|X(i) = x, S′i = s′
i
) 6= p(Y = y|S′i = s′

i
) , (3.3)

where S′(i) is a subset of S(i).

Definition 3 (Irrelevant feature). A feature is irrelevant if it is not strongly or weakly relevant

(i.e. it can never improve prediction accuracy).

In idealized scenarios, it is possible for irrelevant variables to exist. But in models built

on real data (with limited size datasets and noise) conceptually irrelevant variables can be

significantly correlated with other variables due to random chance or due to properties of the

generating function. This can cause conceptually irrelevant variables to improve predictions.

The process of feature selection determines a subset S′
D of the original features SD in the

dataset D. The objective is usually to maximize some objective function (e.g. accuracy) of a

model M . The final score reported is usually the mean of the error when predicting on a hold-out

set used for testing. This forms an estimate of accuracy on future (unknown) observations. Fully

automated feature selection methods use only the dataset (and possibly the learning algorithm)

to determine a good feature subset.

In temporal datasets, it may be useful to add time delayed observations of variables to the

feature set provided to the learning algorithm. In this type of domain, the dataset is composed

3The optimal feature set is optimal (no better performing set can be obtained) with respect to the algorithm,
dataset, and feature selection strategy employed.
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of (one or more) observation sequences: D = 〈. . . , {x(1)(t − 1)}, {x(1)(t)}, {x(1)(t + 1)}, . . .〉.

Time delayed observations can be added to the feature set by employing the unit delay operator

φ−1 which delays the output by 1 time unit (i.e. x(t − 1) = φ−1x(t)). In the case of an

univariate time series (one variable only) a simple time series linear regression model can be

encoded using the time delay operator as shown in Figure 3.1 [Wan, 1994]. A set of permissible

time lags is assigned to each feature class as well: l(i) = {{a}, {b}, . . .} where l(i) is the set of

lag configurations for feature class i. The set of time lags assigned to all feature classes in the

domain is L = {l(1), l(2), . . . , l(q)}.

A model developer can incorporate additional knowledge into the feature selection process

under the DGFS framework. Additional notation is necessary to describe this process precisely.

For a dataset D with feature set S, the developer describes a set of q feature classes F =

{f (1), f (2), . . . , f (q)}. Each feature class is composed of a subset of features specified by the

user: f (i) = {X(j), X(k), . . .}. In the experiments, the assignments of variables to feature classes

are disjoint4 but in principle this is not a necessary restriction.

−1
�Φ

−1
�Φ

−1
�Φ

Y

xt xt−1 xt−2 xt−k

w0
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Figure 3.1: Time delay operator for time series data. w−i refers to the weight of the ith offset
in the model M (where M : {Xt, . . . , Xt−k} −→ Y ).

Also, the model developer can specify a set of feature class constraints: C = {. . . , (f (i) ⊂

f (j)), (f (k) ⊂ f (l)), . . .}, where (f (i) ⊂ f (j)) means that for feature class f (i) to be included in

the configuration f (j) must be included in the configuration as well. These constraints bias the

feature selection process further and avoid exploration of large areas of the configuration space.

Each constraint tuple defines a relationship between two feature classes and the operator specifies

the mathematical property to satisfy. The constraint operators will depend on the domain

context, in these experiments only mathematical comparisons (<,>,≤,≥) and set operations

(⊂,⊆) were used. In non-temporal data sets, time lags have no conceptual meaning. As there is

no logical reason to combine information from adjacent samples, time lag assignments for each

feature class in non-temporal data are zero offset or empty (no assignment): l(i) = {{0},∅}. The

expressiveness of the constraint operators could be extended as necessary for future application

4Each variable is assigned to at most one feature class.



35 Chapter 3. Methods

domains.

An augmented dataset can be generated from a dataset, a feature class, and a set of feature

class time lag assignments using the feature set generator “Aug”: DAug = Aug(D,L, F,CL). The

augmented dataset must satisfy all constraints in the constraint set CL to be a valid dataset. A

small worked example in Figure 3.2 shows the five augmented datasets which can be generated

from the original dataset, the feature class lag assignments, the feature classes, and feature class

constraints.

Configuration

D = [. . . , 〈{x1, x2, x3, x4, x5}, y〉, . . .]

F = {f (1), f (2), f (3)}

L = {l(1), l(2), l(3)}

l(1) = {{−8}} l(2) = {{0},∅} l(3) = {{0,−1}, {0}, {−1}}

S(1) = {X1, X2} S(2) = {X3} S(3) = {X5}

Yields 5 possible augmented datasets due to the

alternative time lag assignments in each feature class.

|l(1)| × |l(1)| × |l(1)| − 〈constraint exclusions〉 = 1× 2× 3− 1 = 5

Set of altered datasets

DAug1 = [. . . , 〈{x1(−8), x2(−8), x3(0), x1(0), x1(−1)}, y〉, . . .]

DAug2 = [. . . , 〈{x1(−8), x2(−8), x3(0), x1(0)}, y〉, . . .]

DAug3 = [. . . , 〈{x1(−8), x2(−8), x3(0), x1(−1)}, y〉, . . .]

DAug4 = [. . . , 〈{x1(−8), x2(−8), x1(0), x1(−1)}, y〉, . . .]

DAug5 = [. . . , 〈{x1(−8), x2(−8), x3(0), x1(0)}, y〉, . . .]

Figure 3.2: Example of augmented dataset generation

Such altered datasets ({Dalt1, . . . , Dalt5}) can be used directly with a learning algorithm and

will incorporate the intended feature subset without any modification to the learning algorithm.

This facilitates experimentation using existing algorithms with no knowledge of the feature

selection process and is a distinct advantage of a wrapper-based approach (i.e. the learning

method can be treated as a black box).

In machine learning experiments, the initial dataset D is typically split into several (usually

disjoint) sets called training (DTR), validation (DVA), and test (DTE) sets. The purpose of the

training set is to calibrate the learning algorithm, the validation set is used as a hold-out set

for the training phase to tune high-level hyperparameters of the learning or feature selection

algorithms, and the test set is used as a final hold-out set to estimate the performance of the
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model on future (unseen) samples.

Specifically, we maximize prediction accuracy on the validation set using a model calibrated

on the training set.

3.2 Data Driven Feature Selection

Data driven feature selection methods use just the dataset and possibly the target learning al-

gorithm (in the case of wrapper methods) to determine a relevant feature subset. Much of the

work in feature selection concerns classification in domains with binary variables (for examples,

see [Cardie, 1993; Kononenko, 1994]). Because our target applications are fundamentally regres-

sion problems, not all of the previous work is directly applicable. We describe the methodology

of two common methods for automated feature selection from the literature that are applicable

to multivariate regression domains.

3.2.1 Correlation-Based Feature Selection (CFS)

Correlation-Based Feature Selection (CFS), a filter-based method, considers only the incoming

data to determine a good feature subset. In [Hall, 2000], the author succinctly states the core

principle of the CFS algorithm: “Good feature subsets contain features highly correlated with

the class, yet uncorrelated with each other.”

CFS uses a best-first search procedure with an initial state containing the empty feature

set (in the forward induction case). At each iteration, a set of candidate configurations is

generated. Each new candidate is the current state with one feature class-time lag pair added.

The candidates have an edit distance5 of one from the current state. The merit heuristic for

each candidate is computed (Equation 3.4), and the candidate is added to the set of candidate

states. The unvisited candidate state with the highest merit heuristic value is used as the state

for the next iteration. An additional stopping criterion is added to the best-first search as well:

if the last 5 consecutive states expanded result in no improvement of the “best” observed merit

value, then stop. The merit heuristic formula is:

meritS =
krcf

√

k + k(k − 1)rff
(3.4)

5Edit distance is a measure of displacement between two sets (a and b). It is the number of membership
changes (adding or removing elements) that must be made to set a to translate it into set b.
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where rcf is the mean target-to-feature intercorrelation, rff is the mean feature-to-feature in-

tercorrelation. The intercorrelation is simply the Pearson’s correlation coefficient:

rxy = ρxy = Corr(x, y) =
Cov(x, y)

ρxρy
=

E[(x − µx)(y − µy)]

E[(x− µx)
2]E[(y − µy)

2]
. (3.5)

The CFS method was devised for the classification case of supervised learning in which only

categorical features and class labels are used. In instances of continuous features (e.g. real

valued or integer variables), supervised discretization is performed to map all variables to a

discrete categorical set. CFS uses the maximum description length principle for performing an

entropy minimizing discretization using the method in [Fayyad and Irani, 1993]. The supervised

discretization of all non-categorical features (and the target variable) may be a source of poor

performance in regression settings involving many continuous features. The ordinal properties

and small changes in the values of these features will be ignored when making feature correlation

comparisons due to this aspect.

At a high level CFS selects a core of relevant features with little redundancy with the objective

of minimizing groups of highly correlated variables. This makes CFS good for pruning large

numbers of highly collinear variables.

3.2.2 Best-First Feature Selection (BFS)

Another common algorithm, Best-First Feature Selection (BFS), uses an in-situ approach to

determine the best feature subset [Kohavi and John, 1997]. It evaluates many possible subsets

and computes the prediction performance of each. It is called the wrapper approach because

the underlying machine learning algorithm is used to do the scoring.

Algorithm 3: Best-First Search for Feature Selection ([Kohavi and John, 1997])

Data: feature set S, dataset D, feature configuration evaluation function f()̇, minimum improvement
increment ǫ

Result: best observed feature subset (best)
1 { OPEN ←− {∅}, CLOSED ←− {}, best ←− null}
2 while OPEN 6= null do
3 state←− arg minw∈OPENf(w,D) /* pick best scoring configuration in OPEN */

4 OPEN←− OPEN \ {state} /* remove configuration state from OPEN */

5 CLOSED←− CLOSED ∪ {state} /* add configuration state to CLOSED */

6 if f(state, D)− ǫ < f(best,D) then
7 best←− state

8 for Vi ∈ S do
9 child←− state ∪ {Vi}

10 if (child 6∈ OPEN) ∧ (child 6∈ CLOSED) then
11 OPEN←− OPEN ∪ {child}

12 return best
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Algorithm 3 provides a forward induction version of the algorithm of [Kohavi and John,

1997], but it can be trivially modified to operate in a backward elimination mode as well (by

changing the initial state and subset addition step). f(w,D) is the scoring (“loss”) function and

computes the fitness of a feature set w on the validation set DVA after calibrating on a training

set DTR.

3.3 Developer-Guided Feature Selection (DGFS)

Developer-Guided Feature Selection is an umbrella of methods which we propose that uses

domain knowledge from the model developer to inform the feature selection search. Given a

dataset D, lag set L, feature class membership mapping F , and (optional) constraint set CL,

we devise a biased feature set search. The actual search process can be complete (“Exhaustive”)

or incomplete. The incomplete search can be directed (“Guided”, “Greedy”) or stochastic

(“Random”). Each type of search is presented here, and the tradeoffs are discussed. DGFS

is situated in the middle of the feature selection spectrum. It includes some automation while

incorporating domain knowledge in the process (Figure 3.3).

Figure 3.3: Feature Selection techniques hierarchy. White nodes indicate techniques from pre-
vious literature (User Driven, Data Driven, None). Yellow-shaded nodes indicate DGFS-based
approaches (Developer-Guided). Yellow-shaded double circle nodes nodes (Random Search,
Guided) indicate DGFS-based feature selection extended using hyperparameter optimization to
increase the efficiency of feature selection search.
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Parameter optimization in model-based machine learning refers to the process of determining

the best set of parameter values to use in the chosen model. Hyperparameters refer to the

parameters of the learning algorithm that effect the outcome of the model calibration process

but are not determined in the learning process (i.e. parameters are set a priori). For example,

traditional neural network learning calibration parameters include the learning rate, the choice

of activation function, the network layout of hidden nodes, and the number of hidden layers.

Feature subset selection can also be considered as part of the hyperparameter selection process as

well. Learning algorithm parameter choices are important because bad hyperparameter choices

can cause bad model calibration results.

For this reason, choosing learning method parameters is an important topic in machine

learning that is, at times, underexamined. While some learning algorithms possess theoretical

guarantees on performance, in practice, the empirical performance observed through experi-

mentation is valuable and is common practice as a criterion for model, algorithm, and hyperpa-

rameter selection. In literature presenting novel learning algorithms, hyperparameter selection

encompasses a range of techniques:

• Some choices are based on convention.

• Some are based on expert knowledge of the domain. There may be a strong theoretical

basis for a specific value for the given application.

• Some choices are based on experimentation.

The last choice is of particular interest because it is repeatable and can be applied in a principled

way to new datasets or domains. We explore this approach by proposing four search methods.

3.3.1 DGFS – Exhaustive Search

A common approach to experimental optimization is to perform a complete uniform sampling

of all combinations of parameter values. This is commonly known as a grid search or exhaustive

search [Larochelle et al., 2007].

The exhaustive search mode of DGFS employs a complete enumeration of all valid feature

subsets to determine a result (Algorithm 4). For each configuration, an evaluation is made by

constructing the augmented training and validation datasets. The augmented training set is used

to calibrate the learning model which is then scored using the validation set. The configuration

with the best observed score on the validation set is the one used for the final evaluation on the

hold-out test set. This final evaluation determines the error score for the experiment.

In the exhaustive search, we treat the feature class lag setting process as an outer-loop

parameter optimization of the q feature classes. The optimization process must make one time
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Algorithm 4: DGFS Exhaustive Search ([Groves and Gini, 2015])

Data: feature set S, dataset D, feature class specification F , list of time lag assignments for each feature class L,
constraint set CL, feature configuration evaluation function f(•, •, •)

Result: best observed feature subset (wbest)
1 { CONFIGLIST ←− {{}}, wbest ←− null}
2 build set of all possible valid configurations

3 for f(i) ∈ F do
4 NEXTCONFIGLIST←− {}
5 for w ∈ CONFIGLIST do

6 for lagassignment ∈ L(i) do

7 NEXTCONFIGLIST←− NEXTCONFIGLIST ∪ {w ∪ 〈f(i), lagassignment〉}

8 CONFIGLIST←− NEXTCONFIGLIST

9 VALIDCONFIGLIST ←− {}
10 for w ∈ CONFIGLIST do
11 if satisfiesConstraints(w,CL) then
12 VALIDCONFIGLIST←− VALIDCONFIGLIST ∪w

13 evaluate each configuration to find best

14 for w ∈ VALIDCONFIGLIST do
15 if (wbest = null) ∨ (f(w,D, F ) < f(wbest, D, F )) then
16 wbest ←− w

17 return wbest

lag set assignment for each feature class according to the permissible time lags: L = {l(1), ..., l(q)}.

The number of possible configurations (assuming no constraints) is
∏q

i=1|l
(i)|. This quantity can

be too large to search exhaustively when individual feature classes have many lags (i.e. when

|l(i)| is large) or when there are many feature classes. For the exhaustive mode to be feasible,

the set of possible lags for each feature class must not be too large. This problem can be

handled either by possibly adding additional constraints to the feature classes or by using a

non-exhaustive search process as explained in the following two subsections.

The advantages of an exhaustive search are in its simplicity, its complete coverage of all

value combinations specified, and in the ability to analyze relationships between combinations

of parameters. Unfortunately, it is not sample efficient6 when compared to other methods: from

our experiments it is approximately 10 times or 100 times less efficient. Also, many evaluations

at high resolution (i.e. number of distinct values to evaluate for each hyperparameter is high)

are necessary to achieve good coverage. A search which is too coarse can easily miss good

configurations. The search for improved hyperparameter configurations can be made more

efficient at the expense of completeness.
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Algorithm 5: DGFS Greedy Search
Data: feature set S, dataset D, feature class specification F , list of time lag assignments for each feature class L,

constraint set CL, feature configuration evaluation function f(•, •, •)
Result: best observed feature subset (wbest)

1 { Fremaining ←− F , wbest ←− null, wstate ←− {} }
2 while Fremaining 6= {} do
3 find all possible assignment successors from the state

4 CHILDSTATELIST←− {}

5 for f(i) ∈ Fremaining do

6 for lagl ∈ l(i) do

7 possiblechild ←− wstate ∪ {〈f(i) , lagl〉}
8 if satisfiesConstraints(possiblechild,CL) then
9 CHILDSTATELIST←− CHILDSTATELIST ∪ {possiblechild}

10 find best successor to the current state for next iteration

11 { wbestchild ←− null, fremove ←− null}

12 for 〈wchildstate, f
(i)〉 ∈ CHILDSTATELIST do

13 if (f(wchildstate, D, F ) < f(wbestchild,D, F )) ∨ (wbestchild = null) then
14 wbestchild ←− wchildstate

15 fremove ←− f(i)

16 wstate ←− wbestchild

17 Fremaining ←− Fremaining \ {fremove}
18 if (wbest = null) ∨ (f(wbestchild,D, F ) < f(wbest ,D, F )) then
19 wbest ←− wbestchild

20 return wbest

3.3.2 DGFS – Greedy Search

The greedy search mode (Algorithm 5) is an incremental process that begins with the empty set

for the initial state (i.e. an empty subset of feature classes). At each iteration, the algorithm

evaluates each newly discovered configuration which is created by the addition of one feature

class-time lag pair to the current subset. Unseen configurations violating the constraint set are

discarded. Of these new configuration evaluations, the next feature class subset chosen as the

state is the subset that had the best evaluation score. Once a feature class is assigned in the

current state, its assignment is not evaluated again. This iteration continues until all feature

classes have been added once to the in-progress state.

The greedy search has a worst case time complexity of O(q ∗ b/2) where q is the number of

feature classes and b is the average number of possible lag assignments in each feature class.

This search process is a kind of best first search (the best observed configuration is chosen at

each iteration) and is greedy (no revision of the search is possible once a step is taken). The

advantages of this approach are that it is intuitively simple and the total evaluation cost is

bounded based on the input size. However, this greedy algorithm is sensitive to local minima

6Sample efficiency refers to the number of evaluations required to achieve a specific level of performance from
the learning model.
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in the response surface. The next two approaches overcome this disadvantage and can be even

more efficient.

3.3.3 DGFS – Random Search

A random exploration of the configuration space does not, at first, seem to be a systematic

approach. However, in practice, the efficiency of the random search is an improvement over a

systematic-but-too-coarse search and is competitive with other approaches. A random search

can be employed that is empirically very efficient [Bergstra and Bengio, 2012]. This algorithm

samples from the hyperparameter space while obeying the sampling distribution (the “prior”)

specified for each parameter. Usually we sample from a set of discrete values, but we may

also be sampling from a continuous distribution for some parameters. Repeated sampling in

the parameter space and evaluation of candidate configurations continues until some stopping

criterion is reached such as the number of evaluations, wall time, or a sufficient evaluation score

is achieved. Usually, the best observed hyperparameter configuration (i.e. the configuration

corresponding to the minimum observed value from all evaluations of the loss function) is given

as the final configuration from the optimization process.

Algorithm 6: Sequential Model-Based Optimization (SMBO) [Hutter et al., 2011] used by DGFS
Random search and Guided search

Data: feature set S, dataset D, feature class specification F , list of time lag assignments for each feature class L,
constraint set CL, feature configuration evaluation function f(•, •, •), number of initial bootstrap samples
N , S directed sampling function, R random sampling function

Result: best observed feature subset (wbest)
1 { scorebest ←− null, M0 ←− {}}
2 countiterations ←− 1
3 while not stoppingCriteriaReached(countiterations, scorebest) do
4 if countiterations < N then
5 w←− R(null, F, L) // note: for DGFS Random search n =∞
6 else
7 w←− S(Mi−1, F, L) // pick a new configuration to evaluate based on response model

8 score←− f(w, D, F )
9 if (scorebest = null) ∨ (score < scorebest) then

10 wbest ←− w

11 scorebest ←− score

12 Mi ←−Mi−1 ∪ {〈w, score〉}
13 countiterations ←− countiterations + 1

14 return scorebest

An algorithm listing of the optimization process is given in Algorithm 6 and the sampling

function used to determine the next configuration to evaluate is given in Algorithm 7 (for random

sampling).

On why random sampling works. In practice, hyperparameter optimization explores a
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Algorithm 7: Random Sampling Surrogate Function – R(•, F, L)

Data: feature class specification F , list of time lag assignments for each feature class L
Result: configuration to sample (w)

1 { Fremaining ←− F , w←− {} }
2 while Fremaining 6= {} do

3 for f(i) ∈ Fremaining do
4 sample a possible candidate lag for the feature class

5 lagval←− getRandomSetting(l(i))

6 w
(i) ←− lagval

7 Fremaining ←− Fremaining \ {f
(i)}

8 return w

search space with low effective dimension (i.e. the problem can be mapped into a lower-

dimensional space with little loss of information). By sampling randomly, more unique samples

are taken from this lower dimensional space. Random hyperparameter search is good because it

is more sample efficient than exhaustive and it is not sensitive to local minima in the loss func-

tion. Unfortunately, it may not find the global optimum if the number of samples is insufficient.

While a random search does have attractive properties and is more efficient than an exhaustive

search, a directed search can further increase sampling efficiency as we see in the next section.

3.3.4 DGFS – Guided Search

An alternative approach to the exhaustive, greedy, and random search methods is instead to

direct the search using a model of the evaluation function (“loss”) made with an approximation

function. Modeling the evaluation function is valuable when computing the evaluation function

is very costly. This approach allows for the number of evaluations to be minimized. If the

response surface is locally smooth (i.e. small changes in the configuration only result in small

changes to the evaluation score), such an approximation (which implicitly incorporates trends

and covariances between pairs of hyperparameters) facilitates rapid discovery of the global op-

timal configuration.

Guided search uses the same overall evaluation process as Random search. This method is

called Sequential Model-Based Optimization and is given in Algorithm 6 of the previous section.

Guided search differs from Random search in that the sampling function incorporates a model

of the response surface. The model is bootstrapped using an initial set of samples found using

random sampling. The benefit of this estimation process through shrinkage is that it implicitly

models uncertainty in unexplored regions and performs smoothing in explored areas. The sam-

pling function R(•, •, •) is replaced by S(•, •, •) after the initial bootstrap. The Function “S”

(Algorithms 8-10) efficiently approximates the response surface for as-yet unevaluated configu-

rations. It is used to direct the sampling process by balancing both exploration of the parameter
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space and exploitation of information from previous samples. This hyperparameter search pro-

cess is examined in detail for a variety of machine learning algorithms and benchmark datasets

in [Bergstra et al., 2011]. The authors find that the approximation function chosen should be

both locally smooth (to allow for estimation based on the set of noisy samples observed so far),

should implicitly model uncertainty, and allow for incremental changes (for adding new obser-

vations) without complete reevaluation of the model. The Tree of Parzen Estimators (TPE)

method is employed because of these desirable properties [Parzen, 1962].

The TPE method for hyperparameter optimization models the responses observed on a per-

parameter basis using a Parzen estimator for each feature class (hyperparameter). A set of

randomly sampled parameter values for each feature class is evaluated to determine the most

likely well-performing parameter setting for each set (Algorithm 10, line 3). The configura-

tion returned is a candidate likely to perform well based on the response estimates for each

hyperparameter.

Algorithm 8: Tree of Parzen Estimators Sampling [Bergstra and Bengio, 2012] — S(M,F,L)

Data: observed response samples M , feature class specification F , list of time lag assignments for each feature
class L, number of candidates to sample for each parameter nc

Result: a promising configuration to sample (wbest)
1 {LC←− {}, w ←− {} }
2 // build lag candidates for each feature class by sampling a set of possible candidate lags for each

3 for f(i) ∈ F do
4 for j ←− 1 to nc do

5 lagval←− getRandomSetting(l(i))

6 LC(i) ←− LC(i) ∪ {lagval}

7 // pick a new configuration using the settings that yielded the best Parzen estimate in each feature class

8 for f(i) ∈ F do

9 build surrogate model for f(i) given all observations so far

10 { Qgreater ←− {}, Qless ←− {}, yγ ←− getScorePrecentile(M,γ)}
11 for 〈x, y〉 ∈M do
12 if y < yγ then
13 Qless ←− Qless ∪ {〈xi, y〉}
14 else
15 Qgreater ←− Qgreater ∪ {〈xi, y〉}

16 L←− buildGaussianProcess(Qless)
17 G←− buildGaussianProcess(Qgreater)
18 {pbest ←− 1.0, bestlag ←− null}
19 find candidate lag set that probabilistically provides best improvement

20 for lag ∈ LC(i) do
21 p←− estimateScore(Qgreater, lag)÷ estimateScore(Qless, lag)
22 if lagbest = null or pbest > p then
23 {lagbest ←− lag, pbest ←− p }

24 w(i) ←− lagbest

25 return w

The Parzen estimator (Algorithm 8, lines 16-31) is a mathematical model for estimating
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black-box functions using pairs of Gaussian Processes. The estimation of the function provides

probabilistic guarantees (bounds) on estimate accuracy based on all samples observed so far. As

the number of samples goes to infinity, the estimate converges to the true distribution through

shrinkage. This convergence to the true value is achieved by maintaining two stochastic processes

that estimate a lower bound and an upper bound on a specific percentile (γ) of the response

function across the input space. The Parzen estimator splits the samples into two disjoint sets

based on the percentile threshold. The probability density function for a parameter setting x

conditioned on a loss response value y is estimated by a piecewise function of two Gaussians:

p(x|y) =







L(x), if y < yγ%

G(x), otherwise
(3.6)

where yγ% is equal to a pre-specified percentile of the observed y response values (e.g. y50% =

50th percentile of the observed responses). TPE uses Gaussian Processes (GP) to model each

of L and G: L contains all observations with y < y∗, G contains all observations with y ≥ y∗.

Gaussian Processes (GP) used for regression. The regression model is an interpolated

model from a set of p-dimensional sample points and their target scalar values. It is a desirable

approach for high-dimensional, sparse sampling settings because it “lets the data speak” by

simultaneously using both local information (where data is densely sampled) and far distant

information (where data is sparsely sampled) from the data. It is more non-parametric than

most (but not all) regression models.7

The GP method is not sparse as all data samples used to build the model are also used

during prediction. In the labeling phase, the distance between the incoming sample and each

sample in the training set (of size n) must be computed. The labeling phase has a computational

complexity of O(n) for each sample to label. When the training set is large, GPs require O(n3)

operations to build the model (due to the computation of an inverse for K), so it is not feasible

for large training sets [Williams, 1998]. Also, the method is not efficient in very high dimensional

spaces (i.e. p > 100). But as each hyperparameter has its own TPE model, independent of the

other hyperparameters, the high dimensionality problem is not a concern.

Fully understanding the TPE approach requires understanding of estimation using Gaussian

Processes (GP). The explanation of GP here is in the context of regression with one dependent

variable: x 7→ y. The training data D contains n tuples of vector inputs and scalar outputs

(Equation 3.7). For additional details of Gaussian Process techniques beyond what is provided

7An entropy-based method would be more non-parametric. The choice of kernel can impart a bias on the
model (e.g. it is possible to model periodic functions with a carefully constructed kernel function that includes
trigonometric operators).
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here, consult [Rasmussen, 2006].

D = {〈x1, y1〉, . . . , 〈xn, yn〉} X =






x1

. . .

xn




 Y =






y1

. . .

yn




 (3.7)

A Gaussian Process is a subtype of stochastic process made of a collection of n random

variables: F (X) = {f(X1), . . . , f(Xn)}. Each of these n random variables is a multivariate

Gaussian normal distribution in p-dimensional space. The stochastic process of a Gaussian

Process can be fully described using only the means and (n × n) covariance matrix computed

from a finite subset of sample points. Each of the sample points is assumed to have been

generated from this process. With this information, it is possible to determine the probability

distribution on the dependent variable y for a new sample point specifying values for the p

dimensions in x.

A dataset can be thought of as a set of samples taken from the Gaussian Process. Each

sample point is assumed to have been generated from this process, and, specifically, is assumed

to be the mean of a Gaussian distribution that corresponds to one of the n random variables.

The measured covariance between each pair of sample points is used to construct the covariance

matrix using a kernel function. The choice of kernel function (k(x, x′)) depends on the notion of

distance in the space and is domain dependent. But a common choice8 is a squared exponential

(also known as a Radial Basis Function or Gaussian) of the form:

k(x, x′) = σ2
f exp

[

−(x− x′)
2

2l2

]

︸ ︷︷ ︸

distance component

+ σ2
nδ(x, x

′)
︸ ︷︷ ︸

sampling noise component

(3.8)

δ(x, x′) =







1, if x = x′

0, if x 6= x′

(3.9)

where σ2
f is the maximum allowable covariance, l is the length parameter, and σ2

n is measurement

noise (usually obtained empirically from the input data). δ(x, x′) is the Kronecker delta function

and is used to incorporate uncertainty due to sampling noise. The kernel is a similarity measure

between pairs of sample points. Samples very close to each other will have high covariance, and

samples very distant will have low covariance. It is also possible to have complex kernels that

account for periodicity or special geometric relationships that modify the similarity measure for

domain specific reasons.

8Standard choices for this are squared exponential (exp (−d2)), absolute exponential (exp (−|d|)), generalized
exponential, cosine (cos(d)), cubic ((α − d)3), and linear (α− d) where d = x− x′.
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GPs are used for regression by interpolating from the set of samples. Given a new candidate

sample value x∗, we would like to estimate the distribution of the target y∗ and determine the

most likely value. We assume this new sample is also sampled from the GP. The training data

and the estimate ȳ∗ for a new point x∗ can be written as the distribution in Equation 3.10:

[

Y

y∗

]

≈ N

(

0,

[

K KT
∗

K∗ K∗∗

])

(3.10)

K =










k(x1, x1) k(x1, x2) · · · k(x1, xn)

k(x2, x1) k(x2, x2) · · · k(x2, xn)
...

...
. . .

...

k(xm, x1) k(xm, x2) · · · k(xm, xn)










(3.11)

K∗ = [k(x∗, x1) . . . k(x∗, xn)] K∗∗ = k(x∗, x∗) (3.12)

ȳ∗ = K∗K
−1Y (3.13)

var(y∗) = K∗∗ −K∗K
−1KT

∗
(3.14)

All diagonal elements in K are σ2
f+σ2

n. Off diagonal pairs with large distances will be near 0.

Given this system of equations, the only free variable is y∗, so the distribution of y∗ is determined

by the system. The most likely value of y∗ is estimated using the maximum likelihood estimate

which is the mean of the distribution (computed in Algorithm 9, lines 4-5). Error bars for the

true value of y∗ can be estimated using ȳ∗ ± 1.96
√

var(y∗) for the 95% confidence level.

Algorithm 9: EstimateScore Algorithm Listing — estimateScore(U, x)

Data: Y training set target values, K Gaussian Process model, k(•, •) kernel function, U model configuration
Result: Estimate (ȳ∗)

1 unpack GP model parameters

2 〈K,Y, θ〉 = U
3 compute MAP estimate for given value of x
4 K∗ ←− {k(x∗, x1, θ), . . . , k(x∗, xN , θ)}

5 ȳ∗ ←− K∗K−1Y
6 return ȳ∗

The kernel parameters σ2
f , l, and σ2

n are the Gaussian Processes’ model parameters and

are collectively called θ. In practice, σ2
f and l are determined from a calibration process that

optimizes the fit of Equation 3.10 on the input data (Algorithm 10, line 3). The maximum a

posteriori estimate for θ will maximize P (θ|Y,X). Also assume that all configurations to be

equally likely (no reason to prefer any particular θ over another), so P (θ) is uniform. Using
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Algorithm 10: BuildGaussianProcess Algorithm Listing — buildGaussianProcess (Q)

Data: Q training dataset, k(•, •, •) kernel function, θ kernel parameters
Result: Gaussian Process model (〈K,Y, θ〉)

1 {〈x1, y1〉, 〈x2, y2〉, . . . , 〈xN , yN 〉} = Q
2 Y = {y1, y2, . . . , yN}

3 maximize
θ

− 1
2
Y TK−1Y − 1

2
log |K| − n

2
log 2π, where K =











k(x1, x1, θ) · · · k(x1, xn, θ)
k(x2, x1, θ) · · · k(x2, xn, θ)

.

..
. . .

.

..
k(xm, x1, θ) · · · k(xm, xn, θ)











4 return 〈K,Y, θ〉

Bayes’ rule it is possible to find this by maximizing the quantity P (Y |X, θ).

P (Y |X, θ) =
P (θ|Y,X)P (Y,X)

P (θ)P (X)
(3.15)

The log likelihood can be maximized as

logP (Y |X, θ) = −
1

2
Y TK−1Y −

1

2
log |K| −

n

2
log 2π. (3.16)

This can be maximized using a standard multivariate optimization algorithm such as gradient

descent. The maximum of the log likelihood for all values of θ determines the parameter con-

figuration to use for predicting y∗ for unlabeled sample x∗. GPs assume a model of the form

y∗ = f(x∗) +N (0, σ2
n) (3.17)

where N (µ, σ2) is a standard normal distribution with mean µ and variance σ2, and f(•) is the

underlying generating function. The model assumes all samples have measurement noise with

variance σ2
n. This optimization determines the contribution of each sample from the dataset

when predicting for a new sample. This optimization is only done once (when the model is

generated). The computed model θ is then used for all predictions.

Geometric interpretation of Gaussian Processes. One interpretation of Gaussian Pro-

cesses is that the model is a collection of p-dimensional Gaussians with one centered at each of

the n sample points. A stylized diagram of Gaussian Process regression is shown in Figure 3.4.

The optimization process to determine θ sets the spread of the Gaussians (and any other model

parameters). The spread used is equal for all n distributions. This optimization process maxi-

mizes the “fit” of the model to the dataset. The predicted ȳ∗ value is a linear combination of the

y values for the n training points. The contributions are computed in Equation 3.13. Samples

that are more similar to x∗ will have a greater effect on the prediction of y∗ as the covariance

between the samples (i.e. k(x∗, xi) for i ∈ {1, . . . , n}) is higher. The Gaussian Process method
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is called a linear smoother for this reason [Hastie and Tibshirani, 1990].
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Figure 3.4: A stylized Gaussian Process example showing the Maximum Likelihood Estimate
for y∗ given three data points. The probability density function for the target variable y given
a x∗ is shown at the right. The density function curves shown are for a Radial Basis Function
kernel in one-dimensional data.

Oversearching. Non-exhaustive search schemes are applied to feature selection to ensure

that a search can be performed even for very large search spaces. The non-exhaustive search

schemes can also have the additional benefit of reducing oversearching. In model-based machine

learning, searching a very large space of possible configurations can lead to poor generalization

performance of the model. Oversearching in model optimization is the phenomenon of a search

process exploiting transient patterns in the dataset. By trying many possible model configu-

rations, the search increases training set accuracy but does not generalize to unseen samples.

Quinlan and Cameron-Jones [1995] note that “expanding search leads eventually to a decline

in predictive accuracy as idiosyncrasies of the training set are uncovered and exploited.” In

the experiments, the algorithm’s search extent is varied by setting the beam width in a beam

search (a memory-limited variant of best-first search). The oversearching problem is orthogonal

to the problem of overtraining (increasing model precision and complexity to the extent that

generalization performance on new samples is degraded) as oversearching can occur even for

simple models.

3.4 DGFS Discussion

Developer-Guided Feature Selection is most relevant for domains where the number of features

is large and the number of observations is limited. The relationships between the feature selec-

tion method, the number of training set observations, and the number of features is shown in
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Figure 3.5. It is not always the case that DGFS is beneficial to the model construction. This

figure illustrates the broad conditions under which DGFS is most useful.
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Figure 3.5: Region of greatest effectiveness for feature selection methods relative to the feature
set size and training set size.

We seek to address challenges in real-world application domains where a prediction or gen-

eralization is desired. The essential contributions of DGFS are the following:

1. The inclusion of time-delayed observations (that we call lagged features) as elements in

the feature vector, in addition to the most recent observed values for the features. This

enables us to capture temporal dependencies among the features, but this innovation alone

tends to produce a model with large numbers of features and a model that is not accurate.

2. The construction of a hierarchical structure among the features incorporates domain knowl-

edge. It also facilitates pruning of the features that do not improve predictions. To ac-

complish this, we enumerate systematically the different subsets of features and examine

their performance, selecting combinations that produce higher quality predictions. We

have demonstrated that this feature set pruning works in domains where the features have

a temporal aspect. This is also successful for domains which contain significant spatial

relationships between features.

3. By examining the performance of candidate lag schemes and the corresponding perfor-

mance of each, it is possible to extract domain knowledge. Specifically, it is possible to

determine the relevance or irrelevance of individual features by observing their inclusion
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in the lag scheme. Also, in domains where temporally lagged instances are included in the

feature set, it is possible to determine temporal relationships between features.

4. While the previous contributions are—in principle—not tied to the choice of underlying

machine learning algorithm, the following does rely on features of the base algorithm used

in our experiments: Partial Least Squares regression (PLS). By examining the weights

computed by the PLS model learning phase, it is possible to determine the relative signif-

icance of the chosen features.

The DGFS approach has desirable properties for application domains involving real data.

In the next four chapters, the experimental performance of our framework is analyzed in the

context of four complex domains.

3.5 Overview of Experiments

Table 3.1: Feature selection processes (“FS”) undertaken for each data domain presented in
this document. ✓ denotes this FS-domain pair is evaluated in the experiments. ✗ denotes no
evaluation of the pair.

Domain
FS No FS Data Driven DGFS

All Lag CFS BFS Exhaustive Greedy Random Guided

1. Synthetic
(Ch. 4)

✓ ✓ ✓ ✓ ✓ ✓ ✓

2. Airline (Ch.
5)

✓ ✓ ✓ ✓ ✗ ✗ ✗

3. River Flow
(Ch. 6)

✓ ✓ ✓ (some) ✓ ✓ ✓

4. Supply Chain
(Ch. 7)

✗ ✗ ✗ ✓ ✗ ✗ ✗

In these experiments, we find that different domains necessitate different approaches. For

simpler domains having fewer variables and time lags, an exhaustive feature selection search

is tractable, so only that method was employed. For larger domains, exhaustive search is in-

tractable (even with feature class constraints) given the size of the configuration space. In

these cases, greedy methods have been employed both to increase efficiency and to make DGFS

tractable. These methodological choices are shown for all domains in the Table 3.1.
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Applied Domain: Synthetic Data

While empirical algorithm evaluation using real datasets is critical in determining real-world

effectiveness, empirical evaluation alone does not readily explain the reasons for good or poor

model performance on a particular dataset. Ideally, a well performing model should be similar

in composition to the correct model for the target concept. The difference between a calibrated

model1 and the underlying “true” model is often unknowable because the latent generating

function from which the data was generated is not known. In complex datasets, a prediction

model could perform well because it accurately models the target concept. Alternatively, it

could be leveraging idiosyncrasies of the dataset to make more accurate predictions, or some

combination of both.

In an effort to provide objective evidence that the feature sets obtained by the feature

selection search process are related to the correct (i.e. ground truth) feature set, this chapter

builds a controlled model recovery simulation on synthetic data. In this chapter, we perform

model calibration and feature selection on artificial datasets for which the generating function is

known exactly. This facilitates measurement of the correspondence between the best observed

model and the ground truth. This is used to justify the design of the UGFS framework and

explain the rationale behind several design choices. These artificial datasets mimic the properties

of the natural applied domains used in subsequent chapters (e.g. river flow, supply chain, etc.).

These synthetic data sets are also used to explore various dataset splitting techniques found in

the literature.

The following terminology is used for describing these synthetic datasets. An independent

variable is a variable whose value is not determined by any other variable observed in the domain.

A dependent variable is a variable whose value depends on a polynomial combination of zero

1The calibrated model refers to all determined aspects of the model including the modeling function choice,
feature set, and model parameters.
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or more variables. The target variable is a dependent variable. The two types are mutually

exclusive and are complete: each variable is either an independent or a dependent variable.

There are two synthetic data domains used for experimentation in this chapter (Table 4.1):

Multi-Concept and Synthetic River. The former artificial domain examines two principal

aspects: 1) the effect of the model testing configuration on measured performance, and 2)

the side-effects of irrelevant variables on the calibrated model. The latter domain is a system

populated with 8 independent random walks that are combined in a tree-like structure with no

cycles. This system is intended to mimic the physical relationships in a river network. There

are 8 independent random walk variables, of which 7 are combined (with various time lags) to

compute the target variable.

Table 4.1: Properties of the artificial data domains introduced in this chapter.

Data Set Name # of Relevant
Vars

# of Vars Has Lagged Vari-
ables

Multi-

Concept

5 10 No

Synthetic

River

14 15 Yes

4.1 Model Testing Configuration Approaches

There are many rules-of-thumb in the literature for splitting time-dependent datasets for the

purposes of modeling and prediction. The most appropriate splitting method is, to some extent,

a decision driven by the model developer’s knowledge and understanding of the application

domain. The risk of choosing an inappropriate method is that the prediction performance

estimates found in the testing phase will not be representative of performance on new never-

before-seen observations. The measured generalization performance in the testing phase could

be better or worse than the true model performance on novel data. This phenomenon can be

affected by both the splitting criteria and the machine learning algorithm. In situations where

the computed model will later be used for on-line predictions, this aspect of uncertainty is

important to consider.

Broadly, the these risks are caused by:

1. information leakage from the test set to the training set,

2. the utilization of concepts that could not yet have been discovered due to temporal de-

pendency in the dataset, or
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3. the model overfitting the data due to the presence of more (or fewer) concepts than actually

could have been known at a particular time point.

Time series datasets are ubiquitous in nature. When modeling concepts with temporal data,

machine learning practitioners should pay special attention to their properties. First, these

data are not i.i.d. as adjacent samples will have statistical covariances with each other. These

temporal dependencies can be leveraged through, for example, the construction of time-shifted

variables (“lagged variables”) in the feature set which is fed to the learning algorithm. Second,

while the statistical dependencies should be considered in prediction, using information that is

only available forward in time of the current observation is inappropriate in some scenarios. For

example, in river flow prediction, building a prediction model that uses observations ahead of

the current time, would make the model less useful for on-line prediction tasks as some required

inputs would be unavailable in the online setting. In other sequential domains, this use of later

information may be appropriate. For example, in text processing where decisions are made at

the per word level, using information about the next word may be perfectly appropriate.

This issue of avoiding future knowledge is also important in the composition of the training set

used for calibration. For temporal domains with rapidly changing concepts, it is unlikely that a

deployed machine learning model will have any knowledge of future (not yet observed) concepts.

A model trained on observations from across the entire sampling period (e.g. trained using

cross validation for data splitting) could have a higher prediction accuracy than a model trained

on only samples in the period preceding the current sample. It is also possible for the model

to have lower than expected accuracy when it is trained on multiple concepts. The concepts

may conflict with each other in the calibration process resulting in lower prediction accuracy.

When samples are i.i.d., this is not a concern, but in domains with temporal dependence the

performance results are affected.

In practice, many different data splitting methods are in common usage. Figure 4.1 provides

stylized diagrams of the methods. We enumerate and describe each in the text below:

• (a) all-in-sample — A simple approach to prediction model evaluation is to predict the

target value of each training sample using the model after the model is calibrated. This

corresponds to a model testing configuration with training, validation, and testing all as

the same set. The advantage of this approach is that all the data is used in calibration

and evaluation so interesting samples will be both incorporated into the model and will

be part of the final score. The principal risk of this approach is overfitting because the

calibration and hyperparameter optimization will optimize for lowest evaluation error.

The test set score will not be representative of scores for yet-to-be-observed samples as

the model may be optimized for the idiosyncrasies (outliers, range of values, etc.) in the

training set. In the experimental design in which there are separate training, validation,
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TEVAthird/2 TR

 ...

(i) disjoint contiguous sets

Figure 4.1: Data splitting methods. Note: TR = Training, VA = Validation, and TE = Testing.
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and testing phases, the process is a follows. First, the model is calibrated using all samples

in the dataset. The model hyperparameters may be modified based on validation set stores

computed over the entire data set (in-sample scoring). Finally, the optimized model’s score

is based on prediction errors computed over the entire dataset.

• (b) in-sample validation, out-of-sample testing — In this regime, the calibration and hyper-

parameter optimization is done over the same set. The final scores are created on a “hold

out” test set. This approach also risks overfitting on the hyperparameter optimization,

but the final reported scores should be representative of scores on unseen samples.

• (c) out-of-sample validation and testing — This regime employs the same set for both

validation and testing. In our formulation of this regime, the training set is both earlier

in the data sequence and is disjoint from the validation set. The model is less likely to

overfit but the hyperparameter optimization may overfit by leveraging idiosyncrasies in

the validation set to obtain a better final score. Again, this may result in better than

should-be-expected final scores.

• (d) random with replacement — This method randomly samples three sets (training,

validation, and testing) from the original dataset. Performance is similar to all-in-sample

and every-other but will have additional randomness in the evaluation scores due to the

random sampling behavior.

• (e) random without replacement — This method randomly assigns each sample to one of

training, validation, or testing. The resulting sets are disjoint. But for non-i.i.d. data,

this will be similar to all-in-sample.

• (f) every-other — In the two set context (training and testing only), this is called even-

odd. The first sample and every three observations afterward in the sequence are assigned

to the training set. The two other sets are assigned similarly. This approach is very likely

to leak information in time-series and multi-concept contexts. But it is advantageous in

having less randomness induced in the result as compared to random with replacement

(d) and random without replacement (e).

• (g) cross-validation — Cross-validation is an ubiquitous approach for a model testing con-

figuration in i.i.d. domains from the machine learning literature. It efficiently maximizes

the amount of data used for calibration while simultaneously scoring over all samples in

the dataset. In sequential or time-series data, this method risks using future concepts on

earlier observations. It leverages persistent properties of data over long sequences. Un-

fortunately in multi-concept sequential data, using many concepts to train the model can
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result in a poor model fit. Another disadvantage is that is requires many calibrations

(equal to the number of folds, i.e. n-fold cross-validation) to complete the evaluation. The

most extreme case (when the number of folds is equal to the number of observations) is

called leave-one-out cross-validation.

• (h) sliding window — Sliding window evaluation uses a sequential mask (“window”) over

a portion of the dataset to determine a training, validation and test subset. The window

is shifted several times across the dataset to obtain several evaluations across the entire

data sequence. This method is very useful for time series and sequential data because it

does not leak future concepts, keeps the training set small to avoid poor calibration on

many concepts simultaneously, and minimizes the distance between samples for training

and testing. It can require many calibrations to score the entire dataset (similar to cross-

validation). If the dataset is small (i.e. few observations in the training set) this model risks

poor fit. Because of the advantages on time-series data, this methods is used extensively

in this thesis for natural data domains.

• (i) disjoint training, validation, and testing — Using separate, contiguous sequences for

training, validation, and testing is one approach to avoid overfitting. This approach is

very common in cases of limitless data (such as in synthetic domains). A disadvantage is

that it is not efficient in terms of the amount of data as only one-third of the dataset is

used for training which may be problematic when the dataset is small. For large datasets

with unchanging concepts, this is a suitable approach.
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There are many tradeoffs to consider when choosing a model testing configuration, and there

is no general method that is best for all situations. The disadvantages are attributed to the

splitting methods in Table 4.2. In non-i.i.d. settings where concepts are changing over time, it

is better to use a method with a smaller training set to capture a single concept well (with little

noise). Also, it is important to avoid leaking information from later observations by using it on

earlier samples. The essential conflict between large training set sizes and noise introduced by

a large multi-concept training set is the primary conflict in this section.
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(a) all-in-sample • • •
(b) in-sample VA out-of-sample TE • • •
(c) out-of-sample VA and TE • •
(d) random with replacement • • • • •
(e) random without replacement • • • •
(f) every other • • •
(g) cross validation • •
(h) sliding window •
(i) equal contiguous disjoint • •

Table 4.2: Splitting method risks. Note: VA = Validation and TE = Testing.
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4.2 Multi-Concept

In real-world data, situations where the concept to be learned is changing over the course of the

dataset’s time range are common. The objectives of this scenario are to observe the effects of

common splitting criteria on a multi-concept dataset and also to observe the effects of irrelevant

variables used in the model. This scenario contains up to fifteen additional independent variables.

These additional variables are independent random walk variables which are not in the target

variable computation. For some combinations of machine learning model and model testing

configuration, the additional independent variables will provide predictive power.

This section explores the topic of model testing which is often not addressed when applying

machine learning methods to sequential data. Popular supervised machine learning algorithms

commonly assume that the observed samples used in training are independent and identically

distributed (i.i.d.) [Dietterich, 2002]. In an i.i.d. setting, the value of the previous observa-

tion does not provide any information on the value of the current observation, and the set of

observations is a representative sample of the space. In practice, these assumptions are rarely

true in real-world machine learning scenarios but the methods are nevertheless applied anyway.

This exposition examines a synthetic multivariate time series domain that is known to have four

distinct concepts (relationships between the independent variables and the dependent variable)

over the course of the time series. This artificial data domain allows us to compare common

approaches for splitting datasets for machine learning model calibration and testing in the pres-

ence of concept drift. Changing concepts are challenging to learn in some natural data domains.

We explore responses to this problem.

4.2.1 Multi-Concept Generating Function

The purpose of the Multi-Concept domain is 1) to examine how different splitting methods

perform relative to each other and 2) to examine the effect of additional (possibly) correlated but

independent variables on prediction performance. To ensure the generality of our conclusions,

10 separate datasets (“seeds”) conforming to this specification are constructed. Each seed has a

unique set of randomly generated initial conditions. Each seed has a sequence length of 10,000

time units and the initial value of each random walk variables (named “rwX” and “irXX”) is

drawn uniformly from the variable’s range.

The generating function for the dependent “target” variable (dv1) is given in equation 4.1:

dv1 = rw1+concept1on∗rw2+concept2on∗rw3+concept3on∗rw4+concept4on∗rw5+N (0, σγ )

(4.1)

where N (µ, σ) is the Gaussian normal distribution (with mean µ and variance σ2) and the
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remaining variables are defined in Table 4.3.

Variable Name Description In Feature Set

rw1,. . . ,rw5 = RandomWalk(min=10, max=200, stepsize=2, drift=8) •

ir01,. . . ,ir15 = RandomWalk(min=10, max=200, stepsize=2, drift=8) •

concept1on =

{

1 0 ≤ t ≤ 4000

0 otherwise

concept2on =

{

1 500 ≤ t ≤ 5500

0 otherwise

concept3on =

{

1 5000 ≤ t ≤ 10000

0 otherwise

concept4on =

{

1 5500 ≤ t ≤ 10000

0 otherwise

Table 4.3: Underlying generation function for Multi-Concept

There are also variants of the scenario labeled from 00 to 15 with the number indicating the

number of additional independent variables (named as irXX, where XX ∈ {01, . . . , 15}) that are

also included in the input. The values for each of the “random walk” variables (named “rwX”

or “irXX”) is generated from a random walk process. Equation 4.2 describes the random walk

model with stochastic drift used in data generation.

yt = y0
︸︷︷︸

initial value

+
∑0

i=−driftf(t+ i)
︸ ︷︷ ︸

stochastic trend

(4.2)

f(i) = X (4.3)

P (X) =

{

0.5 , if X = step

0.5 , if X = −step
(4.4)

The specifications of the variables for these seeds including the time ranges of each concept are

given in Table 4.3. A time series plot of one of the seeds is given in Figure 4.2. This provides a

look into the behavior of the data over time.

4.2.2 Multi-Concept Experiments

For these experiments, we build various models to predict the value of dv1 given all values for

the independent variables in the domain at each time step. (There are no time offsets in the

generating function, and no time lags are considered for this scenario.) The learning algorithm is

Partial Least Square (PLS) Regression, a linear regression model, but the results will be similar

for other linear regression methods. The underlying concepts are linear as well, so this choice is
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Figure 4.2: Time Series for Multi-Concept

suitable. Table 4.4 shows the mean statistic and standard deviation of the prediction errors over

all samples in all 10 seeds. The prediction score is computed as the mean error of all predictions

made:

score =
1

n

n∑

i=1

|esti − acti|

|acti|
, for relative scoring. (4.5)

The score is computed relative to the true value for each sample.2 These results show that the

measured performance can vary greatly even for the same data and learning algorithm.

Table 4.4: Performance comparison of common data splitting approaches in the Multi-Concept
dataset using PLS Regression. Note: values reported are relative error (where 0.1 = 10%).

Method Mean Error (relative) Std. Dev.

equal contiguous disjoint 0.315 0.212
cross validation 0.327 0.410
sliding window 0.109 0.140

in-sample VA out-of-sample TE 0.373 0.321
random with replacement 0.152 0.250

random without replacement 0.153 0.250
every other 0.114 0.130
all-in-sample 0.153 0.252

out-of-sample VA and TE 0.373 0.321

The aggregate statistics only show a limited perspective of these results. The distributions

of the errors experienced by each splitting method differ as well and are shown in Figure 4.3.

2This is consistent with measurements of physical systems such as stream flow where the measurement error
is proportional to the true value [Singh, 2013].
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Figure 4.3: Error cumulative distribution function (CDF) for various data splitting methods.

0.0 0.2 0.4 0.6 0.8
Error (1.0=100%)

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc
en

til
e 
(1

.0
=
1
0
0
%
) equal contiguous disjoint

cross validation
sliding window
in-sample VA out-of-sample TE
random with replacement
random without replacement
every other
all-in-sample
out-of-sample VA and TE

Broadly the splitting methods cluster into two distinct classes:

1. all-in-sample, random with replacement, random without replacement, every other, sliding

window, or

2. equal contiguous disjoint, cross validation, out-of sample VA and TE, in-sample VA out-

of-sample TE.

The methods of the all-in-sample cluster benefit from having observed all (or most) of the

dataset previously and are able to leverage idiosyncrasies3 of the generating function. The all-

in-sample cluster can learn from all concepts simultaneously, so it can use knowledge of concepts

that appear after the current test set period. This knowledge about the future would not be

available in an on-line setting. This aspect of the model can be observed by looking at the mean

prediction error observed at each sequence number across all 10 trials. The sliding window

approach in this experiment employs 4 window ranges in total, the edges of the windows are

denoted by vertical lines. The errors near the end of each window tend to be higher than the

errors near the beginning of the window, this is because the concept may change over the range

of the window, so the model’s concept will be less applicable as the distance between the current

observation and the model’s training set increases.

Irrelevant variables in the input set also can effect the splitting methods differently. Figure 4.4

shows how the mean error statistic varies as additional independent variables are added to the

input. The figure shows the effects of including irrelevant variables in the augmented dataset

3In this data, it happens that at either zero or one concept is present at each time step. This can be leveraged
by the learning model if given training data over all concepts.
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Figure 4.4: Mean errors of common data splitting methods in the presence of a varying number
of irrelevant variables using PLS Regression as the underlying learner.

0 2 4 6 8 10 12 14
No. of Irrelevant Variables

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

Pr
ed
ic
tio

n 
Er
ro
r (
1.
0 
=
 1
00

%
)

third
cv6
slidingwindow6
insampleteoutsampleva
randomwreplace
randomworeplace
every3
insample
outsampleteva

provided to the learner for various splitting approaches. The sliding window cluster methods

all benefit from the addition of irrelevant variables. We conjecture that this is because the

irrelevant variables allow the learner to track the ordering of input observations and allow for

memorization of some values. In conclusion, irrelevant variables can effect the concepts learned

but performance is also dependent on the splitting approach utilized. In time series domains

with changing concepts, we find that sliding window approaches are generally preferred as it

provides the most accurate learner that is less likely to be contaminated by possibly irrelevant

concepts.

Multi-Concept Conclusions

This section provided a study of various approaches of splitting data sets for machine learning

that possess temporal dependencies. The risks of leaking information across training and testing

is evaluated for each splitting method. The ideal case for a changing concept data set is an

approach that does not leak data from future concepts. The best possible approach that does

not leak data is a sliding window regime that is retrained at each time step, the window size of

the training set is varied experimentally to find the best size. However, retraining at each time

step is a very expensive approach, so retraining periodically is the alternative taken in these

experiments.

In applications where this kind of uncertainty is present, the solution may be to perform

experiments similar to the ones shown to determine the sensitivity of the model to the splitting

criteria for the application domain.



4.3. Simulated Spatio-temporal Domain: SyntheticRiver 64

4.3 Simulated Spatio-temporal Domain: SyntheticRiver

This experiment shows the effect of having a limited quantity of training data. Clearly, less

information will at some level effect the prediction model’s accuracy. But there is also an

interaction between feature selection approach chosen and the model’s performance as training

data is reduced. The SyntheticRiver scenario contains both independent and dependent variables

(specifically, summations with time delays of other independent and dependent variables). The

systemmimics the behavior observed in real physical systems. This scenario is most similar in the

relationships and time offsets to those found in the real-world application domain of river/stream

flows prediction described in Chapter 6. In the generating function for this dataset, we explicitly

encode the time delays, variable dependencies, and observation noise to facilitate benchmarking

of feature selection methods.
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Figure 4.5: Generating function diagram for SyntheticRiver network. Double circle nodes denote
observable variables.

For these experiments, the regression model attempts to predict the flow at the dv1 location

for 7 time steps ahead (time t+7) of the current observations (time t). The independent variables

are random walk processes with a dynamic trend. A visual diagram of the relationships and

offsets is shown in Figure 4.5. Only a subset of the variables is available for prediction (as is

true in many real physical systems), and these nodes are denoted by double circles.

The mathematical relationships for this system are given in Table 4.5. All observable values

have 1% Gaussian noise applied (N (µ = 1.0, σ = 0.01)) to simulate measurement error that is

proportional to the magnitude of each measurement.

As this experiment is concerned with the effect of limited training data, the schedule for

limiting the training set size is given in Table 4.6. In these experiments the length of the

maximum length training, validation, and test sets is 3300 time steps in each. For the reduction

experiments, the training set is truncated based on the schedule. The validation and test sets

remain the full length and contain the same samples as the full length version to facilitate paired-

sample statistical significance testing. This ensures comparisons between methods are reasonable

as the comparison results are for precisely the same set of samples. Unlike the experiments of the
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Variable Name Description

rw1 = RandomWalk(min=10, max=20, stepsize=1, drift=10)
rw2 = RandomWalk(min=10, max=200, stepsize=1, drift=10)
rw3 = RandomWalk(min=10, max=100, stepsize=1, drift=10)
rw4 = RandomWalk(min=10, max=60, stepsize=1, drift=10)
rw5 = RandomWalk(min=10, max=200, stepsize=1, drift=10)
rw6 = RandomWalk(min=10, max=200, stepsize=1, drift=10)
rw7 = RandomWalk(min=10, max=200, stepsize=1, drift=10)
rw8 = RandomWalk(min=10, max=200, stepsize=1, drift=10)
dv1 = φ0(dv2) + φ−2(dv3) + φ−4(rw5)
dv2 = φ−3(dv4)
dv3 = φ−8(dv5)
dv4 = φ−2(rw1) + φ−4(rw2)
dv5 = φ−3(rw4) + φ−2(rw3)
dv6 = φ−4(dv7) + φ−2(dv1)
dv7 = φ−4(rw6) + φ−6(rw7)

Table 4.5: Underlying generating function for SyntheticRiver. Note: φc(x) is the time delay
operator with a time shift of c on variable x.

Table 4.6: Training set size levels for Syntheti-
cRiver experiments

Training Set Size No. of Observations

1/1 3300
1/2 1651
1/4 825
1/8 412
1/16 206
1/32 103
1/64 51
1/128 25
1/256 13
1/512 6

Table 4.7: Domain-congruent feature class con-
straints for SyntheticRiver domain.

Variable 1 Constraint Variable 2
rw2 BEFORE dv1
dv5 BEFORE dv1
rw4 BEFORE dv5
rw5 BEFORE dv1
rw4 BEFORE dv1

previous section, we do not examine alternative splitting methods for SyntheticRiver because

the underlying concept is known a priori to not be changing.

Experiments in this section examine the performance of the proposed (DGFS) and existing

state-of-the-art feature selection algorithms presented in Chapter 3 in the context of reduced

training set size. Figure A.5 and Table 4.8 show the efficiency curves for each method as the

training set is reduced. The scores are computed over prediction error values from 10 randomly

generated scenarios (each with different initial random seeds) for 33,000 test set observations

in total. In the maximal training set case (“1/1”), each method achieves its best performance.

This is expected as this case provides the learning algorithm with ample data to optimize the

calibration of the concept even in the presence of noise. The benchmark (no feature selection)

approach is labeled “No FS”. It is a PLS Regression model with all observable variables included
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Figure 4.6: Efficiency curve for various methods on SyntheticRiver dataset: error percentiles
(25th, 50th, 75th) versus training set size for various feature selection approaches. Errors are
presented with a logarithmic y-scale to make differences more visible across the range of error
measurements. Small markers denote the 25th and 75th percentiles while the large markers
denote the 50th percentile.

and with each variable having all time offsets in the input set (lags = {0,−2,−4,−6,−8,−10}).4

The best of the data driven approaches (BFS backward, and CFS forward) as well as all DGFS

approaches (Exhaustive, Greedy, Random, and Guided) are able to improve upon the baseline’s

performance.

As the training set size is reduced, all feature selection methods experience increased errors.

Many methods lose accuracy by the “1/16” size trial. The DGFS methods (except for Greedy)

are still exceeding the performance of the baseline (No FS at “1/1”) from the “1/1” to the

“1/64” trials. The DGFS methods’ accuracy is ordered roughly in terms of their respective

search effort: exhaustive has the least error (and most search effort) and greedy has the greatest

error (and least search effort).

Critically, we also find that the performance differences are statistically significant for train-

ing sets smaller than the “1/16” level. These statistical accuracy comparisons employ the

Wilcoxon Signed-rank Test with Holm-Bonferroni correction to account for the multiple com-

parisons problem (Table 4.9). Because the test set is large (33,000 observations), the statistical

significance tests are likely to find significance when a favorable performance difference exists

for the aggregate statistics. For greatly reduced training set sizes, we find that the Exhaustive

4For the No FS benchmark, there are 36 input features (6 variables × 6 time lags).
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1/1 1/2 1/4 1/8 1/16 1/32 1/64 1/128 1/256 1/512

Exhaustive 24.7 25.1 24.9 26.0 26.9 27.7 31.8 45.4 45.4 43.2
Greedy 32.2 32.2 32.2 32.4 33.7 35.7 39.8 67.2 79.9 67.5
Random 26.8 27.0 27.1 27.1 29.9 30.6 35.1 52.7 61.1 55.6
Guided 24.8 25.3 25.1 26.0 27.5 28.6 32.4 47.9 56.6 50.5
No FS 32.3 33.1 34.1 35.9 41.5 45.1 67.9 121.1 137.5 115.0
CFSB 26.4 26.7 26.6 30.5 34.4 42.7 76.9 149.6 142.0 494.5
CFSF 24.1 25.5 27.0 27.2 31.4 39.8 72.4 124.8 162.2 210.9
BFSB 22.5 24.4 23.6 26.6 28.3 38.4 57.9 246.4 134.8 1006.7
BFSF 91.5 91.7 92.9 96.1 100.6 108.1 116.0 134.9 122.4 119.2

Table 4.8: Test set root-mean-square error for various feature selection algorithms coupled with
PLS regression applied to SyntheticRiver domain. Values are in kcfs (1000s of cubic feet per
second) to correspond to the river domain.

and Guided feature set selection approaches dominate others.

DGFS without constraints

This experiment examines the results of the feature selection search when no feature class con-

straints are used. The results in Table 4.10 show the experimental results when no constraints are

used in the search. The exhaustive search version is not reported because the search space when

no constraints are used expands considerably. For larger domains (with many feature classes

and possible time lags), exhaustive search will be infeasible without the provided constraints.

Incorrect constraints

DGFS does not require complete correctness of the constraints used in feature selection for

satisfactory results. This experiment utilizes a constraint set that is incongruent with the feature

relationships in the domain. The constraints used are shown in Table 4.11 and can be compared

with the correct constraints in Figure 4.5. The efficiency curves for the DGFS methods using this

constraint set are given in Table 4.12. The errors are higher in this experiment when compared

to the correct constraint set experiment in Figure A.5, but this highlights the benefit of providing

domain-correct constraints on performance results using DGFS. This aspect of incorrect feature

class constraints is also examined in the airline ticket price prediction domain in Section 5.5.5.

Expanded Time Lag Choices

Another decision to be made in the DGFS framework is the level of granularity in the time lag

choices for each feature class. Up to this point in this section, the lag choices have been of the set

{0,−2,−4, . . . ,−10} in time units. For this experiment, the granularity has been increased to
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Table 4.9: Statistical significance of reduced training set experiments using PLS for the under-
lying learner. Each symbol in a cell indicates that the row method is more accurate than the
symbol’s method and that the mean error difference is significant by the Wilcoxon Signed-rank
Test with Holm-Bonferroni correction (α = 5%). More symbols in a cell indicate the row method
dominates the performance of many other feature selection methods under comparison.

1/1 1/2 1/4 1/8 1/16 1/32 1/64 1/128 1/256 1/512
Exhaustive (+) △ ▽ ⊳

⊲ ⋆ �

△ ▽ ⊳
⊲ ⋆ � +

△ ▽ ⊳
⊲ ⋆ � +

△ ▽ ⊳
⊲ × ⋆ �

+

△ ▽ ⊳
⊲ × ⋆ �

+

△ ▽ ⊳
⊲ × ⋆ �

+

△ ▽ ⊳
⊲ × ⋆ �

+

△ ▽ ⊳
⊲ × ⋆ �

+

△ ▽ ⊳
⊲ × ⋆ �

+

△ ▽ ⊳
⊲ × ⋆ �

+
Greedy (△) ⋆ ⊲ ⋆ ⊲ ⋆ ⊲ ⋆ ⊲ ⋆ � ⊲ × ⋆ �

+
⊲ × ⋆ �

+
⊲ × ⋆ �

+
⊲ × ⋆ �

+
⊲ × ⋆ �

+
Random (▽) △ ⊲ ⋆ � △ ⊲ ⋆ △ ⊲ ⋆ △ ⊲ ⋆ � △ ⊲ ⋆ �

+
△ ⊲× ⋆
� +

△ ⊲ × ⋆
� +

△ ⊲× ⋆
� +

△ ⊲× ⋆
� +

△ ⊲× ⋆
� +

Guided (⊳) △ ▽ ⊲
⋆ �

△ ▽ ⊲
⋆ �

△ ▽ ⊲
⋆ � +

△ ▽ ⊲
× ⋆ �

+

△ ▽ ⊲
× ⋆ �

+

△ ▽ ⊲
× ⋆ �

+

△ ▽ ⊲
× ⋆ �

+

△ ▽ ⊲
× ⋆ �

+

△ ▽ ⊲
× ⋆ �

+

△ ▽ ⊲
× ⋆ �

+
No FS (⊲) ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ � + × ⋆ �

+
� × � +

CFSB (�) △ ⊲ ⋆ △ ⊲ ⋆ △ ⊲ ⋆+ △ ⊲ ⋆ ⊲ ⋆ ⊲ ⋆ ⋆ × + ×
CFSF (+) + △ ▽

⊳ ⊲ ⋆ �

△ ▽ ⊲
⋆ �

△ ⊲ ⋆ △ ⊲ ⋆ � △ ⊲ ⋆ � ⊲ ⋆ � ⋆ � × ⋆ � × �

BFSB (×) + △ ▽
⊳ ⊲ ⋆ �

+

+ △ ▽
⊳ ⊲ ⋆ �

+

+ △ ▽
⊳ ⊲ ⋆ �

+

△ ▽ ⊲
⋆ � +

△ ▽ ⊲
⋆ � +

⊲ ⋆ � + ⊲ ⋆ � + ⊲ � +

BFSF (⋆) × � ⊲ × �

+
× � +

every integer offset: {0,−1,−2, . . . ,−9,−10}. The accuracy results for the increased granularity

experiment is shown in Table 4.13. This increased granularity provides reduced the errors for

the larger training set sizes (“1/1” to “1/64”). For the smallest training set sizes, mean errors

increased for the stochastic search approaches (Random and Guided). This can be explained by

the larger number of potential configurations causing a reduction in search efficiency. The Ex-

haustive version has been omitted from this experiment due to the explosion of the configuration

space caused by increased granularity making exhaustive computation infeasible.

4.3.1 Comparing search configurations within DGFS

This section compares the experimental performance of the various lag scheme and constraint

set configurations presented for this domain. The purpose is to show from a prediction accu-

racy perspective which methods perform better than the others based on the training dataset

size. Figure 4.7 shows the test set accuracy of the best performing stochastic search method

“Guided” against the exhaustive search method “Exhaustive” and the no feature selection “No

FS” benchmark.

Statistical significance testing of all method pairs is given in Table 4.14. This comparison

finds that the “No FS” benchmark does not exceed prediction accuracy of the DGFS Guided
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1/1 1/2 1/4 1/8 1/16 1/32 1/64 1/128 1/256 1/512

Greedy 32.2 32.2 32.2 32.4 33.7 35.7 39.8 67.2 72.1 61.9
Random 27.1 26.8 27.1 28.1 28.5 30.6 34.8 55.5 61.9 45.7
Guided 24.7 25.1 24.9 26.5 28.1 27.9 31.5 46.1 56.2 49.1
No FS 32.3 33.1 34.1 35.9 41.5 45.1 67.9 121.1 137.5 115.0

Table 4.10: Without constraints. Test set root-mean-square error for various feature selection
algorithms coupled with PLS regression applied to SyntheticRiver domain with no feature class
constraints.

Table 4.11: Incorrect constraints set example for SyntheticRiver.

Variable 1 Constraint Variable 2
dv1 BEFORE rw2
dv1 BEFORE dv5
dv5 BEFORE rw4
dv1 BEFORE rw5
dv1 BEFORE rw4

methods for any dataset size which provides evidence that the framework’s approach is valu-

able for improving accuracy. The Exhaustive search version consistently outperforms the other

search methods as well, but the exhaustive search method relies on careful design of the feature

class constraints to ensure the exhaustive search is of tractable size. Among the guided search

configurations, the guided search with constraints performs best overall. However, there are

several instances where the no constraints guided search has better accuracy. Overall, we find

the DGFS approach improves prediction accuracy in a reliable way when the amount of training

data is reduced.
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1/1 1/2 1/4 1/8 1/16 1/32 1/64 1/128 1/256 1/512

Greedy 71.6 72.5 73.0 75.2 78.0 85.7 89.0 108.2 76.4 92.5
Random 28.6 30.3 29.3 31.5 35.2 33.4 41.3 67.6 71.6 57.7
Guided 25.4 26.6 26.8 27.0 29.1 29.2 34.1 62.4 54.2 56.1
No FS 32.3 33.1 34.1 35.9 41.5 45.1 67.9 121.1 137.5 115.0

Table 4.12: Incorrect constraints. Test set root-mean-square error for various feature selec-
tion algorithms coupled with PLS regression applied to SyntheticRiver domain with incorrect
constraints. Values are in kcfs.

1/1 1/2 1/4 1/8 1/16 1/32 1/64 1/128 1/256 1/512

Greedy 32.2 32.2 32.2 32.4 33.7 35.7 39.8 67.2 79.9 67.5
Random 27.2 27.5 27.0 28.1 29.3 32.2 36.1 57.5 66.4 51.1
Guided 25.5 25.1 24.9 26.8 28.1 28.1 34.1 49.8 54.2 47.2
No FS 32.3 33.1 34.1 35.9 41.5 45.1 67.9 121.1 137.5 115.0

Table 4.13: Expanded lag choices. Test set root-mean-square error for various feature selec-
tion algorithms coupled with PLS regression applied to SyntheticRiver domain with expanded
granularity lag choices. Values are in kcfs.

1/1 1/4 1/16 1/64 1/256
Training Set Size

101

102

Er
ro

r (
kc

fs
, l

og
 s

ca
le

)

No FS
Guided with Expanded
Guided with Errors
Guided with no constraint
Guided
Exhaustive

Figure 4.7: Efficiency curve for various methods on SyntheticRiver dataset: error distribution
percentiles versus training set size for various feature selection approaches. Errors are presented
with a logarithmic y-scale to make differences more visible across the range of error measure-
ments.
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Table 4.14: Statistical significance of reduced training set experiments using PLS for the un-
derlying learner. Each symbol in a cell indicates that the row method is more accurate than
the symbol’s method and that the mean error difference is significant by the Wilcoxon Signed-
rank Test with Holm-Bonferroni correction (α = 0.05). More symbols in a cell indicate the row
method dominates the performance of many other feature selection methods under comparison.

1/1 1/2 1/4 1/8 1/16 1/32 1/64 1/128 1/256 1/512
No FS (+)
Guided with
Expanded (△)

+ ▽ + ▽ + ▽ ⊳
⊲ ×

+ ⊳ + ▽ ⊳ + ▽ ⊲ + ▽ + ▽ + ▽ ⊳
⊲

+ ▽ ⊳
⊲

Guided with
Constraint
Errors (▽)

+ + + + + + + + + ⊳ ⊲ +

Guided with No
Constraints (⊳)

+△▽
⊲ ×

+ ▽ ⊲ + ▽ ⊲
×

+ ▽ + ▽ +△▽
⊲

+△▽
⊲

+△▽
⊲

+ ⊲ + ▽ ⊲

Guided (⊲) +△▽ + ▽ + ▽ +△▽
⊳

+△▽
⊳

+ +△▽ +△▽ + + ▽

Exhaustive (×) +△▽
⊲

+ ▽ ⊳
⊲

+ ▽ ⊲ +△▽
⊳ ⊲

+△▽
⊳ ⊲

+△▽
⊲

+△▽
⊲

+△▽
⊳ ⊲

+△▽
⊳ ⊲

+△▽
⊳ ⊲
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4.3.2 Analysis of Chosen Features

Another benefit of the DGFS framework is in the ability to analyze the chosen lag scheme (and

model coefficient weights) for domain understanding. In this synthetic scenario, it is possible

to directly compare the chosen model coefficients with the ground truth coefficients of the

underlying data generation function. We show the chosen lag schemes for the “1/1” dataset size

and the “1/32” dataset size to illustrate how the DGFS framework facilitates feature selection.

The time lags encoded in the underlying generating function (“Ground Truth”) are provided as

a point of comparison.
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Figure 4.8: Chosen lag scheme and model coefficient magnitudes for each feature selection search
method in the “1/2” dataset size.
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At the “1/2” dataset size (Figure 4.8), the feature sets and coefficient weights for DGFS

methods are close to the most recent value for all relevant variables. The BFSB, CFSB, and No

FS methods choose a range of time lags for each variable. As there is noise in each observation,

this approach of choosing several time lags for the same variable could improve prediction

accuracy. However, for smaller training set sizes, choosing many time lags for the same variable

can make the overall model more likely to overfit.
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Figure 4.9: Chosen lag scheme and model coefficient magnitudes for each feature selection search
method in the “1/32” dataset size.

At the “1/32” dataset size (Figure 4.9), many of the search methods produce coefficient

assignments more similar to the “Ground Truth” configuration. This is particularly true for

the Guided and Exhaustive DGFS search methods. Also, CFSB and CFSF produce schemes

broadly similar to the ground truth. Analysis of the trained models in this way can facilitate

better understanding of the domain and results.
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4.4 Conclusions

These variations in performance suggest that different feature selection approaches should be

chosen using the properties of the learning scenario. When training data is unlimited and the

underlying concept is unchanging (corresponding to the “1/1” dataset size), an explicit feature

selection strategy may not be necessary. If less data is available for training or the concept

is changing, calibration using all available variables may produce models with larger errors.

Using a feature selection method can alleviate the increase in errors to some extent. But as

these experiments show, a feature selection search with a bias (incorporating known constraints

between variables) can reduce the errors further.

It is a common circumstance for a model to be calibrated in scenarios with little available

training data. This can be due to the expense or difficulty of obtaining data or because valid

data is scarce due to rapid changes in the underlying concept. Our proposed method, DGFS,

provides candidate solutions for this situation.

Experimentation based on synthetic data allows for a high degree over control over the phe-

nomena being tested. The experiments in this chapter provide several important contributions

to understanding feature selection in multivariate sequential data:

1. The Multi-Concept experiments (Section 4.2) show the effect of the model testing configu-

ration choice (a.k.a. the dataset “splitting” method) on accuracy measurements in machine

learning on sequential data. When the dataset does not obey the i.i.d. property, some

experiment configurations from the literature may leak information between the training

and test sets. It is important to use a method which avoids information leakage to obtain

accuracy measurements that are representative of performance for as-yet-unseen samples.

2. The Multi-Concept data is also employed to demonstrate the effects of irrelevant variables

on multivariate machine learning. Intuitively, irrelevant variables should have no benefit

for prediction. But in practice, irrelevant variables are correlated to relevant variables so

they can increase accuracy of the prediction model.

3. The DGFS approach significantly contributes to improvements in model accuracy when

training set size is reduced. The SyntheticRiver domain example demonstrates the effect

of training set size reduction on accuracy. In addition, the effect of incorrect constraint

choices is examined, and it is found that incorrect constraints can reduce empirical model

accuracy. Also, this chapter examine the effect of improved granularity in lag choices.

4. By examining the chosen feature selection and model coefficient values which are output

by the feature selection search process, domain knowledge can be extracted as well.
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The following three chapters will examine DGFS in the context of prediction in real-world

and complex application domains where the underlying phenomena being predicted is not fully

observable.



Chapter 5

Applied Domain: Airline Ticket

Price Prediction

Cost minimization by strategic timing of airline ticket purchasing is a challenging prediction

scenario that can leverage both historical price data and domain knowledge. To address this

problem, we introduce an algorithm which optimizes purchase timing on behalf of customers and

which provides performance estimates of its computed action policy as predictions are made.

Given a desired flight route and travel date, the algorithm uses machine learning methods on

recent ticket price quotes from many competing airlines to predict the future expected minimum

price of all available flights. The main novelty of our algorithm lies in using a systematic feature

selection technique, which captures time dependencies in the data by using time-delayed features,

and reduces the number of features by imposing a class hierarchy among the raw features and

by pruning the features based on in-situ performance. Our algorithm achieves much closer to

the optimal purchase policy than other existing decision theoretic approaches for this domain,

and meets or exceeds the performance of existing feature selection methods from the literature.

5.1 Introduction

The conventional wisdom for airline ticket purchasing states that it is generally best to buy a

ticket as early as possible to avoid the risk of price increase. As prices do generally increase

dramatically before a flight’s departure, this seems correct. However, in practice the earliest

purchase strategy only occasionally achieves the lowest cost ticket. This paper proposes a

model for estimating the optimal time to buy airline tickets. The ultimate application is to

autonomously make daily purchase decisions on behalf of airline ticket buyers to lower their

76
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costs.

This kind of optimal airline ticket purchasing problem from the consumer’s perspective is

challenging primarily because prices can vary significantly on a daily basis, but consumers do

not have sufficient information about pricing of specific routes and airlines. Prices do vary in

this domain for several reasons. Sellers (airlines) make significant long term investments in fixed

infrastructure (airports, repair facilities), hardware (planes), and route contracts. The specific

details of these long term decisions are intended to roughly match the expected demand but

often do not match it exactly. Dynamic setting of prices is the mechanism that airlines use to

synchronize their individual supply and demand in order to attain the greatest revenue.

We assume buyers are seeking the lowest price for their ticket, while sellers are seeking to

keep overall revenue as high as possible to maximize profit. Simultaneously, each seller must

consider the price movements of its competitors to ensure that its prices remain competitive to

achieve sufficient (but not too high) demand. Both types of relationships (buyers to sellers and

airline to airline) need to be considered to effectively optimize decision making from the buyer’s

point of view.

A central challenge in airline ticket purchasing is in overcoming the information asymmetry

that exists between buyers and sellers. Airlines can leverage historical data to predict the future

demand for each flight. Demand for a specific flight is likely to change over time and will also

change due to the pricing strategy adopted by the airline. For buyers without access to historical

price information, it is generally best to buy far in advance of a flight’s departure. However,

this is not always best since airlines will adjust prices downward if they want to increase sales.

Given a corpus of historical data, we propose a learning approach which computes policies

that do much better than the earliest purchase strategy. The success of our method depends on

several novel contributions:

1. We leverage a developer-provided hierarchical structure of the features in the domain and

use automated methods to select which features to include or prune. This technique, which

we call Developer-Guided Feature Selection 1, computes a feature set that is more informa-

tive than existing feature selection methods. The knowledge of precedence relationships

between features is provided by the practitioner when building a prediction model. For a

motivating discussion on the benefits of Developer-Guided Feature Selection, see [Groves,

2013].

2. We capture temporal trends in the model by allowing time-delayed observations to sup-

plement or replace the most recently observed value for each of the selected features. We

call the time-delayed observations lagged features.

1In our previous work [Groves and Gini, 2013b], this method is called User-Guided Feature Selection. The
change more accurately reflects the source of knowledge used in the bias.
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We demonstrate experimentally that our model performs better than the Bing Travel “Fare

Predictor”, the best commercial system currently available for airline fare prediction. In addition

to airline ticket price prediction, our approach is applicable to many real-world domains with

properties such as the need to handle advance reservations, a range of customer values for the

same product, or stock perishable inventory [Elmaghraby and Keskinocak, 2003]. Industries

with these properties include hotel booking, railroad transport car rental, and broadcasting

industries.

This paper extends our previous work [Groves and Gini, 2013b]. We provide an analysis of

how airlines use competitive pricing and show how the market competitiveness on each airline

route explains the difference in prediction performance of our model across routes. We extend

our prediction method to handle specific customer’s preferences, such as purchase only non-stop

flights and from a specific airline. We present a sensitivity analysis of how the hierarchical

structure provided by the practitioner affects prediction performance. Further, we analyze the

optimal purchase timing accuracy of different models.

5.2 Background and Related Work

Briefly, we review the background on airline pricing to provide context for our work. We also

outline how our work differs from existing work and how our method for feature selection guided

by the modeler compares with existing feature selection methods.

5.2.1 Airline Ticket Pricing

Airline Yield Management and Dynamic Pricing

Airlines determine the prices to offer for each flight through a process called yield management

which is designed to maximize revenue given constraints such as capacity and future demand es-

timates (for an overview, see [Belobaba, 1987; Smith et al., 1992]). Mismatches between airplane

size and passenger demand are equalized through pricing, which can adjust demand. Choosing

optimal pricing on an entire airline network is complex because there are instances (in hub-and-

spoke networks) when sacrificing revenue on a particular flight can increase overall revenue of

the entire network.

The current state of yield management in the airline industry is a direct result of decisions

made about regulation in the industry [Smith et al., 1992]. Due to regulatory changes in 1979,

airlines became free to adjust the price for each seat without restriction. This allowed airlines

to divide the seats for each flight into different “fare classes” and charge different prices for

effectively the same service.
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In traditional yield management, the lowest air ticket prices quoted to customers are based on

the available seats in each fare class for a particular flight (or origin-destination pair in the case

of multi-stop itineraries). An airline can adjust the rate-of-fill for a particular flight by moving

seats between fare classes (e.g. by moving high cost seats into lower cost fare classes). These

decisions are traditionally made by humans who take into account previous demand, current

sales, and competition.

Low Cost Airlines

The airline market has changed with the introduction of low cost airlines (LCAs). A study of the

pricing strategies developed by LCAs in the European air travel market [Piga and Filippi, 2002]

reports that tickets purchased between 30 and 8 days prior to departure are more expensive

than tickets bought in other periods. Tickets bought within a few days from departure can be

significantly cheaper but are not always available due to demand. LCAs do not compete against

conventional airlines on price alone. They also use horizontal product differentiation to minimize

the necessity to compete on price. Specifically, LCAs use secondary airports (not significantly

served by conventional airlines) and fly on schedules that are maximally distant from existing

players.

A later investigation [Bachis and Piga, 2011] shows that airlines that have a significant share

of the traffic at an individual airport tend to have higher prices than other carriers at the same

airport. Also, an airline having a large portion of traffic between two airports (one direct route)

tends to have greater market power than an airline having a large portion of traffic between two

airports without a direct route. There is greater substitutability on routes with one or more

stops, so market power is lower. We show how market competition on individual routes affects

the performance of our prediction models (Section 5.5.7).

Strategic Sales and Game Theory in Pricing

There are several efforts in the game theory community to model aspects of the airline ticket

domain, usually for the purpose of understanding competitive market dynamics of the oligopoly

of sellers. In [Subramanian et al., 1999], a dynamic programming model is presented for deter-

mining optimal fare class allocation (of four fare classes) on a single departure date and flight

number. Valuable insights provided by this study are that booking limits do not need to change

monotonically over time (may increase or decrease) and it may be better for an airline to sell

a lower fare class instead of a higher fare class, for instance, due to differences in cancellation

characteristics. We show an example later in Figure 5.4.

A game theory model of dynamic pricing for an oligopoly of sellers facing strategic customers,

i.e. buyers who will delay purchase if there is a high likelihood of lower prices later, is presented
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in [Levin et al., 2009]. The work assumes perfect foresight, all parties (sellers and customers) can

estimate perfectly future outcome probabilities and utilities. If even a portion of the population

of buyers is strategic, revenue for the sellers is reduced and no strategic defenses can fully

ameliorate this effect. The critical conclusion of this work is that the most effective method to

inhibit the impact of strategic consumers is to reduce the amount of information available to

buyers. This may explain in part why, in spite of the technical feasibility, few predictive tools

are available to individual purchasers of airline tickets. It is important to note that we model

competitive aspects only indirectly through price relationships and not by modeling capacity,

demand, and inventory as advocated by a game theory approach.

Beyond information asymmetry, airlines also use pricing behavior to reduce the effectiveness

of strategic behavior. The presence of strategic consumers has been cited as a factor in increased

price volatility: high price volatility makes consumers less able to judge the “right” price, and

price volatility makes consumers less sensitive to price increases. The psychological effects

are clear, but [Mantin and Gillen, 2011] also indicate that some systematic behaviors, such as

increased price volatility, can signal price changes. Those are the phenomena which we seek to

leverage in our price predictions.

5.2.2 Optimal Purchase Timing

Our work has been inspired by [Etzioni et al., 2003], where several purchasing agents attempt to

predict the optimal purchase time of an airline ticket for a specific flight. The agents determine

the optimal purchase time within the last 21 days prior to departure for a specific flight in their

collected data set. The authors compute the purchasing policy (a sequence of wait/buy signals)

for many unique simulated passengers with a specific target airline, target flight, and date of

departure. The optimal policy (the sequence of buy/wait signals that leads to the lowest possible

ticket price) is used as a benchmark for each simulated passenger and the cost of each alternative

purchasing agent is computed. The aggregate result shows that, given these purchasing criteria,

it is possible to save significantly. We understand that Bing Travel’s “Fare Predictor” is a

commercialized version of the models in [Etzioni et al., 2003], so we use it as a benchmark in

our experimental results (Section 5.5.2).

Our work is different because we model the aggregate cost of all the flights on any airline

meeting the date of travel and origin-destination pair requirements. We also allow for some

preference criteria, such as number of stops and choice of airline. We model purchases up

to 60 days before departure (instead of 21), we compare our results against realistic financial

benchmarks (including buying as early as possible). In addition, our model provides a regression

estimate for the expected best price between the current and the departure date.
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5.2.3 Feature Selection

From a technical perspective, this prediction problem we address can be phrased as a ma-

chine learning problem involving both many features (possible variables which are relevant to

prediction) and temporal trends. For an overview of automated feature selection techniques,

see [Guyon and Elisseeff, 2003; Hall, 1999; Zhao and Liu, 2011]. There are many data-driven

feature selection techniques applicable to this domain [Molina et al., 2002]. Correlation-based

Feature Selection (CFS) Hall [2000] performs a filter-based feature selection using normalized

Pearson’s Correlation. The algorithm starts with an empty feature set and uses forward best-

first search to incrementally add features. Wrapper-based methods employing search, such as

best first search (BFS), coupled with a machine learning algorithm have also been employed

[Kohavi and John, 1997]. Both techniques are included in our results for benchmarking.

In the context of the feature selection literature, our Developer-Guided Feature Selection is

classified as a wrapper-based approach because it uses prediction performance of the underlying

machine learning model measured on many feature subsets to find a well-performing feature set,

The feature selection bias induced by the constraints is a way of addressing the bias-variance

tradeoff when building prediction models from data [Hastie et al., 2001]. Beyond feature selec-

tion, using prior domain knowledge to guide model calibration is also an emerging approach

used for improving learning of Bayesian network structures from data (e.g. [Zhou et al., 2014]).

5.3 Data Sources

The data for our analysis were collected as daily price quotes from a major travel search web

site between Feb. 22 and Jun. 10, 2011 (109 observation days) for 7 different origin-destination

pairs2 for a total of 23.5 million price quotes. The specific pairs were selected to include major

cities in different parts of the US and some international destinations. A web spider was used

to query for each pair of origin-destination and departure date, so the results are representative

of what a customer could observe.

We split this set sequentially into 3 datasets with the following lengths: 48, 20, and 41 days.

The three periods are utilized as the training set, calibration set, and test set, respectively. These

values were chosen so that the calibration set had at least 3 complete departures of each type

(Monday and Thursday), the test set had at least 6 departures of each type, and the remainder

forms the training set. Each query returned, on average, 1,200 unique round-trip itineraries

from all airlines; most queries returned results from more than 10 airlines. Example queries for

2The 7 routes are the following origin-destination pairs: HOU-NYC, MSP-NYC, NYC-CDG, NYC-CHI,
NYC-HKG, NYC-MSP, and SEA-IAD. The airport codes for the cities are: HOU=Houston, TX, USA ;
MSP=Minneapolis, MN, USA, NYC = New York, USA; CDG = Paris, France; CHI = Chicago, USA; HKG
= Hong Kong, China; SEA = Seattle, WA, USA; IAD = Washington, DC, USA.
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individual routes and dates are in Table 5.1. Queries were made at the same time each day for

consistency.

Table 5.1: Airline price quote specifications for all airlines for specific 5-day round trips. The
exact dates and cities shown are for illustration purposes only.

Example 1 Example 2

Quote Date: 13 May 2011 13 May 2011
Origin City: SEA NYC
Destination City: IAD LAX
Departure Date: 20 May 2011 20 May 2011
Return Date: 25 May 2011 25 May 2011
No. of itineraries returned: 1135 1304
No. of airlines quoting
itineraries:

9 13

Bing Travel, a popular travel search web site, has a “Fare Predictor” tool that provides a

daily buy/wait policy recommendation for many routes and departure dates. We obtained these

recommendations daily from the site for the test set period. Those recommendations are directly

compared with our results in Section 5.5.

5.3.1 Pricing Patterns in Historical Data

There are strong cyclic patterns in the time series of prices. For example, Figure 5.1 shows

the mean lowest price quoted by all airlines for a specific origin-destination pair for 2 months

of 5-day round trip itineraries departing on (a) Thursdays and (b) Mondays. The Thursday

to Tuesday itinerary time series shows a regular drop in prices for Tuesday, Wednesday, and

Thursday purchases (days-to-departure modulo 7 ∈ {0, 1, 2}), while the (b) series shows signif-

icant increases for Thursday, Friday, and Saturday purchases. As expected, both exhibit price

increases in the last few days before departure (days-to-departure ≤ 7) but series (b) exhibits

this increase earlier in the time series. We posit that the majority of business flights would be

Monday to Friday itineraries, and thus demand for series (b) flights would be less sensitive to

price increases than leisure flights. The weekly depression in costs in (a) may be due to market

segmentation: customers buying mid-week are more price sensitive than weekend purchasers.

Previous studies of airline pricing confirm a similar “weekend effect” in pricing [Mantin and Koo,

2010; Puller and Taylor, 2012].

The pricing behaviors exhibited for other origin-destination pairs also differ. A high traffic

origin-destination pair such as the New York City to Los Angeles route (shown in Figure 5.2)

exhibits much weaker cyclic patterns. Strategic pricing is likely to have a much greater observed



83 Chapter 5. Applied Domain: Airline Ticket Price Prediction

(a)

 300

 400

 500

 600

 700

 800

 900

56 49 42 35 28 21 14 7 0

P
ric

e 
(in

 U
S

D
)

Days to Departure

Lowest Price
Mean Lowest Price

(b)

 300

 400

 500

 600

 700

 800

 900

56 49 42 35 28 21 14 7 0

P
ric

e 
(in

 U
S

D
)

Days to Departure

Lowest Price
Mean Lowest Price

Figure 5.1: Mean lowest price from all airlines for New York City (NYC) to Minneapolis (MSP)
5-day round trip flights having (a) Thursday departure and Tuesday return or (b) Monday
departure and Friday return itineraries. Each solid line series indicates the minimum price from
all airlines on each query day for each departure date (8 departure dates in each graph). A
dotted series indicates the mean.

effect for routes that have relatively few (2 or 3) competing airlines than for routes with a large

number (> 3) of competitors [Vowles, 2000].

5.3.2 Observed Pricing Relationships

In this section, we characterize the pricing relationships between airlines that are observed in

the pricing data we collected. The prices quoted each day for a specific query (such as the two

examples in Table 1) often vary significantly by airline, but the prices observed have structural

relationships which can be leveraged for prediction. Figure 5.3 plots the minimum price time

series for each airline from four weeks of data for a specific itinerary: depart Minneapolis (MSP)

on May 5, 2011, and return from New York (NYC) on May 10, 2011. Pricing patterns for

competing airlines have been covered empirically in the literature (e.g. [Bachis and Piga, 2011]),

and the figure illustrates these relationships.

Airlines can be clustered into several categories according to their observed pricing strate-

gies [Obeng and Sakano, 2012]: low cost airlines (“Low” category) and ”legacy” airlines (“Mid”

and “High” categories). Low category airlines use their primary advantage, the ability to offer

lower ticket prices due to lower internal costs, to compete aggressively against legacy airlines.

Legacy airlines use other benefits to compete against Low category carriers, such as greater
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Figure 5.2: Mean lowest price offered by all airlines for New York City (NYC) to Los Angeles
(LAX) 5-day round trip flights having (a) Thursday departure and Tuesday return, or (b)
Monday departure and Friday return itineraries.

availability of departure times, a larger network of connecting flights, and loyalty rewards pro-

grams [Francis et al., 2006].

For a specific route’s prices (shown in Figure 5.3), the competing airlines can be divided into

one of three categories based on the pricing behavior. Low category airlines (referred to low cost

airlines in the literature) tend to always compete on price and will consistently offer prices at or

below all other types. Such airlines may even compete against other Low category carriers by

lowering prices further in order to increase demand for the product. Mid level airlines are legacy

airlines that tend to price aggressively for the route but will rarely set prices below the best

Low category price. High category airlines are legacy airlines that do not compete aggressively

based on price but will still quote (usually higher) prices for the route. Customers may still buy

from Mid or High categories because of the other benefits of the specific airline or itinerary.

In this route, the airlines can be categorized based on price behavior as:

• Low category: Frontier (F9), AirTran (FL), Sun Country (SY)

• Mid category: Delta (DL)

• High category: American (AA), Continental (CO)

Some airlines will quote itineraries with a different number of intermediate stops. For ex-

ample, Delta airlines (DL) quotes itineraries with no intermediate stops (non-stop, as DL-0), 1
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Figure 5.3: A price time series for many airlines quoting prices for the NYC-MSP route for
Thursday departure (May 05, 2011) with Tuesday return. Each series represents the minimum
price of the day’s quotes for a specific airline and number of stops pair: for example, DL-0 refers
to all Delta Airlines non-stop flights and AA-2 refers to all American Airlines, 2 intermediate
stop flights.

intermediate stop (DL-1), or 2 intermediate stops (DL-2). For the purposes of the analysis, we

treat each itinerary type separately, as shown in Figure 5.3.

The price time series in Figure 5.3 shows repeated patterns among the airlines for this

departure and route. The Low category airlines are consistently at the bottom of the price

range and there is a cluster of Mid-level airlines that have similar prices during periods of price

stability. To characterize some of the price shifts, Figure 5.4 provides some stylized examples.

In 5.4(a), the Mid-level cluster lowers its price below the prevailing Low category price; on the

next day, the Low category adjusts its prices to match or beat the best price. In 5.4(b), a Low

category airline lowers its price, but no other airline follows. In 5.4(c), the Low category raises

its price and the Mid and High category airlines adjust their prices upward as well.

These categorizations can be made from a statistical analysis of the data. These relationships

between price behavior of airlines can be leveraged using a regression model because, within a

route, the relationships are persistent. A machine learning model, such as those described later

in Section 5.4.3, can leverage these relationships to make predictions about future prices.
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Figure 5.4: Stylized diagrams of changes in price equilibria. Three price behavior types are
shown: “Low” refers to low cost airlines, “Mid” refers to medium cost airlines, and “High”
refers to high cost airlines.

5.4 Proposed Model

When constructing prediction models for real-world domains, practical complexities must be

addressed to achieve good prediction results. Typically, there are too many sources of data

(features). Limiting the set of features in the prediction model is essential for good performance,

but prediction accuracy can be lost if relevant inputs are pruned. This is even more critical when

the number of observations available is limited, as often occurs in real-world domains.

To meet this challenge, we construct a prediction model (Figure 5.5) that involves the fol-

lowing distinct steps, which we then describe in detail:

1. Feature Extraction and Feature Class Constraints – The raw data observed in the market

are aggregated into a fixed length feature set.

2. Feature Selection and Lagged Features – A lag scheme is computed using a hierarchy of

the features that incorporates some domain knowledge.

3. Regression Model Construction – Using the augmented feature set generated from the lag

scheme, a regression model is generated, for instance using partial least squares (PLS)

regression.

4. Policy Computation – A search of decision threshold parameters is done to minimize cost

on the calibration set.

5. Optimal Model Selection – For each candidate model computed using the previous steps,

the one which performs best on the calibration set is chosen. The final performance is

estimated on the test set.

Figure 5.5 shows the distinct components of the model. Information used in the model
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Figure 5.5: Airline prediction model components, input data, and output

construction phase includes historical data from the origin-destination pair and domain knowl-

edge. The prediction phase for computing a buy/wait action at each decision day in the test set

generates the action sequences scored in our experimental results.

5.4.1 Feature Extraction and Feature Class Constraints

The large number of itineraries (1000s) in each daily query made some data aggregation nec-

essary. The features extracted are aggregated variables computed from the large list of prices

from individual query days. For each query day, there are often many airlines quoting flights

for that specific origin-destination and date combination. Airlines can vary their prices due to

strategic decisions or to changes in available capacity.

To ensure a consistent, informative feature set, we build separate features for airlines quoting

prices for 40% or more of the quote days in the dataset. For each airline exceeding the 40% cri-

teria, its quotes are subdivided based on the number of intermediate stops: 0-stops (“nonstop”),

1-stop, or 2-stops. For each subdivision, three aggregate features are computed: the minimum

price, mean price, and the number of quotes (corresponds to the Each-Separate feature class

in Table 5.2). These three aggregates are computed for the set of all the quotes from each

airline (corresponds to the Each-Aggregate feature class). So for each airline, 12 features are

computed on each quote day. For airlines not exceeding the 40% criteria, their itineraries are

combined into a separate “OTHER” category placeholder. Finally, these same 12 aggregates

are generated for all quotes and are placed in the “ALL” airlines category (corresponds to the

All-Stops and All-Aggregate feature classes). Boolean variables are added to indicate the

query’s weekday (for instance, “Quote DoW is Mon” is true if the quote is retrieved on Monday).

A days-to-departure (number of days between the query and departure dates) value is computed

based on the departure date.
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Concurrent with the feature extraction process (when converting the 1000s of itineraries for

each query into feature values) is the computation of the target variable’s value (e.g. minimum of

ALL-min-A or minimum of DL-min-0). For example, in the computation of the DL-min-0 target

variable on each query day, the minimum price of all non-stop tickets on all queries between the

query date and the departure date is the value assigned for that observation day. This value

represents the minimum possible cost ticket that could be purchased to satisfy the travel need

given the preferences (DL=Delta Airlines, 0=non-stop only flights) and departure date.

Table 5.2: Raw features by feature class for each quote day for a specific departure day and
route.

Feature Class Variable Count Variable List

Deterministic 8 vars Days-to-departure, Quote DoW is Mon,
Quote DoW is Tue, . . . , Quote DoW is Sun

All-Aggregate 3 vars ALL-min-A, ALL-mean-A, ALL-count-A
All-Stops 9 vars ALL-min-0, ALL-mean-0, ALL-count-0,

ALL-min-1, ALL-mean-1, ALL-count-1,
ALL-min-2, ALL-mean-2, ALL-count-2

Each-Aggregate 18 vars DL-min-A, DL-mean-A, DL-count-A,
. . . , OTHER-min-A, OTHER-mean-A,
OTHER-count-A

Each-Stops 54 vars DL-min-0, DL-mean-0, DL-count-0, DL-
min-1, DL-mean-1, DL-count-1, DL-min-2,
DL-mean-2, . . .

1Note: The number of variables in some classes (Each-Aggregate, Each-Stops) will vary based on
the number of airlines quoting the route. The counts given are specific to the NYC-MSP route (92

total raw variables). Variables are named as “<airline>-<statistic>-<#ofStops>”: e.g. ALL-min-A =
minimum price quoted by any airline, ALL-min-0 = minimum price quoted by any airline for non-stop
flights only, DL-min-A = minimum price quoted by a specific airline (DL = Delta Airlines). Variables
named like “Quote DoW is Mon” are Boolean variables indicating the weekday the quote is retrieved.

A list of the features for a specific departure day and origin-destination for each query

day is shown in Table 5.2. Each of the 92 features is in a feature class based on its speci-

ficity using the feature class hierarchy in Figure 5.6. The number of variables in some classes

(Each-Aggregate, Each-Stops) will vary based on the number of airlines quoting the route.

Variables are named with the compact scheme “<airline>-<statistic>-<#ofStops>”: e.g. ALL-

min-A = minimum price quoted by any airline, ALL-min-0 = minimum price quoted by any

airline for non-stop flights only, DL-min-A = minimum price quoted by a specific airline (DL =

Delta Airlines).

The feature classes are groupings of raw features in the domain. For this domain, there is a

deterministic set of features (“Deterministic”) which includes information about the number

of days from the quote day until departure, and the 7 binary variables indicating the weekday

of the quote (i.e. Monday, Tuesday, . . . ). At most one instance of the Deterministic feature

class is included because it contains deterministic information. Knowing the value for one day
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Figure 5.6: Lag scheme class hierarchy for price prediction. Arrow denotes a subset relationship
(e.g. class All-Aggregate should have an equal or greater set size than class All-Stops).

allows for all time lagged day’s values to be determined exactly, so there is no informational

benefit to include more than one instance.

The All-Aggregate feature class contains raw features applicable to all airlines: the min-

imum price, mean price, and number of price quotes from any airline on the quote day for the

origin-destination. The All-Stops feature class is similar to All-Aggregate but has sepa-

rate statistics based on the number of intermediate stops. This class is “more specific” than

All-Aggregate, the data are more fine grained, so we say that All-Stops is more specific

than All-Aggregate. This is indicated with a directed edge between the two in Figure 5.6.

All-Stops also contains more variables than All-Aggregate (9 vs. 3). Using similar argu-

ments the two more specific classes Each-Aggregate and Each-Stops are constructed. The

size of Each-Aggregate and Each-Stops (in terms of the number of significant competitors)

will vary based on the origin-destination to be predicted. For the NYC-MSP route, there are

five major competitors so there are 18 features in Each-Aggregate3. For this domain, we

constrain the feature classes to always include the more general classes before more specific

classes using the precedence hierarchy shown in Figure 5.6. Domain knowledge is used to build

35 major competitors plus the “other” category for small airlines and 3 features per airline: (5 + 1) ∗ 3 = 18.



5.4. Proposed Model 90

this structure. These precedence relationships prevent highly specific and possibly redundant

information from being included in the augmented feature set before more general variables are

included.

After feature extraction and identification of feature classes (shown in Table 5.2), known

hierarchical relationships between the feature classes will make up the constraint set. For the

airline domain, the feature class relationships in Figure 5.6 are common sense domain knowledge

that can be elicited from even a novice practitioner with basic knowledge of the domain to bias

the feature selection search. For a discussion about alternative constraint sets, see section 5.5.5.

5.4.2 Feature Selection and Lagged Features

Using only the most recent values (92 features for the NYC → MSP route) as the entire feature

set may provide reasonable prediction results in some domains, but such a model cannot predict

trends or temporal relationships present in the data. This simple scheme is shown in Table 5.3(b)

as Most Recent Observations.

Table 5.3: Basic lag schemes used for benchmarking of feature selection methods. The dots
“•” indicate that the feature class at the corresponding time lag is included in the feature set
provided to the learning model.

(a) Full Lag Scheme (lags are in days)

Class
Lagged Offsets

0 -1 -2 -3 -4 -5 -6 -7

Det •
All-A • • • • • • • •
All-S • • • • • • • •
Each-A • • • • • • • •
Each-S • • • • • • • •

(b) Most Recent Observations

Class
Lagged Offsets

0 -1 -2 -3 -4 -5 -6 -7

Det • • • • • • • •
All-A •
All-S •
Each-A •
Each-S •

The need to represent temporally-offset relationships (such as weekly cycles or trends) mo-

tivates adding time-delayed observations to the feature set as well. This is accomplished by

including past days’ observed values in addition to the current day’s value in the feature vector

used for learning. We refer to this as the addition of lagged features. For instance, if the cost

of a route on day t − 7 is representative of the price available on day t + 1, the 7 day delayed

observation should have a high weight in the model. A regression model which includes all

time-delayed instances up to a depth of n days of all features can produce good results, but the
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inclusion of too many variables into the model can result in poor performance. A diagram of

this model is in Table 5.3(a). The performance of both Full Lag Scheme with (n = 8) and Most

Recent Observations is shown later in Table 5.6.

Lagged features, known as tapped delay lines in engineering, are well known in the time

series literature [Sauer, 1994] and have been used as input to machine learning models [Wan,

1994; Du and Swamy, 2014]. The augmented feature set can be constructed from a generated

lag scheme configuration. For each feature class and lagged offset pair containing a dot (•), all

variables in the class are added to the augmented feature set for the specified lag offset.4

Our technique assumes that more recent observations are likely to have high informational

value for price prediction, but time-delayed features may hold informational value as well (i.e.

the environment is not completely stochastic). The time between a change in the market and

its effect on the target variable may be longer than one day. Lagged variables can leverage those

delayed relationships.

By examining all combinations of feature classes we can automatically tune the feature vector

to achieve better results. For each feature class, all contiguous subsets of lags and the empty set

are examined as possible candidates. Another constraint is added due to relationships between

classes: more specific feature classes cannot have more time lagged instances than more general

classes (i.e., the more specific class’ lags will be a subset of the more general class’ lags).

Time-delayed observations from the target variable (such as the all airline minimum price in

Class All-Aggregate) are likely to be most predictive because they are most general. Time-

delayed observations from other more-specific feature classes may also be but are less likely to

be predictive. The hierarchy and strict ordering of lagged data are based on this principle. By

constraining the classes so that the less informative classes contribute fewer features, we prevent

the inclusion of irrelevant features.

Next, time lagged data are used to form the augmented feature set. A search of all the possible

lag configurations is done to find the best performing configuration for the given departure date

and origin-destination. Note that the optimal configuration may be different for each date and

route.

The inclusion of a little domain knowledge using feature classes and the class hierarchy

reduces significantly the number of possible feature set configurations that need to be searched.

Without the hierarchy and constraints between features, there are ≈ 1082 configurations of the

4A brief example is provided: Given a lag scheme with dots only on the ALL-A feature class, if the ALL-

A feature class has dots on lagged offsets 0, -1 and -2 only, then the augmented feature vector will contain
9 augmented variables which are (variable name, time offset) tuples. These 9 augmented variables will be
: (ALL-min-A,0), (ALL-mean-A,0), (ALL-count-A,0), (ALL-min-A,-1), (ALL-mean-A,-1), (ALL-count-A,-1),
(ALL-min-A,-2), (ALL-mean-A,-2), (ALL-count-A,-2). The time offset refers to the number of days into the past
from the quote day the value should be extracted from the observations: (ALL-min-A,0) refers to today’s value
for ALL-min-A, and (ALL-min-A,-1) refers to yesterday’s value for ALL-min-A.
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92 original features.5 Without the constraints between classes, the number of configurations of

the 4 feature classes (having time delays of {∅, 0, 1, 2, . . . , 7}) would be very large at ≈ 1.9∗106,

but many configurations are uninteresting variants.6 The number of lag schemes formulated

with the hierarchy and constraints in Figure 5.6 for a maximum time delay of 7 days is 8517.7

Using both the feature classification and the constraint hierarchy allows for “interesting” lag

schemes to be efficiently evaluated in a smaller number of evaluations.

The advantage of the automated lag scheme search is that it produces results similar to what

a domain expert could do but using only minimal domain knowledge. Table 5.4 shows optimal

lag schemes for several routes. The results of the optimal lag scheme search can uncover some

surprising relationships in the data. For example, it is interesting to note that non-stop targets

in Table 5.4(b, d) benefit from a larger feature set (both in temporal depth and feature class

breadth).

Before we can explain how the optimal lag scheme is selected, we need to describe the machine

learning methods we use and how an action policy (buy or wait) is computed.

Counting Valid Configurations Given Constraints

The number of configurations for a given a set of constraints can be computed precisely and does

not require a complete enumeration. For a chain of subset constraints among feature classes

that allow contiguous subsets of lags and null, the number of possible configurations can be

computed with the following recurrence relations:

A(k, n) =







k if n = 1

n if k = 1 and n > 1
(
n+(k+2)

n−1

)
+A(k − 1, n) otherwise

(5.1)

B(k, n) =







1 + k if n = 1

B(k, n− 1) +A(k, n) if n > 1
(5.2)

where k corresponds to the number of feature class levels, and n corresponds to the number

of unique lag values for each feature class. For a chain of length four with 8 possible values

{0, 1, 2, . . . , 7} and null for each feature class the number of configurations is the value ofB(4, 8)−

1, where minus one is due to removing the assignment with ∅ (empty set) values for all feature

classes. The result is (8518− 1) = 8517.

584 price features and 8 deterministic features (days-to-departure and weekday of quote) = (28)× (284∗8)
6For each of the 4 feature classes, there are 8 lags (plus ∅) yielding 36 contiguous subsets (plus one additional

configuration for ∅). The count of possible combinations for 4 feature classes is 374 = 1874161.
7The mathematical formula for finding the exact number of unique configurations among a chain of subset

constraints (All-Aggregate to Each-Stops) is available in Section 5.4.2.
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5.4.3 Machine Learning Method

Our Developer-Guided Feature Selection is agnostic about the underlying machine learning

algorithm used for learning. In our experiments we used many such algorithms. Results for a

sample of well studied machine learning algorithms from the literature are shown in Table 5.6

in Section 5.5.

Some of the learning methods we use are classifiers and output a buy or wait action instead

of a price. In this case, the learning method and decision threshold components are replaced

with a classification algorithm or an external action strategy (such as Bing Travel’s recommen-

dations). This modification is indicated in the Learning Method Output column of Table 5.6 by

“Buy/Wait.” The column contains “Regression” when instead a regression model is used.

As the feature selection framework considers the underlying learning model as a black box,

a wide range of time-series methods could be applied using this framework as well [Box et al.,

2013]. Our experiments utilize Ripper and Linear Regression univariate time-series methods

as points of comparison. For the majority of our experiments, we use a machine learning

regression or classification learner. The most compelling reason to use a multivariate regres-

sion/classification learner over a multivariate time-series learner is the following: the data for

each route is actually made of a collection of shorter time-series. There is one time series for

each departure date which has a length of at most 60 days. The frequent restarts required

for standard time-series models make their application somewhat less natural. Specifically, it

necessitates also choosing an initial state for the time-series model at each restart.

For pure regression-basedmethods we use support vector regression (nuSVR, [Schölkopf et al.,

2000]), Partial Least Squares (PLS) regression, and ridge regression. The decision tree classifier

we use (REPTree, [Witten and Frank, 2005]) can also predict values of continuous functions, so

both modes are shown in the experiments for comparison.

Another method we utilize in our experiments is a regression algorithm which creates a lin-

ear model: PLS regression. Mathematically, PLS regression deterministically computes a linear

function that maps a vector of the input features −→x into the output variable y (the label) using

a vector of weights −→w . Several implementations of PLS exist [de Jong, 1993; Martens and Næs,

1992], each with its own performance characteristics. We use the orthogonalized PLS imple-

mentation in [Wold et al., 1983].

We have chosen PLS over similar multivariate techniques including multiple linear regression,

ridge regression [Hoerl and Kennard, 2000], and principal component regression (PCR) [Jolliffe,

1982] because of its advantages and better performance. First, PLS regression is able to handle

very high-dimensional inputs because it implicitly performs dimensionality reduction from the

number of inputs to the number of PLS factors. Second, the model complexity can be adjusted

by changing the number of PLS factors to use in computing the regression result. These factors
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are analogous to the principal component vectors used in principal component regression. The

number of PLS factors determines the dimensionality of the intermediate variable space that

the data is mapped to (we use a limit of 5 factors in our results). The computation time does

not significantly increase for a larger number of factors but the choice can affect prediction

performance: too many factors can cause over-fitting, and too few factors can cause the model

to be unable to represent relationships in the data. This value is adjusted in our experiments

to determine the optimal model complexity in each prediction class. Finally, the algorithm is

generally robust to highly collinear or irrelevant features.

5.4.4 Policy Computation and Evaluation

An obvious approach to choosing a good regression model (lag scheme and trained machine

learning model) is to use the model with the highest prediction accuracy, but this may not

be the model that generates the lowest average cost policy. Instead, we rank the models by

measuring the cost that results from following the computed policy recommendation. To use

the regression output (an expected future price) to compute an action policy, we introduce the

concept of a decision threshold function. Given êt, the model estimate future price at time t,

the current observed price pt and the current number of days-to-departure ddtd (an integer), the

current action policy rt ∈ {BUY,WAIT} is computed by Equation 5.3.

rt =

{

BUY : êt > pt × (c+ (1/30)× s× ddtd)

WAIT : otherwise
(5.3)

The two parameters c and s are expressed as real numbers. Intuitively, c can be thought of

as an adjustment in the likelihood of a BUY signal. Values of c > 1.0 correspond to a policy that

is only likely to emit BUY when the current price is far below the expected future price. This

situation indicates the current price is a bargain for the customer. The parameter s corresponds

to the percent change in the threshold per 30 days of advance purchase (0.02 corresponds to

a 2% change in the threshold at ddtd = 30). Values of s > 0.0 generate a policy more likely

to WAIT when far from departure date. When a departure is far in the future and s > 0.0,

the agent is more likely to wait until a highly favorable (low) price appears before deciding to

purchase. Adjusting these two parameters can be thought of as determining the optimal level

of risk depending on the current price and the degree of advance purchase. The range of c and

s values searched in our experiments was [0.7, 1.3] and [−0.1, 0.1], respectively, in increments of

0.01.

We use this two-parameter approach to make decisions, because it is simple, works well, and

provides an intuitive understanding of the policy computation. This is not to rule out more

sophisticated approaches, such as reinforcement learning. We leave exploration of this aspect
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for future work.

5.4.5 Optimal Model Selection

The proposed search of lag schemes is exhaustive, but due to the feature class hierarchy, the

number of configurations is relatively small and can be fully explored. The process is outlined

in Algorithm 11.

Algorithm 11: Developer-Guided Feature Selection: training, calibration, and testing process

Data: historical price quotes for origin-destination (training set histTR, calibration set
histCA, test set histTE), feature classes (fc) and feature class constraints (co)

Result: best observed lag scheme (lsbest), decision threshold parameters (sbest, cbest),
calibration set mean cost (scoreCA), test set mean cost (scoreTE)

1 { scoreCA ← null, lsbest ← null, cbest ← null, sbest ← null }
2 RMTR, PTR ← doFeatureExtraction(histTR, fc)
3 RMCA, PCA ← doFeatureExtraction(histCA, fc)
4 L ← generateLagSchemes(fc, co)
5 for ls in L do
6 AMTR ← buildAugementedFeatureMatrix(RMTR, ls)
7 PriceModel ← trainRegressionModel(AMTR, PTR)

8 P̂CA ← predict(PriceModel, AMCA)

9 for c in {0.7, 0.71, . . . , 1.3} do
10 for s in {−0.1, 0.09, . . . , 0.1} do

11 score ← doPolicyComputationAndScore(AMCA, P̂CA, PCA, c, s)
12 if scoreCA = null or scoreCA > score then
13 {scoreCA ← score, lsbest ← ls, cbest ← c, sbest ← s }

14 RMTE,PTE ← doFeatureExtraction(histTE, fc)
15 AMTE ← buildAugementedFeatureMatrix(RMTE, lsbest)

16 P̂TE ← predict(PriceModel, AMTE)

17 scoreTE ← doPolicyComputationAndScore(AMTE, P̂TE, PTE, cbest, sbest)

A model is constructed for each potential lag scheme: first, for each lag scheme a pricing

model is generated using the training set data, then the decision threshold parameters (c and s)

are calibrated on the calibration set to discover the settings with the lowest average ticket price

(scoreCA). Performance (scoreTE) is measured by applying the calibrated model to the test set.
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Table 5.4: Optimal lag schemes of a domestic route and an international route for a 5-day trip with Monday
departure. The dots “•” indicate the feature class at the corresponding time lag is included in the best performing
feature set. “MC” is the average model cost, “EP” the average earliest purchase cost, and “PAO” is the mean
price of the model above the optimal policy price (in %).

(a) New York → Minneapolis

Class
Lagged Offsets

0 -1 -2 -3 -4 -5 -6 -7

Det •
All-A • • • • • • • •
All-S • • • • • •
Each-A •
Each-S

(MC: $280, EP: $317, PAO: 4.6%)

(b) New York → Minneapolis (non-stop
only)

Class
Lagged Offsets

0 -1 -2 -3 -4 -5 -6 -7

Det • • • • • • • •
All-A • • • • •
All-S •
Each-A •
Each-S •

(MC: $365, EP: $414, PAO: 7.1%)

(c) New York → Hong Kong

Class
Lagged Offsets

0 -1 -2 -3 -4 -5 -6 -7

Det •
All-A • • • • • • • •
All-S

Each-A

Each-S

(MC: $1190, EP: $1207, PAO: 3.8%)

(d) New York → Hong Kong (non-stop
only)

Class
Lagged Offsets

0 -1 -2 -3 -4 -5 -6 -7

Det •
All-A • • • • • • • •
All-S • • • • • • •
Each-A • • • •
Each-S • • • •

(MC: $1404, EP: $1416, PAO: 6.1%)
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5.5 Experimental Results

The experiments were designed to estimate real-world costs using various prediction models to

develop a purchase policy. A survey of the literature revealed that airlines assume a relatively

fixed rate of purchases until a flight is full, and most tickets for a flight are sold within 60 days of

departure [Belobaba, 1987]. Using these facts, we measure performance as the cost of following

the purchase recommendations for a specific departure once for purchases between 1 and 60

days before departure (dtd ∈ {1, 2, . . . , 60}). This measure involves hypothetically purchasing

an itinerary precisely 60 times for each purchase algorithm under test (but some purchases may

be deferred for a few days based on the model output). Each of the 60 purchases is called a

purchase episode. On each query day, the policy generator uses the currently observed prices

(and possibly time-lagged observations) to compute a BUY or WAIT signal for the day. Using

the sequence of BUY and WAIT signals it is possible to determine the costs experienced by the

algorithm for each simulated purchase. Mathematically, the cost for each simulated purchase

experienced by a purchase “method” (e.g. Earliest Purchase, Optimal, etc.) is computed in

Equation 5.4 where the ri’s are obtained from one departure date.

costt =







pt, where rt = BUY

costt+1, where rt = WAIT
(5.4)

These costs are aggregated with data from all departure dates (DD is all departure dates in the

test dataset histTE) to compute the score for the method in Equation 5.5.

scoremethod = mean({costdd ,t | dd ∈ DD and t ∈ Tdd}) (5.5)

Tdd is all time units applicable to departure date dd. By convention the last day before departure

is always labeled with a BUY signal, so costt is always defined.

Table 5.5 shows examples of purchasing signals generated by four different policy generators

(Earliest Purchase, Our Model, Optimal, and Latest Purchase) for a specific origin-destination

pair and departure date. The performance of each policy generator is the mean of the cost values

across all purchase episodes. By comparing purchasing signals, we can compute the percentage

above the optimal cost (PAO) for each method (i.e. how far the method is above the optimal

cost). The earliest purchase strategy represents the cost of buying at the first decision point in

each purchase episode and will have a PAO of usually 5–30%. The optimal purchase strategy is

the lowest possible cost for the purchase episode, which can be computed optimally in hindsight

and represents a PAO of 0%. Well performing policy generation algorithms should do at least

as well as earliest purchase on almost all purchase episodes and should achieve costs as close
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to the optimal purchase as possible. Algorithms can be compared using the PAO value, well

performing methods will be between earliest purchase and optimal purchase value. Note that

it is possible for an algorithm to have a PAO greater than the earliest purchase strategy due to

having costs that are higher than an earliest purchase, latest purchase is an example that often

achieves a much higher PAO score.

Table 5.5: Actions computed by four different methods for up to 13 days before departure
for a specific request (NYC-MSP, depart May 12, 2011, return May 17, 2011). The © symbol
indicates a “WAIT” signal for that day, and the • symbol indicates a “BUY” signal for that day.
The models are compared and scored (last column) using the mean of all costs for simulated
purchases. There is one simulated purchase for each day up to the departure date.

Days to departure 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Score

Current price (in $) 258 257 257 257 257 282 292 330 298 330 330 222 469 453

Earliest Purchase
action • • • • • • • • • • • • • •

306.6
cost (in $) 258 257 257 257 257 282 292 330 298 330 330 222 469 453

Our Model
action • © © • • © © © • © © • © •

289.3
cost (in $) 258 257 257 257 257 298 298 298 298 222 222 222 453 453

Optimal
action © © © © © © © © © © © • © •

255.0
cost (in $) 222 222 222 222 222 222 222 222 222 222 222 222 453 453

Latest Purchase
action © © © © © © © © © © © © © •

453.0
cost (in $) 453 453 453 453 453 453 453 453 453 453 453 453 453 453

5.5.1 Model Comparison

The experiments are first categorized by the type of feature selection employed then by the

underlying machine learning algorithm used. Table 5.6 shows the results of estimated costs for

several purchasing policies based on purchasing 5-day (Monday or Thursday departure) round

trip itineraries from NYC to MSP (∼265 simulated purchases in each test set). The table shows

how costs vary based on preferences such as a customer requiring a non-stop itinerary.

Deterministic Feature Selection

The näıve strategy, called earliest purchase, purchases a ticket once for each day in the α day

range. Its purchase episodes terminate with a purchase event on the first day of the episode.

Its mean cost is equal to the mean of prices across the α day period. The lowest achievable

cost, called the optimal cost strategy, is based on purchasing for each of the α episodes at the

lowest price between the beginning of the episode and its departure date (denoted as 0% above

optimal). The comparison methodology involving simulated purchases is similar to that used

in [Etzioni et al., 2003]. The action policy from Bing Travel ’s purchase recommender applied
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Table 5.6: Model results comparison on a single route for the lowest cost itinerary on any airline.
All itineraries are 5 days (Monday to Friday, or Thursday to Tuesday). Cities are NYC (New
York City) and MSP (Minneapolis, MN, USA). Note: “PAO” (% above optimal policy cost) for
each method is computed as: ([scoremethod − scoreoptimal]/scoreoptimal) so that optimal is 0%.

Feature
Selection
Type

Learning
Method

Learning
Method
Output

NYC-MSP
Mon-Fri
0,1,2 stops

NYC-MSP
M-F nonstop

NYC-MSP
Tu-Th
0,1,2 stops

NYC-MSP
Tu-Th
nonstop

(mean cost (in $), percentage above optimal (PAO, in %))

Deterministic
Feature
Selection

Earliest
Purchase

Buy/Wait (317, 18.2) (414, 21.4) (309, 17.5) (374, 24.2)

Optimal
Cost

Buy/Wait (268, 0.0) (341, 0.0) (263, 0.0) (301, 0.0)

Bing
Travel

Buy/Wait (308, 14.9) N/A (306, 16.3) N/A

PLS w/
Most Recent
Obs.

Regression (314, 17.1) (384, 12.6) (294, 11.8) (354, 17.6)

PLS w/ Full
Lag Scheme

Regression (300, 11.9) (398, 16.7) (316, 20.1) (345, 14.6)

Off-the-shelf
Methods

PLS w/ CFS Regression (313, 16.8) (413, 21.1) (308, 17.1) (371, 23.2)

PLS w/ BFS Regression (317, 18.2) (416, 22.0) (310, 17.8) (369, 22.6)

Developer-
Guided
Feature
Selection

REPTree in
Classification

Buy/Wait (288, 7.4) (388, 13.8) (289, 9.9) (382, 26.9)

REPTree
in Regres-
sion

Regression (284, 5.9) (375, 10.0) (280, 6.5) (334, 11.0)

Ridge
Regression

Regression (293, 9.3) (383, 12.3) (316, 20.1) (372, 23.6)

nu-SVR Regression (295, 10.1) (396, 16.1) (289, 9.9) (338, 12.3)

PLS
Regression

Regression (280, 4.5) (365, 7.0) (276, 4.9) (330, 9.6)

to the test set achieves a PAO 1–3% closer to optimal than earliest purchase. Since Bing Travel

does not separately predict for non-stop flights, there are no results for the non-stop category.

For deterministic feature selection approaches, there are several benchmarks. The Most Re-

cent Observation with PLS regression contains only the most recent value from each raw feature

(i.e. no lagged variables). This method cannot leverage trends but can observe competitive

relationships. The Full Lag Scheme with PLS regression contains all lags {0,−1, . . . ,−7} from

every feature. The method can predict trends and can leverage competitive relationships, but

prediction performance may suffer due to the large number of features.
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Off-the-Shelf Methods

PLS w/ CFS is Correlation-based Feature Selection, a filter based automated feature selection

method, coupled to PLS regression after the feature selection step. Its performance is worse

than the performance of PLS regression alone (i.e. with no feature selection). The correlation

between the target variable and individual features may not provide a predictive feature set in

aggregate.

PLS w/ BFS is best first search, a wrapper-based automated feature selection method uti-

lizing greedy search, coupled to PLS regression for each feature set evaluation. The results are

worse than earliest purchase. The approach may be poor due to the large search space caused

by many raw features.

Developer-Guided Feature Selection Methods

In the experiments for this application domain, Developer-Guided Feature Selection is coupled

to five different learning algorithms using the feature classes and constraints given earlier. These

experiments enumerate all valid feature sets given the constraints. The scores are for the best

model found on the calibration set which is then applied to the test set. The decision tree

algorithm, REPTree, is used in both classification mode (to produce buy/wait signals directly)

and regression mode (to build price predictions which are fed to the decision threshold function).

REPTree in regression performs well. It implicitly performs a feature selection process when

building the tree so it may be able to prevent overfitting due to a large number of collinear

features.

Ridge regression is a regularized linear regression algorithm used in multivariate domains

with many (possibly collinear) variables. It may perform poorly due to overfitting because the

number of observations (≈ 100) is insufficient relative to the number of features (≈ 1000). This

makes overfitting more likely.

nu-SVR, a support vector machine method (with linear kernel), performs almost as well as

PLS regression for this domain, but it is much more computationally expensive due to the large

number of features for some lag scheme configurations.

PLS regression performs the best in this application within ∼ 6.5% of optimal cost on average

from the targets in Table 5.6. The method implicitly does a dimensionality reduction on the

training set concept during calibration, so it is more robust to overfitting due to the small

number of training samples and large number of features.

Table 5.7 shows that the optimal policy provides on average a 11.0% savings over earliest

purchase. We denote this percentage as the savings margin. Our method of a lag scheme search

coupled with PLS Regression and a decision threshold achieves consistently closer to the optimal

action sequence than any of the other methods compared. The PAO of ∼ 6.5% achieved by PLS
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(in Table 5.6) represents a savings of 8% over the earliest purchase strategy for the NYC→MSP

route.

5.5.2 Bing Travel Performance Comparison

Bing’s Travel provides a prediction about whether or not the lowest cost ticket from any airline

will be lower over the next 7 days. Even though Bing’s Travel has different and broader objectives

than our study, it is surprising that it does not achieve a greater savings margin on the Any

Airline target. We believe that this is due to its more risk averse approach that makes it

significantly more likely than our method to advise immediate purchase.

This assertion can be validated by looking at the distribution of buy and wait signals com-

puted for each day by the various policy generators: in the NYC→MSP M-F route, the optimal

policy has only a 15% proportion of buy signals. It is noteworthy that the best models con-

structed with our method emits a similar proportion of wait signals: in the NYC→MSP M-F

route, the model with the lowest average cost ($280) only emits a buy signal on 34% of the

days. Bing’s model has a much higher proportion of buy signals: in the same route, the Bing

model emits a buy signal 83% of the days. The results are similar for all routes and dates in

our dataset: Bing emits buy signals for at least 70% of the days.

5.5.3 Multi-route Comparison

To show that the proposed method is generalizable to other routes (including international

routes), we provide performance statistics on 7 routes in Table 5.7. The proposed method

achieves an average of 69% of the optimal savings which represents an average cost savings of

7.25% when compared to the earliest purchase strategy. Given the high cost of airline tickets,

this represents a significant savings. For the purposes of comparison with existing approaches,

we provide results of two decision theoretic methods from [Etzioni et al., 2003]: Ripper and LR

(an MA(1) time series model in the notation of [Box et al., 2013]). Those models use a smaller

number of features compared to our model and do not leverage the competitive relationships

between airlines when making predictions. We believe predictions are improved by considering

price competition between airlines.

5.5.4 Specific Preference Models

So far we have shown how our model predicts the expected minimum price of all available

flights on a specific route and departure date. We now show how our model can also predict

prices of flights with specific desirable properties, such as flights from a specific airline, non-stop

only flights, or multi-segment flights. Buyers are likely to have preferences about airline tickets
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Table 5.7: Percentage above optimal cost (PAO, as %) for various decision theoretic ap-
proaches tested on the 7 (domestic and international) routes shown (using the airport codes)
for a 5-day round trip both for Monday and Thursday departures. (Note: “PAO” is computed
as a proportion: (cost − costoptimal) ÷ (costoptimal).) Cities are: HOU=Houston, TX, USA ;
MSP=Minneapolis, MN, USA, NYC = New York, USA; CDG = Paris, France; CHI = Chicago,
USA; HKG = Hong Kong, China; SEA = Seattle, WA, USA; IAD = Washington, DC, USA.
Savings Margin computed as % of earliest purchase cost and represents the savings a strategic
consumer may experience using the model. The “∗” denotes an international route.

Model
Optimal Our Model Linear (LR) Ripper Earliest Purch. Latest Purch.

Method Origin: baseline this paper [Etzioni et al., 2003] baseline baseline

HOU → NYC 0.0 4.3 13.9 19.8 14.8 53.9
MSP → NYC 0.0 3.9 14.5 21.7 14.3 48.8
NYC → CDG∗ 0.0 5.5 14.5 26.1 16.6 59.0
NYC → CHI 0.0 6.8 15.7 48.1 28.4 108.5
NYC → HKG∗ 0.0 6.4 13.3 36.0 17.3 39.0
NYC → MSP 0.0 5.2 14.0 33.0 18.5 58.1
SEA → IAD 0.0 4.5 14.2 18.8 12.8 43.3

Mean PAO 0.0 5.3 14.3 28.9 17.4 58.7

Savings Margin (%) 11.0 7.25 0.514 -10.4 0.0 -32.3

beyond price, such as loyalty to a specific airline or the desire for overall minimum travel time.

By comparing models with different target properties, buyers can determine the likely cost of

their preferences.

A model for a specific preference (e.g. non-stop only flights, flights with take-off time before

11 am, or flights from a specific airline only) can be generated by computing the correct price

prediction target variable to train the regression model. The regression model’s target price

for each observation day will depend on the exact flight preferences. For example, the future

minimum price of any-airline and any number of stops (ALL-min-A) for the departure date will

always be equal to or less than the future minimum price for a specific airline and non-stop only

flights (e.g. DL-min-0). In the terminology of machine learning, this corresponds to computing

the label for each row in the dataset. The target label values will depend on the concept being

learned. And these values are computed from the subset of the airline itineraries that match

the preference specified.

The effect of more specific preferences can be observed in the feature set configurations

that are generated for each preference. In Table 5.8, the legacy airlines (DL and CO) offering

multiple types including non-stop and multi-stop flights may have different lag schemes based on

the preference. The general pattern observed is that more specific preferences (such as non-stop

only flights) require more information in terms of more specific feature classes and more time

lags than less specific preferences (such as any flight from any airline). Also, more desirable
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Table 5.8: Optimal lag schemes for specific preferences of airline and number of stops. Exper-
iments are for 5-day round trips departing on Thursdays. The statistics are as follows: “MC”
refers to average model cost, “EP” refers to average earliest purchase cost, and “PAO” is the
mean price of the model above the optimal policy price (expressed as %, closer to zero is better).

Legacy Airlines

Continental Airlines (CO) — Non-stop

Class
Lagged Offsets

0 -1 -2 -3 -4 -5 -6 -7

Det •

All-A • • • • • • • •

All-S • • • • • •

Each-A • • • • •

Each-S •

(MC: $452.7, EP: $483.6, PAO: 7.0%)

Continental Airlines (CO) — 0, 1, or 2-stops

Class
Lagged Offsets

0 -1 -2 -3 -4 -5 -6 -7

Det •

All-A • • • • • •

All-S • • • • • •

Each-A

Each-S

(MC: $344.8, EP: $386.3, PAO: 4.4%)

Continental Airlines (CO) — 1-stop

Class
Lagged Offsets

0 -1 -2 -3 -4 -5 -6 -7

Det •

All-A • •

All-S • •

Each-A •

Each-S

(MC: $422.7, EP: $456.1, PAO: 3.3%)

Delta Airlines (DL) — Non-stop

Class
Lagged Offsets

0 -1 -2 -3 -4 -5 -6 -7

Det •

All-A • • • • • •

All-S • • • • • •

Each-A •

Each-S •

(MC: $389.5, EP: $411.6, PAO: 7.1%)

Delta Airlines (DL) — 0, 1, or 2-stops

Class
Lagged Offsets

0 -1 -2 -3 -4 -5 -6 -7

Det •

All-A • • • • • • • •

All-S • • •

Each-A •

Each-S •

(MC: $366.8, EP: $393.8, PAO: 6.7%)

Low-Cost Airlines (LCAs)

Frontier (F9) o — 0, 1, or 2-stops

Class
Lagged Offsets

0 -1 -2 -3 -4 -5 -6 -7

Det •

All-A • • • • • •

All-S • • • • •

Each-A • •

Each-S • •

(MC: $319.0, EP: $357.2, PAO: 3.5%)

AirTran (FL) — 0, 1, or 2-stops

Class
Lagged Offsets

0 -1 -2 -3 -4 -5 -6 -7

Det •

All-A • • • • • • • •

All-S • • • • • •

Each-A •

Each-S

(MC: $315.0, EP: $335.7, PAO: 3.2%)

Sun Country (SY) — Non-stop

Class
Lagged Offsets

0 -1 -2 -3 -4 -5 -6 -7

Det •

All-A • • • • • •

All-S •

Each-A •

Each-S

(MC: $352.6, EP: $399.1, PAO: 1.3%)
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flights such as non-stop only flights will tend to be more expensive than multi-stop ones. This

is also observed in the lag scheme plots: our model is able to obtain an average price of $452 for

Continental (CO) non-stop flights, but can obtain an average price of $345 for flights possibly

with multiple stops.

For the LCAs, the lag schemes suggest that there are delays in each airline’s response to

changes in prices. For example, the LCA models use little (AirTran) or no (Frontier and Sun

Country) information from the current day (lag offset 0) and previous day (lag offset −1) for

prediction. An alternative explanation for no current day information in the model may be in

the airline’s role as a price leader. If an airline is setting prices aggressively, the airline will not

make rapid changes in response to the actions of other companies in the market.

Table 5.8 shows that some LCA models (Sun Country and AirTran) do not use information

at the Each-Stops level. This suggests that these airlines do not use detailed information

from other airlines to determine their responses. The prices for these airlines generally are set

equal to or just below the prices of the legacy airlines, so detailed information about the legacy

airlines’ pricing for non-stop and multi-stop flights may not be needed for prediction. Also,

because the pricing relationships for the LCAs is less sophisticated than the relationships of the

legacy airlines, the prediction models should be more effective for predicting LCA pricing than

for legacy airline pricing. This can be observed in the percentage above optimal (PAO) values

observed for LCAs compared to legacy airlines.

Using these statistics, it is also possible to reason about the relative costs of various prefer-

ences: for example, what is the expected price difference of a non-stop Delta flight and a flight

on any available airline? Such information could help customers to quantify the expected costs

of their preferences.

5.5.5 Feature Class Hierarchy Sensitivity Analysis

The principal benefit of Developer-Guided Feature Selection is from a reduction in the feature

selection search space through the use of the practitioner-provided domain knowledge. This

section considers how sensitive the results are to the constraint set choice. Experiments in

Table 5.9 examine the performance of alternative constraint sets. The original constraint set

presented in Figure 5.6 is labeled as “Constraint Set A” and these results are consistent with

results in Table 5.7. We modify the constraint set by swapping the location of All-Stops and

Each-Aggregate; this is labeled as “Constraint Set B.” Another modification increases the

range of time lagged variables from [0,−7] to [0,−10] time units, labeled as “Constraint Set C.”

This greatly increases the configuration search space. “Constraint Set D” involves a search with

no constraints in the feature class hierarchy: all nodes are at the same level in the tree and there

are not subset constraint relationships. The no constraints search space is considerably larger
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and involved 1,414,562 possible configurations.

Table 5.9: Developer-Guided Feature Selection constraint set sensitivity analysis.

Learning
Method

Feature
Class
Hierarchy

NYC-MSP
Mon-Fri

NYC-MSP
M-F nonstop

NYC-MSP
Tu-Th

NYC-MSP
Tu-Th
nonstop

(mean cost (in $), percent above optimal cost (PAO, in %))

PLS
Regression

All Lags (300, 11.9) (398, 16.7) (316, 20.2) (345, 14.6)
Most Recent (314, 17.2) (384, 12.6) (294, 11.8) (354, 17.6)
Constraint Set A (280, 4.5) (365, 7.0) (276, 4.9) (330, 9.6)
Constraint Set B (291, 8.6) (393, 15.2) (279, 6.1) (330, 9.6)
Constraint Set C (297, 10.8) (401, 17.6) (280, 6.5) (353, 17.3)
Constraint Set D (292, 9.0) (407, 19.4) (280, 6.5) (348, 15.6)

These experiments find that a different constraint set does not dramatically change the test

set scores (A vs B). Increasing the range of available lags beyond a 7 day pattern does not

improve results (C). We conjecture that all constraint sets (A, B, C, and D) improve upon the

performance of the no feature selection version because the feature selection process reduces the

number of features used in model calibration. This is especially beneficial for domains where

the number of observations (n) is small relative to the number of features (k): n < k. The exact

choice of constraints is not critical. Of primary importance is the need to reduce the feature

sets evaluated.

Regarding the performance differences between the constraint sets, we conjecture that the

performance degradation observed by constraint set D is due to oversearching, the phenomenon

of a search process exploiting transient patterns in the dataset that do not generalize well.

As the number of configurations evaluated increases, so does the likelihood of oversearch-

ing [Quinlan and Cameron-Jones, 1995]. Constraint sets A, B, and C explore different (and

much smaller) subsets of the search space than D. Constraint set A is the one most congruent

with our understanding of the variable relationships in this domain, and we find its performance

to be similar to or superior to other configurations.

5.5.6 Prediction Accuracy of Purchase Timing

Another way to analyze and compare the action signals from the methods presented is to consider

the temporal accuracy of the purchase timing for each simulated passenger. Because the exact

sequence of future prices is known for each simulated passenger, the exact number of days to

wait to achieve the optimal (lowest) purchase cost is known. We can compare the number of

days the algorithm emitted a wait signal against the optimal number of days to wait. This

comparison is shown visually for the test set observations in Figure 5.7. The methods that emit

markers closer to the origin are best because they are emitting a sequence of buy-wait signals
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closes to the optimal policy. In practice, this is difficult to achieve.
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Full Lag Scheme, PLS (early: 46.9%, on-time: 30.6%, late: 22.5%)

Constraint Set A, PLS (early: 21.7%, on-time: 60.1%, late: 18.2%)

Latest Purchase (early: 0.0%, on-time: 5.8%, late: 94.2%)

Earliest Purchase (early: 74.0%, on-time: 26.0%, late: 0.0%)

Figure 5.7: Temporal accuracy of purchasing signals for 4 purchase policy generators. Each
marker corresponds to an individual purchase. Points with x < 0 indicate purchases that
were before the optimal purchase time (categorized as “early”) while points with x > 0 indicate
purchase signals that waited more than the optimal number of days (categorized as “late”). The
y-axis value indicates how much higher the purchase cost was than the optimal cost (denoted
as “PAO”, percentage above optimal). Gaussian noise is added to help visualize overlapping
markers.

We show the results of earliest purchase (always emit a buy signal) and the results of latest

purchase (emit a wait signal until the last possible day) as benchmarks. As a simple check, we

can see using the earliest purchase results that the best price is achieved using an always-buy

signal only 26.0% of the time. Also, waiting until the last possible time to buy (an always-wait

signal) only achieves the lowest possible cost 5.8% of the time. Both of these approaches increase

the overall cost above the optimal policy by (∼15%) as shown in Table 5.10.

The two complex methods we show on the graph are “Full Lag Scheme, PLS” which is the

results using our decision policy framework but without any feature selection search. As this

method uses all the variables and time lags available we expect that the price predictions may

be more sensitive to movements of some variables. In the time accuracy plot this method is

much more likely to buy before the optimal purchase timing (46.9% of the purchases are before

the optimal purchase timing). The purchase timing results of the best method based on our

experiments is shown as “Constraint Set A, PLS”. It is able to achieve the optimal purchase

timing on 60.1% of all simulated purchases. It reduces the proportion of both late and early

purchase signals. Also, it is possible to see from the markers in Figure 5.7, even for late and

early signals, the prices experienced by the best method are closer to the optimal price.
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Table 5.10: Statistics for different purchase policy generators.

Method: Full Lag Scheme Constraint Set A Latest Purchase Earliest Purchase

Lateness Bin early on-time late early on-time late early on-time late early on-time late
Bin Percent-
age (%)

46.9 30.6 22.5 21.7 60.1 18.2 0.0 5.8 94.2 74.0 26.0 0.0

Mean Late-
ness (in days)

-10.9 0.0 9.3 -5.0 0.0 13.6 — 0.0 10.1 -17.7 0.0 —

PAO (% above
optimal)

9.2 0.0 4.3 4.1 0.0 4.0 — 0.0 15.8 13.6 0.0 —

5.5.7 Market Competition

Varying market competition is one potential explanation for the differences in performance across

routes. We examine this in more detail by computing market competition for each route and

plotting it with the savings margin. To measure market competitiveness, we use the Herfindahl-

Hirschman Index (HHI), an economics-based measure of market consolidation [Rhoades, 1993].

The index is computed on the market share percentages of all participants and ranges from

almost zero to 10,000 (perfect monopoly):

HHI =
∑

i

(mi
2), where mi is the percentage market share of participant i (5.6)

Markets having an HHI value greater than 2,500 are considered to be very noncompetitive. Mar-

ket share information is computed for US domestic airline routes from a dataset containing a sam-

ple of all domestic airline tickets issued in quarter 3 of 2011 [U.S. Department of Transportation,

2012].

Table 5.11: Effect of market competition on model performance. Market competition statistics
can be generated for US domestic routes using data from U.S. Department of Transportation
[2012]. Routes are ordered by decreasing competition (increasing HHI value).

Airline
Route

No. of
Significant
Competitors

Mean
Passengers
per Day

Competition
(HHI)

Earliest Purchase
Std. Dev.
(as %)

Our Model
Savings Margin
(as %)

NYC-CHI 9 6686 1861 6.79 12.834
MSP-NYC 6 1597 3228 5.65 8.958
NYC-MSP 7 1624 3296 5.60 7.091
HOU-NYC 5 2305 4484 5.53 6.615
SEA-IAD 2 385 7790 4.55 7.056

Some routes are naturally more competitive than others due to the number of airlines that

have market power and price aggressively to affect demand. Airlines that actively serve a route

are ones that handle a significant volume of the route’s traffic. We define a significant competitor
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on a route as an airline serving more than 1% of all passengers. By comparing the results of our

proposed prediction model across routes, it is possible to see the effects of competition on the

model savings. Table 5.11 reveals that for the most competitive routes (e.g. NYC-CHI, MSP-

NYC) the savings margin experienced by the model is larger at around 10%. For routes that

are are less competitive and have a larger HHI value (e.g. SEA-IAD, HOU-NYC), the savings

margin is reduced. Competition is also somewhat correlated with market size (as measured by

mean passengers per day), but our results find that competition is a better predictor.

Another correlated measure is seen by looking at the variance of the prices from the earliest

purchase strategy as measured using standard deviation in Table 5.11. The lower variance

of daily minimum prices shown in the NYC-CHI route is likely due to the large number of

competitive carriers along the route and the large number of passengers. In contrast, the SEA-

IAD route has fewer “significant competitors”, so individual airlines can assert greater pricing

power. An analysis in [Vowles, 2000] confirms a similar behavior of dominant competitors using

a regression analysis of fares on US domestic routes.

5.6 Conclusions and Future Work

We have presented a method for predicting airline ticket prices. The method uses historical

data from which relevant features are extracted to build a predictive model of prices for all the

airlines serving an origin-destination pair of airports on a specific departure date. Our results

show that, given publicly-observable historical data, airline ticket prices can be predicted. While

buying at the earliest opportunity is the most obvious purchase policy, we show that is not the

best policy in most cases. The long lead-time price may not be the lowest price available for

that flight. There is also an opportunity cost associated with early commitment: a customer

risks being locked into a specific schedule that may need to be changed (for a fee).

Because there is sufficient structured price volatility on many airline routes, there are signif-

icant opportunities for savings. To our knowledge, our results represent the state-of-the-art in

airline ticket price prediction using consumer-accessible data. We believe that there is a signifi-

cant market for these kinds of models in the hands of consumers not only to reduce their travel

costs, but also to determine the range of expected prices for an itinerary, and to quantify the

cost of airline and routing preferences.

The main novelty of our approach lies in our Developer-Guided Feature Selection technique,

which captures temporal dependencies in the data via time-delayed features, and which reduces

the number of features by using a class hierarchy among the domain features and pruning them

based on in-situ performance.

Developer-guided feature selection has wide applicability to other multivariate domains where
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basic domain knowledge is common but not utilized and where there are significant intra-variable

and inter-variable temporal relationships. Building the feature class hierarchy requires only basic

domain knowledge to be successful; greater expertise in hierarchy construction could improve

efficiency even more. Feature selection contributes to prevent overfitting (evident from the

poor performance of off-the-shelf feature selection approaches) which can occur when there are

many features and few training instances. In addition, it enables the discovery of meaningful

relationships among features and facilitates domain understanding. By examining the relative

performance of candidate lag schemes, domain knowledge can be extracted: the significance of

individual features can be determined by observing their presence (or absence) in the calibrated

lag scheme and feature set.

Dynamic pricing could be beneficial in other types of industries. For instance, industries that

store inventory traditionally have concentrated their efforts on tracking inventories to reduce

inventory size, because of the high cost of changing prices [Elmaghraby and Keskinocak, 2003].

However, the availability of demand data, the ability to inexpensively change prices, and the use

of decision support tools can change the situation and bring dynamic pricing to industries that

currently rely on inventory control (see [Groves and Gini, 2013a] for an example in simulated

supply-chain management.)

From the consumer perspective, optimizing purchase timing is beneficial in other markets as

well. While consumer goods markets are clearly different from the airline ticket market, there

are similar systematic behaviors which could be leveraged through prediction [Agrawal et al.,

2011]. In auction markets, such as the eBay online marketplace [Ebay Inc, 2012], properties of

auctions, such as ending hour, seller feedback rating, etc., have been shown to affect the final

auction prices [Bajari and Hortacsu, 2003; Lucking-Reiley et al., 2007]. Such information has

been successfully applied in auction arbitrage [Raykhel and Ventura, 2009].



Chapter 6

Applied Domain: Stream/River

Flow Prediction

Stream flow prediction is an important real-world application domain for time-series prediction.

We present river flow forecasting as a proof-of-concept domain for the Developer-Guided Feature

Selection (DGFS) framework. DGFS can improve prediction model quality over a straight-

forward application of standard machine learning models and feature selection methods. This

is not to assert that DGFS is the best approach for the domain, simply that it represents an

improvement over general approaches.

As this domain has significant temporal and spatial aspects, it is a natural fit for the DGFS

framework. The domain can be represented as a spatial data network in which the observation

sites are spatially related but have fixed locations and relationships [Shekhar and Chawla, 2003].

We propose to apply DGFS in order to build prediction models for short-term (1 to 120 hours

ahead) flow forecasting at a specific measurement site. We use several types of data streams in

the raw feature vector including:

• upstream/downstream site readings and

• predictions of future precipitation at many sites in the river basin.

These data streams may have different data resolutions, but the framework can handle these

different observation resolutions concurrently. We see this as a possible advantage of our ap-

proach. The following is a discussion of the architecture applicable to stream flow prediction as

well as some challenges.

110
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6.1 Domain Description

The river network targeted for this analysis is the Mississippi River which runs north to south

in the central United States. It is the longest river in North America and has a river basin land

area of 1,250,000 square miles (approximately 40% of the land area of the contiguous US). There

are many year-round measurement sites along the network with hourly readings. A small subset

of 6 continuous measurement sites is used for this study in the upper portion of the network.

These data are presented at one-hour resolution. This experiment proposes to build a regression

model that combines flow readings (at one-hour resolution) and precipitation measurements (at

six-hour resolution) to accurately predict future flows forward in time at a specific gauge site.

Loc 1: EADM7

Loc 2: SCLM7

 32.66 hrs

Loc 3: CLKM7

 21.17 hrs

Loc 5: NAPM7

 25.80 hrs

Loc 6: DLDI4

 75.88 hrs

Loc 7: DSOK1

 36.76 hrs

Figure 6.1: Physical relationships between observation sites for downstream prediction target
site EADM7 at St. Louis, MO. The period of maximum correlation (in hours) between adjacent
measurement sites (computed experimentally from the data) is labeled for each edge. Each di-
rected edge represents a flows into relationship (i.e. the upstream site flows into the downstream
site).

A sample network in the stream flow domain is shown as a directed graph in Figure 6.1. When

constructing a prediction model for site “EADM7”1, there is a network of upstream gauge sites

along the river and its tributaries that may provide predictive information about the target.

The directed edges in the figure denote the flows into relationships between adjacent sites along

the network. In leveraging the spatial aspect of the problem, we assume that downstream sites

will have no affect on upstream observations, consistent with a conventional understanding of

the domain as water flows only downstream. It is expected that there are temporally lagged

relationships between adjacent gauge sites: an impulse of flow at site A will appear at a down-

stream site B after a fixed time duration of x hours, where x ∈ [0, w] and w is the maximum

1Mississippi River at St. Louis, MO, USA
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temporal lag and is set during initial model construction. These temporal lag relationships were

empirically measured from the observation data and are provided in Figure 6.1 for comparison.2

Two types of experiments are made for this domain:

• first, only river flow observations will used in the raw feature set;

• second, precipitation data are added to the feature set (using an additional set of feature

classes) in an attempt to anticipate changes in flow due to precipitation events.

For this domain, each feature class consists of observations from a single measurement site.

The feature class hierarchy is constructed from the physical relationship tree (Figure 6.1). Con-

straint relationships between sites will also be incorporated in the feature selection search: valid

time lags assigned to each feature class are constrained to values that are equal to or greater

than the time offset for any downstream feature class (reachable by forward traversals of one

or more flows into links). Given the set of n feature classes (F = (f (1), f (2), . . . , f (n))) in the

domain and a set of constraints (Table 6.1), constraints are enforced using the logical formula

in Equation 6.1. δi is the time lag assigned for feature class i.

∀f(i)∈F∀f(j)∈F [(i, j) ∈ CL] =⇒ [δi ≥ δj ] (6.1)

CL refers to the set of feature class constraints for the domain. δi ≤ δj means the time offset

of feature class i must be greater than (later in time) or equal to the time offset of feature class

j. For example, the feature class containing the observation at site #5 “NAPM7” will have an

offset less than or equal to the lag offset for site #2 “SCLM7”: δ2 ≥ δ5.

Feature Class Constraints (CL)

(f(2), f(1))

(f(3), f(1))

(f(5), f(1))

(f(6), f(1))

(f(7), f(1))

(f(5), f(2))

(f(7), f(2))

(f(6), f(3))

(f(7), f(5))

(a) flow information only experiments

Feature Class Constraints (CL)

(f(2), f(1)) (f(21) , f(11))

(f(3), f(1)) (f(31) , f(11))

(f(5), f(1)) (f(51) , f(11))

(f(6), f(1)) (f(61) , f(11))

(f(7), f(1)) (f(71) , f(11))

(f(5), f(2)) (f(51) , f(21))

(f(7), f(2)) (f(71) , f(21))

(f(6), f(3)) (f(61) , f(31))

(f(7), f(5)) (f(71) , f(51))

(b) flow information and precipitation experiments

Table 6.1: Constraints between feature classes.

2Each time lag was determined as the offset (in hours) which achieves the maximal positive correlation between
the two measurement time series.
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6.1.1 Source Data

The dataset for these predictions is publicly available data from the US National Oceanographic

and Atmospheric Administration (NOAA) for hourly flow observations at each gauge site. This

represents a contiguous hourly observation period of 5959 samples from Jan 15, 2013 to Septem-

ber 15, 2013. Figure 6.2 shows the model testing configuration used. As the dataset is time

ordered, the order must be preserved to avoid leaking data between training and testing. To

clarify, the training set is the first 33% of the observation sequence, the prediction model op-

timization is performed through repeated evaluations on the validation set (the middle 33%),

and the reported scores are the predictions obtained for the test set (the last 33%) of the ob-

servation sequence. This experimental protocol was chosen so that all model testing periods

(train, validate, and test) contain significant precipitation events. This can be visually verified

by inspecting the flow and cumulative precipitation data in Figure 6.3.

0% 100%Full Dataset (time ordered)

Training

33% 33% 33%

Validation   Testing

Figure 6.2: Training/validation/testing set split used for the river flow domain.

Several models for different prediction horizons (number of hours ahead for which predictions

are made) were constructed for this domain. Short-term predictions provided by the NOAA for

the EADM7 gauge site are also used for a comparison benchmark.3

6.1.2 Periodicity

The time series of many natural phenomena contain consistent periodic patterns. The time

series literature leverages this aspect through the autoregression (“AR(*)”) model type for the

prediction of periodic patterns. This aspect also motivates the use of time lagged observations

in prediction models based on machine learning methods. This can be explained by the daily

periodicity present in the data. In this domain, there exists daily periodicity in the observations

at some sites which is possibly due to fluctuations in the usage of hydro-power generating

capacity at upstream sites [Kern et al., 2011]. It is natural to observe the previous day’s (offset

exactly 24 hours earlier from the target prediction time) value as more predictive than the most

recent available observation.

3The precise methodology used to compute the short term predictions is not published by the agency other
than to describe it as an “ensemble model.” We believe these models are tuned using expert analysis specific to
each site. These predictions are only available for a subset of the measurement sites.
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Figure 6.3: Hourly flow observations for gauge site EADM7 (left y-axis) and sum of predicted
precipitation of entire river basin (every 6 hours on right y-axis) for test set time period.

This phenomenon can be observed in the data. Autocorrelation at a 24 hour cycle may not be

initially obvious on visual inspection of the flow time series (Figure 6.3). However deeper analysis

of the data shows evidence of daily auto-correlations. A strong daily cycle can be observed by

statistically examining the first derivative of flow measurements. Figure 6.4 shows evidence of

high positive correlation of the first derivative of the flow for gauge site EADM7 around time

offsets of 24 hour intervals: 24 hours, 48 hours, and 72 hours. Also, anti-correlation is observed

for 12 hours and 36 hours. This observation may explain why time lagged observations far from

the peak observed correlations are included in the lag scheme. A time offset that is a multiple

of 24 hours away from best time lag may still be quite informative for prediction.
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Figure 6.4: Correlation coefficients computed by comparing the rate of change of the EADM7
flow time series against itself at specific hourly offsets. The series measures autocorrelation at
increasing hourly intervals.

6.2 Experimentation

To maximize the value of this investigation, the exposition here describes the empirical perfor-

mance observed for several possible alternative approaches for prediction in this domain. We

hope that this approach will inform the reader 1) about the performance characteristics of several

choices made when building models with the DGFS framework and 2) that common approaches

advocated in the literature can have empirically poor performance on real data.

A sequence of several prediction models are made for this domain with increasing complexity

in terms of the model, algorithm, and dataset used. The exposition is sequenced as follows:

1. univariate methods (single target, time series prediction),

2. multivariate methods (no temporal aspect),

3. multivariate methods with temporal aspect,

4. data driven feature selection with temporal aspect,

5. Developer-Guided Feature Selection (DGFS), and

6. impact of errors in constraints on DGFS.

The performance of each of these model types is evaluated in turn. In applying DGFS to the

domain of river flow prediction, we use the existing approaches both from the domain and

from the machine learning literature as performance baselines. Also, the US NOAA computes

short-term flow predictions for major measurement sites on the river network and we use these

as a performance baseline. The details of this method are not made public, so we have no

expectations that the performance of our model would improve upon this model developed

by domain experts. The purpose of this chapter is to compare results developed using our

feature selection methodology against approaches advocated in the literature for general-purpose
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application to real-world regression domains.

The experiments in this section are for future flow prediction for a single gauge site “EADM7”

in the Mississippi river network. This site has NOAA predictions for up to 200 hours into the

future which we use for comparison. Flow data for several major upstream measurement sites

is available for the data collection period. We compute a flow prediction for 12, 24, 48, 72, 96,

and 120 hours from the observation time for every hour (∼ 2000 hours) in the test dataset.

6.2.1 Univariate Methods (single target, time series prediction)

Target Offset

Method Algorithm 12 24 48 72 96 120

lastvalue PLS 12.92 24.06 44.81 63.19 79.09 92.70
lastvalue Ridge 12.92 24.06 44.81 63.19 79.09 92.70
lastvalue nuSVR 12.64 23.48 43.46 61.11 76.43 89.10
mostrecent ZeroR 201.10 200.83 200.35 199.97 199.66 199.44
uts8h5d PLS 9.77 18.32 36.63 55.16 72.26 87.02
uts8h5d Ridge 9.63 18.18 36.48 54.99 72.13 86.89
uts8h5d nuSVR 11.89 20.87 38.32 55.62 71.27 84.68

Table 6.2: Test set flow (kcfs) RMSE for univariate methods.

Past observations of the target variable may be predictive of future values. The approach of

univariate time series models (of [Box et al., 2013]) is applied here. A very primitive prediction

baseline, “ZeroR”, uses the mean value from the target feature in the training set as the predic-

tion for all observations in the validation set. This method has roughly equivalent performance

for all time horizons (“offsets”), as expected. An alternative, “lastvalue”, uses the last observed

value at the measurement site as the prediction. This is often called a persistence model and

is another essential baseline for comparison. For 48 hours ahead predictions, this is equivalent

to using the value observed 48 hours earlier as the prediction for the current observation. More

complex prediction methods should reliably exceed the accuracy of these two approaches to be

considered useful for prediction. Including these two methods in our analysis provides a baseline

for measuring the effectiveness of prediction in the domain.

Table 6.2 shows the “ZeroR” baseline finds mean errors of approximately 200 kcfs (thousands

of cubic feet per second), the largest error of any method. Also, the error is consistent over the

range of prediction horizons.4

4The variation in results is due to small differences in the datasets used for each prediction horizon. For
example, the 120 hour ahead predictions will be over a slightly different dataset than the 24 hour ahead predictions
even though both datasets have the same number of observations. The exact sequences for each target will differ
due to truncation of the target variable’s data at the beginning or end of the dataset due to the time horizon



117 Chapter 6. Applied Domain: Stream/River Flow Prediction

In addition, the performance of purely univariate methods is observed by the experiments

in Table 6.2. A univariate time series model can be constructed by using a set of time-delayed

(lagged) variables taken from the prediction target. A set of common machine learning models

is applied to this dataset including Ridge Regression ([Hoerl and Kennard, 2000]), Partial Least

Squares Regression (PLS, [Wold et al., 1983]), and Support Vector Regression (SVR, with linear

kernel). These univariate regression methods are evaluated using lagged observations for the

last 5 days at 8 hour intervals (“utm8h5d”). The univariate time series methods have improved

performance over the “last value” methods, which suggests that these simple univariate time

series predictions are beneficial in this domain.

The univariate time series models can have the input feature set visualized using the lag

scheme methodology presented in this thesis. Table 6.3 shows the lag scheme which generates

the univariate time series “utm8h5d”. The markers in the table indicate the class and offset

pairs that are included in the augmented feature set provided to the learning algorithm. In this

configuration, there are 15 instances of feature class “1” (EADM7) in the augmented feature

set.

Lagged Offsets (hours)
Class 0 -8 -16 -24 -32 -40 -48 -56 -64 -72 -80 -88 -96 -104 -112

1 • • • • • • • • • • • • • • •
2
3
5
6
7

Table 6.3: The “utm8h5d” lag scheme which generates the univariate time series. A bullet
(“•”) indicates the presence of a feature class-time lag pair in the augmented feature set used
in learning.

6.2.2 Multivariate Methods (with no temporal aspect)

Another approach to prediction in this domain is to use a multivariate prediction model to

perform regression over many dissimilar input variables (at different measurement sites). This

approach assumes that the dominant phenomena to be predicted are the relationships between

the variables and that temporal trends are not significant or cannot be observed. The feature set

for the “most recent” configuration is shown in Table 6.5. Several general-purpose algorithms are

applied and the performance results are shown in Table 6.4. While this is a regression problem,

some tree-based algorithms such as decision trees also perform well for some regression domains.

We provide results from the Reduced Error Pruning Tree (REPTree, [Witten and Frank, 2005])

offset.



6.2. Experimentation 118

algorithm, a variant of decision trees, as an example of this approach, but the performance results

are disappointing: this is possibly due to the method not encoding the underlying phenomena

well.

Target Offset

Method Algorithm 12 24 48 72 96 120

mostrecent REPTree 73.91 77.42 99.87 138.74 182.40 161.62
mostrecent PLS 16.94 35.12 61.18 72.94 82.31 92.83
mostrecent Ridge 16.94 35.12 61.18 72.94 82.31 92.83
mostrecent nuSVR 12.38 26.20 50.79 66.71 79.42 92.94
mostrecent skRF 67.91 63.64 92.56 126.16 147.15 152.32

Table 6.4: Test set flow RMSE for multivariate methods. Bold values show error statistics that
are smaller than the “last value” method benchmark.

Lagged Offsets (hours)
Class 0 -8 -16 -24 -32 -40 -48 -56 -64 -72 -80 -88 -96 -104 -112

1 •
2 •
3 •
5 •
6 •
7 •

Table 6.5: The “most recent” lag scheme for multivariate methods.

6.2.3 Multivariate Methods with Temporal Aspect

To incorporate trends in the multivariate model, time lagged variables can also be added to the

feature sets. Using a regression model as a time series model using lagged variables is commonly

referred to as a “tapped delay line” (in an engineering context, [Sauer, 1994]) or a “state-

space reconstruction” (in a physics context, [Kugiumtzis, 1996]). The most basic multivariate

configuration with lags corresponds to the lag scheme configuration in Table 6.7 which has 15

time lagged instances of each of the 6 feature classes for a total of 90 variables in the augmented

feature vector. For convenience, we refer to this as a Full Lag Scheme (“fsAll”). The performance

results (Table 6.6) of this scheme are not found to improve over the “last value” configuration

for any time horizon. This may suggest that these data are not informative for the prediction

task or that the calibration process (fitting a model to the training data) is inhibited by the

large number of variables in the augmented feature set. If the latter, an explicit feature selection

step may ameliorate this difficulty.
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Target Offset

Method Algorithm 12 24 48 72 96 120

fsALL REPTree 68.00 73.69 147.77 154.45 126.74 134.60
fsALL PLS 16.92 26.27 52.60 89.55 124.38 154.21
fsALL Ridge 22.82 50.59 119.77 213.76 310.77 372.29
fsALL nuSVR 14.56 31.25 62.73 116.77 183.07 249.26

Table 6.6: Test set flow RMSE for multivariate methods with temporal data. Bold values show
error statistics that are smaller than the “last value” method benchmark.

Lagged Offsets (hours)
Class 0 -8 -16 -24 -32 -40 -48 -56 -64 -72 -80 -88 -96 -104 -112

1 • • • • • • • • • • • • • • •
2 • • • • • • • • • • • • • • •
3 • • • • • • • • • • • • • • •
5 • • • • • • • • • • • • • • •
6 • • • • • • • • • • • • • • •
7 • • • • • • • • • • • • • • •

Table 6.7: The “fsALL” (Full) Lag Scheme for multivariate methods.

6.2.4 Data Driven Feature Selection with Temporal Aspect

The large number of features used as input in these experiments can make prediction perfor-

mance poor for many algorithms. A common approach to alleviate this challenge is to use

a fully-automated feature selection algorithm to prune the feature space which can improve

prediction performance. Two common methods are applied here: one filter-based (Correlation-

based Feature Selection) and one wrapper-based (Best-first Search Feature Selection). A feature

selection algorithm is expected to generally improve the prediction results in large multivariate

models when compared to the same model built without feature selection as a preprocessing

step. In practice, for this domain, this improvement is not always observed.

Briefly, Correlation-based Feature Selection (CFS) is a filter-based method that uses Pear-

son’s correlation. Specifically, it is a greedy algorithm that seeks to maximize the mean target-

to-feature intercorrelation divided by the mean feature-to-feature intercorrelation. In regression

domains such as this, it is likely that small changes in the value of individual features will not

generate large effect the value of the target (i.e. no non-linear effects), so it is unlikely that there

will be large variations in the target-to-feature intercorrelation values (i.e. many features will

look similarly correlated with the target). The underlying relationship is likely to be a weighted

linear sum. This is based on an idealized physical model of the domain: if only fixed (non-

varying) flows are considered, the sum of flows for all upstream tributaries should be roughly

equal to the flow at a downstream site with variances due to evaporation, water use, and physical
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variations. Overall, the experimental performance of CFS is not very promising regardless of

the underlying ML algorithm.

Best-first Search Feature Selection (BFS) is a wrapper-based method that uses iterative

improvement of the feature subset and the underlying learning algorithm to develop a good per-

forming feature subset. BFS performs best among the data-driven feature selection algorithms

but it is sensitive to the choice of ML algorithm as shown. As BFS is a greedy search strategy,

it is not guaranteed to find the best solution within the search space. Also, the search space for

this domain is large and contains 90 lagged variables for 290(≈ 1027) possible configurations5.

Results using multivariate models and data-driven feature selection methods are shown in

Table 6.8. CFSF refers to CFS run using a forward search process (i.e., initializing the search

with an empty feature set and iterating by adding features until the stopping criteria is met).

CFSB and BFSB refer to the two respective algorithms run in backward search mode (i.e.,

starting from the set of all features). The CFSF experiments compute the feature set without

use of the underlying machine learning algorithm, so those experiments all use the same feature

set for the same target offset across all choices of machine learning algorithm.

The CFS with PLS results are best in these experiments and have lower error than the

“fsALL” experiments for the PLS machine learning algorithm. The results for Ridge Regression

are similar to the scores of PLS so these are not included for compactness. The results of nuSVR

are also similar to PLS but the computation time is prohibitively large due to the large number

of variables (due to the many instances of lagged variables), so these are also not included in

the remaining experiments involving many feature selection evaluations.

Another approach to improving performance is to add more informative variables (e.g. pre-

cipitation information). Toward that approach, we add new features in the next section.

Target Offset

Method Algorithm 12 24 48 72 96 120

BFSB PLS 47.51 85.70 88.21 134.76 223.24 215.37
BFSF PLS 201.10 200.83 200.35 199.97 199.66 199.44
CFSB PLS 29.62 34.63 59.25 71.33 97.67 115.99
CFSF PLS 40.69 36.19 73.11 83.56 99.73 118.11
BFSF REPTree 85.99 88.18 93.56 163.21 155.57 157.64
CFSF REPTree 51.70 83.04 101.37 114.56 111.86 140.59

Table 6.8: Test set RMSE for multivariate methods with data driven feature selection.

5This count corresponds to 7 observation sites times 15 possible lags at each site.
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6.2.5 Precipitation Data in Prediction

As the underlying phenomena observed in this domain is greatly effected by precipitation in the

river network region, adding precipitation predictions to the input feature vector may improve

the prediction results. Predicted precipitation is available for each measurement site in the

following format from the NOAA observations: there is a total precipitation prediction for each

6 hour window from the current time to 60 hours into the future, for a total of 10 additional

variables. The feature class for the precipitation prediction at a specific measurement site

contains 10 variables. The raw prediction data for each 6-hour time window is given as discrete

values in inches: {0.0, 0.1, 0.25, 1.0}.

Adding the precipitation variables (and the corresponding lagged variables) increases the

feature vector to 282 lagged variables in the Full Lag Scheme (corresponds to Table 6.9). The

performance of the multivariate methods both with and without feature selection is shown in

Table 6.10. Comparing the experiments both without (Table 6.6) and with (Table 6.10) precip-

itation data reveals that the addition of the precipitation variables does not generally improve

the prediction results for most configurations. Including the precipitation data increases the

model calibration time for many of the methods (nuSVR’s calibration time increases by 3 times

from approximately 1200 seconds to over 3600 seconds). More detailed statistics (validation set

error, feature set size, model run time) of these experiments can be found in the additional river

flow experimental results section of Appendix B.

Lagged Offsets (hours)
Class 0 -8 -16 -24 -32 -40 -48 -56 -64 -72 -80 -88 -96 -104 -112

1 • • • • • • • • • • • • • • •
2 • • • • • • • • • • • • • • •
3 • • • • • • • • • • • • • • •
5 • • • • • • • • • • • • • • •
6 • • • • • • • • • • • • • • •
7 • • • • • • • • • • • • • • •
11 • • • • • • • • • • • • • • •
21 • • • • • • • • • • • • • • •
31 • • • • • • • • • • • • • • •
51 • • • • • • • • • • • • • • •
61 • • • • • • • • • • • • • • •
71 • • • • • • • • • • • • • • •

Table 6.9: The “fsALL” lag scheme for multivariate methods with precipitation data.

Adding this precipitation data should improve the prediction results from a näıve under-

standing of the domain. Unfortunately, it instead increases calibration cost and risk of poor

predictions due to the addition of many possibly irrelevant or redundant features.
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Target Offset

Method Algorithm 12 24 48 72 96 120

fsALL REPTree 68.28 73.62 147.27 154.17 126.74 134.53
fsALL PLS 16.92 26.27 52.60 89.56 124.38 154.20
fsALL Ridge 29.88 53.05 91.66 127.69 237.70 399.05
fsALL nuSVR 39.97 69.54 100.51 119.52 157.05 224.30

Table 6.10: Test set RMSE for multivariate methods with data driven feature selection and
precipitation data.

6.2.6 Developer-Guided Feature Selection (DGFS)

The generated models constructed so far utilize only information from the data stream itself

without leveraging any feature relationships that may be known to the model developer. By

using very basic domain knowledge of the physical feature relationships to augment feature

selection using DGFS, it may be possible to improve prediction performance.

Loc 1: EADM7

Loc 2: SCLM7 Loc 3: CLKM7

Loc 5: NAPM7 Loc 6: DLDI4

Loc 7: DSOK1

Loc 11: EADM7 precipitation

Loc 21: SCLM7 precipitation Loc 31: CLKM7 precipitation

Loc 51: NAPM7 precipitation Loc 61: DLDI4 precipitation

Loc 71: DSOK1 precipitation

Figure 6.5: Constraint relationships between measurement sites for both flow and precipitation
measurements. The node text contains the feature class number and the measurement site name.

For this domain, we provide simple physical constraints derived from the river net work in

Figure 6.5. The constraints on the time lags for feature classes are expressed mathematically

in Table 6.1. Please note that the feature classes of the precipitation data have no constraint

relationships with the water flow feature classes. It is not clear at the outset what constraints

would be appropriate, so to be conservative, the relations between precipitation feature classes

and flow feature classes are left unconstrained, just as a novice practitioner may decide.

The DGFS methodology described in Chapter 3 is utilized to determine the accuracy scores

using several feature selection methods including exhaustive (in non-precipitation experiments

only), Greedy, Random, and Guided. A parallel network of feature classes is added to the lag

scheme constraints as shown in Figure 6.5. This parallel network increases the search space of

lag scheme configurations, but the search is still feasible for the non-exhaustive feature selection

approaches (Greedy, Random, and Guided). The exhaustive (non-precipitation) experiment
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Target Offset

Method Algorithm 12 24 48 72 96 120

NOAApredictions Not Applicable 10.04 11.67 17.49 24.40 33.66 45.92
fsExhaustive PLS 10.70 19.31 36.21 53.22 69.44 84.46
fsGreedy PLS 12.01 22.27 44.15 59.89 67.82 81.58
fsRandom PLS 11.91 26.33 54.88 62.54 76.60 91.61
fsGuided PLS 13.40 25.36 41.88 53.22 67.82 88.57

precip+fsGreedy PLS 10.93 20.56 37.87 56.73 67.74 76.26
precip+fsRandom PLS 12.19 23.11 48.96 64.67 77.02 89.17
precip+fsGuided PLS 10.55 21.56 36.70 61.00 83.52 77.13

Table 6.11: Test set RMSE for DGFS methods with and without precipitation feature classes.
Values shown in bold indicate this experiment outperformed the score for the “last value”
experiment for the prediction horizon.

required 572387 evaluations while the non-exhaustive versions used far fewer and still achieved

competitive results: Greedy, 113 iterations (on average); Guided, 1400 iterations; Random, 2800

iterations.

The results of the DGFS experiments are shown in Table 6.11. These feature selection

methods outperform the “last value” baseline for many time offsets. As expected, the NOAA

hybrid model is consistently best and can serve as a performance target. The with-precipitation

experiments generally have improved accuracy. This improvement is most evident in the 120

hour offset experiments. The best methods overall are the Guided and Greedy versions.

To examine the effects of using the precipitation data, we provide a 2-d histogram comparing

selected methods for the 48-hour offset prediction target in Figure 6.6.

The future precipitation information reduces the likelihood of large flow underestimates

for the with-precipitation version as shown in the prediction error histogram at the top of the

figure. The error distribution of Guided with precipitation is centered closer to zero than Guided

without precipitation data. The effect of precipitation on the system is lagged (it takes many

hours for a precipitation event to increase river flows), so it may not be as informative for near

term predictions (i.e. < 72 hours) than for farther-term predictions.

The exhaustive version of feature selection should generally have superior performance com-

pared to the non-complete search types (Greedy, Random, and Guided), and this is observed in

most offsets in Table 6.11. The configuration space is the same for all search types, but each

method is likely to choose a different optimal model due to differences in each of the search

methods. The exhaustive results may not be strictly better than the non-complete search as

he best feature set is chosen using the validation set results (which may be different for each

method) and the scores shown are for the test set. The validation set scores are shown in the
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Figure 6.6: EADM7 2-dimensional histogram comparing DGFS methods at 120 hour prediction
target.

extended experimental results found in Appendix B.

6.2.7 Statistical Performance Comparison

To understand the differences between the models, we compare the performance for the 48 hour

prediction horizon. The best methods found in experiments on this domain are available for

comparison in Table 6.12 along with the NOAA model performance as a baseline.

To verify that the prediction models are different from a statistical perspective, we use

statistical significance testing to compare the best configurations of each type. Significance

results are in Table 6.13 which use the Nemenyi test6 to determine statistical significance among

all pairs.

In investigating the results further, we endeavor to show that these methods represent an

improvement and, most importantly, to quantify the performance differences. There has been

6A paired statistical test to compare the prediction performance of many methods. If a single paired test such
as the Wilcoxon Signed-Rank test is used in a multiple method comparisons setting, it is likely that spurious sig-
nificant pairs will be found due to randomness and the large number of method pairs. The method has a correction
to account for the multiple comparisons problem [Bagheri et al., 2012; Demšar, 2006; Zimmerman and Zumbo,
1993].



125 Chapter 6. Applied Domain: Stream/River Flow Prediction

Rank Name Score (Std. Dev.) Count

1 NOAApredictions 17.48982 (13.19276) 2931

2 fsExhaustive PLS 36.20544 (24.78817) 2931

3 precip+fsGuided PLS 36.70078 (25.34288) 2931

4 precip+fsGreedy PLS 37.86815 (26.66006) 2931

5 fsGuided PLS 41.88048 (31.89135) 2931

6 fsGreedy PLS 44.14797 (30.81353) 2931

7 precip+fsRandom PLS 48.96109 (32.93030) 2931

8 fsRandom PLS 54.87830 (36.63715) 2931

Table 6.12: River flow performance statistics (prediction error mean, standard deviation, and
count) for 48 hour ahead predictions.

Rank Name Rank

0 1 2 3 4 5 6 7

0 NOAApredictions – ♦-31.0 ♦-30.5 ♦-28.8 ♦-25.5 ♦-37.2 ♦-48.1 ♦-51.6

1 fsExhaustive ♦31.0 – 0.4 2.1 ♦5.4 ♦-6.2 ♦-17.1 ♦-20.6

2 precip+fsGuided ♦30.5 -0.4 – 1.7 ♦4.9 ♦-6.7 ♦-17.5 ♦-21.1

3 precip+fsGreedy ♦28.8 -2.1 -1.7 – ♦3.2 ♦-8.4 ♦-19.3 ♦-22.8

4 fsGuided ♦25.5 ♦-5.4 ♦-4.9 ♦-3.2 – ♦-11.7 ♦-22.5 ♦-26.1

5 fsGreedy ♦37.2 ♦6.2 ♦6.7 ♦8.4 ♦11.7 – ♦-10.8 ♦-14.4

6 precip+fsRandom ♦48.1 ♦17.1 ♦17.5 ♦19.3 ♦22.5 ♦10.8 – ♦-3.5

7 fsRandom ♦51.6 ♦20.6 ♦21.1 ♦22.8 ♦26.1 ♦14.4 ♦3.5 –

Table 6.13: Statistical significance testing for all method pairs at 48 hour ahead predictions using
the Nemenyi Test. The value of each cell is the critical distance of the row/column pair. A “♦”
in a cell indicates that the pair has a statistically significant difference (i.e. the row method is
statistically different from column method at the 95% significance level). The absence of a “♦”
for a pair indicates that the null hypothesis cannot be rejected.

much discussion of the direct application of statistical significance testing on data with large

(> 1000) sample sizes [Gigerenzer, 2004; Lin et al., 2013]. To address this concern we also present

the alternative approach of measuring the confidence interval of the performance difference on

a pairwise basis Johnson [1999]. We estimate the 95% confidence interval for the difference in

prediction error between methods in Table 6.14 for prediction offset of 48 hours. Each cell shows

the confidence interval estimate of the mean difference in performance.7 This measurement is

7A -0.5 to -0.25 value indicates the row method produces a mean error 0.5 to 0.25 units lower than the column
method. Negative values indicate an improvement; positive values indicate a degradation.
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Rank Name Rank

0 1 2 3 4 5 6 7

0 NOAApredictions – (−13.01,
−12.01)

(−13.01,
−11.51)

(−13.51,
−11.51)

(−12.51,
−11.01)

(−18.51,
−16.51)

(−21.51,
−20.51)

(−28.51,
−26.01)

1 fsExhaustive – – (−0.61,
0.04)

(−1.11,
0.39)

(0.44,
1.34)

(−6.21,
−4.11)

(−7.46,
−5.96)

(−14.01,
−11.51)

2 precip+fsGuided – – – (−1.41,
−0.16)

(0.94,
2.19)

(−6.16,
−4.21)

(−8.36,
−6.86)

(−14.51,
−12.01)

3 precip+fsGreedy – – – – (0.39,
1.74)

(−5.71,
−4.46)

(−8.31,
−6.71)

(−14.01,
−12.01)

4 fsGuided – – – – – (−5.31,
−3.56)

(−9.21,
−7.91)

(−14.01,
−11.51)

5 fsGreedy – – – – – – (−4.46,
−2.06)

(−9.01,
−7.96)

6 precip+fsRandom – – – – – – – (−5.81,
−3.46)

7 fsRandom – – – – – – – –

Table 6.14: Accuracy improvement effect size confidence intervals (95% significance) for pair-
wise method comparisons. Each value tuple indicates the 95% confidence interval for the mean
error of the row method versus the column method. Values are in kcfs. Negative values indicate
the row method has lower error than the column method.

commonly called the “effect size” in the statistics literature.

6.2.8 Mistakes in DGFS: Bad Constraint Relationships

The performance of DGFS for prediction depends to some extent on the quality of the feature

classes and constraints provided by the model developer. This section seeks, through experi-

mentation, to show the performance degradation caused by constraints that do not match the

underlying physical relationships in the domain.

The known correct feature class constraints (A) for this domain along with two “bad” con-

straint graphs (B and C) are visualized in Figure 6.7. Network A is a visualization the user-

provided constraints utilized for all DGFS experiments so far in the chapter. Network B gener-

ates a total order from the partial ordering of graph A. Network C has many incorrect constraints

when compared to the physical configuration of the measurement sites and represents a worst

case scenario for user-provided constraints. The DGFS framework is run using these incorrect

constraint graphs to determine their effect on accuracy.

Using these badly constructed constraint sets, another set of experiments is run. The results

are provided in Table 6.15. The correct constraint network still provides the best performance

in almost all cases. The bad constraint networks (B and C) reduce very poor results for some

experiments. The physically correct constraint network seems to provide better results with less

chance for large errors. These mistakes are examined further in the next section.

In examining the results further, we can inspect the chosen lag schemes for each constraint



127 Chapter 6. Applied Domain: Stream/River Flow Prediction

7 5 2

6 3

1 Network A
Correct Feature Class Network

7 6 5 3 2 1 Network B
Bad Network 1

7

3

5

62

1

Network C
Bad Network 2

Figure 6.7: Feature class constraint networks for river flow domain.

network in Figure 6.8. The Network A results for both exhaustive and guided search methods is

most similar to the ground truth relationships (visualized in Figure 6.9). Network B somewhat

similar to the ground truth, but even fewer features are used. Network C models are most

dissimilar from the ground truth for all search strategies. In comparing the search methods for

the same constraint network, there are also patterns. The exhaustive search tends to produce

more “minimal” models than the other approaches in that fewer features are used in the models.

The guided approach uses many features but the assigned time lags for each feature class are

congruent with the relationships in the ground truth scheme.

It is important to note that the chosen time lags are often significantly offset from the ground

truth relationships but the predictions may be useful because of the periodic nature of the data.

For a complete listing of the best lag scheme configurations found in the experiments covered

in this chapter, consult the Appendix B.

In the well documented domain of river flow, it is unlikely that mistakes in constraint en-

coding would be made by the model developer, but in applications where the relationships are

less clear, this is possible. For example, in another domain such as a sensor network containing

many sensors with changing relationships, constraint encoding mistakes are more likely.
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Target Offset

Network Method 12 24 48 72 96 120

– NOAApredictions 10.04 11.67 17.49 24.40 33.66 45.92
A fsExhaustive 10.70 19.31 36.21 53.55 69.44 84.46
A fsGreedy 12.01 22.27 44.15 59.89 67.82 81.58
A fsGuided 13.40 25.36 41.88 53.22 67.82 88.57
A fsRandom 11.91 26.33 54.88 62.54 76.60 91.61
B fsExhaustive 66.43 65.31 67.52 67.81 79.59 88.20
B fsGreedy 11.93 22.29 42.51 61.11 78.95 85.21
B fsGuided 13.31 30.03 41.43 84.91 100.15 84.90
B fsRandom 14.44 29.38 56.77 100.10 118.89 99.47
C fsExhaustive 66.43 65.31 67.52 67.81 79.59 88.20
C fsGreedy 48.28 50.86 55.45 58.57 68.93 79.46
C fsGuided 11.93 24.86 42.51 58.92 68.35 84.47
C fsRandom 27.24 39.20 61.34 74.05 89.47 98.40
– lastvalue 12.92 24.06 44.81 63.19 79.09 92.70

Table 6.15: Validation set RMSE for DGFS experiments using the PLS learner with different
constraint networks (A, B, and C) and comparing with benchmarks (“last value” and “NOAA
Predictions”). Bold values show error statistics that are smaller than the “last value” method
benchmark.



129 Chapter 6. Applied Domain: Stream/River Flow Prediction

Network A

−250−200−150−100−500
Time Lag (Hours)

1

2

3

7

Network B

−250−200−150−100−500
Time Lag (Hours)

1

3

7

Network C

−250−200−150−100−500
Time Lag (Hours)

3

2

7

(a) Exhaustive Feature Selection Search

Network A

−250−200−150−100−500
Time Lag (Hours)

1

3

5

6

7

Network B

−250−200−150−100−500
Time Lag (Hours)

1

3

7

Network C

−250−200−150−100−500
Time Lag (Hours)

6

2

5

1

(b) DGFS Guided Feature Selection Search

Figure 6.8: Comparing best lag schemes for 120 hours ahead predictions found on constraint
networks A, B, and C.
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Figure 6.9: A lag scheme visualization generated using the ground truth correlation measure-
ments. Edges in the graph denote constraints derived from the physical relationships.



6.3. Characterizing Constraint Network Quality 130

6.3 Characterizing Constraint Network Quality

To measure the quality of the constraint network we use the concept of edit distance. The edit

distance is a measure of correspondence between two lag scheme configurations. Mathematically

it is:

ED(α, offset) =

(
n∑

i=1

{

|δGT
i − (δαi + offset)| where δαi 6= NULL

0 otherwise

)

÷

(
n∑

i=1

{

1 where δαi 6= NULL

0 otherwise

)

(6.2)

In Equation 6.2, GT is the ground truth lag scheme, α is the candidate lag scheme, offset

is the prediction horizon in hours, and δ
(x)
i is the lag offset for feature class i in lag scheme

configuration (x). ED() measures the mean time offset distance for all feature classes assigned in

the lag scheme. This measures the correspondence between individual lag scheme configurations

discovered through feature selection search and the ground truth physical relationships (i.e.,

lower is better, closer to the ground truth).

Given the observed correlations between gauge sites, the physically correct lag scheme can be

computed for this domain. This configuration is shown in Table 6.16. Because the measurements

are hourly and, for efficiency, the available time lag assignments are quantized on 8 hour offsets,

the closest scheme does not correspond exactly to the ground truth configuration. The edit

distance between the ground truth correlation measurements and this scheme is 1.17. For ease

of understanding, a visualization of the Table 6.16 configuration is available in Figure 6.9.

Lagged Offsets
Class 0 -8 -16 -24 -32 -40 -48 -56 -64 -72 -80 -88 -96 -104 -112

1 •
2 •
3 •
5 •
6 •
7 •

Table 6.16: The closest lag scheme table subject to the 8 hour time offsets used in the experi-
ments. The edit distance between this and the ground truth network is 1.17.

The edit distance measure can be used as a proxy for the “correctness” of a lag scheme

configuration. We define lag scheme complexity as the number of variables or assigned feature

classes. We hypothesize that, for the same level of lag scheme complexity, models having a lower

edit distance will have better accuracy. This idea can be used for examining the performance

differences for different feature class constraints. The 3 competing sets of feature class constraints

(Correct, Bad Network 1, Bad Network 2) provided in Figure 6.7 differ significantly in the edit

distance values generated. In the search phase of DGFS, many candidate lag schemes are
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evaluated for each model. For each of the 3 constraint sets, the distribution of validation set

errors can be plotted over the range of edit distance values observed. Figure 6.10 shows the

validation set error distributions for the Random and Guided search modes on configurations

with lag scheme complexity equal to 6.
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Figure 6.10: Edit distance vs. mean prediction error distributions for 24 hours ahead test set
predictions. The quintiles plotted (as percentiles 20, 40, 60, and 80) show the distribution of
scores for the edit distance value on the x-axis.

The minimum possible distance values vary based on the constraint network, prediction hori-

zon, and the ground truth physical relationships. For 24 hours ahead predictions the minimum

edit distance for each network against the ground truth correlations is: 5.1 for Network A, 6.5

for Network B, and 27.5 for Network C. The lower bound values for each constraint set are

plotted in Figure 6.10. The figure shows there is a trend between a candidate’s edit distance

and its accuracy for all 3 constraint sets. Another way to say this is that: when sampling from

the search space of possible feature sets, it is better to sample configurations with smaller edit

distances. Also, when choosing a constraint set, constraint sets that permit feature sets with

low edit distance (i.e. Network A) tend to have better accuracy than constraint sets with larger

edit distances (i.e. Networks B and C). It is still possible for a network with larger edit distances

to find a low-error model, but the distribution of scores for larger edit distance configurations

is wider. Succinctly, a lower edit distance of a feature set seems to be a necessary requirement
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for low error but it is not sufficient to guarantee low error.

6.4 Conclusions

DGFS is a technique for biasing the feature selection process, and is therefore a technique for

biasing model calibration for machine learning. The bias imparted by this proposed method is

easily understood by the model developer. Some advantages are: 1) the developer can quickly

“sanity check” the resulting model by examining the chosen lag scheme, and 2) the developer

can adjust the level of bias as needed for other reasons (such as to reduce model calibration

time). The constraint network provided and the feature selection search method choice together

determine the run time. If run time is not constrained, the exhaustive feature selection search is

preferred for achieving lowest error for this domain. In run time constrained applications, faster

search process (Greedy or Guided) can efficiently find feature set configurations without a large

degradation from the exhaustive approach.



Chapter 7

Applied Domain: Supply Chain

Price Prediction

In this chapter, the proposed feature selection approach is used in the construction of price

prediction models in a complex supply chain domain from a manufacturer’s perspective. For this

domain, we first present a data extraction method that is able to leverage information contained

in the movements of all variables in recent observations. The extracted data is then used to

build price prediction models that incorporate all observable variables in the domain from the

manufacturer’s perspective. To control model complexity and improve prediction performance,

our proposed Developer-Guided Feature Selection method is used to bias the prediction model

generation. This work is experimentally validated with data from a competitive multi-agent

supply chain setting, the Trading Agent Competition for Supply Chain Management (TAC

SCM). Our method achieves competitive (and often superior) performance compared to the

state-of-the-art domain-specific prediction techniques used in the 2008 TAC SCM Prediction

Challenge competition.

7.1 Price Prediction in TAC SCM

TAC SCM is a complex, heterogeneous-agent supply chain game that is designed to simulate

an oligopoly market of competing computer manufacturing agents who must autonomously

purchase component parts, manufacture computers, and sell the finished computers to end

customers over a simulated product lifetime of one year (220 simulation “days”). Each run of

the simulation, which takes approximately one hour in real-time, is unique because the market’s

behavior will vary both due to changes in the underlying market conditions (available component

133
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supply and customer demand), and due to changes in the behavior of individual agents.
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Figure 7.1: Customer market supply and demand for a product on day 4 (top) and day 89 (bot-
tom) of game tac01-#3454. The demand line is the total demand. The dotted lines correspond
to the offers made by each agent and the height of the line indicates the offer price. The agent
with the lowest offer price for a given request will receive the order.

Some of the research we have done has resulted in a large body of visualization tools and

key performance indicators relevant for TAC SCM [Groves et al., 2010, 2014]. An example

is presented here to show insights into the domain found through visualization. Figure 7.1

visualizes supply and demand pressures for two individual days in the component purchase

market. The supply line (thin dotted line) represents the ascending price-sorted set of offers

made by the agents in response to customer requests. The total demand from customers is shown

in the demand line (solid black line), sorted by decreasing reserve price. Offers from individual

agents are visible as short horizontal segments set vertically at the price specified in the offer.

The offer with the lowest price becomes the accepted order for each request. Using this graph
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it is possible to estimate the current market pressure based on how the bids are compressed in

terms of price (y-axis). The lower plot has much higher market pressure because the bids from

all agents are compressed in a very narrow price range.

7.1.1 The Prediction Problem

The basic purpose of prediction in TAC SCM is to provide information about the future that is

relevant to decisions (i.e. supply purchasing, manufacturing, sales bidding) that must be made

now. In this supply chain scenario, prediction is concerned with providing information about

future costs, prices, and demand so that decisions can be made today that maximize future

profit. Other aspects such as limited information, informational delays, changing conditions,

and observation noise can add complexity and make prediction even more difficult. TAC SCM

is a market simulation game that possesses all these challenges.

To limit the scope of this chapter, we are primarily concerned with the price prediction as-

pects of the competition. A subcompetition called the “Prediction Challenge” was initiated in

2007 to isolate this aspect of the simulation for study [Pardoe and Stone, 2008]. This subcom-

petition facilitated direct comparisons of prediction performance on four prediction types: (1)

current product prices, (2) future product prices, (3) current component prices, and (4) future

component prices. “Current” refers to predictions about prices revealed to an agent on the next

day; “future” refers to predictions about prices revealed to an agent an additional twenty days

in the future from the current day.

The challenge of predicting in this environment is that many of the variables have relation-

ships to other variables that are not easily quantified, can vary due to the agent population,

and can change over time. Economic theory suggests that there is a direct relationship between

the cost of parts and the cost of finished goods, but, in a situation where parts are shared

across many products, the relationships are dynamic. Instead of modeling these relationships

individually, we use regression to model the relationship between observable inputs (prices and

quantities) and future prices. This model is able to implicitly determine correlations between

input variables based on historical data. To effectively model these relationships, a corpus of

representative historical data is required to calibrate the model. The observations used to con-

struct the training set features should be representative of the range of scenarios the model

will need to predict over. In a multi-agent setting, this means that the training data should be

generated by a similar set of opponents as when predictions are to be made.

TAC SCM manufacturing agents operate as buyers in the component supply market and as

sellers in the finished goods market. To make the market clearing consistent, each successful

transaction negotiation consists of a sequence of 3 messages: RFQ (request for quote), offer,

and order. The data fields for each message type is shown in Figure 7.2. The major difference
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Component Supply
Market

Offer properties:
− price
− quantity (must be full quantity)
− delivery date (must be same as request)

Order properties: 
− offer acceptance (lowest cost offer only)

Finished Goods
Market

Offer properties:
− price
− quantity (full, partial, zero)
− delivery date

Order properties: 
− offer acceptance

order

request

offer

order

request

offer

− delivery date (2 to 12 days ahead)
− product type
Request properties: 

− quantity (1 to 20 units)
− reserve price (max. purch. price)

time

Manufacturers CustomersSuppliers

Request properties:
− component type
− delivery date (max. 200 days ahead)
− quantity
− reserve price (max. purch. price)

Figure 7.2: Transaction negotiation mechanisms in both the component and finished goods
markets for TAC SCM.

between the component supply market and the finished goods market is in the range of lead

times for the requests: the component supply market has a maximum manufacturer specified

lead time of up to 200 days. While in the finished goods market, products are requested by

customers at most 12 days in advance. This mismatch in the planning horizon of the two markets

is a primary motivation for prediction in the scenario.

Dynamic prediction is crucial for any agent operating autonomously. The majority of pre-

diction models can be classified as one of two types: on-line (only uses information from a short

window of recent observations) and off-line (significant volumes of historical data are used to

calibrate the model). While on-line methods can be more robust to changes in the environment

and can provide good performance in a dynamic environment, often better performance can be

achieved by incorporating training on historical data. For these reasons, typically on-line models

are tried first, and off-line models are used as higher performance becomes necessary.

The TAC SCM competition as well as other autonomous agent competitions involving travel

brokering [Stone and Greenwald, 2005] and stock trading (i.e. Penn Lehman Trading Competi-

tion [Kearns and Ortiz, 2003]) require agents to do significant forecasting to achieve consistent,

strong performance. The methods that employ information learned from historical data are the

most effective.
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Current and future prices of products. The prediction methods employed by top per-

formers in the TAC SCM competition often involve a combination of offline training on histor-

ical data for computation of latent (or not always visible) information. In the context of the

TAC SCM Prediction Challenge, it is required to predict for the next day and 20 day ahead

sale price of each product type. The TacTex agent makes next day product price predictions

using a particle filter to compute the lowest price offered by any agent in response to each re-

quest [Pardoe and Stone, 2007]. The Deep Maize agent uses a k-nearest neighbor technique over

a large set of historical data. The feature vector, over which similarity is computed, includes

current day estimates of supplier capacity (which features prominently in the pricing equation),

today’s observed customer demand, and recently observed computer prices [Kiekintveld et al.,

2009]. This method explicitly limits the contribution of individual games by using only the most

similar observation from each game in the dataset. The CMieux agent uses a decision tree vari-

ant called a distribution tree that tracks several distinct price distributions and chooses the most

relevant Gaussian normal distribution to use based on publicly known attributes of the price to

estimate [Benisch et al., 2009]. A classification-based approach is used by [Ketter et al., 2009]

which involves the clustering of observed market behaviors into economic regimes to build both

improved current and future product price distribution models. Overall, there are significant

tactical reasons to estimate next day prices due to the need to assign a specific bid price to each

customer request.

For 20 day ahead sales price predictions (“future product”), most agents report to use meth-

ods similar to their next day approaches. The TacTex agent uses the result of its next day

particle filter and augments this value by computing an adjustment for 20 day ahead predic-

tions using an additive regression model. The additive regression model estimates the difference

between the next day price and the 20 day ahead price and is derived from a set of over 31

visible features (16 product prices, 3 demand signals, and 12 unique component prices) from

the current day’s observations. This technique is most similar to the PLS regression method

discussed in Section 7.1.2 but differs by not using information observed prior to the current day.

Deep Maize estimates future product prices using the same k-nearest neighbor used in next day

predictions but instead trained on 20 day ahead observations.

Some agents may not be estimating future product prices (20 day ahead predictions) at all

because it is not a tactically necessary prediction (agents are not required to compute this value

when operating in this environment). Instead, this prediction class may have mainly strategic

“long-term” uses for planning long lead-time procurement.

Current and future prices in the component market. Component pricing is significantly

more complex due to the need to consider long lead times. When an agent makes a request for

component parts it must also specify a delivery lead-time. This is critical because the prices
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Figure 7.3: Three snapshots of the price vs. lead-time relationship for a single component.
These relationships will change daily both due to stochastic elements and agent behavior.

quoted vary significantly over the range of possible lead times. Figure 7.3 shows three example

price vs. lead-time plots taken in an individual TAC SCM game and motivates the need for

agents to track component prices also in terms of lead-time. The general trend is for prices to

be highest in the short term (series “Normal”), but there are instances (series “Inversion” A &

B) where short term prices are, in fact, lower. Interestingly, the lead-time aspect of product

prices is not explicitly considered by many TAC SCM agents.

TacTex predicts next day component prices with a domain-specific approach by estimating

the available production capacity of each supplier. This is done using knowledge of how com-

ponent prices are calculated by the game server. The fraction of unallocated supplier capacity

between the request date and the delivery date is directly proportional to the quoted per unit

cost for each request. This value can be estimated by observing differences in the recent quoted

prices. This approach cannot be generalized to other domains. For future component requests

(20 days ahead), TacTex agent again employs additive regression to learn an adjustment be-

tween the current day’s price and the future price (20 day ahead). Their algorithm is otherwise

unchanged from the next day method.

Deep Maize uses a linear interpolation over recent samples to estimate the component price

for a specific due date. An adjustment to the linear interpolation is computed from a Reduced

Error Pruning Tree (REPTree), a decision tree variant. The REPTree offset values are trained

offline using historical data of next day predictions. This same method is used for 20 day ahead

predictions [Kiekintveld et al., 2009].

The CMieux agent uses a k-nearest neighbor approach to estimate next day component costs.

The contribution of the k-nearest neighbors is averaged using inverse distance weighting, and

distance refers to the temporal difference between the due date requests [Benisch et al., 2009].
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7.1.2 Our Approach

The prediction model that PLS regression computes for a variable y is a weighted linear function

in terms of the feature values xi, i = 1..m (where m is the number of features). Mathematically,

the prediction model for a variable y can be expressed as1: y = b̂0 + b̂1x1 + b̂2x2 + . . .+ b̂mxm

where b̂i, i ∈ 0..m are the regression coefficients computed in the model calibration stage. This

form of linear model is suitable for economic modeling in this context and is discussed next.

A simple model. In an economic supply chain context, this simple linear model maps naturally

into the domain: the long-run price of a product should be equivalent to a linear sum of the

costs of its constituent parts plus the profit margin taken by the manufacturer. The cost of

a component could similarly be computed from this ideal model: the long-run cost of some

component should be equivalent to a fraction of the prices of products that use the component.

The ideal model presented here, while intuitively attractive, is not sufficient for modeling

prices in TAC SCM for several reasons. First, the model does not directly address lead time

effects2. Also, particularly in the component market, prices vary significantly by lead time:

longer lead time requests typically have lower cost. This mismatch between possible lead times

in the two markets drives the need for agents to develop mechanisms for coordination, dynamic

planning, and prediction. It is for this reason that the range of possible features to include in

our model incorporates price observations for multiple component lead times.

Second, the model does not address trends that can be anticipated by observing changes

in price over time. Observation of the prices of an individual product over several past time

steps (pt,pt−1,pt−2,. . . ) provide information to form a prediction about the next value (pt+1).

This is equivalent to a univariate time series prediction. Information from previous time steps

is included in our model.

Third, visible non-price information about the environment will also have an effect on prices.

For instance, the current bank interest rate (the cost of borrowing), and the current storage

cost (the cost of holding inventory) will both have effects on price. This is also included in the

model.

Fourth, information about the current market situation also has an effect on price. Infor-

mation about overall aggregate demand is available to the agents by observing the number of

1This is a parsimonious expression of the model. In practice, it may be useful to compute y values in a two
step process employing, first, the dimensionality reduction and, second, the regression.

2In both the component and product markets, agents must commit to buy components or sell products far in
advance of the delivery date. In the component market, delivery lead times can be between 1 and 220 days into
the future. When an agent makes a component request, it must also specify the delivery date for the request. In
the product market, delivery lead times are between 3 and 12 days into the future. The delivery date is specified
in the request from the customer, and the agent with the winning bid must honor it or a significant financial
per-unit late fee is imposed.
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products requested by customers each day. This information can also be included in the fea-

ture vector. In keeping with the domain-agnostic nature of our approach, we assume a linear

relationship for the non-price features as well.

Including all observable information that could affect price into the feature vector is an

obvious approach. But in practice, this is impractical. First, as the number of features rises

significantly, the effectiveness of a prediction algorithm is likely to degrade. Second, there is

almost no limit to the number of possible features that can be added. The inclusion of irrelevant

(or low informational value) features is a problem that we address next.

Feature Type Count Feature

1 Game Instance 2
– storage cost
– interest rate

2 Daily Demand 3
– low market
– medium market
– high market

3 Price for products 16
– SKU 1
. . .
– SKU 16

4

Price for parts at LT2a 16

– comp100sup1lt2b

– comp101sup1lt2
– comp110sup2lt2
– comp111sup2lt2
. . .

Price for parts at LT6 16
– comp100sup1lt6
– comp101sup1lt6
. . .

Price for parts at LT10 16 . . .
Price for parts at LT20 16 . . .
Price for parts at LT30 16 . . .

All Features 101

aLT2 denotes a delivery lead time of 2 days from the order date.
bPrice of component 100 from supplier 1 with a delivery lead-time of 2 days.

Table 7.1: List of all computed features available to an agent.

Input Feature Computation. We now illustrate how several distinct types of data available

are aggregated into a feature vector of consistent size. Data observable from an individual

agent’s perspective consists of four feature types:

1. Game instance features include values that remain invariant throughout the simulation

instance, such as the bank interest rate and storage cost.

2. Daily market segment demand is computed from the total number of product RFQs in

each of the three market segment on each day.

3. Daily price observations for products are the mean sale prices for each of the 16 product

types, as observed from the agent. Days with missing product price observations (no
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successful sales for a specific product on a given day) have their values computed using a

radial basis function interpolation. No consideration is made for variations in lead-time

among product price observations.

4. Daily price observations for components are the prices of each of the 16 components, as

observed by the agent. The prices are added to the feature vector for a pre-defined schedule

of lead times of 2, 6, 10, 20, and 30 days. Days with missing component observations on

these lead times will have their values computed using a radial basis function interpolation

over observations for the component from the previous 5 days.

These input features combine to produce a vector of 101 features (see Table 7.1). Labeled

training instances are generated by computing the matrix of observations for the features and

appending the known true value (label) for the regression target. This labeled training set can

be read by the PLS algorithm to produce a regression model.

Class
Lagged Offsets

0 1 2 4 8 16

P3 •
P3b •
P3c •
P2 •
P4 •
P4h •

Table 7.2: A simple configuration for product prediction. A “•” denotes the feature class for
the specified time lag is included.

Lagged Features and Hierarchical Segmentation. Using only the most recent values of

the 101 possible features as the entire feature set may provide reasonable prediction results

in some domains, but, it cannot predict trends or temporal relationships present in the data.

The need to represent temporally-offset relationships motivates the idea of adding time-delayed

observations to the feature set as well; we refer to this as the addition of lagged features. For

instance, if it is known that the cost of a component on day t− 8 is most representative of the

price of a product sold on day t+1, the 8 day delayed observation of that component should have

a high weight in the model. The time delay could correspond to the delay between persistent

changes in the observations and the resulting effect in the mean agent behavior.

For this domain, the Developer-Guided Feature Selection constraints use the assumption

that more recent observations are likely to have high informational value for price prediction,

but time-delayed features may hold informational value as well (i.e. the environment is not

completely stochastic). The lead time between a change in the market and its effect on other

prices may be longer than one day, but the minimum possible lead time for this effect is 1 day

but could vary due to the design of opponent agents. To cover the possibility of changes in agent
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design outside of our control, we keep most recent (current day) observations in the model. For

reasons of tractability, features with long time delays are only added after features with shorter

delays are added. Even with this constraint, searching for the optimal subset from 101 available

features is still an intractably large search space.

To reduce the number of possible configurations of features, we introduce the notion of a

hierarchical segmentation of the feature set. In this domain, each of the 101 features is placed

into one of several classes based on its relationship to the target variable. In cases where a

feature belongs to multiple classes, the feature is placed in the class that is most specific. From

a minimal amount of domain knowledge derived from the specification document of TAC SCM,

we have compiled a class hierarchy for each type of target variable. These hierarchies can be seen

for the product prediction and component prediction tasks in Figures 7.4 and 7.5, respectively.

Class: P2
Demand in
Market
Segs.
1, 2, 3

Class:P3
Product
SKU 5

Class: P3b
All products in same
market segment:

SKU 3,4,5,12,13,14

Class: P4
Components in

SKU 5 :
101, 200, 300, 400

Class: P3c
All products:
SKU 1. . . 16

Class: P4h
All components:

100. . . 401

Figure 7.4: Lag scheme class hierarchy for product price prediction. Arrow denotes a not greater
than relationship (i.e. class P4 should have an equal or lower maximum time offset than class
P3).

Thus far we have explained how a better feature set can be chosen based on some knowledge

of the domain. Now we will address how to choose the time-delayed data from each class. The

simplest lag configuration, shown in Table 7.2, contains the most recent day’s value from all

feature classes. We posit that time-delayed observations from the variable of interest (Class P3 )

are likely to be predictive as well. Time-delayed observations from other feature classes may

also be but are less likely to be predictive. It is by this principle that the hierarchy and strict

ordering of lagged data additions is based.
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Class: C2
Demand in Market

Segs.
1, 2, 3

Class: C4
Component

comp 401, supplier

7

Class: C4b
All Lines Producing
this Component:
suppliers 7, 8

Class: C3
All Products Using
This Component:
SKU 1, 3, . . .

Class: C4h
All Components:
100, . . . , 401

Class: C3c
All Products:
SKU 1, . . . , 16

Figure 7.5: Lag scheme class hierarchy for component prediction.

Also, it is necessary to chose the set of permitted lagged offsets from each class. In this

domain, two sets of time-delays were found to be useful: time-delays with integer offsets

{∅3, 0, 1, 2, 3, 4, 5, . . .} and time-delays with geometrically increasing offsets {∅, 0, 1, 2, 4, 8, 16, . . .}.

We continue with a discussion of the relationships formulated in the class hierarchy for a

specific product in this domain, SKU 5. In Figure 7.4, the earlier observations of the variable

to be predicted (Class P3 ) are most likely to contain predictive information. Information about

other similar products (Class P4 ) will also provide some information (but likely are less infor-

mationally dense). Finally, information about all other products is expected to contain the least

information density (Class P4h). By constraining the classes so that the less informationally

dense classes have lower time delays and contribute fewer additional features, we prevent the

inclusion of extraneous, irrelevant features.

Next, we will show how the time lagged data is constructed to form the augmented features

set. An expansion of the feature set is referred to as a lag scheme expansion. Of course,

the optimal lag scheme may be different for each variable modeled; a search of the possible

configurations is performed to find the best performing configuration in each prediction class.

The number of possible lag schemes as formulated with the hierarchies in Figures 7.4 and 7.5

for a maximum time delay of 16 days are 111724 for both products and components. Without

3This symbol refers to the lack of any observation.
4This is the subset of the 117649 configurations where all constraints between classes are satisfied. For

example, if in a specific configuration class P2 contains time delays {0, 1, 2} it would not be permissible for P3 to
have time delays {0, 1, 2, 4}. All configurations with this set of values would be discarded from the set of possible
lag configurations.
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Class
Lagged Offsets

0 1 2 3 4 5 6 7 8 9

P3 • • • • • • • • • •
P3b •
P3c •
P2 • • • • •
P4 •
P4h •

(a)

Class
Lagged Offsets

0 1 2 4 8 16

P3 • • • • •
P3b • • • • •
P3c
P2 • • • • •
P4 •
P4h

(b)

Class
Lagged Offsets

0 1 2 3 4 5 6 7 8 9

C4 • • • • • • • •
C4b
C4h
C3
C3c
C2

(c)

Class
Lagged Offsets

0 1 2 4 8 16

C4 • • • • •
C4b
C4h
C3 • • • • •
C3c
C2 • • • • •

(d)

Table 7.3: The optimal lag schemes for the the four prediction classes: (a) current product
prediction (expands to 57 augmented features), (b) future product prediction (51 augmented
features), (c) current component prediction (10 augmented features), and (d) future component
prediction (102 augmented features).

the constraints between classes, there are 117649 configurations5 of the 6 feature classes if

constrained to possible time delays of {∅, 0, 1, 2, 4, 8, 16}, but many of these configurations are

uninteresting variants. Finally, without the hierarchical segmentation and constraints between

classes, there are 7101 (≈ 1085) configurations of the 101 original features. Thus imposing both

the feature classification and the constraint hierarchy allows for a greater range of “interesting”

lag schemes to be tested for the same amount of lag scheme search.

The optimal lag schemes we use in our experimental results in each of the four prediction

classes are provided in Table 7.3. For instance, the current product prediction shown in Ta-

ble 7.3(a) uses 35 raw features that are expanded into 56 augmented features. Feature classes

contributing features are: P3 (1 raw feature × 10 discrete lags), P3b (5 raw features (P3 already

contains the 6th feature) × 1 discrete lag), P3c (10 raw features (P3 and P3b already handle 6

of these) × 1 discrete lag), P2 (3 raw features × 5 discrete lags), P4 (7 raw features × 1 discrete

lag), P4h (9 raw features × 1 discrete lag), and two game invariant features (game storage cost,

game interest rate). While a domain expert could conceive of a generally high-performance

feature set, the automated lag scheme search produces a configuration similar to what a domain

expert could build without the cost of requiring a domain expert. Also, the results of the optimal

lag scheme search can elicit some surprising relationships found in the data.

5There are 7 possible configurations of each class, and there are 6 classes. Therefore, there are 76 = 117649
possible configurations.
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Reduction of Number of Parameters of the Model. The PLS regression algorithm

in [Wold et al., 1983] allows model developers to adjust the model complexity by selecting the

number of PLS factors to generate when training. (These factors are analogous to the principal

component vectors used in principal component regression.) The number of PLS factors deter-

mines the dimensionality of the intermediate variable space that the data is mapped to. The

computational complexity does not significantly increase for a larger number of factors but the

choice does have an effect on prediction performance: too large a number can cause over-fitting,

and too small a number can cause the model to be unable to represent the relationships in the

data. The number of factors was systematically varied in the optimal lag scheme search. The

best performing number of components is shown for each prediction category in Section 7.1.3.

When computing the optimal lag scheme it is also critical to determine the correct value for

model complexity in PLS. Figure 7.6 shows how the prediction accuracy varies based on model

complexity relative to the best observed prediction error (the lag scheme is not varied in the

data in this graph). The future component class has a slightly different pattern: we conjecture

that future component achieves optimal error with a lower number of latent variables because

it has a relatively larger number of inputs from the lag scheme search. Empirical results show

that it is generally better to err on the side of excess model complexity but excess complexity

can also reduce prediction accuracy by, in one case, over 10% above the lowest achievable error.
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Figure 7.6: Effect of varying the model complexity (number of PLS factors) for the optimal lag
scheme. The number of factors used in our experiments varied by prediction class: (1) current
product used 18 factors, (2) future product used 22 factors, (3) current component used 22
factors, and (4) future component used 4 factors.

7.1.3 Experimental Results

We evaluate our approach on the TAC SCM 2008 Prediction challenge dataset consisting of 48

experimental runs divided into 3 sets of 16 games. Each set has a different mixture of agents.
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The games were divided using a standard 6-fold cross validation for training and scoring. For

example, the first fold consisted of a training set of games 9-16 in set A and all games from sets

B and C, and a test set of games 1-8 in set A.

Current Prod-
uct

Future Prod-
uct (p-val)

Current Com-
ponent

Future Com-
ponent (p-val)

DGFS Exh. (geom. lags) 0.06308 0.08553
(0.2660)

0.04063 0.09910
(0.0012)

DGFS Exh. (int. lags) 0.06295 0.09264 0.04008 0.10020
DGFS Exh. (no lags) 0.06300 0.09039 0.04468 0.10947
2008 First Place Agent 0.04779 0.08726 0.03476 0.09964
2008 Third Place Agent 0.0531 0.09934 0.04029 0.10281

Table 7.4: Comparison between the error scores of an agent implementing our method for each
of the 4 classes of prediction and the scores of the top performing agents in the 2008 Prediction
Challenge. Values in parenthesis are the Student’s t-test p-value when compared against 2008 First
Place agent. A t-test is only provided for our algorithm when it performs better than the 2008
prediction challenge first-place results. A p-value (p-val) of less than 0.05 indicates that the results
of the two algorithms being compared are statistically different at the 95% confidence level.

In order to compute prices for all variables in each prediction class, one prediction model is

generated for each variable to predict. The number of prediction models by class is:

1. 16 for current product prices (one for each product type),

2. 16 for future product prices,

3. 16 × 59 for current component prices (one for each component line-lead time pair for lead

times 2 to 60), and

4. 16 × 26 for future component prices (lead times 5 to 30)

The lag scheme used for each prediction class was computed using an exhaustive search

over all lag schemes with valid hierarchical relationships on folds 1, 3, and 5 of the 6-fold

cross validation set. The results shown in Table 7.4 are the aggregate scores obtained from

experiments on the entire 6-fold set using the best performing lag schemes. The results show that

incorporating time-delayed features onto the prediction task does improve the overall prediction

accuracy. A comparison with the published results shows that our method is competitive against

state-of-the-art methods used within the top performing agents. In particular, our method

outperforms existing methods on 20 day ahead predictions in both the component market and the

product market. The prediction category for which our method does worst (“current product”)

can be explained by the fact that the regression model computes a point estimate for sales of

each product on each day.There may be some attribute in product requests that causes prices to

vary significantly among the set of requests for the same product on the same day. For “future
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product,” a point estimate is sufficient because the true value represents the median price for

product sales 20 days ahead.

The optimal lag schemes used in each of the four prediction classes is provided in Table 7.3.

There are some feature classes that are not included at all in the optimal lag scheme, an example

of this appears in Table 7.3(c): lagged data from class C4 are the only features used in the

prediction model. This suggests that the other variables are not significant to the prediction of

current component prices.

7.1.4 Conclusions on TAC SCM Price Prediction

We have shown a prediction method which (1) includes time-delayed observations as additional

elements in the feature vector, (2) segments the features hierarchically, and (3) prunes the

classes of features used to find the optimal combination of features. Despite the fact our method

uses very little domain-knowledge, we achieved competitive (and often superior) performance

compared to the state-of-the-art domain-specific prediction techniques in the 2008 TAC SCM

Prediction Challenge competition. This general approach also gives an additional benefit of

showing the most relevant features by considering the lag schemes chosen in the search.



Chapter 8

Conclusion and Discussion

This thesis addresses the challenges of feature selection when building regression models on

real-world data involving many available variables and relatively little training data. While fully

automated machine learning and feature selection methods can build accurate prediction models

when the dataset is large or unlimited, often the results on small datasets are unsatisfactory.

To improve model accuracy in these settings, we develop a novel way of constructing a feature

set that incorporates some domain knowledge in the form of a hierarchy, and we present several

methods to decide which features to include in the prediction set and which ones to prune

based on the hierarchy. We compare exploration of the feature set space using exhaustive as

well as several types of stochastic search (greedy, random, or heuristic). Overall, this speeds

up the search for an accurate and minimal feature set that leverages the model developer’s

understanding of the domain as well. limited.

Overall, the domain independent contributions are:

1. a novel method of including multiple temporal data sources as well as spatial information

to improve prediction performance and

2. the automated discovery of temporal relationships between data streams to facilitate do-

main understanding.

From an intellectual point of view, this work serves to remind practitioners that prediction

performance is often lost when completely domain agnostic approaches are employed for several

reasons. First, the underlying generator may not be in the model space (model choice error),

the parameter values may be changing over time (concept drift), and, the training data may be

insufficient to fully calibrate the model due to noise (calibration error). Domain-specific models

often minimize these types of error. One extreme is highly optimized domain-specific modeling

148
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such as those employed in TAC SCM where the underlying price generation mechanism is known

but the inputs to the mechanism cannot be observed directly. Some agents model these latent

unobservable variables and use the underlying price discovery mechanism to make predictions.

This approach is highly domain dependent and has no direct application in a domain with

a different price finding mechanism. The other extreme includes situations where no domain

knowledge is used in machine learning model or feature selection. Fully automated techniques

can produce good prediction results when the amount of calibration data is sufficient and the

concept being learned is simple. For example, spam detection is such a domain. However, in

situations where training data is limited, biasing the model with domain knowledge is beneficial,

as we have shown in this thesis.

This work proposes a middle ground between these two extremes where a novice practitioner’s

domain knowledge can be used to bias the model selection for improved results. DGFS is

positioned in this middle ground on the spectrum of feature selection approaches shown in

Figure 2.1.

A qualitative way of comparing feature selection approaches is by considering computational

effort and overall model accuracy. Figure 8.1 shows the relative computational cost of various

feature selection approaches on the horizontal axis along with the relative accuracy on the ver-

tical axis. Algorithms that are further toward the upper right of the figure are more “efficient.”

Algorithm performance can vary dramatically based on the domain, the dataset and the training

set size; the size of the rectangle for each algorithm is drawn reflect this variance.

Figure 8.1: Feature selection computational effort and model accuracy plot. TPE is the Tree of
Parzen Estimator method for parameter estimation of Bergstra and Bengio [2012]. None is the
no feature selection approach.
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Choosing the most appropriate feature selection algorithm for a particular application should

account for these differences in human and computational effort. DGFS is most suitable in cases

where additional accuracy is desired on datasets with relatively few training examples and where

additional human effort in modeling is available. This describes many real-world instances of

prediction.

DGFS has an additional benefit of providing domain understanding. By considering relation-

ships of the features included in the lag scheme configuration, users can have greater assurance

that the relevant relationships in the domain are incorporated. Also, the lag schemes can reveal

novel relationships that domain practitioners may not have considered previously. This is par-

ticularly evident in the airline ticket price prediction models of Chapter 5 which show different

lag scheme configurations for different routes and user preferences.

8.1 Future Directions for Research

As outlined in the preceding chapters, there are areas in which this line of research can be further

expanded. The following are several possible future directions.

Model analysis and visualization. We believe that automated analysis and visualization of

the machine learning model (including the pruned feature subset and the calibrated machine

learning model) can facilitate better domain understanding for users. Putting greater knowledge

of the prediction model in the hands of the users can enable greater confidence in the models

developers actually apply. As a first step in this direction, we show the lag scheme configurations

and learning model coefficient weights from the experiments in the preceding chapters. However,

we believe there is further value in providing the structure of the calibrated machine learning

models to the user. This level of knowledge may be of interest to the user for both a sanity

check on the generated models and in facilitating domain understanding. We consider this kind

of analysis as a significant and generally underexplored area of applied machine learning.

Hyperparameter optimization for temporal features. This thesis has considered the

problem of feature selection using several general search approaches: exhaustive, greedy, and

heuristic (“guided”). Using the state of the art in hyper-parameter optimization, we have

improved the search efficiency of search for feature selection. However, we believe there is

still space for further improvements in search efficiency by explicitly modeling the temporal

relationships between features. We leave this as an area of future work.

Automated construction of the feature classes and relationships. In the domains we

analyze, the domain knowledge (in the form of feature classes and constraints) is provided by

the model developer. It may also be possible to build these structures in an automated way.
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This would allow us to come full circle and provide a fully automated version of DGFS which

builds this information as intermediate intermediate data structure in an automated learning

process.



References

Abdi, H. (2010). Partial least squares regression and projection on latent structure regression

(pls regression). Wiley Interdisciplinary Reviews: Computational Statistics, 2(1):97–106.

Abu-Mostafa, Y. S. (1989). The vapnik-chervonenkis dimension: Information versus complexity

in learning. Neural Computation, 1(3):312–317.

Agrawal, R., Ieong, S., and Velu, R. (2011). Timing when to buy. In Proc. of the 20th ACM

Int’l Conference on Information and Knowledge Management, pages 709–718, New York, NY,

USA. ACM.

Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on

Automatic Control, 19(6):716–723.

Bachis, E. and Piga, C. (2006). Hub premium, airport dominance and market power in the

european airline industry. Rivista di Politica Economica, 96(5):11–54.

Bachis, E. and Piga, C. (2007). On-line price discrimination with and without arbitrage con-

ditions. In Loughborough University, Department of Economics Working Paper. Presented at

the International Industrial Organization Conference, Savannah, GA.

Bachis, E. and Piga, C. A. (2011). Low-cost airlines and online price dispersion. Int’l Journal

of Industrial Organization, 29(6):655–667.

Bagheri, M. A., Gao, Q., and Escalera, S. (2012). Efficient pairwise classification using local

cross off strategy. In Advances in Artificial Intelligence, pages 25–36. Springer.

Bajari, P. and Hortacsu, A. (2003). The winner’s curse, reserve prices, and endogenous entry:

empirical insights from ebay auctions. RAND Journal of Economics, 34(2):329–355.

Barbosa, R. P. and Belo, O. (2008). Autonomous forex trading agents. In IEEE Int’l Conf. on

Data Mining (ICDM), pages 389–403.

152



153 References

Belobaba, P. P. (1987). Airline yield management. An overview of seat inventory control. Trans-

portation Science, 21(2):63–73.

Benisch, M., Greenwald, A., Grypari, I., Lederman, R., Naroditskiy, V., and Tschantz, M.

(2004). Botticelli: A supply chain management agent designed to optimize under uncertainty.

ACM Trans. on Comp. Logic, 4(3):29–37.

Benisch, M., Sardinha, A., Andrews, J., Ravichandran, R., and Sadeh, N. (2009). Cmieux:

Adaptive strategies for competitive supply chain trading. Electronic Commerce Research and

Applications, 8(2):78 – 90.

Benisch, M., Sardinha, A., Andrews, J., and Sadeh, N. (2006). CMieux: adaptive strategies for

competitive supply chain trading. In Proc. of 8th Int’l Conf. on Electronic Commerce, pages

47–58. ACM Press.

Bergstra, J. and Bengio, Y. (2012). Random search for hyper-parameter optimization. Journal

of Machine Learning Research, 13:281–305.

Bergstra, J. S., Bardenet, R., Bengio, Y., and Kégl, B. (2011). Algorithms for hyper-parameter
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Appendix A

Synthetic Data Experiments

(continued from Chapter 4)

This appendix contains detailed statistical outputs from some of the experiments in the rest

of this document. This information is provided in an appendix to make the treatments of the

experimental results in the preceding chapters more concise.

A graph corresponding to the time series of one of the configuration seeds is shown in

Figure A.1.
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Figure A.1: Time Series for SyntheticRiver dataset showing both obervable and latent variables
(seed 0). The simulated units are in kcfs.
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163 Appendix A. Synthetic Data Experiments (continued from Chapter 4)

1/1 1/2 1/4 1/8 1/16 1/32 1/64 1/128 1/256 1/512

Exhaustive 25.5 25.6 25.8 27.1 27.8 28.7 31.1 42.8 42.4 42.0
Greedy 33.5 33.6 33.6 33.9 36.2 38.3 41.1 66.7 85.5 71.2
Random 27.9 27.9 28.2 28.4 30.9 32.3 34.4 51.1 60.7 52.9
Guided 25.5 26.1 26.2 27.2 29.0 30.1 32.5 44.8 54.5 49.3
No FS 32.5 33.9 35.9 38.7 44.3 48.7 64.1 118.0 145.7 121.8
CFSB 27.8 28.0 28.0 31.8 37.1 44.2 70.2 141.5 151.0 461.8
CFSF 25.0 26.4 28.0 28.2 33.4 41.5 65.9 123.4 167.4 201.9
BFSB 23.4 25.1 23.9 27.5 28.9 41.2 57.5 240.9 141.2 976.2
BFSF 91.2 93.7 94.9 99.3 105.9 109.2 113.1 132.2 129.7 126.2

Table A.1: Validation set root-mean-square error for various feature selection algorithms coupled
with PLS regression applied to SyntheticRiver domain.

1/1 1/2 1/4 1/8 1/16 1/32 1/64 1/128 1/256 1/512

Exhaustive 3487 2643 1779 1535 1410 1324 1256 1040 1280 1253
Greedy 1 1 0 0 0 0 0 0 0 0
Random 24 16 13 12 10 10 10 10 10 11
Guided 47 38 34 33 32 31 29 32 31 31
No FS 0 0 0 0 0 0 0 0 0 0
CFSB 37 26 18 15 12 11 10 10 9 10
CFSF 34 23 17 13 12 10 9 9 9 9
BFSB 4222 2960 1052 450 284 127 88 63 54 49
BFSF 88 47 33 22 17 16 14 14 12 12

Table A.2: Total feature selection search elapsed-time (rounded to the nearest second) for various
feature selection algorithms coupled with PLS regression applied to SyntheticRiver domain.

1/1 1/2 1/4 1/8 1/16 1/32 1/64 1/128 1/256 1/512

Exh. 35273 35273 35273 35273 35273 35273 35273 35273 35273 35273
Greedy 28 28 28 28 28 28 28 28 31 32
Random 307 305 315 307 306 306 311 317 305 309
Guided 374 373 381 377 371 373 387 382 365 363
No FS 1 1 1 1 1 1 1 1 1 1
CFSB 1 1 1 1 1 1 1 1 1 1
CFSF 1 1 1 1 1 1 1 1 1 1
BFSB 1 1 1 1 1 1 1 1 1 1
BFSF 1 1 1 1 1 1 1 1 1 1

Table A.3: Number of feature set evaluations for various feature selection algorithms coupled
with PLS regression applied to SyntheticRiver domain.
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A.1 Incorrect Constraints Experiment

1/1 1/2 1/4 1/8 1/16 1/32 1/64 1/128 1/256 1/512

Greedy 66.4 66.0 68.2 71.6 80.7 83.7 86.8 104.9 72.0 89.0
Guided 26.1 26.5 26.8 28.3 29.7 30.4 34.4 57.3 51.8 55.0
No FS 32.5 33.9 35.9 38.7 44.3 48.7 64.1 118.0 145.7 121.8
Random 28.6 30.3 30.0 33.0 35.3 36.4 41.3 65.4 72.9 60.1

Table A.4: Validation set root-mean-square error for various feature selection algorithms coupled
with PLS regression applied to SyntheticRiver domain.

1/1 1/2 1/4 1/8 1/16 1/32 1/64 1/128 1/256 1/512

Greedy 3 2 1 1 1 1 1 1 1 1
Guided 65 54 51 49 48 46 50 44 52 53
No FS 1 0 0 0 0 0 0 0 0 0
Random 23 17 13 12 11 12 12 12 11 11

Table A.5: Total feature selection search elapsed-time for various feature selection algorithms
coupled with PLS regression applied to SyntheticRiver domain.

1/1 1/2 1/4 1/8 1/16 1/32 1/64 1/128 1/256 1/512

Greedy 56 56 56 56 56 56 56 56 56 56
Guided 254 270 264 243 253 221 291 326 350 329
No FS 1 1 1 1 1 1 1 1 1 1
Random 163 163 151 159 159 165 163 163 165 153

Table A.6: Number of feature set evaluations for various feature selection algorithms coupled
with PLS regression applied to SyntheticRiver domain.
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A.2 No Constraints Experiment

1/1 1/2 1/4 1/8 1/16 1/32 1/64 1/128 1/256 1/512

method
Greedy 33.5 33.6 33.6 33.9 36.2 38.3 41.1 66.7 68.0 59.0
Guided 25.5 25.6 25.8 27.4 29.2 29.0 31.2 45.8 58.0 47.6
No FS 32.5 33.9 35.9 38.7 44.3 48.7 64.1 118.0 145.7 121.8
Random 27.5 27.8 28.1 29.4 29.4 33.1 33.8 52.8 60.6 46.6

Table A.7: No constraints. Validation set root-mean-square error for various feature selection
algorithms coupled with PLS regression applied to SyntheticRiver domain.

1/1 1/2 1/4 1/8 1/16 1/32 1/64 1/128 1/256 1/512

method
Greedy 3.1 1.9 1.6 1.4 1.1 1.2 1.0 1.1 1.0 1.1
Guided 55.3 45.2 33.7 34.1 37.0 31.8 34.3 33.0 34.9 35.1
No FS 0.6 0.4 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.2
Random 37.3 23.1 19.4 15.4 13.4 12.3 14.7 13.0 13.0 13.8

Table A.8: No constraints. Total feature selection search elapsed-time for various feature selec-
tion algorithms coupled with PLS regression applied to SyntheticRiver domain.

1/1 1/2 1/4 1/8 1/16 1/32 1/64 1/128 1/256 1/512

method
Greedy 84 84 84 84 84 84 84 92.4 84 84
Guided 400 400 400 400 400 400 400 400.0 400 400
No FS 1 1 1 1 1 1 1 1.0 1 1
Random 400 400 400 400 400 400 400 400.0 400 400

Table A.9: Number of feature set evaluations for various feature selection algorithms coupled
with PLS regression applied to SyntheticRiver domain.
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A.3 Expanded Time Lag Choices

1/1 1/2 1/4 1/8 1/16 1/32 1/64 1/128 1/256 1/512

Greedy 33.5 33.6 33.6 33.9 36.2 38.3 41.1 66.7 85.5 71.2
Guided 26.1 25.7 25.8 28.2 29.2 29.3 33.0 49.3 54.6 47.3
No FS 32.5 33.9 35.9 38.7 44.3 48.7 64.1 118.0 145.7 121.8
Random 28.2 28.8 28.1 29.8 31.4 34.0 35.5 55.3 66.3 49.5

Table A.10: Validation set root-mean-square error for various feature selection algorithms cou-
pled with PLS regression applied to SyntheticRiver domain.

1/1 1/2 1/4 1/8 1/16 1/32 1/64 1/128 1/256 1/512

Greedy 2 2 1 1 1 1 1 1 1 1
Guided 81 69 47 59 52 48 45 52 51 53
No FS 1 1 0 0 0 0 0 0 0 0
Random 37 26 16 16 11 15 13 15 13 16

Table A.11: Total feature selection search elapsed-time (seconds) for various feature selection
algorithms coupled with PLS regression applied to SyntheticRiver domain.

1/1 1/2 1/4 1/8 1/16 1/32 1/64 1/128 1/256 1/512

Greedy 48 48 48 48 48 48 48 48 53 48
Guided 347 367 350 357 364 376 364 375 373 362
No FS 1 1 1 1 1 1 1 1 1 1
Random 281 267 269 272 275 279 269 277 270 276

Table A.12: Number of feature set evaluations for various feature selection algorithms coupled
with PLS regression applied to SyntheticRiver domain.
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Figure A.2: Computational effort for various methods on SyntheticRiver dataset. Values (in
seconds) are presented with a logarithmic y-scale to make differences more visible across the
range of error measurements.
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A.4 LibSvm
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Figure A.3: Efficiency curve for various methods on SyntheticRiver dataset: RMSE versus
training set size for various feature selection approaches. Errors are presented with a logarithmic
y-scale to make differences more visible across the range of error measurements.
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A.5 ElasticNet

The section examines the use of ElasticNet as the underlying machine learning algorithm.
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Figure A.4: Efficiency curve for ElasticNet on SyntheticRiver dataset: RMSE versus training
set size for various feature selection approaches. Errors are presented with a logarithmic y-scale
to make differences more visible across the range of error measurements.
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Figure A.5: Efficiency curve for ElasticNet with expanded time lags on SyntheticRiver dataset:
RMSE versus training set size for various feature selection approaches. Errors are presented with
a logarithmic y-scale to make differences more visible across the range of error measurements.



Appendix B

River Flow Experiments

(continued from Chapter 6)

scoreva scorete
runtime (secs) # of Vars

Target Offset

Method Algorithm 12 24 48 72 96 120

lastvalue PLS
12.9 14.6

31.9 1.0

24.1 27.9

28.5 1.0

44.8 52.8

30.1 1.0

63.2 75.5

16.8 1.0

79.1 95.6

14.9 1.0

92.7 112.7

14.9 1.0

lastvalue Ridge
12.9 14.6

30.2 1.0

24.1 27.9

31.5 1.0

44.8 52.8

31.1 1.0

63.2 75.5

16.7 1.0

79.1 95.6

15.9 1.0

92.7 112.7

20.6 1.0

lastvalue nuSVR
12.6 14.6

42.5 1.0

23.5 28.0

55.6 1.0

43.5 52.9

201.5 1.0

61.1 75.9

177.6 1.0

76.4 96.4

270.8 1.0

89.1 113.9

110.4 1.0

mostrecent zeror
201.1 260.6

18.8 6.0

200.8 260.3

17.6 6.0

200.4 259.9

15.5 6.0

200.0 259.7

14.9 6.0

199.7 259.5

15.4 6.0

199.4 259.5

15.3 6.0

uts8h5d PLS
9.8 9.1

14.4 15.0

18.3 18.2

14.6 15.0

36.6 38.9

15.8 15.0

55.2 62.0

14.6 15.0

72.3 84.4

17.8 15.0

87.0 104.4

15.0 15.0

uts8h5d Ridge
9.6 9.0

13.9 15.0

18.2 18.0

14.8 15.0

36.5 38.7

15.8 15.0

55.0 61.7

14.3 15.0

72.1 84.2

18.6 15.0

86.9 104.2

15.0 15.0

uts8h5d nuSVR
11.9 14.3

169.9 15.0

20.9 25.6

115.5 15.0

38.3 46.5

86.8 15.0

55.6 68.5

65.4 15.0

71.3 89.4

82.0 15.0

84.7 107.6

60.0 15.0

Table B.1: Verbose statistics from Table 6.2 for univariate methods.
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(b) Greedy Feature Selection Search

Figure B.1: Visualizations: Physical network derived constraints
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Figure B.2: Visualizations: Physical network derived constraints (continued)



174

12 hours

−250−200−150−100−500
Time Lag (Hours)

1

2

3

5

7

24 hours

−250−200−150−100−500
Time Lag (Hours)

1

2

3

5

7

48 hours

−250−200−150−100−500
Time Lag (Hours)

1

2

3

6

7

72 hours

−250−200−150−100−500
Time Lag (Hours)

1

2

3

7

96 hours

−250−200−150−100−500
Time Lag (Hours)

1

2

3

120 hours

−250−200−150−100−500
Time Lag (Hours)

1

3

7

(a) Exhaustive Feature Selection Search

12 hours

−250−200−150−100−500
Time Lag (Hours)

1

2

24 hours

−250−200−150−100−500
Time Lag (Hours)

1

2

48 hours

−250−200−150−100−500
Time Lag (Hours)

1

2

72 hours

−250−200−150−100−500
Time Lag (Hours)

1

2

96 hours

−250−200−150−100−500
Time Lag (Hours)

1

2

7

120 hours

−250−200−150−100−500
Time Lag (Hours)

1

2

7

(b) Greedy Feature Selection Search

Figure B.3: Visualizations: Bad Network I derived constraints
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Figure B.4: Visualizations: Bad Network I derived constraints (continued)
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Figure B.5: Visualizations: Bad Network II derived constraints
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Figure B.6: Visualizations: Bad network II derived constraints (continued)
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Figure B.7: Visualizations: Physical network derived constraints with precipitation data
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scoreva scorete
runtime (secs) # of Vars

Target Offset

Method Algorithm 12 24 48 72 96 120

fsALL PLS BFSB
47.5 63.4

3222 90.0

85.7 105.2

6201 90.0

88.2 104.7

4637 90.0

134.8 138.8

3598 90.0

223.2 235.2

2239 90.0

215.4 220.9

3195 90.0

fsALL PLS BFSF
201.1 260.6

70 90.0

200.8 260.3

69 90.0

200.4 259.9

70 90.0

200.0 259.7

70 90.0

199.7 259.5

68 90.0

199.4 259.5

69 90.0

fsALL PLS CFSB
29.6 34.6

30 90.0

34.6 38.5

30 90.0

59.3 62.0

37 90.0

71.3 80.9

39 90.0

97.7 108.1

32 90.0

116.0 135.2

32 90.0

fsALL PLS CFSF
40.7 49.6

25 90.0

36.2 40.5

23 90.0

73.1 81.7

24 90.0

83.6 93.1

25 90.0

99.7 112.8

24 90.0

118.1 136.1

25 90.0

fsALL REPTree
68.0 78.1

19 90.0

73.7 83.0

36 90.0

147.8 110.5

37 90.0

154.4 109.9

36 90.0

126.7 142.3

36 90.0

134.6 138.6

36 90.0

fsALL REPTree BFSF
86.0 83.4

2616 90.0

88.2 107.9

1580 90.0

93.6 94.6

852 90.0

163.2 121.6

2533 90.0

155.6 107.6

2706 90.0

157.6 139.5

1749 90.0

fsALL REPTree CFSF
51.7 62.2

43 90.0

83.0 89.0

44 90.0

101.4 114.0

23 90.0

114.6 96.5

50 90.0

111.9 127.8

45 90.0

140.6 134.3

46 90.0

fsALL PLS
16.9 19.5

14 90.0

26.3 29.9

13 90.0

52.6 60.5

13 90.0

89.6 104.2

14 90.0

124.4 147.4

15 90.0

154.2 183.8

16 90.0

fsALL Ridge
22.8 26.2

14 90.0

50.6 55.8

24 90.0

119.8 120.8

26 90.0

213.8 215.9

26 90.0

310.8 319.7

26 90.0

372.3 391.3

25 90.0

fsALL nuSVR
14.6 17.6

1491 90.0

31.3 39.3

1995 90.0

62.7 72.5

1239 90.0

116.8 113.1

897 90.0

183.1 157.1

881 90.0

249.3 206.4

797 90.0

mostrecent REPTree
73.9 87.2

17 6.0

77.4 89.3

18 6.0

99.9 81.9

17 6.0

138.7 97.2

17 6.0

182.4 113.2

18 6.0

161.6 126.6

19 6.0

mostrecent PLS
16.9 19.8

15 6.0

35.1 41.8

18 6.0

61.2 72.1

15 6.0

72.9 83.4

14 6.0

82.3 92.5

17 6.0

92.8 106.0

14 6.0

mostrecent Ridge
16.9 19.8

16 6.0

35.1 41.8

14 6.0

61.2 72.1

15 6.0

72.9 83.4

15 6.0

82.3 92.5

15 6.0

92.8 106.0

16 6.0

mostrecent nuSVR
12.4 14.1

63 6.0

26.2 31.7

55 6.0

50.8 62.1

52 6.0

66.7 81.6

58 6.0

79.4 95.2

67 6.0

92.9 110.8

62 6.0

mostrecent skRF
67.9 78.1

18 6.0

63.6 74.6

19 6.0

92.6 80.9

18 6.0

126.2 96.0

18 6.0

147.2 123.3

18 6.0

152.3 124.3

19 6.0

Table B.2: Verbose statistics from Tables 6.4, 6.6, and 6.8 for multivariate methods (both
without and with temporal data).
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scoreva scorete
runtime (secs) # of Vars

Target Offset

Method Algorithm 12 24 48 72 96 120

NOAApredictions N/A
10.0 10.8

18 1.0

11.7 13.8

17 1.0

17.5 20.9

17 1.0

24.4 28.9

17 1.0

33.7 40.7

17 1.0

45.9 57.7

17 1.0

fsExhaustive PLS
10.7 10.2

6659 4.0

19.3 19.0

6499 4.0

36.2 38.2

6976 4.0

53.2 58.5

7046 4.0

69.4 78.1

7870 4.0

84.5 96.3

7637 4.0

fsGreedy PLS
12.0 12.8

24 3.0

22.3 24.7

19 3.0

44.1 47.9

32 3.0

59.9 66.7

33 3.0

67.8 75.1

34 3.0

81.6 92.7

34 4.0

fsGuided PLS
13.4 11.6

196 4.0

25.4 22.4

174 5.0

41.9 47.8

306 5.0

53.2 58.5

323 4.0

67.8 75.1

315 3.0

88.6 105.3

338 5.0

fsRandom PLS
11.9 13.0

128 5.0

26.3 26.0

201 5.0

54.9 50.6

216 5.0

62.5 73.0

247 5.0

76.6 89.9

242 5.0

91.6 107.8

237 5.0

precip+fsGreedy PLS
10.9 11.0

41 35.0

20.6 20.6

60 27.0

37.9 39.8

69 43.0

56.7 55.9

66 43.0

67.7 68.9

71 44.0

76.3 81.7

77 44.0

precip+fsGuided PLS
10.6 10.9

408 36.0

21.6 20.5

734 46.0

36.7 37.3

742 37.0

61.0 66.6

682 30.0

83.5 81.5

628 21.0

77.1 86.6

718 44.0

precip+fsRandom PLS
12.2 12.0

544 38.0

23.1 23.0

714 38.0

49.0 46.4

707 38.0

64.7 73.0

692 53.0

77.0 83.7

667 35.0

89.2 97.1

672 35.0

Table B.3: Verbose statistics from Table 6.11: DGFS feature selection methods on ground truth
constraint network (A).
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scoreva scorete
runtime (secs) # of Vars

Target Offset

Network Method 12 24 48 72 96 120

NOAApredictions
10.0 10.8

18 1.0

11.7 13.8

17 1.0

17.5 20.9

17 1.0

24.4 28.9

18 1.0

33.7 40.7

17 1.0

45.9 57.7

17 1.0

A fsExhaustive
10.7 10.2

6659 4.0

19.3 19.0

6499 4.0

36.2 38.2

6976 4.0

53.2 58.5

7046 4.0

69.4 78.1

7870 4.0

84.5 96.3

7637 4.0

A fsGreedy
12.0 12.8

24 3.0

22.3 24.7

19 3.0

44.1 47.9

32 3.0

59.9 66.7

33 3.0

67.8 75.1

34 3.0

81.6 92.7

34 4.0

A fsGuided
13.4 11.6

196 4.0

25.4 22.4

174 5.0

41.9 47.8

306 5.0

53.2 58.5

323 4.0

67.8 75.1

315 3.0

88.6 105.3

338 5.0

A fsRandom
11.9 13.0

128 5.0

26.3 26.0

201 5.0

54.9 50.6

216 5.0

62.5 73.0

247 5.0

76.6 89.9

242 5.0

91.6 107.8

237 5.0

B fsExhaustive
66.4 55.9

1585 3.0

65.3 56.1

1921 3.0

67.5 59.1

2647 3.0

67.8 71.1

1900 3.0

79.6 88.0

2727 2.0

88.2 100.2

3327 3.0

B fsGreedy
11.9 12.9

16 2.0

22.3 24.9

23 2.0

42.5 49.0

17 2.0

61.1 72.2

17 2.0

79.0 91.6

21 3.0

85.2 104.4

17 3.0

B fsGuided
13.3 11.8

188 3.0

30.0 23.0

209 3.0

41.4 47.9

173 3.0

84.9 70.8

191 4.0

100.1 93.3

215 5.0

84.9 93.6

183 3.0

B fsRandom
14.4 12.9

81 6.0

29.4 26.9

84 6.0

56.8 54.0

69 6.0

100.1 79.6

83 5.0

118.9 100.1

76 5.0

99.5 119.8

89 5.0

C fsExhaustive
66.4 55.9

1585 3.0

65.3 56.1

1921 3.0

67.5 59.1

2647 3.0

67.8 71.1

1900 3.0

79.6 88.0

2727 2.0

88.2 100.2

3327 3.0

C fsGreedy
48.3 49.6

18 4.0

50.9 52.6

26 4.0

55.5 57.5

16 4.0

58.6 61.7

18 4.0

68.9 72.8

27 4.0

79.5 87.2

18 3.0

C fsGuided
11.9 12.9

155 2.0

24.9 26.3

187 3.0

42.5 49.0

151 2.0

58.9 65.4

146 3.0

68.3 72.0

215 3.0

84.5 95.2

149 4.0

C fsRandom
27.2 28.7

30 4.0

39.2 42.8

44 4.0

61.3 68.9

35 4.0

74.1 86.4

33 4.0

89.5 93.9

47 3.0

98.4 104.2

34 3.0

lastvalue
12.9 14.6

31 1.0

24.1 27.9

28 1.0

44.8 52.8

30 1.0

63.2 75.5

16 1.0

79.1 95.6

14 1.0

92.7 112.7

14 1.0

Table B.4: Verbose statistics from Table 6.15: DGFS feature selection methods over constraint
networks containing mistakes (A, B, and C).
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Figure B.8: EADM7 2d histogram comparing DGFS methods at 12 hour prediction target.
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Figure B.9: EADM7 2d histogram comparing DGFS methods at 24 hour prediction target.
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Figure B.10: EADM7 2d histogram comparing DGFS methods at 48 hour prediction target.
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Figure B.11: EADM7 2d histogram comparing DGFS methods at 72 hour prediction target.
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Figure B.12: EADM7 2d histogram comparing DGFS methods at 96 hour prediction target.
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Figure B.13: EADM7 2d histogram comparing DGFS methods at 120 hour prediction target.
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