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Chapter A.1: An introduction to Idiopathic Pulmonary Fibrosis 

Idiopathic Pulmonary Fibrosis (IPF) is a lethal disease that is defined by 

the accumulation of fibroblasts and excessive deposition of extracellular matrix 

(ECM) between the alveolar surfaces of the lung. The pathological feature in IPF 

is the hallmark lesion called the fibroblastic focus. Fibroblastic foci are sites 

where proliferative fibroblast cells accumulate (between alveolar surfaces), 

deposit excess ECM, and contract alveolar walls compromising oxygen 

exchange which results in asphyxiation of patients. Currently, there are two 

pharmacological approved drugs to treat the progression of disease: Pirfenidone 

and Ninetdanib [Tzouvelekis 2015], although the most beneficial treatment is 

double lung transplantation [Schaffer 2015]. Clinical features of IPF include that it 

predominantly affects men, rarely presents in patients under the age of 50, and 

has a median survival of 3 years after diagnosis; IPF affects 2 million people 

worldwide with a prevalence of 50 per 100,000, and kills about 40,000 Americans 

a year (comparable to breast cancer related deaths a year) [Wolters 2013]. 

Although there are cases of hereditary IPF (20% of cases), IPF is not a genetic 

disease. IPF has been linked with genetic alterations of mucin 5B (MUC5B), 

telomerase (TERT/TERC), and surfactant protein C and A2 (SPC and SPA, 

respectively) although there are no data to support that these directly lead to lung 

fibrosis [Wolters 2013]. IPF is a progressive lethal disease and identifying points 

of vulnerability in its pathogenesis is warranted. 
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Chapter A.2. The cellular components of Idiopathic Pulmonary Fibrosis: 

fibroblasts and myofibroblasts 

A.2.1 Normal lung fibroblasts 

 Fibroblasts are a heterogeneous population of spindled morphology cells 

whose major functions are to maintain tissue homeostasis and regulate the 

turnover of ECM. Fibroblasts are also critical for proper wound healing. During 

normal wound healing, fibroblasts migrate to the site of injury, differentiate into 

myofibroblasts (α-SMA expression), secrete and assemble ECM, and contract 

wounds closed. During late stages of wound healing, normal myofibroblasts 

undergo apoptosis and the wound is resolved [Kalluri 2006]. However, in IPF, 

myofibroblasts persist and accumulate in the airways eventually leading to organ 

failure. Understanding how fibroblasts differentiate into pathological 

myofibroblasts is an important question in the field.  

A.2.2 The myofibroblast in Idiopathic Pulmonary Fibrosis 

It is useful to conceptualize the IPF myofibroblast using a cancer 

paradigm. Although not driven by somatic mutations, the IPF myofibroblast 

shares several hallmark characteristics with cancer that distinguishes it from 

other fibroblasts in the lung. Henke’s research group has shown that IPF 

myofibroblasts differ from normal fibroblasts as they have an increase Akt-

signaling pathway which is mediated by suppressed expression of PTEN and 

caveolin-1 which are negative regulators of the Akt pathway [Xia 2008]. With this 

pathologically active growth signaling axis, IPF myofibroblasts resist the negative 
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proliferative regulation type I collagen has while resisting apoptosis. This 

supports the increased proliferation and decreased apoptosis branch of the 

hallmarks of IPF (Figure A.1).Other mechanistic studies have shown that IPF 

myofibroblasts resist apoptosis through lower levels of prostaglandin E2 

generator cyclooxygenase 2 (COX-2 – apoptosis-inducing) [Wilborn 1995] and 

lower levels of fork-head box- O3a (FoxO3a – apoptosis-inducing) [Nho 2013]. 

Myofibroblasts are effector cells in IPF and are characterized by their expression 

of alpha smooth muscle actin (αSMA) and up-regulation of ECM synthesis versus 

non-activated fibroblasts. IPF myofibroblasts have activated fibroblast 

characteristics: increased αSMA and increased type I collagen expression versus 

control lung fibroblasts [Khalil 2015, Xia 2014]. IPF fibroblasts, as compared to 

control lung fibroblasts, form fibrotic lesions in xenograft zebrafish assays 

[Benyumov 2011] and xenograft mouse models [Xia 2014]. Lastly, the fibrotic 

reticulum formed in the IPF lung anatomically appears to represent invasive 

tumor-like lesions all of which justify the cancer paradigm terminology. 
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Figure A.1 Hallmarks of Idiopathic Pulmonary Fibrosis. IPF myofibroblasts have an increased 

Akt – signaling growth axis which leads to increased proliferation and decreased apoptosis. IPF 

myofibroblasts have activated fibroblast phenotypes (increased αSMA expression) and increased 

ECM synthesis which is an effector cell in IPF. Lastly, IPF myofibroblasts form fibrotic reticulum in 

zebrafish and rodent models.  

 

Chapter A.3. The biology of pathological extracellular matrix: a role for 

fibroblast-to-myofibroblast differentiation 

Each organ consists of a highly structured ECM tuned to the specific 

function of that organ. Maintenance of ECM homeostasis is critical for regulating 

biochemical signals that support cellular functions including attachment, 

differentiation, growth, and survival [DuPort 2011]. However, during pathological 

remodeling of the ECM that occurs in cancer and fibrosis, ECM homeostasis is 

compromised [Humphrey 2014]. It is therefore important to understand the extent 

to which pathological cellular functions in disease are ECM-mediated and –

supported. Below are ways that pathological ECM cause fibroblast-to-

myofibroblast differentiation. 

A.3.1 TGF-beta mediated myofibroblast differentiation 

Transforming growth factor beta (TGF-β) is an abundant growth factor 

embedded in the pathological ECM in IPF. TGF-β is a cytokine that inhibits 

proliferation and induces apoptosis of epithelial cells [Leask 2004]. In fibroblasts, 

TGF- β mediates myofibroblast differentiation, proliferation, and increased ECM 

synthesis through SMAD downstream targets [Hu 2003, Hinz 2012]. TGF-β 
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signaling in fibroblasts is one mechanism by which a profibrotic ECM mediates 

myofibroblast differentiation (Figure A.2). 

 

A.3.2. Pathological stiffness mediated myofibroblast differentiation 

IPF lungs are an order of magnitude stiffer than control lungs [Booth 

2012], and stiffness drives myofibroblasts differentiation independent of TGF-β 

[Huang 2012, Lui 2014]. Using polyacrylamide hydrogels (PA gels) simulating 

IPF stiffness, Huang et al. showed that through a ROCK/RhoA – MLK1 

mechanotransduction signaling axis, myofibroblast differentiation is achieved in 

primary lung fibroblasts on hydrogels simulating IPF stiffness. Liu et al. showed 

that PA gels of IPF stiffness directed myofibroblast differentiation and collagen 

expression in a Yes-associated protein (YAP) dependent manner [Liu 2014]. 

Increased matrix stiffness is another mechanism by which a profibrotic ECM 

mediates myofibroblast differentiation (Figure A.2). 

A.3.3. ECM mediated myofibroblast differentiation 

IPF tissue is compositionally different than normal lungs. As 

myofibroblasts populate the lung, they deposit a type I collagen rich ECM. Booth 

et al. was the first group to use decellularized lung ECM from control or IPF 

patients (Ctrl- or IPF ECM) as a scaffold for cells to adhere and interact. They 

identified that IPF-ECM directs fibroblast-to-myofibroblast (increased αSMA 

expression) differentiation in a TGF-β-independent manner [Booth 2012]. 

Pathological ECM components, such as Fibronectin-EDA (abundant in IPF and 
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low in normal lung), has also been shown to drive myofibroblast differentiation of 

primary fibroblasts [Bhattacharyya 2014]. Pathological ECM composition is 

another mechanism by which a profibrotic ECM drives myofibroblast 

differentiation (Figure A.2). 

 

 

 

Figure A.2. Myofibroblast differentiation driven by a profibrotic environment. IPF is 

enriched with growth factors such as TGF-β, is an order of magnitude stiffer, and compositionally 

different than control lungs. These factors drive fibroblast differentiation into myofibroblasts 

(increased αSMA expression) which are effector cells in IPF that increase ECM production. 

 

Myofibroblast differentiation has been widely studied, and the mechanism 

of increased ECM production has been under intense research. Using single 

parameters of pathological ECM mediated myofibroblasts differentiation has 

given us insight into the mechanism of myofibroblast activation. What is less 
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explored is the mechanism by which pathological ECM modulates ECM 

expression in myofibroblasts. 

A.4. MicroRNA-29 deregulation in Idiopathic Pulmonary Fibrosis 

A.4.1. MicroRNA biogenesis 

MicroRNAs are small non-coding RNAs of ~22 nucleotides that post-

transcriptionally modulate gene expression. To date, there are about 2,588 

microRNAs encoded in the human genome [Ha 2014]. A unique feature of 

microRNAs is that they are often clustered in operons and expressed 

polycistronically. However, each microRNA in that cluster can be differentially 

regulated at the level of microRNA processing [Mott 2013] suggesting higher 

orders of microRNA regulation.  

  MicroRNA’s are transcribed by RNA polymerase II (Pol II) into what is 

called the primary microRNA (Pri-miR) that is fully equipped with a 5’ cap and 

poly-A tail (over 1kb in size). Pri-miR’s contain stem loop secondary structures 

that are recognized by microprocessing complex (Drosha, DGCR8, and others) 

that cleave the junction between the stem loops and form the precursor 

microRNA (Pre-miR). Pre-miR is exported from the nucleus to the cytoplasm via 

exportin 5 where it is recognized by Dicer and further processed into a small 

RNA duplex. AGO proteins bind the RNA duplex, unwind, trim, and load a mature 

strand in concert with other protein components to form the RNA-induced 

silencing complex (RISC). Mature microRNA’s are classified by their seed 

sequences (~8 nucleotides) that give them specificity to their target mRNAs. 
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Mature RISC complexes bind target mRNA’s and direct its translational 

repression or mRNA cleavage (Figure A.3) 

 

 

Figure A.3. MicroRNA biogenesis: MicroRNA’s are transcribed in the genome via RNA 

polymerase II (Pol II) into primary microRNA (Pri-miR) that are 5’ capped and contain a poly-A 

tail. Pri-miR’s are further cleaved into precursor microRNA (pre-miR) via the microprocessor 

complex and finally exported from the nucleus to the cytoplasm. In the cytoplasm, Dicer 

processes Pre-miR into a small RNA duplex that is loaded onto the RNA-induced silencing 

complex (RISC) where it can bind target mRNA’s and cause translational repression or mRNA 

cleavage. 

 

A.4.2 MicroRNA regulation 

It is of interest to understand microRNA regulation since 60% of our 

protein encoding mRNA’s contain at least one known microRNA target 

sequence. It is therefore not surprising that microRNA’s are tightly regulated at 



   9 

 

the levels of transcription and post-transcription. I will focus my efforts on post-

transcriptional regulation as transcriptional regulation is unique to each 

microRNA’s promoter region and under Pol II regulatory components. 

MicroRNA post-transcriptional regulation occurs at different stages: 

nuclear processing and cytoplasmic processing. The microprocessor complex 

(Drosha and DGCR8) is essential for nuclear processing of Pri-miR to Pre-miR. 

Drosha deletion is lethal in mice [Chong 2010] and DGCR8 deletion arrests 

mouse development [Wang 2007]. The expression of these components are 

crucial for proper microRNA biogenesis, however there are a variety of post 

modifications that effect Drosha and DGCR8’s stability, nuclear localization, and 

processing activity. For instance, phosphorylation of Drosha by GSK3β at serine 

300 and serine 302 drives Drosha nuclear localization [Tang 2010 and Tang 

2011], while acetylation of Drosha in its N-terminus competes for ubiquitination, 

hence increases Drosha stability [Tang 2013]. Similarly, DGCR8 processing 

activity is increased by HDAC1 deacetylation of critical lysine residues used for 

RNA binding [Wada 2012]. Phosphorylation of DGCR8 by ERK enhances protein 

stability [Herbert 2013] (Figure A.4a). 

The microprocessor complex also includes RNA helicase (DEAD-box containing 

– DDX) proteins whose functions are to enhance processing activity. p68 (DDX5) 

and p72 (DDX17) have been shown to be upregulated in breast, prostate, and 

colon cancer [Van Kouwenhove 2011]. Either p68 or p72 knockout in mice are 

lethal, as studies show that they are required for microRNA processing from Pri-
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miR’s [Fukuda 2007]. The tumor suppressor, p53, has been shown to interact 

with p68 and enhance microRNA processing activity, and cancer-driving p53 

mutants have been shown to decrease p68 interaction and decrease mature 

microRNA abundance that function in growth suppression [Suzuki 2009]. SMAD 

signaling through TGF-β has also been shown to associate with p68 and 

increase microRNA processing [Davis 2008]. The hippo pathway’s effector 

protein, Yes-associated protein (YAP) has been shown to bind and sequester 

p72 which alters global microRNA processing [Mori 2014] (Figure A.4a). 

Nuclear export of microRNA’s depends on a transport complex containing 

exportin-5 and RAN-GTP. This complex binds Pre-miR’s, and hydrolyses GTP in 

order to translocate Pre-miR’s through nuclear pores into the cytosol. Although 

this complex is not well understood, mutations in exportin-5 has been discovered 

in transformed cell lines that lead to global microRNA suppression [Melo 2010]. 

Cytoplasmic Pre-miR processing is performed by Dicer. Dicer recognizes and 

cleaves Pre-miR’s near the stem loop, releasing a small RNA duplex. Dicer is 

regulated by its cofactor, TAR RNA-binding protein (TRBP), which modulates 

Dicer processing efficiency. Although TRBP is not essential for Dicer-mediated 

Pre-miR processing [Lee 2006], TRBP2 is mutated in transformed cells which 

leads to reduced Dicer stability [Melo 2009]. TRBP phosphorylation by ERK has 

also been shown to modulate growth promoting microRNA up-regulation [Paroo 

2009] (Figure A.4b). 
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Small RNA duplexes that are released from Dicer are loaded onto 

argonaute proteins (AGO1-4). AGO proteins selectively bind small RNA duplexes 

according to their structural and chemical properties, and unwind the RNA duplex 

by selecting the most thermodynamic stable end of the RNA duplex [Ha 2014]. 

Gene silencing by AGO proteins is achieved in processing bodies (P – body) and 

AGO stabilization and P – bodies retention is influenced by post-transcriptional 

modifications. AGO is hydroxylated by type I collagen prolyl 4-hydroxlase (4PH) 

which increases AGO2’s stability and P – body localization [Qi 2008]. 

Phosphorylation of AGO2 by AKT3 leads to P – body localization [Horman 2013] 

(Figure A.4b). 

 

 

Figure A.4. MicroRNA nuclear and cytoplasmic regulation: Once microRNA’s are transcribed, 

they’re subjected to processing regulation. a) Drosha and DGCR8 form a microprocessor 

complex and mediate cleavage of the Pri-miR, leaving the stem loop. Drosha and DGCR8 
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undergo a variety of post-transcriptional modifications that affect its stability, nuclear localization, 

and processing efficiency. DEAD-box RNA helicases (p68 and p72) are cofactors that bind single 

stranded RNA at the stem interface and mediate processing efficiency and are subject to cellular 

signaling that modulate processing activity. b) Dicer protein nicks the translocated Pre-miR at the 

stem loop interface. Dicer is regulated by other RNA binding proteins to either stabilize or 

modulate processing efficiency. AGO protein binds the small RNA duplex and is also subjected to 

post-transcriptional modification to effect microRNA stabilization and localization of AGO. 

 

Mature microRNA decay is not understood. When associated with RISC, 

microRNA ends are protected by AGO protein binding making it difficult for 

microRNA decay to occur [Ha 2014]. However, one mechanism for degrading 

Pre-miR has been unraveled: RNA-editing. Let-7 precursor microRNA recruits a 

terminal uridylyl transferase (TUT4) to induce oligouridylation of precursor Let-7’s 

3’ end. The addition of an oligo-U tail prevents Dicer processing and leads to 

microRNA degradation [Heo 2008]. Poly (A) polymerase, GLD-2, has been 

shown to selectively target miR-122 and add an adenosine to the 3’ end. This 

single edit was shown to stabilize miR-122 which is another example of RNA-

editing affecting microRNA stability [Katoh 2009]. Although microRNA turnover is 

nuclease mediated, the mechanism of regulation is largely unknown and a 

challenge in the field. 

A.4.3. MicroRNA-29: a profibrotic regulator of pathological 

extracellular matrix 

 Myofibroblasts increase ECM production, and one mechanism of ECM 

up-regulation is mediated by the suppression of microRNA-29 (miR-29) which is 
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suppressed in IPF [Oak 2011, Parker 2014, Khalil 2015]. MiR-29 is of great 

interest as its target genes are ECM, integrin, and ECM modifying genes (Figure 

A.5a) [Cushing 2011, Parker 2014]. MiR-29 targets a variety of ECM genes 

including collagen type I, III, IV, V, and laminin α1, α3, β3. Type I and type III 

collagen are abundantly found in IPF matrix and the receptors used to bind these 

are integrin’s α2 and α11 (both of which are miR-29 targets). Finally, miR-29 

targets ECM modifying genes that are critical in ECM turnover (MMP2 and 

MMP14) and important in ECM stiffening through crosslinking enzymes (LOXL2, 

Figure A.5a). MiR-29 is a profibrotic regulator as its suppression increases ECM 

production, allows attachment to fibrotic ECM by increasing integrin expression, 

and causes stiffening/crosslinking of fibrotic ECM. 

A.4.4. MicroRNA-29 regulation 

Mir-29 suppression is not unique to IPF, and has also been shown to be 

suppressed in fibrosis of the heart, kidney, and liver [He 2013]. Xiao et al. 

demonstrated that overexpression of miR-29 in a bleomycin-induced model of 

pulmonary fibrosis ablates the initiation of fibrosis [Xiao 2012]. Therefore, it is of 

great importance to understand how miR-29 is regulated in IPF.  

The miR-29 family consists of 4 precursors: miR-29a, -29b-1, -29b-2, and 

-29c; miR-29b-1/a and miR-29b-2/c are expressed polycistronically and are 

encoded on chromosome 1 and 7, respectively. It is important to note that miR-

29b-1 and miR-29b-2 are identical, and to date, there is no evidence of 

polymorphisms associated with miR-29. However, miR-29 has been shown to be 
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transcriptionally regulated by c-Myc, hedgehodge, NF-κB, TGF-beta, YAP, 

PP2A/HDAC4, and Erk/c-Fos (Figure A.5b) [Mott 2013, Wang 2008, Qin 2011, 

Khalil 2015, Tumaneng 2012, Chen 2012].  Although these research groups used 

different cell types and different systems, it is important to understand how miR-

29 is regulated in models of fibrosis. 

 

 

Figure A.5. MicroRNA-29 gene targets and transcriptional regulation. a) MicroRNA-29 is a 

fibrotic regulator and genome studies have shown that targets of miR-29 are ECM, integrin, and 

ECM modifying enzymes. b) MiR-29 transcriptional regulation has been extensively studied and 

research has shown that miR-29 is transcriptionally suppressed by NF-κB, hedgehog, TGF-β, 

and Myc. MiR-29 has been shown to be transcriptionally activated by YAP, PP2A/HDAC4, and 

ERK/c-Fos. 

 

A.4.5 MicroRNA processing deregulation in Idiopathic Pulmonary Fibrosis. 
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MicroRNA global suppression is a characteristic of cancer, and microRNA 

deregulation is a theme in IPF pathogenesis [Oak 2011, Kusum 2015]. Oak et al. 

was the first to report a global deregulation of microRNA expression in IPF. In 

this study, they evaluated 88 of the most highly expressed microRNA’s and 

determined that 36 microRNA’s were significantly decreased (including miR-29a, 

-29b, and -29c) and 11 microRNA’s were significantly increased ex vivo. They 

also quantified, by PCR, relative expression of AGO1 and AGO2 and found lower 

expression in IPF fibroblasts. They conclude that the progression of IPF might be 

due to aberrant microRNA processing. This therefore motivates us to study how 

miR-29 is regulated in the context of fibrotic ECM. 

A.5. Modeling Pathological ECM 

A.5.1 Physiological versus pathological decellularized ECM: Pathological 

ECM regulates miR-29 expression 

Booth et al. was the first to decellularize control and IPF lung tissue (Ctrl-

ECM and IPF-ECM) and show that IPF-ECM is an order of magnitude stiffer, and 

compositionally different than Ctrl-ECM. Their manuscript outlines an innovative 

methodology paper and their studies show that when primary lung fibroblasts are 

cultured on IPF ECM, these fibroblasts differentiate into myofibroblasts. To 

further unravel how ECM directs IPF characteristics, our group took a genome-

wide approach to identify transcriptome and translatome profiles. We found that 

IPF-ECM drives ECM gene translational activation [Parker 2014]. We identified 

that miR-29c was suppressed by IPF-ECM while restoration of miR-29c ablated 
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ECM gene translational activation (Figure A.6). These studies highlight the use 

of authentic decellularized ECM as a model to study IPF pathogenesis. However, 

the mechanism of miR-29 suppression is not completely understood. 

 

Figure A.6. Fibrosis begets fibrosis. IPF-ECM activates the translation of ECM genes in 

primary lung fibroblasts through the inhibition of microRNA-29, while control ECM suppresses the 

translation of ECM genes via the increase of microRNA-29. IPF-ECM constitutes a positive 

feedback loop that amplifies ECM gene expression and allows for the contiguous spread of 

fibrosis. 

 

A.5.2 Polyacrylamide Hydrogels to Model Composition and Stiffness 

Polyacrylamide hydrogels (PA gels) are conveniently used to model 

stiffness as a range of stiffness’s can be accomplished by adjusting acrylamide 

concentrations. PA gels are then coated with a monolayer of any ECM-derived 

protein to study cell – ECM interactions [Cretu 2010] (Figure A.7). When cultured 

on PA gels simulating IPF stiffness, lung fibroblasts become activated in a 

YAP/TAZ dependent manner [Liu 2014]. They differentiate into myofibroblasts 

[Huang 2012], generate increased force and manifest an increased rate of 

proliferation [Marinković 2013]. These studies demonstrate that stiffness drives 

fibroblast into IPF-like fibroblasts and serve as a valuable model to study IPF 
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pathogenesis. However, no one has yet to report the role of stiffness and miR-29 

expression.  

 

Figure A.7. Polyacrylamide Hydrogels. Polyacrylamide hydrogels can be modulated to 

simulate stiffness’s seen in normal and IPF lungs. Polyacrylamide hydrogels of IPF stiffness has 

been shown to drive many fibrotic characteristics. The diversity of this assay allows researchers 

to coat a monolayer of any ECM protein to determine effects of stiffness and a variety of 

compositions. 

 

A.6 Conclusions 

The hallmark characteristics of IPF resemble many also used to define 

cancer. Because there are no animal models that can fully recapitulate IPF, 

creative ways to model disease progression such as modeling pathological ECM 

has been in the spotlight. Mechanisms regulating ECM synthesis, such as 

microRNA-29 regulation, have been of high interest to begin uncoupling the 

profibrotic response. Herein we aim to understand the relationship between 

pathological ECM and microRNA-29 regulation. 

Chapter B: Pathological extracellular matrix regulates microRNA-29 at the 

level of microRNA processing in Idiopathic Pulmonary Fibrosis 

B.1 Study Design  
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This dissertation is divided into three sections. The first is to (i) determine 

whether miR-29 is regulated by the mechanical property of stiffness. Second, (ii) 

to determine at which level of regulation miR-29 is controlled, and finally, (iii) to 

identify the molecular mechanism by which IPF-ECM suppresses miR-29. The 

experimental study design and end points are shown in Figure B.1. 

 

 

Figure B.1. Study Design. a) Human lungs from control or IPF patients were decellularized at 

200 µM sections of approximately 1cm2 in size. To control for patient variability, we pooled ECM 

from 3 patients (either control or IPF) per reaction and cultured ECM with 5 x 105 fibroblasts for 

18 hours in 1% serum. B) Polyacrylamide gels of physiological stiffness (Soft – 3kPa) or IPF 

stiffness (Stiff – 20 kPa) were made and seeded with 2 x 105 fibroblasts for 24 hours in 1% 

serum. At the end of the experiments, total RNA is isolated for quantitative PCR, protein for 

immunoblots, or formalin-fixed for histological analysis. 

 

B.2 Materials & Methods 

Primary human lung fibroblast lines and culture conditions: All studies 

involving patient derived material were approved by the University of Minnesota 
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IRB. De-identified human lung tissue was obtained from the University of 

Minnesota Tissue Procurement Facility.  All cell lines were derived from 

histologically uninvolved tissue adjacent to resected tumors. Tissue was minced 

and added to 35mm plastic tissue culture dishes for 2-3 weeks in explant growth 

medium (DMEM + 20%FBS, 200 IU/mL Streptomycin, 200 IU/mL Penicillin). 

Outgrowth cells were sub-cultivated into 150-mm dishes in fibroblast growth 

media (DMEM + 10%FBS, 100 IU/mL Streptomycin, 100 IU/mL Penicillin) and 

designated passage 1. Cells were characterized as fibroblasts by their typical 

spindle shaped morphology, the expression of vimentin and alpha smooth 

muscle actin and no expression of factor VIII and surfactant C. Cells were 

cultured (37oC, 5% CO2) in fibroblast growth medium and sub-cultivated at a 1:3 

split ratio. All experiments were conducted with cells between passages 3 to 6.  

Decellularized human lung ECM: Human lung tissue was obtained from the 

University of Minnesota’s Tissue Procurement Facility as histologically 

uninvolved tissue adjacent to resected tumor, or from patients clinically confirmed 

as IPF at time of biopsy, lung transplant or autopsy, following a protocol 

approved by the University of Minnesota’s Institutional Review Board of Human 

Subjects Research. Freshly frozen tissue was sectioned at 200µM and 

decellularized in a series of solutions (1%SDS, 1% Triton X-100, 1M NaCl, 

DNase) as described [Parker 2014]. Cells (5x105) were added to 15mL conical 

polypropylene tubes oscillated at ~6-8 revolutions per minute. Each tube 

contained three control or three IPF decellularized ECM sections (1cm by 1cm), 
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2mL survival medium (DMEM + 1% FBS, 100 IU/mL Streptomycin, 100 IU/mL 

Penicillin) and were incubated at 37oC in an atmosphere containing 5% CO2. 

Polyacrylamide Gels: Polyacrylamide gels of 3 kPa or 20 kPa were cast 

following an established protocol (Cretu 2010). As indicated in the text, gels were 

coated with either 100µg/mL Type I Collagen (Advanced BioMatrix 5005), 50 

µg/mL Type III Collagen (Advanced BioMatrix 5021), 10 µg/mL Fibronectin 

(Advanced BioMatrix 5050), or a combination of all three using 10 µg/mL of each. 

2 x105 fibroblasts were seeded on each gel and incubated in survival medium. 

Vectors/Plasmids: pQCXIH-Flag-YAP-S127/381A and pQCXIH-Myc-YAP-5SA 

were obtained from Addgene (plasmid # 33069 and plasmid #33093) and FLAG-

YAP-S127/381A and Myc-YAP-5SA were cloned into GIPZ lentiviral systems 

(GE Healthcare). Cells were transduced and used for experimentation after 48 

hours. YAP knockdown was achieved by using GIPZ lentiviral systems (GE 

Healthcare, V2LHS-65508), and transduced cells were used after 72 hours. 

Western blot and antibodies: Cells were lysed by addition of Lysis Buffer [150 

mM NaCl, 1 mM EGTA, 50 mM Tris, pH 7.4, 1% Triton X-100, 1% Nonidet P-40, 

1% sodium deoxycholate, with protease inhibitors (Roche 11873580001)] to 

polyacrylamide gels or ECM. Blots were incubated (4oC) overnight with primary 

antibodies: rb anti-YAP (cell signal 14074; 1:2000), (Cell signal 13008; 1:2000), 

rb anti-GAPDH (Santa Cruz Bio sc-25778; 1:2,000), and rb anti-αSMA (Abcam 

ab-32575; 1:2,000). Blots were washed (describe) and incubated (1 h, room 

temperature) with secondary antibodies (either goat anti-rabbit IgG HRP 
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(Calbiochem 401393; 1:10,000) or Rat anti-mouse IgG HRP (Calbiochem 

401253; 1:2,500). Blots were developed using ECL western blotting detection 

(GE Healthcare W9488333) following the manufacturer’s protocol). 

Reverse Transcription and Quantitative PCR Analysis: RNA was isolated 

with TRI reagent (Sigma T9424) and chloroform extracted. Isolated RNA was 

reverse transcribed using miScript II RT Kit (Qiagen 218161) according to the 

manufacturer’s recommendation. Qiagen simplifies PCR by using validated 

primers which are all set at the same PCR conditions. Using SYBR – Green PCR 

Kit (Qiagen 218073; manufacturers recommendation), mature microRNA-29-a, - 

b, -c, 214, or RNU6 validated primers (Qiagen MS0003262, MS00006566, 

MS00003269, or MS00033740 respectively) and precursor microRNA-29-a, -c, 

214, GAPDH, CTGF, CYR61, YAP, or RRN18S validated primers (Qiagen 

MP00001736, MP00001757, MP00001540, QT00079247, QT00052899, 

QT00003451, QT00080822, or QT00199367 respectively) were used for qPCR 

and analyzed by Roche Light Cycler 1.5 (Software Version 3.5). Primary mir-29a, 

are established primers (Mott 2010): forward 5’-CAGAGACTTGAGCATCTGTG, 

reverse 5’-AACCGATTTCAGATGGTG and used as described. 

Luciferase Assay: The miR29-b-1/a firefly luciferase promoter construct was a 

kind gift from Dr. Justin Mott, University of Nebraska [Mott J 2010]. The 

microRNA processing assay luciferase construct was a kind gift from Dr. Richard 

Gregory, Harvard Medical School [Mori 2014]. Plasmids miR29-b-1/a and pRL-

TK (Promega E2241) or microRNA processing construct were transfected using 
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Lipofectamine 3000 (Life Technologies L3000008) according to the 

manufacturer’s recommendation. Using a dual luciferase reporter assay 

(Promega E1910), luminescence was quantified using a Lumat LB 9507 

luminometer (Berthold Technologies). 

BrdU labeling: Fibroblasts cultured on decellularized lung matrices were 

incubated with BrdU (Life Technologies 00-0103; manufacturer’s 

recommendation) for 24 hours.  

Immunohistochemistry/Immunofluorescence: Fibroblasts on decellularized 

lung ECM and human lung samples were formalin-fixed and paraffin-embedded 

(FFPE). De-paraffinized and rehydrated 4 μm sections were subjected to 

antigen-heat retrieval (BioCare RV1000) for 25 minutes at 100oC followed by 3% 

hydrogen peroxide and a Background SNIPER (BioCare BS966) blocking 

reagent. Fibroblasts on polyacrylamide gels were formalin-fixed and subjected 

to antigen retrieval followed by a Background SNIPER blocking reagent. For 

anti-pro-collagen type I antigen retrieval we used proteinase K (Millipore 21627; 

working strength) for 10 minutes instead of antigen-heat retrieval. Sections and 

gels were exposed overnight (4oC) to primary antibodies diluted in 10% 

Background SNIPER. Primary antibodies: rb anti-YAP (Cell Signal 14074; 1:200), 

rat anti-human procollagen type I (Abcam 64409; 1:500), and mouse anti-BrdU 

(Roche 11903800; 1:400). For permanent stain, biotin-conjugated secondary 

antibody (Covance SIG-32236; working strength) was applied followed by 

Streptavidin-HRP (Covance SIG-32254; working strength) and developed with 
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DAB chromagen (Covance SIG-31042; manufacturer’s recommendation). Slides 

were counterstained with hematoxylin. For immunofluorescence, after overnight 

antibody incubation, anti-Rb Cy3 (Jackson 711-165-152; 1:500) was reacted in 

10% Background SNIPER and coverslipped with mounting media containing 

DAPI (Invitrogen P36931).  

Histological Imaging: Samples containing permanent stains (H&E, DAB 

substrate/hematoxylin counterstain) were imaged using a Leica EC3 microscope 

and Leica MME camera. Fluorescent images were collected using a Zeiss 

Axiovert 200 fluorescent microscope and analyzed using AxioVision (Release 

4.7.2). 

Statistics and Graphs: All graphs where made using Excel, and a Student T-

Test or Student Paired Tests were performed as appropriate. All error bars are 

represented as standard errors of the mean and asterisks indicate a p-value < 

0.05. 

B.3 Results 

B.3.1 ECM stiffness does not account for the regulation of microRNA-29 by 

IPF-ECM 

We have previously shown that IPF-ECM suppresses miR-29c with a 

trend toward suppression of miR-29a and miR-29b [Parker 2014]. We 

reexamined this effect with methodological revisions designed to maximize the 

impact of the ECM, minimize the effect of serum growth factors, and control for 

patient to patient lung ECM heterogeneity (Figure B.2). When primary lung 
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fibroblasts were cultured in low-serum survival media on pooled lung ECM (3 

Ctrl-ECM preparations or 3 IPF-ECM preparations in each reaction), we 

observed a significant decrease of all 3 miR-29 species (Figure B.3).  

 

 

Figure B.2: Lung fibroblasts survive and proliferate on Ctrl- or IPF-ECM. Lung fibroblasts 

cultured in either survival or complete medium were pulsed with BrdU for 24 hours and formalin-

fixed paraffin embedded. a)  3 day time-course of percent BrdU positive cells, b) representative 

images of ECM on day 3 with (lower panels) or without  (upper panels)  fibroblasts (n = 1). 

 

 

Figure B.3: IPF-ECM suppresses microRNA-29 expression: Lung fibroblasts were cultured on 

Ctrl- or IPF-ECM for 18 hours and mature miR-29 -a, -b, and -c were quantified by qPCR. 

Expression was normalized to RNU6 (n = 3). 
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IPF lungs are an order of magnitude stiffer and compositionally different 

than control lungs [Booth 2012]. When cultured on PA gels simulating IPF 

stiffness, lung fibroblasts become activated in a YAP/TAZ dependent manner [Liu 

2014]. They differentiate into myofibroblasts [Huang 2012], generate increased 

force and manifest an increased rate of proliferation [Marinković 2013]. In order 

to determine whether stiffness and/or composition could account for our 

observations of miR-29 on decellularized ECM, we first cultured lung fibroblasts 

on synthetic polyacrylamide hydrogels (PA gels) of physiological stiffness (Soft – 

3 kPa) or IPF stiffness (Stiff – 20 kPa) coated with type I collagen and measured 

mature miR-29 abundance. In accord with published data, lung fibroblasts 

increased αSMA expression on stiff PA gels (Figure B.4). Surprisingly, mature 

miR-29 was up-regulated by stiff PA gels (Figure B.5a). The PA gel system is 

versatile as it allows the gels to be coated with any matrix-derived protein of 

interest [Cretu 2010]. To test the relative importance of stiffness versus 

composition in regulating mature miR-29 abundance, we coated PA gels with 

type III collagen alone, fibronectin alone, or an equal ratio of type I collagen, type 

III collagen, and fibronectin and measured mature miR-29 abundance (Figure 

B.5b - d). Our results show that stiffness up-regulates mature miR-29 

abundance, independent of composition. This excludes the possibility that any 

single integrin/ECM receptor can account for the miR-29 regulation we observed 

on decellularized lung ECM. It also makes it unlikely that ECM stiffness is the 

primary driver in IPF-ECM. 
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Figure B.4: Stiffness upregulates αSMA expression in lung fibroblasts. Lung fibroblasts 

were cultured on soft or stiff PA gels for 24 hours and immunoblot was performed for αSMA and 

GAPDH. (n = 2, representative blot shown). 

 

 

Figure B.5: Stiffness, not composition, regulates miR-29 expression. Primary lung 

fibroblasts were cultured on soft or stiff PA gels for 24 hours and qPCR was performed for mature 

miR-29a, -29b, and -29c (normalized to RNU6). PA gels  were coated with either a) type I 

collagen, b) type III collagen,  c) fibronectin, or d) a 1:1:1 ratio of type I collagen, type III collagen, 
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and fibronectin. (n = 3 independent replicates for figure 6a-c. n = 6 independent replicates for 

figure 6d). 

 

B.3.2. IPF-ECM regulates microRNA-29 post-transcriptionally 

Regulation of microRNA expression occurs at the level of transcription, 

processing, and turnover [Ha 2014]. To examine transcriptional regulation of 

miR-29, we introduced a miR-29b-1/a luciferase reporter [Mott 2010] into lung 

fibroblasts and cultured them on ECM (Figure B.6a).  Although not statistically 

significant (p=0.109), miR-29 luciferase activity showed a trend towards 

suppression by IPF-ECM. MicroRNA processing occurs co-transcriptionally, and 

processing of primary microRNA’s into precursor microRNA’s are better 

predictors of mature microRNA abundance as opposed to transcriptional 

regulation alone [Conrad 2014]. To determine whether processing of miR-29 

precursors were differentially regulated by ECM type, we measured both mature 

and precursor miR-29a and -29c abundance (Figure B.6b). This independent 

experiment reproduces our previous results in which mature miR-29a and -29c 

are low on IPF-ECM and we now report an increase of precursor miR-29a and -

29c in lung fibroblasts cultured on IPF-ECM, indicating that IPF-ECM negatively 

regulates microRNA processing. Our experiments examining the effect of ECM 

type on miR-29 transcription and processing reveal a robust negative effect of 

IPF-ECM on miR-29 abundance. 
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Figure B.6: IPF-ECM regulates microRNA-29 post-transcriptionally. a) miR-29 b-1/a firefly 

luciferase reporter was introduced into lung fibroblasts and cultured on Ctrl- or IPF-ECM for 24 

hours. Activity was measured as firefly luciferase normalized to renilla luciferase (n = 5 

independent replicates). b) Lung fibroblasts were cultured on control or IPF-ECM for 18 hours 

and mature and precursor microRNA was measured. Left panel is miR-29a and right panel is 

miR-29c (n = 2 independent replicates). 

 

B.3.3. Hippo pathway is suppressed by IPF-ECM 

Yes-associated protein (YAP), a transcriptional coactivator, is a 

downstream effector in the Hippo pathway and has been shown to drive fibrosis 

mediated by the mechanical property of stiffness [Liu 2015]. YAP has dual 

functions were YAP has been shown to up-regulate miR-29b-1/a transcription 

[Tumaneng 2012] and suppress global microRNA processing [Mori 2014]. We 

therefore sought to determine whether IPF-ECM increases YAP expression in 

correspondence with stiffness. When lung fibroblasts were cultured on IPF-ECM, 

YAP abundance was decreased (Figure B.7a). ECM type had only a modest 

impact on YAP mRNA levels (Figure B.7b) and had no significant effect on YAP 

translation (data not shown) [Parker 2014]. YAP stability is regulated by a series 
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of phosphorylation events that determine its proteosomal degradation [Zhao 

2010]. When we inhibited the proteasome with MG132, the decrease in YAP 

abundance on IPF-ECM was ablated, indicating that YAP regulation by IPF-ECM 

occurs at the level of proteosomal degradation (Figure B.7c). As a transcriptional 

co-activator, YAP mediates its effect on gene expression in the nucleus. 

Immunohistochemical analysis indicated that YAP nuclear localization was 

reduced by IPF-ECM (Figure B.7d), along with expression of 2 canonical YAP 

transcriptional targets which served as a readout of YAP function (Figure B.7e). 

These results demonstrate that YAP is down-regulated by IPF-ECM in accord 

with a possible mechanistic relationship between YAP and IPF-ECM mediated 

down-regulation of miR-29 expression. 
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Figure B.7: YAP is suppressed by IPF-ECM. Lung fibroblasts were cultured on Ctrl- or IPF-

ECM for 24 hours. a) Shown is an immunoblot of YAP expression normalized to GAPDH 

(representative blot), 3 independent experiments using 3 lung fibroblast lines designated L1, L2, 

and L3). Summary densitometry is shown in the right panel. b) mRNA abundance of YAP 

normalized to GAPDH (n=3 independent replicates). c) Lung fibroblasts were pre-incubated with 

5uM MG132 for 4 hours and then cultured on Ctrl- or IPF-ECM for 4 or 8 hours. Immunoblot for 

YAP and GAPDH shown, and densitometry is shown on right panel. d) YAP Immunofluorescence 

(images are representative of 2 independent replicates; summary quantification shown in right 

panel). e) qPCR of CTGF and CYR61 normalized to GAPDH (n = 3 independent replicates). 

 

Prior studies of YAP expression in IPF indicate that YAP abundance is low 

in IPF lung fibroblasts as compared to control lung fibroblast counterparts [Liu 

2014], and histological analysis of YAP expression did not report specifically in 

fibroblastic foci, the signature diagnostic lesion in IPF. We therefore performed 

histological analysis of YAP expression in IPF lung tissue samples (specimens 

from 3 patients) with special attention to expression in fibroblastic foci. In order to 

identify active IPF fibroblastic foci, we immunostained for anti-human procollagen 

type I (Figure B.8a). Serial sections were immunostained for YAP (Figure B.8b). 
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The analysis revealed that cells in fibroblastic foci manifesting active type I 

collagen synthesis displayed low YAP expression as compared to surrounding 

tissue. These data are in accord with the diffuse YAP staining pattern previously 

reported in IPF [Liu 2015]. 

 

 

Figure B.8: Fibroblastic foci are low in YAP expression. Histological stains were performed 

on serial sections of IPF tissue. a) Active fibroblastic foci were identified by immunostain for type I 

collagen, b) and immunostain for YAP. (n = 3 IPF patients, representative image shown) 

 

To further explore the issue of stiffness, we examined YAP expression on 

soft and stiff PA gels coated with type I collagen. In accord with prior studies 

using mesenchymal stromal cells [Dupont 2011] and lung fibroblasts [Liu 2015], 

lung fibroblast Yap abundance was unchanged on stiff gels (Figure B.9a), YAP 

subcellular localization was predominantly nuclear on stiff gels (Figure B.9b), 

and YAP target genes were upregulated on stiff gels (Figure B.9c). These 

results exclude stiffness per se as the primary driver of the YAP-miR-29 axis 
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pathology on IPF-ECM, and point to a more complex set of influences that may 

include interactions among mechanical properties, composition, and topography.   

 

Figure B.9: Stiffness drives YAP activation. Primary lung fibroblasts were cultured on soft or 

stiff PA gels for 24 hours. a) Immunoblots for YAP and GAPDH (n = 3 independent replicates, 

densitometry on right panel). b) Immunofluorescence of anti-YAP on soft or stiff PA gels (n = 3 

independent replicates, quantification on right panel). c) qPCR of CTGF and CYR61 normalized 

to GAPDH (n = 3 independent replicates). 

 

 

B.3.4 YAP restoration does not rescue microRNA-29 by IPF-ECM  

Currently, our data show YAP expression coincides with miR-29 

expression; IPF-ECM drives low YAP and low mature miR-29 expression and 

stiff PA gels drives nuclear/active YAP and high mature miR-29 expression. To 

determine whether restoring YAP levels in fibroblasts rescues miR-29 expression 
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on IPF-ECM, we transduced lung fibroblasts with constructs encoding stably 

active YAP mutants resistant to proteosomal degradation (YAP S127/381A 

{FLAG tagged}) and a constitutive active YAP (5SA – S61/109/127/164/381A 

{Myc tagged}) [Zhao 2010]. Immunoblot shows ectopic expression of YAP 

mutants in fibroblasts (Figure B.10a). As a functional readout of YAP expression, 

we found that transcriptional targets of YAP (CTGF and CYR61) are 

transcriptionally up-regulated in fibroblasts cultured on either Ctrl- or IPF-ECM 

(Figure B.10b & d). YAP S127/381A increased both transcript levels above 

controls, and constitutive active YAP 5SA increased transcript levels at higher 

levels than control and YAP S127/381A on both ECM’s. In accord with 

Tumaneng et al., YAP transcriptionally activates precursor microRNA-29b-1/a in 

fibroblasts cultured on either Ctrl- or IPF-ECM (Figure B.10c &e). MiR-29b-2/c is 

under a different regulatory promoter [Mott 2010] and not up-regulated by YAP in 

our system. Although miR-29a precursor is up-regulated by mutant YAP’s, 

mature miR-29a levels do not change in YAP expressing fibroblasts on either 

ECM (Figure B.10f). IPF-ECM tightly regulates low baseline levels of mature 

miR-29, and YAP restoration in fibroblasts cultured on Ctrl-ECM suppresses 

miR-29 to baseline IPF-ECM levels. Constitutive active YAP expression has 

been shown to suppress global microRNA processing by sequestering an 

essential microRNA processing machinery (DEAD-box RNA helicase – p72) 

[Mori 2014]. Active YAP does not further suppress mature miR-29 levels as 
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compared to vector treated fibroblasts on IPF-ECM, thus suggesting that 

microRNA processing is deregulated by IPF-ECM. 

 

 

Figure B.10. YAP does not restore mature microRNA-29 expression. a) Lung fibroblasts were 

transduced with vector, YAP S127/381A – FLAG, or YAP 5SA – MYC for 48 hours and ectopic 

YAP expression is shown by immunoblot for FLAG, Myc, and GAPDH expression. b & d) 

Transduced lung fibroblasts were cultured on Ctrl- or IPF-ECM for 18 hours and qPCR for CTGF 

and CYR61 expression was normalized to GAPDH, c & e) precursor miR-29a and -29c 

expression was normalized to GAPDH, and f) mature miR-29a, -29b, and -29c was normalized to 

RNU6 (n = 2, representative experiment shown)   
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We also determined whether YAP suppression would decrease miR-29 

expression by Ctrl-ECM. YAP suppression was determined by immunoblot 

(Figure B.11a), and YAP downstream transcriptional targets (CTGF and CYR61) 

served as a readout for YAP suppression (Figure B.11b). However YAP 

suppression was insufficient to suppress precursor or mature miR-29a and -29c 

expression when cultured on Ctrl-ECM (Figure B.11c & d). Collectively, these 

data suggest that YAP does not mediate miR-29 regulation by ECM. 

 

 

Figure B.11: YAP suppression does not suppress miR-29 expression. YAP was stably 

knocked down in primary lung fibroblast using shRNA with a pGIPZ lentivirus delivery system for 

72 hours, and then cultured on Ctrl-ECM for 18 hours. a) Immunoblot for YAP and GAPDH. b) 

qPCR of CTGF and CYR61 normalized to GAPDH. c) Precursor miR-29a and -29c qPCR 
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normalized to GAPDH. d) Mature miR-29a and -29c qPCR normalized to RNU6. (n = 3, 

representative experiment shown) 

 

B.3.5. IPF-ECM suppresses microRNA-29 processing post-microprocessor 

complex 

Primary microRNA’s are processed into precursor microRNA by the 

microprocessor complex (Drosha/DGCR8) by cleaving the microRNA Stem Loop. 

To determine whether microRNA processing is altered by ECM or stiffness, we 

measured microRNA processing activity. MicroRNA processing activity is a 

luciferase based assay where Firefly luciferase has a microRNA Stem Loop 

(recognized by the microprocessor complex) encoded into the 3’UTR [Mori 

2014]. MicroRNA processing/cleavage of the Stem Loop destabilizes luciferase 

mRNA and a decrease of luciferase activity is measured as microRNA 

processing activity. Interestingly, microRNA processing activity is increased by 

both IPF-ECM and stiffness (Figure B.12a & b). To determine if microprocessing 

is altered specifically for miR-29, we quantitated primary miR-29a and precursor 

miR-29a (precursor assays quantitate both Pri-miR and Pre-miR) to indirectly 

quantitate precursor miR-29a abundance (Figure B.12c & d). Relative precursor 

miR-29a abundance is unchanged by ECM. Collectively, this suggests that 

microprocessor complex (Drosha, DGCR8) is functional on IPF-ECM, and that 

microRNA processing deregulation occurs at the level of post-microprocessor 

complex.  
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To determine whether IPF-ECM blocks microRNA processing on a larger 

scale as compared to Ctrl-ECM, we sought to quantify a panel of mature 

microRNA’s (microRNA 96, 192, 21, 29a, 29b, and 29c). Using 3 – independent 

replicates, we found that IPF-ECM suppresses mature microRNA levels (Figure 

B.12e). We also sought to determine whether microRNA processing is 

deregulated by stiffness (Figure B.12f). Our data indicate that microRNA 

processing is suppressed by IPF-ECM, and that stiffness alone up-regulates 

microRNA processing. This suggests that deregulation must be on a global scale 

and not specific to miR-29 alone. 
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Figure B.12. IPF-ECM regulates microRNA processing post microRNA processing 

complex. a & b) MiR processing activity (plotted as inverse of luciferase activity) in primary lung 

fibroblasts cultured on Ctrl- or IPF-ECM and Soft or Stiff PA gels for 24 hours (n = 3 independent 

replicates or n = 2 independent replicates, respectively). c) Primers were designed for miR-29a 

Stem Loop and primary miR. Precursor miR can be determined by the difference of Stem Loop 

and Primary miR. d) Relative precursor abundance (n = 1). e & f) Panel of mature microRNA 

expression of primary lung fibroblasts cultured on Ctrl- or IPF-ECM and Soft or Stiff PA gels (n = 

3 independent replicates for both). 

 

B.4 Discussion 

Our results demonstrate that pathological ECM plays a role in disease 

progression. Although the mechanical property of stiffness has been shown to 

drive fibrotic features in fibroblasts [Huang 2012, Liu 2014], our data show that 

primary lung fibroblasts cultured on synthetic polyacrylamide hydrogels 

simulating IPF stiffness up-regulates mature miR-29 expression (Figure B.6 and 

B.12). In accord with IPF pathology, authentic decellularized IPF lung tissue 

(IPF-ECM) suppresses mature miR-29 in primary lung fibroblasts (Figure B.3, 

B.6, and B.12). Our group has previously shown that miR-29c was suppressed 

by IPF-ECM and this translationally activates ECM genes at the polyribosome 
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recruitment level [Parker 2014]. This suggests that stiffness alone many not be 

the primary driver of miR-29 expression. Not only is IPF-ECM stiffer than its 

control counterparts, but both its composition and topology are altered [Booth 

2012]. ECM components, such as Fibronectin-EDA, has been shown to drive 

myofibroblast differentiation of primary fibroblasts [Bhattacharyya 2014], and 

culturing primary fibroblasts on 3-dimensional grooves simulating topological 

alterations has been shown to regulate collagen deposition and matrix-

metalloproteinase expression [Brydone 2011]. Our study highlights the use of 

authentic ECM as a model of human disease versus using single parameters of 

ECM properties. 

Cells interact with their environment through multiple cell surface proteins 

such as integrins to exert internal cellular signals. Mechanical signals, such as 

stiffness, cell polarity, and adhesions have been shown to be mediated through 

Hippo pathways effector protein YAP [Dupont 2011, Moroishi 2015]. YAP has 

been shown to activate primary lung fibroblasts in a stiffness-dependent manner 

[Liu 2014].  We show that mutant YAP physiological up-regulation of miR-29b-1/a 

transcription does not restore mature miR-29 expression by IPF-ECM (Figure 

B.10 and B.11), indicating that YAP is not responsible for miR-29 deregulation in 

IPF. These studies, however, suggest a more complex role for microRNA 

processing deregulation by IPF-ECM. 

Global microRNA processing suppression is a theme in cancer and IPF 

[Mori 2014, Oak 2011], and our data show that miR-29 processing is suppressed 
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by IPF-ECM (Figure B.6 and B.10). We show that microRNA processing activity 

is increased by IPF-ECM and that primary miR-29a is similarly processed to 

precursor miR-29a by either ECM which suggests that microRNA processing is 

deregulated at the level of post-microprocessor complex (Figure B.12). 

Therefore, IPF-ECM suppresses microRNA processing at the level of nuclear 

export, or cytoplasmic microRNA processing regulation (Figure B.13). Unbound 

precursor microRNA is rapidly degraded in the cytoplasm unless it is bound to 

Dicer or Argonaute proteins. Deregulation of Dicer or Argonaute proteins causes 

global suppression of mature microRNA processing [Ha 2014]. Oak et al. showed 

that 36 of 88 investigated mature microRNA’s are suppressed in IPF ex vivo. 

They show that the expression of Dicer1, Ago1, and Ago2 are suppressed in 

rapid progressive IPF fibroblasts and that levels of Ago1 and Ago2 in IPF patient 

lung biopsies are deregulated [Oak 2011]. This supports a role of microRNA 

processing defects at the level of cytoplasmic microRNA processing in our 

decellularized ECM model. Further studies looking at ECM-mediated effects on 

Dicer and Argonaute are warranted. 
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Figure B.13. Model: IPF-ECM deregulates microRNA-29 processing at the level of post-

microprocessor complex 

 

B.5 Conclusion 

 IPF is a terminal disease with few therapeutic treatment options. We 

sought to understand disease progression by culturing primary human lung 

fibroblasts on decellularized IPF tissue in an effort to understand how 

pathological ECM modulates miR-29 expression (a key fibrotic regulator). We 

find that IPF-ECM deregulates miR-29 processing, and that this is not a stiffness 

mediated affect. Further studies addressing how IPF-ECM deregulates key 

microRNA processing machinery will help us unravel pathological pathways in 

IPF progression. 

Chapter C. Published collaborative studies providing insights into 

translational control of IPF and cancer 

As part of my training, I was involved with a collaborative network that 

included joint laboratory meetings and I joint experiments with the Henke (IPF 

expert) and Polunovsky (translational control expert) laboratories. These 

activities led to a series of co-authored publications within the field of 

translational control of IPF and breast cancer. I will summarize each publication 

below and highlight my involvement that merited co-authorship. 

C.1. Alexey O. Benyumov, Polla Hergert, Jeremy Herrera, Mark Peterson, 

Craig Henke, & Peter B. Bitterman (2012) A novel zebrafish embryo 
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xenotransplantation model to study primary human fibroblast motility in 

health and disease. Zebrafish. 9(1):38-43 

  In an effort to establish a cost-effective and efficient in vivo model of IPF, 

Alexey Benyumov set out to determine the intrinsic motility of primary lung 

fibroblasts when transplanted into zebrafish embryos. In this assay, ~100 

fibroblasts are microinjected into a developing zebrafish embryo and allowed to 

develop for 48 hours. Our studies show that IPF lung fibroblasts have increased 

motility in zebrafish embryos as compared to control lung fibroblasts [Benyumov 

2012]. This shows that IPF fibroblasts have the intrinsic capacity to migrate in 

vivo. 

 My effort in this project was to determine fibroblast viability after zebrafish 

embryo transplantation by histological analysis. In order to determine viability, I 

immunostained for anti- human Ki67 (proliferation marker). We were able to 

show that fibroblasts are viable within zebrafish embryos after 48 hours of 

transplantation [Figure C.1]. This collaboration was fruitful as it gave me 

expertise in handling and sectioning 2-3 mm developing zebrafish. 

 



   43 

 

 

Figure C.1: Fibroblast survive in zebrafish xenografts. Image of sagittal section of an embryo 

immunostained with anti - human Ki67. Arrow points to the graft area in the head region of the 

embryo. Inset: Ki67+ cell nuclei in the graft body. Arrows point to the labeled nuclei of the 

engrafted cells. Scale bars: 100 μm in C.1. and 30 μm in C.1. inset. 

 

C.2. Hong Xia, Vidya Bodempudi, Alexey Benyumov, Polla Hergert, Damian 

Tank, Jeremy Herrera, Jeff Braziunas, Ola Larsson, Matthew Parker, Daniel 

Rossi, Karen Smith, Mark Peterson, Andrew Limper, Jose Jessurun, John 

Connett, David Ingbar, Sem Phan, Peter B. Bitterman, & Craig A. Henke 

(2014) Identification of a cell-of-origin for fibroblasts comprising the fibrotic 

reticulum in Idiopathic Pulmonary Fibrosis. Am J Pathol. 184(5):1369-1383 

In order to treat IPF, it is important to understand the source of lung 

myofibroblasts. The source of myofibroblasts has been intensively studied and 

data suggest a variety of origins from the differentiation of resident fibroblasts, to 

circulating bone marrow-derived progenitor cells, through epithelial to 
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mesenchymal transition (EMT) [Rosas 2015]. In this study, we sought to isolate 

mesenchymal progenitor cells from control and IPF lungs by sorting for 

progenitor marker stage-specific embryonic antigen 4 (SSEA4), and determine 

whether their progeny retain IPF hallmark characteristics. We show that IPF 

mesenchymal progenitor cell progeny had an increased Akt signaling axis, 

increased expression of alpha-smooth muscle actin and type I collagen, and form 

a fibrotic reticulum in zebrafish and mouse models demonstrating that fibrogenic 

mesenchymal progenitors are a cell-of-origin in IPF [Xia 2014]. 

My efforts in this project were to determine whether the IPF mesenchymal 

progenitor cell progeny formed fibrotic lesions in mouse and zebrafish models of 

IPF by histological analysis. Immunocompromised mice were tail vein injected 

with 1 x 106 progeny, and sacrificed after 60 days. Immunohistochemistry for 

anti-beta-2 microglobulin was performed to identify human-derived cells within 

the lungs of mice (immunocompromised mice lack beta-2 microglobulin). Only 

progeny cells derived from IPF mesenchymal progenitors formed both 

intravascular and perivascular fibrotic lesions in the lungs of mice, and these 

fibrotic lesions expressed collagen as seen by trichrome stains (Figure C.2a).  

Similarly, progeny cells derived from IPF mesenchymal progenitor cells formed 

grafts in developing zebrafish that expressed higher levels of human pro-collagen 

type I than control progeny cells (Figure C.2b).These experiments show that IPF 

mesenchymal progenitor cell progeny form fibrotic lesions in vivo, thus are a cell-

of-origin in IPF. 
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Figure C.2. IPF mesenchymal progenitor cells form fibrotic lesions in vivo. a) IPF 

mesenchymal progenitor cell progeny were tail vain injected into immunocompromised mice. Anti-

β2 microglobulin immunostain was performed to identify human derived cells and intravascular 

and perivascular fibrotic lesions were identified (2 left panels). Trichrome stain was done to 

identify collagen expression on a serial slide (deep blue stain, right panel). b) Anti - human 

procollagen type I was immunostained in zebrafish bearing progeny grafts. Sham-treated 

embryos with no graft at 48 hours after transplantation served as a negative control (lower left 

panel). Human IPF lung tissue displaying procollagen type I immunoreactive cells in a fibroblastic 

focus served as a positive control for the procollagen type I staining procedure (lower right panel). 
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Immunoreactive cells were detected in the IPF graft-bearing embryos (upper right panel). Control 

graft-bearing embryos showed light immunoreactive cells. Scale bars: 50 μm. 

 

C.3. Vidya Bodempudi, Polla Hergert, Karen Smith, Hong Xia, Jeremy 

Herrera, Mark Peterson, Wajahat Khalil, Judy Kahm, Peter B. Bitterman, & 

Craig A. Henke (2014) miR-210 promotes IPF fibroblast proliferation in 

response to hypoxia. Am J Physiol Lung Cell Mol Physiol. 307(4):L283-L294 

As fibroblast accumulate in the lung airspaces where they actively 

synthesize and assemble ECM, patients suffocate due to the lack of oxygen 

exchange. The lack of oxygen in the lung produces a hypoxic environment which 

is associated with fibroblast growth [Bradley 1978]. Vidya Bodempudi 

hypothesized that hypoxia will drive IPF fibroblast proliferation and lung fibrosis. 

In this study, HIF-2α (hypoxia-inducible transcription factor 2) was shown to 

stimulate IPF fibroblast proliferation by up-regulating miR-210 which is a known 

target of genes that regulate cell proliferation and apoptosis [Qin 2014]. In this 

study, miR-210 suppressed MNT (c-myc inhibitor) in lung fibroblasts which 

results in increased fibroblast proliferation. Knockdown of HIF-2α suppressed 

miR-210, and reversed IPF fibroblast proliferation. This study highlighted miR-

210 regulation by hypoxia as a mechanism for increased fibroproliferation in IPF 

[Bodempudi 2014]. 

My efforts in this study were to validate that hypoxic markers HIF-2α and 

carbonic anhydrase-IX were expressed in fibrotic foci within IPF tissue. IPF or 

control lung tissue (n = 3 each) was sectioned and immunostained for anti-HIF-
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2α and anti-CA-IX. IPF foci (insets) stained positive for both CA-IX and HIF-2α, 

while control lung tissue showed no reactivity. This data shows that IPF fibrotic 

foci (pathological feature in IPF) are hypoxic. 

 

 

Figure C.3. IPF fibroblastic foci are hypoxic. IPF or control tissue was immunostained for CA-

IX or HIF-2α. CA-IX (Left panels) was expressed in IPF foci (upper-inset) and absent in control 

lung tissue (lower). HIF-2α (right panels) was expressed in IPF foci (upper-inset) and absent in 

control lung tissue (lower). 

 

C.4. Svetlana Avdulov, Jeremy Herrera, Karen Smith, Mark Peterson, Jose 

R. Gomz-Garcia, Thomas C. Beadnell, Kathryn L. Schwertfeger, Alexey O. 

Benyumov, Carlos Manivel, Shunan Li, Anja-Katrin Bielinsky, Douglas Yee, 

Peter B. Bitterman, & Vitaly A. Polunovsky (2015) eIF4E Threshold Levels 



   48 

 

Differ in Governing Normal and Neoplastic Expansion of Mammary Stem 

and Luminal Progenitor Cells. Cancer Research. 75(4): 687-697 

As a co-first author with Svetlana Avdulov from the Polunovsky laboratory, 

I began to define the mechanism by which eukaryotic initiation factor 4E (eIF4E) 

promotes breast cancer initiation. eIF4E is a proto-oncogene  that drives primary 

cell transformation [Avdulov 2004] and tumor formation in animal models 

[Ruggero 2004]. eIF4E is the rate limiting step to protein translation initiation and 

binds the 5’ cap of mRNAs while recruiting initiation factor eIF4G and eIF4A to 

form the translation preinitiation complex  - eIF4F. Not all mRNAs are created 

equally, and studies show that when eIF4F is modulated, eIF4F amplifies major 

receptor signaling pathways [Bitterman 2012]. However, in order to form cancer, 

a wide range of anti-cancer defense mechanisms must be shut down. One 

mechanism is oncogene-induced stress where a strong oncogenic response 

causes cellular apoptosis (c-Myc) or senescence (hRasV12) [Murphy 2008 and 

Serrano 1997, respectively]. Herein, we show that overexpression of eIF4E 

during pregnancy in mice promotes self-renewal of mammary luminal progenitor 

cells and drives neoplastic breast lesions. Increased DNA damage corresponded 

with increased eIF4E expression in breast luminal cells, and complementary in 

vitro studies show that eIF4E rescues human mammary epithelial cells from 

oncogene-induced stress that is usually lethal.  

 As a co-first author, I played a major role in the development of this 

project. My efforts in this study were to characterize the in vivo transgenic mouse 
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model via histological analysis and the in vitro model via immunocytochemical 

analysis. Transgenic FVB/N mice were created to express exogenous eIF4E (HA 

tagged) under the whey-acidic promoter (WAP). WAP is driven by lactation 

hormones and is active in mammary breast tissue during late pregnancy and 

lactation, and turned off during weaning when lactation hormone expression is 

off. In order to determine whether exogenous eIF4E (HA tagged) was expressed, 

immunostains for anti-HA were performed over sequential gestation after 15 days 

of lactation (Figure C.4a). We found that entire ductal/alveolar units are positive 

(or negative) for exogenous eIF4E, and that positive unit frequency increases 

with increased gestation. We determined that HA expression was restricted to 

luminal cells by double labeling HA with luminal marker cytokeratin 8 (K8) 

(Figure C.4b). To determine if eIF4E overexpression caused a proliferative 

advantage, immunostains for anti-Ki67 were performed (Figure C.4c). To our 

surprise, we did not see a difference in Ki67 expression until gestation 6+. To 

further validate that increased eIF4E induced proliferation, we double labeled for 

luminal marker K8 and proliferation marker Ki67 in WAP-4E mice and found that 

HA positive cells have increased expression of Ki67 (Figure C.4d). These data 

show that exogenous eIF4E expression drives proliferation in luminal mammary 

epithelial cells in vivo. 
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Figure C.4. Exogenous eIF4E-HA expression drives proliferation of luminal mammary 

epithelial cells in vivo. a) formalin-fixed paraffin-embedded sections of mammary glands 

(gestation 6, left panel) were immunostained for HA expression. HA-eIF4E positive mammary 

acinar/ductal structural units were quantitated (right panel, n=2). b) Fluorescent immunostain for 

HA (Cy3 – red) was overlapped with peroxidase immunostain for K8 (luminal marker) or K14 

(basal marker). c) Representative image of mammary tissue from WT and WAP-4E females 

(gestation 9, day 15 of lactation) immunostained for Ki67 (left panel). Quantification during 

successive pregnancy/lactation cycles of WT and WAP-4E mice (right panel, n = 4). d) 

Immunostain for anti-HA (Cy3) overlapped with anti-Ki67 (brown) in WT and WAP-4E mice (left 

panel), and quantification (right panel, n = 5 mice per group). 
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To determine oncogenic effects of exogenous eIF4E expression in 

mammary tissue, we selected gestation 6 where increased Ki67 expression is 

observed, and performed carmine staining of complete mammary pads after 10 

days of weaning which is necessary to see gross changes in mammary glands 

(Figure C5a). WAP-4E mice developed foci (#2) highlighted with yellow arrows, 

and closer analysis via H&E unmasked lesions (#3 and 4) in all WAP-4E mice. 

To determine whether these are hyperplastic lesions, we immunostained for Ki67 

and performed TUNEL analysis to determine proliferation and apoptosis, 

respectively. After weaning, there is no difference in gross proliferation or 

apoptosis in mammary tissue after exogenous eIF4E expression is off (Figure 

C.5b & e). However, analysis of the lesions revealed increased proliferation and 

decreased apoptosis as compared to surrounding non-lesional tissue (Figure 

C5.c-d & f-g). To determine if these hyperplastic lesions persist, we show that 

lesions are present up to 45 days post-weaning (Figure C.5h). This data shows 

that exogenous eIF4E expression promotes tumor initiation that persists post-

weaning.  
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Figure C5: Exogenous eIF4E drives initiation of breast cancer that persists post-weaning. 

a) post-weaning whole mammary gland of multiparous WAP-4E females contain neoplastic foci of 

WT and WAP-4E females (gestation 9, day 10 post-weaning) were stained with carmine (1 and 

2). Representative gland pictures and photo micrographs are presented (n=28). Arrows, 

neoplastic nodules; LN – lymph node. One nodule (shown in the boxed area, 2) was surgically 

removed, and 5-µm sections were stained with hematoxylin/eosin (3 and 4). Arrows, deformed 

acinar structures. b) Shown are the proliferative indices in post-weaning WT (n = 4) and WAP-4E 

(n = 4) mammary glands (gestation 8). C, representative image of the focus counterstained with 

hematoxylin and probed for expression of Ki-67 (brown). d) The relative numbers of Ki-67–
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positive cells in neoplastic foci and in adjacent areas of mammary glands from WT (n = 3) and 

WAP-4E (n = 3). e) Time course of apoptotic activity quantified outside of neoplastic foci in post-

weaning WT (n = 3) and WAP-4E mice (n = 3). f) Representative image shows scattered TUNEL-

positive cells (arrows) in the WAP-4E neoplastic focus. g) Shown are the relative numbers of 

TUNEL-positive cells in neoplastic foci and in adjacent areas of post-weaning WAP-4E mammary 

glands (day 10 post-weaning; n = 3 mice). h) Hematoxylin and Eosin stain of WT and WAP-4E 

mice neoplastic foci over a range of days post-weaning. 

 

FVB/N mice rarely present with spontaneous tumors. In our transgenic 

WAP-4E model in FVB/N mice, tumor formation was achieved. What we found 

was that WAP-4E drove luminal tumor formation (Figure C.6). This tumor was 

positive for K8 (luminal marker), and negative for basal markers (K5 and K14) 

and mesenchymal/myoepithelial markers (p63 and αSMA). This fits with our data 

where exogenous eIF4E is expressed in luminal epithelial cells. 

 

 

Figure C.6. WAP-4E drives luminal tumor formation. WAP-4E female tumor was 

sectioned and immunostained for anti-K8 (luminal marker), anti-K5 and anti-K14 (basal marker), 

and p63 and alpha-smooth muscle actin (mesenchymal/myoepithelial marker). Tumor area is 

enclosed with a red dotted line. 
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Early anti-cancer mechanisms exist to prevent cellular transformation. 

Oncogene mediated proliferation causes double-stranded breaks (DSBs) in DNA 

that signals a DNA-damage response (DDR) leading to cellular senescence and 

apoptosis. Single-stranded DNA (ssDNA) recruit replication protein A (RPA) to 

protect vulnerable ssDNA and orchestrates a phosphorylation cascade to 

phosphorylate the downstream effector H2AX (active form - γH2AX) [Zeman 

2014]. To determine whether exogenous eIF4E causes a DDR, we measured 

expression of γH2AX in mammary epithelial cells in vivo (Figure C7a). WAP-4E 

animals have an increased number of γH2AX foci in luminal cells as compared to 

WT mice, whereas non-luminal cells are unaffected. To complement this data, 

we switched to a relevant in vitro system to determine whether eIF4E expression 

can overcome oncogene-induced apoptosis caused by hRasV12. Over 

expression of hRasV12 induces apoptosis in mammary epithelial cells, but co-

expression of eIF4E rescues colony formation upon hRasV12 induction (data not 

shown). Co-expression of RPA and γH2AX in cells suggests broken DNA that 

leads to cell death, however if rescued by homologous recombination or repaired 

by other mechanisms, RPA is displaced and γH2AX is expressed alone. We 

show that eIF4E expression increases γH2AX expression alone which may 

explain rescue of oncogene induced apoptosis (Figure C7b & c). Together, 

these data suggest that eIF4E rescues cells from oncogene-induced stress and 

allows cellular transformation. 
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Figure C.7. Overexpressed eIF4E stimulates a replication stress response. a) 

Representative image of mammary epithelial cells from WT (n = 5) and transgenic (n = 5) 

mammary glands (left panel) immunostained with anti-γH2AX. Quantification of luminal cells 

(center panel) were performed by scoring number of foci per nucleus and the same was done for 

non-luminal cells (right panel). b) Representative image of anti-RPA and anti-γH2AX fluorescent 

stain of HMEC/hTERT cells with or without ectopic HA-eIF4E expression. c) Quantification of 

HMEC/hTERT or HMEC/hTERT/H-RasV12 transduced with HA-eIF4E immunostained for anti-

RPA1 or anti- γH2AX. RPA positive alone (left panel), both RPA1/ γH2AX positive (center panel), 

or γH2AX positive alone (right panel). (n = 2) 
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 To summarize the findings of this manuscript, we show that 

overexpression of eIF4E over the physiological maximum promotes the 

propagation of luminal progenitor cells (data not shown – mammosphere assay) 

that leads to the development of premalignant and malignant mammary lesions. 

We show that eIF4E induces DDR in mammary tissue, and that eIF4E 

expression induces pro-survival DDR during oncogene-induced challenges in 

vitro. This supports a model in which eIF4E causes continued hyperproliferation 

leading to genomic instability which can accumulate oncogenic mutations. eIF4E 

can rescue otherwise lethal oncogenic lesions to promote cellular transformation 

and tumor formation. (Figure C.8) [Avdulov 2014]. 

 

 

Figure C.8. Model of eIF4E-driven development of Pregnancy-associated Breast Cancer in 

transgenic mice. 
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C.5. Conclusions 

My successful collaboration with Craig Henke and Vitaly Polunovsky has 

resulted in 1 first co-authorship and 4 co-authorships during the duration of my 

PhD training. These experiences strengthen my expertise in modeling IPF in 

animal models, and the understanding of molecular pathway deregulation in both 

IPF and cancer. 

Chapter D. The Big Picture 

 As I reflect upon the scientific discoveries achieved during my PhD 

training, it is easy to get lost in the fine details and forget the big picture. Cells 

have the ability to sense their environment, and through sensing, modulate their 

cellular dynamics and functions that are measurable through experimental 

detection in the laboratory. We have created a new model to study IPF, and we 

asked a simple question: How do normal cells respond to decellularized human 

IPF tissue? We cultured normal fibroblasts (cell of interest in fibrosis) on 

authentic decellularized lung tissue from IPF patients, and measured relevant 

disease pathways. Herein we find that a diseased microenvironment causes a 

normal fibroblast to become fibrotic-like. Specifically, our data is the first to 

identify corruption of microRNA processing by the IPF fibrotic matrix itself as one 

mechanism for sustained connective tissue production in IPF.  

The major clinical follow up question to this work is this: what is the 

cell/ECM interaction leading to microRNA processing deregulation in IPF? If we 

can unravel the ECM component(s) and/or the cell surface receptor(s) 
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responsible for this deregulation, pharmaceutical intervention against ECM/cell 

interfaces could block IPF progression. This is the overarching goal of our 

research, but we are still a long ways from unraveling this mystery.  

Inside – Out and Outside – In signaling is mediated by integrins. Integrins 

are a heterodimeric protein composed of an α-subunit and β-subunit. There are 

18 α-subunits and 8 β-subunits that can assemble into 24 distinct combinations. 

Integrin sense the extracellular environment and can send downstream signals to 

232 genes to produce a cellular response [Winograd-Katz 2014]. Due to high 

complexity of IPF matrix, multiple integrin interactions in concert, and hundreds 

of downstream integrin effector targets in cells, it would be incredibly difficult to 

pinpoint which receptor and pathway is responsible for microRNA processing 

deregulation. With such complexities in understanding biological processes, tools 

have been created to begin uncoupling molecular pathways at global levels. 

Tools such as gene expression profiles, bioinformatics, and proteomics are 

helping us move forward into a new era of scientific discovery. Although this is 

out of the scope of my dissertation, this project will be followed up by the next 

graduate student and/or academic postdoctoral researcher. With that said, my 

adventure will continue in pursuit of scientific discoveries in understanding 

molecular pathways deregulated in disease. 
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