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A one-dimensional micromagnetic model is used to calculate the thermal dependence of microcoercivity (he) 
produced by the unpinning of a domain wall (DW) from various types of defects in magnetite. Equilibrium 
solutions are found that minimize the magnetoelastic, anisotropy, exchange, magnetostatic, and external field 
energies with respect to the wall width (w) and position of the wall relative to the defect. The defect may be 
a single dislocation, dislocation dipole, planar defect, or planar defect bounded by two parallel dislocations. Wall 
pinning is produced by (1) microstress fields of dislocations, (2) local changes in exchange and aaisotropy 
constants within a planar defect region, or (3) a combination of both effects. The calculations, using temperature- 
dependent parameters, predict the thermal dependence of h c (T) as a function of grain size, domain wall width, 
defect spacing, and type of defect. Results show that, for grain sizes between 1 and 100 [tm, hc (T) is usually 
a function of the wall width raised to some power n. The particular value of n is found to be a function of the 
DW-defect interaction spacing (d/w), type of defect, and grain size. Also, within this size range, the wall width 
expands with temperature more gradually than classical theory predicts. The microcoercivity results are used 
with the theory of Xu and Merrill (1990) to predict the thermal dependence of the macroscopic coercivity H, 
in magnetite. For grains with low defect densities, such as recrystallized magnetites, negative dislocation dipoles 
with d/w-•O.l-1 produce a thermal dependence of coercivity that agrees with experimental results. In the high 
defect density limit, a population of positive and negative dislocation dipoles with a distribution of dipole widths 
produce an t1½ (T) dependence consistent with experimental data from crushed and glass ceramic magnetites. 

INTRODUCTION 

Within the past few years there have been significant advances 
in our understanding of domain structure in small multidomain 
(MD) particles containing just a few domains [e.g., Dunlop, 1990]. 
Much of this new knowledge comes from micromagnetic calcul- 
ations and domain observations. Yet, one of the fundamental out- 

standing problems in our understanding of the origin of magnetic 
stability and thermoremanence (TRM) in MD grains is the effect 
of stress and crystal defects on magnetic properties. It has long 
been recognized that crystal defects play an important role in 
determining hysteresis and susceptibility in MD particles [e.g., 
Kittel, 1949]. Defects can alter the magnetic domain structure or 
exert forces on domain walls (DW). For example, crystal defects 
are thought to be responsible for a variety of magnetic properties 
in MD particles of magnetite and titanomagnetite including the 
grain qize dependence of coercivity (H c ), remanence, and initial 
susceptibility [e.g., Stacey and Wise, 1967; Dunlop, 1986; Heider 
et al., 1987]; the temperature dependence of Hc [e.g., Hodych, 
1982; Xu and Merrill, 1989, 1992]; magnetic memory effect [e.g., 
Heider et al., 1992]; nucleation, denucleation, and pinning of 
domain walls during TRM acquisition [Halgedahl, 1991]; the 
unusual domain style in Ti-rich titanomagnetites [e.g., Halgedahl, 
1987; Moskowitz et al., 1988]; and, the response of remanence to 
geological deformation [e.g., Borradaile, 1992]. However, the 
specific types and arrangements of defects and the exact mechan- 
isms by which defects influence magnetization remain unclear. 

Crystal defects can affect magnetization in two important ways. 
First, they can act as centers for the nucleation of new domain 
walls and aid magnetization reversal. This can occur at sites which 
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locally have large demagnetizing fields due to shape irregularities 
(e.g., sharp corners, microcracks), or at sites where the domain 
wall energy is locally changed by chemical or physical defects. 
Second, defects can pin existing domain walls and inhibit magnet- 
ization reversal by creating local energy barriers that impede wall 
movement. In the former case, defects decrease coercivity by 
creating nucleation sites, whereas in the latter case, defects 
increase coercivity by pinning domain walls. 

There are many different types of crystal defects that can interact 
with domain walls including, point defects, dislocations, stacking 
faults, subgrain boundaries, inclusions, and voids. Defects may 
also interact with one another. For example, point defects such as 
vacancies can coalesce to forin dislocation loops and single dis- 
locations can disassociate into partial dislocations and stacking 
faults or associate to form complex arrays [e.g., Hull, 1975]. 
Because of the variety of different types and arrangements of 
defects and their interactions with one another and with domain 

walls, the effects of defects on magnetic behavior can be complex 
[e.g., Trauble, 1969; Xu and Merrill, 1989]. For example, the 
microstress fields of dislocations may trap remnants of domain 
walls after application of a large saturating field and provide sites 
for "renucleation" after removal of the field [e.g., Halgedahl, 
1991]. Other defects, such as extended planar defects, may 
produce a local change in magnetic anisotropy and exchange 
energies, making them favorable sites for domain nucleation or 
wall pinning. 

Several simplifying assumptions can 'be made to render the 
theoretical treatment tractable. Of the many different types of 
defects, dislocations are considered to be the most common. Pin- 

ning of domain walls by dislocations is modeled as the magneto- 
elastic interaction between domain walls and the stress fields of 

the dislocations. This is the approach taken by Xu and Merrill 
[ 1989, 1990a, 1992] in their theoretical analysis of microcoercivity 
(hc) and macroscopic or bulk coercivity (Hc) in MD •nagnetite. 
Microcoercivity, h c , is the field necessary to unpin a single wall 
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from a defect and is related to the maximum pinning force of the 
•defect. Usually, it is not the same as Hc measured from a hyster- 
esis loop [Xu and Merrill, 1989]. The microcoercivity is related 
to the bulk coercivity, sometimes in a nonlinear fashion, by 
statistically averaging over tnany defects, walls, and grains [Xu 
and Me rrill, 1990a]. 

Despite the theoretical complexities involved in wall-defect 
interactions, experimental data for •nagnetite suggest a si•nple 
result. Hodych [1982, 1986] showed that the temperature depen- 
dence of He (T) between 120 and 300 K was proportional to 
for various samples of MD magnetite, where )• is the magneto- 
striction constant and M s is the saturation •nagnetization. This 
result suggested that He was predominantly controlled by stress, 
presumably by microstress fields of defects. Later it was found 
that the )•/M s dependence of He was valid up to the Curie temper- 
ature of magnetite [Xu and Merrill, 1992]. However, Xu and 
Merrill [1989, 1990a] found these results surprising because there 
was no explicit dependence on the wall width, which should vary 
with temperature, or on the demagnetizing factor, which can be 
significant in MD grains. The latter is particularly important when 
considering the potentially large demagnetizing fields associated 
with denucleated "SD states" observed by Halgedahl [ 1991 ]. Most 
theories of defect-controlled •nicrocoercivity predict that he (T) 
o,:w(T) n, where w is the wall width and n is a constant that can be 
less than or greater than zero depending on the type or arrange- 
ment of defects [e.g., Triiuble, 1969; Xu and Merrill, 1989]. 
According to classical do•nain theory [Landau and Lifshitz, 1935], 
the wall width in an infinite material is w•(A/K•) •, where A is the 
exchange constant and K• is the magnetocrystalline anisotropy 
constant. In magnetite, this type of wall will expand rapidly with 
increasing temperature owing to the rapid decrease in K• (T) at 
elevated temperature. To resolve the discrepancy between theory 
and experiment, Xu and Merrill [ 1992] assumed that the variation 
of wall width with temperature in •nagnetite is mainly determined 
by stress and magnetostatic energy instead of magnetocrystalline 
anisotropy. Using an Amar-type calculation, Xu and Merrill 
[1990b] show that this assumption results in a gradual expansion 
of the wall with temperature; hence, H½(T)=X,/Ms. Nevertheless, 
an exceedingly large magnitude of residual stress was necessary 
to reconcile theory with observations [Xu and Merrill, 1990b] 

In this paper, a different approach is used to study the effects of 
defects on coercivity. We consider a theoretical model of wall 
pinning by a defect in magnetite within the frmnework of micro- 
magnetism in the spirit of recent domain calculations [e.g., Moon 
and Merrill, 1984; Newell et al., 19901. Instead of simply equating 
the •naximum pinning force of a dislocation with hc [e.g., Trauble 
1969; Xu and Merrill, 1989, 1990a, 1992], we have taken the 
domain wall energy to be the sum of magnetoelastic, anisotropy, 
exchange, magnetostatic, and external field energies and have 
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Fig. 1. Model geometry and wall coordinate system. The plate thickness 
(i.e., grain size) is D, wall width is w, and defect width is d. The defect is 
located at x=-0, and the cenler of the wall is located at x=x o. The wall co- 
ordinate system is for a 180 ø (110) wall interacting with a screw 
dislocation or planar defect. 

found solutions that minimize this energy with respect to the wall 
width and position of the wall relative to the defect. An advantage 
of this formulation is that the temperature dependence for the wall 
width is calculated directly. By necessity, the present model, like 
former ones dealing with defects, is one dhnensional and assrunes 
a particular magnetization distribution a priori. A complete three- 
dimensional solution is not yet possible. Hilzinger[1977] and 
Aharoni [ 1985] have formulated micromagnetic models to describe 
the pinning of a wall at a planar defect. Our model follows closely 
the formulation of Aharoni | 1985] but is extended to model differ- 
ent types of defects and to predict how the thertnal dependence of 
coercivity varies with the type of defect. 

MICROMAGNETIC MODEL 

Model Geometry 

Figure I shows the geometry of the model, which consists of a 
semi-infinite plate of thickness D, infinite in the x and z directions 
and extending from -D/2 to +D/2 in the y direction. The coordi- 
nate system shown in Figure 1 is similar to the one used by Xu 
and Merrill [ 1989] and is appropriate for magnetite with easy axis 
of magnetization along <111>. In this case, a planar 180 ø DW of 
width w in the (110) plane separates two domains magnetized 
along the [lil] and [• 1 •] easy directions. The x axis is normal to 
the wall plane along the [110] direction, the y axis is perpendi- 
cular to the dislocation line along the [001] direction, and the z 
axis is within the wall plane, parallel to the dislocation line, along 
the [1 •0] direction. Magnetization rotates within the y-z plane and 
the wall moves along the x direction. A "wall" coordinate system 
is used because it simplifies the calculation of magnetoelastic 
energy by eliminating interactions when the dislocation line or i[s 
Burgers vector are not within the wall plane [Tr?iuble, 1969; Xu 
and Merrill, 1989]. Th6 DW interacts with a de•ect region of 
width d. It is assumed that the DW and defect are infinitely 
extended and parallel to each other. The defect may be a single 
dislocation (d=0), two dislocations (dislocation dipole), a planar 
defect, or a planar defect bounded by two dislocations. A planar 
defect is characterized by a local variation in exchange coupling 
and crystalline anisotropy within the defect. Although details of 
this local perturbation are not known, it is approximated by an 
exchange (A') and anisotropy (K') constant that are different 
within the defect region (0<x<d) than in the rest of the plate (x<0 
and x>d) [Aharoni, 1985]. 

Total Wall Energy 

The total free energy of a domain wall E, interacting with a 
dislocation, dislocation dipole, or planar defect, is the sum of 
several energy terms 

= [ + L 
where x o is the position of the center of the wall, E• is the 
magnetoelastic interaction energy with a particular type of defect, 
E,. is the anisotropy energy, E, is the exchange energy, E,• is the 
magnetostatic energy, and E• is the external field energy. The total 
energy is a function of two variables, the position of the DW 
relative to the defect and the width of the DW. The functional 

forms for the anisotropy, exchange, magnetostatic, field, and 
magnetoelastic energies are adapted from Aharoni [1985] and Xu 
and Merrill [1989]. Ideally, to solve the wall-pinning problem 
represented by (1), E, is minimized to give the equilibrium tnag- 
netization distribution. }lowever, this condition is insoluble 

analytically; to circumvent this difficulty an analytical approxi- 
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mation to the direction cosines of the magnetization vector in the 
plate is chosen a priori and only the width of the wall anti its 
location are allowed to vary. 

Wall Structure 

energy per unit wall area for a (110)180 ø wall subjected to a stress 
field given by (5) is 

E• = -3k• f •g(x)o?•zdx (6) 

A rigid, planar Bloch DW is centered at x=x o. The magnetization 
within the wall corresponds to the Dietze-Thomas model [Dietze 
and Thomas, 1961; Aharoni, 1985]. For this wall model, the 
magnetization distribution is given by 

W 2 
sin q•(x) = (2) 

w 2 + (x-x0) 2 

where Ëfix) is the angle between the magnetization and the easy 
axis and w is proportional to the wall width. A uniaxial anisotropy 
is assumed. The Dietze-Thomas wall model is sufficiently close 
to the exact solution of the Landau-Lifshitz model [Jakubovics, 
1978; Aharoni, 1985] but has the advantage that the direction 
cosines given by (2) are rational algebraic functions of x, making 
the various energy functionals shnpler to integrate and avoiding 
numerical integrations. 
In the wall-coordinate system shown in Figure 1, the DW 

magnetic structure is described by the direction cosines, %'s, 
given by 

= = -cos(q•(x)-q•0) ' c•z=sin(q•(x)-q•0) (3) % 0, c•y 
where q•(x) is given by (2) and q•0=cos-•(1/4'3) is the angle 
between the y axis and the easy axis of magnetization [Xu and 
Merrill, 1989]. It is also assumed that the wall structure does not 
change its form at elevated temperatures approaching the Curie 
temperature. 

Magnetoelastic Interaction Energy 

The magnetoelastic interaction energy for a dislocation follows 
the derivation of Xu and Merrill [1989]. In a cubic crystal like 
magnetite, the magnetoelastic interaction energy is given by 

__.• •,,100 f( 2 2 2 Es .- Of, lOll 4- 0•2•22 4- o•3•33)dV (4) 
-3•f(0•0•2• + 0•0• + o•o•o•)dV 

where •0 are the stress components of the dislocation, c• are the 
direction cosines of magnetization, and )•u• and )•/00 are the 
magnetostriction constants. The o 0 and c• are taken with respect 
to the cube axes. We consider a straight screw dislocation lying 
parallel to the wall in the z direction. The effec• of an edge 
dislocation are simil• to those of a screw dislocation, but calcul- 

ations •e easier for •e latter case [Xu and Merrill, 1989]. 
Under •e approximation •at D>>w, •e v•iation of s•ess 

wi•in the slab becomes a step function centered on the disloc- 
ation at •0 [Xu and Merrill, 1989]. For •is case, •e only non 
zero stress com•nent of a screw dislocation, averaged over •e 
plane of •e wall, is 

•g(x) = bP sign(x) (5) 2D 

In (5) b is •e magnitude of •e B•gers vector, p is the she• 
modulus, sign (x)=l for x •0 •d sign(x)=-l for x<0, and the yz 
subscripts refer to •e wall coordinates. For magnetite, •e step- 
function approx•ation is valid for D>I • [Xu and Merrill, 
1989] and •us places a lower l•it on D used in •e models. 

After •sfonning (4) into wall coordinates, •e magnetoelastic 

Substituting (3) and (5) into (6) and integrating gives 

Es__ II 2•-C -B 

with 

(7) 

C(x) = x + tan-•(x) 
1 +x 2 

(8) 

B(x) = •/2 +x.••_• + log l+ •/2 +x 2 
I +x 2 •/1 +x 2 

Now consider two screw dislocations at x=0 and x=d whose 

Burgers vectors are parallel but can have the same or opposite 
signs. This configuration is called a dislocation dipole and is 
ch•acterized by i• wid• d and sign [e.g., Hull, 1975]. A positive 
(negative) dipole occ•s when the B•gers vectors have •e same 
(opposim) sign. •eoretically, only edge dislocations can form 
stable di•le configurations; however, stable screw dipoles have 
been observed in nickel fe•ite spinels [Veyssi•re et al., 1978], and 
it will be assumed that •ey c• form in magnetite as well. 
Following the derivation by Xu and Merdll [1989], the stress for 
a di•le is 

- bp [sign(x)•sign(x-d)] (9) o(x) 
where the plus and minus signs co•espond to a •sitive or 
negative dipole, respectively. Using (9) wi• (6), the magneto- 
elastic inmracfion energy for a •di•le and (110)180 ø wall is 

When d/w>>l, •e dipole pak is very f• ap•t and (10) reduces 
to (7) appropriate for a wall pinned by a single dislocation. When 
d/w<<l, the stress fields of the two dislocations of a negative 
dipole will cancel one m•other and •e dipole will appear to be 
annihilamd (E,=0), •d no wall pinning will occur. For a positive 
dipole, •e s•ess fields of •e •o dislocations add •d wall pin- 
ning is the stone • a single dislocation but with twice •e 
magnitude. •e wid• of the dipole is assumed to be fixed •d 
independent of temperature, meaning that the model does not t•e 
into ac•unt any thermal migration of dislocations such as glide 
or club. 

•e one d•ensionality of •e present model •plies the rigid- 
wall approximation, which tneans that the micros•ess fields of 
dislocations do not affect the Bloch wall s•ucture in any signifi- 
cant way. •is is a fkst-order approx•ation because domain 
walls may be flexible and bow out between pinning centers under 
the influence of a nonuniform s•ess field [e.g., Xu •d Merrill, 
1989, 1992]. •e conditions under which DW bowing will be hn- 
porter in magnetite •e difficult to estimate. However, our micro- 



18,014 MOSKOWITZ: MICROMAGNETIC MODEL OF DEFECTS AND COERCIVITY 

magnetic model is restricted to the interaction of a single DW and 
defect, which are both infinite in extent and parallel to each other. 
In this case, the microstress field of the dislocation is uniform 

over the entire area of the wall and DW bowing can be neglected. 

Anisotropy Energy 

To calculate the anisotropy energy, we use the standard assump- 
tion of uniaxial anisotropy but consider both magnetocrystalline 
and magnetostrictive contributions. The magnetostrictive term is 
associated with magnetostriction sla-esses in the donnains and is not 
related to microstress fields of defects [e.g., Xu and Merrill, 
1990b; Moon, 1991]. For a (110)180 ø wall, the anisolxopy energy 
per unit wall area is 

E• = K u fsinq02(x) dx (11) 

with 

9 2 

2 IK, I q"•'lLI•'!! (12) gu-'. •- ! 
where K• is the magnetocrystalline anisotropy constant. 

Following Aharoni [ 1985], for a planar defect of width d located 
between 0<x<d and anisotropy constant Ku' different from its 
value outside the defect, (11) integrates to 

(13) 

where C(x) is given in (8). If Ku'=K,, the anisotropy energy is 
independent of the wall position and will not contribute to wall 
pinning. 

Exchange Energy 

In the framework of •nicromagneiism, the exchange interactions 
are treated in a classical fashion by allowing neighboring spins to 
vary in a continuous fashion with position [Kittel, 1949]. Under 
this assumption, using (2) and transforming to wall coordinates the 
exchange energy per unit wall area is given by 

E -'A •)qo(x) dx 
• •x 

(14) 

where A is the exchange constant. 
For a planar defect of width d and anisotropy constant A 

different from its value outside the defect, (14) integrates to 

2A (gt•-_ 1)+ A' w n -1 +E 

with 

1 +x 2 

Like the anisotropy term, exchange can pin the wall at the planar 
defect only when A' does not equal A [Aharoni, 1985]. 

Magnetostatic Energy 

The magnetostatic energy per unit wall area for the Dietze- 
Thomas wall in a semi-infinite plate has a simple analytical 
solution [Dietze and Thomas, 1961; Aharoni, 1985] given by 

E = log 1 + 
m D • 

(17) 

where Ms is the saturation magnetization and Po is the perlneability 
of free space. For one wall, (17) shows that Em is independent of 
wall position but is a function of the wall width and plate thick- 
ness. For more than one wall, the magnetostatic energy of the 
domains as well as the walls must be determined and no longer 
has a simple analytic solution. Note that when D becomes very 
large, E,,, approaches zero. 

External Field Energy 

An external field 14o applied along the easy direction will move 
the wall along the positive x direction. If the wall is moved a 
small distance by H o, the external field energy per unit wall area 
[Aharoni, 1985] is 

-2oHoMxo 
Equation (18) was derived under the assumption that the wall is 
far away from any crystal surface or any other wall. 

Energy Minimization Procedure 

For a wall interacting with a defect, the total free energy Et of 
the wall is given by the stun of (10), (13), (15), (17), and (18). 
E t is a function of two independent variables, wall position Xo and 
wall width w, and several model parameters including material 
constants, te•nperature, and external field. An equilibrium config- 
uration is determined by equating the partial derivatives of E with 
respect to x o and w to zero 

(19) 

Equation (19) gives a relationship between Xo, w, and Ho and is a 
set of two nonlinear equations in two unknowns that can be easily 
solved because all the functional forms have analytical solutions 
[Aharoni, 1985]. The complete form of (19) is given in the appen- 
dix. The nonlinear equations (19) are solved numerically using a 
variable metric algorithm [Press et al., 1988], which finds a stable 
solution by requiting the second-derivative matrix to be positive 
definite. 

To calculate h c, solutions to (19) are obtained for a given value 
of Ho. This process is continued as H o is increased. The solutions 
for x o increase with increasing Ho until sotne value 14,,• is reach- 
ed, at which point there are no longer any stable minimum solu- 
tions to (19). Therefore, when Ho=Hm•, the wall breaks away from 
the defect and jumps to infinity along the positive x direction 
[Aharoni, 1985]; the microcoercivity is then defined as hc=H,•. 

Microcoercivity was determined as a function of temperature, 
plate thickJless (i.e., grain size), defect width, and type of defect. 
A useful dimensionless parameter for describing the results is the 
reduced defect width d/w o, where Wo=(Ao/Ko) '• and is a measure 
of the wall width at room temperature. This parameter sets the 
size of the defect width (d), which remains constant with temper- 
ature. However, d/w(T) decreases with increasing temperature 
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because of the expansion of the wall width with temperature. The 
material constants used in the •nodel are those appropriate for 
magnetite and are listed in Table 1. 

does not take into account any direct influence of the dislocation 
stress field on the wall structure. Only the absolute magnitude of 
w varies slightly with these model conditions. 

RESULTS 

Thertnal Dependence of Wall Width 

An advantage of the present micromagnetic formulation is that 
the thermal dependence of the wall width is determined directly 
from the energy minimization procedure. Model calculations of 
the thermal dependence of the wall width for dislocation dipoles 
(d/wo=0.1) with grain sizes (D) of 1, 10, 100, m•d 1000 ptn are 
shown in Figure 2. Also included in Figure 2 are three esthnates 
of the classical thermal dependence of wall width, each of which 
arises from one of the following three types of anisotropy: (1) 
magnetocrystalline/magnetoelastic anisotropy [e.g., Xu and Merrill, 
1990b], for which 

K --2 IK,(r)l +0 -5- -T[I •Lli i(T) 2 (20) 

(2) stress anisotropy [Moskowitz and Halgedahl, 1987; Xu and 
Merrill, 1990b], for which 

--• IK,(T) l +• (2•) 

where • is a stress sufficient to make the second term of (21) 
equal the magnetocrystalline anisotropy at room temperature; and 
(3) shape anisotropy, for which 

2 

K=.rlK,(T)I + 2nM•(T) 2 (22) 

Model results fall between the two extreme classical estimates 

of (20) and (22). This result is readily explained by the obser- 
vation that for smaller grain sizes, the magnetostatic energy of the 
wall outweighs the uniaxial anisotropy term, and the wall width 
expands slowly with temperature, approxhnately as (22). For 
larger grain sizes, in contrast, the magnetostatic energy of the wall 
becomes less important and the wall width expands more rapidly 
with temperature mid approaches the classical lhnit given by (20). 
Results for the thermal dependence of w(T) for D= 10 pm are ap- 
proximately the same as the stress model used by Xu and Merrill 
[1990b] in their Amar-type calculations. For magnetite with a 
grain size less than =50 pm, the model calculations predict a 
gradual expansion of the wall width with temperature instead of 
the rapid expansion predicted by (20). 

Unlike the effects of grain size, there is a negligible effect on 
w(T) due to variations in d/w o or type of defect because the model 

Dislocation Models 

The first class of models investigated is one where a DW 
interacts with a dislocation dipole. Typical results for the thermal 
dependence of the microcoercivity in a 10-1ran grain containing 
negative dislocation dipoles with d/wo=0.1, 1, and 10 are shown 
in Figure 3. The solid lines correspond to (X./Ms)w, (X./Ms)w '/', 
and •/M, for d/wo=0.1, 1.0, and 10, respectively. The results for 
all other d/w o values fall within the curves calculated for 0.1 and 
10. The model for d/wo=10 gives a result that is identical with the 
h•(T) dependence due to a single dislocation [e.g., Stacey and 
Wise, 1967; Xu and Merrill, 1989]. tiere, the dislocations are far 
enough apart relative to the wall width that the wall senses only 
one dislocation and he (T) is independent of the wall width. 

The microcoercivity for a wall interacting with a negative or 
positive dislocation dipole can be conveniently systematized in 
terms of the wall width exponent n, namely, hc(T)o•O•/M,)w(T) n. 
The wall width exponent is determined by linear least squares fit- 
ting of the model results; a good fit can usually be obtained. The 
exponent n as a function of d/w o for constant D, or D for constant 
d/%, for positive and negative dipoles is shown in Figure 4. 
Negative dipoles result in a microcoercivity that is inversely pro- 
portional to the wall width with n varying from -1 to 0 as d/% 
varies frotn 0.1 to 10, respectively. In contrast, positive dipoles 
result in a microcoercivity that is proportional to the wall width 
with n reaching a tnaximum value of =0.6 near d/wo=l and de- 
creasing to zero as d/w o approaches 0.1 and 10. Considering both 
positive and negative dipoles, n may be expected to vary between 
-1 and 0.6 and produce h c (T)'s that may vary either slower or 
faster with temperature than )•/M•. 

The contrasting behavior produced by positive and negative di- 
poles is related to the different stress distributions of the two types 
of dipoles. For negative dipoles, stress is a maximran between the 
dislocations (0<x<d) and zero outside (x<0, x>d). As the wall 
width increases relative to the width of the dipole, the stress field 
of the negative dipole becomes less effective at pinning the DW. 
Hence, one would predict he (T) to vary inversely with w(T) over 
a limited range of d/%. For positive dipoles, the stress distri- 
bution is the opposite of that for a negative dipole. Stress is zero 
between the dislocations of a positive dipole and a tnaximum out- 
side the dipole. As the width of the DW increases, the DW will 
increasingly interact with more of the stress field outside the 
dipole. Therefore, one would predict h c (T) to vary positively with 
w(T) over a limited range of dA%. For large MD grains (D>100 

TABLE 1. Material Constants for Magnetite 

Material Constant Room Temperature Thermal Reference 
Value Dependence 

M, 480 kA m 'l (ToT) o.• Pauthenet [1952] 

K• -1.35x10 • J m -• (TOT) •.l Fletcher and O'Reilly [19741 

•'m 78X10-6 (ToT) o.9 Moskowitz [ 1993] 

A 1.29x10 'll J m '• M, I'a HeMer and Williams [1988] 

•u 9.6x 10 Iø N m '2 constant Stacey and Wise [1967] 

b 0.84/•/2 nm constant Stacey and Wise [1967] 
T½ 575øC constant 

M,, saturation magnetization; K•, magnetocrystalline anisotropy constant; Zm, magnetostriction constant; A, 
exchange constant; #, elastic shear modulus; b, magnitude of the Burgers vector; T½, Curie Temperature. 
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Fig. 2. The temperature dependence of normalized domain wall width w(T)/Wo produced by a negative dislocation dipole (d/wo= 
0.10) with grain sizes (D) of I (solid circles), 10 (solid squares), 100 (solid diamonds), and 1000 (solid triangles) Inn. Classical 
estimates of the thermal expansion of the wall width in bulk material are shown for (1) magnetocrystalline/magnetoelastic aniso- 
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Fig. 3. Normalized lhermal dependence of microcoercivity produced by negative dislocation dipoles with d/w•---'O.l (solid circles), 
I (solid diamonds), and 10 (solid squares). The solid lines correspond to the thermal dependence of (Z/3•l,)w '•, (Z/M,)w •, and 
•./34, for d/w•---O.l, 1, and 10, respectively. Grain size is 10 [an. 

gun), the wall width increases more rapidly with temperature than 
•/M, decreases and therefore leads to an initial increase in hc(T) 
with temperature (Figure 5). Only at low temperatures (T<200øC) 
in large MD grains can he(T) be approximated by a siinple power 
law in the wall width for which n=0.6. 

Planar Defect Models 

Planar defects are defined as an area of material of width d in 

which the exchange (A') and anisotropy (Ku') constants change 
abruptly by a fixed percentage increase or decrease froin their 
values in the bulk material. The temperature dependence of the 
constants is assumed to be the same inside and outside the defect. 

An increase (decrease) in the constants causes the defect to be a 
region of high (low) wall energy. The former is termed a "strong" 

defect and the latter a "weak" defect. Demagnetizing effects result- 
ing from the formation of magnetic poles or spike domains at the 
boundary are neglected [e.g., Cullity, 1972], a reasonable assump- 
tion for small defects (dAvo<l). It is assumed also that there is no 
strain associated with the planar defect. A change in the exchange 
or anisotropy constant in the planar defect could be accomplished 
through changes in bond lengths or angles between magnetic ions 
inside and outside the defect. Exactly how this occurs or the mag- 
nitude of the effect is uncertain, but domain walls have been ob- 

served to be pinned at planar defects in magnetite [Jakubovics et 
a/., !978]. The planar model may represent a stacking fault, anti- 
phase domain boundary, or a second phase. In the latter case, a 
nonmagnetic phase, such as oxy-exsolution lamellae of ilmenite, 
can be represented as a region where A' and Ku' are zero. 

Several different planar defect models were studied. The temper- 
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ature dependence of he(T) produced by planar defects with d/w o 
=0.1 and D=10 gtn is shown in Figure 6 for a variety of different 
values of A'/A and K•'/K•. The results can be grouped into three 
classes according to whether (1) exchange (A'/A• 1, K u'/K•=I ), (2) 
anisotropy (A'/A=I, Ku'/K•I), or (3) mixed (A'/A•I, K•'/K•I) 
pinning is operative. For exchange pinning, he varies approxixnate- 
ly as h½(T)o•(A/Ms )w -3, whereas for anisotropy pinning, he (T)o• 
(K•/M s )w-•.2. The mixed pinning case is a cotnbination of the 
other two cases and he (T) displays an inter•nediate dependence. 
Like the dislocation dipole models, the wall exponent for the 
exchange and anisotropy pinning models depends on d/w 0 as 
shown in Figure 7. The exponents for d/wo<l and >1 approach 
approximately the asymptotic solutions given by Hilzinger [ 1977]. 

Within each group shown in Figure 6, he(T) dependence is iden- 
tical but the magnitude of he scales linearly with A '/A and K•'/Ku 
for d/w 0 <1 (see Figure 8). Exchange pinning is more efficient 
than anisotropy pinning. At room temperature, a maximum micro- 
coercivity of /Joh•o=5.0 mT occurs for A'/A=O and K•'/K•=O 
corresponding to a model for a nomnagnetic inclusion. This is 
about a factor of 2 larger than for a similar case of a positive 
dislocation dipole and almost 25 times larger than that for a 
negative dislocation dipole. The microcoercivity increases rapidly 
with d/w 0 [e.g., Aharoni, 1985]. For example, the same non- 
magnetic inclusion with d/wo=10 has itohc=33 roT. ltowever, he 
does not increase indefinitely but approaches a limiting value as 
d/w o >>1 which depends on the ratios of A'/A and K•'/K•. An 
example is shown in Figure 9 for pinning models with a _+5% 
change in A and K•. Within this reghne, hc0 has a similar magni- 
tude to that calculated for negative dislocation dipoles but is a 
factor of 2-10 lower than for positive dipoles. This is an important 
distinction when considering combination models of dislocations 
and planar defects in the next section. 

Combination Models 

Cotnbination models consist of a pair of dislocations bounding 
a planar defect. For instance, this configuration •nay be used to 
model the physical case in which perfect edge or screw disloca- 
tions dissociate into two partial dislocations with collinear Burgers 

vector separated by a stacking fault [e.g., Hull, 1975]. Experhnent- 
al observations on Ni-ferrite single crystals show that dissociation 
widths are 20-45 nm after high-temperature plastic deformation 
[Veyssi•re eta/., 1978]. If similar results hold for magnetite, 
calculations may be limited to models with d/wo<l. In the follow- 
ing, we will consider models with d/wo=O.1 as being representa- 
tive of this type of defect. 

Model calculations can be divided into four cases depending on 
the sign of the dislocation dipole (- or +) and on the relative 
strength of the planar defect (strong or weak). The reason for this 
division according to the relative strength of the planar defect and 
the sign of the dipole is that the maximum pinning forces for a 
negative (positive) dipole and a strong (weak) planar defect add 
constructively but are opposed for a negative (positive) dipole and 
a weak (strong) planar defect. In so•ne instances, this interplay 
results in complex behavior of he (T). 

The temperature dependence of he (T) for a positive dipole 
bounding a planer defect is shown in Figure 10 for a range of 
relative strengths of the planar defect. For both-exchange and 
anisotropy pinning, the thermal dependence of he(T) is not much 
different from that of the dislocation dipole model alone until the 
strength of the defect exceeds _+20%. Room temperature micro- 
coercivity for the positive dislocation dipole, which acts like a 
simple double dislocation for d/w0=0.1, is 2-10 times larger than 
the corresponding h•o for either a strong or weak planar defect. 
Therefore, the magnetoelastic effects of the dipole dislocations 
overwhehn the effects of the planar defect over the parameter 
space shown in Figure 10. This could partly explain wall pinning 
at stacking faults in magnetite observed by Jakubovics et al. 
[1978] if the stacking faults are bounded by dislocations. 

The temperature dependence of he (T) for a negative dipole 
bounding a strong planar defect is shown in Figure 11. Here, the 
effects of the planar defect become important after only a few 
percent change in the strength of the defect. A negative dislo- 
cation dipole with d/w0=0.1 has an h•o that is of the same mag- 
nitude as h•o produced by the planar defect. The pinning forces 
resulting from a negative dipole combined with a strong planar 
defect have the same sign and add constructively so that the he(T) 
curves shown in Figure 11 transform gradually from dislocation 

• I • d/wø=O'l' D=10 gan i ß 
.• 0.8 
ß • I•• xchangepinning • 0.6 w J mixed pinning 

'• 0.4 
• 0.2 

0.0 
300 400 500 600 700 800 

Temperature (K) 

Fig. 6. •ermal dependence of n•mali•d tffi•ocoercivity pr•tuced by plan• def•m with d/w•O. 1 and D=10 •. Exchange 
pinning m•els (solid s•bols) •e A '/A=0.9, 0.5, •d 0; a•soa'opy pining tnodels (open symbols) •e K•'/K.=0.9, 0.5, and 0; 
and, •xed pinning m•el •atched symbol) is K.'/K.=O and A '/A=O. •e solid lines for exch•ge •d •so•opy pinning tnodds 
co•es•nd to the •ennal dependence of (A/M,)w '• and (K.•,)w 4a, r•pec6vely. 
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gm, and T=300 K. 

dipole pinning to exchange or anisotropy pinning as the relative 
strength of the planar defect increases. 

The final case modeled consists of a negative dipole combined 
with a weak planar defect. In this regime, the pinning forces of 
the dislocations and planar defect have opposite signs and add 
destructively for certain parameter and temperature ranges. Some 
extreme examples are shown in Figure 12 for anisotropy pinning. 
Because of the difference between the temperature dependence of 
K, and )•j•, the anisotropy pinning force drops much faster with 
temperature than the dislocation pinning force. ltence, over a 
particular temperature range, because the two pinning forces have 
opposite signs, the total pinning force begins to increase, resulting 
in an increase in the microcoercivity. Exchange pinning models 
produce results that are not as complex as the anisotropy pinning 
models because of the similar thermal dependence of exchange 
and magnetostriction constants. Overall, he(I) does not fall 
between the limits for dislocation dipole only and planar defect 
only models as it does for positive dipoles (see Figure 11). 

DISCUSSION 

The micromagnetic calculations predict the temperature depend- 
ence of microcoercivity as a function of grain size, domain wall 
width, defect spacing, and type of defect. For most types of de- 
fects considered, hc(T) is a function of the wall width. ltowever, 
the exact wall width dependence is determined by the defect spac- 
ing, particularly for models involving dislocations. The microcoer- 
civity produced by a dislocation dipole can be described simply 
by the quantity ()•/M•)w(T) n, where n varies from +0.6 to -1 de- 
pending on the value of d/w 0. Expressions for h c (T) appropriate 
for dislocation dipoles and planar defects are listed in Table 2. 

The model calculations are valid for the interaction of a single 
defect with a single domain wall. In most instances, this config- 
uration is probably an unrealistic model for magnetite grains in a 
rock. To relate h c (T) to the bulk or macroscopic coercivity, H c, 
one needs to account for the interactions of many defects with 
many walls [e.g., Tri•uble, 1969; Xu and Merrill, 1990a]. This is 
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TABLE 2. Thermal Dependence of Microcoercivity for Various Types of Defecis 

Type of Thermal Dependence Wall Exponent, Parameter 
Defect of he' n Range' 

Dislocations 

Single dislocafon )• /M, n=0 d/wo>> 1 

Negative dislocation dipole ()•/Ms)w" - l_qn<0 0.1 <<d/wo<+Oo 

Positive dislocation dipole ()•/Ms)w" 0_qn<0.6 0.1 <<d/w•l 
n=0 d /wo> > 1 

Plattar Defect 

Exchange pinning (A/M,)w • -3<n<-2 0.1 <<d/wo<+Oo 

Anisotropy pinning (KM/M,)w • - 1.2<n<0 0.1 <<d/wo<+Oo 

Stacla'ng Fault 

Positive dipoles •,)•/M, n=0 d/wo=O.l 
strong, weak defect A'/A, KM'/K, <20% 

Negative dipoles =(3,/M,)w • n=- 1 d /wo=O. 1 
strong defect A'/A, K•'/K• <5% 

' )•=)•; K,, uniaxial anisolropy constant; w, wall width; ,4, defect width' A' and KM', exchange and anisotropy 
constants within defect region. 

an especially difficult problem to solve in even an approxhnate 
way. In a first order theory, Xu and Merrill [1990a] have sug- 
gested that the relationship between He and he follows one of two 
limiting cases depending on defect density 

Low defect density H½o,: 
M 

High defect density H½o• <he> 

(23) 

where <he > is the mean microcoercivity and must be derived 
separately. In one such derivation [Triiuble, 1969; Xu and Merrill, 
1990a, 1992], the root mean square microcoercivity for a large 
number rn of randomly distributed identical defects is 

<h? o,: • h, (24) 

Using (23), He(T) can be calculated frmn the model he(T) results 
produced by different types of defects. ttowever, it should be re- 
membered that (23) is only a first-order approximation for •nacro- 
scopic coercivity and its application to synthetic or natural 
samples will be mitigated by such things as grain size distribution 
effects, transdomain processes, thermal fluctuations, and thermal 
diffusion of defects. Another basic limitation of this approach is 
that the theoretical models are one dhnensional whereas macro- 

scopic coercivity may involve mechanisms that are inherently 
three dimensional. With these caveats in mind, in the next two 

sections, we compare the micromagnetic calculations to published 
experimental He (T) data for sinall MD magnetite grains (<D>--I- 
20 gin) with low and high defect densities. 

Low Defect Density 

The low defect density (LDD) approximation was derived by 
assuming an assemblage of two-domain grains with one identical 
defect per grain [Xu and Merrill, 1990a]. He(T) calculated using 
the LDD approximation and the model results for a single disloca- 
tion (curve 2), negative dipole (curves 3 and 4), positive dipole 
(curves 1 and 2), planar defect (curves 5 and 6), and two parallel 
dislocations bounding a stacking fault (curve 2) is shown in Figure 
13 along with experimental coercivity data for magnetite. The ex- 
perimental data were taken from published results from recrystal- 
lized synthetic magnetite produced either by high-temperature 

hydrothermal recrystallization [Heider et al., 1987] or by low- 
temperature decomposition of FeO [Dunlop and Bina, 1977]. The 
recrystallized synthetic magnetites are believed to have low 
residual strains and a low defect density [Heider et al., 1987]. If 
the LDD approximation is valid for these samples, then a negative 
dislocation dipole model with O.l<d/wo<l provides a reasonable 
fit to the experimental data. Planar defects, positive dipoles, and 
single dislocations produce an He(T) that varies either too rapidly 
or too slowly with temperature colnpared with the experimental 
data. The individual dislocations of a positive dipole, being 
mutually repulsive, would tend to find equilibrium positions as far 
apart froin one another as possible (d/w0> 1), i.e., would no longer 
behave as a dipole. Itence, for low defect density, a positive 
dipole acts like a single dislocation in coiltrolling the microcoer- 
civity. The differences between the two experimental data sets can 
be partly attributed to the different stress-strain histories of the 
samples and associated differences in defect type and geometry. 

Models that describe grains having a single dislocation produce 
a poor fit to the experimental data (Figure 13, curve 2), which is 
contrary to the conclusion reached by Xu and Merrill [ 1990a]. The 
discrepancy results from the temperature dependence assumed for 
the magnetostriction constant. Xu and Merrill [1990a] obtain a 
reasonably good fit to the experimental data with a single disloca- 
tion model by using the experhnentally determined magnetostric- 
tion values from Klapel and Shire [ 1974]. Recent and more exten- 
sive measurements of magnetostriction by Moskowitz [1993] show 
that )• does not decrease with temperature as rapidly as the earlier 
results obtained by Klapel and Shive [ 1974]. For example, )•o•Mfi '3 
for the new measurements coinpared with Mfi '6 for the older mea- 
surements. Although this difference appears minor, it becomes 
significant when substituted into the LDD approximation, He (T)o,: 
)•/M, •, for single dislocations. Therefore, instead of He (T)o•Mfi '2, 
the new experimental determination of k(T) predicts that He (T) 
varies approximately as M, •'6. 

Using the new magnetostriction data, the present results suggest 
that wall pinning in small MD recrystallized magnetite grains is 
due to a few negative dislocation dipoles instead of noninteracting 
single dislocations. This is a subtle distinction, but some indirect 
evidence to support this interpretation is provided by Smith and 
Merrill [1983]. Oil the basis of domain wall resonance experi- 
ments, they suggested that the likeliest pinning sims in some 
natural magnetites may be dislocation dipoles, or some other 
dislocation array, rather than isolated single dislocations. 
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Fig. 13. Comparison of experimental and theoretical thermal dependence of normalized bulk coercivity, He(T)/H• produced by 
different types of defects, using low defect density approximation. Numbers on the curves correspond to the following defect geo- 
metries: (1) positive dislocation dipole, d/wo=l, D=10 lain, (2) single dislocation, positive dislocation dipole, d/wo=O.l, or positive 
dislocation dipole bounding a slacking fault, d/wo= 0.1, (3) negative dislocation dipole, d/wo=l, (4) negative dislocation dipole, 
d/wo=O.l, (5) planar defect with exchange pinning, d/wo=O. 1, and (6) planar defect with anisotropy pinning, d/wo=O. 1. Grain size 
is D=10 gm. Experimental data are for grown crystals of synthetic magnetite with average grain sizes of D=12 gm [Heider et al., 
1987] and D=l-5gm [Dunlop and Bina, 1977]. 

High Defect Density 

The high defect density (HDD) approximation may apply to 
magnetite grains that have been crushed from larger crystals 
[Danleers and Sugiura, 1981], glass-ceramic samples that have 
been quenched from high temperature [Worm et al., 1988], and 
natural samples, all which are likely to have substantial con- 
centrations of defects. For example, crushed grains that have been 
milled have probably undergone extensive brittle/plastic deforma- 
tion at low temperature, resulting in a rapid increase in the 
number of defects and a high defect density. Under these condi- 
tions, the experhnental thermal dependence of the macroscopic 
coercivity varies approximately as X./Ms and apparently is 
independent of any changes in wall width with temperature 
[Hodych, 1982; Xu and Merrill, 1992]. 

To predict the macroscopic coercivity of such samples under the 
HDD approximation, the mean microcoercivity must be calculated 
(see equation (23)). In one case, <he> for a large number of ran- 
domly distributed identical defects, for example, dislocation di- 
poles all with the same value of d/w o, can be calculated from (24) 
and the results in Table 2. Still, only negative dipoles with d/wo--1 
will produce <he > independent of wall width and give the experi- 
mental observation that H½(T)o•k./M s [e.g., Xu and Merrill, 1992]. 
In another approach, to obtain the simple )•/M s behavior, Xu and 
Merrill [1992] suggest that <h•> can be attributed to a general 
sinusoidal microstress field which is produced by dislocations and 
is further asstuned to affect the wall anisotropy in such a way as 
to produce a wall width nearly independent of temperature. 

While the arguments in the preceding paragraph may apply 
under special circumstances to specific defect type or geometry, 
it is not a satisfactory explanation for coercivity in MD grains that 
may contain a variety of defect types and arrangements. For the 
important case of dislocations, a MD grain may more plausibly be 
expected to contain both positive and negative dislocation dipoles 
with a range of d/w. A random distribution of dislocations 
produces a corresponding distribution of interaction widths that 

produces finally a distribution of wall width exponents. Model 
calculations predict that he resulting from dislocation dipoles will 
exhibit both positive and negative values for the wall exponent. 
For positive wall exponents, the thermal dependence of he varies 
with temperature more slowly than X./Ms, whereas, for negative 
wall exponents, he varies faster than X./Ms. Hence, the mean 
microcoercivity from such a distribution should depend less on the 
thermal expansion of the wall than for models that include a 
random distribution of only one type of defect (ie., d/%= 
constant). As a simple example, the mean microcoercivity is 
equated to the average value of he determined by sintuning the 
contributions from equally weighted pairs of positive and negative 
dislocation dipoles with discrete values of d/w o (0.1, 0.5, 1, 2, 5, 
10). The result of this calculation is given in Figure 14 for D=10 
prn and shows that for this case, <h• >=)•/M s. A weighted average 
based on the magnitudes of he's gives essentially the same result. 
In the limit for a large number of positive and negative dipoles 
with a random distribution of day o, this result should still be a 
good approximation for two reasons: Firstly, when d/wo>l, the 
wall exponents for positive and negative dipoles rapidly approach 
zero (see Figure 4a) and h• will be independent of the thermal 
expansion of the wall width; secondly, when d/w0<l, n--•0 for 
positive dipoles and -1 for negative dipoles. ltowever, within this 
range of d/w o, the magnitude of he for positive dipoles is at least 
twice that for negative dipoles. Therefore, the microcoercivity for 
d/wo<l will be dominated by positive dipoles and he will again be 
independent of the thermal expansion of the wall width. For large 
MD grains with D>100 pm, the simple averaging scheme leading 
to <h½>---)•/M s may no longer hold because the wall width expands 
rapidly with temperature, producing more complex he(T) behavior 
for positive dipoles (see Figure 5). 

CONCLUSIONS 

A one ditnensional micromagnetic model was formulated to 
calculate the thermal dependence of microcoercivity for several 
different types of defects. Within the approxiJnations of the model, 
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Fig. 14. Normalized therm,'d dependence of mean microcoercivity produced by ,an assemblage of negative and positive dislocation 
dipoles with d/wo= 0.1, 0.5, 1, 2, 5, and 10. Grain s•ze is D=10 pm. Upper solid curve is <h•> for positive dipoles, lower solid 
curve is <hc> for negative dipoles, solid circles are <h•> for both negative and positive dipoles, and the dashed line is the thermal 
dependence of )•/M,. 

hc(T ) is usually found to be a function of the wall width raised to 
some power n. The particular value of n is found to be a function 

of the DW-defect interaction spacing (d/w0), type•of defect, and 
grain size. The thermal dependence of the wall width is a natural 
outcome of the calculations. Within the grain size range of I to 
100 pm, the wall width expands with temperature more gradually 
than classical theory predicts. Only for large MD grains (D>100 
pm) does the wall width expansion approach the classical limit. 
The reduced expansion of the wall width is due to the magneto- 
static energy of the wall and not to any direct influence of the 
defect on the wall anisotropy. 

The model results for microcoercivity were used with the theory 
of Xu and Merrill [ 1990a] to relate microcoercivity to the observ- 
ed macroscopic coercivity. Results for dislocation dipoles provide 
the best agreement with the limited experimental data available for 
magnetite. Dipoles are considered here in a general sense as two 
associated dislocations interacting with a domain wall. For grains 
with low defect densities, i.e., hydrothermally grown magnetite, 
negative dislocation dipoles with d/wo=O.l-1 have a theoretically 
calculated thermal dependence of coercivity that agrees well with 
experimental results [Heider et al., 1987]. In the high defect 
density limit, a distribution of positive and negative dislocation 
dipoles with a distribution of dipole widths yields H½(T)o•)•/M, 
consistent with experimental data from crushed and glass ceramic 
samples. However, without specific observations of the defect 
structures that are typical in recrystallized and crushed magnetites, 
it is difficult to use the theoretical results to make unambiguous 
statements about the importance bf various defect structures in real 
samples. Coercivity measurements from single grains represent 
one instance in which the theoretical microcoercivity results could 
be applied directly [e.g., Halgedahl, 1991; Heider and Hoffinann, 
1992], since grain size distribution effects are elhninated. 

The other main conclusions are as follows: 

1. The thermal dependence of microcoercivity produced by 
dislocations can be given as h½(T)o•(k/M• )w(T)•. The wall width 
exponent (n) is a function of d/w o and grain size. 

2. For negative dislocation dipoles, he (T) varies inversely with 
the wall width. The wall width exponent varies from -1 for d A% 
<< 1 to 0 for d/wo>> 1. 

3. For positive dislocation dipoles, he(T) varies directly with w. 

The wall width exponent reaches a tnaxhnum value of approxi- 
mately 0.6 for d/wo=l and approaches zero for d/wo<<l and dA, v o 
>> 1. When the grain size is larger than 100 pm and d/w o =1, the 
expansion of the wall width outpaces the decrease in ),./M, over 
a limited temperature range, resulting in a nearly constant h•(T) 
for T<200øC and reaching a maximum between 200-300øC. 

4. The thermal dependence of h• for planar defects can be di- 
vided into three regimes independent of the relative change in the 
exchange or anisotropy constants within the defect region: (1) ex- 
change pinning regime in which hc(T)o•(A/MOw(T) n with -3<n<-2; 
(2) anisotropy pinning regime in which h,(T)o•(K,,/M, )w(T) n with 
-l.2<n<0; and (3) mixed pinning regime which is a co•nbination 
of types I and 2 and cannot be described by a simple power law 
dependence on the wall width. The absolute magnitude of h c, 
however, is a very strong function of the strength of the defect. 

All planar models produce a more rapid decrease in he with 
temperature than dislocation models. 

5. The thermal dependence of h c produced by a planar defect 
bounded by a positive dislocation dipole and d/w0=0.1 is approx- 
imately the same as the dislocation dipole alone until the relative 
strength of the planar defect exceeds 20%. For this defect geo- 
metry, the magnetoelastic effects of the dislocations are much 
greater than the pinning effects of the planar defect. 

6. The thermal dependence of h c produced by a planar defect 
bounded by a negative dislocation dipole and d/w0=0.1 is more 
complex than the defect geometry discussed in conclusion 5 
because of the competing effects of the dislocations and planar 
defect. The effect of the planar defect becomes important after 
only a 5% change in its relative strength. For strong planar 
defects, hc (T) behavior transforms gradually from dislocation 
dipole pinning to planar defect pinning as the relative strength of 
the defect increases. For weak planar defects, complex he (T) 
behavior is predicted. 

APPENDIX 

The complete expressions for the two nonlinear equations given 
by (19) are 

•E, =0 
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d (l-f•) t _E t __ 

•E, =0 

D (1 +x) 2n(V•-- 1 w 

•r In 1+.• +D 2Q w 

2 •w)l 

+ • {[2ZG[•)-L[••e•2•G•••+L•d-dø•] } = 0 
where 

B•(x) = -2x3/2 +x • , C•(x) = 2 E•(x) = 2 
(1 +x2) 2 (1 +x2) 2 (1 +x2)2(2 +x 2) 

F(x) = E(x) + xE/(x) , G(x) = C(x)-xC/(x) , L(x) = B(x)-xB /(x) 

and A=K,'/K,, fl=A '/A, 'c=271a)•m/4K, T=d(K,/A)'•, Q=K,/2•rMfi, 
h=HMs /2K,, and •j=)•u•bla/DK,, 
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