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Abstract

This thesis consists of three essays in stochastic inventory systems. The first essay

is on the impact of input price variability and correlation on stochastic inventory

systems. For a general class of such systems, we show that the expected cost

function is concave in the input price. From this, it follows that higher input

price variability in the sense of the convex order always leads to lower expected

cost. We show that this is true under a wide range of assumptions for price

evolution, including cases with i.i.d. prices and cases where prices are correlated

and evolve according to an AR(1) process, a geometric Brownian motion, or a

Markovian martingale. In addition, the result holds in cases where there is just

a single period. We also examine the impact of price correlation over time and

across inputs, and we find that expected cost is increasing in price correlation over

time and decreasing in price correlation across components. We present results of

a numerical study that provide insights on how various parameters influence the

effects of price variability and correlation.

The second essay is on the optimal control of inventory systems with stochastic

and independent leadtimes. We show that a fixed base-stock policy is sub-optimal

and can perform poorly. For the case of exponentially distributed leadtimes, we

show that the optimal policy is state-dependent and specified in terms of an

inventory-dependent threshold function. Moreover, we show that this threshold

function is non-increasing in the inventory level and characterized by at most m

parameters. That is, once the threshold function starts to decrease it continues to
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decrease with a rate that is at least one. Taking advantage of this structure, we

develop an efficient algorithm for computing these parameters. In characterizing

the structure of the optimal policy, we rely on an application of the Banach fixed

point theorem. We compare the performance of the optimal policy to that of

simpler heuristics. We also extend our analysis to systems with lost sales and

systems with order cancellations.

The third essay is on the optimal policies for inventory systems with concave

ordering costs. By extending the Scarf (1959) model to systems with piecewise

linear concave ordering costs, we characterize the structure of optimal policies for

periodic review inventory systems with concave ordering costs and general demand

distributions. We show that, except for a bounded region, the generalized (s, S)

policy is optimal. We do so by (a) introducing a conditional monotonicity property

for the optimal order-up-to levels and (b) applying the notion of c-convexity. We

also provide conditions under which the generalized (s, S) policy is optimal for all

regions of the state space.
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Chapter 1

Introduction

This thesis consists of five chapters. In Chapter 2, 3 and 4, we present three

completed research projects. In Chapter 5, we describes other ongoing research

projects and future research directions. Chapters 2, 3 and 4 are self-contained,

independent, and deal with separate topics. The following paragraphs are a brief

summary of Chapters 2, 3, 4 and 5.

In Chapter 2, we explore the impact of input price variability in the context

of an inventory system with stochastic demand and stochastic input prices. For a

general class of such systems, we show that the expected cost function is concave

in the input price. This implies that higher input price variability always leads to

lower expected cost. We show that this is true under a wide range of assumptions

for price evolution, including cases with i.i.d. prices and cases where prices are

correlated and evolve according to an AR(1) process or a geometric Brownian

motion. More significantly, we show that the result is true when prices evolve

according to a Markovian martingale so that the expected price in the next period

is equal to the realized price in the current period. This is perhaps surprising
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because one may attribute the results to a period-over-period effect whereby more

(less) is ordered in one period because prices are expected to be lower (higher) in

the next period. Although this temporal effect can be important, the result holds

even if this temporal effect is absent and the problem is one of a single period.

We also examine the impact of price correlation over time and across inputs. We

find that expected cost is increasing in price correlation over time and decreasing

in price correlation across components. This chapter is based on the paper “On

the Impact of Input Price Variability and Correlation in Stochastic Inventory

Systems”, coauthored with Professor Saif Benjaafar and Professor William L.

Cooper (see Chen et al. (2015a)).

In Chapter 3, we consider a continuous review inventory system with stochastic

and independent leadtimes. Because orders may not be delivered in the same

sequence in which they have been placed, characterizing the optimal policy is

difficult and much of the available literature assumes a fixed base-stock policy.

As we show, in this paper such policies are sub-optimal and can perform poorly.

In this paper, we consider the case of exponentially distributed leadtimes and

show that the optimal policy is not a fixed base-stock policy. Instead, the policy

is state-dependent and specified in terms of an inventory-dependent threshold

function. Moreover, we show that this threshold function is non-increasing in the

inventory level and characterized by at most m parameters. That is, once the

threshold function starts to decrease it continues to decrease with a rate that is at

least one. Taking advantage of this structure, we develop an efficient algorithm for

computing these parameters. In characterizing the structure of the optimal policy,

we rely on an application of the Banach fixed point theorem. We compare the
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performance of the optimal policy to that of simpler heuristics. We also extend

our analysis to systems with lost sales and systems with order cancellations. This

chapter is based on the paper “Optimal Control of an Inventory System with

Stochastic and Independent Leadtimes”, coauthored with Professor Saif Benjaafar

and Professor Mohsen Elhafsi (see Benjaafar et al. (2015a)).

In Chapter 4, we characterize the structure of optimal policies for periodic

review inventory systems with concave ordering costs and general demand

distributions. By extending the Scarf (1959) model to systems with piecewise

linear concave ordering costs, we show that, except for a bounded region, the

generalized (s, S) policy is optimal. We do so by (a) introducing a conditional

monotonicity property for the optimal order-up-to levels and (b) applying the

notion of c-convexity. We also provide conditions under which the generalized

(s, S) policy is optimal for all regions of the state space. This chapter is based on

the paper “Optimal Policies for Inventory Systems with Concave Ordering Costs”,

coauthored with Professor Yimin Yu and Professor Saif Benjaafar (see Yu et al.

(2015)).

In Chapter 5, we provide conclusions and future research directions on the work

presented in Chapters 2 and 3. We also briefly discuss other research projects,

which includes (1) managing stochastic inventory systems with scarce resources,

and (2) stochastic inventory systems with discount-driven backorders.



Chapter 2

On the Impact of Input Price

Variability and Correlation in

Stochastic Inventory Systems

2.1 Introduction

Stochastic input prices are common in practice. The prices of raw materials,

precious metals, grain commodities, and electronic components, among many

others, can fluctuate considerably over short periods. Such fluctuations may

result from variations in supply and demand, changes in market conditions, or

the introduction of new technology. Firms in some industries face input price

variability because of their reliance on spot markets for procurement and, in the

case of firms with global supply chains, because of exchange rate fluctuation.

The presence of stochastic input prices raises several important questions.
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5

First, how does the presence of variability in input prices affect input ordering

decisions and the nature of the optimal ordering policy? Second, how does price

variability affect performance, and particularly cost? Does higher price variability

increase or decrease overall costs? How does price correlation, over time or across

inputs, interact with price variability and what is the net effect on cost? Is the

effect of price variability more pronounced with higher correlation?

There is literature dealing with inventory systems with stochastic input

prices; see Zhang (2012) for a comprehensive review. In a periodic review

inventory system, Kalymon (1971) considers a single-item model with setup

costs in which future input prices are determined by a Markovian stochastic

process, and establishes that the optimal policy is a price-dependent (s, S)

policy. Golabi (1985) considers a problem with an independent price process,

negligible setup cost, and deterministic demand. He shows that the optimal

policy is to always purchase a quantity that covers demands for the next

several periods, and that this number of periods is decreasing in the current

price. Gavirneni (2004) develops an efficient recursive procedure to calculate

the base stock level when there are no setup costs and shows that myopic

solutions are very effective under a non-speculative assumption. For continuous

review inventory systems, Song and Zipkin (1993) characterize the optimal policy

and develop algorithms for settings with Markov modulated purchasing price

and Markov modulated demand. Yang and Xia (2009) consider a problem in

which the input price follows a discrete-state Markov process and demand is

a compound Poisson process. They show that the optimal policy is of the

order-up-to type and identify conditions under which the order-up-to levels are
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decreasing in price. Berling and Mart́ınez-de-Albéniz (2011) study a problem

in which the price evolution is a continuous stochastic process and demand is

Poisson. They characterize the optimal base-stock level using a series of threshold

prices. Nie et al. (2014) consider a firm buying raw material from the spot market

and selling a final product by submitting bids. They show that the optimal

procurement policy is a price-dependent base-stock policy and the optimal bidding

price decreases in the inventory level.

In the finance literature, Gibson and Schwartz (1990), Schwartz and Smith

(2000), and Casassus and Collin-Dufresne (2005) develop multi-factor models

to describe the dynamics of commodity prices. They test these models using

empirical data and discuss implications for option valuation and investment

decisions. There is a growing body of operations management literature concerned

with traded commodities. This literature characterizes optimal operating

policies for traded commodities regarding how much to buy, produce, and

sell; see for example, Mart́ınez-de-Albéniz and Simón (2009), Secomandi (2010),

Devalkar et al. (2011), Goel and Gutierrez (2006, 2011), and Guo et al. (2011)

Another stream of literature studies the impact of a spot market on

supply chain operations. Yi and Scheller-Wolf (2003), Boyabatlı et al. (2011),

Inderfurth and Kelle (2011), Chen et al. (2013), and Secomandi and Kekre (2014)

consider models in which a firm can procure a resource through long-term

contracts or from the spot market. They characterize the optimal procurement

policy under different assumptions. Park et al. (2012) study the inventory sharing

problem for two firms where the firms can procure the commodity and sell excess

inventory through either the spot or forward market. They show that inventory
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sharing is always beneficial. Haksöz and Seshadri (2007) provide a comprehensive

review on the use of spot market operations to manage procurement in supply

chains.

Much of this literature is concerned with describing the structure of the

optimal ordering policy or with identifying other effective heuristics. There is

only limited literature that studies the impact of input price variability in the

context of inventory systems. Ho et al. (1998) analyze the impact of price format

(the average price and the variance of the price) on the shopping frequency and

purchasing behavior of a rational shopper using an economic order quantity (EOQ)

model. They show that the optimal long run average cost is decreasing with the

price variance. Berling and Rosling (2005) study how financial risks influence

the optimal value of the order quantity and the reorder level in an inventory

system with setup costs. They show that the systematic risk of demand has a

negligible effect, but the systematic risk of the purchase price has a significant

effect. Plambeck and Taylor (2013) study a problem where the firm is a price

taker for both input and output products. They show that input price variability

reduces the value of improving input efficiency (output produced per unit input)

but increases that of capacity efficiency (the rate at which a production facility

can convert input into output). Output price variability increases the value of

capacity efficiency, but it increases the value of input efficiency only under certain

conditions.

The papers by Janakiraman and Seshadri (2011) and Boyabatlı et al. (2011)

are the most relevant to our study. Janakiraman and Seshadri (2011) examine a

family of dynamic programs with stochastic cost parameters in which the vector



8

of cost parameters evolves as a stochastic process. They show that if the single

period cost is concave with respect to this vector, then the optimal cost is bounded

above by the optimal cost for the dynamic program in which these stochastic

cost parameters are replaced by their expectations in each period. However, the

approach they employ cannot be used to compare two dynamic programs each with

stochastic cost parameters. Boyabatlı et al. (2011) study optimal procurement,

processing, and production policies for a meat-processing company which sources

input through long-term contracts and from a spot market. They assume that

the spot price follows a normal distribution and show that the optimal expected

profit of the firm increases in the spot price variability under certain conditions.

In the economics literature, there is a stream of research that examines a

firm’s behavior when price or cost fluctuates. Sandmo (1971) and Batra and Ullah

(1974) study the optimal output and input decisions for a competitive firm under

price uncertainty and risk aversion. Anderson and Danthine (1981, 1983), Meyer

(1987) and Kamara (1993) study how firms can use futures to hedge or speculate

against price uncertainty. This literature relies on aggregate models of demand

and supply and does not model operational decisions.

In this paper, we show that for a wide range of inventory problems and

assumptions, higher input price variability (as measured by convex ordering of

prices) leads to lower expected inventory costs over the planning horizon, where

inventory costs include ordering, inventory holding, and shortage costs. One may

initially attribute this phenomenon to the fact that higher variability affords more

frequent opportunities to place large (small) orders in periods in which prices

are anticipated to be higher (lower) in subsequent periods. Although we do
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observe such a period-over-period effect, the main result also holds when the

input prices evolve as a martingale, where the price in a current period is equal

to the conditional expected price in future periods. In addition, the result holds

in systems with a single period where ordering decisions cannot be postponed to

the future. We show that the benefit of input price variability can be traced to

the concavity of the cost function with respect to the input price. This concavity

in price is a consequence of the ability of the system manager to adjust the order

quantity as prices change, leading to a cost that is lower than that which would

be incurred if the order quantity were left unchanged.

We also examine the impact of correlation of prices over time. For certain

types of input price sequences, we show that the expected cost decreases with

increases in input price correlation. We also consider inventory systems with

multiple inputs and allow for correlation among the prices of different inputs.

For such systems, we use the notion of supermodular ordering to show that the

expected total cost is decreasing in the correlation in input prices. Finally, we

present numerical results illustrating how the benefit of input price variability

is affected by various parameters. These results suggest, for instance, that the

magnitude of the benefit of price variability is increasing in the length of the

planning horizon and the correlation of prices of different inputs, and decreasing

in the holding and backorder costs and the correlation in prices over time. The

numerical results also suggest that the impact of price correlation over time and

across components is more significant when the price variability is higher.

The rest of this chapter is organized as follows. In section 2.2, we describe and

formulate the single-component inventory model and describe the structure of the
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optimal policy. In section 2.3, we analyze the impact of input price variability.

In section 2.4, we study the impact of correlation of the input prices over time.

In section 2.5, we consider inventory systems with multiple inputs and for such

systems we study the impact of input price variability and the impact of correlation

across component prices. In section 2.6, we provide numerical results and explore

some of the implications of the results.

2.2 Problem Formulation

We consider a multi-period stochastic inventory control problem for a single

product over a finite planning horizon consisting of T ≥ 1 discrete time periods.

Time t = 1 is the first period and time t = T is the last period. Demand for the

product occurs each period. We assume that demand forms an i.i.d. sequence of

random variables with common distribution function Φ(·) and density function

φ(·). We assume that one unit of the product is needed to fulfill one unit of

demand. In each period, the ordering price, to which we also refer as the input

price, is stochastic as well and is realized at the beginning of the period, before

the realization of demand. An ordering decision (whether or not and how much

to order) is made at the beginning of each period before the realization of demand

but after the realization of the input price. There is no leadtime (the extension to

positive leadtime is straightforward), and therefore quantities ordered in a period,

if any, can be used to fulfill demands in that same period. Each unit of positive

leftover inventory at the end of a period incurs a holding cost of h. Unfulfilled

demand is backlogged and a backorder cost of b per unit backlogged per period is

incurred. The one-period discount factor is denoted by β ∈ (0, 1].
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We assume that the sequence of ordering prices {Xt : t = 1, . . . , T} follows

a Markov chain, where the ordering price Xt+1 in period t + 1 depends on the

ordering price Xt in period t and another random variable ǫt. Specifically, we

assume that

Xt+1 = ft(ǫt)Xt + gt(ǫt), t = 1, . . . , T − 1, (2.1)

where {ǫt : t = 1, . . . , T − 1} is a sequence of independent random variables. We

denote the distribution function of ǫt as Ψt(·). We assume that the sequence {ǫt},

the initial input price X1, and the sequence of demands are mutually independent.

This assumption about price evolution is quite general. For instance, the

case of i.i.d. ordering prices can be obtained by taking ft(ǫ) = 0, gt(ǫ) = ǫ, and

{ǫt} i.i.d. with the same distribution as X1. Other special cases of (2.1) include

a discrete-time analog of geometric Brownian motion as well as auto-regressive

processes of order 1 (AR(1) processes). To obtain geometric Brownian motion

with drift µ and volatility σ, we take {ǫt} to be i.i.d. normal random variables

with mean µ and variance σ2, ft(ǫ) = eǫ, and gt(ǫ) = 0, in which case equation

(2.1) becomes Xt+1 = Xte
ǫt. To obtain an AR(1) process, we take ft(ǫ) = ρt,

g(ǫ) = ǫ + ct, and Eǫt = 0, in which case (2.1) becomes Xt+1 = ct + ρtXt + ǫt.

Moreover, through appropriate choices of {ǫt}, ft(·), and gt(·), we can make the

sequence of prices {Xt} a martingale, supermartingale, or submartingale. We will

discuss all these examples later. From here on, for notational simplicity, we only

consider the case where ft(·) = f(·) and gt(·) = g(·). Our results also apply to

cases where ft(·) and gt(·) or the holding and backorder cost parameters are time

heterogeneous.

In view of the preceding assumptions, the problem can be viewed as a Markov
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decision process where the state of the system at the beginning of each period is

a pair (s, x) that represents the net inventory level s and the ordering price x.

In each period, the action, i.e., the decision to be made, is the order-up-to level

y ∈ [s,∞). If in a particular period, net inventory is s, order-up-to level y is

chosen, and demand is ξ, then the order quantity is y − s and the net inventory

level in the subsequent period is y − ξ.

The expected one-period holding and shortage costs can be expressed as a

function of the action y as follows:

L(y) =

∫ y

0

h(y − ξ)φ(ξ)dξ +

∫ ∞

y

b(ξ − y)φ(ξ)dξ.

The objective is to determine in each period the optimal order-up-to level for

each price such that the expected total discounted cost over the planning horizon

is minimized. For t = 1, . . . , T , let vt(s, x) be the optimal expected total cost from

period t onward when the net inventory at the beginning of period t is s and the

ordering price in period t is x. The optimality equations are given by

vt(s, x) = min
y≥s



x(y − s) + L(y) + β

∫

ξ

∫

ǫ

vt+1(y − ξ, f(ǫ)x+ g(ǫ))Ψt(dǫ)φ(ξ)dξ





= min
y≥s

{wt(y, x)} − xs, (2.2)

where

wt(y, x) = xy + L(y) + β

∫

ξ

∫

ǫ

vt+1(y − ξ, f(ǫ)x+ g(ǫ))Ψt(dǫ)φ(ξ)dξ,

= xy + L(y) + β

∫

ξ

E[vt+1(y − ξ,Xt+1)|Xt = x]φ(ξ)dξ (2.3)

and

vT+1(s, x) = 0.
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We let y∗t (s, x) denote a minimizer of (2.2). Then an optimal policy uses

order-up-to level y∗t (s, x) if the state is (s, x) in period t, and the optimal order

quantity is y∗t (s, x) − s. The optimal expected total cost for the entire planning

horizon (computed before learning the first ordering price) with starting inventory

s is given by V1(s) = Ev1(s,X1).

In preparation for our analysis of the impact of input price variability, we next

describe the form of the optimal policy for this inventory system. We begin with

the following lemma.

Lemma 1. The function wt(y, x) is convex in y for all x and t = 1, . . . , T .

The proof of Lemma 1 (and all other proofs not provided in the paper) can

be found in the appendix. Let y◦t (x) denote a minimizer of wt(y, x) over y ∈

(−∞,∞). An optimal policy is described in the following proposition, which

follows immediately from Lemma 1.

Proposition 1. There exists an optimal ordering policy for the multi-period

inventory system with stochastic input prices that is a state-dependent base stock

policy with base stock levels y◦t (x). That is, y∗t (s, x) = max{s, y◦t (x)} and the

optimal order quantity in state (s, x) at time t is max{0, y◦t (x)− s}.

The optimal base stock level y◦t (x) need not be decreasing in the realized price

x. For example, consider a case where T = 2, b = 0.5, h = 0.5, D1 = D2 = 10 and

X2 = 2X1 − 5, and suppose that the marginal distribution for the ordering price

in period 1 is P (X1 = 4) = P (X1 = 6) = 0.5 and thus the marginal distribution

of the ordering price in period 2 is P (X1 = 3) = P (X1 = 7) = 0.5. In this case, it

is easy to check that it is optimal to order nothing if the realized ordering price
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in period 1 is 4 (y◦1(4) = 0) and to order up to 20 if the realized ordering price in

period 1 is 6 (y◦1(6) = 20). Therefore, the optimal base stock is increasing with

respect to the realized price. This is due to the strong positive correlation in the

ordering price across periods. In the following proposition, we provide a sufficient

condition under which this phenomenon does not occur and the base stock level

is decreasing in the realized price.

Proposition 2. If E|f(ǫt)| ≤ 1 for t = 1, . . . , T , then y◦t (x) is decreasing in x for

t = 1, . . . , T .

Examples that satisfy the condition E|f(ǫt)| ≤ 1 for t = 1, . . . , T include the

case of i.i.d. input prices and the case where the input prices evolve according to an

AR(1) process. In the first case f(ǫ) = 0, and in the second case f(ǫ) = ρ ∈ [−1, 1].

If the condition in the proposition is not satisfied, for example, if Ef(ǫt) > 1, then

it is possible that a high (low) price in one period would lead to a even higher

(lower) expected price in the next period. In this case, it may be optimal to order

more (less) when the price is high (low). Or, if Ef(ǫt) < −1, then a low price

in one period (say, now) would lead to a high expected price in the next period

and an even lower expected price after two periods. In that case, one may wish

to order more now in anticipation of a high price in the next period but to order

less now in anticipation of an even lower price after two periods. It is possible

that the second of these two effects is stronger. Therefore, it is possible that it is

optimal to order more as price increases.
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2.3 Impact of Price Variability

In this section, we discuss the impact of input price variability on the expected

total cost and show that higher variability yields lower expected total cost. In our

analysis, we use the tool of convex ordering to compare different levels of price

variability. A random variable X is said to be smaller than X̂ in the convex order

(written X ≤cx X̂) if Eu(X) ≤ Eu(X̂) for all convex functions u(·) such that

the expectations exist. The concept of convex order is reviewed in, for example,

Müller and Stoyan (2002) and Shaked and Shanthikumar (2007). If X ≤cx X̂ ,

then it is well known that EX = EX̂ and Var(X) ≤ Var(X̂). For random

variables drawn from various common distributions, convex ordering is equivalent

to having ordered variances and identical means. For example, if we compare

two normal random variables with the same mean, then the one with the smaller

variance is smaller in the convex order. The same holds true for uniform, gamma

and lognormal random variables as well. Below, we will frequently make use of

the fact that if u(·) is concave and X ≤cx X̂ then Eu(X) ≥ Eu(X̂).

The next lemma establishes the concavity of the cost function vt(s, x) with

respect to the ordering price x.

Lemma 2. vt(s, x) is concave in x for all s and t = 1, . . . , T + 1.

To study the impact of ordering price variability, we compare two different

inventory systems with ordering price sequences {Xt} and {X̂t} and noise

sequences {ǫt} and {ǫ̂t} satisfying Xt+1 = f(ǫt)Xt + g(ǫt) and X̂t+1 = f(ǫ̂t)X̂t +

g(ǫ̂t) respectively. All other parameters of the two systems are the same. We

assume that each of the two systems individually satisfies the assumptions after

(2.1) in Section 2.2. Let v̂t(s, x) be the optimal expected total cost-to-go in period
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t when the inventory is s and the realization of price is x for the system with

ordering prices {X̂t}.

In preparation for our next result, let Xt+1(x) = f(ǫt)x + g(ǫt) be a random

variable that follows the conditional distribution of Xt+1 given Xt = x. Likewise,

let X̂t+1(x) = f(ǫ̂t)x + g(ǫ̂t) be a random variable that follows the conditional

distribution of X̂t+1 given X̂t = x. With this notational device, wt(y, x) in (2.3)

can be written as

wt(y, x) = xy + L(y) + β

∫

ξ

E[vt+1(y − ξ,Xt+1(x))]φ(ξ)dξ. (2.4)

The following theorem describes the impact of price variability on the optimal

expected total cost.

Theorem 1. Consider k ∈ {1, . . . , T−1} and suppose Xt+1(x) ≤cx X̂t+1(x) for all

x and t = k, . . . , T − 1. Then vt(s, x) ≥ v̂t(s, x) for all (s, x) and t = k, . . . , T + 1

and E[vt(s,Xt)|Xt−1 = x] ≥ E[v̂t(s, X̂t)|X̂t−1 = x] for all x and t = k + 1, . . . , T .

Proof. For a given k = 1, . . . , T − 1, we first prove that vt(s, x) ≥ v̂t(s, x) for all

(s, x) and t = k, . . . , T +1 by induction on t. We have vT+1(s, x) = 0 = v̂T+1(s, x).

Suppose vt+1(s, x) ≥ v̂t+1(s, x) for all (s, x). Then by (2.2) and (2.4), we have

vt(s, x) = min
y≥s



x(y − s) + L(y) + β

∫

ξ

E[vt+1(y − ξ,Xt+1(x))]φ(ξ)dξ





≥ min
y≥s



x(y − s) + L(y) + β

∫

ξ

E[vt+1(y − ξ, X̂t+1(x))]φ(ξ)dξ





≥ min
y≥s



x(y − s) + L(y) + β

∫

ξ

E[v̂t+1(y − ξ, X̂t+1(x))]φ(ξ)dξ
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= v̂t(s, x).

The first inequality above follows from the assumption that Xt+1(x) ≤cx X̂t+1(x)

and the fact that vt+1(s, x) is a concave function of x as shown in Lemma 2. The

second inequality above follows from the inductive hypothesis. Thus, vt(s, x) ≥

v̂t(s, x) for all s, x, and t = k, . . . , T + 1. For t = k + 1, . . . , T we have

E[vt(s,Xt)|Xt−1 = x] = Evt(s,Xt(x)) ≥ Evt(s, X̂t(x))

≥ Ev̂t(s, X̂t(x)) = E[v̂t(s, X̂t)|X̂t−1 = x],

where the first inequality uses Lemma 2.

The following corollary is an immediate consequence of Theorem 1, because

for a given k = 1, . . . , T − 1, if Xk ≤cx X̂k, then Evk(s,Xk) ≥ Ev̂k(s,Xk) ≥

Ev̂k(s, X̂k), where the second inequality is due to the fact that v̂k(s, x) is concave

in x.

Corollary 1. Consider k ∈ {1, . . . , T − 1} and suppose Xt+1(x) ≤cx X̂t+1(x) for

all x, and t = k, . . . , T − 1. If Xk ≤cx X̂k, then Evk(s,Xk) ≥ Ev̂k(s, X̂k). In

particular, if X1 ≤cx X̂1, then Ev1(s,X1) ≥ Ev̂1(s, X̂1).

In view of the assumption of Markovian ordering prices, Theorem 1 indicates

that given a history of the price realizations, the optimal expected total cost-to-go

is decreasing with respect to the conditional variability of subsequent ordering

prices. Corollary 1 shows that if no information is known about past prices, the

unconditional optimal expected total cost-to-go is decreasing with respect to the

unconditional variability of the current ordering price. In both cases, the more

variable the price is, the lower the optimal expected total cost is. Our result
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implies that a risk neutral decision maker has a preference for suppliers with

high price variability over suppliers with low price variability or suppliers with

fixed prices. This contrasts with the effect of demand variability, where in many

inventory systems, greater variability in demand leads to higher expected cost (or

lower expected profit).

In the following proposition, we provide conditions under which the

assumptions of Theorem 1 and Corollary 1 hold.

Proposition 3. Suppose X1 ≤cx X̂1. Then, the following statements hold.

(a) If ǫt = ǫ̂t for t = 1, . . . , T , then Xt(x) ≤cx X̂t(x) for all x and Xt ≤cx X̂t for

t = 2, . . . , T .

(b) If ǫt ≤cx ǫ̂t and f(·) and g(·) are convex functions such that Ef(ǫt) = Ef(ǫ̂t)

and Eg(ǫt) = Eg(ǫ̂t) for t = 1, . . . , T , then Xt(x) ≤cx X̂t(x) for x ≥ 0 and

t = 2, . . . , T . Moreover, if Xt or X̂t is nonnegative a.s. for t = 1, . . . , T ,

then Xt ≤cx X̂t for t = 2, . . . , T .

(c) If ǫt ≤cx ǫ̂t and g(·) is a convex function such that Eg(ǫt) = Eg(ǫ̂t) for

t = 1, . . . , T , and f(·) is an affine function, then Xt(x) ≤cx X̂t(x) for all x

and Xt ≤cx X̂t for t = 2, . . . , T .

(d) If f(ǫt) ≤cx f(ǫ̂t) for t = 1, . . . , T and g(·) is a constant, then Xt(x) ≤cx

X̂t(x) for all x and Xt ≤cx X̂t for t = 2, . . . , T .

Proof. (a) Suppose u(·) is an arbitrary convex function. Then

Eu(Xt+1(x)) = Eu(f(ǫt)x+ g(ǫt)) = Eu(f(ǫ̂t)x+ g(ǫ̂t)) = Eu(X̂t+1(x)).

Therefore, Xt+1(x) ≤cx X̂t+1(x) for all x and t = 2, . . . , T .
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To show that Xt ≤cx X̂t for t = 2, . . . , T , we only need to show that if Xt ≤cx

X̂t, then Xt+1 ≤cx X̂t+1. Suppose Xt ≤cx X̂t. Let u(·) be an arbitrary convex

function and let κ(x) = Eu(Xt+1(x)) and κ̂(x) = Eu(X̂t+1(x)). Then κ(x) ≤ κ̂(x)

for all x because u(·) is convex and we have already shown that Xt+1(x) ≤cx

X̂t+1(x) for all x. Moreover, κ(x) = Eu(f(ǫt)x+ g(ǫt)) and hence κ is convex in

x. Therefore, we have

Eu(Xt+1) = Eκ(Xt) ≤ Eκ(X̂t) ≤ Eκ̂(X̂t) = Eu(X̂t+1).

Thus, we have Xt+1 ≤cx X̂t+1.

(b) We will use the fact thatX ≤cx Y is equivalent to EX = EY and Eu(X) ≤

Eu(Y ) for all increasing convex functions u(·). See, for example, Theorem 1.5.3

of Müller and Stoyan (2002). We have

EXt+1(x) = E[f(ǫt)x+ g(ǫt)] = E[f(ǫ̂t)x+ g(ǫ̂t)] = EX̂t+1(x).

Suppose now that u(·) is an arbitrary increasing convex function. The function

η(ǫ) = f(ǫ)x + g(ǫ) is convex in ǫ for x ≥ 0. Therefore, ũ(ǫ) = u(η(ǫ)) =

u(f(ǫ)x+ g(ǫ)) is a convex function of ǫ for x ≥ 0. Hence, for x ≥ 0 we have

Eu(Xt+1(x)) = Eũ(ǫt) ≤ Eũ(ǫ̂t) = Eu(X̂t+1(x)).

Thus, EXt+1(x) = EX̂t+1(x) and Eu(Xt+1(x)) ≤ Eu(X̂t+1(x)) for any increasing

and convex function u(·) when x ≥ 0. This implies that Xt+1(x) ≤cx X̂t+1(x) for

x ≥ 0.

Next we show that if Xt or X̂t is nonnegative a.s. for t = 1, . . . , T , then

Xt ≤cx X̂t for t = 2, . . . , T . Suppose Xt ≤cx X̂t. Let u(·) be an arbitrary

convex function and let κ(x) = Eu(Xt+1(x)) and κ̂(x) = Eu(X̂t+1(x)). Then
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κ(x) ≤ κ̂(x) for x ≥ 0 because u(·) is convex and because we have already shown

that Xt+1(x) ≤cx X̂t+1(x) for x ≥ 0. Moreover, κ(x) = Eu(f(ǫt)x + g(ǫt)) and

κ̂(x) = Eu(f(ǫ̂t)x + g(ǫ̂t)) are convex in x. Therefore, if Xt is nonnegative a.s.,

we have

Eu(Xt+1) = Eκ(Xt) ≤ Eκ̂(Xt) ≤ Eκ̂(X̂t) = Eu(X̂t+1).

If X̂t is nonnegative a.s., we have

Eu(Xt+1) = Eκ(Xt) ≤ Eκ(X̂t) ≤ Eκ̂(X̂t) = Eu(X̂t+1).

Thus, we have Xt+1 ≤cx X̂t+1.

The proofs of (c) and (d) are similar to the proof of (b) and are omitted.

Property (a) of the above lemma implies that for systems with the same

sequence {ǫt}, higher variability of the price in the first period will lead to higher

variability of prices in all subsequent periods. In property (b) and property

(c), Ef(ǫt) = Ef(ǫ̂t) and Eg(ǫt) = Eg(ǫ̂t) together imply that E[Xt+1|Xt =

x] = E[X̂t+1|X̂t = x], which is a necessary condition for Xt+1(x) ≤cx X̂t+1(x).

Properties (b), (c), and (d) state that under some conditions, if the random

influence ǫt or f(ǫt) on the prices becomes more variable in some period t, then the

prices will also become more variable in all subsequent periods. We next provide

a few specific examples for which the preceding results tell us that the greater

input price variability leads to lower expected costs.

• {Xt} and {X̂t} are both i.i.d. price sequences: Suppose that X1 ≤cx X̂1. To

place this setting in our framework, we may take f(ǫ) = 0, g(ǫ) = ǫ, and

{ǫt} i.i.d. [respectively, {ǫ̂t} i.i.d.] with the same distribution as X1 [resp.,

X̂1]. In this case, the conditions in (b) and (c) of Proposition 3 hold and
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hence we have that the system with more-variable input prices {X̂t} has

lower expected costs as indicated by Theorem 1 and Corollary 1.

• {Xt} and {X̂t} are both stationary AR(1) price sequences: Let µ = c/(1−ρ)

for constants c and ρ ∈ (−1, 1). Suppose that Xt+1 = ρXt + ǫt + c where

{ǫt} are i.i.d. N(0, σ2) and X1 ∼ N(µ, σ2/(1− ρ2)) and X̂t+1 = ρX̂t + ǫ̂t + c

where {ǫ̂t} are i.i.d. N(0, σ̂2) and X̂1 ∼ N(µ, σ̂2/(1 − ρ2)). Suppose that

σ ≤ σ̂. For normal random variables, X ≤cx Y is equivalent to EX = EY

and Var(X) ≤ Var(Y ). Therefore, ǫt ≤cx ǫ̂t and Xt ≤cx X̂t for t = 1, . . . , T .

To place this setting in our framework, we may take f(ǫ) = ρ and g(ǫ) =

ǫ+ c. The conditions in (c) of Proposition 3 hold and hence the system with

more-variable input prices again has lower expected costs.

• {Xt} and {X̂t} are both (discrete-time) geometric Brownian motions:

Suppose that X1 = X̂1 = x, Xt+1 = Xte
ǫt , and X̂t+1 = X̂te

ǫ̂t. Suppose that

{ǫt} are i.i.d. N(µ, σ2) and {ǫ̂t} are i.i.d. N(µ̂, σ̂2) where 2µ+ σ2 = 2µ̂+ σ̂2

and σ ≤ σ̂. Take f(ǫ) = eǫ and g(ǫ) = 0 to place this within our framework.

Hence, {f(ǫt)} and {f(ǫ̂t)} are i.i.d. lognormal random variables for which

Ef(ǫt) = Ef(ǫ̂t) and Var(f(ǫt)) ≤ Var(f(ǫ̂t)). Moreover, f(ǫt) ≤cx f(ǫ̂t);

see page 63 of Müller and Stoyan (2002). Application of part (d) of

Proposition 3 allows us to conclude that the system with more-variable

input prices {X̂t} has lower expected costs.

• {Xt} and {X̂t} are both Markovian martingales: Suppose thatX1 = X̂1 = x,

Xt+1 = Xt + ǫt, and X̂t+1 = X̂t + ǫ̂t where {ǫt} and {ǫ̂t} are sequences of

independent random variables with Eǫt = Eǫ̂t = 0 and ǫt ≤cx ǫ̂t. This
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example fits our framework with f(ǫ) = 1 and g(ǫ) = ǫ, and part (c) of

Proposition 3 allows us to apply Theorem 1 and Corollary 1 to conclude

that the system with more-variable input prices has lower expected costs.

One may at first be tempted to attribute the lower costs associated with

higher input price variability solely to the more frequent opportunities afforded

by higher variability to place large (small) orders in periods in which prices are

anticipated to be higher (lower) in subsequent periods. As we note in Section 2.6,

this period-over-period effect is indeed important (there, for example, we observe

that the relative reduction in cost due to higher variability is increasing in the

length of the planning horizon and is decreasing in the correlation in prices over

time). However, higher price variability yields lower expected total cost even when

the input prices form a martingale (wherein the price in a current period is equal

to the conditional expected price in future periods) and also when the problem

has only one period.

The effect of variability can be traced to the concavity of the expected cost

as a function of the input price. This concavity arises from the ability to adjust

order quantities based on price realization. The order quantity in each period

is determined by trading off input price, inventory holding cost, backorder cost,

and expectations about future prices. The firm can benefit from lower prices by

ordering more and, therefore, reducing backorder costs. Higher prices are of course

harmful, but the effect is mitigated by the ability of the firm to order less and

instead incur higher backorder costs. If input prices are sufficiently high, the firm

stops ordering and instead incurs the backorder cost. Beyond a certain threshold,

expected total cost becomes invariant to price. The above effects are easiest to
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see in the context of a single period problem, which we explore next.

The Single Period Case. Consider a single period version of the problem where

there is only a single opportunity to order after price is revealed but before demand

is realized. If demand falls below the order quantity, an overage cost per unit is

incurred while if demand exceeds the order quantity, a shortage cost is incurred.

To be consistent with the multi-period problem, let h denote the unit overage cost

and b the unit shortage cost. Given the realized price, this is of course an instance

of the classic newsvendor problem.

Let X = X1 denote the random input price. Demand is denoted by D with

distribution function Φ(·) and density function φ(·). Given price realization x, the

expected total cost is

v(x) = min
y≥0

[xy + L(y)] = min
y≥0

w(x, y),

where w(x, y) = xy + L(y) is the cost when price is x and the ordering quantity

is y. The optimal order quantity is

y∗(x) =





Φ−1( b−x
b+h

) if x ≤ b,

0 if x > b.

Substituting into the expression for the expected total cost leads to

v(x) =





b
∫∞

Φ−1( b−x
b+h

)
ξφ(ξ)dξ − h

∫ Φ−1( b−x
b+h

)

0 ξφ(ξ)dξ if x ≤ b,

bE[D] if x > b,

from which we can easily show that v(x) is a concave function in x. In turn, this

leads to the result that, for the single period case, higher price variability leads
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Figure 2.1: Cost as a function of the ordering price for stochastic demand

to lower expected total cost (if X ≤cx X̂ , then Ev(X) ≥ Ev(X̂)). This is true

regardless of the distribution of demand.

The concavity of the expected cost can be explained as follows. At a given

price x1 ≤ b, the optimal order quantity is y∗(x1) = Φ−1( b−x1

b+h
) and the associated

expected cost is x1y
∗(x1)+L(y∗(x1)). If the input price increases (decreases) from

x1 to x2 and the order quantity is not adjusted, the expected cost would increase

(decrease) linearly with rate y∗(x1) to w(x2, y
∗(x1)) = x2y

∗(x1) + L(y∗(x1)).

However, if the order quantity is adjusted and chosen optimally, then the order

quantity y∗(x1) would be lower (higher) and the optimal cost x2y
∗(x2)+L(y∗(x2))

would be lower than that if the order quantity is not adjusted. As a consequence,

the optimal expected total cost is concave in the input price. This is illustrated

in Figure 2.1.

Note that a special case is when demand is deterministic and assumes a single

value D = d. The optimal cost function in that case is linear with slope d for
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x ≤ b and equal to bd for x > b, i.e.,

v(x) =





xd if x ≤ b,

bd if x > b.

If the input price is either µ+ α or µ−α with equal probability (in which case α

is the standard deviation of the input price) and µ ≤ b, then the optimal cost is

V (α) =





1
2
(µ+ α)d+ 1

2
(µ− α)d = µd if α ≤ b− µ,

1
2
bd+ 1

2
(µ− α)d = 1

2
(b+ µ− α)d if α > b− µ.

Clearly, V (α) is decreasing in α.

We conclude this section by noting that the benefit of input price variability

is also present in other inventory systems, including systems with an infinite

planning horizon, systems with lost sales instead of backorders, systems with

a fixed ordering cost, and systems with fixed leadtimes. For the sake of brevity,

we omit the details.

2.4 Impact of Price Correlation over Time

In this section, we study the impact of price correlation over time on the optimal

expected total cost. To do so, we compare two different inventory systems that are

identical except that they have different stationary AR(1) ordering price sequences

{Xt} and {X̂t} such that X1, X̂1 ∼ N(µ, σ2),

Xt+1 = (1− ρ)µ+ ρXt +
√

1− ρ2ǫt, (2.5)

X̂t+1 = (1− ρ̂)µ+ ρ̂X̂t +
√

1− ρ̂2ǫt (2.6)
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for t = 1, . . . , T − 1, and {ǫt} are i.i.d. normal random variables with mean 0

and variance σ2 that are independent of X1 and X̂1. It is easy to check that

Xt, X̂t ∼ N(µ, σ2) and Corr(Xt, Xt+j) = ρj , Corr(X̂t, X̂t+j) = ρ̂j for j ≥ 0. It will

be helpful to view the two price sequences as random vectors, which we denote

by X = (X1, . . . , XT ) and X̂ = (X̂1, . . . , X̂T ). As before, we suppose that the

assumptions in Section 2.2 hold for each of the two systems viewed in isolation.

Let V1(s) = Ev1(s,X1) and V̂1(s) = Ev̂1(s, X̂1) be the optimal expected total

costs for the two systems, y∗t (s, x) and ŷ∗t (s, x) be the optimal order-up-to levels

for the two systems in period t when the inventory is s and the ordering price is x,

and y◦t (x) and ŷ◦t (x) be the base stock levels for the two systems in period t when

the ordering price is x. Recall from Proposition 1 that y∗t (s, x) = max{s, y◦t (x)}

and ŷ∗t (s, x) = max{s, ŷ◦t (x)}. Below, we compare V1(s) and V̂1(s)

In the following developments, we will use the tool of supermodular ordering of

random vectors. The supermodular order is reviewed in, e.g., Müller and Stoyan

(2002) and Shaked and Shanthikumar (2007). A function u(·) on R
T is said to be

supermodular if u(x+εei+δej)−u(x+εei)−u(x+δej)+u(x) ≥ 0 for all x ∈ R
T , all

i, j = 1, . . . , T with i < j and all ε, δ > 0. A function u(·) is submodular if −u(·) is

supermodular. If u(·) is twice differentiable then u(·) is supermodular if and only

if ∂2u
∂xi∂xj (x) ≥ 0 for all x and all i, j with i < j. A random vectorX = (X1, . . . , XT )

is said to be smaller than a random vector X̂ = (X̂1, . . . , X̂T ) in the supermodular

order, written X ≤sm X̂, if Eu(X) ≤ Eu(X̂) for all supermodular functions u(·)

such that the expectations exist. The condition that X ≤sm X̂ can be interpreted

to mean that the entries of X̂ have greater positive dependence than do the entries

of X; see, Müller and Stoyan (2002) or Shaked and Shanthikumar (2007). If X
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and X̂ are normally distributed random vectors, then X ≤sm X̂ is equivalent to X

and X̂ having the same marginal distributions and Corr(Xi, Xj) ≤ Corr(X̂i, X̂j)

for all i 6= j (see Theorem 3.13.5 of Müller and Stoyan 2002). Therefore, X and

X̂ in (2.5)–(2.6) satisfy X ≤sm X̂ if 0 ≤ ρ ≤ ρ̂.

In preparation for the proof of the main result of this section, for k = 1, . . . , T ,

consider Xk = (X1,k, . . . , XT,k), where X1,k ∼ N(µ, σ2),

Xi+1,k =





(1− ρ̂)µ+ ρ̂Xi,k +
√
1− ρ̂2ǫi for i = 1, . . . , k − 1,

(1− ρ)µ+ ρXi,k +
√
1− ρ2ǫi for i = k, . . . , n− 1,

and {ǫt} are i.i.d. normal random variables with mean 0 and variance σ2 that are

independent of X1,k. Note that X = X1 and X̂ = XT . Note also that Xk is a

non-stationary AR(1) process with Xi,k ∼ N(µ, σ2) and

Corr(Xi,k, Xj,k) =





ρ̂j−i for i < j ≤ k,

ρj−i for k ≤ i < j,

ρ̂k−iρj−k for i < k < j.

It is easy to check that if 0 ≤ ρ ≤ ρ̂, then Corr(Xi,k, Xj,k) ≤ Corr(Xi,k+1, Xj,k+1)

for all 1 ≤ i < j ≤ T , from which we immediately obtain the following lemma.

Lemma 3. Suppose that 0 ≤ ρ ≤ ρ̂. Then Xk ≤sm Xk+1 and (Xt,k, Xt+1,k) ≤sm

(Xt,k+1, Xt+1,k+1) for all t = 1, . . . , T − 1 and k = 1, . . . , T − 1.

Let vt,k(s, x) be the optimal expected total cost from time t onward when the

inventory is s and the ordering price is x for the system with input price sequence

Xk. Then vt,k(s, x) = min
y≥s

wt,k(y, x)− xs where

wt,k(y, x) = xy + L(y) + β

∫

ξ

E[vt+1,k(y − ξ,Xt+1,k)|Xt,k = x]φ(ξ)dξ.
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These expressions are simply equations (2.2) and (2.3) for a system with input

prices Xk. Below we also use the notation y∗t,k(s, x) and y◦t,k(x) for optimal order

up-to-levels and base-stock levels in this system. (Note that to place the prices

Xk into the form (2.1), we must allow the functions ft(·) and gt(·) to depend upon

t. As we noted in Section 2.2, our results still hold for such non-homogeneous

cases.) We have vt(s, x) = vt,1(s, x), v̂t(s, x) = vt,T (s, x), V1(s) = Ev1,1(s,X1,1),

and V̂1(s) = Ev1,T (s,X1,T ).

Lemma 4. Suppose that ρ, ρ̂ ≥ 0. Then vt,k(s, x) is submodular in (s, x) for

t = 1, . . . , T + 1 and k = 1, . . . , T .

The main result of this section is the following theorem, which describes the

impact of price correlation over time on the optimal expected cost and indicates

that the optimal expected cost is increasing in that correlation if the correlation

is positive.

Theorem 2. If 0 ≤ ρ ≤ ρ̂, then V1(s) ≤ V̂1(s) for all s.

Proof. We will show that for all decreasing functions u(·), we have

Evt,k(u(Xt,k), Xt,k) ≤ Evt,k+1(u(Xt,k+1), Xt,k+1), (2.7)

for k = 1, . . . , T − 1 and t = 1, . . . , T . From this the theorem follows, because for

a given inventory level s, we may take u(x) = s to obtain V1(s) = Ev1,1(s,X1,1) ≤

Ev1,T (s,X1,T ) = V̂1(s). We establish (2.7) by considering the cases t ≥ k + 1,

t = k, and t ≤ k − 1 separately.

Fix k. Given a decreasing function u(·), define

θt,k(x) = x[y∗t,k(u(x), x)− u(x)] + L(y∗t,k(u(x), x)).
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To avoid a proliferation of subscripts in the remainder of the proof, let Xt = Xt,k

and Xt = Xt,k+1 for t = 1, . . . , T . This allows us to express vt,k(u(x), x) as

vt,k(u(x), x) = θt,k(x) + β

∫

ξ

E[vt+1,k(y
∗
t,k(u(x), x)− ξ,Xt+1)|X t = x]φ(ξ)dξ.

In a given period t, the expected cost from time t onward depends upon that

period’s realized price x and starting inventory level s, as well as the conditional

distribution of future prices in periods t + 1, . . . , T given the price x in period t.

Likewise, the optimal base stock level in a given period t depends only on the

realized price x in that period and the conditional distribution of future prices. It

does not depend on the prices or distributions of the prices in the past. Therefore,

we have y◦t,k(x) = y◦t,k+1(x) and vt,k(s, x) = vt,k+1(s, x) for t ≥ k + 1. Hence, (2.7)

holds for t ≥ k + 1 and for any decreasing function u(·) because Xt and X t have

the same distribution (both are N(µ, σ2)) for t ≥ k + 1.

When t = k, we have

Evt,k(u(Xt),X t) ≤ E[wt,k(y
∗
t,k+1(u(Xt), Xt), Xt)−X tu(Xt)]

= E[θt,k+1(X t)] + β

∫

ξ

E[vt+1,k(y
∗
t,k+1(u(Xt), Xt)− ξ,Xt+1)]φ(ξ)dξ.

(2.8)

In the preceding, we can replace Xt by X t in the argument of E(θt,k+1(·))

because both have the same distribution. For the second term in (2.8), note

that vt+1,k(s, x) = vt+1,k+1(s, x) because t + 1 ≥ k + 1. Moreover, vt+1,k(s, x) is

submodular in (s, x) by Lemma 4, and y∗t,k+1(u(x), x) = max{u(x), y◦t,k+1(x)} is

decreasing in x by Proposition 2. Consequently, vt+1,k(y
∗
t,k+1(u(xt), xt)−ξ, xt+1) is

supermodular in (xt, xt+1). By Lemma 3 we also have (Xt, X t+1) ≤sm (X t, Xt+1).
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Therefore,

E[vt+1,k(y
∗
t,k+1(u(X t), X t)− ξ,Xt+1)] ≤ E[vt+1,k(y

∗
t,k+1(u(Xt), Xt)− ξ,Xt+1)]

= E[vt+1,k+1(y
∗
t,k+1(u(Xt), Xt)− ξ,Xt+1)].

As a consequence, by (2.8) we have

Evt,k(u(Xt),Xt)

≤E[θt,k+1(X t)] + β

∫

ξ

E[vt+1,k+1(y
∗
t,k+1(u(Xt), Xt)− ξ,Xt+1)]φ(ξ)dξ

=Evt,k+1(u(Xt), X t),

and so (2.7) holds for t = k.

Consider some t ≤ k. Suppose inductively that Evt,k(u(X t), X t) ≤

Evt,k+1(u(Xt), Xt) for all decreasing functions u(·). Consider an arbitrary

decreasing function u(·). We have

Evt−1,k(u(Xt−1), X t−1) ≤ E[wt−1,k(y
∗
t−1,k+1(u(Xt−1), Xt−1), Xt−1)−Xt−1u(X t−1)]

= E[θt−1,k+1(Xt−1)] + β

∫

ξ

Evt,k(y
∗
t−1,k+1(u(Xt−1), X t−1)− ξ,Xt)φ(ξ)dξ.

Observe that (Xt−1, X t) are normal random variables each with mean µ and

variance σ2 and with correlation ρ. Recall that Xt = (1 − ρ)µ + ρX t−1 +
√

1− ρ2ǫt−1. Then X t−1 can be written as Xt−1 = π(X t, ǫ̃t,k), where π(x, ǫ) =

(1−ρ)µ+ρx+
√

1− ρ2ǫ and ǫ̃t,k is normally distributed with mean 0 and variance

σ2 and is independent of X t. Similarly, we have X t−1 = π(Xt, ǫ̃t,k+1), where ǫ̃t,k+1

is normally distributed with mean 0 and variance σ2 and is independent of X t.

Note that ǫ̃t,k and ǫ̃t,k+1 have the same distribution (which is the distribution of
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ǫt). Let η(x, ǫ) = y∗t−1,k+1(u(π(x, ǫ)), π(x, ǫ)). Since ρ ≥ 0, we have that π(x, ǫ)

is an increasing function of x. Therefore, η(x, ǫ) is a decreasing function of x by

Proposition 2. By the inductive assumption, we have

Evt,k(η(X t, ǫ))− ξ,Xt) ≤ Evt,k+1(η(X t, ǫ))− ξ,Xt)

for any realization ǫ. As a consequence,

Evt−1,k(u(Xt−1), Xt−1)

≤E[θt−1,k+1(Xt−1)]) + β

∫

ξ

∫

ǫ

Evt,k(η(Xt, ǫ)− ξ,Xt)Ψ(dǫ)φ(ξ)dξ

≤E[θt−1,k+1(Xt−1)]) + β

∫

ξ

∫

ǫ

Evt,k+1(η(Xt, ǫ)− ξ,Xt)Ψ(dǫ)φ(ξ)dξ

=E[θt−1,k+1(Xt−1)]) + β

∫

ξ

E[vt,k+1(y
∗
t−1,k+1(u(Xt−1), Xt−1)− ξ,Xt)]φ(ξ)dξ

=Evt−1,k+1(u(Xt−1), X t−1).

Therefore (2.7) holds for all t ≤ k by induction on t.

The preceding theorem shows that if the input prices follow a stationary AR(1)

process, then greater positive price correlation over time yields larger expected

total cost. This result should be intuitive. With high positive correlation in

prices, an unusually high price is often followed by another unusually high price,

and therefore delaying purchase will likely not avoid high costs. Therefore, high

correlation in prices over time leads to high expected total cost. On the other

hand, with low positive correlation, if the price is unusually high in one period

then the probability that the price in the next period will continue to be high is

comparatively small, and hence purchases can be delayed in expectation of a price

decrease.
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2.5 Inventory Systems with Multiple Inputs

In this section, we extend our analysis to systems with multiple input components,

where one unit of each of n input components is needed to satisfy one unit of

demand. The ordering prices of these n components are stochastic (deterministic

prices can be treated as a special case). The holding cost of component i = 1, . . . , n

is hi.

As in the single component model, we assume that the priceX i
t+1 of component

i in period t+ 1 is dependent on the price X i
t of component i in period t:

X i
t+1 = f i(ǫit)X

i
t + gi(ǫit), t = 1, . . . , T − 1,

where {ǫt = (ǫ1t , . . . , ǫ
n
t )

′ : t = 1, . . . , T − 1} is a sequence of independent random

vectors. Let Xt = (X1
t , . . . , X

n
t )

′ for t = 1, . . . , T . We assume that {ǫt}, X1, and

the sequence of demands are independent. The prices of different components in

the same period may be correlated. Other assumptions are the same as those of

the single component model.

The problem can be viewed as a Markov decision process where the state of

the system at the beginning of each period is (s,x) where s = (s1, . . . , sn)′ is the

vector of net inventory levels and x = (x1, . . . , xn)′ is the vector of input prices. In

each period, the action, i.e., the decision to be made, is the vector of order-up-to

net inventory levels y = (y1, . . . , yn)′ where yi ∈ [si,∞) for i = 1, . . . , n. If, in a

particular period, we bring the net inventory up to y, and the realized demand is

ξ, then the net inventory level in the subsequent period is y − ξ.

For a given state (s,x) at the beginning of period t, let sk = min{s1, . . . , sn}.

To compute the ordering cost and the one-period holding and shortage cost, we
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consider two cases: (i) sk ≥ 0 and (ii) sk < 0. Let ŷ = min{y1, . . . , yn}. In

case (i), we have no backorders, and the inventory level of component i is si for

i = 1, . . . , n. If we decide to bring the net inventory level up to y, then the ordering

cost is
n∑

i=1

xi(yi − si). Note that in this period we can satisfy at most ŷ units of

demand. If demand D is less than or equal to ŷ, the holding cost for component

i is hi(yi −D). If demand D is larger than ŷ, the holding cost for component i is

hi(yi − ŷ) and the backorder cost is b(D − ŷ). Therefore, the one-period holding

and shortage cost is

L(y) =
n∑

i=1

hi

(∫ ŷ

0

(yi − ξ)φ(ξ)dξ +

∫ ∞

ŷ

(yi − ŷ)φ(ξ)dξ

)
+ b

∫ ∞

ŷ

(ξ − ŷ)φ(ξ)dξ

=

n∑

i=1

hiE(ŷ −D)+ + bE(D − ŷ)+ +

n∑

i=1

hi(yi − ŷ). (2.9)

In case (ii), we have −sk units of backorders, and the inventory level of

component i is si − sk for i = 1, . . . , n. If we decide to bring the net inventory

level up to y, (or equivalently, we decide to bring the inventory level up to y−sk),

then the ordering cost is

n∑

i

xi[(yi − sk)− (si − sk)] =
n∑

i=1

xi(yi − si).

After bringing the inventory levels to y − sk, we can satisfy at most min{y1 −

sk, y2−sk, . . . , yn−sk} = ŷ−sk units of backorders and new demand. Backorders

and new demand combined equal D− sk. So, by the same argument that gave us

(2.9), the one-period holding and shortage cost is

L̃(y, s) =

n∑

i=1

hiE[(ŷ − sk)− (D − sk)]+

+ bE[(D − sk)− (ŷ − sk)]+ +

n∑

i=1

hi[(yi − sk)− (ŷ − sk)]
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=
n∑

i=1

hiE(ŷ −D)+ + bE(D − ŷ)+ +
n∑

i=1

hi(yi − ŷ)

= L(y).

For both cases, the ordering cost is
n∑

i=1

xi(yi − si) and the one-period holding and

shortage cost is

L(y) =
n∑

i=1

hi

(∫ ŷ

0

(yi − ξ)φ(ξ)dξ +

∫ ∞

ŷ

(yi − ŷ)φ(ξ)dξ

)
+ b

∫ ∞

ŷ

(ξ − ŷ)φ(ξ)dξ,

where ŷ = min{y1, . . . , yn}.

Let g(ǫt) = (g1(ǫ1t ), . . . , g
n(ǫnt ))

′ and let Λ(ǫt) be the n×nmatrix with diagonal

entries f 1(ǫ1t ), . . . , f
n(ǫnt ) and other entries 0. Then we have Xt+1 = Λ(ǫt)Xt +

g(ǫt). The optimality equations are

vt(s,x) = min
y≥s



x′(y − s) + L(y) + β

∫

ξ

E[vt+1(y − ξ,Xt+1)|X = x]φ(ξ)dξ





= min
y≥s



x′y + L(y) + β

∫

ξ

Evt+1(y − ξ,Λ(ǫt)x + g(ǫt))φ(ξ)dξ



− x′s

= min
y≥s

wt(y,x)− x′s

and vT+1(s,x) = 0, where

wt(y,x) = x′y + L(y) + β

∫

ξ

Evt+1(y− ξ,Λ(ǫt)x+ g(ǫt))φ(ξ)dξ.

Lemma 5. L(y) is a convex and submodular function of y and vt(s,x) is a convex

and submodular function of s for all x and t = 1, . . . , T + 1.

The following theorem follows directly from Lemma 5.
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Theorem 3. The optimal policy is a state-dependent base stock policy for each

component. For component i, there exists a base stock level yit(s
−i,x) where

s−i = (s1, . . . , si−1, si+1, . . . , sn) such that if the starting net inventory si in period

t is less than yit(s
−i,x), then we order up to yit(s

−i,x); otherwise, we do not

order. That is, the optimal order-up-to level for component i in state (s,x) is

max{si, yit(s
−i,x)}. In addition, the base stock level yit(s

−i,x) is increasing in

each sj for j 6= i.

The structure of the optimal policy is illustrated in Figure 2.2 for a system

with two components, where Figures 2.2(a) and 2.2(b) illustrate the policy in

period 1 for two different realized prices. When the starting inventory for the

two components is in region I, we order both components; in region II, we order

only component 2; in region III, we order only component 1; and in region IV,

we order nothing. The figure provides some insights into the effect of the price

of component 1 (the price of component 2 is fixed in this example). First, notice

that a decrease in the price of component 1 leads to higher order up to levels

for both components 1 and 2. Second, notice that the optimal policy may not

always seek to balance the inventory of both components. For example, when the

starting inventory is in region I and the price is high, it is optimal to balance the

inventory of the two components. However, when the price is low, it is optimal

to bring the inventory of component 1 to a higher level than that of component

2 to take advantage of the lower price of component 1 (more of component 2 can

always be ordered in future periods at the same price).

We provide conditions under which the base stock levels are decreasing with

respect to the realized price of each component in the following proposition.
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Figure 2.2: Structure of the optimal policy for different realizations of input
prices. In this example, the price of component 1 is stochastic and the price
of component 2 is fixed. Demand is uniformly distributed on [1,15], T = 12,
P (X1

t = 30) = P (X1
t = 70) = 0.5 for all t, X2

t = 40 for all t, β = 0.99, b = 50,
h1 = 20, and h2 = 40.

Proposition 4. If 0 ≤ f i(ǫ) ≤ 1 for all ǫ and i = 1, . . . , n, then yit(s
−i,x) is

decreasing in each xj for j = 1, . . . , n.

The base stock level yit(s
−i,x) need not be decreasing in xj if the condition

in the above proposition is not satisfied. If f i(ǫ) > 1 for some i, it is possible

that a high (low) price of component i in one period would lead to an even higher

(lower) expected price of component i in the next period, and it may be optimal

to order more (less) of component i when the price of component i is high (low).

If f i(ǫ) < 0 for some i, an increase in the price of component i would lead to

a decrease in the expected price of component i in the next period and possibly

an increase in the order up to level for component i in the next period. To keep

up with a higher order up to level of component i in the next period, it may be

optimal to order more of other components. Therefore, in this case, the order up

to level for the other components may be increasing in the price of component i.
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Impact of Price Variability. With regard to the impact of price variability on

the optimal expected total cost, we have similar results as in the single component

case. Consider two different inventory systems with input price sequences {Xt}

and {X̂t} satisfying X i
t+1 = f i(ǫit)X

i
t + gi(ǫit) and X̂ i

t+1 = f i(ǫ̂it)X̂
i
t + gi(ǫ̂it). All

other parameters of the two systems are the same. Let vt(s,x) and v̂t(s,x) be the

optimal total cost-to-go in period t when the net inventory levels are s and the

input prices are x in period t for the two systems.

The following theorem shows that higher variability in the input prices yields

lower optimal expected total cost. Here we use the notion of convex orders of

random vectors. A random vector X is said to be smaller than X̂ in the convex

order (written X ≤cx X̂) if Eu(X) ≤ Eu(X̂) for all convex functions u(·) such

that the expectations exist. The convex order of random vectors is reviewed in,

for example, Müller and Stoyan (2002) and Shaked and Shanthikumar (2007). If

X = (X1, . . . , Xn) and X̂ = (X̂1, . . . , X̂n) each have independent components,

then X ≤cx X̂ is equivalent to X i ≤cx X̂ i for all i = 1, . . . , n. If X ∼ N(µ,Σ)

and X̂ ∼ N(µ̂, Σ̂) , then X ≤cx X̂ if and only if µ = µ̂ and Σ̂ − Σ is positive

semidefinite.

Theorem 4. Suppose X1 ≤cx X̂1. If

(a) ǫt = ǫ̂t for t = 1, . . . , T , or

(b) ǫt ≤cx ǫ̂t for t = 1, . . . , T and f i(·) and gi(·) are affine functions for i =

1, . . . , n, or

(c) (f 1(ǫ1t ), . . . , f
n(ǫnt )) ≤cx (f 1(ǫ̂1t ), . . . , f

n(ǫ̂nt )) for t = 1, . . . , T and gi(·) is a

constant for i = 1, . . . , n,
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then

(1) vt(s,x) ≥ v̂t(s,x) for all s, x and t = 1, . . . , T ;

(2) E[vt(s,Xt)|Xt−1 = x] ≥ E[v̂t(s, X̂t)|X̂t−1 = x] for all s, x and t = 2, . . . , T ;

and

(3) Evt(s,Xt) ≥ Ev̂t(s, X̂t) for all s and t = 1, . . . , T .

Impact of Correlation across Component Prices. Next, we study the

impact of correlation across component prices on the optimal expected total

cost. We compare the expected costs of two different inventory systems where the

correlations across component prices in one system are larger than those in the

other system in every period. More precisely, we consider two systems such that

for each time t, the random input price vectors Xt and X̂t of the two systems are

comparable in the supermodular order; i.e., Xt ≤sm X̂t. Recall that this implies

that the price correlations are ordered as well; i.e., Corr(X i
t , X

j
t ) ≤ Corr(X̂ i

t , X̂
j
t )

for all i, j.

Let Xt+1(x) = Λ(ǫt)x+ g(ǫt) be a random vector that follows the conditional

distribution of Xt+1 given Xt = x and let X̂t+1(x) = Λ(ǫ̂t)x+ g(ǫ̂t) be a random

vector that follows the conditional distribution of X̂t+1 given X̂t = x.

Lemma 6. Consider two price sequences {X i
t} and {X̂ i

t}, where X i
t+1 =

f i(ǫit)X
i
t + gi(ǫit) and X̂ i

t+1 = f i(ǫ̂it)X̂
i
t + gi(ǫ̂it). If X1 ≤sm X̂1, f

i(ǫi)f j(ǫj) ≥ 0 for

all ǫi, ǫj, i 6= j, and either:

(a) ǫt = ǫ̂t for t = 1, . . . , T or
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(b) ǫt ≤sm ǫ̂t for t = 1, . . . , T , f i(·) is a constant for i = 1, . . . , n, and gi(·) is

either increasing for all i = 1, . . . , n or decreasing for all i = 1, . . . , n,

then Xt ≤sm X̂t and Xt(x) ≤sm X̂t(x) for all x and t = 1, . . . , T .

One example of property (b) is the case where each component price evolves

according to an AR(1) process; i.e., X i
t+1 = ρiX i

t + ǫit + ci where ρiρj ≥ 0 for all

i 6= j.

Lemma 7. If f i(ǫi)f j(ǫj) ≥ 0 for all ǫi, ǫj, i 6= j, then vt(s,x) is a submodular

function of x for all s and t = 1, . . . , T + 1.

From the definition of the supermodular order, we have the following theorem

describing the impact of correlation over component prices on the optimal

expected total cost.

Theorem 5. Suppose the conditions in Lemma 6 hold. Then

(1) vt(s,x) ≤ v̂t(s,x) for all s, x and t = 1, . . . , T ;

(2) E[vt(s,Xt)|Xt−1 = x] ≤ E[v̂t(s, X̂t)|X̂t−1 = x] for all s, x and t = 2, . . . , T ;

and

(3) Evt(s,Xt) ≤ Ev̂t(s, X̂t) for all s and t = 1, . . . , T .

Proof. It is easy to check by backward induction that vt(s,x) ≤ v̂t(s,x) for all

s and x. By Lemma 6, we have Xt(x) ≤sm X̂t(x) and Xt ≤sm X̂t for x and

t = 1, . . . , T . Therefore,

E[vt(s,Xt)|Xt−1 = x] = Evt(s,Xt(x))
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≤ Ev̂t(s,Xt(x))

≤ Ev̂t(s, X̂t(x))

= E[v̂t(s, X̂t)|X̂t−1 = x],

where the second inequality follows from Lemma 7. Similarly, Evt(s,Xt) ≤

Ev̂t(s,Xt) ≤ Ev̂t(s, X̂t).

This theorem shows that expected total cost is decreasing in correlation across

component prices, implying that higher correlation across component prices is

beneficial. To provide some intuition as to why such higher correlation leads

to lower costs, consider the single period case. In that case, it is optimal to

always order the same quantity of each component (assuming equal starting

inventory levels). Therefore, the problem reduces to one of a single component

with unit price equal to the sum of the unit prices of all the components. If

we let X be the random variable that describes this “equivalent” unit price and

X1, . . . , Xn be the individual component prices, then X = X1+X2+ · · ·+Xn and

Var(X) =
n∑

i=1

Var(X i) +
∑
i 6=j

Cov(X i, Xj). As we can see, higher price correlation

leads to higher price variance, which for several common distributions, also implies

higher price variability as measured by the convex order. Therefore, in such cases,

higher correlation would lead to lower cost. Correlation can also impact cost by

affecting order up to levels. For example, in the settings described by Proposition

4, the order up to level of each component is decreasing in the price of all other

components. Therefore, when the price of one component is low and it is desirable

to order more, it is preferable that the prices of other components are also low.

Otherwise, the opportunity to take advantage of price variability is diminished.
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2.6 Numerical Results

In this section, we provide numerical results that illustrate how the relative

benefits of price variability, price correlation over time, and price correlation

over components are affected by various problem parameters. First, we compare

the performance of systems with and without price variability and compare the

performance of systems with and without correlation over periods for systems

with a single component. Then for systems with multiple input components,

we compare the performance of systems with and without correlation across

component prices.

Let vt(s, x) be the optimal cost-to-go in period t when the beginning inventory

is s and the realization of price is x in period t for the system with input price

sequence {Xt} and let v̄t(s) be the optimal cost-to-go in period t when the

beginning inventory is s for the system with fixed input price sequence {µt},

where µt = EXt. The relative benefit of price variability, which we denote by δv,

is defined as follows:

δv =
v̄1(s)− Ev1(s,X1)

v̄1(s)
.

In Figures 2.3(a)–2.3(d), we examine the relative benefit of price variability for

different lengths of planning horizons, different holding costs, different backorder

costs, and different levels of price correlation over time. In all the numerical

examples, we set the initial inventory to be 0, the discount factor to be β = 0.99,

and demand to be uniformly distributed on [1,30]. (Results are qualitatively

the same for other common distributions we tested.) In Figures 2.3(a)–2.3(c), the

input prices are i.i.d. across periods with P (Xt = 80+α) = P (Xt = 80−α) = 0.5,

in which case the standard deviation of input prices is α. In Figure 2.3(d), the
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Figure 2.3: Impact of price variability and price correlation over time in systems
with a single input.
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Figure 2.4: Impact of price variability and correlation across components in
systems with multiple inputs.

input prices follow a stationary AR(1) process, namely, Xt+1 = (1− ρ)µ+ ρXt +
√

1− ρ2ǫt, where µ = EX1 = 6, {ǫt} are normally distributed with mean 0 and

variance σ2, and σ2 = Var(X1).

In Figure 2.3(e), we examine the relative impact of price correlation over time

for different levels of price variability. Here, the sequence of input prices {Xt}

is a stationary AR(1) process with mean µ = 6. Let vt(s, x, ρ) be the optimal

cost-to-go in period t when the beginning inventory is s and the realization of

price is x in period t for the above system. Note that vt(s, x, ρ) is increasing in

ρ ≥ 0 by Theorem 2. The relative impact of price correlation over time, which

denoted by δct, is defined as follows:

δct =
Ev1(s,X1, ρ)− Ev1(s,X1, 0)

Ev1(s,X1, 0)
.

For inventory systems with multiple inputs, we examine how the benefit

of price variability is affected by price correlation across components and how

the relative impact of price correlation across components is affected by other

parameters. We consider a 2-component, 2-period problem as an example. The
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input prices of the components are i.i.d. and in each period the prices are normally

distributed with mean µ and variance matrix Σ, where µ1 = µ2 = 6, σ11 = σ22,

and σ12 = σ21 = σ11ρ12. Let vt(s,x, ρ12) be the optimal cost-to-go in period t

when the beginning inventory levels are s, the realizations of prices are x and the

price correlation between the two components is ρ12 in period t. Then the relative

impact of price correlation across components, which is denoted by δcc, is defined

as follows:

δcc =
Ev1(s,X, ρ12)− Ev1(s,X, 0)

Ev1(s,X, 0)
.

Figure 2.4(a) shows the relative benefit of price variability for different levels

of component price correlation and Figure 2.4(b) shows the relative impact of

component price correlation for different levels of price variability.

Based on Figure 2.3 and Figure 2.4, we can make the following observations

(we provide some intuition to explain these observations; however, we caution

that, in general, the interactions between various factors can be quite complex).

Observation 1: The relative benefit of price variability is increasing in the length

of the planning horizon. This is illustrated in Figure 2.3(a). When prices are high,

a firm can order less and take advantage of the possibility of backordering and

fulfilling demand in future periods. Similarly, when prices are low, a firm can

order more and take advantage of the possibility of holding inventory and using

this inventory to fulfill demand in future periods. The advantage derived from the

flexibility of either backordering or carrying inventory across periods (to which we

refer as the period-over-period effect) increases with the length of the planning

horizon, as the opportunity to exercise this flexibility also increases.

Observation 2: The relative benefit of price variability is decreasing in the



45

holding and backorder costs. This is illustrated in Figures 2.3(b) and 2.3(c).

When either the holding or the backorder cost is high, taking advantage of the

period-over-period effect (ordering more and holding inventory or ordering less

and backordering) becomes less desirable. In turn, this diminishes the benefit

that may be derived from higher price variability.

Observation 3: The relative benefit of price variability is decreasing in the price

correlation over time. This is illustrated in Figure 2.3(d). The benefit derived

from ordering more (less) in periods when prices are low (high) diminishes with

correlation over time, as a low (high) price period tends to be followed by another

low (high) price period.

Observation 4: The relative benefit from lower correlation over time is increasing

in price variability. This is illustrated in Figure 2.3(e). Lower correlation over

time provides an opportunity to take advantage of the period-over-period effect.

This opportunity is enhanced when price variability is high. We can also see from

Figure 2.3(e) that for the examples depicted there, systems with uncorrelated

prices have greater expected cost than systems with negatively correlated prices.

This suggests that we can perhaps relax the condition that correlations are positive

in Theorem 2, at least in some cases.

Observation 5: The relative benefit of price variability is increasing in the price

correlation across components. This is illustrated in Figure 2.4(a). In general,

the interaction between price variability and price correlation across components

is complex and depends on the correlations of prices of components over time.

However, higher price correlation among components typically enables a firm to

take better advantage of variability. For example, when the price of a component
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is low, we may prefer to buy more of that component. The value of doing so is

greater when we also prefer to buy more of other components (recall that one

unit of each component is needed to fulfill demand). Such opportunities will arise

more frequently when prices across components are more correlated than when

they are less so.

Observation 6: The relative benefit of higher price correlation across components

is increasing in price variability. This is illustrated in Figure 2.4(b). Higher

correlation typically implies that when it is preferable to order more (less) of one

component it is also preferable to order more (less) of other components. This

matching of inventory levels across components is more valuable when the price

variability of components is high and the benefit from adjusting order quantities

is greater.
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2.7 Appendix: Proofs

Proof of Lemma 1: Observe first that wT (y, x) = xy + L(y) is convex in y

for all x. Consider arbitrary t ∈ {1, . . . , T − 1} and suppose inductively that

∂2wt+1

∂y2
(y, x) ≥ 0. (It can be verified that vt(s, x) and wt(s, x) are continuously

differentiable by the Envelope Theorem. At any point where vt(s, x) or wt(s, x) is

not twice differentiable, it can be checked that the left limit of the derivative at

this point is less than or equal to the right limit. A similar approach can be used

whenever we use second derivatives in the proofs.) Let y◦t (x) denote a minimizer

of wt(y, x) over y ∈ (−∞,∞). Then

vt+1(s, x) =





wt+1(s, x)− xs if s ≥ y◦t+1(x),

wt+1(y
◦
t+1(x), x)− xs otherwise,

and

∂2vt+1

∂s2
(s, x) =





∂2wt+1

∂y2
(s, x) if s ≥ y◦t+1(x),

0 otherwise.

Thus, ∂2vt+1

∂s2
(s, x) ≥ 0 for all (s, x), and therefore

∂2wt

∂y2
(y, x) = L′′(y) + β

∫

ξ

∫

ǫ

∂2vt+1

∂s2
(y − ξ, f(ǫ)x+ g(ǫ))Ψt(dǫ)φ(ξ)dξ ≥ 0.

By backward induction, we have ∂2wt

∂y2
(y, x) ≥ 0 for all x and t = 1, . . . , T .

Proof of Proposition 2: We first prove by backward induction that ∂2vt
∂s∂x

(s, x) ∈

[−1, 1] for all (s, x) and t = 1, . . . , T + 1. It is true when t = T + 1 because

vT+1(s, x) = 0. Suppose ∂2vt+1

∂s∂x
(s, x) ∈ [−1, 1] for all (s, x). By (2.2) we have



48

vt(s, x) = wt(y
∗
t (s, x), x) − sx. By Proposition 1 if s ≤ y◦t (x), then vt(s, x) =

wt(y
◦
t (x), x)− sx and ∂2vt

∂s∂x
(s, x) = −1. If s > y◦t (x), then

vt(s, x) = wt(s, x)− sx = L(s) + β

∫

ξ

∫

ǫ

vt+1(s− ξ, f(ǫ)x+ g(ǫ))Ψt(dǫ)φ(ξ)dξ,

and

∣∣∣∣
∂2vt
∂s∂x

(s, x)

∣∣∣∣ ≤ β

∫

ξ

∫

ǫ

∣∣∣∣f(ǫ)
∂2vt+1

∂s∂x
(s− ξ, f(ǫ)x+ g(ǫ))

∣∣∣∣Ψt(dǫ)φ(ξ)dξ

≤ E|f(ǫt)| ≤ 1.

The second inequality above follows from the inductive hypothesis.

Since y◦t (x) is a minimizer of wt(y, x) over y ∈ (−∞,∞) and wt(y, x) is convex

in y, it follows that ∂wt

∂y
(y◦t (x), x) = 0. Note that

∂2wt

∂y∂x
(y, x) = 1 + β

∫

ξ

∫

ǫ

∂2vt+1

∂s∂x
(y − ξ, f(ǫ)x+ g(ǫ))Ψt(dǫ)φ(ξ)dξ ≥ 1− β ≥ 0.

Hence, ∂wt

∂y
(y, x) is increasing in x. Therefore, for any x′ < x, ∂wt

∂y
(y◦t (x), x

′) ≤ 0.

By the definition of y◦t (x
′) and the convexity of wt(y, x

′) in y, we have

y◦t (x
′) ≥ y◦t (x). Thus, y

◦
t (x) is decreasing in x.

Proof of Lemma 2: We have vT+1(s, x) = 0, which is a concave function of x.

Suppose ∂2vt+1

∂x2 (s, x) ≤ 0 for all x. Using (3), we have

∂2wt

∂x2
(y, x) = β

∫

ξ

∫

ǫ

f 2(ǫ)
∂2vt+1

∂x2
(y − ξ, f(ǫ)x+ g(ǫ))Ψt(dǫ)φ(ξ)dξ ≤ 0.

Thus, wt(y, x) is a concave function of x. Since concavity is preserved under

minimization, vt(s, x) = min
y≥s

{wt(y, x)} − xs is also a concave function of x. By
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backward induction, ∂2vt
∂x2 (s, x) ≤ 0 for all x and t = 1, . . . , T + 1 and vt(s, x) is

convex in x.

Proof of Lemma 4: The proof is similar to that of Proposition 2.

Proof of Lemma 5: We first show that L(y) is a convex and submodular function

of y. We have

∂L

∂yi
(y) =





hi − (
n∑

j=1

hj + b)
∫∞

yi
φ(ξ)dξ if yi ≤ min{y1, . . . , yi−1, yi+1, . . . , yn},

hi if yi > min{y1, . . . , yi−1, yi+1, . . . , yn},

which is decreasing in yj for i ≤ j. Therefore, L(y) is a submodular function of

y. Note that L(y) can be written in the following form

L(y) = L̂(ŷ) +

n∑

i=1

hi(yi − ŷ),

where L̂(y) =
n∑

i=1

hi
∫ y

0
(y − ξ)φ(ξ)dξ +

∫∞

y
b(ξ − y)φ(ξ)dξ. Let ei be the ith unit

vector of dimension n. Since hi
∫ yi

0
φ(ξ)dξ − (

∑
j 6=i

hj + b)
∫∞

yi
φ(ξ)dξ ≤ hi, we have

∂L
∂yi

(y) ≤ hi for all y. Therefore,

L(y + ei)− L(y) ≤ hi. (2.10)

Given y, define ȳi = (max{y1, yi}, . . . ,max{yn, yi}) for i = 1, . . . , n. Using (2.10)

we have

L(y) ≥ L(ȳi) +
∑

j:yj≤yi

hj(yj − yi)

= L̂(yi) +
∑

j:yj>yi

hj(yj − yi) +
∑

j:yj≤yi

hj(yj − yi)
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= L̂(yi) +
n∑

j=1

hj(yj − yi). (2.11)

To show L(y) is convex in y, we need to show that λL(y) + (1 − λ)L(ỹ) ≥

L(λy + (1 − λ)ỹ) for any y, ỹ, and λ ∈ [0, 1]. Suppose λyk + (1 − λ)ỹk =

min
i=1,...,n

{λyi + (1− λ)ỹi}. Then

λL(y) + (1− λ)L(ỹ)

≥ λ[L̂(yk) +
n∑

j=1

hj(yj − yk)] + (1− λ)[L̂(ỹk) +
n∑

j=1

hj(ỹj − ỹk)]

= λL̂(yk) + (1− λ)L̂(ỹk) +

n∑

j=1

hj [(λyj + (1− λ)ỹj)− (λyk + (1− λ)ỹk)]

≥ L̂(λyk + (1− λ)ỹk) +
n∑

j=1

hj [(λyj + (1− λ)ỹj)− (λyk + (1− λ)ỹk)]

= L(λy + (1− λ)ỹ),

where the first inequality follows from (2.11) and the second from the convexity

of L̂(y).

Next we prove that vt(s,x) is a convex and submodular function of s for t =

1, . . . , T + 1. We prove this by backward induction. We have that vT+1(s,x) = 0

is convex and submodular in s. Suppose that vt+1(s,x) is convex and submodular

in s. Then

wt(y,x) = x′y + L(y) + β

∫

ξ

Evt+1(y − ξ,Λ(ǫt)x+ g(ǫt))φ(ξ)dξ

is a convex and submodular function of y since L(y) is convex and submodular in

y and Evt+1(y−ξ,Λ(ǫt)x+g(ǫt)) is convex and submodular in y by the inductive

assumption. Submodularity is preserved under minimization on a lattice, so

vt(s,x) = min
y≥s

wt(y,x) is submodular in s.
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To show vt(s,x) is convex in s, we need to show that λvt(s,x)+(1−λ)vt(̃s,x) ≥

vt(λs+ (1− λ)̃s,x) for any s, s̃, and λ ∈ [0, 1]. Let y∗
t (x) = argmin

y≥s
wt(y,x) and

ỹ∗
t (x) = argmin

y≥s̃
wt(y,x). Then we have

λvt(s,x) + (1− λ)vt(̃s,x) = λ[wt(y
∗
t (x),x)− x′s] + (1− λ)[wt(ỹ

∗
t (x),x)− x′s̃]

≥ wt(λy
∗
t (x) + (1− λ)ỹ∗

t (x),x)− x′[λs+ (1− λ)̃s]

≥ min
y≥λs+(1−λ)̃s

wt(y,x)− x′(λs+ (1− λ)̃s)

= vt(λs+ (1− λ)̃s,x).

The first inequality is due to the convexity of wt(y,x) in y and the second

inequality is due to the fact that λy∗
t (x) + (1− λ)ỹ∗

t (x) ≥ λs + (1− λ)̃s.

Proof of Proposition 4: We only need to show that wt(y,x) is supermodular

in (yi, xj) for t = 1, . . . , T and i, j = 1, . . . , n. The proof of this is similar to that

of Proposition 2.

Proof of Theorem 4: We will show only that vt(s,x) is concave in x for t =

1, . . . , T+1. The rest of the proof is similar to the proofs of Theorem 1, Corollary 1,

and Lemma 3. We prove the concavity by induction.

For t = T + 1, we have vT+1(s,x) = 0. Suppose vt+1(s,x) is concave in x.

Then

wt(y,x) = x′y + L(y) + β

∫

ξ

Evt+1(y − ξ,Λ(ǫt)x+ g(ǫt))φ(ξ)dξ

is a concave function of x. Concavity is preserved under minimization, so vt(s,x)

is concave in x for t = 1, . . . , T + 1.
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Proof of Lemma 6: We prove this by induction. Suppose Xt ≤sm X̂t. Let u(·)

be an arbitrary supermodular function and fix x. Then for case (a), we have

Eu(Xt+1(x)) = Eu(Λ(ǫt)x+ g(ǫt)) = Eu(Λ(ǫ̂t)x+ g(ǫ̂t)) = Eu(X̂t+1(x)).

For case (b), let ũ(ǫ) = u(Λ(ǫ)x+g(ǫ)). Recall that each f i(·) is assumed to be a

constant, say ai, and therefore Λ(ǫ) = A where A is the matrix with ai in the ith

diagonal position for i = 1, . . . , n and zeros elsewhere. Hence ũ(ǫ) = u(Ax+g(ǫ)).

We will now argue that ũ(ǫ) is supermodular. Suppose that ε, δ > 0 and i 6= j.

We have

ũ(ǫ+ εei + δej)− ũ(ǫ+ εei)− ũ(ǫ + δej) + ũ(ǫ)

= u(Ax+ g(ǫ+ εei + δej))− u(Ax+ g(ǫ+ εei))

− u(Ax+ g(ǫ+ δej)) + u(Ax+ g(ǫ))

= u(z+ ε̃ei + δ̃ej)− u(z+ ε̃ei)− u(z+ δ̃ej) + u(z)

≥ 0

where we define z = Ax+g(ǫ), ε̃ = gi(ǫi+ε)−gi(ǫi), and δ̃ = gj(ǫj+δ)−gj(ǫj). The

inequality above follows because u(·) is supermodular and because ǫ̃ and δ̃ have the

same sign owing to the assumption that gi(·) and gj(·) are either both decreasing

or both increasing. Hence we have established that ũ(ǫ) is supermodular.

As a consequence,

Eu(Xt+1(x)) = Eũ(ǫt) ≤ Eũ(ǫ̂t) = Eu(X̂t+1(x)).

Thus, for both cases (a) and (b), we have Xt+1(x) ≤sm X̂t+1(x). Let η(x) =

Eu(Xt+1(x)) and η̂(x) = Eu(X̂t+1(x)). Then, we have η(x) ≤ η̂(x) for all x. In
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addition, it can be verified that η̂(x) is a supermodular function of x (here we use

f i(ǫi)f j(ǫj) ≥ 0). Hence,

Eu(Xt+1) = Eη(Xt) ≤ Eη̂(Xt) ≤ Eη̂(X̂t) = Eu(X̂t+1).

The second inequality holds because Xt ≤sm X̂t. This completes the induction

and the proof.

Proof of Lemma 7: We prove the result by backward induction. We have

that vT+1(s,x) = 0 is trivially submodular in x for all s. Suppose vt+1(s,x) is

submodular in x for all s and consider i, j with i 6= j. We will establish that

∂2vt
∂xi∂xj (s,x) ≤ 0.

In period t, we need to solve the optimization problem

min wt(y,x) = x′y + L(y) + β

∫

ξ

Evt+1(y − ξ,Λ(ǫt)x+ g(ǫt))φ(ξ)dξ

s.t. y ≥ s.

The optimal solution y∗
t (s,x) = (y∗1t (s,x), . . . , y∗nt (s,x)) satisfies the KKT

conditions:

∂wt

∂yk
(y,x)− λk = 0 for k = 1, . . . , n,

λk(yk − sk) = 0 for k = 1, . . . , n,

λk ≥ 0 for k = 1, . . . , n.

By Theorem 3, for each k = 1, . . . , n, we know that y∗kt (s,x) =

max{sk, ykt (s
−k,x)}, where ykt (s

−k,x) is the optimal base-stock level. If sk <

ykt (s
−k,x), then y∗kt (s,x) = ykt (s

−k,x) > sk. Thus, λk = 0 and ∂wt

∂yk
(y∗

t (s,x),x) = 0
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by the KKT conditions. On the other hand, if sk ≥ ykt (s
−k,x), then y∗kt (s,x) = sk

and therefore
∂y∗kt
∂xi (s,x) = 0 for any i.

Since vt(s,x) = wt(y
∗
t (s,x),x)− s′x, we have

∂vt
∂xi

(s,x) =
n∑

k=1

∂wt

∂yk
(y∗

t (s,x),x)
∂y∗kt
∂xi

(s,x) +
∂wt

∂xi
(y∗

t (s,x),x)− si

=
∂wt

∂xi
(y∗

t (s,x),x)− si.

Letting I = {k : sk < ykt (s
−k,x)}, we obtain

∂2vt
∂xi∂xj

(s,x) =
∑

k∈I

∂2wt

∂xi∂yk
(y∗

t (s,x),x)
∂ykt
∂xi

(s−i,x) +
∂2wt

∂xi∂xj
(y∗

t (s,x),x). (2.12)

For the second term on the right side of (2.12), by the inductive hypothesis we

have

∂2wt

∂xi∂xj
(y∗

t (s,x),x)

= β

∫

ξ

E

[
f i(ǫit)f

j(ǫjt)
∂2vt+1

∂xi∂xj

(y∗
t (s,x)− ξ,Λ(ǫt)x+ g(ǫt))

]
φ(ξ)dξ

≤ 0.

If we can establish that the first term on the right side of (2.12) is non-positive as

well, then we will be done with the proof. To this end, note that ∂wt

∂yk
(y∗

t (s,x),x) =

0 for k ∈ I. Differentiating with respect to xi yields

∑

ℓ∈I

∂2wt

∂yℓ∂yk
(y∗

t (s,x),x)
∂yℓt
∂xi

(s−i,x) +
∂2wt

∂xi∂yk
(y∗

t (s,x),x) = 0.

Summing the preceding over k ∈ I we get

∑

k∈I

∂2wt

∂xi∂yk
(y∗

t (s,x),x)
∂ykt
∂xi

(s−i,x)
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= −
∑

k∈I

∑

ℓ∈I

∂2wt

∂yℓ∂yk
(y∗

t (s,x),x)
∂yℓt
∂xi

(s−i,x)
∂ykt
∂xi

(s−i,x)

= −z′Uz,

where z is the |I|-vector with entries
∂yℓt
∂xi (s

−i,x) for ℓ ∈ I, and U is the |I| × |I|

matrix with entries ∂2wt

∂yℓ∂yk
(y∗

t (s,x),x) for ℓ, k ∈ I. The matrix U is positive

semidefinite because wt(y,x) is convex in y. As a consequence, −z′Uz ≤ 0.

This establishes that the first term on the right side of (2.12) is non-positive and

therefore completes the proof.



Chapter 3

Optimal Control of an Inventory

System with Stochastic and

Independent Leadtimes

3.1 Introduction

Inventory systems with stochastic and independent leadtimes are notoriously

difficult to analyze. This difficulty arises in part because of the possibility of

order crossovers (that is, units ordered are not necessarily delivered in the same

sequence in which they have been placed). In settings where the leadtimes of units

ordered at the same time are also independent (the case we consider in this paper),

this difficulty is compounded because the time until the next replenishment can

be affected by the size of the order (larger orders can speed up delivery times). To

our knowledge, there are no known results that characterize the structure of the

56
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optimal policy for systems with independent leadtimes, including for the system

we consider in this paper. For example, Zipkin (2000, p. 410) notes:

“There is no general optimality theory for such systems, to our knowledge. Such a

theory would require a detailed scenario describing when we observe the leadtimes,

or more generally how we obtain information about them... The optimal policy is

probably different in each case, but complicated in everyone.”

Most of the existing literature that treats order crossovers or independent

leadtimes considers specific order-up to policies, such as base-stock policies

with fixed base-stock levels (see for example Kulkarni and Yan (2012),

Robinson and Bradley (2008), Bradley and Robinson (2005), Robinson et al.

(2001), He et al. (1998) and the references therein; see also Muthuraman et al.

(2014) for a review of literature on inventory systems with stochastic leadtimes).

As we show, in this paper such policies are sub-optimal and can perform poorly.

In this paper, we consider the specific setting of a continuous review inventory

system where demand arises according to a Poisson process. Inventory can be

stocked ahead of demand but incurs a holding cost. A replenishment order for

one or more units can be placed at any time. The leadtime for each unit ordered is

a random variable. The random variables that describe these leadtimes are i.i.d.

and exponentially distributed. We allow for a constraint on the total number of

units that can be on order at any time, so that there are at most m units ordered

at any time but not yet received. However, m can be arbitrarily large. Thus, the

setting we consider is one where there is independence among the leadtimes of

units ordered at the same time as well as independence among the leadtimes of

units that have been ordered at different times. Such a setting arises naturally
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when the supply process consists of m production facilities (or operators), with

each facility capable of producing one unit at a time with exponentially distributed

production times (ordering decisions in this case correspond to determining how

many of them facilities should be put into production)1. Such a system generalizes

the widely studied integrated production-inventory system with a single facility

(see for example, Ha (1997)), De Vericourt et al. (2002), Benjaafar and ElHafsi

(2006), Benjaafar et al. (2011), and the references therein). Most of the existing

literature on integrated production-inventory systems deals with settings where

the production process is a single facility. To our knowledge, there are no

known results for the optimal control policy for systems with multiple facilities.

Therefore, this paper makes a contribution to that literature as well.

We characterize the structure of the optimal control policy and show that it

can be specified by a threshold function r(x) where x is the net inventory level.

Specifically, we show that it is optimal to order if the number of units on order

is less than r(x) and not to order otherwise. More significantly, we show that

r(x) is non-increasing in x and that, once r(x) starts to decrease, it continues

to do so at a rate that is greater than or equal to one. This implies that the

threshold function can be fully described by at most m parameters: a parameter

s, corresponding to the largest inventory level for which the number of units

on order is at its maximum value m, and at most m − 1 additional parameters

k0 = m ≥ k1 ≥ · · · ≥ km−1, corresponding to the optimal number of units on

order at inventory levels s + i, for i = 1, · · · , m− 1.

1It may also arise in settings where each unit corresponds to a batch (e.g., a truckload) that is

handled and shipped individually and that experiences independent random delays along the

way; see Zipkin (2000) for further discussion.
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A base-stock policy with a fixed base-stock level can of course be expressed in

terms of a similar threshold function. However, in the case of a base-stock policy,

the function r(x) is linear and given by r(x) = s−x, where s is the base-stock level.

In our case, the function r(x) is non-linear (and in all cases tested observed to be

concave). To our knowledge, such a feature has not been documented previously

in the literature. This feature appears to be a consequence of the fact that, with

i.i.d. leadtimes, the time until the next replenishment arrives is decreasing in the

number of units on order (the more units on order, the shorter the time until the

next shipment). This is not the case in systems where leadtimes are sequential and

independent or in systems where leadtimes are sequential and increasing in the

number of units on order, or production-inventory systems with a single facility.

To characterize the structure of the optimal policy, we employ two forms of the

optimality equation. We use each to show that the optimal cost function satisfies

certain properties, which together imply properties for the optimal policy. We

rely on an application of the Banach fixed point theorem to prove some of these

properties, which are difficult to prove using standard induction arguments. The

application of the Banach fixed point theorem is novel and potentially useful to

other optimal control problems.

Uncovering the structure of the optimal policy allows us to develop an efficient

algorithm for computing the optimal value of the policy parameters and the

corresponding optimal cost. Also, inspired by the structure of the optimal policy,

we investigate two plausible simple heuristics, each specified by a single parameter,

and examine their performance for a wide range of parameter values. We find that

although the two heuristics can be effective for certain ranges of parameters, they
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can perform poorly when either the ratio of inventory holding to shortage costs is

high or demand rate is low. Finally, we extend our analysis to systems with

lost sales and systems where order cancellations are possible. In both cases,

we characterize the structure of the optimal policy. For systems with order

cancellation, we show that the optimal policy reduces to a bang-bang policy with

k0 = m and ki = 0 for i 6= 0. We show that order cancellation is particularly

beneficial when either the ratio of inventory holding to shortage (backorder or

lost sales) costs is high or demand rate is low.

The rest of this chapter is organized as follows. In Section 3.2, we describe

the problem and formulation. In Section 3.3, we characterize the structure of the

optimal policy. In Section 3.4, we describe an efficient algorithm for computing

the parameters of the optimal policy. In Section 3.5, we consider heuristic policies

and evaluate their performance. In section 3.6, we extend the analysis to related

problems.

3.2 Problem Formulation

We consider a single item inventory system where demand arises continuously over

time according to a Poisson process. Inventory can be stocked ahead of demand

but incurs a holding cost h per unit per unit of time. Demand that cannot be

immediately fulfilled from inventory is backordered and incurs a backorder cost b

per unit per unit of time. The system is continuously reviewed and a replenishment

order for one or more units can be placed at any time. A cost c is incurred

when each unit is received. Procurement leadtimes for units ordered are i.i.d.

and exponentially-distributed with mean 1/µ with the realization of the leadtime
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occurring at the time a unit is received. We allow for a constraint on the total

number of units that can be on order, so that there are at most m units, at any

time, that have been ordered but not yet received (m can be arbitrarily large). The

constraint on the number of units on order arises naturally in some settings. As

mentioned in Section 3.1, this includes integrated production-inventory systems

where m corresponds to the number of available production facilities and the

number of units on order corresponds to the number of facilities that are currently

producing.

The state of the system at time t can be described by the pair (X(t), Y (t)),

where X(t) ∈ Z, the set of integers, and Y (t) ∈ {0, 1, . . . , m}, with X(t)

denoting net inventory at time t and Y (t) the number of units on order at

time t (in an integrated production-inventory system, this corresponds to the

number of facilities currently producing an item). Net inventory can be either

positive or negative, with X(t)+ = max{0, X(t)} corresponding to on-hand

inventory and X(t)− = max{0,−X(t)} corresponding to backorder level. Because

both leadtimes and times between consecutive demand orders are exponentially

distributed, the system is memoryless and decision epochs can be restricted to only

the times when the state changes (state changes are triggered by the delivery of a

unit that was on order or the arrival of new demand). The memoryless property

allows us to formulate the problem as a Markov Decision Process (MDP) and to

restrict our attention to the class of Markovian policies for which actions taken at

a particular decision epoch depend only on the current state of the system.

In each state, the system manager must decide whether or not to place

additional orders and if so how many. This is equivalent to deciding on the number
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k (0 ≤ k ≤ m−y) of additional orders that must be placed where y is the number

of current orders that have been placed but have not been received yet. Let

S = Z × {0, 1, . . . , m} denote the state space and let A(x, y) = {0, 1, . . . , m− y}

denote the action set. An action aπ(x, y), in the set A(x, y), corresponds to the

number of units to order. Thus, a policy π specifies, for each state (x, y), an

action aπ(x, y) in the set A(x, y). For instance, action aπ(x, y) = k corresponds

to ordering k units in addition to the y units currently on order. In the case of

an integrated production-inventory system, this corresponds to deciding on how

many additional production facilities to activate, in addition to those that are

currently producing.

The expected discounted cost (the sum of inventory holding, backorder, and

ordering costs) over an infinite planning horizon, vπ(x, y), obtained under a policy

π and a starting state (x, y), can be written as:

vπ(x, y) = Eπ
(x,y)

{∫ ∞

0

e−αt
(
hX+(t) + bX−(t)

)
dt+

∫ ∞

0

e−αtcdN(t)

}
, (3.1)

where N(t) is the cumulative number of units that have been received up to time

t and α > 0 is the discount rate. Our objective is to choose a policy π∗ that

minimizes the expected discounted cost.

Let 0 = t0 ≤ t1 ≤ t2 ≤ . . . be the transition times when the system changes

from one state to a different state. Then tj+1−tj is exponentially distributed with

rate βx,y(a(x, y)) = λ+µ(y+a(x, y)) if the state of the system at time tj is (x, y)

and action a(x, y) is selected in this state. The state of the system remains the

same between transitions. Therefore, {Zj = (X(tj), Y (tj)) : j ≥ 0} is a Markov
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chain, with transition probabilities given by:

p(x1,y1),(x2,y2)(a1) =





λ

βx,y(a1)
if(x2, y2) = (x1 − 1, y1 + a1),

µ(y1 + a1)

βx,y(a1)
if(x2, y2) = (x1 + 1, (y1 + a1 − 1)+),

0 otherwise,

where a1 = a(x1, y1). This allows us to transform the continuous time decision

process into a discrete time one. Let N(tj) denote the cumulative number of units

that have been received by the jth transition. Then, vπ(x, y) in (3.1) can be

rewritten in the equivalent form:

vπ(x, y) =Eπ
(x,y)

[
∞∑

i=0

(
i∏

k=0

βxk,yk
(a(xk, yk))

α + βxk,yk
(a(xk, yk))

)
hx+

i + bx−
i

α + βxk,yk
(a(xk, yk))

+c
∞∑

i=0

(
i∏

k=0

βxk,yk(a(xk, yk))

α+ βxk,yk
(a(xk, yk))

)
(N(ti)−N(ti−1))

]
,

where (xi, yi) = (x(ti), y(ti)), x = (x1, x2, . . .) and y = (y1, y2, . . .). The optimal

cost function, v∗, can be shown to satisfy tho following optimality equation:

v∗(x, y) = min
a(x,y)

{
hx+ + bx−

α + βx,y(a(x, y))
+

µ(y + a(x, y))

α + βx,y(a(x, y))
c

+
βx,y(a(x, y))

α + βx,y(a(x, y))

∑

(x′,y′)

p(x,y),(x′,y′)(a(x, y))v
∗(x′, y′)





or equivalently

v∗(x, y) = min
y≤u≤m

{
g(x) + λv∗(x− 1, u) + uµ

(
v∗(x+ 1, (u− 1)+) + c

)

α + λ+ uµ

}
, (3.2)

where g(x) = hx+ + bx−. Letting

w∗(x, u) =
g(x) + λv∗(x− 1, u) + uµ

(
v∗(x+ 1, (u− 1)+) + c

)

α + λ+ uµ
,
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optimality equation (3.2) can be rewritten as

v∗(x, y) = min
y≤u≤m

{w∗(x, u)} = min
0≤k≤m−y

{w∗(x, y + k)} .

The control variable u specifies the total number of units on order at each state

transition given the y units already on order; while the control variable k specifies

the number of units to be ordered in addition to the y units already on order.

Let u∗(x, y) = max argmin
y≤u≤m

{w∗(x, u)} and k∗(x, y) = u∗(x, y) − y. Then u∗(x, y)

denotes the optimal number of units on order in state (x, y) and k∗(x, y) denotes

the optimal number of units to order, in addition to y, in state (x, y).

We will find it useful to work with a uniformized version of the problem (see

Lippman 1975), in which the transition rate in each state under any action is

β = mµ + λ so that the transition times 0 = t̂0 ≤ t̂1 ≤ t̂2 ≤ . . . are such that the

times between transitions {t̂j+1− t̂j : j ≥ 0} form a sequence of i.i.d. exponentially

distributed random variables, each with mean 1/β. This leads to a Markov chain

defined by {Ẑj = (X(t̂j), Y (t̂j)) : j ≥ 0} with transition probabilities given by:

p̂(x1,y1),(x2,y2)(a1) =





λ

β
if (x2, y2) = (x1 − 1, y1 + a1),

µ(y1 + a1)

β
if (x2, y2) = (x1 + 1, (y1 + a1 − 1)+),

β − λ− µ(y1 + a1)

β
if (x2, y2) = (x1, y1),

0 otherwise.

where a1 = a(x1, y1). Let N̂(tj) denote the cumulative number of units that have

been received by the jth transition. Then, vπ(x, y) in (3.1) can be rewritten as:

vπ(x, y) = Eπ
(x,y)

[
hx+ + bx−

α + β

∞∑

i=0

(
β

α + β

)i

+ c
∞∑

i=1

(
β

α + β

)i (
N̂(ti)− N̂(ti−1)

)]
.
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Hence, the optimal cost function, v∗, satisfies the optimality equation,

v∗(x, y) =min
a(x,y)

{
hx+ + bx−

α + β
+

µ(y + a(x, y))

α+ β
c

+
β

α + β

∑

(x′,y′)

p̂(x,y),(x′,y′)(a(x, y))v
∗(x′, y′)



 .

Without loss of generality, we rescale time by letting α + β = 1. Using

the corresponding transition probabilities and time scaling, we can rewrite the

optimality equation as follows:

v∗(x, y) = min
0≤k≤m−y

{g(x) + λv∗(x− 1, y + k) + (m− y − k)µv∗(x, y)

+(y + k)µ
(
v∗(x+ 1, (y + k − 1)+) + c

)
}. (3.3)

In Lemma 8 below, we show that another form of the optimality equation is

given by a modified version of (3) in which the arguments of v∗ on the right hand

side of the equality all consist of y + k. Such a form will prove to be useful in

Section 3 in characterizing the structure of the optimal policy, as it significantly

simplifies the analysis. More specifically, we show in Lemma 1 that the optimal

cost function satisfies the following optimality equation:

v∗(x, y) = min
0≤k≤m−y

{g(x) + λv∗(x− 1, y + k) + (m− y − k)µv∗(x, y + k)

+(y + k)µ
(
v∗(x+ 1, (y + k − 1)+) + c

)
},

which can also be written as

v∗(x, y) = min
y≤u≤m

{g(x) + λv∗(x− 1, u) + (m− u)µv∗(x, u)

+uµ
(
v∗(x+ 1, (u− 1)+) + c

)}
. (3.4)
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Lemma 8. The optimal cost function v∗ satisfies optimality equation (3.4).

Proof. Using optimality equation (3.2), we have

v∗(x, y) = min
y≤u≤m

{
g(x) + λv∗(x− 1, u) + uµ(v∗(x+ 1, (u− 1)+) + c)

α + λ+ uµ

}

≤ min
y+k≤u≤m

{
g(x) + λv∗(x− 1, u) + uµ

(
v∗(x+ 1, (u− 1)+) + c

)

α + λ+ uµ

}

= v∗(x, y + k).

Noting that

u∗(x, y) = argmin
y≤u≤m

{
g(x) + λv∗(x− 1, u) + uµ

(
v∗(x+ 1, (u− 1)+) + c

)

α + λ+ uµ

}

= argmin
u∗(x,y)≤u≤m

{
g(x) + λv∗(x− 1, u) + uµ

(
v∗(x+ 1, (u− 1)+) + c

)

α + λ+ uµ

}

leads to v∗(x, y) = v∗(x, u∗(x, y)) = v∗(x, y + k∗(x, y)). Let f(x, y, k) = g(x) +

λv∗(x− 1, y + k) + (y + k)µ
(
v∗(x+ 1, (y + k − 1)+) + c

)
+ (m− y − k)µv∗(x, y),

and f̂(x, y, k) = g(x)+λv∗(x−1, y+k)+ (y+k)µ
(
v∗(x+ 1, (y + k − 1)+) + c

)
+

(m − y − k)µv∗(x, y + k). Then, for any k ∈ [0, m − y], we have f̂(x, y, k) ≥

f(x, y, k) ≥ f(x, y, k∗(x, y)) = f̂(x, y, k∗(x, y)). Consequently, v∗(x, y) =

min
0≤k≤m−y

{f(x, y, k)} = f(x, y, k∗(x, y)) = f̂(x, y, k∗(x, y)) = min
0≤k≤m−y

{f̂(x, y, k)},

which completes the proof of Lemma 8.

Define ŵ∗(x, u) = g(x) + λv∗(x − 1, u) + uµ
(
v∗(x+ 1, (u− 1)+) + c

)
+ (m −

u)µv∗(x, u). Then optimality equation (3.4) can be more compactly expressed as

v∗(x, y) = min
y≤u≤m

{ŵ∗(x, u)}.
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Since the optimal cost function, v∗, satisfies both optimality equations (3.2) and

(3.4), it follows that

u∗(x, y) = max argmin
y≤u≤m

{w∗(x, u)} = max argmin
y≤u≤m

{ŵ∗(x, u)}.

Finally, for any function v defined on S, we define operators T and T̂ as follows:

Tv(x, y) = min
y≤u≤m

{
g(x) + λv(x− 1, u) + uµ

(
v(x+ 1, (u− 1)+) + c

)

α + λ+ uµ

}
,

and

T̂ (x, y) = min
y≤u≤m

{g(x) + λv(x− 1, u) + (m− u)µv(x, u)

+uµ
(
v(x+ 1, (u− 1)+) + c

)}
.

Then, by virtue of (3.2) and (3.4), we have v∗ = Tv∗ and v∗ = T̂ v∗.

3.3 The Structure of the Optimal Policy

In this section, we characterize the structure of the optimal policy. To do so,

we identify a set of properties specified in Definition 1 below and show that

the optimal cost function satisfies these properties. Then, we show that these

properties imply specific rules for the optimal action in each state.

In order to simplify the notation, we introduce the difference operators

∆xv(x, y) = v(x+ 1, y)− v(x, y),

∆yv(x, y) = v(x, y + 1)− v(x, y),

for real valued functions v defined on S and combinations of such operators,

including

∆x,yv(x, y) = ∆x∆yv(x, y) = ∆xv(x, y + 1)−∆xv(x, y),
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∆y,yv(x, y) = ∆y∆yv(x, y) = ∆yv(x, y + 1)−∆yv(x, y).

Definition 1. Let V be the set of real valued functions defined on S, such that if

v ∈ V, we have:

P1: ∆y,yv(x, y) ≥ 0 for y < m− 1,

P2: ∆x,yv(x, y) ≥ 0 for y < m, and

P3: ∆yv(x+ 1, y)−∆yv(x, y + 1) ≥ 0 for y < m− 1.

Property P1 implies that v(x, y) is convex in y. Property P2 implies that

v(x, y) is supermodular in (x, y). Property P3 implies that the cost difference

v(x+ 1, y)− v(x, y + 1) is non-decreasing in y.

In what follows, we show that the optimal cost function v∗ is in the set V, which

in turn implies a specific structure for the optimal policy, as described in Theorem

6. Unfortunately, the standard approach of showing, via induction, that a single

optimality operator preserves these properties is difficult to use here (as neither

T nor T̂ can be shown to preserve the properties in Definition 1). Therefore, we

resort to a different approach that employs both operators T and T̂ , showing that

each preserves certain properties. We use these results to construct an operator

that we show to be a contraction mapping with zero as a fixed point. This then

allows us to apply the Banach fixed point theorem to show that v∗ is in the set V.

In preparation for Lemma 9, we introduce the following definitions.

Definition 2. Let V1 be the set of real valued functions defined on S, such that if

v ∈ V1, then v satisfies property P2 and property P4 defined below:

P4: ∆xg(x) + λ∆xv(x− 1, y1)− (α+ λ)∆xv(x+ 1, y2) ≤ 0,. for y2 ≤ y1 ≤ m.

Definition 3. Let V2 be the set of real valued functions defined on S, such that if

v ∈ V2, then v satisfies:
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P5: 0 ≤ ∆yv(x, y) ≤
(h+αc)µ

α2 for y < m, and

P6: v(x+ 1, y)− v(x, y + 1) ≤ h
α
for y < m.

Lemma 9. The optimal cost function v∗ satisfies properties P1-P3. That is,

v∗ ∈ V.

Proof. We divide the proof into four parts.

(i) We show that if v ∈ V1, then Tv ∈ V1. This implies that v∗ ∈ V1.

(ii) We show that if v ∈ V2, then T̂ v ∈ V2. This implies that v∗ ∈ V2.

(iii) Using the results of parts (i) and (ii), we construct an operator O that is a

contraction mapping with a fixed point at zero, such that Φ(x, y, k) ≥ OΦ(x, y, k),

where Φ(x, y, k) = ∆yv
∗(x, y + k)−∆yv

∗(x, y). Then, we apply the Banach fixed

point theorem to show that Φ(x, y, k) ≥ 0 for all x, y and k. This implies that

∆y,yv
∗(x, y) = Φ (x, y, 1) ≥ 0.

(iv) Using a similar approach to the one used in part (iii), we show that ∆yv
∗(x+

1, y)−∆yv
∗(x, y + 1) ≥ 0.

We begin with part (i). For any v ∈ V1, let

w(x, y) =
g(x) + λv(x− 1, y) + yµ

(
v(x+ 1, (y − 1)+) + c

)

α + λ+ yµ
,

and u(x, y) = max argmin
y≤u′≤m

w(x, u′). It is not difficult to verify that

∆x,yw(x, y) =− µ
∆xg(x) + λ∆xv(x− 1, y)− (α + λ)∆xv(x+ 1, (y − 1)+)

(α + λ+ yµ)(α+ λ+ (y + 1)µ)

+
(y + 1)µ∆x,yv(x+ 1, (y − 1)+)

α+ λ+ (y + 1)µ
+

λ∆x,yv(x− 1, y)

α + λ+ (y + 1)µ
≥ 0.

The first term is nonnegative due to the fact that v satisfies property P4. The

last two terms are nonnegative due to the fact that v satisfies property P2.
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Noting that Tv(x, y) = min
y≤u′≤m

w(x, u′) = min{w(x, y), min
y+1≤u′≤m

w(x, u′)} =

min{w(x, y), T v(x, y+ 1)}, we have

∆yTv(x+ 1, y) = Tv(x+ 1, y + 1)−min {w(x, y), T v(x, y + 1)}

= max {Tv(x+ 1, y + 1)− w(x+ 1, y), 0}

= max

{
min

y+1≤u′≤m
{w(x+ 1, u′)} − w(x+ 1, y), 0

}

= max

{
min

y+1≤u′≤m

{
u′−1∑

j=y

∆yw(x+ 1, j)

}
, 0

}

≥ max

{
min

y+1≤u′≤m

{
u′−1∑

j=y

∆yw(x, j)

}
, 0

}

= ∆yTv(x, y).

Therefore, Tv satisfies property P2 for v ∈ V1.

Next, we show that Tv satisfies property P4. First, we show that u(x, y) ≥

u(x+ 1, y). To this end, note that w(x, y)− w(x, u(x, y)) > 0 for all y > u(x, y).

Since ∆x,yw(x, y) ≥ 0, we have ∆xw(x, y)−∆xw(x, u(x, y)) ≥ 0 for all y > u(x, y).

Equivalently,

w(x+ 1, y)− w(x+ 1, u(x, y)) ≥ w(x, y)− w(x, u(x, y)) > 0,

for all y > u(x, y), which implies u(x, y) ≥ u(x+ 1, y). Next, since

∆xTv(x, y) = min
y≤u′≤m

w(x+ 1, u′)− min
y≤u′≤m

w(x, u′)

≥ w(x+ 1, u(x+ 1, y))− w(x, u(x+ 1, y))

= ∆xw(x, u(x+ 1, y)),

and ∆xTv(x, y) ≤ w(x + 1, u(x, y)) − w(x, u(x, y)) = ∆xw(x, u(x, y)), it follows
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that

∆xg(x) + λ∆xTv(x− 1, y1)− (α + λ)∆xTv(x+ 1, y2)

≤ ∆xg(x) + λ∆xw(x− 1, u(x− 1, y1))− (α + λ)∆xw(x+ 1, u(x+ 2, y2)).

Let ŷ1 = u(x− 1, y1) and ŷ2 = u(x+ 2, y2). For y1 ≥ y2, we have

ŷ1 = u(x− 1, y1) ≥ u(x+ 2, y1) ≥ u(x+ 2, y2) = ŷ2,

where the second inequality is due to the fact that

u(x, y + 1) = max argmin
y+1≤u′≤m

w(x, u′) ≥ max argmin
y≤u′≤m

w(x, u′) = u(x, y).

Therefore, for y1 ≥ y2, we have

∆xg(x) + λ∆xTv(x− 1, y1)− (α + λ)∆xTv(x+ 1, y2)

≤ ∆xg(x) + λ∆xw(x− 1, ŷ1)− (α + λ)∆xw(x+ 1, ŷ2)

= ∆xg(x) + λ
∆xg(x− 1) + λ∆xv(x− 2, ŷ1) + ŷ1µ∆xv(x, (ŷ1 − 1)+)

α + λ+ ŷ1µ

− (α + λ)
∆xg(x+ 1) + λ∆xv(x, ŷ2) + ŷ2µ∆xv(x+ 2, (ŷ2 − 1)+)

α + λ+ ŷ2µ

= −∆x,xg(x) + λ
∆xg(x− 1) + λ∆xv(x− 2, ŷ1)− (α + λ)∆xv(x, ŷ2)

α + λ+ ŷ1µ

+ ŷ2µ
∆xg(x+ 1) + λ∆xv(x, (ŷ1 − 1)+)− (α + λ)∆xv(x+ 2, (ŷ2 − 1)+)

α + λ+ ŷ2µ

≤ 0.

As a result, Tv satisfies property P4 for v ∈ V1. Therefore, Tv ∈ V1. To show that

v∗ ∈ V1, we use the fact that (1) v
∗ = limn→∞T nv for any v ∈ V1 (see Proposition

3.1.5 and 3.1.6, Bertsekas (2007)), and (2) T nv ∈ V1 since Tv ∈ V1.
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Next, we consider paet (ii). For any v ∈ V2, let

ŵ(x, u) = g(x) + λv(x− 1, u) + uµ
(
v(x+ 1, (u− 1)+) + c

)
+ (m− u)µv(x, u),

and û(x, y) = max argmin
y≤u≤m

ŵ(x, u). Note that

∆yŵ(x, u) = λ∆yv(x− 1, u) + uµ∆yv(x+ 1, (u− 1)+)

+ (m− u)µ∆yv(x, u) + µ (v(x+ 1, u)− v(x, u+ 1) + c)

≤ λ
(h+ αc)µ

α2
+ uµ

(h+ αc)µ

α2
+ (m− u)µ

(h+ αc)µ

α2
+

(
h

α
+ c

)
µ

=
(h+ αc)µ

α2
.

Hence, if û(x, y) > y, we have ∆yT̂ v(x, y) = ŵ(x, û(x, y))− ŵ(x, û(x, y)) = 0, and

if û(x, y) = y, we have

∆yT̂ v(x, y) = min
y+1≤u≤m

ŵ(x, u)− ŵ(x, y) ≤ ∆yŵ(x, y) ≤
(h+ αc)µ

α2
.

On the other hand, we have

∆yT̂ v(x, y) = min
y+1≤u≤m

ŵ(x, u)− min
y≤u≤m

ŵ(x, u) ≥ 0.

Therefore, T̂ v satisfies property P5 for v ∈ V2.

Noting that

ŵ(x+ 1, u)− ŵ(x, u+ 1) = g(x+ 1)− g(x) + λ(v(x, u)− v(x− 1, u+ 1))

+ (m− u− 1)µ(v(x+ 1, u)− v(x, u+ 1))

+ uµ(v(x+ 2, (u− 1)+)− v(x+ 1, u))

≤ h+ λ
h

α
+ uµ

h

α
+ (m− u− 1)µ

h

α

≤ h+
(1− α)

(λ+mµ)

h

α
=

h

α
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leads to

T̂ v(x+ 1, y)− T̂ v(x, y + 1) = ŵ(x+ 1, û(x+ 1, y))− ŵ(x, û(x, y + 1))

≤ ŵ(x+ 1, û(x, y + 1)− 1)− ŵ(x, û(x, y + 1))

≤
h

α
.

That is, T̂ v satisfies property P6 for v ∈ V2. Therefore, T̂ v ∈ V2. To show that

v∗ ∈ V2, we use the fact that (1) v
∗ = limn→∞T̂ nv for any v ∈ V2 (see Proposition

3.1.5 and 3.1.6, Bertsekas (2007)), and (2) T̂ nv ∈ V2 since T̂ v ∈ V2.

We now consider part (iii). Note teat if u∗(x, y) > y, then ∆yv
∗(x, y) = 0 and

if u∗(x, y) = y, then ∆yv
∗(x, y) ≤ ∆yŵ

∗(x, y). Therefore, if u∗(x, y) > y, we have

∆yv
∗(x, y + j)−∆yv

∗(x, y) = ∆yv
∗(x, y + j) ≥ 0.

If u∗(x, y) = y, then

∆yv
∗(x, y + j)−∆yv

∗(x, y) = v∗(x, y + j + 1)− v∗(x, y + j)−∆yv
∗(x, y)

≥ ŵ∗(x, u∗(x, y + j + 1))−∆yŵ
∗(x, y)

− ŵ∗(x, u∗(x, y + j + 1)− 1)

= ∆yŵ
∗(x, û(x, y + j + 1)− 1)−∆yŵ

∗(x, y).

Now let

Φ(x, y, j) =





∆yv
∗(x, y + j)−∆yv

∗(x, y) if y + j < m ,

0 otherwise.

Then, it can be verified that

∆yŵ
∗(x, y + j)−∆yŵ

∗(x, y)
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= λ (∆yv
∗(x− 1, y + j)−∆yv

∗(x− 1, y))

+ (m− y − j − 1)µ (∆yv
∗(x, y + j)−∆yv

∗(x, y))

+ yµ
(
∆yv

∗(x+ 1, y + j − 1)−∆yv
∗(x+ 1, (y − 1)+)

)

+ jµ (∆yv
∗(x+ 1, y + j − 1)−∆yv

∗(x+ 1, y))

+ µ (∆xv
∗(x, y + j)−∆xv

∗(x, y)) + jµ∆x,yv
∗(x, y)

≥ λΦ(x− 1, y, j) + (m− y − j − 1)µΦ(x, y, j)

+ yµΦ(x+ 1, (y − 1)+, j) + jµΦ(x+ 1, y, (j − 1)+),

where the inequality is due to the fact that ∆x,yv
∗(x, y) ≥ 0.

Let L(x, y, j) = û(x, y + j + 1)− y − 1 ≥ 0. Then, if û(x, y) = y, we have

Φ(x, y, j) ≥λΦ(x− 1, y, L(x, y, j)) + (m− y − L(x, y, j)− 1)µΦ(x, y, L(x, y, j))

+ yµΦ(x+ 1, (y − 1)+, L(x, y, j))

+ L(x, y, j)µΦ(x+ 1, y, (L(x, y, j)− 1)+).

Let Ŝ = {v : Z× {0, 1, . . . , m} × {0, 1, . . . , m} → R, v is bounded}. Then, Φ ∈ Ŝ,

since

|Φ(x, y, j)| = |∆yv
∗(x, y + j)−∆yv

∗(x, y)| ≤
(h+ αc)µ

α2
.

For any function v ∈ Ŝ, define operator O as follows,

Ov(x, y, j) =





Ôv(x, y, j) if û(x, y) = y and y + j < m,

0 otherwise.

where Ôv(x, y, j) = λv(x − 1, y, L(x, y, j)) + (m − y − L(x, y, j) −

1)µv(x, y, L(x, y, j)) + yµv(x + 1, (y − 1)+, L(x, y, j)) + L(x, y, j)µv(x +

1, y, (L(x, y, j)− 1)+). Hence, based on the above analysis, we have
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Φ ≥ OΦ. Also, for any v1, v2 ∈ Ŝ, it is not difficult to verify that

‖Ov1 −Ov2‖1 ≤ (λ + (m − 1)µ)‖v1 − v2‖1. Therefore, O is a contraction

mapping on a metric space
(
Ŝ, ‖ · ‖1

)
. Clearly,

(
Ŝ, ‖ · ‖1

)
is a complete metric

space and O0 = 0. By the Banach fixed point theorem, O has a unique

fixed point 0, and for any function v ∈ Ŝ, limn→∞Onv = 0. Also, since

Φ ≥ OΦ ≥ O2Φ ≥ · · · ≥ OnΦ, we have Φ ≥ limn→∞OnΦ = 0. This implies that

∆y,yv
∗(x, y) = ∆yv

∗(x, y + 1)−∆yv
∗(x, y) = Φ(x, y, 1) ≥ 0.

Lastly, we consider part (iv). Since v∗ ∈ V1 and ∆y,yv
∗(x, y) ≥ 0, we have

∆y,yŵ
∗(x, y) = λ∆y,yv

∗(x− 1, y) + (m− y − 2)∆y,yv
∗(x, y)

+ yµ∆y,yv
∗(x+ 1, (y − 1)+) + 2µ∆x,yv

∗(x, y) ≥ 0.

Therefore, u∗(x, y) = max{u∗(x, 0), y}, and

∆yv
∗(x, y) =





0 if y < u∗(x, 0),

∆yŵ
∗(x, y) otherwise.

Noting that ∆yŵ(x, y) < 0, if y < u∗(x, 0) we have ∆yv
∗(x, y) ≥ ∆yŵ

∗(x, y). Also,

since v∗(x, y) satisfies ∆xg(x)+λ∆xv
∗(x−1, y)−(α+λ)∆xv

∗(x+1, (y − 1)+) ≤ 0,

then, if y ≥ u∗(x, 0), we have

∆xv
∗(x, y) =

∆xg(x) + λ∆xv
∗(x− 1, y) + yµ∆xv

∗(x+ 1, (y − 1)+)

α + λ+ yµ

≤ ∆xv
∗(x+ 1, (y − 1)+).

As a consequence, if y + 1 < u∗(x, 0), we have

∆yv
∗(x+ 1, y)−∆yv

∗(x, y + 1) = ∆yv
∗(x+ 1, y) ≥ 0,
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and, if y + 1 ≥ u∗(x, 0), we have

∆yv
∗(x+ 1, y)−∆yv

∗(x, y + 1)

≥ ∆yŵ
∗(x+ 1, y)−∆yŵ

∗(x, y + 1)

= λ (∆yv
∗(x, y)−∆yv

∗(x− 1, y + 1)) + µ (∆xv
∗(x+ 1, y)−∆xv

∗(x, y + 1))

+ (m− y − 2)µ (∆yv
∗(x+ 1, y)−∆yv

∗(x, y + 1))

+ yµ
(
∆yv

∗(x+ 2, (y − 1)+)−∆yv
∗(x+ 1, y)

)

≥ λ (∆yv
∗(x, y)−∆yv

∗(x− 1, y + 1))

+ (m− y − 2)µ (∆yv
∗(x+ 1, y)−∆yv

∗(x, y + 1))

+ yµ
(
∆yv

∗(x+ 2, (y − 1)+)−∆yv
∗(x+ 1, y)

)
. (3.5)

Using a similar approach to the proof of part (iii) and invoking the Banach fixed

point theorem, it is not difficult to verify that ∆yv
∗(x+1, y)−∆yv

∗(x, y+1) ≥ 0.

This completes the proof of Lemma 9.

We are now ready to state the main result of the paper.

Theorem 6. The optimal control policy is specified by an inventory

level-dependent threshold r∗(x) such that, when the system is in state (x, y), it is

optimal to order r∗(x)− y if y < r∗(x) and not to order otherwise. Furthermore,

the threshold r∗(x) has the following properties:

(1) r∗(x) is non-increasing in x,

(2) 0 ≤ r∗(x) ≤ m.

(3) r∗(x+ 1) ≤ max{0, r∗(x)− 1}, for x ≥ s∗, where s∗ = max{x|r∗(x) = m}.
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Proof. To show that the optimal policy is specified by a threshold r∗(x ), it is

sufficient to show ŵ∗(x, u) is convex in u. To see that this is the case, note that

∆y,y
ŵ∗(x, u) = λ∆y,yv

∗(x− 1, u) + (m− u)µ∆y,yv
∗(x, u))

+ uµ∆y,yv
∗(x+ 1, (u− 1)+ + 2µ(∆yv

∗(x+ 1, u)−∆yv
∗(x, u+ 1))

≥ 0,

where the inequality is due to Properties P1 and P3. Let r∗(x) =

max argmin
0≤u≤m

{ŵ∗(x, u)} = u∗(x, 0). Then, u∗(x, y) = max{u∗(x, 0), y} =

max{r∗(x), y}. Therefore, the optimal policy is to order r∗(x) − y if y < r∗(x)

and not to order otherwise.

Next, we prove that r∗(x) satisfies properties 1-3. First, note that

∆x,yw
∗(x, y) = −µ

∆xg(x) + λ∆xv
∗(x− 1, y)− (α + λ)∆xv

∗(x+ 1, (y − 1)+)

(α + λ+ yµ)(α+ λ+ (y + 1)µ)

+
(y + 1)µ∆x,yv

∗(x+ 1, (y − 1)+)

α + λ+ (y + 1)µ
+

λ∆x,yv
∗(x− 1, y)

α + λ+ (y + 1)µ
≥ 0,

where the first term on the right-hand side of the equality is nonnegative because

v∗ satisfies property P4. The last two terms are nonnegative due to the fact that

v∗ satisfies property P2. This implies that

r∗(x+ 1) = u∗(x+ 1, 0) ≤ u∗(x, 0) = r∗(x).

Hence, r∗(x) is non-increasing in inventory level x. As such, if r∗(x) = 0, then

r∗(x+ 1) = 0, and if r∗(x+ 1) = m, then r∗(x) = m.

The fact that 0 ≤ r∗(x) ≤ m follows immediately from the definition of r∗(x).

To show that the last property holds, note that by virtue of Property P3 and

inequality (3.5), we have ∆yŵ
∗(x + 1, y)− ∆yŵ

∗(x, y + 1) ≥ 0, if y + 1 ≥ r∗(x).
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Note also that r∗(x) can be written as r∗(x) = min{y, 0 ≤ y ≤ m : ∆yŵ
∗(x, y) >

0}. Therefore, ∆yŵ
∗(x + 1, r∗(x) − 1) ≥ ∆yŵ

∗(x, r∗(x)) > 0, which implies that

r∗(x)− 1 ≥ r∗(x+ 1). This completes the proof of Theorem 6.

Theorem 6 reveals an important feature of the optimal policy. The optimal

policy is not in general a base-stock policy (see for example Figure 3.1). Although

the optical policy can be expressed in terms of a threshold function, it is different

from a policy that follows a fixed base-stock level. Under a base-stock policy

with a fixed base-stock levels, the threshold function is linear and given by

r(x) = s− x (the presence of a capacity constraint modifies this slightly so that

r(x) = min{m, s − x}). In our case, the threshold function can be non-linear

(see Figure 3.1). Moreover, the inventory position, in contrast to the one under

a fixed base stock level, is not constant and in fact is path-dependent and can be

non-monotonic as a function of x. so our knowledge, an optimal policy with such

a structure has not been documented previously in the literature.

The fact that r∗(x+ 1) ≤ max{0, r∗(x)− 1}, for x ≥ s∗, is another important

feature. It implies that, once r∗(x) starts to strictly decrease, it will continue to

do so with each unit increase in x. This means that if r∗(x) starts decreasing at

x = s∗, it would reach r∗(x) = 0 for x ≤ s∗ + m. In other words, the decrease

in r∗(x) takes place over at most m steps (see Figure 3.1 for an illustration). As

a result, the optimal policy can be fully specified by the vector (s∗,k∗) where s∗

is as defined in Theorem 6 and k∗ = (k∗
0, k

∗
1, . . . , k

∗
m−1). Here, s∗ represents the

largest inventory level for which the maximum m orders have beer placed and

k∗
j represents the optimal number of units to order at inventory level s∗ + j, for

j = 0, . . . , m− 1. Note that since there is no limit on backlogs there always exists
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Figure 3.1: Illustration of the optimal policy (m = 30, µ = 1, λ = 28.5, c = 0,
h = 2, and b = 15)

an inventory level at which it is optimal to have m units on order (k∗
0 = m).

Furthermore, if we let M(x) = m− (x− s∗) for x ∈ [s∗, s∗ +m], we note that

all states (x, y) such that x > s∗ and y > M(x) are transient. This can be verified

by noting that once the system reaches inventory level s∗, and since cancellations

are not allowed, orders are delivered one at a time, along M(x), until eventually

all orders are received at which time the system enters state (s∗ +m, 0). At this

point, no orders can be placed until inventory is depletes back to level s∗ + l for

l = argmin{kl|kl > 0}. Hence, y never exceeds min{m,M(x)}. In section 3.4, we

show how we can exploit all the above features of the optimal policy to construct
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a Markov chain model that allows us to efficiently compute the parameters of the

optimal policy.

We conclude this section by noting that the above results extend to two

important cases: (1) the case where decisions are made based on the average

cost criterion and (2) the case where demand that cannot be fulfilled immediately

from on-hand inventory is lost and not backlogged (the case of lost sales).

For systems where the objective is to minimize the long run average cost, we

can show that, given a police π, the average cost rate is given by:

Jπ(x, y) = lim
T→∞

sup
1

T
Eπ

(x,y)

{∫ T

0

(hX(t) + bY (t)) dt+

∫ T

0

cdN(t)

}
. (3.6)

A policy π∗ that yields J∗(x, y) = infπJ
π(x, y) for all states (x, y) is said to be

optimal for the average cost criterion. In the following theorem, we show that

the optimal policy retains all of the properties observed in Theorem 6 under the

expected discounted cost criterion.

Theorem 7. The optimal policy under the average cost criterion retains all the

properties of the optimal policy under the discounted cost criterion, namely that

there exists an inventory level-dependent threshold r∗(x) such that it is optimal to

order r∗(x) − y if y < r∗(x) when the system is in state (x, y) and not to order

otherwise. Furthermore, r∗(x) satisfies properties 1-3 in Theorem 6.

Proof. The existence of an optimal policy for the average cost, and for this

average cost to be finite and independent of the starting state, can be proven

via an argument involving taking the limit as α → 0 in the discounted cost

problem. However, in order to apply this argument, we must show that

the following two conditions hold (see Cavazos-Cadena and Sennott (1992) and
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Weber and Stidham Jr (1987)): (1) there exists a stationary policy π that induces

an irreducible positive recurrent Markov chain with finite average cost Jπ, and (2)

the number of states for which one-stage cost hx+ + bx− ≤ Jπ is finite.

In order to prove condition 1, we can choose a special case of the optimal policy

with parameters s∗ and k∗ = (m, 0, · · · , 0) resulting in a maximum reachable

inventory level of s∗ + m (provided we start the system at an inventory level

x ≤ s∗ +m). In this case, it is straightforward to show that this policy yields an

irreducible positive recurrent Markov Chain with a finite average cost (provided

λ/mµ < 1 as shown in Section 3.5 below). It is easy to verify that condition 2

holds since hx+ + bx− is convex in x and goes to infinity when x → ±∞. Hence,

for any positive value γ, the number of states for which hx+ + bx− ≤ γ is always

finite. Under these conditions, Weber and Stidham Jr (1987) showed that there

exists a constant J∗ and a function f(x, y) such that

f(x, y) + J∗ ≥ hx+ + bx− + min
0≤k≤m−y

{λf(x− 1, y + k)+(m− y − k)µf(x, y)

+(y + k)µ
[
f(x+ 1, [y + k − 1]+) + c

]}
. (3.7)

Furthermore, the stationary policy that minimizes the fight hand side of the above

equation for each state (x, y) it an optimal policy for the average cost criterion

and yields a constant average cost J∗. Hence, properties of the average cost

optimal policy are the same as and determined through function f(x, y) in much

the same way as were properties of the discounted cost optimal policy determined

by v∗(x, y).

Next, we consider the case of systems with lost sales. For systems with lost

sales, demand that cannot be immediately fulfilled is considered lost and incurs
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a lost sale cost L per unit of unfulfilled demand. In this case, the optimal cost

function v∗ can be shown to satisfy the following optimality equations:

v∗(x, y) =





min
y≤u≤m

hx+ λv∗(x− 1, u) + uµ
(
v∗(x+ 1, (u− 1)+) + c

)

α + λ+ uµ
, if x > 0 ,

min
y≤u≤m

λ(v∗(x, u) + L) + uµ
(
v∗(x+ 1, (u− 1)+) + c

)

α + λ+ uµ
, if x = 0 ,

and

v∗(x, y) =





min
0≤k≤m−y

{hx+ λv∗(x− 1, y + k) + (m− y − k)µv∗(x, y)

+(y + k)µ
[
v∗(x+ 1, [y + k − 1]+) + c

]}
if x > 0 ,

min
0≤k≤m−y

{λ (v∗(x, y + k) + L) + (m− y − k)µv∗(x, y)

+(y + k)µ
[
v∗(x+ 1, [y + k − 1]+) + c

]
)
}

if x = 0 .

Similar to the backlog case, it is not difficult no show that v∗ satisfies properties

P1-P3 of definition 1. Hence, Theorems 6 and 7 apply to the lost sales case as

well. Here, we point out though, that depending on the parameters of the system,

an inventory level for which the on order level is equal to m may not be optimal.

This is, in contrast with the backlog case where there exists an inventery/backlog

level for which the maximum number of orders, m, is used. In other words, for

the lost sale case, it may be optimal to have r∗(x) = m̄ < m and r∗(x+ m̄) = 0.

In the next section, we use the structural properties of the optimal policy

to devise an algorithm which allows us to obtain the parameters of the optimal

policy efficiently (the dynamic programming approach suffers from the curse of

dimensionality when the state space is large, which would be the case when the

demand rate is high or the holding cost rate is low).
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3.4 Computing the Parameters of the Optimal

Policy

In this section, we show how we can use the properties of the optimal policy to

model the dynamics of the system (under the optimal policy) as a Markov Chain.

In turn, this allows us to derive expressions for the probability distribution of

system states that we use to devise an algorithm to compute the parameters of the

optimal policy. We focus on the average cost criterion because it is independent

of the initial state and because it is easier to compute once the system state

probabilities have been determined.

In section 3.3, we showed that the optimal policy belongs to the class of policies

that are fully characterized by a pair (s,k) where s represents the largest inventory

level for which we set the number of units on order to its maximum feasible value

and k = (k0, k1, . . . , km−1) is a vector with elements ki such that ki specifies the

optimal number of units on order when x = s+ i. The objective of this section is

to determine the values of s and k, which we denote by s∗ and k∗, that minimize

the average cost.

Focusing on the recurrent region of the state space under the optimal policy,

we restrict ourselves to states (x, y) that fall into one of the following sub-regions:

(1) x ≤ s and y = m, (2) s < x ≤ s+m− 1 and kx−s ≤ y ≤ m− (x− s), and (3)

x ≥ s+m and y = 0. State transitions occur with rates λ and η(x, y), where

η(x, y) =





mµ if x ∈ (−∞, s] and y = m,

yµ if x = s + i, ki ≤ y ≤ m− i, i = 1, . . . , m− 1,

0 otherwise.
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Figure 3.2 depicts the state transition diagram for the special case k = (m, . . . ,m−

n, kn+1, . . . , 2, 0, 0).

Obtaining closed form expressions for the probability π(x, y) of being in state

(x, y) is difficult in general. What we propose instead is an algorithm that uses

expressions obtained recursively to efficiently compute the probabilities π(x, y).

First, note that the Markov chain in Figure 3.2 follows a simple birth-death process

for spates (x,m), where x ∈ (−∞, s] and for states (x, y) where x ∈ (s, s+n] and

y = kx−s, with n = max{i ∈ [1, m− 1]|ki−1 − ki = 1}. Note also that π(x, y) = 0

for (1) x ∈ (−∞, s] and y < m and (2) x ∈ (s+ 1, s+m) and y < kx−s.

Define π′(x, y) = π(x, y)/π(s+ n, kn). Then π(x, y) = π′(x, y)× π(s + n, kn).

Upon normalization (i.e., using the fact that the sum of the all probabilities is

equal to 1), we obtain

π(x, y) =
π′(x, y)

s+m∑
i=−∞

m∑
j=0

π′(i, j)

. (3.8)

Noting that π′(s+ n, kn) = 1, we have

π′(s+ n− i, kn−i) =

(
i∏

l=1

λ

kn−lµ

)
π′(s+ n, kn), (3.9)

and

π′(s− i,m) = ρim

(
n∏

l=1

λ

µkn−l

)
π′(s+ n, kn), (3.10)

where ρm = λ/mµ (for the case of backlogs, we assume ρm < 1 to ensure

system stability). In the case of an integrated production-inventory system, ρm

corresponds to the utilization of the facilities.

For states (x, y) such that s + n < x ≤ s+m and kx−s ≤ y ≤ kn + n− x+ s

(where we define km = 0) the remaining π′(x, y)’s can be calculated in sequence
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Figure 3.2: The state transition diagram under a policy specified by parameters
s and k



86

as follows:

π′(s+n+i, kl−j) = A(kl−j)π′(s+n+i−1, kl−j+1)+B(kl−j)π′(s+n+i+1, kl−j),

(3.11)

for l = n, . . . , m− 1, j = 1, . . . , kl − kl+1 and i = j, j − 1, . . . , 1, and

π′(s+n+a, kn+a) =





knµ

λ
π′(s+ n, kn)−

kn−1∑
j=kn+1+1

π′(s+ n+ 1, j) if a = 1, kn+a 6= 0,

π′(s+ n+ a− 1, kn+a−1)

B(kn+a−1)
−

kn+a−1∑
j=kn+a+1

π′(s+ n+ a, j) if a > 1, kn+a 6= 0.

(3.12)

where A(t) = (t+ 1)µ/(λ+ tµ) and B(t) = λ/(λ+ tµ).

Note that for states (x, y) such that s + n < x ≤ s + m and kx−s ≤ y ≤

m− (x− s), the computations of the π′(x, y)’s are carried out in a specific order.

For each row, where a row corresponds to a value of y (see Figure 3.2), the π′(x, y)’s

are computed in decreasing values of x. Once all the values of a row have been

computed, computations for row y−1 begin and so on until all π′(x, y)’s have been

computed. It is worth mentioning that π′(s+n+a, kn+a), for a = 1, . . . , m−n−2,

is computed from the balance equation of state (s+ n + a− 1, kn+a−1) (given by

(3.12)) since at this stage all π′(x, y)’s involved in the balance equation of state

(s+ n+ a− 1, kn+a−1) have been computed except for state (s+ n+ a, kn+a).

Given the steady state probabilities, π(x, y), we obtain the marginal

distribution of the inventory level as follows

pm−i =





m−i∑
j=ki

π(s+ i, j) if i = 0, . . . , m,

π(s+ i,m) if i = −1,−2, . . . ,−∞,

(3.13)

where pi is the probability that the net inventory level is s+m− i. The average
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total cost J(s, k) can then be written as

J(s,k) = h

s+m∑

i=0

(s+m− i)pi + b

∞∑

i=s+m+1

(i− s−m)pi + λc, (3.14)

where the three terms represent the expected inventory holding cost, the expected

backorder cost, and the expected production cost, respectively. It is not difficult

to show that J(s,k) is convex in s. Therefore, the optimal stock level s∗ is given

by the smallest integer s for which

J(s,k)− J(s+ 1,k) ≤ 0. (3.15)

Here, it is important to note that the distribution specified by π(x, y) is

independent of the choice of the value s since none of the expressions (3.9)-(3.12)

involves s in the computation of the value of the probabilities. This is valuable

because it allows for the algorithm to be run only once using a large enough value

of s (any s ≥ −m will do). The parameter s∗ can then be obtained as follows:

s∗ = max

{
s ≥ −m|

s+m−1∑

i=0

pi ≤
b

h+ b

}
−m.

To determine the optimal vector k, we carry out an exhaustive search of all

feasible vectors k. This search is significantly expedited by taking advantage

of Property 3 of Theorem 6 and the fact that the decrease of r∗(x) to zero takes

place over no more thanm steps. Table 3.1 shows the number of feasible k vectors,

using full enumeration (a total of mm−1 possible k vectors) and using Property 3

of Theorem 6. As we can see, using Property 3 dramatically reduces the number

of feasible k vectors. In Table 3.2, we compare the computational performance of

our search algorithm to the performance of a standard value iteration algorithm

(see for example Puterman (2014, Sec. 8.5.1)) for solving the dynamic program in
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(3.3). We do so for an illustrative range of values of m and λ/mµ. As we can see,

our algorithm can significantly outperform the standard value iteration algorithm.

This is particularly the case when the recurring region of the state space is large.

This is true when λ/mµ is large, leading to high backorder levels (a high λ/mµ

corresponds to either high demand or long lead time). In fact, the computational

effort for the value iteration algorithms grows exponentially with λ/mµ while it

grows more modestly for our algorithm.

Table 3.1: Number of feasible k vectors

m Full enumeration Enumeration using Property 3 of Theorem 6
5 625 16
10 109 512
15 2.9193× 1016 16384
20 5.2429× 1024 524288

The above approach can also be adapted to the lost sales case (details are

omitted for brevity). Note that in the case of lost sales, the optimal policy requires

specifying an additional parameter m̄ ≤ m which corresponds to the optimal

maximum number of units on order. In other words, the optimal policy may

never need to place an order of size m. The average total cost, given parameters

m̄, s, and k, can then be expressed as follows

JL(m̄, s, k) = λLp0 + h

s+m̄∑

i=0

ipi + λc(1− p0), (3.16)

where the three terms in the above expression correspond, respectively, to the

expected lost sales cost, the expected inventory holding cost and the expected

production cost.

We conclude this section by noting that we observed numerically, and in all the

cases tested, that r∗(x) is concave in x (this is the case in both the backorder and
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Table 3.2: Computational performance comparisons

m λ/µ
CPU time (seconds)

Value iteration algorithm Proposed algorithm

5

0.6 0.415 0.002
0.7 0.71 0.002
0.75 0.994 0.002
0.8 1.487 0.002
0.85 7.29 0.002
0.9 42.678 0.003
0.95 633.844 0.003

10

0.6 0.819 0.055
0.7 1.406 0.065
0.75 1.96 0.074
0.8 2.928 0.086
0.85 14.384 0.088
0.9 79.017 0.094
0.95 1194.145 0.111

15

0.6 1.257 0.208
0.7 2.148 0.245
0.75 2.993 0.275
0.8 4.461 0.312
0.85 21.114 0.321
0.9 123.098 0.338
0.95 1953.74 0.389

20

0.6 1.888 7.61
0.7 2.983 8.791
0.75 4.16 9.776
0.8 6.198 11.043
0.85 30.511 11.332
0.9 180.525 11.85
0.95 2886.58 13.477
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lost sale cases). That is, r∗(x+2)− r∗(x+1) ≤ r∗(x+1)− r∗(x). In terms of the

kl parameters, the concavity od r∗(x) translates into to the following constraints:

0 ≤ kl − kl+1 ≤ kl+1 − kl+2, for l = 0, . . . , m− 3, kl ≤ m, and k0 = m. (3.17)

These constraints, if they were to be included in our search algorithm, would

further reduce the number of feasible k vectors (see Table 3.3). This would also

lead to further improvements in the computational performance of our algorithm

(see Table 3.4).

Table 3.3: Number of feasible k vectors with concave r∗(x)

m Number of feasible k vectors
5 12
10 97
15 508
20 2087

3.5 Heuristics

In this section, we evaluate the performance of two heuristic policies that are

simpler to implement and communicate than the optimal policy. Both policies

belong to the same class of policies as the optimal one. Namely, both can be

specified in terms of a threshold s on the inventory level and a vector of thresholds

k = (k0, . . . , km−1) on the inventory on order.

Heuristic H1: Under this heuristic, we set k0 = m and kj = 0 for j 6= 0. In other

words, if x < s, we order the maximum number of units to bring the number

of units on order to its maximum value m; otherwise, we do not order. Hence,
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Table 3.4: Computational performance of the proposed algorithm with concave
r∗(x)

m λ/µ CPU time (seconds)

5

0.6 0.001
0.7 0.001
0.75 0.001
0.8 0.002
0.85 0.002
0.9 0.002
0.95 0.002

10

0.6 0.01
0.7 0.012
0.75 0.014
0.8 0.016
0.85 0.017
0.9 0.018
0.95 0.021

15

0.6 0.065
0.7 0.076
0.75 0.085
0.8 0.097
0.85 0.1
0.9 0.105
0.95 0.121

20

0.6 0.303
0.7 0.35
0.75 0.389
0.8 0.44
0.85 0.451
0.9 0.472
0.95 0.536
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the policy is specified in terms on the single parameter s. For a given s, the

expected average cost can be obtained using the approach described in Section

3.4 as illustrated in Figure 3.3. This leads to an average cost given by:

JH1(s) = h

s+m∑

i=0

(s+m− i)pH1
s+m−i + b

∞∑

i=s+m+1

(i− s−m)pH1
s+m−i + λc. (3.18)

Noting that the average cost is convex in s, the value of s that minimizes this cost,

sH1, can be obtained as described in Section 3.4 using an equivalent expression to

(15).

Figure 3.3: State transition diagram under Heuristic H1

Heuristic H2: Under this heuristic, wi set k0 = m and kj = m− j for j 6= 0. In

other words, if x < s, we set the number of units on order to its maximum value

m as in heuristic H1; if x = s+ j, we bring the number of unite on order to m− j;

otherwise, we do not order. This also means that once the threshold function
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starts decreasing from its maximum value m, it continues to decrease by one unit

for each unit increase in inventory. Hence, under this heuristic, the inventory

position stays constant and equals to s +m if s ≤ x ≤ s +m. This implies that

the policy is a modified base-stock policy with base-stock level s+m (ordering in

the way such that the inventory position is as close to s +m as possible). As in

heuristic H1, the policy here is specified by the single parameter s.

For a given s, we can again follow the approach described in Section 3.4

to obtain the average cost. However, in this case, the analysis simplifies. In

particular, the state of the system can be described by the net inventors level.

This allows us to characterize, in closed from, the probabilities pi, where pi is the

probability that the net inventory level is s+m− i:

pi =





(λ/µ)i
p0
i!

for i = 1, . . . , m,

(λ/µ)m
ρi−m
m

m!
p0 for i = m+ 1, . . . ,

(3.19)

and

p0 =

(
1 +

m∑

i=1

(λ/µ)i

i!
+

(λ/µ)m

m!

ρm
(1− ρm)

)−1

. (3.20)

where ρm = λ/mµ. The expected total cost of the system under this policy is

given as follows

JH2(s) = h

s+m∑

i=0

(s+m− i)pi + b

∞∑

i=s+m+1

(i− s−m)pi + λc. (3.21)

Noting again that the average cost function is convex in s, the optimal value of

the threshold sH2 can be determined as follows. Let

s+ =

⌈
log

((
1− ρm

p0 (λ/µ)
m /m!

)(
h

h+ b

))
/ log(ρm)

⌉
,

where the notation ⌈w⌉ indicates the smallest integer that is greater than

or equal to w. If s+ ≥ 0 then sH2 = s+. Otherwise, sH2 = max{s ≥
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−m|
∑s+m−1

i=0 pi ≤ b/(h + b)} − m. Note that when m = 1, p0 = 1 − λ/µ,

the optimal base-stock level sH2 + m reduces to ⌈log(h/(h+ b))/ log(λ/µ)⌉.

For an integrated production-inventory system, this corresponds to the optimal

base-stock level for a system with a single facility (see Buzacott and Shanthikumar

for a similar result).

To test the performance of heuristics H1 and H2, we choose a base system

with parameters m = 20, µ = 1.0, λ = 18, h = 2, b = 15, and c = 0. We vary

parameter values one at a time and obtain the percentage difference between the

average cost of the heuristic and that of the optimal policy:

Percentage diff. =
Heuristic policy average cost − Optimal policy average cost

Optimal policy average cost
× 100.

Representative results are shown in Table 3.5. Note that we set the

procurement cost c to zero since it is always incurred in the case of backorders

and can be incorporated into the lost sales cost in the case of lost sales. From

Table 3.5, we first note that sH1 ≥ s∗ ≥ sH2. This means that Heuristic H1 is

associated with the highest maximum attainable inventory level sH1 + m, and

Heuristic H2 with the lowest level sH2+m. This is because heuristic H1 lacks the

ability to adjust the number of units on order in the way heuristic H2 and the

optimal policy do. Heuristic H2 must adjust its threshold for the number of units

on order one unit at a time and lacks the flexibility of multiple unit increase or

decrease that the optimal policy has. These results can also be explained by the

shape of the threshold function r∗(x) (illustrated by the vector k∗ as shown in

Table 3.5. Note that when the demand rate is low, the optimal vector k∗ tends to

have more nonzero values and approaches the corresponding vector for Heuristic

H2. On the other hand, for systems with high utilization, k∗ tends to have fewer
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Table 3.5: Performance of Heuristics H1 and H2 in the case of backorders

s∗,k∗ sH1 sH2 Percentage difference
H1 H2

h

2 16, (20, 17, 12, 5, 0, . . . , 0) 17 14 0.045 0.991
5 9, (20, 16, 11, 4, 0, . . . , 0) 10 7 0.071 1.512
7 7, (20, 15, 9, 1, 0, . . . , 0) 8 5 0.083 1.837
10 4, (20,19,14,8,0, . . . , 0) 6 3 0.105 2.368
12 3, (20, 19, 14, 8, 0, . . . , 0) 5 2 0.118 2.669
13 3, (20, 17, 12, 5, 0, . . . , 0) 4 1 0.122 2.715
15 2, (20, 18, 13, 7, 0, . . . , 0) 4 0 0.127 3.088
17 2, (20, 16, 10, 2, 0, . . . , 0) 3 0 0.153 3.267
20 1, (20, 17, 12, 5, 0, . . . , 0) 2 -1 0.165 3.697
50 -2, (20, 18, 13, 6, 0, . . . , 0) -1 -4 0.327 6.873

b

2 2, (20, 18, 13, 7, 0, . . . , 0) 4 0 0.127 3.088
5 8, (20, 15, 9, 1, 0, . . . , 0) 9 6 0.077 1.68
7 10, (20, 17, 12, 5, 0,..., 0) 11 8 0.063 1.4
10 13,(20, 16, 10, 2, 0, . . . , 0) 14 11 0.056 1.175
15 16, (20, 17, 12, 5, 0,. . . , 0) 17 14 0.045 0.991
20 18, (20, 19, 14, 8, 0, . . . , 0) 20 17 0.04 0.902
25 20, (20, 19, 14, 8, 0, . . . , 0) 22 19 0.038 0.844
30 22, (20, 17, 12, 5, 0, . . . , 0) 23 20 0.035 0.766
35 23, (20, 19, 14, 8, 0, . . . , 0) 25 22 0.034 0.755
40 25, (20, 15, 9, 1, 0, . . . , 0) 26 23 0.032 0.698
50 27, (20, 15, 9, 1, 0, . . . , 0) 28 25 0.03 0.652
75 30,( 20, 19, 14, 8, 0, . . . , 0) 32 28 0.027 0.609
100 33, (20, 17, 12, 5, 0, . . . , 0) 34 31 0.025 0.542

λ

4 -7, (20, 19, 17, 15, 13, 11, 9, 6, 3, 0, . . . , 0) -2 -14 96.896 29.265
6 -5, (20, 19, 17, 15, 12, 9, 6, 2, 0, . . . , 0) -1 -11 43.244 32.535
8 -3, (20, 18, 15, 12, 8, 4, 0, . . . , 0) -1 -9 17.134 36.441
10 -2, (20, 18, 15, 11, 7, 2, 0, . . . , 0) 0 -6 7.426 33.331
12 -1, (20, 19, 16, 12, 7, 1, 0, . . . , 0) 1 -4 2.844 24.242
14 1, (20, 19, 15, 11, 5, 0, . . . , 0) 3 -1 1.058 12.716
16 5, (20, 18, 13, 8, 0, . . . , 0) 7 3 0.285 4.807
18 16, (20, 17, 12, 5, 0, . . . , 0) 17 14 0.045 0.991
19 37, (20, 19, 14, 8, 0, . . . , 0) 39 36 0.011 0.223
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nonzero values and approaches the corresponding vector for Heuristic H1.

As shown in Table 3.5 for the case of backorders, the heuristics perform well

except when the holding cost is high, the backorder cost is low, or the demand

rate is high. The heuristics lack the flexibility of the optimal policy to adjust

the ordering threshold levels. This can lead to higher inventory levels when the

heuristics are used, with the associated costs increasing with higher holding costs,

lower backorder costs, or lower demand rates. The effect of the holding and

backorder costs is more pronounced for heuristic H2 because the heuristic cannot

adjust down the ordering thresholds sufficiently quickly. The effect of the low

demand rate is more pronounced for heuristic H1 because, under H1, the order

up to level cannot be smaller than m. Once delivered, ordered units that are not

used to fulfill demand immediately tend to be held in inventory longer leading to

higher holding costs.

Heuristics H1 and H2 can easily be adapted to the case of lost sales using

the results of Section 3.3. Numerical results comparing the performance of the

heuristics to that of the optimal policy are shown in Table 3.6 (in this case, the

base system has parameters m = 20, µ = 1.0, λ = 19, h = 5, L = 150, and c = 0).

The results can be explained similarly to the case with backorders. Some of the

differences in the relative performance of the two heuristics appear to be due the

fact that parameters sH1 and sH2 can no longer be negative as in the backorder

case.
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Table 3.6: Performance of Heuristics H1 and H2 in the case of lost sales

s∗,k∗ sH1 sH2 Percentage difference
H1 H2

h

5 17, (20, 15, 10, 2, 0, . . . , 0) 17 15 0.0487 1.062
10 12, (20, 18, 13, 6, 0, . . . , 0) 13 10 0.061 1.49
15 10, (20, 16, 11, 3, 0, . . . , 0) 10 8 0.082 1.79
20 8, (20, 19, 14, 8, 0, . . . , 0) 9 7 0.087 2.194
25 7, (20, 18, 13, 7, 0, . . . , 0) 8 5 0.102 2.5
30 6, (20, 19, 14, 8, 0, . . . , 0) 7 5 0.121 2.728
35 6, (20, 16, 10, 3, 0, . . . , 0) 6 4 0.136 2.927
40 5, (20, 18, 13, 6, 0, . . . , 0) 6 3 0.137 3.335
45 5, (20, 18, 13, 6, 0, . . . , 0) 5 3 0.159 3.435
50 4, (20, 19, 14, 7, 0, . . . , 0) 5 3 0.153 4.851
70 3, (20, 18, 13, 6, 0, . . . , 0) 4 1 0.196 4.851
80 3, (20, 16, 10, 2, 0, . . . , 0) 3 1 0.234 5.067
90 2, (20, 19, 14, 8, 0, . . . , 0) 3 1 0.243 5.614
100 2, (20, 17, 12, 5, 0, . . . , 0) 3 0 0.26 6.175

L

25 2, (20, 15, 9, 1, 0, . . . , 0) 2 0 0.296 6.68
50 4, (20, 15, 10, 2, 0, . . . , 0) 4 2 0.191 4.149
75 5, (20, 18, 13, 6, 0, . . . , 0) 6 3 0.137 3.335
100 6, (20, 19, 14, 8, 0, . . . , 0) 7 5 0.121 2.728
150 8, (20, 19, 14, 7, 0, . . . , 0) 9 7 0.087 2.194
175 9, (20, 18, 12, 6, 0, . . . , 0) 10 7 0.081 1.966
200 10, (20, 16, 11, 3, 0, . . . , 0) 10 8 0.082 1.79
250 11, (20, 17, 12, 6, 0, . . . , 0) 12 9 0.067 1.618
300 12, (20, 18, 13, 6, 0, . . . , 0) 13 10 0.061 1.49
350 14, (20, 18, 12, 6, 0, . . . , 0) 14 11 0.056 1.317
400 14, (20, 17, 11, 4, 0, . . . , 0) 14 12 0.056 1.274
500 15, (20, 19, 14, 8, 0, . . . , 0) 16 14 0.052 1.181

l

4 0, (11, 8, 5, 2, 0, . . . , 0) 1 0 5.538 61.392
6 0, (15, 12, 9, 5, 1, 0, . . . , 0) 1 0 6.223 74.245
8 0, (18, 15, 12, 9, 5, 0, . . . , 0) 1 0 7.909 88.66
10 1, (20, 16, 12, 8, 4, 0, . . . , 0) 2 0 4.358 56.123
12 2, (20, 17, 13, 8, 3, 0, . . . , 0) 3 0 1.95 22.314
14 3, (20, 19, 15, 10, 5, 0, . . . , 0) 4 1 0.858 10.331
16 5, (20, 19, 15, 10, 0, . . . , 0) 6 3 0.314 5.256
18 8, (20, 19, 14, 7, 0, . . . , 0) 9 7 0.087 2.194
19 10, (20, 18, 13, 6, 0, . . . , 0) 11 9 0.043 1.205
21 16, (20, 16, 10, 0, . . . , 0) 16 15 0.008 0.233
23 25, (20, 18, 11, 1, 0, . . . , 0) 25 24 0 0.01
25 38, (20, 15, 7, 0, . . . , 0) 38 37 0.022 0.798
30 64, (20, 0, . . . , 0) 64 71 0 0
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3.6 Systems with Order Cancellation

In this section, we consider a system similar in all aspects to the original model

described in Sections 3.2 and 3.3, except that now we allow orders to be cancelled

at no cost after they have been placed. This means that, at each decision epoch, we

can choose how many units to have on order by arbitrarily increasing or decreasing

the number of such orders. In other words, at each decision epoch, we decide

on an order quantity k, such that 0 ≤ k ≤ m, where k is unconstrained by

the number of previously placed orders. Because leadtimes are memoryless, it

is not necessary to keep track of the number of units on order. The state of

the system, at time t, can be fully described by only the inventory level X(t).

The assumption of order cancellation is a common assumption in much of the

literature on integrated-production inventory systems (see for example Ha (1997),

De Vericourt et al. (2002), and Benjaafar and ElHafsi (2006)).

Using the same methodology as in the case of no order cancellation, we can

show that the optimal cost function v∗ satisfies, upon uniformization, the following

optimality equation (the details are omitted for brevity):

v∗(x) = g(x) + λv∗(x− 1) + min
0≤k≤m

{kµ (v∗(x+ 1) + c) + (m− k)µv∗(x)} , (3.22)

which we can rewrite as

v∗(x) = g(x)+λv∗(x−1)+mµv∗(x)+ min
0≤k≤m

{kµ (v∗(x+ 1)− v∗(x) + c)} . (3.23)

Theorem 8. The optimal control policy is a base-stock policy with base-stock level

s∗ such that if x < s∗, it is optimal to bring the number of units on order to m,

otherwise it is optimal to bring this number to zero.
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Proof. It is easy to show that the optimal cost function is convex in x. That is,

the difference ∆v∗(x) = v∗(x + 1) − v∗(x) is non-decreasing in x. In turn, this

implies that when ∆v∗(x) + c ≥ 0, it is optimal to bring the number of units

on order to zero (by cancelling pending orders if necessary). On the other hand,

when ∆v∗(x)+ c < 0, it is optimal to bring the number of units on order up to m.

Thus, in each decision epoch, the optimal policy is a so-called bang-bang policy,

where the optimal number of orders to place is either 0 or m. The convexity of

v∗(x) also implies that the optimal policy is a base-stock policy with base-stock

level s∗, where s∗ = min{x|∆v∗(x) + c ≥ 0}, such that it is optimal to bring the

number of units on order to m if x < s∗ and to bring it to 0 otherwise.

Noting that once one unit is produced, it is possible to cancel the production

of all remaining ones. It is not difficult to see that the dynamics of the system

are the same as those where leadtime is exponentially distributed with rate mµ

and only one unit can be on order at any time. In the case of an integrated

production-inventory system, this means that the system is equivalent to one

with a single facility with a production rate mµ. The dynamics of such a system

can be described by a simple Markov chain and various performance measures can

be obtained in this case in closed form. In particular, given a base-stock level s,

the average cost is given by (we again omit the details for the sake of brevity):

J(s) = λc+ h

(
s− ρm

(1− ρsm)

(1− ρm)

)
+ b

ρs+1
m

(1 − ρm)
s, (3.24)

where ρm = λ/mµ. Noting that the average cost is convex in s, the optimal

base-stock level is given by the smallest integer for which J(s+ 1)− J(s) ≥ 0. It
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is not difficult to show that the base-stock level, s∗, is given by:

s∗ =

⌈
log
(

h
h+b

)

log (λ/mµ)

⌉
. (3.25)

Similarly, for systems with lost sales, we can show that the optimal cost

function v∗ satisfies the following optimality equation:

v∗(x) =





g(x) + λv∗(x− 1) +mµv∗(x)

+ min
0≤k≤m

{kµ (v∗(x+ 1)− v∗(x) + c)} if x > 0,

g(x) + λ (v∗(x) + L) +mµv∗(x)

+ min
0≤k≤m

{kµ (v∗(x+ 1)− v∗(x) + c)} otherwise.

(3.26)

As in the corresponding backlog case, the optimal policy is bang-bang. It is

optimal to bring the number of units on order tom if x < s∗ and to zero otherwise.

Here too, the dynamics of the system can be modeled using a Markov Chain.

Various performance measures can be obtained in closed form. In particular, for

a given base-stock level s, the average cost is given by

J(s) = λ
(1− ρm)ρ

s
m

(1− ρs+1
m )

L+
(1− ρm)(s+ ρs+1

m )− ρm(1− ρs+1
m )

(1− ρm)(1− ρs+1
m )

h + λc
1− ρsm

(1− ρs+1
m )

,

(3.27)

where ρm = λ/mµ. Noting again that the average cost is convex in s, the optimal

base-stock level can be easily computed.

We conclude this section by providing numerical results that examine the

benefit from order cancellation. To do so, we compare the performance of the

original model (a system with backlog and no order cancellation) and its lost sale

counterpart to a system that allows for order cancellation. Using a base system

with parameters m = 20, µ = 1.0, λ = 18, h = 2, b = 15, and c = 0, Tables 3.7

and 3.8 show the percentage difference in average cost between systems without
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Table 3.7: Percentage difference in average cost between systems without and
with order cancellation (the backorder case)

h

2 0.881
5 1.328
7 1.629
10 2.093
12 2.365
13 2.45
15 2.783
17 2.816
20 3.375
50 7.346

b

2 2.783
5 1.478
7 1.248
10 0.994
15 0.881
20 0.795
25 0.736
30 0.68
35 0.657
40 0.607
50 0.562
75 0.527
100 0.48

λ

4 141.049
6 98.15
8 65.426
10 37.318
12 21.346
14 9.901
16 4.095
18 0.881
19 0.21
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Table 3.8: Percentage difference in average cost between systems without and
with order cancellation (the lost sale case)

h

5 0.914
10 1.329
15 1.552
20 1.955
25 2.22
30 2.498
35 2.577
40 2.98
45 3.078
50 3.51
70 4.373
80 4.705
90 5.4
100 5.6

L

25 6.74
50 3.85
75 2.98
100 0.025
150 0.02
175 0.018
200 0.016
250 0.0144
300 0.0133
350 0.0122
400 0.011
500 0.01

λ

4 59.662
6 49.969
8 35.418
10 23.105
12 14.43
14 8.067
16 4.356
18 1.955
19 1.136
21 0.221
23 0.012
25 0
30 0
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and with order cancellation for the backlog and lost sales cases respectively, where

Percentage diff. =
Average cost without cancellation −Average cost with cancellation

Average cost with cancellation
× 100.

Results from a more extensive set of experiments reveal similar observations.

As expected, a system in which order cancellations are possible results in lower

costs since it has the ability to quickly adjust the number of orders (or, in the

case of a production-inventory system, the production capacity). As shown in

Table 3.7, for the case of backlogs, the benefit of order cancellation increases as

the holding to the backorder cost ratio increases. Without order cancellation,

all placed orders eventually show up in inventory. The cost implication of the

resulting inventory is higher with higher inventory holding cost or with lower

backorder cost. The benefit of order cancellation increases with decreases in the

demand rate. This is because, when the demand rate is low, any inventory held

tends to be held for longer periods of time. Systems with order cancellation can

mitigate the need for holding inventory by placing multiple orders when demand

arises, thereby expediting deliveries, but then cancelling pending orders once

demand is satisfied. This ability to expedite deliveries without repercussion on

inventory holding cost is not available to the system without order cancellations.

Such systems end up carrying more inventory on average than systems without

order cancellation. Table 3.8 tells a similar story for systems with lost sales.



Chapter 4

Optimal Policies for Inventory

Systems with Concave Ordering

Costs

4.1 Introduction

Most of the literature on inventory systems usually assumes a linear ordering cost

or a linear ordering cost with a setup cost. As Scarf (1963) argues, “This type

of cost functions has appeared in inventory theory not necessarily because of its

realism, but because it provides one of the few examples of cost functions with

a decreasing average cost for which the analysis of inventory policies is relatively

easy.” In this paper, we consider inventory systems with general concave ordering

cost functions, where the type of ordering costs described in Scarf (1959) is a

special case under our setting. The class of concave ordering cost functions is a

104



105

special type of a decreasing average cost and there are many examples of concave

ordering costs in practice. Consider the following examples.

Quantity Discounts: Quantity discounts provide a practical foundation for

coordinating inventory decisions in supply chains. Sellers usually employ quantity

discount schemes or contracts to give buyers the incentive to buy more. That is,

the larger the order is, the lower the marginal price will be. Ordering costs with

quantity discounts can usually be expressed by piecewise linear concave functions:

first, there is a setup cost; then the first few items have the same per-unit cost;

the next few items have a lower per-unit cost, and so on.

The Effect of Economies of Scale: In economics, one of the common

assumptions on production functions is that they have the economies of scale

feature. Basically, the more a firm produces the same item, the more efficient

the production technology will be. The transportation costs in supply chains also

exhibit economies of scale: the more volume of goods to be shipped, the cheaper

the marginal cost will be. Concave functions are an important class of functions

exhibiting the feature of economies of scale.

Procurement with Multiple Suppliers: In many cases in practice, there

are multiple suppliers available for a buyer. Usually local suppliers offer relatively

lower setup costs but with higher per-unit costs and overseas or distant suppliers

offer higher setup costs but with lower per-unit costs. Hence, if the buyer chooses

the suppliers optimally, the resulting ordering cost is a piecewise linear concave

function. A related case of a buyer that purchases from both long-term suppliers

and spot markets is treated in Yi and Scheller-Wolf (2003) and the references

therein. There are many other examples of concave costs due to the availability of
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multiple choices of labor and production, see Fox et al. (2006) for examples and

references therein.

Scarf (1959) proves that the (s, S) policy is optimal for an inventory system

with a fixed ordering cost and a unit ordering cost and does it by introducing

the notion of K-convexity. This type of ordering cost is a special case of

concave ordering costs. Karlin (1958) analyzes the optimal ordering policy

for a one-period inventory problem with concave ordering costs. Scarf (1963)

points out that it is difficult to generalize the result to the dynamic multiperiod

setting. There has been only limited research on stochastic inventory systems

with concave ordering costs. Porteus (1971) analyzes inventory systems with

piecewise linear concave ordering costs. He shows that a generalized (s, S)

policy is optimal for a multi-period periodic review inventory system under

some mild assumption on cost functions and that demand has a one-sided

Polya density. He does it by introducing a generalized notion of K-convexity

called quasi-K-convexity. However, the class of one-sided Polya densities does

not include many densities encountered in practice, for example, the normal

distribution, beta distribution and most gamma distributions, although it does

include the exponential distribution and all its finite convolutions. Porteus (1972)

also shows that the generalized (s, S) policy is optimal for uniform demand

distributions.

Fox et al. (2006) consider the optimal policy for an inventory system with two

suppliers: the buyer incurs a high variable cost but negligible fixed cost for the first

supplier (HVC) and a lower variable cost but a substantial fixed cost for the second

supplier (LVC). The resulting ordering cost is a two-piece linear concave function.
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They show that the optimal policy is a (s, SHV C , SLV C) policy, which is a special

case of the generalized (s, S) policy, under the condition that the demand density

is log-concave. Their proof relies on K-convexity and quasi-convex properties

since they consider a two-piece linear concave function. Although the class of

log-concave densities is less restrictive than the class of one-sided Polya densities,

it still only covers a limited range of distributions. Furthermore, their results do

not cover general piecewise linear concave ordering costs. Hence, whether or not

the generalized (s, S) policy is optimal for general demand distributions remained

an open question.

Recently, Chen et al. (2010) consider joint pricing and inventory control for

inventory systems with concave ordering costs. They utilize quasi-K-convexity

to show that the optimal policy is a generalized (s, S, p) policy when demand

distributions are Polya or uniform. Another related paper is Yi and Scheller-Wolf

(2003), where they also consider a two-supplier inventory problem: the buyer

has a long-term contract from a regular supplier with a minimum and maximum

purchasing quantity, and the buyer can also purchase from a spot market that

has no quantity limitation but with a fixed entry fee. They partially characterize

the structure of the optimal policy and their proof relies on a closure property of

K-convexity. Note that the ordering cost in their case is no longer concave since

they assume a limited capacity for the regular supplier and the corresponding

optimal policy is not a generalized (s, S) policy.

Chen and Simchi-Levi (2004) consider the joint inventory-pricing control

problem with fixed ordering costs. They introduce the concept of

sym-K-convexity, which is a generalization of K-convexity, and show that the
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optimal policy can be fully characterized except for a bounded interval for the

multiplicative demand model. Chao and Zipkin (2008) study a model with a

fixed cost function that is neither convex nor concave: the fixed cost is incurred

only if the order quantity exceeds a threshold, and hence the cost function can

be written as c(x) = Kδ(x − C) for some constant C. They apply the property

of K-convexity and partially characterize the optimal policy with three critical

points which divide the state space into five regions.

In contrast to the existing literature, we characterize the structure of optimal

policies for inventory systems with concave ordering costs with general demand

distributions. In order to analyze the structure of the optimal policy, we first

introduce a monotone condition that ensures the optimality of a generalized

(s, S) policy. We then introduce the concept of c-convexity, a generalization of

K-convexity, and use it to show that the value function for this problem is c-convex

with respect to a modified ordering cost function. Based on the c-convexity of the

value function, we show that, except for a bounded region of the state space, the

generalized (s, S) policy is optimal. We also provide conditions under which the

generalized (s, S) policy is optimal for all regions of the state space. Our results

can be readily extended to systems with time-varying cost parameters, systems

with fixed leadtimes and to systems with lost sales. The notion of c-convexity

we introduce in this paper may also have usefulness to other inventory control

problems.
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4.2 Inventory Systems with Concave Ordering

Costs

We consider a single product single stage inventory problem with multiple periods,

stochastic demands, and zero leadtime. The assumption on zero leadtime is not

critical and is made for ease of exposition (see Section 4.6 for extensions). Demand

ξt in each period t is a continuous random variable with E[ξt] < ∞ and distribution

function Ft(x), x ≥ 0, where t = 1, · · · , T and T corresponds to the length of

the planning horizon. Demands in different periods are independent but not

necessarily identically distributed (i.e., demand can be time-varying). Inventory

is replenished from an outside supplier immediately (i.e., with zero leadtime) with

ample stock. Demand is satisfied from on-hand inventory, if any is available;

otherwise it is backordered. In each period, the inventory manager must decide

on the quantity to order to minimize the expected discounted cost over the entire

planning horizon. There are three types of costs in each period t: (1) an ordering

cost c(z) if the order quantity is z, z ≥ 0, (2) a holding cost ht(x
+) and (3)

a backordering cost bt(x
−) given the inventory level x in period t, where x+ =

max{0, x} and x− = max{0,−x}. Finally, we allow a discount factor α ∈ (0, 1].

In order to simplify our presentation, we first consider a piecewise linear

concave ordering cost c(·) with n linear pieces. Specifically, we can express

c(x) = min
i=1,··· ,n

{Kiδ(x) + cix},

with 0 ≤ K1 < K2 < · · · < Kn and c1 > c2 > · · · > cn ≥ 0, where δ is defined as
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follows

δ(x) =





1 if x > 0,

0 if x ≤ 0.

(4.1)

We will discuss how we can deal with general concave ordering costs at the

end of Section 4.3 and time-varying costs in the section on extensions (see Section

4.6).

Let

gt(x− ξt) =





ht(x− ξt) if x ≥ ξt,

bt(ξt − x) otherwise.

Let xt be the starting inventory level and yt be the post-ordering inventory level

for period t, with xt+1 = yt − ξt. Given x1, · · · , xT , y1, · · · , yT , i.e., the ordering

quantities being qt = yt − xt, t = 1, · · · , T , the expected discounted total cost is

given by

E

{
T∑

t=1

αt[c(yt − xt) + gt(yt − ξt)]

}
. (4.2)

Let v∗t (x) be the value function (the optimal expected discounted cost) in

period t when the inventory level in period t is x. Then the corresponding dynamic

programming formulation is given by

v∗t (x) = min
y≥x

{c(y − x) + Egt(y − ξt) + αEv∗t+1(y − ξt)}. (4.3)

Finally we let v∗T+1(x) = 0 for all x.

Assumption 1. We assume that Lt(y) = Egt(y − ξt) is convex in y and finite

for any y.
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For example, this assumption is satisfied if ht and bt are linear and E[ξt] < ∞.

The finiteness of Lt ensures that Lt is continuous on (−∞,∞) (by the dominated

convergence theorem).

Let

Ht(y) = Egt(y − ξt) + αEv∗t+1(y − ξt).

Then the optimality equation is given by

v∗t (x) = min
y≥x

[c(y − x) +Ht(y)]. (4.4)

Given x, let yt(x) be the smallest minimizer of c(y − x) +Ht(y), i.e.,

yt(x) = min argmin
y≥x

{c(y − x) +Ht(y)}. (4.5)

Hence, given the current inventory level is x, it is optimal to order yt(x) − x

quantity in period t.

4.3 The Structure of the Optimal Policy

In this section, we show that, except for a bounded region, the optimal policy can

be described by a generalized (s, S) policy.

First, we show a conditional monotone property for yt(x) for any concave

function c.

Theorem 9. Suppose that yt(x) > x, then yt(z) ≤ yt(x) for z ∈ (x, yt(x)).

Proof. Suppose that for some x, we have yt(x)− x > 0. Let yt(x) > z > x. Since

we know that c(x) is concave in x, for ω > 0 we have

c(yt(x) + ω − z)− c(yt(x)− z) ≥ c(yt(x) + ω − x)− c(yt(x)− x),
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which implies that

c(yt(x) + ω − z) +Ht(yt(x) + ω)− [c(yt(x)− z) +Ht(yt(x))]

≥c(yt(x) + ω − x) +Ht(yt(x) + ω)− [c(yt(x)− x) +Ht(yt(x))] ≥ 0. (4.6)

Since inequality (4.6) is true for all ω > 0 and c is continuous in (0,∞), it follows

that yt(z) ≤ yt(x).

As far as we know, this is a new result in the literature. The interesting

aspect of this result is that the conditional monotone property in period t holds

for general concave ordering costs. However we do not know what will happen

for z /∈ (x, yt(x)). Next, we describe a monotone condition that is the key to

characterizing the structure of optimal policies.

Condition 1. yt(x2) > x2 implies that yt(x1) > x1 for any x1 < x2. In words,

if it is optimal to order a positive amount when the starting inventory level is x2,

then it must be optimal to order a positive amount when the starting inventory

level is less than x2 in period t.

It turns out that if we know that yt(x2) > x2 implies that yt(x1) > x1 for any

x1 < x2, then coupled with Theorem 9, we can show that yt(x1) ≥ yt(x2) for all

x1 < x2 such that yt(x2) > x2.

Lemma 10. Under Condition 1, we have

(1) yt(x1) ≥ yt(x2) for all yt(x2) > x2 and x1 < x2.

(2) There exists some x0 such that yt(x) = x for all x ≥ x0 and yt(x) is

non-increasing in x for x ∈ (−∞, x0].
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Proof. We prove the first part by contradiction. Suppose we have yt(x1) < yt(x2)

given that yt(x2) > x2, yt(x1) > x1 and x1 < x2. We differentiate two cases.

(1) yt(x1) ≤ x2. This case is impossible, since under Condition 1, we must have

yt(yt(x1)) > yt(x1), i.e., yt(x1) is not an optimal order-up-to level for x1, which

violates the optimality of yt(·). (2) yt(x1) ∈ (x2, yt(x2)). This case is impossible

since it violates Theorem 9. We know that by Theorem 9, we must have yt(x2) <

yt(x1) since x2 ∈ (x1, yt(x1)).

Since we have limx→∞Ht(x) = ∞, it follows that for sufficiently large x, we

must have yt(x) = x. Let x0 the smallest value such that yt(x) = x. Then

yt(x) > x for all x < x0 by Condition 1. It follows that yt(x) is non-increasing in

x in that domain by part (1) of this lemma. It can also be shown that yt(x) = x

for all x > x0, otherwise if yt(x) > x > x0 then we must have yt(x0) > x0. This

contradicts the definition of x0.

Theorem 10. If Condition 1 is satisfied, then the optimal inventory policy in

period t is a generalized (s, S) policy, i.e., there exists (sm,t, · · · , s1,t, S1,t, · · · , Sm,t)

with sm,t < sm−1,t < · · · < s1,t ≤ S1,t < S2,t < · · · < Sm,t for some m ≤ n such

that if x < sm,t then we order up to Sm,t and if x ∈ [si,t, si−1,t) then we order up

to Si−1,t for i = 2, . . . , m, and finally we order nothing for x ≥ s1,t. Hence, we

have at most n distinctive such order-up-to levels Si,t.

Proof. Let s1,t = min{x : Ht(x) ≤ c(y−x)+Ht(y), y > x}, i.e., s1,t is the minimum

starting inventory level such that it is optimal to order nothing (the existence of

s1,t is due to limx→∞Ht(x) = ∞ and Ht is continuous). It follows that if x > s1,t,

then it is also optimal to order nothing, since otherwise it would violate Condition

1. Also if x < s1,t, then it must be optimal to order a positive quantity and the
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post-ordering inventory level must be greater than or equal to s1,t, since otherwise

it would violate the definition of s1,t.

Let

Ŝi,t = min arg min
y≥s1,t

{Ht(y) + ciy},

i.e., Ŝi,t is the minimum ofHt(y)+ciy on [s1,t,∞) (the existence of Ŝi,t is due to the

continuity of Ht). Since c1 > c2 > · · · > cn, it follows that Ŝ1,t ≤ Ŝ2,t ≤ · · · ≤ Ŝn,t.

For x ∈ (−∞, s1,t), let

vi,t(x) = min
yi≥x

[ciyi +Kiδ(yi − x) +Ht(yi)]− cix

= min{min
yi>x

[ciyi +Ki +Ht(yi)], cix+Ht(x)} − cix.

We have

min
y≥x

{c(y − x) +Ht(y)} = min
i=1,··· ,n

{vi,t(x)}.

It follows that for any starting inventory level x ∈ (−∞, s1,t) (note that it is

optimal to order a positive quantity for such starting inventory level x), it must be

optimal to order to one of the levels in {Ŝ1,t, Ŝ2,t, · · · Ŝn−1,t}. Ties can be broken

by choosing the smallest solution.

Suppose that for small enough δ it is optimal to order up to Ŝi1,t for some

i1 ∈ {1, · · · , n} for starting inventory level x ∈ [s1,t − δ, s1,t). If i1 = n, then we

are done. Otherwise, let s2,t be the smallest value such that it is optimal to order

up to Ŝi1,t, i.e., yt(x) = Ŝi1,t for x ∈ [s2,t, s1,t). We define S1,t ≡ Ŝi1,t. Since it

is also optimal to order a positive quantity for x < s2,t, by Lemma 10, we have

yt(x) > Ŝi1,t for x < s2,t. Again, suppose for some small enough δ it is optimal to

order-up-to Ŝi2,t for some i2 ∈ {1, · · · , n} for x ∈ [s2,t−δ, s1,t). Obviously, we have
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i2 > i1 by the conditional monotone property. We define S2,t ≡ Ŝi2,t. If S2,t = Ŝn,t,

then we are done. Otherwise by a similar argument, we can iteratively define si,t

and Si,t (i > 3) such that it is optimal to order-up-to Si,t for x ∈ [si+1,t, si) until

we have some sm,t and Sm,t = Ŝn,t. Then it follows that if x < sm,t, it is optimal

to order up to Sm,t = Ŝn,t. It is also clear that m ≤ n.

To analyze the structure of the optimal policy, we can rewrite the ordering cost

as follows: c(x) = Ki + cix for x ∈ [zi−1, zi], i = 2, · · · , n− 1, c(x) = K1δ(x) + c1x

for x ∈ [0, z1] and c(x) = Kn + cnx for x ≥ zn−1, where 0 < z1 < · · · < zn−1. Note

that c(x) − cnx ≥ 0 for all x ≥ 0. We first use the following transformation. We

define c̄(x) ≡ c(x) − cnx. It is clear that c̄(x) = Kn for x ≥ zn−1. Then we can

reformulate the dynamic recursion in (4.3) as follows.

v̄∗t (x) = min
y≥x

E{c̄(y−x)+(1−α)cn[y−ξt]+cnξt+gt(y−ξt)+αEv̄∗t+1(y−ξt)}, (4.7)

with v̄T+1(x) = cnx. Let

Ḡt(y) = (1− α)cn[y −Eξt] + cnEξt + Egt(y − ξt) + αEv̄∗t+1(y − ξt),

and

L̄t(y) = (1− α)cn[y −E(ξt)] + cnEξt + Egt(y − ξt).

Then we have

v̄∗t (x) = min
y≥x

{c̄(y − x) + Ḡt(y)}. (4.8)

We can show that v∗t (x) = v̄∗t (x)− cnx.

Next, we introduce a new generalized convexity notion to which we refer as

c-convexity.



116

Definition 4. A function f is said to be c-convex for any nonnegative

nondecreasing concave function c if for any x1 < x2 and θ ∈ (0, 1) the following

inequality holds

θf(x1) + (1− θ)[f(x2) + c(x2 − θx1 − (1− θ)x2)] ≥ f(θx1 + (1− θ)x2).

One can view c-convexity as a generalization of K-convexity.

Based on the definition of c-convexity, we can show that the following lemma

holds.

Lemma 11. c-convex functions have the following properties. Assuming ci, i =

1, 2 are nonnegative nondecreasing concave functions.

1. Convexity is equivalent to 0-convexity, where 0 denotes that c(x) ≡ 0 for all

x ≥ 0.

2. If g is c-convex, then g(x+ a) is also c-convex for any a.

3. If g is c1-convex, then it is also c2-convex if c2(x) ≥ c1(x) for all x ≥ 0.

4. If gi is ci-convex for i = 1, 2, then a1g1 + a2g2 is a1c
1 + a2c

2-convex for all

non-negative ai.

5. If g is c-convex and f(x) = E[g(x− ξ)] < ∞, where ξ is a random variable,

then f(x) is also c-convex.

The proof of the lemma is straightforward and hence omitted.

Next, we show that the value function is indeed c̄-convex where c̄(x) = c(x)−

cnx.

Lemma 12. v̄∗t (x) is c̄-convex for all t.
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Proof. We use induction to show that v̄∗t (x) is c̄-convex for all t. It is clear that

v̄∗T is c̄-convex since it is a linear function. Suppose that v̄t+1 is c̄-convex. Since

L̄t is convex, then Ḡt(x) = L̄t(x) + αEv̄∗t+1(x− ξt) must be c̄-convex according to

Lemma 11. For any x1 < x2 and θ ∈ (0, 1), we differentiate two possible cases:

(1) yt(x1) ≥ θx1 + (1− θ)x2 and (2) yt(x1) < θx1 + (1− θ)x2 (recall that yt(x) is

the optimal order-up-to level for x).

For case (1), we have

θv̄∗t (x1) + (1− θ)[v̄∗t (x2) + c̄(x2 − θx1 − (1− θ)x2)]

=θ[Ḡt(yt(x1)) + c̄(yt(x1)− x1)] + (1− θ)[Ḡt(yt(x2)) + c̄(yt(x2)− x2)

+ c̄(x2 − θx1 − (1− θ)x2)]

≥θ[Ḡt(yt(x1)) + c̄(yt(x1)− x1)] + (1− θ)[Ḡt(yt(x2)) + c̄(yt(x2)− θx1 − (1− θ)x2)]

≥θ[Ḡt(yt(x1)) + c̄(yt(x1)− θx1 − (1− θ)x2)] + (1− θ)[Ḡt(yt(x2))

+ c̄(yt(x2)− θx1 − (1− θ)x2)]

≥v̄∗t (θx1 + (1− θ)x2).

The first inequality is due to the subadditivity of c̄ since c̄ is concave. The second

inequality is due to the fact that c̄ is nondecreasing and yt(x1) ≥ θx1 + (1− θ)x2.

For case (2), we differentiate two subcases: (2a) Ḡt(yt(x1)) + c̄(yt(x1)− x1) >

Ḡt(yt(x2))+ c̄(yt(x2)−x2)+ c̄(x2−θx1−(1−θ)x2) and (2b) Ḡt(yt(x1))+ c̄(yt(x1)−

x1) ≤ Ḡt(yt(x2)) + c̄(yt(x2)− x2) + c̄(x2 − θx1 − (1− θ)x2).

First, we consider subcase (2a). In this subcase, we have

θv̄∗t (x1) + (1− θ)[v̄∗t (x2) + c̄(x2 − θx1 − (1− θ)x2)]

=θ[Ḡt(yt(x1)) + c̄(yt(x1)− x1)] + (1− θ)[Ḡt(yt(x2)) + c̄(yt(x2)− x2)

+ c̄(x2 − θx1 − (1− θ)x2)]
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>θ[Ḡt(yt(x2)) + c̄(yt(x2)− x2) + c̄(x2 − θx1 − (1− θ)x2)]

+ (1− θ)[Ḡt(yt(x2)) + c̄(yt(x2)− θx1 − (1− θ)x2)]

≥Ḡt(yt(x2)) + c̄(yt(x2)− θx1 − (1− θ)x2)

≥v̄∗t (θx1 + (1− θ)x2).

The first inequality is due to the subadditivity of c̄ and the assumption of subcase

(2a) and the second inequality is due to the subadditivity of c̄.

Next, we consider subcase (2b). Since yt(x1) < θx1+(1−θ)x2 and Ḡt(yt(x1))+

c̄(yt(x1)− x1) ≤ Ḡt(x1), it follows that there exists some x̂1 such that x1 ≤ x̂1 ≤

yt(x1) and Ḡt(x̂1) = Ḡt(yt(x1))+ c̄(yt(x1)−x1) since Ḡt is continuous. Then there

exists 1 > ρ ≥ θ such that ρx̂1 + (1− ρ)yt(x2) = θx1 + (1− θ)x2. In this subcase

we have

θv̄∗t (x1) + (1− θ)[v̄∗t (x2) + c̄(x2 − θx1 − (1− θ)x2)]

=θ[Ḡt(yt(x1)) + c̄(yt(x1)− x1)] + (1− θ)[Ḡt(yt(x2)) + c̄(yt(x2)− x2)

+ c̄(x2 − θx1 − (1− θ)x2)]

=θ[Ḡt(x̂1)] + (1− θ)[Ḡt(yt(x2)) + c̄(yt(x2)− x2) + c̄(x2 − θx1 − (1− θ)x2)]

≥ρ[Ḡt(x̂1)] + (1− ρ)[Ḡt(yt(x2)) + c̄(yt(x2)− x2) + c̄(x2 − θx1 − (1− θ)x2)]

≥ρ[Ḡt(x̂1)] + (1− ρ)[Ḡt(yt(x2)) + c̄(yt(x2)− ρx̂1 − (1− ρ)yt(x2))]

≥Ḡt(ρx̂1 + (1− ρ)yt(x2))

=Ḡt(θx1 + (1− θ)x2)

≥v̄∗t (θx1 + (1− θ)x2),

where the first inequality is due to ρ ≥ θ and Ḡt(yt(x1)) + c̄(yt(x1) − x1) ≤

Ḡt(yt(x2))+ c̄(yt(x2)−x2)+ c̄(x2− θx1 − (1− θ)x2). The second inequality is due
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to the subadditivity of c̄. The third inequality is due to Ḡt being c̄-convex. This

completes the inductive proof.

Remark 1. In contrast to the proof of K-convexity in Scarf (1959), our proof of

the c̄-convexity of the value function does not rely on any structural properties of

the optimal policy.

Based on the c̄-convexity of the value function, we can characterize the

structure of the optimal policy as follows. Define

Ŝi,t = min argmin
y

[Ḡt(y) + (ci − cn)y].

Let

ŝn,t = max{x|Ḡt(x) > Ḡt(Ŝn,t) +Kn, Ŝn,t − x ≥ zn−1},

i.e., ŝn,t is the largest value such that ordering up to Ŝn,t is preferable to not

ordering (there always exists such ŝn,t since Ḡt is c̄-convex and Lt(x) → ∞ as

x → −∞). Also let s0,t be the maximum z such that it is optimal to order a

positive quantity for all x ∈ [ŝn,t, z] in period t.

Theorem 11. The optimal policy has the following properties.

(1) The generalized (s, S) policy is optimal for x < s0,t.

(2) It is optimal not to order for x ≥ Ŝn,t.

(3) If it is optimal to order for x ∈ (s0,t, Ŝn,t), then its optimal order-up-to level

is less than Ŝn,t.

Thus, except for the interval (s0,t, Ŝn,t), the generalized (s, S) policy is optimal.
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Proof. (1) First, we show that if Ḡt(x) > Ḡt(Ŝn,t)+ c̄(Ŝn,t−x) and Ŝn,t−x ≥ zn−1,

then we must have Ḡt(x − δ) > Ḡt(Ŝn,t) + c̄(Ŝn,t − x + δ) for all δ > 0. We

show this by contradiction. Suppose that Ḡt(x0) > Ḡt(Ŝn,t) + c̄(Ŝn,t − x0) with

Ŝn,t − x0 ∈ (zn−1,∞) but Ḡt(x0 − δ) ≤ Ḡt(Ŝn,t) + c̄(Ŝn,t − x0 + δ) for some δ > 0.

There exists some ρ ∈ (0, 1) such that ρ(x0 − δ) + (1− ρ)Ŝn,t = x0. Note that

c̄(Ŝn,t − x0) = ρc̄(Ŝn,t − x0 + δ) + (1− ρ)c̄(Ŝn,t − x0),

since c̄(Ŝn,t − x0 + δ) = c̄(Ŝn,t − x0) = Kn for Ŝn,t − x0 ≥ zn−1. Thus, we have

Ḡt(Ŝn,t) + c̄(Ŝn,t − x0)

=ρ[Ḡt(Ŝn,t) + c̄(Ŝn,t − x0 + δ)] + (1− ρ)[Ḡt(Ŝn,t) + c̄(Ŝn,t − x0)]

≥ρ[Ḡt(x0 − δ)] + (1− ρ)[Ḡt(Ŝn,t) + c̄(Ŝn,t − x0)]

≥Ḡt(x0).

This implies that Ḡt(Ŝn,t)+ c̄(Ŝn,t−x0) ≥ Ḡt(x0), which contradicts the fact that

Ḡt(Ŝn,t) + c̄(Ŝn,t − x0) < Ḡt(x0).

Since

ŝn,t = max{x|Ḡt(x) > Ḡt(Sn,t) +Kn, Ŝn,t − x ≥ zn−1},

it follows that it is optimal to order a positive quantity for x < ŝn,t based on the

above result. By the definition of s0,t, it is optimal to order a positive quantity

for all x ∈ [ŝn,t, s0,t) in period t. It follows that the generalized (s, S) policy is

optimal on (−∞, s0,t) based on Theorem 10.

(2) We show this result by contradiction. Suppose that yt(x0) > x0 for some

x0 > Ŝn,t. Then we must have

Ḡt(x0) > Ḡt(yt(x0)) + c̄(yt(x0)− x0).
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But we know that for any x < x0 and θ ∈ (0, 1) such that θx+(1− θ)yt(x0) = x0,

we have

θḠt(x) + (1− θ)[Ḡt(yt(x0)) + c̄(yt(x0)− x0)] ≥ Ḡt(x0),

since Ḡt is c̄-convex. It follows that Ḡt(x) > Ḡt(x0) and hence Ḡt(Ŝn,t) > Ḡt(x0),

which contradicts the fact that Ŝn,t minimizes Ḡt(x).

(3) is due to Theorem 9.

Remark 2. In general, the generalized (s, S) policy may not be optimal over the

interval (s0,t, Ŝn,t). In the Appendix, we provide a counter example.

We conclude this section by noting that the results regarding the structure

of the optimal policy extend to the case where the ordering cost c(x) in each

period is a general increasing concave function. This follows from the fact that

we can approximate, with arbitrary accuracy, an increasing concave function by

a piecewise linear concave function.

4.4 Further Characterization of the Optimal

Policy

In this section, we further characterize the optimal policy by showing that (1) the

region over which the generalized (s, S) policy may not be optimal can be further

reduced, (2) this region is increasing in c1 − cn, and (3) providing bounds on the

optimal order-up-to levels Ŝi,t.

First, let

ηi,t = min argmin
y

[L̄t(y) + (ci − cn)y],



122

i.e., ηi,t is the global minimum of L̄t(y) + (ci − cn)y for i = 1, · · · , n assuming it

exists. It is clear that η1,t ≤ η2,t ≤ · · · ≤ ηn,t since c1 > c2 > · · · > cn.

Assumption 2. ηn,1 ≤ ηn,2 ≤ · · · ≤ ηn,T .

Assumption 2 is satisfied if demands and costs are stationary.

First, we state a lemma which is useful in the further characterization of the

optimal policy.

Lemma 13. Under Assumption 2,

(1) v̄∗t (x) is nonincreasing in x for any x ≤ ηn,t, and

(2) Ḡt(x2)− Ḡt(x1)+(ci−cn)(x2−x1) ≤ L̄t(x2)− L̄t(x1)+(ci−cn)(x2−x1) ≤ 0

for x1 ≤ x2 ≤ ηi,t.

Proof. (1) We show this result by induction. Observe that it is true for period

T . Assume that it is true for period t + 1. It is clear that βE[v̄∗t+1(y − ξt)] is

nonincreasing in y for any y ≤ ηn,t+1 by the inductive assumption since ξt ≥ 0.

Since ηn,t ≤ ηn,t+1, it follows that Ḡt(y) is also nonincreasing in y for y ≤ ηn,t. Let

x1 < x2 ≤ ηn,t. Define a ∨ b = max{a, b} for some real numbers a, b. Let yt(x) be

the optimal order-up-to level under state x. We have

v̄∗t (x1) =Ḡt(yt(x1)) + c̄(yt(x1)− x1)

≥Ḡt(yt(x1) ∨ x2) + c̄(yt(x1) ∨ x2 − x2)

≥min
y≥x2

[Ḡt(y) + c̄(y − x2)]

=v̄∗t (x2).
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The first inequality is due to the fact that Ḡt(y) is nonincreasing in y for y ≤ ηn,t

and the fact that c̄(yt(x1)−x1) ≥ c̄(yt(x1)∨ x2−x2) for any x2 ≥ x1. The second

inequality is due to the fact that yt(x1) ∨ x2 ≥ x2.

(2) For x1 ≤ x2 ≤ ηi,t, we have

Ḡt(x2)− Ḡt(x1) + (ci − cn)(x2 − x1)

=L̄t(x2)− L̄t(x1) + (ci − cn)(x2 − x1) + βE[v̄∗t+1(x2 − ξt)− v̄∗t+1(x1 − ξt)]

≤L̄t(x2)− L̄t(x1) + (ci − cn)(x2 − x1) ≤ 0.

The first inequality is due to the fact that v̄∗t+1(x) is nonincreasing in x for any

x ≤ ηn,t+1. The second inequality is due to the fact that L̄t(x) + (ci − cn) is

nonincreasing in x for any x ≤ ηi,t and the fact that ηi,t ≤ ηn,t.

Proposition 5. Under Assumption 2, the optimal policy can be further

characterized as follows.

(1) The generalized (s, S) policy is optimal for x < η1,t.

(2) It is optimal not to order for x > ηn,t.

(3) η1,t − ηn,t is increasing in c1 − cn.

(4) Ŝi,t ≥ ηi,t for i = 1, · · · , n.

Proof. (1) We show that if it is optimal to order at some x2 < η1,t it must be

optimal to order at any x1 such that x1 < x2. Then according to Theorem 10,

the generalized (s, S) policy is optimal for x < η1,t. Suppose that c(yt(x2)−x2) =

Ki + ci(yt(x2)− x2). Then we have

Ḡt(yt(x2)) + c̄(yt(x2)− x1) ≤ Ḡt(yt(x2)) +Ki + ci(yt(x2)− x1)− cn(yt(x2)− x1)



124

= Ḡt(yt(x2)) + c̄(yt(x2)− x2) + (ci − cn)(x2 − x1)

< Ḡ(x2) + (ci − cn)(x2 − x1)

≤ Ḡ(x1).

The first inequality is due to the fact that c̄(x) = min
i
{Ki + cix} − cnx. The

second inequality is due to the fact that Ḡt(yt(x2)) + c̄(yt(x2)− x2) < Ḡ(x2), i.e.,

it is optimal to order at x2. The last inequality is due to Ḡt(x) + (ci − cn)x being

nonincreasing for x < η1,t. Thus, it is optimal to order at x1.

(2) First, we show v̄∗t (x2) + c̄(x2 − x1) ≥ v̄∗t (x1) for x2 > x1. Note that

v̄∗t (x2) + c̄(x2 − x1) =Ḡ∗
t (yt(x2)) + c̄(yt(x2)− x2) + c̄(x2 − x1)

≥Ḡt(yt(x2)) + c̄(yt(x2)− x1)

≥v̄∗t (x1).

The first inequality is due to the subadditivity of c̄. Since v̄∗t (x2) + c̄(x2 − x1) ≥

v̄∗t (x1) and L̄t(x2) ≥ L̄t(x1) for x2 > x1 ≥ ηn,t, as a result we must have Ḡt(x2) +

c̄(x2 − x1) ≥ Ḡt(x1) for x2 > x1 ≥ ηn,t. Hence, it is optimal to order nothing for

x ≥ ηn,t.

(3) This result follows directly from the definition of ηi,t.

(4) This result is due to property (2) of Lemma 13.

Note that results (2) and (3) of the above proposition hold even without

Assumption 2.

As we can see, under Assumption 2, the generalized (s, S) policy is optimal

except for the interval (η1,t, ηn,t) and the width of this interval is increasing in

c1 − cn, implying that when c1 − cn is small, the width of (η1,t, ηn,t) is also small.
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For K1 = 0, we can further reduce the interval over which the generalized

(s, S) policy may not be optimal. Let c̄1(x) ≡ c(x)− c1x,

L̄1,t(y) = (1− α)c1[y − E(ξt)] + c1Eξt + Egt(y − ξt),

and

Ḡ1,t(y) = L̄1,t(y) + αEv̄∗1,t+1(y − ξt).

Then we can reformulate the dynamic recursion as follows.

v̄∗1,t(x) = min
y≥x

E{c̄1(y − x) + (1− α)c1[y − ξt] + c1ξt + gt(y − ξt)

+ αv̄∗1,t+1(y − ξt)}

= min
y≥x

{c̄1(y − x) + Ḡ1,t(y)},

with v̄1,T+1(x) = c1x. Note that c̄1(x) ≤ 0 for all x ≥ 0 and

Ŝ1,t = min argmin
y

[Ḡt(y) + (c1 − cn)y] = min argmin
y

Ḡ1,t(y).

This leads to the following proposition.

Proposition 6. If K1 = 0, then the region over which we cannot fully characterize

the structure of the optimal policy can be reduced to (Ŝ1,t, ηn,t).

Proof. We first show that the generalized (s, S) policy is optimal for x < Ŝ1,t.

Note that the optimal ordering decision is given by

min
y≥x

[Ḡ1,t(y) + c̄1(y − x)].

Since c̄1(y − x) ≤ 0 and Ḡ1,t(x) > Ḡ1,t(Ŝ1,t) for x < Ŝ1,t, we have

Ḡ1,t(Ŝ1,t) + c̄1(Ŝ1,t − x) < Ḡ1,t(x)
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for x < Ŝ1,t. Hence it is optimal to order a positive quantity under x for all

x < Ŝ1,t. In turn, this implies, based on Theorem 10, that the generalized (s, S)

policy is optimal for x < Ŝ1,t. By a similar argument as in Proposition 5, we can

show that it is optimal not to order for x > ηn,t.

Note that since Ŝ1,t ≥ η1,t, the region in which the general (s, S) policy may not

be optimal is reduced from (η1,t, ηn,t) to (Ŝ1,t, ηn,t). Also,note that if Ŝ1,t ≥ ηn,t,

then a generalized (s, S) policy is optimal over the entire state space. Finally,

note that we do not need Assumption 2 for Proposition 6.

4.5 The Optimality of the Generalized (s, S)

Policy

In this section, we show that a generalized (s, S) policy is optimal for all regions

of the state space if the single period inventory cost satisfies the following

assumption.

Assumption 3. The following inequality holds for all x1, x2 such that |x1−x2| ≥ 1

and θ ∈ (0, 1)

θL̄t(x1) + (1− θ)L̄t(x2) ≥ L̄t(θx1 + (1− θ)x2) + θ(1− θ)(c1 − cn)|x2 − x1|.

Remark 3. This assumption is related to the concept of strong convexity. A

function f is called strongly convex with parameter m > 0 if

θf(x1) + (1− θ)f(x2) ≥ f(x1 + (1− θ)x2) +
1

2
m|x1 − x2|

2,
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which is equivalent to f(x) − 1
2
mx2 being convex (See Rockafellar (2015)). It is

clear that Assumption 3 is stronger than regular convexity but weaker than strong

convexity with parameter 2(c1 − cn) since |x2 − x1|
2 ≥ |x2 − x1| for |x2 − x1| ≥ 1.

One example that satisfies Assumption 3 is the case in which gt(x) = ht ·

(x+)2 + bt · (x
−)2, where ht ≥ c1 − cn and bt ≥ c1 − cn.

Theorem 12. If Assumption 3 is true and the minimum ordering quantity is

always larger than or equal to 1, then the generalized (s, S) policy is optimal.

Proof. We show this result by contradiction. Suppose that it is optimal to order

under state x0 and it is not optimal to order under state x0−δ for some δ > 0. Let

y be the optimal order-up-to level under state x0. Suppose that y−x0 ∈ (zi−1, zi]

for some i. Then we have Ḡt(y) + c̄(y− x0) < Ḡt(x0) and Ḡt(y) + c̄(y− x0 + δ) ≥

Ḡt(x0 − δ). There exists some ρ1 ∈ (0, 1) such that ρ1(x0 − δ) + (1 − ρ1)y = x0.

Note that for this ρ1, we have

c̄(y − x0 + δ)− (1− ρ1)(ci − cn)(y − x0 + δ)

≤Ki + (ci − cn)(y − x0 + δ)− (1− ρ1)(ci − cn)(y − x0 + δ)

=Ki + (ci − cn)(y − x0)

=c̄(y − x0),

which implies that

c̄(y − x0) ≥ ρ1[c̄(y − x0 + δ)− (1− ρ1)(ci − cn)(y − x0 + δ)] + (1− ρ1)[c̄(y − x0)].

As a result, we have

Ḡt(y) + c̄(y − x0)
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≥ρ1[Ḡt(y) + c̄(y − x0 + δ)− (1− ρ1)(ci − cn)(y − x0 + δ)]

+ (1− ρ1)[Ḡt(y) + c̄(y − x0)]

≥ρ1[Ḡt(x0 − δ)− (1− ρ1)(ci − cn)(y − x0 + δ)] + (1− ρ1)[Ḡt(y) + c̄(y − x0)]

≥ρ1[L̄t(x0 − δ)− (1− ρ1)(c1 − cn)(y − x0 + δ)] + (1− ρ1)L̄t(y)

+ αE[ρ1v̄
∗
t+1(x0 − δ − ξt) + (1− ρ1)(v̄

∗
t+1(y − ξt) + c̄(y − x0))]

≥L̄t(x0) + αEv̄∗t+1(x0 − ξt)

=Ḡt(x0).

The third inequality is due to the fact that c1 ≥ ci for all i. The last inequality is

due to Assumption 3 and the c̄-convexity of v̄∗t+1. This contradicts the fact that

Ḡt(y) + c̄(y − x0) < Ḡt(x0).

As a result, if it is optimal to order under x2, then it must be optimal to order

under x1 for any x1 < x2. Hence, from Theorem 10, the generalized (s, S) policy

is optimal.

The assumption that the minimum ordering quantity is larger than or equal

to 1 applies to the discrete demand case (all related proofs can be modified to

accommodate the discrete demand case) and to the case in which K1 is sufficiently

large.

Note that under Assumption 2, Assumption 3 can be relaxed as follows: for all

x1, x2 ∈ (η1,t, ηn,t) such that |x1 − x2| ≥ 1 and θ ∈ (0, 1), the following inequality

holds

θL̄t(x1) + (1− θ)L̄t(x2) ≥ L̄t(θx1 + (1− θ)x2) + θ(1− θ)(c1 − cn)|x2 − x1|.

This is due to the fact that under Assumption 2, we only need to check whether

Condition 1 holds for the interval (η1,t, ηn,t).
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4.6 Extensions to Other Settings

In this section, we briefly explain how our approach can be extended to

time-varying ordering costs case, the lost sales case, and the non-zero leadtime

case with backordering.

First, our result can be extended to the following time varying piecewise

concave ordering costs: ct(x) = mini{Ki,tδ(x)+ci,tx} with αc̄t+1(x) ≤ c̄t(x) for all

x ≥ 0 and all t, where subscript t denotes the dependency of the cost parameters

on period t. By similar arguments as in the stationary ordering cost case, we

can characterize the structure of the optimal policy and show that, except for a

bounded region, it is a generalized (s, S) policy.

Next, we consider the case where unfulfilled demand is lost instead of

backordered. Let pt be the unit lost sales cost and ht be the unit holding cost in

period t. Let v∗t (x) be the value function in period t with starting inventory level

x. Then, the function Gt can be modified as follows

Gt(y) =E(ht[y − ξ]+ + pt[ξ − y]+) + αEv∗t+1([y − ξ]+); (4.9)

and the optimality equation rewritten as

v∗t (x) = min
y≥x

[c(y − x) +Gt(y)]. (4.10)

Using similar analysis to the one for the backordering case, we can show here too

that the structure of the optimal policy, except for a bounded region, is also a

generalized (s, S) policy.

Finally, consider the case with fixed leadtime l and backordering, where an

order placed in period t is delivered in period t+ l. Let x be the current inventory
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in stock, and xi be the amount of inventory delivered i periods later, where i =

1, · · · , l− 1. By a standard transformation as in Zipkin (2000), we can show that

the value function in each period only depends on the starting aggregate inventory

level x + x1 + · · ·+ xl−1. Then, we can carry out similar analysis to the one for

zero leadtime case and show that the optimal policy is again a generalized (s, S)

except for a bounded region.

4.7 Appendix: A Counter Example

Here we provide a counterexample illustrating that the generalized (s, S) policy

may not be optimal over the entire state space. In particular, we show that in

this example there exist x1 and x2 such that x1 < x2 and it is optimal to order at

x2 but not optimal to order at x1.

We consider a 2-period problem with the ordering cost c(x) = min{2x, x+192},

i.e., c1 = 2, c2 = 1, K1 = 0 and K2 = 192. Let

gt(x− ξt) =





(x− ξt), if x ≥ ξt,

3(ξt − x), otherwise,

i.e., the unit holding cost is 1 and the unit backorder cost is 3 in every period.

Let α = 1. Demands in different periods are i.i.d. with density function φ given
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as follows:

φ(x) =





1
1280

(x− 270), if 270 < x ≤ 280,

1
1280

[−8
5
(x− 280) + 10], if 280 < x ≤ 285,

1
640

, if 285 < x ≤ 405,

1
1280

[2(x− 405) + 2], if 405 < x ≤ 410,

1
1280

[−2(x− 410) + 12], if 410 < x ≤ 415,

1
640

, if 415 < x ≤ 540,

1
1280

[− 3
20
(x− 540) + 2], if 540 < x ≤ 550,

1
1280

[2
5
(x− 550) + 1

2
], if 550 < x ≤ 555,

5
2560

, if 555 < x ≤ 803, and

0 otherwise.

It is clear that φ is not a Polya density function. Denote the distribution

function of demand by Φ. Then Φ−1(0.25) = 405, Φ−1(0.5) = 540 and

Φ−1(0.75) = 675. It is easy to check that in the second period, the optimal

policy is a generalized (s, S) policy with s1 = S1 = 405, s2 = 270 and S2 = 540.

Then we have

v∗2(x) =





192 + (540− x) + E(540− ξt), if x ≤ 270,

2(405− x) + E(450− ξt), if 270 < x ≤ 450,

E(x− ξt) otherwise.

In the first period, we can check that for any y ≥ 540, H1(540) ≤ c(y−540)+H1(y)

and H(550) > c(555−550)+H1(555). Thus, it is not optimal to order at x1 = 540
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and it is optimal to order at x2 = 550. Therefore, the optimal policy in the first

period is not a generalized (s, S) policy.

In this example, we can show that the optimal policy in the first period is

y∗1(x) =





717, if x ≤ 443,

540, if 443 < x ≤ 540,

x, if 540 < x ≤ 545,

555, if 545 < x ≤ 555,

x, otherwise.

Thus, the generalized (s, S) policy is optimal for x < 540 and it is optimal to order

nothing for x > 555. This is consistent with our statement about the optimal

policy in Theorem 11. Finally, we note that a counter example for K1 > 0 can

also be found with the same demand density function.



Chapter 5

Conclusions and Other Research

Projects

In this chapter, we provide conclusions and future research directions on the work

presented in Chapters 2 and 3. We also briefly discuss other research projects.

5.1 On the Impact of Input Price Variability and

Correlation in Stochastic Inventory Systems

In Section 2, we examined the impact of input price variability on expected cost

in inventory systems with stochastic demand and stochastic input prices. For a

general class of such systems, we showed that higher input price variability leads to

lower expected cost. We showed that this is true for a wide range of assumptions

regarding price evolution, including i.i.d. prices and prices that evolve according

to a Markovian martingale. We also showed that this is true for systems with both

133
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single and multiple periods. We described how the impact of price variability on

expected cost can be traced to the concavity of the cost function in input price,

which is itself a consequence of the flexibility in adjusting the order quantity as

prices vary. In addition, we examined the impact of price correlation over time

and across inputs. We found that expected cost is increasing in price correlation

over time and decreasing in price correlation across components. Numerical

results suggest that higher correlation of prices over time diminishes the benefit

derived from price variability while higher correlation of prices across components

enhances it.

There are several avenues for future research. It would be useful to extend the

analysis to broader classes of systems, including systems with multiple production

stages where different components may be needed at different stages. In particular,

it would be of interest to investigate how the position of a component in the

production process affects the benefit derived from the variability in its input

price (e.g., is price variability more beneficial for components that are upstream

in the production process or is it more so for components that are downstream?).

It would also be useful to consider settings in which there is variability in both

the input purchase price and the output selling price. For example, a firm may

purchase input from one spot market and sell output to another, with the firm

observing both input and output prices at the beginning of each period and then

deciding on how much input to buy and how much output to produce and sell.

Lastly, it would be valuable to extend our analysis to settings where the firm

may not be risk neutral and to account for its attitude toward risk by studying a

decision criterion other than expected value.
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5.2 Optimal Control of an Inventory System

with Stochastic and Independent Leadtimes

In Section 3, we studied an inventory system with stochastic and independent

leadtimes. For the case of exponentially distributed leadtimes, we resolved the

open question regarding the structure of the optimal policy. In particular,

we showed that the optimal policy is specified by a threshold function that is

non-increasing in the inventory level. We showed that once the threshold function

starts to decrease it continues to do so at a rate that is greater than or equal

to one. This implies that the threshold function can be fully described by at

most m parameters. Taking advantage of this structure, we provided an efficient

algorithm for computing these parameters and the corresponding optimal cost.

Also, inspired by the structure of the optimal policy, we investigated two plausible

heuristics, as alternatives to the optimal, and examined their performance for a

wide range of parameter values. We showed that the heuristics can perform poorly

for certain parameter values. Finally, we extended our analysis to systems with

lost sales and to systems where order cancellations are possible.

There are several possible avenues for future research. It would be of interest

to extend the results to more general settings with respect to the distribution

of demand and leadtime. It would also be of interest to extend the results

to settings where leadtimes are not identical, as in systems with heterogeneous

production facilities or delivery modes. We expect the analysis to be much more

difficult in those cases, but there may be special cases for which at least partial

characterization of the optimal policy is possible.
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5.3 Other Research Projects

5.3.1 Managing Stochastic Inventory Systems with Scarce

Resources

We consider a production-inventory system where the input material is scarce and

its consumption is subject to a limit over a specified compliance period. Examples

of such settings are many and include those where limits are imposed on the

harvesting of forest products, the hunting and fishing of wild life, and the mining

of rare minerals and metals. They also include settings where limits are imposed

on the consumption of water or the emission of harmful pollution. In such cases,

the amount that can be produced over the compliance period, which may consist

of multiple production periods, cannot exceed the specified limit. Imposing such

a limit introduces capacity dependencies across production periods, absent from

traditional models where capacity constraints are imposed on individual periods.

In particular, capacity in each period depends on the production decisions in

previous periods and affects the capacity available in future periods. The objective

of the system manager, in the face of stochastic demand, is to minimize the sum

of inventory holding and shortage costs over a planning horizon consisting of one

or more compliance review periods.

We formulated the problem as a stochastic dynamic program with a

two-dimensional state space: on-hand inventory level and remaining capacity.

We considered an extended state-space version of the problem and showed that

this modified version of the problem reduces to a one-dimensional problem. We

described various properties of the optimal policy for the modified version of the
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problem and then showed that these properties also hold for the original problem.

We then used these properties to characterize the structure of the optimal policy

for the original problem. In particular, we showed that the optimal ordering policy

is specified by dynamic thresholds that depend on both the on-hand inventory

level and the remaining capacity but only via the sum of these two quantities.

In addition, we characterized the impact of the capacity constraint and showed

that the expected optimal cost is convex with respect to the remaining capacity,

implying that there is diminishing value to capacity. We provided numerical

results that examine the tradeoff between the expected optimal cost and the

expected cumulative amount ordered, and discussed how both are affected by

problem parameters. We evaluated the performance of three plausible heuristics

that are simpler to compute and implement. We showed that, although the

heuristics can be quite effective under some settings, they can also perform poorly

under others. We then considered the problem of jointly optimizing for capacity

and inventory control and showed that the associated total cost is convex in

capacity and, therefore, the optimal capacity can be computed easily. We also

showed that the optimal capacity can be quite sensitive to the price of capacity

initially, with even modest prices leading to a significant reduction in the capacity

purchased. Finally, we considered various extensions to the original model and

show that the optimal policy of the extended models has similar structure.

There are several possible avenues for future research. It would be useful to

generalize the results to a broader class of systems, including multi-stage systems

where each stage may have its own cumulative ordering/production capacity

constraint. It would also be useful to study systems with both cumulative
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and period capacity constraints, where the period constraint may be due to

production capacity limits while the cumulative constraint due to limits on input

material availability or negative environmental externalities. Moreover, it would

be interesting to compare systems where the cumulative amount ordered over the

planning horizon is limited via an explicit constraint (as considered in this paper)

to systems where this is achieved via imposing a penalty (or a tax) on ordering, or

to systems where there are both a reward and penalty with production depending

on whether the cumulative quantity falls below or over a specified threshold. For

more details, please refer to Benjaafar et al. (2015b).

5.3.2 Stochastic Inventory Systems with Discount-driven

Backorders

Stockouts are quite common for consumer products due to the variability in

demand. Most of the inventory literature assumes either backorders or lost sales

when stockouts occur. Existing literature that considers both backorders and lost

sales assumes that when the on-hand inventory is not available to fulfill current

demand, the inventory manager could decide whether to backlog or to reject some

or all the demand. However, in practice, when stockouts occur, it is the customer

herself who decides whether to wait for the product or walk away. The seller can

offer a price discount to incentivize customers to wait for the product in the case

of a stockout in order to mitigate lost sales.

In this study, we consider a multi-period stochastic inventory systems with

both backorders and lost sales. In the case of a stockout, customers may choose

to either wait for the product which corresponds to backorders, or walk away which
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corresponds to lost sales. We assume that a fraction of the unfulfilled customers

are willing to wait and this fraction depends on a discount the seller offers. The

higher the discount is, the higher this fraction is, i.e., the more customers are

willing to wait. We show that for a given discount, the optimal policy is a base

stock policy. The optimal cost is convex in the discount and therefore the optimal

discount can be computed easily. We also consider a continuous version of this

problem. In this continuous review model, the probability that a customer would

wait for the product is increasing in the discount. Again, we characterize the

structure of the optimal policy and provide some managerial insights. These

results are similar to those in the periodic review model.

We are currently extending the periodic review model by assuming that the

backordering process is probabilistic, i.e., there is a range of possible outcomes,

including with some positive probability that no customer would be willing to

be backordered. In other words, given a discount, there is a distribution for

the number of customers who are willing to be backordered. To do so, we

introduce a notion of customer valuation of waiting (backordering), which is a

random variable. If this value is less than the discount, the customer waits;

otherwise the customer does not wait. This allows us to endogenize the probability

of backordering and to study how the distribution of valuations affects the

optimal discount and the corresponding base stock level. We are also extending

the analysis to settings where lost sales in one period affect demand in future

periods and those where a customer’s probability of waiting is affected by current

backorder levels. For more details, please refer to Chen et al. (2015b).
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Ç. Haksöz and S. Seshadri. Supply chain operations in the presence of a spot

market: a review with discussion. Journal of the Operational Research Society,

58(11):1412–1429, 2007.

X. X. He, S. H. Xu, J. K. Ord, and J. C. Hayya. An inventory model with order

crossover. Operations research, 46(3-supplement-3):S112–S119, 1998.



144

T.-H. Ho, C. S. Tang, and D. R. Bell. Rational shopping behavior and the option

value of variable pricing. Management Science, 44(12-Part-2):S145–S160, 1998.

K. Inderfurth and P. Kelle. Capacity reservation under spot market price

uncertainty. International Journal of Production Economics, 133(1):272–279,

2011.

G. Janakiraman and S. Seshadri. Parametric concavity in stochastic dynamic

programs. Computers & Industrial Engineering, 61(1):98–102, 2011.

B. A. Kalymon. Stochastic prices in a single-item inventory purchasing model.

Operations Research, 19(6):1434–1458, 1971.

A. Kamara. Production flexibility, stochastic separation, hedging, and futures

prices. Review of Financial Studies, 6(4):935–957, 1993.

S. Karlin. One stage inventory models with uncertainty. Studies in the

mathematical theory of inventory and production, pages 109–134, 1958.

V. Kulkarni and K. Yan. Production-inventory systems in stochastic environment

and stochastic lead times. Queueing Systems, 70(3):207–231, 2012.

V. Mart́ınez-de-Albéniz and J. V. Simón. A capacitated commodity trading

model with market power. Working Paper, IESE Business School, University

of Navarra, Barcelona, Spain, 2009.

J. Meyer. Two-moment decision models and expected utility maximization. The

American Economic Review, 77(3):421–430, 1987.



145

A. Müller and D. Stoyan. Comparison Methods for Stochastic Models and Risks.

Wiley, 2002.

K. Muthuraman, S. Seshadri, and Q. Wu. Inventory management with stochastic

lead times. Mathematics of Operations Research, 40(2):302–327, 2014.
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