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Abstract 

Interactions between proteins and ice were studied in situ using FTIR and 

confocal Raman microspectroscopy under equilibrium and non-equilibrium conditions 

over a range of temperatures. During quasi-equilibrium freezing of aqueous solutions of 

dimethyl sulfoxide (DMSO) and bovine serum albumin, preferential exclusion of 

albumin and/or DMSO was observed.  It was hypothesized that the albumin may be 

adsorbed onto the ice interface or entrapped in the ice phase.  

To investigate protein-ice interactions during freezing under non-equilibrium 

conditions, confocal Raman microspectroscopy was used to map the distribution of 

albumin and the cryoprotective agent trehalose. Microheterogeneity was found in the 

composition of the freeze-concentrated liquid phase that indicated that albumin was 

preferentially distributed near or at the boundary of the ice phase. The observed 

microheterogeneity did not occur under all freezing protocols, which suggests that the 

technique developed here could be used to develop freezing protocols that would reduce 

harmful protein-ice interactions. 
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Chapter 1: Introduction 

1.1) Motivation  

Freezing and freeze-drying are widely used to stabilize biospecimens, 

pharmaceutical compounds, and even food
1,2

. In biobanking, fluid biospecimens such as 

serum, plasma, bronchial lavage fluid, and urine are stored in the frozen state for 

proteomics research, whereas protein solutions for therapeutic use are generally freeze-

dried
3-5

. While the purpose of stabilization is to inhibit damage to samples, the freezing 

and freeze-drying processes subject proteins to chemical and physical stresses
5-13

 that can 

alter their structure and activity irreversibly
6,14-21

. As a result, stored biospecimens may 

lose biomarkers and may see a reduction in their clinical or diagnostic utility. Subsequent 

proteomics studies on frozen and thawed biospecimens can therefore be biased
22,23

 and 

impede scientific research.
24

. Similarly, therapeutic proteins can be negatively affected by 

freeze-processing, causing an economic loss and reducing their therapeutic impact
25

 . As 

a result, understanding the interactions that occur between ice surfaces and 

macromolecules such as proteins during after freezing may therefore help to reduce 

product losses and to improve therapeutic outcomes.   

1.2) Freezing Basics 

Freezing is the process by which liquid water crystallizes into a solid. While it is 

often thought that pure water freezes upon cooling to 0°C at atmospheric pressure, this is 

not truly the case and in fact water freezes spontaneously only once a sufficient number 

of water molecules arrange themselves into a crystal with a radius large enough to 

overcome the Gibbs-Thomson effect
26

. Because the critical number of molecules is 

reduced with temperature, as water is cooled below 0°C it becomes more and more likely 



   2 

 

that a sufficient number of water molecules will overcome nucleation barrier and ice will 

spontaneously form, making the practical limit of supercooling of ultra-pure water about 

-40°C.
27

 Once formed, however, the ice will remain until it is warmed back to its 

equilibrium freezing/melting temperature. 

 The addition of solutes to water depresses the equilibrium freezing/melting 

temperature of an aqueous solution by making it more difficult for the sufficient number 

of water molecules to spontaneously assemble by the colligative effect
28

, or in addition 

by specific interactions between the water molecules and the solutes. 

1.2.1) Supercooling 

Below the equilibrium freezing/melting temperature and before ice has formed, a 

solution exists either in an unstable supercooled state, or in a more stable glassy state
29

. 

While in the supercooled state, it is susceptible to rapid crystallization once ice initially 

forms. Higher degrees of supercooling, i.e. the difference between the equilibrium 

freezing/melting point and the actual temperature, generally result in faster 

crystallization
30

, provided the temperature is not so low and/or the concentration so high 

as to slow the kinetics of the crystal growth
31

.   

1.2.2) Ice Nucleation 

Ice nucleation is considered homogeneous when ice crystals form spontaneously 

in a uniform manner without the influence of impurities or added ice crystals. Due to the 

stochastic nature of homogeneous ice nucleation
32

, it is not a controlled process. 

Heterogeneous nucleation occurs when impurities or surfaces exist in a solution that 

serve as favorable nucleation sites by reducing the critical number of molecules that need 
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to assemble for crystallization to proceed. Heterogeneous nucleation can be a controlled 

process by means of seeding a solution with a known degree of supercooling with ice, a 

chilled surface, or a chemical that promotes crystallization
33,34

.  

1.2.3) Freeze Concentration 

In aqueous solutions, the solutes are excluded from the ice phase when ice forms. 

As the ice phase grows, the solutes are concentrated in a progressively smaller volume of 

liquid water. Concentration gradients can develop at the moving ice front, and solutes 

such as buffer components can exceed their solubility limits and selectively precipitate, 

causing potentially damaging fluctuation in the pH of the freeze-concentrated liquid 

(FCL) phase
30

. As the concentrations increase dramatically, the viscosity of the FCL may 

increase substantially, and a glassy state may be reached 
5
. 

1.2.4) Ice Morphology 

The shape and structure of ice formed in aqueous solutions is influenced by the 

temperature at which the ice forms, the degree of supercooling, the subsequent cooling 

rate once ice has been nucleated, and the specific solutes and their concentrations
35,36

. In 

general, slow ice growth resulting from minimal supercooling before ice nucleation 

followed by a low cooling will create large ice structures
37

. Ice growth following 

significant supercooling with a subsequent high cooling, will result in ice crystals with 

side-arms and dendritic features that greatly increase the surface area of the ice phase
38

. 

The range in relative sizes and shapes of the ice phase and the FCL phase that can be 

obtained by varying freezing parameters means there is flexibility available when 

developing freezing protocols to alter the interactions between proteins and ice. As a 

result, an efficient method of evaluating the effects of freezing protocols in situ could 
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facilitate improvement in the quality of biospecimens and therapeutic proteins following 

freezing processes. 

1.3) Spectroscopy as a Method for Studying Freezing Phenomena 

For evaluating interactions between proteins and ice, spectroscopy offers the 

distinct benefit of measuring interactions in situ during freezing. In Chapter 2, Fourier 

transform infrared (FTIR) spectroscopy and confocal Raman microspectroscopy (CRM) 

are developed as techniques to measure protein adsorption to ice during near-equilibrium 

freezing. In Chapter 3, protein-ice interactions are evaluated under non-equilibrium 

conditions using directional solidification. Through detailed mapping of the distribution 

of solute concentrations in the freeze-concentrated liquid, heterogeneity in the relative 

distribution of proteins is identified. The results of the studies suggest that significant 

direct interactions between proteins in solution and the ice phase do occur, and that in 

addition, these interactions can be quantified and adjusted by modifying freezing 

protocols. 
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Chapter 2: In situ Spectroscopic Quantification of Protein-Ice  

Interactions* 

2.1) Introduction 

Freezing plays a significant role in the stabilization and long-term preservation of 

biological and pharmaceutical specimens and compounds. In biobanking, fluid 

biospecimens such as serum, plasma, bronchial lavage fluid and urine are frequently 

frozen and stored for future proteomics research, while protein solutions for therapeutic 

use are generally freeze-dried
3-5

. Freezing and freeze-drying processes impose very harsh 

chemical and physical stresses on proteins
5-13

, altering their characteristics (structure and 

activity) often irreversibly
6,14-21

. These stresses affect the quality of the stored 

biospecimens and may result in the loss of biomarker information or clinical/diagnostic 

utility. Subsequent proteomics studies on frozen and thawed samples can therefore be 

biased.
22,23

 The low quality of the biospecimens currently stored in biobanks has been 

identified as one of the major issues inhibiting scientific progress
24

. Similarly, therapeutic 

proteins can be damaged during freeze-processing, causing an economic loss and 

reducing their therapeutic impact
25

 . Understanding the interactions between an ice 

surface and the macromolecules in the solution may therefore help to reduce product 

losses and to improve therapeutic efficacy.   

The ice phase is expected to incorporate few or no solutes when an aqueous 

solution is frozen
39

. As the ice phase forms and grows, the solutes excluded from the ice 

phase are concentrated in the remaining liquid phase, termed the freeze-concentrated 

liquid (FCL) phase. When an aqueous solution containing proteins is frozen, either: 1) the  

*This chapter has been submitted for publication. 
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proteins may end up homogenously distributed within the FCL phase, or 2) the proteins 

may end up heterogeneously distributed in the FCL and may aggregate at the surface of 

or get entrapped within the ice phase. In the latter case, the protein concentration in the 

FCL phase would decrease. This is known to occur with antifreeze proteins
40

, which are 

known to adsorb to the surface of the ice
40

 through the formation of hydrogen bonds 

between the ice surface and their ordered hydration layers
41

. With other proteins and 

enzymes, a handful of studies were conducted and these  have reported significant 

interactions mainly through centrifugation and filtration of a partially frozen solution, 

followed by measurement the protein content in the FCL
40,42

. Other studies have used 

molecular techniques such as confocal Raman microspectroscopy by measuring the 

changes in protein conformation at the ice interface
43

 and the resultant protein 

aggregation, which may even persist post-thaw
6,44,45

.   

In this study, we show the feasibility of using FTIR spectroscopy and confocal 

Raman microspectroscopy (CRM) in a non-destructive fashion to quantify the adsorption 

of albumin onto the ice surface in partially frozen aqueous solutions of dimethyl 

sulfoxide (DMSO). While FTIR has been used to investigate changes in secondary 

structure of proteins in frozen solutions
46

 and freeze-dried formulations
47

, to our 

knowledge it has not been used to study protein interaction with ice in the freeze-

concentrated liquid in a quantitative manner. Albumin is the most abundant protein found 

in the plasma. It facilitates transport for thyroid and steroid hormones
48,49

, fatty acids
50

, 

and to regulate oncotic pressure in the capillaries
51

, and is also used as a biomarker to 

detect and monitor renal and cardiovascular diseases
52

.  DMSO is a cryostabilizing agent 

that is used very widely for preservation of cells, biofluids and tissues
53-59

. The advantage 
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of using DMSO to study interactions between proteins and ice is its substantial ability to 

depress the equilibrium freezing point of binary solutions of water and DMSO
60

. This 

enables investigation of protein-ice interactions in the freeze-concentrated liquid during 

freezing over a wide range of temperatures. Nonetheless, concern has been expressed 

about the clinical side effects of DMSO, particularly in autologous stem cell 

transplants
53,61,62

. At high very concentration, DMSO has also been found to denature 

proteins 
63

, but these concentrations are outside the concentration range used in this 

study. 

2.2) The Approach 

The technique developed in this study is intended to aid in understanding the 

interactions between proteins and ice during freezing, as well as serve as a methodology 

to identify freezing parameters that minimize the harmful interactions between proteins 

and ice that may occur during the preservation and storage of biospecimens and 

pharmaceuticals. 

When freezing a solution of DMSO and water under equilibrium conditions, a 35 wt% 

DMSO solution will follow the equilibrium freezing curve of the binary phase diagram as 

it is cooled to -20°C (Figure 1).  According to the phase diagram, the FCL region should 

contain about 37 wt% DMSO in equilibrium with ice
60,64

.  To obtain the same 

concentration of DMSO in liquid water at -20
o
C, an alternative would be to dilute the 

initial solution to 15 wt% or 25 wt% DMSO and cool these under equilibrium conditions 

to -20
o
C. Due to the freeze-concentration of the DMSO as it is excluded from the ice 

phase, the composition of the FCL of these diluted solutions at equilibrium at -20
o
C 

should also be 37 wt% DMSO. The only difference among the different solutions at 
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equilibrium at the same temperature would be the relative sizes of the FCL and ice 

phases. In Figure 2, aqueous solutions of 6-12 wt% DMSO with a small amount of added 

albumin are all at equilibrium at -6°C. While the 12 wt% DMSO solution has just a few 

small ice crystals and a large FCL phase, the more dilute 6 wt% DMSO solution has an 

FCL phase and an ice phase that are almost equal in size. 

 

Figure 1. Binary DMSO and water phase diagram, adapted from the polynomial 

curve fit created by Kleinhans and Mazur to fit Rasmussen’s phase diagram. 
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Figure 2. Partially frozen solutions at -6°C: A) 6 wt% DMSO, 1:3 Albumin/DMSO, 

B) 8 wt% DMSO, 1:3 Albumin/DMSO, C) 10 wt% DMSO, 1:3 Albumin/DMSO, D) 

12 wt% DMSO, 1:6 Albumin/DMSO 

No ternary phase diagram exists in the literature for aqueous solutions of DMSO 

and albumin. Even so, the addition of  a small amount of albumin to aqueous solutions of 

DMSO should result in an additional  slight depression of the equilibrium freezing point 

by the colligative effect
28

. During freezing of such a ternary solution, the mass (and 

molar) ratio of albumin/DMSO in the FCL should be constant if the albumin and the 

DMSO are excluded equally from the ice phase, even as their absolute concentrations 

increase due to freeze-concentration. By measuring the mass ratio of albumin/DMSO in 

the FCL, it is possible to detect if either albumin or DMSO is preferentially excluded 
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from the ice phase, since this would result in a change in the mass ratio of 

albumin/DMSO in the FCL. If there is preferential exclusion of albumin or DMSO from 

the ice phase, this effect should be greatest in solutions with greater amounts of ice. If the 

observed effect were due to entrapment within the ice phase, it should be most significant 

with the greatest volume of ice. If the effect were due to accumulation of albumin or 

DMSO at the interface between the ice and the FCL phases, then it should be most 

significant with the greatest interfacial area. 

Similar to during the freezing of binary DMSO solutions, dilute ternary solutions 

of DMSO and albumin will undergo more freeze-concentration than do more 

concentrated solutions to reach a common temperature, and will have a larger ice phase 

and smaller FCL phase. Provided that the mass ratio of albumin/DMSO is the same in 

both the dilute and the concentrated solutions, as is the case when a concentrated solution 

is diluted with water, it is possible to vary the amount of ice in partially frozen systems at 

a given temperature and then measure the effect on the composition of the FCL. As a 

reference point for comparison, it is advantageous to use the composition of the FCL in 

which the effects of ice are minimized. This reference point is called here the Minimum 

Ice Solution (MIS) and is the composition of the FCL of the partially frozen system with 

the least amount of ice at a given temperature. For example, the MIS on the binary 

DMSO and water phase diagram at -20°C is the 35 wt% solution, which would be 2 wt% 

ice according to the lever rule (Figure 1). By comparing the FCL of the MIS with the 

FCL of the more dilute 15 wt% and 25 wt% solutions as shown in the figure, preferential 

exclusion from the ice phase of either albumin or DMSO can be detected by a change in 

the mass ratio of albumin/DMSO. With this method, we used IR and Raman 
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spectroscopy in a non-destructive fashion to investigate the interactions of albumin with 

the ice interface in situ in aqueous DMSO solutions in a temperature range of -4°C to -

40°C. 

2.3) Materials and Methods 

Experiments were conducted using Fourier Transform Infrared (FTIR) 

spectroscopy and Confocal Raman Microspectroscopy (CRM) with solutions over a 

range of DMSO concentrations (6-35 wt%) and albumin concentrations (20-63 mg/mL) 

at temperatures of -4
o
C to-40

o
C. FTIR was chosen for its speed and lower signal to noise 

ratio in data acquisition, as well as its ability to measure freeze-concentrated liquid in situ 

without heating the sample. The disadvantage of using FTIR was its relatively poor 

ch a spatial resolution of less than 1 

required to get a sufficiently strong signal to noise ratio, reducing one of the benefits of 

CRM. The remaining benefit of CRM was that it enabled studying much thicker samples 

(50 µm) in which ice crystal growth was less constrained than in the very thin geometry 

of the FTIR experiments.  

2.3.1) FTIR Spectroscopy 

Experimental solutions were prepared gravimetrically with DMSO (99.9% purity, 

Sigma-Aldrich, St. Louis, MO), bovine serum albumin (MW 66.5 kDa, ≥99% Purity, 

Sigma-Aldrich, St. Louis, MO) and in ultrapure water (UPW). UPW was prepared by 

filtering deionized water through a Milli-Q water purification system (Millipore, 

Billerica, MA) to a final electrical resistance higher than 18.2 Mohms. All DMSO 
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concentrations reported as wt% correspond to the mass of DMSO as a percentage of total 

mass of solvent (DMSO and water).  Albumin concentrations are given as (mass of 

albumin)/(volume of DMSO and water). 

Each experiment involved placing 100 nL of the experimental solution between 

two CaF2 windows. The windows were sealed with vacuum grease to eliminate 

evaporation and to generate a thin film approximately 1 μm thick. The sealed sample was 

then transferred to an infrared microscope attached to an FTIR spectrometer (Thermo-

Nicolet Continuum equipped with a Mercury Cadmium Telluride detector, Thermo 

Electron, Waltham, MA) equipped with a FDCS 196 (Linkam Scientific Instruments 

Ltd., UK) freeze-drying cryostage.  The FTIR sampling resolution was 4 cm
-1

, and 128 

IR scans were averaged per spectrum in the 4000-930 cm
-1

 wavenumber range. The IR 

spectra were analyzed using OMNIC (Thermo-Nicolet) software.  

2.3.1.1) Equilibrium  Freezing Experiments 

The sample solutions were cooled at 30
o
C/min until frozen (formation of ice 

crystals was observed visually and spectroscopically). The samples were then warmed 

back up slowly to close to the melting temperature until a few small crystals remained in 

the solution. The samples were then re-cooled down to a common final temperature at the 

cooling rate described in Table 1. The cooling rates were chosen so that ice growth 

occurred slowly over 20-40 minutes in order to minimize any concentration gradients in 

the FCL resulting from diffusion limitations. The small crystals acted as nucleation points 

for crystal growth and ensured that equilibrium-freezing experiments were conducted in a 

repeatable manner. At the final temperature, the most concentrated starting solution was 

made up primarily of FCL and only a few small ice crystals. The effect of ice growth on 
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the FCL was minimized in this case, which allowed the FCL of this solution to serve as a 

control and a basis for comparison.  See Figure 1. 

Final 

Temperature 

[°C] 

DMSO 

Concentration  

[wt%] 

Cooling Rate 

[°C/min] 

Temperature of 

Spectra Collection [°C] 

-6.0 6, 8, 10, 12 0.1 -4.0, -6.0 

-8.5 12,18 0.2 -8.5 

-13.0 10, 20 0.2 -13.0 

-17.5 20, 30 0.5 -17.5 

-20.0 15, 30 0.5 -20.0 

-40.0 20, 25, 30, 35 0.5°C/min to -20°C;                   

1.0°C/min to -40°C 

-20.0, -25.0, -30.0,  

-35.0, -40.0 

Table 1. Cooling parameters of equilibrium freezing experiments using FTIR 

2.3.1.2) Bulk Freezing Experiments at -20°C 

Biological specimens and pharmaceutical formulations are frequently stored at 

length in freezers at -20°C. Once a sample has reached equilibrium at these conditions, 

there should be no additional ice growth. To evaluate the interactions that may occur 

between ice and albumin over time in the absence of ice growth, similar to what would 

occur during long-term storage, solutions of DMSO and albumin were added to ice at -

20°C. The amount of ice was controlled by freezing known quantities of water (0.1 ml to 

1.5 ml) in 15 ml polypropylene centrifuge tubes in a temperature and humidity-controlled 

walk-in freezer maintained at -20
o
C. A 35 wt% DMSO solution with 30 mg/ml albumin 

was allowed to thermally equilibrate overnight in the freezer, and then was added in 

varying quantities (0.25 ml to 1.0 ml) to the centrifuge tubes containing ice. The 

concentration of DMSO was chosen to minimize any ice growth or melting of the ice at -

20°C. After 30 hours, the liquid phase from all samples was extracted with a 25 gauge 

needle and syringe, removed from the freezer, and then stored at 4
o
C until use. FTIR was 

then used to determine the composition of the extracted liquid in order to detect any 
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changes in the mass ratio of albumin/DMSO that resulted from the 30 hours of contact 

with ice. Samples were cooled at 30
o
C/min until frozen, then warmed until a few ice 

crystals remained, and then cooled at 1
o
C/min to -35

o
C, after which spectra were 

collected in the resulting FCL.  

2.3.2) Confocal Raman Microspectroscopy 

Experimental solutions were prepared gravimetrically with DMSO (≥99.7% 

purity, Sigma-Aldrich, St. Louis, MO), bovine serum albumin (≥98% Purity, Sigma-

Aldrich, St. Louis, MO) and deionized (DI) water. Each experiment involved placing 1 

µL of the experimental solution in a microchannel machined in a 50 µm thick silicone 

film, which was sandwiched between two quartz windows. The sample was then 

transferred to a confocal Raman microscope (Nanophoton, Osaka, Japan) equipped with a 

FDCS 196 (Linkam Scientific Instruments Ltd., UK) freeze-drying cryostage.  The 

microscope had a 100× Nikon air objective (NA 0.90) and a 532 nm AR-ion laser 

operated at 10 mW for excitation and a CCD detector electrically cooled to -70°C. Spatial 

resolution was 350 nm in the x-direction and 800 nm in the vertical direction. Scans were 

conducted over a 4 µm x 83 µm region with a spectral resolution of 6 cm
-1

 in the 4662-70 

cm
-1

 wavenumber range at an exposure time of 0.025 s per pixel. The spectra collected 

from all pixels were averaged for each scan (7980 spectra per scan) and were analyzed 

using CytoSpec software (Boston, MA) and Matlab (MathWorks, Natick, MA).  

In Confocal Raman Microspectroscopy experiments, the sample solutions were 

frozen and then warmed in the same fashion as the FTIR spectroscopy experiments. The 

samples were then cooled at 0.5
o
C/min to -17.5

o
C after nucleation at the freezing 

temperature following the same procedures described in the FTIR experiments above. 
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The small crystals remaining in the liquid after freeze and thawing back to freezing 

temperature acted as nucleation points for crystal growth and ensured that equilibrium-

freezing experiments were conducted in a repeatable manner. 

2.3.3) IR Spectral Analysis 

The composition of the FCL at a given temperature was measured by the ratio of 

the baseline-corrected areas of the albumin Amide II band (1525-1570 cm
-1

)
65

 and the 

DMSO HCH deformation band (1367-1485 cm
-1

) 
66,67

, γ≡ AAmide II / AHCH, as shown in 

Figure 3A. To demonstrate the accuracy of this approach, at -6°C, a linear calibration 

curve was constructed by varying the amount of albumin added to a 12 wt% DMSO 

solution. For the highest albumin/ DMSO ratio (1:2), an 11 wt% DMSO solution was 

substituted due to the depression of the melting point to just below -6
o
C. The solutions 

were frozen at 30
o
C/min and then warmed until a few small ice crystals remained 

(typically between -5.3°C and -5.8°C), and then re-cooled at 0.1°C/min to -6
o
C to ensure 

that the system was in thermodynamic equilibrium, at which point spectra were collected. 

The variable γ was then plotted with respect to the known ratio of albumin to DMSO 

(mg/mg) (Figure 3B). The direct proportionality between γ and the albumin to DMSO 

ratio of the prepared solutions indicated that the chosen variable γ could be used to 

quantify protein concentration with high fidelity. Since the baseline of the Amide II band 

is influenced by the δ-OH band of water, having a small amount of ice present was 

important to reduce variability in the water content. The varying protein amounts would 

shift the equilibrium freezing curve slightly, but this effect was deemed to be less 

significant than potential variability in water content due to evaporation during 

preparation of the sample. 
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Figure 3. FTIR and Raman Albumin/DMSO ratio calibration: A-B) Ratio of 

baseline-corrected areas for y and linear calibration curve. C-D) Ratio of baseline-

corrected areas for ζ and quadratic calibration curve. 

As γ could be directly calculated from the IR spectra, it could then be used to 

calculate the protein content changes in the FCL in situ.  Changes in FCL composition in 

the presence of varying amounts of ice were then calculated as a percentage change from 

the FCL of the Minimum Ice Solution (MIS) described previously.  

2.3.4) Raman Spectral Analysis 

The same experimental protocol followed for the equilibrium freezing FTIR 

experiments was used to evaluate 15-25 wt% DMSO solutions with CRM. A 30 wt% 

DMSO solution that contained 63 mg/ml of albumin was frozen at 30
o
C/min and then 
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warmed until a few small ice crystals remained at -17.5
o
C. Solutions of 25 wt%, 20 wt%, 

and 15 wt% DMSO were then tested with the same albumin/ DMSO ratio.  

The albumin concentration in the FCL was measured by a ratio of the baseline-

corrected integrated intensity of the strong Amide I band and the weak tyrosine residue of 

the albumin (1575-1735 cm
-1

) 
68

 to the baseline-corrected integrated intensity of the band 

that included strong contributions from the antisymmetric and symmetric S-C stretching 

bands of the DMSO and a weak contribution from the ν-S-C of the albumin (635-750 cm
-

1
)
67,68

.  This ratio is denoted as ζ ≡ AAlbumin / ADMSO+Albumin (Figure 3C). The Amide I 

band used to quantify albumin also overlaps with the δ-OH band of water, but this band is 

very weak in the Raman spectra, and its effect was minimized by the constant water 

content at equilibrium at -17.5
o
C

69
. A calibration curve was constructed by varying the 

amount of albumin added to a 30 wt% DMSO solution and then plotting ζ with respect to 

the albumin to DMSO ratio (mg/mg) (Figure 3D). A second degree polynomial was 

required due to the overlap of the albumin and DMSO peaks used. 

2.4) Results 

In order to measure the exact amount of protein missing from the freeze-

concentrated liquid phase due to the presence of ice, we have developed a technique to 

utilize in situ IR and Raman spectroscopy. Aqueous solutions containing 20-63 mg/ml of 

albumin and 6-35 wt% DMSO were studied. Temperatures at which data were collected 

were chosen to maximize the amount of the FCL phase in the frozen state (to maximize 

the signal to noise ratio of the spectra). Therefore, we conducted experiments with frozen 

solutions at -4°C to -6°C for 6-12 wt% DMSO solutions, at -8.5°C for 12-18 wt% DMSO 
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solutions, at -13°C for the 10-20 wt% DMSO solutions, at -17.5°C for 15-30 wt% DMSO 

solutions, and at -20°C to -40°C for 15-35 wt% solutions. 

2.4.1) FTIR Experiments at -4°C and -6°C 

For low DMSO concentration experiments with equilibrium freezing temperatures 

in the range of  -2°C and -6°C, two ratios of albumin/DMSO, 1:3 and 1:2, were used in 

solutions of 6 wt%, 8 wt%, 10 wt%, 11 wt% (for 1:2), and 12 wt% (for 1:3) DMSO, such 

that the FCL at equilibrium at -6°C would contain  approximately 40 mg/ml or 56 mg/ml 

albumin (for the 1:3 and 1:2 albumin/ DMSO ratio, respectively).  At the temperature 

where data were collected, the albumin/DMSO ratio decreased slightly with respect to the 

Minimum Ice Solution (MIS) in two conditions, but these were statistically insignificant 

(p=0.33 and p=0.46, n=15) (Figure 4A-B). In all other conditions at -4°C and -6°C, there 

was a net increase in the albumin/DMSO ratio that was correlated with greater ice 

content. The most significant increase in the albumin/DMSO ratio was observed in the 

FCL of the 6 wt% DMSO solutions, where ice comprised approximately 50% of the 

volume of the partially frozen system. This increase was statistically significant in the 6 

wt% DMSO solution at both protein concentrations and temperatures (p <0.001, n=15 for 

each protein concentration and temperature). Since a net increase in the albumin/DMSO 

ratio would only be possible if more DMSO than albumin were missing from the FCL, 

either by accumulation at the ice surface or entrapment in the ice phase, this suggests that 

the albumin was preferentially excluded from the ice phase during freezing. This effect 

was greatest in the warmer temperature (-4°C) with the most amount of ice (6 wt% 

DMSO). To evaluate the influence of temperature, additional FTIR experiments were run 

at -8.5°C,-13°C, -17.5°C, and -20°C. 
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Figure 4. A-C) FTIR Results: Change in Albumin/DMSO ratio at -4°C, -6°C and -

8.5°C. D) Raman Results: Change in Albumin/DMSO at -17.5°C. 

2.4.2) FTIR Experiments at -8.5°C, -13°C, -17.5°C, and -20°C 

To evaluate changes in FCL composition at lower temperatures, more 

concentrated DMSO solutions were necessary to ensure that there would be a sufficient 

volume of FCL in which to collect spectra. To evaluate partially frozen solutions at -

8.5°C, an 18 wt% DMSO solution with 30 mg/ml albumin was diluted to 15 wt% DMSO, 

12 wt%, and 9 wt%. It was not feasible to collect spectra in the FCL of the 9 wt% DMSO 

solution due to an insufficient volume of FCL. In the 12 wt% DMSO solution there was a 

small, but significant decrease (-1.7% +/- 1.3%, p= 0.017, n=15) in the albumin/DMSO 

ratio in the FCL with respect to the FCL of the MIS (18 wt% DSMO). In the 15 wt% 
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DMSO solution, which had only a small amount of ice at this temperature, only an 

insignificant decrease in the albumin/DMSO ratio of the FCL was observed (-1.1% +/- 

2.2%, p= 0.17, n=15,). See Figure 5C.   

To evaluate partially frozen solutions at -13°C, a 20 wt% DMSO solution with 25 

mg/ml albumin was diluted to 10 wt% DMSO. There was no significant difference in the 

albumin/DMSO ratio (p=0.43, n=15) in the FCL of these solutions, although the standard 

deviation was much higher in the 10 wt% solutions (with more ice), suggesting the 

presence of heterogeneity in the FCL.  Additional experiments at -17.5°C were conducted 

with a 30 wt% DMSO solution with 30 mg/ml albumin that was diluted to 20 wt% 

DMSO.  At this temperature, a small decrease in the albumin/DMSO ratio in the FCL of 

the 20 wt% DMSO solution with respect to the 30 wt% DMSO solution was observed, 

but it did not reach statistical significance (-1.5% +/-3.1%, p=0.18, n=15). At -20°C, a 

significant decrease was observed in the albumin/DMSO ratio in a diluted 15 wt% 

DSMO solution with respect to the original 30 wt% DMSO with 25 mg/ml albumin 

solution (-5.3% +/-2.7%, p<0.0001, n=10). 

These results, when considered with those of the 6 wt% DMSO solutions at -4°C 

and -6°C, suggest that the presence of ice has an effect on the composition of the FCL 

that changes over the -4°C to -20°C temperature range. At temperatures of -4°C and -

6°C, the presence of ice is associated with an increase in the albumin/DMSO ratio in the 

FCL of partially frozen solutions. At lower temperatures, the observed effect of ice 

changes and is now associated with a decrease in the albumin/DMSO ratio. This loss of 

the albumin from the FCL at lower temperatures is also supported by the results of the 

CRM experiments (Figure 5D). 
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2.4.3) Confocal Raman Experiments at -17.5°C 

Solutions of 15 wt%, 20 wt%, and 25 wt% DMSO with an albumin/DMSO ratio 

of 1:4.9, such that the FCL at -17.5°C would contain 63 mg/ml albumin, all showed 

significant decreases in the albumin/DMSO with respect to the MIS (30 wt% DMSO), 

suggesting a loss of the albumin from the FCL (p<0.001, n=15) (Figure 5D).  The 

magnitude of the decrease was greater than that observed in FTIR experiments, which 

may be the result of the different geometry of the experiment. In the very thin geometry 

of the FTIR experiments, ice crystal growth is constrained to the X-Y plane of the 

microscope window and the majority of the ice surface area is in contact with the top and 

bottom windows and not the FCL. The thicker geometry of the CRM experiments means 

that more of the ice surface area is in contact with the FCL instead of the top and bottom 

windows, which may be why the ice has a larger effect.  

2.4.4) Additional FTIR Experiments between -20°C and -35°C 

To investigate temperatures below -20°C, a 40 wt% DMSO with 25 mg/ml 

albumin solution was prepared and successively diluted to 35 wt%, 30 wt%, 25 wt%, and 

20 wt% DMSO. The highest concentration solution of 40 wt% DMSO did not freeze 

consistently, and so the next most concentrated solution, the 35 wt% DMSO, was used as 

a basis for comparison at -30°C. At this temperature, there was no statistically significant 

difference between solutions. Due to unexpectedly large variations in equilibrium melt 

temperatures, as well as a worse signal/noise ratio with the lower protein concentration, a 

new 35 wt% DMSO solution with 30 mg/ml albumin was prepared and successively 

diluted.  FCL comparison with 35 wt% DMSO solutions was possible at -30°C, 

temperature at which minimal ice content was present in the 35 wt% solution, and with 
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the 30 wt% DMSO solution at -25°C and -20°C. The most diluted solution, the 20 wt% 

DMSO, showed slight increases in protein concentration with respect to the more 

concentrated 30 wt% and 35 wt% DMSO solutions, whereas the 25 wt% DMSO showed 

slight decreases The significant standard deviations and the absence of a consistent trend 

with respect to concentration, make it difficult to draw any conclusions from these results 

alone.  

2.4.5) Bulk Freezing Experiments at -20°C 

FTIR analysis revealed two interesting findings. There was a net increase in 

protein content with respect to DMSO in the extracted FCL with respect to the bulk 

solution. This increase was most significant in the sample with the smallest amount of ice 

(p<0.0001, n=20), such that with respect to the FCL of this sample, there was a 

decreasing trend in protein content with additional ice. In an attempt to elucidate this 

relationship, the protein content was normalized by the composition of the extracted FCL 

with the smallest amount of ice, and then plotted with respect to the ratio of the minimum 

surface area of the ice to the volume of liquid added to the ice (Figure 5). The minimum 

surface area was calculated by assuming the most thermodynamically favored geometry 

of a sphere, using the volume of the frozen water that was initially added to the centrifuge 

tubes. Although the actual surface area was unknown, just prior to extracting the FCL at 

30 hours, it was visually observed that the ice was surrounded by solution as a result of 

restructuring.  
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Figure 5. Bulk freezing experiments: the albumin content in the FCL extracted from 

the samples after 30 hours at -20°C is plotted versus a measure of the effective 

surface area that could interact with the FCL. The γ values are normalized by the γ 

of the FCL extracted from the solution with the least amount of added ice (shown as 

100%). The starting bulk solution is also included in the plot. 

2.5) Discussion 

The hypothesis that motivated this investigation was that albumin was not simply 

distributed homogeneously in the FCL and that it either accumulated or aggregated at the 

ice interface, or became entrapped within the ice during slow, near-equilibrium freezing. 

The anticipated experimental results would show either a decrease in protein content in 

the FCL that would support the hypothesis, or no change in the FCL. The results that 

were obtained however, suggest that more complicated interactions -that also involve the 
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solvent DMSO- are occurring during freezing. In the experiments with low concentration 

DMSO at -4°C and -6°C, the presence of ice was correlated with a net increase in protein 

content with respect to albumin in the FCL. As the ice phase grew and the FCL phase 

became more concentrated, the protein concentration increased more than the DMSO 

concentration. This same phenomenon was also observed in the bulk freezing 

experiments, where larger volumes of solution were added to ice and then extracted as an 

FCL after being in contact with ice for 30 hours at -20°C. 

This would suggest that the protein became more concentrated than expected in 

the FCL as a result of a loss of DMSO from the FCL phase, either during ice growth or 

simply in the presence of ice. In addition, the results from the equilibrium freezing 

experiments using FTIR and CRM at -8.5°C, -17.5°C, and -20°C, as well as the bulk 

freezing experiments at -20°C,  supported the original hypothesis of a loss of protein to 

the ice interface or ice phase. This evidence, nonetheless, appears to be complicated by 

what was occurring with the DMSO, which is perhaps why the results between -20°C and 

-40°C did not yield a consistent trend. 

A possible explanation for these observations is that albumin accumulates at the 

ice interface. This phenomenon is either negligible at warmer temperatures approaching 

0°C, or is disguised by the more significant loss of DMSO from the FCL, resulting in the 

observed net increase in protein content in the FCL at -4°C and -6°C in the presence of 

ice. The decrease in the albumin/DMSO ratio as the temperature approached -20°C, 

suggests that the loss of albumin from the FCL becomes more significant with decreasing 

temperature. 
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The loss of DMSO from the FCL during freezing experiments at -4°C and -6°C, 

as well as from the FCL of bulk solutions held at -20°C in the presence of ice, could have 

multiple explanations. The first possible explanation would be the formation of DMSO-

rich clusters or chains of molecules in solutions of DMSO+water+albumin. DMSO has 

been shown to form DMSO-water complexes with 1:2 
70,71

 and 1:3 ratios 
60

 in binary 

solutions, but to our knowledge, it is not established what effect the presence of protein 

molecules has on these arrangements at sub-zero temperatures. If larger clusters rich in 

DMSO molecules were formed, these could have an affinity for ice surfaces, such that 

they could congregate preferentially at the interface. Or they could simply have reduced 

mobility, and thereby could get caught at the interface of growing ice crystals. In both 

cases, there would be heterogeneous distribution of DMSO in the FCL. 

The results of the bulk freezing experiments support the conclusion that the 

heterogeneous distribution of DMSO-rich regions during slow freezing was the result of 

an affinity of DMSO for the ice surface and not reduced mobility. While it is possible 

that reduced mobility of the DMSO caused the increased protein content relative to 

DMSO observed in the FCL extracted from solutions held at -20°C for 30 hours in the 

absence of significant ice growth, this seems unlikely, unless the clusters of DMSO-rich 

regions were large enough to rival the size of the albumin macromolecules.  

Another possible explanation for the increase in albumin observed in the FCL of 

solutions held at -20°C is that some of the DMSO crystallized out of the liquid phase. 

This would not need to have been triggered by the presence of ice, since it could have 

also occurred and gone undetected in the bulk solution held at -20°C. Samples for FTIR 

analysis were only taken from this solution once it had been warmed back to 4°C and 
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stirred again. Subsequent X-ray diffraction experiments at -6°C and -20°C (data not 

shown here), however, showed only the presence of ice and did not confirm the presence 

of any non-ice crystals. 

The most compelling evidence of a loss of albumin from the freeze-concentrated 

liquid comes from the experiments conducted over 30 hours in a large-scale freezer, held 

at the common industry standard temperature of -20°C. These experiments were designed 

to isolate the interactions between the ice interface and albumin in the absence of ice 

growth. Thus the results, which showed a correlation between increased ice surface area 

and loss of albumin from the FCL over the relatively short time-scale of 30 hours, have 

implications for the long-term storage of albumin. 

2.6) Summary 

In this study, we have developed a novel technique using FTIR and Confocal 

Raman Microspectroscopy to measure interactions between ice and proteins in situ 

during freezing. We have shown that during freezing, as a function of temperature, 

dimethyl sulfoxide (DMSO) and bovine serum albumin are preferentially excluded from 

the ice phase, resulting in significant deviations from the theoretical composition of the 

freeze-concentrated liquid phase. As a result, as much as 20% of the albumin in solution 

may leave the freeze-concentrated liquid following freezing, and may be adsorbed onto 

the ice interface or entrapped in the ice phase. 
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Chapter 3: Mapping of Protein and Cryoprotectant Distribution in Directional 

Solidification using Confocal Raman Microspectroscopy 

3.1) Introduction 

Freezing and lyophilization are commonly employed to stabilize biological 

specimens and therapeutic proteins that would otherwise degrade over time in ambient or 

refrigerator conditions. Biospecimens like serum, plasma, bronchial lavage fluid and 

urine are often frozen and stored in the frozen state, while therapeutic proteins are often 

frozen and subsequently freeze-dried
3-5

. The end quality of the processed proteins and 

biospecimens can be diminished as a result of the physical and chemical stresses placed 

upon them during freezing
5-13

. In biospecimens, biomarkers may be lost and diagnostic 

and clinical utility may be reduced, thereby negatively impacting subsequent proteomic 

studies
22,23

. In the case of proteins, these stresses can lead to irreversible alterations in the 

proteins’ structure and activity
4,12-19

, resulting in product losses and diminished reduced 

therapeutic impact
25

. Identifying conditions under which the potentially damaging effects 

of freezing are minimized therefore represents an opportunity to improve the diagnostic 

and clinical utility of biospecimens, as well improve the product yields of proteins in the 

pharmaceutical industry and their therapeutic impact. 

Freezing is a complex phenomenon that is influenced by multiple variables. When 

freezing aqueous solutions, the ice phase that forms generally incorporates few or no 

solutes
39

. The solutes are excluded from the ice phase and are concentrated in the 

remaining freeze-concentrated liquid (FCL) phase. The morphology of the ice phase is 

greatly influenced the aqueous solution’s composition
72,73

 and by the freezing 

conditions
74

. The concentration of the solutes affects the equilibrium freezing 
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temperature, as well as the relative sizes of the freeze-concentrated liquid and ice phases, 

in accordance with the respective phase diagram.   

Generally, ice does not form spontaneously upon reaching the equilibrium 

freezing temperature, and some degree of supercooling is required before homogeneous 

nucleation of ice will occur 
75

.To control the freezing process, seeding can be used to 

heterogeneously nucleate ice at a known temperature
33,34

. The degree of supercooling, i.e. 

the difference between the nucleation temperature and the equilibrium freezing 

temperature, influences the morphology of the ice crystals that form. Solutions with 

higher degrees of supercooling freeze rapidly upon nucleation and have finer ice crystals 

with greater surface area than solutions with low degrees of supercooling
36

. 

Likewise, following heterogeneous nucleation at a given temperature, the 

morphology of the ice crystals that grow is affected by the cooling rate
36

. In directional 

solidification, ice growth occurs in one primary direction and is controlled by cooling 

along the axis of ice growth
35,76

. At very slow cooling rates with minimal solute 

concentration, the ice that forms is planar or cellular with large and smooth surfaces. 

With faster cooling rates and higher solute concentrations, the surface of the advancing 

ice front breaks down and becomes dendritic with much greater surface
35

.  

The interactions between proteins and the ice phase are of particular interest when 

freezing. Previous studies have shown that freezing can result in aggregation of proteins 

that may remain following thawing
6,44,45

, as well as changes in protein conformation at 

the ice interface
43

. The class of antifreeze proteins, for example, is known to adsorb to the 

surface of the ice, possibly through the formation of hydrogen bonds with the ice 
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surface
40,41

. As a result, it would be beneficial to identify freezing conditions that affect 

the potentially harmful interactions between proteins and the ice phase.  

In this study, we demonstrate the use of confocal Raman microspectroscopy 

(CRM) to quantify and map the distribution of proteins and cryoprotective agents in a 

sample frozen along a temperature gradient.  By freezing along a temperature gradient, 

we are able to evaluate multiple freezing conditions simultaneously. CRM has been used 

previously to map solid
77-79

 samples and has been developed recently as a technique to 

map thermally uniform frozen tissue
80,81

, cells
82

, and partially frozen solutions
43

. To our 

knowledge, it has not been used previously to evaluate solutions frozen along a 

temperature gradient. 

For a model protein, we use bovine serum albumin. Albumin is the most abundant 

protein found in the plasma
83,84

, and in addition to facilitating transport for thyroid and 

steroid hormones
48,49

, fatty acids
50

, and regulating oncotic pressure in the capillaries
51

, it 

is used as a biomarker to detect and monitor renal and cardiovascular diseases
52

.   

For a cryoprotective agent, we use trehalose, which is a disaccharide that is widely used 

for its ability to protect proteins from freezing-induced damaged
85-87

. 

3.2) Materials and Methods 

Experiments were conducted using Confocal Raman Microspectroscopy (CRM) 

with solutions over a range of trehalose concentrations (10-35 wt%) and albumin 

concentrations (2-12 wt%). Directional solidification experiments and calibration 

experiments were performed using solutions that were prepared gravimetrically with 

trehalose dihydrate (≥97% Purity, Wako, Osaka, Japan), bovine serum albumin (≥98% 

Purity, Sigma-Aldrich, St. Louis, MO) and 1x Dulbecco’s phosphate buffered saline 
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(14190-144, Invitrogen Corporation, Burlington, Ontario, Canada). For directional 

solidification experiments, a 50 µm wide by 10 mm long microchannel with reservoirs at 

each end was machined in a 50 µm thick silicone film that was then sandwiched between 

two quartz windows (Figure 6). Each directional solidification experiment involved 

wicking 3 nL of solution into the microchannel through the reservoir. Calibration 

experiments were performed with a similar channel without the fluid reservoirs at each 

end, such that the solution was added to the microchannel before the top quartz window 

was placed. 

For all experiments, the sample was then transferred to a confocal Raman 

microscope (Nanophoton, Osaka, Japan) equipped with a 100× Nikon air objective (NA 

0.90) and a 532 nm AR-ion laser operated at 12 mW for excitation and a CCD detector 

electrically cooled to -70°C. Spatial resolution was 350 nm in the x-direction and 800 nm 

in the vertical direction. Each scan was conducted over a 4 µm x 83 µm region of the 

sample with a spectral resolution of 6 cm
-1

 in the 4666-70 cm
-1

 wavenumber range at an 

exposure time of 0.05 s per pixel. To improve the signal to noise ratio in individual 

spectra, the collected spectra were spatially averaged by a factor of 2 in each direction, 

thereby reducing the number of spectra per scan from 8000 to 2000.  The spectra were 

then processed by applying 15 point Savitsky Golay smoothing and analyzed using 

CytoSpec software (Boston, MA) and Matlab (MathWorks, Natick, MA).  

For calibration experiments, a FDCS 196 (Linkam Scientific Instruments Ltd., 

UK) freeze-drying cryostage was installed and used for temperature control of the 

sample. For directional solidification experiments, a cooling stage was built with two 

copper plates separated by 4mm. The temperature of each plate was controlled 
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independently by internal resistance heating elements and liquid nitrogen. By setting 

these two plates to different temperatures and placing the ends of the microchannel of 

solution on each plate, a temperature gradient was imposed across the microchannel 

(Figure 6). 

3.2.1) Calibration Experiments 

During solidification experiments, solutes are excluded from the ice phase and 

redistributed within the freeze-concentrated liquid phase. To quantify and map the 

resulting distribution of trehalose and albumin in solutions in the solutions frozen along a 

temperature gradient, calibration was required. Solutions of trehalose and albumin were 

cooled at 10°C/min to -20°C. Cooling was paused to collect spectra at 0°C, -5°C, -10°C, -

15°C, and -20°C. See Table 2 for a description of the calibration concentrations. 

Trehalose [wt%] Albumin [wt%] Albumin/Trehalose [w/w]  

10 2 0.2 

10 3 0.3 

10 4 0.4 

20 2 0.1 

20 4 0.2 

20 6 0.4                   

30 3 0.1 

30 6 0.2 

30 12 0.4 

35 7 0.2 

Table 2. Calibration experiments trehalose and albumin concentrations in 1x DPBS.  

3.2.2) Directional Solidification Experiments 

Directional solidification experiments were performed with combinations of 10-

30 wt% trehalose and 2-4 wt% albumin (about 20-40 mg/ml) and are shown in Table 2. 

The microchannel of solution was positioned on the two temperature-controlled plates 
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while at room temperature. The plates were then slowly cooled until reaching set 

temperatures of 16°C and -20°C and held to +/- 2°C throughout the remainder of the 

experiments. The difference in temperature between the two plates created a temperature 

gradient along the microchannel, dT/dx, with a near linear segment in the region that 

straddled the two plates (Figure 6). The temperature profile was confirmed by 

embedding 0.25mm diameter thermocouples at a spacing of 1mm in a microchannel of 

deionized water (Figure 7).  

Once the temperature gradient was established, ice was nucleated at the cold end 

by injecting a small amount of silver iodide into the cold reservoir (at right on Figure 6). 

Ice formed rapidly and propagated along the microchannel at a speed of v toward the 

warm reservoir until reaching the equilibrium melt temperature of the solution. Confocal 

Raman scans were then collected every 0.5 mm, starting from the cold end. 

Trehalose [wt%] Albumin [wt%] Albumin/Trehalose [w/w]  

10 2 0.20 

10 3 0.30 

10 4 0.40 

20 2 0.10 

20 3 0.15 

20 4 0.20                   

30 3 0.10 

30 4 0.13 

Table 2. Directional solidification trehalose and albumin concentrations in 1x DPBS.  
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Figure 6. Schematic of directional solidification setup with confocal Raman 

microscope. Confocal Raman maps of the distribution of ice, trehalose, and 

albumin/trehalose ratio are included for 20 wt% trehalose, 4 wt% albumin at -4°C, 

-9°C, -16°C, and -18°C.   
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Figure 7. Temperature profile along microchannel. 

3.2.3) Raman Spectral Calibration and Analysis 

The goal in mapping the distribution of trehalose and albumin in the solutions 

frozen along a temperature gradient was to determine how the two solutes were 

redistributed during freezing. Since a cryoprotective agent like trehalose would only 

protect proteins in its vicinity, attention was paid to identify heterogeneity that occurred 

during the freeze-concentration of trehalose and albumin, which could leave the proteins 

more vulnerable to stresses at the ice interface.   
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Figure 8. Organic content calibration using α: A) Raman spectral ratio, B) Linear 

calibration curve at 0 to -20°C. 

Albumin and trehalose, being both organic molecules, have strong ν-CH bands in 

their Raman spectra. Due to the overlap of these bands, trehalose and albumin 

concentrations were not determined directly. Instead, the overall organic content was 

determined first by calculating the baseline-corrected integrated intensity of the 

overlapping ν-CH bands (2820-3030 cm
-1

) 
88-91

and dividing this by the intensity of the 

OH stretching band at 3390 cm
-1

, coming primarily from the water with some 

contribution from the trehalose
69,88,92

. A baseline of 2600-3800 cm
-1

 was used to calculate 

the intensity of the peak at 3390 cm
-1

. The resulting ratio was denoted as α ≡ Integrated 

Intensityν-CH/ Intensityν-OH and was plotted with respect to the concentration of 
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trehalose and twice the concentration of albumin in calibration experiments (Figure 8, A-

B). The ν-CH band of the albumin Raman spectrum in this temperature range was 

strongest just surrounding 2935 cm
-1

, as has been found for human serum albumin 
93

, and 

was found to contribute proportionally more to α than the trehalose, perhaps in part due 

to the contribution of the trehalose
88,92

 to the ν-OH band intensity at 3390 cm
-1

. Due to 

the slight shifting of the spectra with decreasing temperature, a linear calibration curve 

was made at each temperature (0°C, -5°C, -10°C, -15°C, -20°C). For clarity, only the 

calibration curves of the extreme temperature are shown and the very minimal standard 

deviations are omitted from the plot.  

After determining the organic content (the sum of the unknown trehalose and 

twice the albumin concentration) in the sample, the mass ratio of albumin/trehalose was 

determined by the ratio of the intensities at 2935 cm
-1

 (from primarily albumin)
93

 and at 

2915 cm
-1 

(albumin and trehalose)
88,94

. The intensities were calculated using the baseline 

of 2890-2990 cm
-1 

for regions with high organic concentration corresponding to about 20 

wt% trehalose or greater, and using the baseline of 2880-3010 cm
-1 

for regions with low 

organic concentration corresponding to less than 20 wt% trehalose (Figure 9, A and C).  

This ratio was denoted as σlow or σhigh ≡ Intensity2935/Intensity2915 and was plotted with 

respect to the mass ratio of albumin/trehalose at each temperature, at both high and low 

trehalose concentrations, to create a series of linear calibration curves (Figure 9, B and 

D). 
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Figure 9. Calculation of albumin/trehalose ratio using σ in high and low 

concentration trehalose: A) Raman spectral ratio, σ, in high concentration trehalose 

B) Linear calibration curve of σ in high concentration trehalose at 0 to -20°C. C) 

Raman spectral ratio, σ, in low concentration trehalose B) Linear calibration curve 

of σ in low concentration trehalose at 0 to -20°C. 

With the known amount of organic content and albumin/trehalose ratio, a 

trehalose concentration could be calculated. This is the trehalose concentration of the 

solution in a 0.5 x 0.5 µm scanned area assuming a homogeneous distribution of 

trehalose. Since in partially frozen solutions a given area was not necessarily all liquid, 

but instead a mixture of even smaller regions of highly concentrated freeze-concentrated 

liquid and ice, the calculated concentration was in fact an equivalent concentration. Low 
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equivalent trehalose concentrations served as a proxy to indicate that there were 

significant regions of ice in the scanned area. Conversely, scanned areas with high 

equivalent trehalose concentration were primarily freeze-concentrated liquid with little or 

no ice present. 

When calculating the equivalent trehalose concentrations and albumin/trehalose 

ratios in the sample, the calibration curves at each temperature (2.5°C ≤ Calibration 

Temperature < +2.5°C) were used. The temperature in a given region of the sample was 

calculated using a polynomial fit to the thermocouple data (Figure 7). Due to variability 

between experiments in the reference point used for position, the position data for each 

experimented were shifted so that the equilibrium melt temperature of each solution was 

aligned with the ice interface. This temperature was calculated using the binary trehalose 

and water phase diagram, where the wt% concentration of trehalose was adjusted so that 

only the weight of the trehalose and the 1x DPBS was used
95

. 

To visualize the distribution of ice, which should show an inverse relationship 

with the equivalent trehalose concentration, a ratio was calculated of the baseline-

corrected integrated intensity of the ice band
43

 from 3100-3200 cm
-1 

over the intensity 

coming primarily from water
89,90

 at 3390 cm
-1

 with the 2600-3800 cm
-1 

baseline that was 

also used for measuring organic content.  

The accuracy of the trehalose concentration and albumin/trehalose ratio 

diminished in very low concentration due to a poor signal to noise ratio. Since after 

freezing, a scanned 0.5 µm x 0.5 µm area could be composed of anything from pure ice 

with no solutes to all freeze-concentrated liquid, regions with very low concentrations of 

albumin and trehalose were present. To avoid biasing the results by including these areas 
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with weak signal, the areas with less than 10 wt% equivalent trehalose concentration 

were filtered out and excluded from further analysis. Likewise, areas where the calculated 

mass ratio of albumin/trehalose differed from the nominal value by more than a factor of 

three were considered spurious and excluded from analysis.  For example, a 20 wt% 

trehalose and 3 wt% albumin solution would have a nominal albumin/trehalose ratio of 

0.15, so that any area would need to have a calculated albumin/trehalose mass ratio of 

between 0.05 and 0.45, regardless of the absolute concentrations of the albumin and 

trehalose, to be included in further analysis.  

3.3) Results and Discussion 

The complexity of the data acquired in just one directional solidification 

experiment means that a number of variables can be evaluated, such as ice crystal size, 

solute redistribution, freezing temperature, the degree of supercooling, ice interface 

velocity, and cooling rate. The choice of which variables to consider affects the manner 

in which the Raman data is processed. In addition, the scale at which these variables are 

evaluated also affects the processing, since more subtle features in the Raman spectra like 

those stemming from conformational changes in proteins would be perhaps apparent only 

with a very good signal to noise ratio achieved with substantial spatial averaging. 

Between 8 and 14 confocal Raman scans were taken in each experiment, resulting 

in between 64,000 and 112,000 individual spectra. We chose to focus our efforts on 

evaluating the heterogeneity of the freeze-concentrated liquid phase, in order to see under 

what conditions the relative composition (ratio of protein to cryoprotectant) of the freeze-

concentrated liquid would vary with proximity to the ice phase. Due to the high degree of 

supercooling in the experiments (at the cold end), very small ice crystals and freeze-
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concentrate liquid regions were formed upon ice nucleation. As a result, it was important 

to maintain spatial resolution at the sub-micron scale while processing the spectra. 

As seen in the maps included at the bottom of Figure 6, a wide variety in ice and 

freeze-concentrated liquid morphology could be measured and mapped along the 

microchannel at different temperatures. The relative intensity of the ice phase was in very 

good agreement with the measured equivalent trehalose concentration in all experiments, 

so that a faint ice signal was detected in regions with high trehalose concentration and 

vice versa. That the variety in morphology along the temperature gradient could be 

detected with good accuracy in a single experiment demonstrated the potential utility that 

this experimental technique could have in identifying freezing conditions to obtain a 

given ice morphology.  

The spatial averaging by a factor of 2 in each direction meant that 4 individual 

spectra were averaged before analysis. In many of the experiments, particularly at the low 

temperature end of the microchannel, the freeze-concentrated liquid and the ice phases 

were not clearly distinct even at the scale of 0.5 µm. This led to the measurement of 

regions with a range of equivalent trehalose concentrations and varying ice signals. Since 

quantifying the ice content directly was not readily feasible, the lower trehalose 

equivalent concentrations were used to identify regions with greater ice content. By 

sorting the albumin/trehalose data according to equivalent trehalose concentration, it was 

possible to identify variation in the relative composition of the freeze-concentrated liquid 

(i.e., the proportions of albumin and trehalose) indirectly as a function of ice content. 

In Figure 10, the mean albumin/trehalose value in each sorted category of 

equivalent trehalose concentration at each temperature is shown. The values are 
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normalized by the mean value of all concentrations at each temperature to facilitate 

comparison. Concentration ranges were sorted as greater or equal to the lower limit in the 

displayed range and less than the upper limit (e.g., 10 wt%≤ X <15 wt%). While the 

spatial averaging did improve the signal to noise ratio, it was still important to have data 

from many spectra in order to reduce the influence of noise. For this reason, to be 

included in the plot, a minimum of 2% of the values at a given temperature had to fall 

within the concentration range, so that only data representing the mean of at least 40 data 

points would be included. 

Multiple trials of each condition would be required to make definitive 

observations, but there are some noticeable trends that can be seen in Figure 10. With 

few exceptions, the lowest equivalent trehalose concentration range, 10-15 wt%, has an 

albumin/trehalose ratio higher than the mean value. Likewise, the highest equivalent 

trehalose concentration range (comprised of the least amount of ice), 30 wt% and greater, 

has an albumin/trehalose ratio that is equal to or less than the mean value in all 

experiments. Between these two extremes, there is a general trend of lower 

albumin/trehalose ratios in higher equivalent trehalose concentration. Notably, the 

variation in the albumin/trehalose ratio is more pronounced in the higher concentration 

trehalose experiments (20 wt% and 30 wt%) than in the lower concentration trehalose 

experiments (10 wt%).  
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Figure 10. Heterogeneity of albumin/trehalose ratio with respect to local 

environment. For each experiment, albumin/trehalose ratios in each equivalent 

trehalose concentration normalized by the mean value at that temperature. A) 10 

wt% trehalose, 3 wt% albumin, B) 10 wt% trehalose, 4 wt% albumin, C) 20 wt% 

trehalose, 3 wt% albumin, D) 20 wt% trehalose, 4 wt% albumin, E) 30 wt% 

trehalose, 3 wt% albumin, F) 30 wt% trehalose, 4 wt% albumin. 
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Interestingly, the heterogeneity of the albumin distribution in the freeze-

concentrated liquid, as evidenced by the varying albumin/trehalose ratio with respect to 

the equivalent trehalose concentration, is greatest at warmer temperature and in higher 

trehalose concentration. Both of these conditions result in slower ice formation with 

larger freeze-concentrated liquid regions. That under these conditions the albumin is 

disproportionately distributed in areas of less trehalose concentration and more ice could 

have multiple explanations. It could be the result of a bias introduced in the Raman 

spectra by the ice peak that altered the baseline used to calculate the albumin/trehalose 

ratio. This explanation does not seem likely, however, since a bias introduced by the ice 

peak should be greatest at the lower temperatures with the greatest amount of ice, and this 

was not the case. Another explanation could be an increase in the diffusion length scale 

with the larger freeze-concentrated regions, combined with the reduced mobility of the 

albumin in high concentration trehalose. Lastly, it could be the result of  an affinity of the 

albumin for the ice surface, as has been shown to occur in anti-freeze proteins
40,41

, and 

has been shown to occur with albumin in dimethyl sulfoxide during slow, quasi-

equilibrium freezing (Chapter 2).   

3.4) Summary 

In this investigation, we have introduced a novel technique that uses confocal 

Raman microscopy in combination with directional solidification to evaluate a wide 

range of freezing conditions in a quantitative fashion at the sub-micron scale in a single 

experiment. Initial results from experiments with albumin and trehalose suggest that there 

is heterogeneity in the distribution of the protein in the freeze-concentrated liquid, and 

that it is preferentially distributed near the ice phase. Further investigation is required to 
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confirm these findings and to identify under what freezing conditions this heterogeneity 

is most significant and to evaluate its effects on freeze-labile proteins. 

Chapter 4: Research Summary 

In this thesis, spectroscopic techniques were developed to measure interactions 

between proteins and ice. The goal of the investigations undertaken was to identify if and 

under what freezing conditions a common protein, bovine serum albumin, would be 

adsorbed to the ice interface or entrapped with the ice phase. The following conclusions 

were made: 

 In chapter 2, significant deviations from the expected composition of the freeze-

concentrated liquid were found during quasi-equilibrium freezing of aqueous solutions of 

DMSO and albumin. In low concentration DMSO and warmer temperatures, there was an 

apparent loss in DMSO from the freeze-concentrated liquid that suggested that the 

DMSO was getting adsorbed onto the ice interface or entrapped in the ice phase. In 

higher concentrations of DMSO at lower temperatures, this behavior changed and as 

much as 20% of the albumin in solution may have been adsorbed to the ice interface or 

become entrapped in the ice phase. 

 In chapter 3, the investigation of protein-ice interactions was expanded to non-

equilibrium conditions. To study a wide range of freezing conditions, directional 

solidification was combined in a novel way with confocal Raman microspectroscopy. 

After mapping the concentrations of both trehalose and albumin frozen in solutions 

frozen along a temperature gradient, microheterogeneity in the freeze-liquid phase was 

identified. Under some freezing protocols, this microheterogeneity resulted in the 

albumin being preferentially distributed in regions with greater nearby ice content. This 
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conclusion would be in agreement with the findings from Chapter 2, which suggested an 

affinity of albumin for ice quasi-equilibrium freezing conditions with slow ice growth. 

Together, these conclusions indicate that significant interactions between albumin and ice 

can occur, and that these conditions may be rapidly identified through directional 

solidification and mapping with confocal Raman Microscopy. Thus the technique 

developed here may be beneficial in the development of freezing protocols that minimize 

protein-ice interactions for other proteins of interest. 
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Appendix A: Directional Solidification Instructions 

Set up experiment 

1. Apply 50 µm thick silicone film to clean quartz window so that it adheres smoothly without 

bubbles 

2. Create  10 mm microchannel with two parallel razor blades 

3. Create two larger reservoirs (3-5mm in diameter) at each end of the microchannel 

4. Create a thin channel toward the outside of the reservoirs to facilitate future wicking  

5. Place top quartz window so that it covers the microchannel and reservoirs, but leaves part of the 

wicking channels uncovered 

6. Wick experimental solution into the microchannel, from the end that will be placed on the cold 

plate 

7. Place microchannel assembly on warm and cool plates  already in position in the confocal Raman 

microscope so that the microchannel bridges the gap 

8. Set temperature on the two plates and wait for them to stabilize 
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Perform experiment 

1. Ensure that the microchannel is perpendicular to the plate edges and secure the microchannel 

assembly with adhesive tape as necessary 

2. Determine a point of reference in the x-direction and zero the position 

3. Adjust microscope objective and select parameters: 

1. Adjust size of scan area 

2. Select region of Raman spectrum desired (depending on area of spectra of interest). 

Smaller regions improve spectral resolution, but may increase noise and exclude useful 

information in other areas of the spectrum. 

3. Power: as high as necessary to get good spectra without melting 

4. Exposure time: 0.05 seconds per pixel 

4. Allow temperatures to stabilize 

5. Nucleate ice by wicking small amount of silver iodide suspended in water into the wicking 

channel at the cold end 

6. Once ice interface as reached an equilibrium position, begin scanning at cold end 
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Process data in RamanViewer and CytoSpec 

1. Make sure to save all data (not automatic) and label per the position with respect to the reference point 

2. Open data files using Nanophoton’s RamanViewer software (Note: USB key may be necessary) 

3. If individual spectra are too noisy too use, do spatial averaging 

1. If individual spectra are too noisy too use, do spatial averaging 

2. Edit > Binning > adjust the size of the area to be spatially averaged (2x2, 4x4, etc.) 

4. To export data using plugin: 

1. Edit > Select  > Select All Image 

2. Plugin > Export JCAMPs in Rect 

3. Create a new folder and save data here; plugin will generate a text file for every spectrum 

numbered sequentially 

5. Process data with CytoSpec 

1. CytoSpec allows more quantitative processing of spectra 

2. 64-bit version is run through Matlab by typing “ftir” in the command line 

3. File > Import ASCII  > double column ASCII  

4. Deselect increment extension 

5. X-dim: height of the Raman scan (number of spectra) 

6. Y-dim:  width of the Raman scan (number of spectra) 

7. Delimiter: space or tab 

8. Lines to skip: 15 

9. Load 

10. Preprocessing > smoothing > Savitsky Golay  

1. 15 smoothing points 

2. Original data 

11. To map things: 

1. Univariate Imaging > chemical maps  (or colored symbol on taskbar) 

2. Choose preprocessed data block and then select ranges and type of map desired 
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12. Now fix the alignment of the pixels (only necessary once, but can only be done after the first 

value is calculated): 

 Tools > rotate > 90 ° clockwise 

1. Tools  > export maps  > lower maps  

 (To facilitate processing, label maps with a letter followed by the number of the scan, e.g., a7) 
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Final Processing with Matlab 

1. Import the maps of individual calculated values  from CytoSpec into Matlab 

2. Save these as a Workspace so avoid having to import them in the future 

3. Use of modify existing Matlab as necessary 

4. Things to consider in the code: 

1. Temperature 

2. Concentration variations 

3. Filtering noise or values far outside of expected values 

4. Accommodating different sizes of data 

5. What the current code does: 

1. Identifies each experiment upon loading the Workspace and automatically sets the 

temperature profile, and nominal trehalose and albumin concentrations 

2. Flips all data vertically so the Matlab maps match the light microscopic image from the 

experiments 

3. Calculates the organic content, albumin/trehalose ratio, and trehalose content using a 

combination of calibration curves at 0, -5, -10, -15, and -20 °C 

4. Qualitatively determines the ice content 

5. Filters out low trehalose concentration values and extreme values for the albumin/trehalose 

ratio 

6. Determines the average temperature of each scan 

7. Sorts the albumin/trehalose ratio by trehalose concentration ranges and determines the mean 

value at each temperature normalized by: 

1. Nominal values  

2. Average value at the temperature in all concentration ranges 

8. Maps  of each variable are generated automatically and are images  automatically saved to the 

Matlab folder 
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Appendix B: Matlab Code 

% This code was developed to process confocal Raman microspectroscopy 

data. 
% It uses a polynomial curve for temperature calculations, and a series 

of 
% linear calibration curves at 0, -5, -10, -15, and -20 deg C to 

quantify 
% and map trehalose concentration, the albumin/trehalose mass ratio, 

and 
% qualitatively the presence of ice. 

  
% data was imported into CytoSpec and then rotated clockwise. It now 

must be 
% vertically flipped to match the original images, with the cold side 

being 
% on the right (a1 corresponds to -3mm from the edge of the right cold 
% temperature plate) 

  
% temperature values shifted so that the ice interface position 

corresponds 
% to the binary phase diagram temperature, due to the variability in 

the 
% temperature control  

  
% automatically shifts the temperature profile from the thermocouple 

values 
% so that the edge of the interface is located at the melt temperature 

per 
% the binary trehalose/water diagram developed by Miller (1997) 
% the albumin is excluded from the calculation, so the concentration 

used 
% to determine the melt temp is (trehalose)/(trehalose+water) 

  
% all data were spatially averaged 2x2 ("binned"), and then 15 point 
% Savitsky Golay smoothed 

  
% each successive file is placed at 0.5mm beyond the previous one 

unless 
% otherwise noted (the last file was shifted to the ice interface in 

some 
% cases, which is accounted for in the code) 

  
% the variables a, b, e, and f were used as follows: 
% a = (2820-3030)/[3390 with (2600-3800) baseline] 
% b = (3100-3200)/[3390 with (2600-3800) baseline] 
% e = 2935/2915 with (2880-3010) baseline (for lower concentration) 
% f = 2935/2915 with (2890-2990) baseline (for higher concentration) 

  
format compact 

  
% trecon and albcon saved in workspaces 
% enter nominal trehalose concentration (wt%) 
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% trecon=10; 
% enter albumin concentration (wt%) 
% albcon=4; 
% minimum frequency (%) for alb/tre ratio to be included for a 

trehalose 
% concentration range: 
threshold=2; 
% nominal albumin/trehalose ratio 
rationominal=albcon/trecon; 
% limits of trehalose wt% and albumin/trehalose ratio for filtering: 
lowtrehalose=5; 
hightrehalose=100; 
filterfactor=3; 
lowratio=rationominal/filterfactor; 
highratio=rationominal*filterfactor; 
% plus and minus trehalose concentration limits for nominal 

concentration: 
treconplus=trecon+5; 
treconminus=trecon-5; 
% high frequency % for plot: 
trehi=100; 
% high value for alb/tre plot 
plotRatioHi=0.1+1.5*rationominal; 
% threshold for organic content, c, to use higher concentration 
% calibration: 
organic10=22; 
organic20=30; 

  
% figure size 
fsize=[100, 100, 750, 550]; 
fsize2=[100, 100, 750,300]; 
fposition=[0.22 0.14 0.3 0.28]; 
tsize=16; 
xsize=14; 
ysize=14; 
% map title sizes 
msize=14; 
mTsize=['FontWeight','bold',... 
    'FontSize',msize,... 
    'FontName','Arial']; 
% Titles 
tAlbTre1='Albumin/Trehalose Ratio vs. Temperature'; 
tAlbTre2=[num2str(trecon),' wt% Trehalose, ',num2str(albcon),' wt% 

Albumin' ]; 
tTreDist1='Trehalose Distribution vs. Temperature'; 
tTreDist2=[num2str(trecon),' wt% Trehalose, ',num2str(albcon),' wt% 

Albumin']; 

  

  
% determines the number of files to accommodate and the shift in the 
% temperature profile: 
% the last file position is also shifted automatically 
lastshift=zeros(1,14); 
if trecon==10 
    if albcon==2 
        shift=1.25; 
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        files=14; 
        lastshift(files)=-3.5+files*0.5-3.12; 
    end 
    if albcon==3 
        shift=1.25; 
        files=14; 
        lastshift(files)=-3.5+files*0.5-3.08; 
    end     
    if albcon==4 
        shift=0.8; 
        files=12; 
%       files=13; 
%        lastshift(files)=-3.5+files*0.5-2.67; 
    end 
end 
if trecon==20 
    if albcon==2 
        shift=1.05; 
        files=13; 
        lastshift(files)=-3.5+files*0.5-2.73; 
    end 
    if albcon==3 
        shift=-1.05; 
        files=9; 
        lastshift(files)=-3.5+files*0.5-0.65; 
    end 
    if albcon==4 
        shift=0.8; 
        files=12; 
        lastshift(files)=-3.5+files*0.5-2.45;         
    end 
end 
if trecon==30 
    if albcon==3 
        shift=-1.05; 
        files=8; 
        lastshift(files)=-3.5+files*0.5-0.4;         
    end 
    if albcon==4 
        shift=-0.6; 
        files=9; 
        lastshift(files)=-3.5+files*0.5-0.84;         
    end 
end 
% thickness of pixels due to binning: 
th=10; 
% width of pixels per file 
width=200; 
% pixels per file: 
pixels=th*width; 
%number of columns of pixels 
z=files*width; 
% Plot temperature ranges: 
Tlow=-18; 
Thigh=1; 
% Plot percentage ranges: 
PctLow=0; 
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PctHigh=160; 
% create nominal 100% line for plotting: 
Nominal=100*ones(1,3); 
NominalTemp=[-20 0 10]; 
% accommodating input sizes of  
if files<9  
    a9=NaN(th,width); 
    b9=NaN(th,width); 
    e9=NaN(th,width); 
    f9=NaN(th,width); 
end 
if files<10  
    a10=NaN(th,width); 
    b10=NaN(th,width); 
    e10=NaN(th,width); 
    f10=NaN(th,width); 
end 
if files<11  
    a11=NaN(th,width); 
    b11=NaN(th,width); 
    e11=NaN(th,width); 
    f11=NaN(th,width); 
end 
if files<12  
    a12=NaN(th,width); 
    b12=NaN(th,width); 
    e12=NaN(th,width); 
    f12=NaN(th,width); 
end 
if files<13  
    a13=NaN(th,width); 
    b13=NaN(th,width); 
    e13=NaN(th,width); 
    f13=NaN(th,width); 
end 
if files<14  
    a14=NaN(th,width); 
    b14=NaN(th,width); 
    e14=NaN(th,width); 
    f14=NaN(th,width); 
end 
a=NaN(th,width,files); 
a(:,:,1)=a1; 
a(:,:,2)=a2; 
a(:,:,3)=a3; 
a(:,:,4)=a4; 
a(:,:,5)=a5; 
a(:,:,6)=a6; 
a(:,:,7)=a7; 
a(:,:,8)=a8; 
a(:,:,9)=a9; 
a(:,:,10)=a10; 
a(:,:,11)=a11; 
a(:,:,12)=a12; 
a(:,:,13)=a13; 
% if trecon==10 
%     if albcon==4 
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%        a(:,:,13)=[a13;nan(th,width)]; 
%     end 
% end      
a(:,:,14)=a14; 
b=NaN(th,width,files); 
b(:,:,1)=b1; 
b(:,:,2)=b2; 
b(:,:,3)=b3; 
b(:,:,4)=b4; 
b(:,:,5)=b5; 
b(:,:,6)=b6; 
b(:,:,7)=b7; 
b(:,:,8)=b8; 
b(:,:,9)=b9; 
b(:,:,10)=b10; 
b(:,:,11)=b11; 
b(:,:,12)=b12; 
b(:,:,13)=b13; 
b(:,:,14)=b14; 
e=NaN(th,width,files); 
e(:,:,1)=e1; 
e(:,:,2)=e2; 
e(:,:,3)=e3; 
e(:,:,4)=e4; 
e(:,:,5)=e5; 
e(:,:,6)=e6; 
e(:,:,7)=e7; 
e(:,:,8)=e8; 
e(:,:,9)=e9; 
e(:,:,10)=e10; 
e(:,:,11)=e11; 
e(:,:,12)=e12; 
e(:,:,13)=e13; 
e(:,:,14)=e14; 
f=NaN(th,width,files); 
f(:,:,1)=f1; 
f(:,:,2)=f2; 
f(:,:,3)=f3; 
f(:,:,4)=f4; 
f(:,:,5)=f5; 
f(:,:,6)=f6; 
f(:,:,7)=f7; 
f(:,:,8)=f8; 
f(:,:,9)=f9; 
f(:,:,10)=f10; 
f(:,:,11)=f11; 
f(:,:,12)=f12; 
f(:,:,13)=f13; 
f(:,:,14)=f14; 
p=[0.00117 -0.01538 -0.03885 0.69762 3.53503 -12.94982]; 
temp=[-17.5;-15;-12.5;-10;-7.5;-5;-2.5;0]; 
pos=zeros(8,1); 
%pixel position 
pixellength=[0.083182 0.082764 0.082346 0.081928 0.08151 0.081092 

0.080674... 
    0.080256 0.079838 0.07942 0.079002 0.078584 0.078166 0.077748 

0.07733... 



   60 

 

    0.076912 0.076494 0.076076 0.075658 0.07524 0.074822 0.074404 

0.073986... 
    0.073568 0.07315 0.072732 0.072314 0.071896 0.071478 0.07106 

0.070642... 
    0.070224 0.069806 0.069388 0.06897 0.068552 0.068134 0.067716 

0.067298... 
    0.06688 0.066462 0.066044 0.065626 0.065208 0.06479 0.064372 

0.063954... 
    0.063536 0.063118 0.0627 0.062282 0.061864 0.061446 0.061028 

0.06061... 
    0.060192 0.059774 0.059356 0.058938 0.05852 0.058102 0.057684 

0.057266... 
    0.056848 0.05643 0.056012 0.055594 0.055176 0.054758 0.05434 

0.053922... 
    0.053504 0.053086 0.052668 0.05225 0.051832 0.051414 0.050996 

0.050578... 
    0.05016 0.049742 0.049324 0.048906 0.048488 0.04807 0.047652 

0.047234... 
    0.046816 0.046398 0.04598 0.045562 0.045144 0.044726 0.044308 

0.04389... 
    0.043472 0.043054 0.042636 0.042218 0.0418 0.041382 0.040964 

0.040546... 
    0.040128 0.03971 0.039292 0.038874 0.038456 0.038038 0.03762 

0.037202... 
    0.036784 0.036366 0.035948 0.03553 0.035112 0.034694 0.034276 

0.033858... 
    0.03344 0.033022 0.032604 0.032186 0.031768 0.03135 0.030932 

0.030514... 
    0.030096 0.029678 0.02926 0.028842 0.028424 0.028006 0.027588 

0.02717... 
    0.026752 0.026334 0.025916 0.025498 0.02508 0.024662 0.024244 

0.023826... 
    0.023408 0.02299 0.022572 0.022154 0.021736 0.021318 0.0209 

0.020482... 
    0.020064 0.019646 0.019228 0.01881 0.018392 0.017974 0.017556 

0.017138... 
    0.01672 0.016302 0.015884 0.015466 0.015048 0.01463 0.014212 

0.013794... 
    0.013376 0.012958 0.01254 0.012122 0.011704 0.011286 0.010868 

0.01045... 
    0.010032 0.009614 0.009196 0.008778 0.00836 0.007942 0.007524 

0.007106... 
    0.006688 0.00627 0.005852 0.005434 0.005016 0.004598 0.00418 

0.003762... 
    0.003344 0.002926 0.002508 0.00209 0.001672 0.001254 0.000836 

0.000418 0]; 
for L=1:8 
    Roots=roots(p-[0,0,0,0,0,temp(L)]); 
    pos(L)=Roots(5); 
end 
% Determine position of pixels: 
pos1=pixellength-3; 
pos2=pixellength-2.5; 
pos3=pixellength-2; 
pos4=pixellength-1.5; 
pos5=pixellength-1; 
pos6=pixellength-.5; 
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pos7=pixellength-0; 
pos8=pixellength+.5; 
pos9=pixellength+1; 
pos10=pixellength+1.5; 
pos11=pixellength+2; 
pos12=pixellength+2.5; 
pos13=pixellength+3; 
pos14=pixellength+3.5; 
Pos=NaN(width,files); 
Pos(:,1)=pos1-shift-lastshift(1); 
Pos(:,2)=pos2-shift-lastshift(2); 
Pos(:,3)=pos3-shift-lastshift(3); 
Pos(:,4)=pos4-shift-lastshift(4); 
Pos(:,5)=pos5-shift-lastshift(5); 
Pos(:,6)=pos6-shift-lastshift(6); 
Pos(:,7)=pos7-shift-lastshift(7); 
Pos(:,8)=pos8-shift-lastshift(8); 
Pos(:,9)=pos9-shift-lastshift(9); 
Pos(:,10)=pos10-shift-lastshift(10); 
Pos(:,11)=pos11-shift-lastshift(11); 
Pos(:,12)=pos12-shift-lastshift(12); 
Pos(:,13)=pos13-shift-lastshift(13); 
Pos(:,14)=pos14-shift-lastshift(14); 
% Determine positions of temperatures using polynomial fit of 

thermocouple 
% data: = 0.00117x5 - 0.01128x4 - 0.07617x3 + 0.57483x2 + 4.43490x - 

10.15028 
Temp=NaN(width,files); 
for h=1:files 
    for tz=1:width 
    Temp(tz,h)=(0.00117*Pos(tz,h)^5 -0.0112*Pos(tz,h)^4-

0.07617*Pos(tz,h)^3+0.57483*Pos(tz,h)^2+4.43490*Pos(tz,h)-10.15028); 
    end 
end 
%Determine mean temperature of each file: 
MeanTemp=NaN(1,files); 
for h=1:files 
    MeanTemp(h)=mean(Temp(:,h)); 
end 
MeanTempRounded=round(MeanTemp); 
% % Force temperatures to 0C for file 13: and  2C for file 14: 
% if files>12 
%     MeanTemp(13)=0; 
% end 
% if files>13 
%     MeanTemp(14)=2; 
% end 
A=NaN(th,width,files); 
B=NaN(th,width,files); 
E=NaN(th,width,files); 
F=NaN(th,width,files); 

  
% intervals over which to calculate 
for h=1:files 
    A(:,:,h)=flipud(a(:,:,h)); 
    B(:,:,h)=flipud(b(:,:,h)); 
    E(:,:,h)=flipud(e(:,:,h)); 
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    F(:,:,h)=flipud(f(:,:,h)); 
end 
C=NaN(th,width,files); 
Ratio=NaN(th,width,files); 
%Calculating organic and a given ratio at each temperature: 
for j=1:th 
    for    k=1:width 
        for h=1:files 
            % -20C 
            if Temp(k,h)<-17.5 
            C(j,k,h)=(A(j,k,h)+16.346)./2.2459; 
                if C(j,k,h)>organic20 
                    Ratio(j,k,h)=(F(j,k,h)-0.6711)/1.359;     
                else 
                    if C(j,k,h)>organic10 
                        Ratio(j,k,h)=(F(j,k,h)-.6547)/1.3732; 
                    else 
                        Ratio(j,k,h)=(E(j,k,h)-.7287)/.9144; 
                    end 

                     
                end 
            end 
            % -15C 
            if Temp(k,h)<-12.5 
                if Temp(k,h)>=-17.5 
            C(j,k,h)=(A(j,k,h)+16.019)./2.2495; 
                if C(j,k,h)>organic20 
                    Ratio(j,k,h)=(F(j,k,h)-.6968)/1.289;     
                else 
                    if C(j,k,h)>organic10 
                        Ratio(j,k,h)=(F(j,k,h)-0.6742)/1.3462; 
                    else 
                        Ratio(j,k,h)=(E(j,k,h)-.7529)/.8683; 
                    end    
                end  
                end 
            end 
            % -10C 
            if Temp(k,h)<-7.5 
                if Temp(k,h)>=-12.5             
            C(j,k,h)=(A(j,k,h)+15.663)./2.2298; 
                if C(j,k,h)>organic20 
                    Ratio(j,k,h)=(F(j,k,h)-0.7075)/1.28;     
                else 
                    if C(j,k,h)>organic10 
                        Ratio(j,k,h)=(F(j,k,h)-0.6934)/1.2944;  
                    else 
                        Ratio(j,k,h)=(E(j,k,h)-.7693)/.8499; 
                    end   
                end 
                end 
            end 
            % -5C 
            if Temp(k,h)<-2.5 
                if Temp(k,h)>=-7.5             
            C(j,k,h)=(A(j,k,h)+15.412)./2.2226; 
                if C(j,k,h)>organic20 
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                    Ratio(j,k,h)=(F(j,k,h)-0.7216)/1.2662;     
                else 
                    if C(j,k,h)>organic10 
                        Ratio(j,k,h)=(F(j,k,h)-.7043)/1.2776; 
                    else 
                        Ratio(j,k,h)=(E(j,k,h)-.7755)/.8635; 
                    end   
                end 
                end 
            end 
            % 0C 
            if Temp(k,h)>=-2.5 
            C(j,k,h)=(A(j,k,h)+15.24)./2.2187; 
                if C(j,k,h)>organic20 
                    Ratio(j,k,h)=(F(j,k,h)-0.731)/1.2419;     
                else 
                    if C(j,k,h)>organic10 
                        Ratio(j,k,h)=(F(j,k,h)-.7238)/1.2409; 
                    else 
                        Ratio(j,k,h)=(E(j,k,h)-.79)/.8463; 
                    end   
                end 
            end                
        end 
    end 
end 

  
Trehalose=C./(1+2.*Ratio); 
% Albumin=real(Ratio).*Trehalose; 
% absolute concentration of albumin: 
 AlbuminConcentration=Ratio.*Trehalose;         
% filter out negative and >100 results 
TrehaloseFiltered=NaN(th,width,files); 
% TrehaloseFilteredMean=nanmean(TrehaloseFiltered); 
RatioFiltered=nan(th,width,files); 
% Calculate the albumin/tre ratio in solutions and exclude values out 

of 
% bounds designated above as high and low trehalose and ratio 
for j=1:th 
    for k=1:width 
        for h=1:files 
                if isreal(Trehalose(j,k,h)) 
                if Trehalose(j,k,h)>lowtrehalose 
                if Trehalose(j,k,h)<hightrehalose  
                if isreal(Ratio(j,k,h)) 
                if Ratio(j,k,h)>lowratio 
                if Ratio(j,k,h)<highratio            
                    TrehaloseFiltered(j,k,h)=Trehalose(j,k,h); 
                    RatioFiltered(j,k,h)=Ratio(j,k,h); 
                end 
                end 
                end 
                end 
                end              
                end 
        end        
    end 
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end 
% Calculate absolute albumin concentration (wt%) after filtering as a % 

of 
% nominal starting concentration 
AlbuminConFiltered=(RatioFiltered.*TrehaloseFiltered); 
% TrehalosePercentage=TrehaloseFiltered./(trecon/100); 
% Sort Ratio by trehalose concentration: 
RatioFiltered_8_10=NaN(th,width,files); 
RatioFiltered_10_15=NaN(th,width,files); 
RatioFiltered_15_20=NaN(th,width,files); 
RatioFiltered_20_25=NaN(th,width,files); 
RatioFiltered_25_30=NaN(th,width,files); 
RatioFiltered_30_35=NaN(th,width,files); 
RatioFiltered_30_100=NaN(th,width,files); 
% +/- 5 wt% of nominal concentration 
RatioFiltered_nominal=NaN(th,width,files); 
for j=1:th 
    for k=1:width 
        for h=1:files 
         % Update to include 30+ 
        if TrehaloseFiltered(j,k,h)>=30 
            if TrehaloseFiltered(j,k,h)<100 
                if RatioFiltered(j,k,h)>0 
                       if RatioFiltered(j,k,h)<1                 
                       

RatioFiltered_30_100(j,k,h)=RatioFiltered(j,k,h); 
                       end 
                end 
            end 
        end      
        % 8-10 trehalose 
        if TrehaloseFiltered(j,k,h)>=8 
            if TrehaloseFiltered(j,k,h)<10           
                if RatioFiltered(j,k,h)>0 
                       if RatioFiltered(j,k,h)<1                 
                       RatioFiltered_8_10(j,k,h)=RatioFiltered(j,k,h); 
                       end 
                end 
            end 
        end       
        % 10-15 trehalose 
        if TrehaloseFiltered(j,k,h)>=10 
            if TrehaloseFiltered(j,k,h)<15           
                if RatioFiltered(j,k,h)>0 
                       if RatioFiltered(j,k,h)<1                 
                       RatioFiltered_10_15(j,k,h)=RatioFiltered(j,k,h); 
                       end 
                end 
            end 
        end 
        % 15-20 trehalose 
        if TrehaloseFiltered(j,k,h)>=15 
            if TrehaloseFiltered(j,k,h)<20           
                if RatioFiltered(j,k,h)>0 
                       if RatioFiltered(j,k,h)<1                 
                       RatioFiltered_15_20(j,k,h)=RatioFiltered(j,k,h); 
                       end 
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                end 
            end 
        end       
        % 20-25 trehalose 
        if TrehaloseFiltered(j,k,h)>=20 
            if TrehaloseFiltered(j,k,h)<25           
                if RatioFiltered(j,k,h)>0 
                       if RatioFiltered(j,k,h)<1                 
                       RatioFiltered_20_25(j,k,h)=RatioFiltered(j,k,h); 
                       end 
                end 
            end 
        end       
         % 25-30 trehalose 
        if TrehaloseFiltered(j,k,h)>=25 
            if TrehaloseFiltered(j,k,h)<30           
                if RatioFiltered(j,k,h)>0 
                       if RatioFiltered(j,k,h)<1                 
                       RatioFiltered_25_30(j,k,h)=RatioFiltered(j,k,h); 
                       end 
                end 
            end 
        end       
        % 30-35 trehalose 
        if TrehaloseFiltered(j,k,h)>=30 
            if TrehaloseFiltered(j,k,h)<=35           
                if RatioFiltered(j,k,h)>0 
                       if RatioFiltered(j,k,h)<1                 
                       RatioFiltered_30_35(j,k,h)=RatioFiltered(j,k,h); 
                       end 
                end 
            end 
        end         
        % +/- 5wt% of nominal trehalose concentration 
        if TrehaloseFiltered(j,k,h)>=treconminus 
            if TrehaloseFiltered(j,k,h)<=treconplus          
                if RatioFiltered(j,k,h)>0 
                       if RatioFiltered(j,k,h)<1                 
                       

RatioFiltered_nominal(j,k,h)=RatioFiltered(j,k,h); 
                       end 
                end 
            end 
        end 
        end       
    end        
end 
% %calculate the mean ratio in each trehalose concentration range for 

each 
% %file 
% calculate the mean alb/trehalose 
Rm_8_10=NaN(1,files); 
Rm_10_15=NaN(1,files); 
Rm_15_20=NaN(1,files); 
Rm_20_25=NaN(1,files); 
Rm_25_30=NaN(1,files); 
Rm_30_35=NaN(1,files); 
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Rm_30_100=NaN(1,files); 
Rm_nominal=NaN(1,files); 

  
Rm2_8_10=NaN(1,files); 
Rm2_10_15=NaN(1,files); 
Rm2_15_20=NaN(1,files); 
Rm2_20_25=NaN(1,files); 
Rm2_25_30=NaN(1,files); 
Rm2_30_35=NaN(1,files); 
Rm2_30_100=NaN(1,files); 
Rm2_nominal=NaN(1,files); 
% Filter out the ratio by excluding concentration with less than 2% 
% frequency: 
Rm_8_10filtered=NaN(1,files); 
Rm_10_15filtered=NaN(1,files); 
Rm_15_20filtered=NaN(1,files); 
Rm_20_25filtered=NaN(1,files); 
Rm_25_30filtered=NaN(1,files); 
Rm_30_35filtered=NaN(1,files); 
Rm_30_100filtered=NaN(1,files); 
Rm_nominalfiltered=NaN(1,files); 

  
Rm2_8_10filtered=NaN(1,files); 
Rm2_10_15filtered=NaN(1,files); 
Rm2_15_20filtered=NaN(1,files); 
Rm2_20_25filtered=NaN(1,files); 
Rm2_25_30filtered=NaN(1,files); 
Rm2_30_35filtered=NaN(1,files); 
Rm2_30_100filtered=NaN(1,files); 
Rm2_nominalfiltered=NaN(1,files); 
% standard deviation 
R_std_8_10=NaN(1,files); 
% count values to determine frequency of each concentration range: 
Count_FilteredRatio=NaN(1,files); 
Count_8_10=NaN(1,files); 
Count_10_15=NaN(1,files); 
Count_15_20=NaN(1,files); 
Count_20_25=NaN(1,files); 
Count_25_30=NaN(1,files); 
Count_30_35=NaN(1,files); 
Count_30_100=NaN(1,files); 
Count_nominal=NaN(1,files); 
% absolute albumin concentration/trehalose in each file as % of 

nominal: 
% determines absolute albumin and trehalose content and then calculates 
% ratio, which is susceptible to error in high concentration trehalose 
OverallAlbuminRatio=NaN(1,files); 
MeanRatio=NaN(1,files); 
MeanRatioPercentage=NaN(1,files); 
TrehalosePercentage=NaN(1,files); 
for h=1:files 
        % Calculate the overall albumin/trehalose ratio using absolute 
        % concentrations... prone to error at high trehalose 

concentration 
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%         

OverallAlbuminRatio(1,h)=(nansum(AlbuminConFiltered(:,:,h))/nansum(Treh

aloseFiltered(:,:,h)));... 
        

MeanRatio(1,h)=nansum(nansum(RatioFiltered(:,:,h)))/nnz(RatioFiltered(:

,:,h)>0); 
        

TrehalosePercentage(1,h)=nansum(nansum(TrehaloseFiltered(:,:,h)))/... 
            (nnz(TrehaloseFiltered(:,:,h)>0)*trecon/100);  
        

MeanRatioPercentage(1,h)=nanmean(nanmean(RatioFiltered(:,:,h)))/(ration

ominal/100); 
        % Averages the average of each column in a file, which doesn't 
        % account for the different weight of each column due to NaN 
%         Rm_8_10(1,h)=nanmean(nanmean(RatioFiltered_8_10(:,:,h))); 
%         Rm_10_15(1,h)=nanmean(nanmean(RatioFiltered_10_15(:,:,h))); 
%         Rm_15_20(1,h)=nanmean(nanmean(RatioFiltered_15_20(:,:,h))); 
%         Rm_20_25(1,h)=nanmean(nanmean(RatioFiltered_20_25(:,:,h))); 
%         Rm_25_30(1,h)=nanmean(nanmean(RatioFiltered_25_30(:,:,h))); 
%         Rm_30_35(1,h)=nanmean(nanmean(RatioFiltered_30_35(:,:,h))); 
%         Rm_30_100(1,h)=nanmean(nanmean(RatioFiltered_30_100(:,:,h))); 
%         

Rm_nominal(1,h)=nanmean(nanmean(RatioFiltered_nominal(:,:,h)));  
        % Directly averages the ratio values of all pixels in a given 
        % concentration, without weighting due to absolute content 
        % result slightly overepresents low concentration regions 
        

Rm2_8_10(1,h)=nansum(nansum(RatioFiltered_8_10(:,:,h)))/nnz(RatioFilter

ed_8_10(:,:,h)>0); 
        

Rm2_10_15(1,h)=nansum(nansum(RatioFiltered_10_15(:,:,h)))/nnz(RatioFilt

ered_10_15(:,:,h)>0); 
        

Rm2_15_20(1,h)=nansum(nansum(RatioFiltered_15_20(:,:,h)))/nnz(RatioFilt

ered_15_20(:,:,h)>0); 
        

Rm2_20_25(1,h)=nansum(nansum(RatioFiltered_20_25(:,:,h)))/nnz(RatioFilt

ered_20_25(:,:,h)>0); 
        

Rm2_25_30(1,h)=nansum(nansum(RatioFiltered_25_30(:,:,h)))/nnz(RatioFilt

ered_25_30(:,:,h)>0); 
        

Rm2_30_35(1,h)=nansum(nansum(RatioFiltered_30_35(:,:,h)))/nnz(RatioFilt

ered_30_35(:,:,h)>0); 
        

Rm2_30_100(1,h)=nansum(nansum(RatioFiltered_30_100(:,:,h)))/nnz(RatioFi

ltered_30_100(:,:,h)>0); 
        

Rm2_nominal(1,h)=nansum(nansum(RatioFiltered_nominal(:,:,h)))/nnz(Ratio

Filtered_nominal(:,:,h)>0); 
        % R_std_8_10(1,h)=nanmean(nanmean(RatioFiltered_8_10(:,:,h))); 
        % Count the number of pixels with values within a concentration 

for each file 
        

Count_FilteredRatio(1,h)=nnz(RatioFiltered(:,:,h)>0)/pixels*100; 
        Count_8_10(1,h)=nnz(RatioFiltered_8_10(:,:,h)>0)/pixels*100; 
        Count_10_15(1,h)=nnz(RatioFiltered_10_15(:,:,h)>0)/pixels*100; 
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        Count_15_20(1,h)=nnz(RatioFiltered_15_20(:,:,h)>0)/pixels*100; 
        Count_20_25(1,h)=nnz(RatioFiltered_20_25(:,:,h)>0)/pixels*100; 
        Count_25_30(1,h)=nnz(RatioFiltered_25_30(:,:,h)>0)/pixels*100; 
        Count_30_35(1,h)=nnz(RatioFiltered_30_35(:,:,h)>0)/pixels*100; 
        

Count_30_100(1,h)=nnz(RatioFiltered_30_100(:,:,h)>0)/pixels*100; 
        

Count_nominal(1,h)=nnz(RatioFiltered_nominal(:,:,h)>0)/pixels*100; 
        

Count=[Count_10_15;Count_15_20;Count_20_25;Count_25_30;Count_30_100]; 

         
        if Count_8_10(1,h)>=threshold 
%             Rm_8_10filtered(1,h)=Rm_8_10(1,h); 
            Rm2_8_10filtered(1,h)=Rm2_8_10(1,h); 
        end 
        if Count_10_15(1,h)>=threshold 
%             Rm_10_15filtered(1,h)=Rm_10_15(1,h); 
            Rm2_10_15filtered(1,h)=Rm2_10_15(1,h); 
        end 
        if Count_15_20(1,h)>=threshold 
%             Rm_15_20filtered(1,h)=Rm_15_20(1,h); 
            Rm2_15_20filtered(1,h)=Rm2_15_20(1,h); 
        end         
        if Count_20_25(1,h)>=threshold 
%             Rm_20_25filtered(1,h)=Rm_20_25(1,h); 
            Rm2_20_25filtered(1,h)=Rm2_20_25(1,h); 
        end         
        if Count_25_30(1,h)>=threshold 
%             Rm_25_30filtered(1,h)=Rm_25_30(1,h); 
            Rm2_25_30filtered(1,h)=Rm2_25_30(1,h); 
        end         
        if Count_30_35(1,h)>=threshold 
%             Rm_30_35filtered(1,h)=Rm_30_35(1,h); 
            Rm2_30_35filtered(1,h)=Rm2_30_35(1,h); 
        end       
        if Count_30_100(1,h)>=threshold 
%             Rm_30_100filtered(1,h)=Rm_30_100(1,h); 
            Rm2_30_100filtered(1,h)=Rm2_30_100(1,h); 
        end                 
        if Count_nominal(1,h)>=threshold 
%             Rm_nominalfiltered(1,h)=Rm_nominal(1,h); 
            Rm2_nominalfiltered(1,h)=Rm2_nominal(1,h); 
        end   
end 
% OverallAlbuminRatioPCT=OverallAlbuminRatio./(rationominal/100); 
% calculate the mean alb/trehalose ratio as percentage of the nominal 

value 
% RmPCT_30_100=Rm_30_100*(100/rationominal); 
% RmPCT_8_10=Rm_8_10*(100/rationominal); 
% RmPCT_10_15=Rm_10_15*(100/rationominal); 
% RmPCT_15_20=Rm_15_20*(100/rationominal); 
% RmPCT_20_25=Rm_20_25*(100/rationominal); 
% RmPCT_25_30=Rm_25_30*(100/rationominal); 
% RmPCT_30_35=Rm_30_35*(100/rationominal); 

  
% filtered out small ranges 



   69 

 

% RmPCT_30_100filtered=Rm_30_100filtered*(100/rationominal); 
% RmPCT_8_10filtered=Rm_8_10filtered*(100/rationominal); 
% RmPCT_10_15filtered=Rm_10_15filtered*(100/rationominal); 
% RmPCT_15_20filtered=Rm_15_20filtered*(100/rationominal); 
% RmPCT_20_25filtered=Rm_20_25filtered*(100/rationominal); 
% RmPCT_25_30filtered=Rm_25_30filtered*(100/rationominal); 
% RmPCT_30_35filtered=Rm_30_35filtered*(100/rationominal); 
% RmPCT_nominalfiltered=Rm_nominalfiltered*(100/rationominal); 

  
RmPCT2_30_100filtered=Rm2_30_100filtered*(100/rationominal); 
RmPCT2_8_10filtered=Rm2_8_10filtered*(100/rationominal); 
RmPCT2_10_15filtered=Rm2_10_15filtered*(100/rationominal); 
RmPCT2_15_20filtered=Rm2_15_20filtered*(100/rationominal); 
RmPCT2_20_25filtered=Rm2_20_25filtered*(100/rationominal); 
RmPCT2_25_30filtered=Rm2_25_30filtered*(100/rationominal); 
RmPCT2_nominalfiltered=Rm2_nominalfiltered*(100/rationominal); 

  
% Normalize the albumin/trehalose ratio with respect to the: 
% mean value in each region 
RmNorm_8_10=RmPCT2_8_10filtered./(MeanRatioPercentage/100); 
RmNorm_10_15=RmPCT2_10_15filtered./(MeanRatioPercentage/100); 
RmNorm_15_20=RmPCT2_15_20filtered./(MeanRatioPercentage/100); 
RmNorm_20_25=RmPCT2_20_25filtered./(MeanRatioPercentage/100); 
RmNorm_25_30=RmPCT2_25_30filtered./(MeanRatioPercentage/100); 
RmNorm_30_100=RmPCT2_30_100filtered./(MeanRatioPercentage/100); 
RmNorm_nominal=RmPCT2_nominalfiltered./(MeanRatioPercentage/100); 
% Combine into matrix, excluding 8-10: 
RmPCT=[RmPCT2_10_15filtered;RmPCT2_15_20filtered;RmPCT2_20_25filtered;.

.. 
    RmPCT2_25_30filtered;RmPCT2_30_100filtered]; 
RmNorm=[RmNorm_10_15;RmNorm_15_20;RmNorm_20_25;RmNorm_25_30;RmNorm_30_1

00]; 

  
%number of files for iteration 
n=files; 
k=width; 
% z=k*13+(n-1)*fc; 
zz=0.65; 
yy=0.1; 
xx=zz+yy*6; 

  
% Create titles for plots: 
tRatio1=['Albumin/Trehalose Ratio at 

',num2str(MeanTempRounded(1)),'°C']; 
tRatio2=['Albumin/Trehalose Ratio at 

',num2str(MeanTempRounded(2)),'°C']; 
tRatio3=['Albumin/Trehalose Ratio at 

',num2str(MeanTempRounded(3)),'°C']; 
tRatio4=['Albumin/Trehalose Ratio at 

',num2str(MeanTempRounded(4)),'°C']; 
tRatio5=['Albumin/Trehalose Ratio at 

',num2str(MeanTempRounded(5)),'°C']; 
tRatio6=['Albumin/Trehalose Ratio at 

',num2str(MeanTempRounded(6)),'°C']; 
tRatio7=['Albumin/Trehalose Ratio at 

',num2str(MeanTempRounded(7)),'°C']; 
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tRatio8=['Albumin/Trehalose Ratio at 

',num2str(MeanTempRounded(8)),'°C']; 
if files>8 
    tRatio9=['Albumin/Trehalose Ratio at 

',num2str(MeanTempRounded(9)),'°C']; 
end 
if files>9 
    tRatio10=['Albumin/Trehalose Ratio at 

',num2str(MeanTempRounded(10)),'°C']; 
end 
if files>10 
    tRatio11=['Albumin/Trehalose Ratio at 

',num2str(MeanTempRounded(11)),'°C']; 
end 
if files>11 
    tRatio12=['Albumin/Trehalose Ratio at 

',num2str(MeanTempRounded(12)),'°C']; 
end 
if files>12 
    tRatio13=['Albumin/Trehalose Ratio at 

',num2str(MeanTempRounded(13)),'°C']; 
end 
if files>13 
    tRatio14=['Albumin/Trehalose Ratio at 

',num2str(MeanTempRounded(14)),'°C']; 
end 

  
tTre1=['Trehalose at ',num2str(MeanTempRounded(1)),'°C']; 
tTre2=['Trehalose at ',num2str(MeanTempRounded(2)),'°C']; 
tTre3=['Trehalose at ',num2str(MeanTempRounded(3)),'°C']; 
tTre4=['Trehalose at ',num2str(MeanTempRounded(4)),'°C']; 
tTre5=['Trehalose at ',num2str(MeanTempRounded(5)),'°C']; 
tTre6=['Trehalose at ',num2str(MeanTempRounded(6)),'°C']; 
tTre7=['Trehalose at ',num2str(MeanTempRounded(7)),'°C']; 
tTre8=['Trehalose at ',num2str(MeanTempRounded(8)),'°C']; 
if files>8 
    tTre9=['Trehalose at ',num2str(MeanTempRounded(9)),'°C']; 
end 
if files>9 
    tTre10=['Trehalose at ',num2str(MeanTempRounded(10)),'°C']; 
end 
if files>10 
    tTre11=['Trehalose at ',num2str(MeanTempRounded(11)),'°C']; 
end 
if files>11 
    tTre12=['Trehalose at ',num2str(MeanTempRounded(12)),'°C']; 
end 
if files>12 
    tTre13=['Trehalose at ',num2str(MeanTempRounded(13)),'°C']; 
end 
if files>13 
    tTre14=['Trehalose at ',num2str(MeanTempRounded(14)),'°C']; 
end 

  
tIce1=['Ice at ',num2str(MeanTempRounded(1)),'°C']; 
tIce2=['Ice at ',num2str(MeanTempRounded(2)),'°C']; 
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tIce3=['Ice at ',num2str(MeanTempRounded(3)),'°C']; 
tIce4=['Ice at ',num2str(MeanTempRounded(4)),'°C']; 
tIce5=['Ice at ',num2str(MeanTempRounded(5)),'°C']; 
tIce6=['Ice at ',num2str(MeanTempRounded(6)),'°C']; 
tIce7=['Ice at ',num2str(MeanTempRounded(7)),'°C']; 
tIce8=['Ice at ',num2str(MeanTempRounded(8)),'°C']; 
if files>8 
    tIce9=['Ice at ',num2str(MeanTempRounded(9)),'°C']; 
end 
if files>9 
    tIce10=['Ice at ',num2str(MeanTempRounded(10)),'°C']; 
end 
if files>10 
    tIce11=['Ice at ',num2str(MeanTempRounded(11)),'°C']; 
end 
if files>11 
    tIce12=['Ice at ',num2str(MeanTempRounded(12)),'°C']; 
end 
if files>12 
    tIce13=['Ice at ',num2str(MeanTempRounded(13)),'°C']; 
end 
if files>13 
    tIce14=['Ice at ',num2str(MeanTempRounded(14)),'°C']; 
end 

  
% Create figure 1 for filtered Albumin/Trehalose Ratio 

  
figure1 = figure('Colormap',... 
    [0.0416666679084301 0 0;0.0833333358168602 0 0;0.125 0 0;... 
    0.16666667163372 0 0;0.20833332836628 0 0;0.25 0 

0;0.291666656732559... 
    0 0;0.333333343267441 0 0;0.375 0 0;0.416666656732559 0 0;... 
    0.458333343267441 0 0;0.5 0 0;0.541666686534882 0 0;... 
    0.583333313465118 0 0;0.625 0 0;0.666666686534882 0 0;... 
    0.708333313465118 0 0;0.75 0 0;0.791666686534882 0 0;... 
    0.833333313465118 0 0;0.875 0 0;0.916666686534882 0 0;... 
    0.958333313465118 0 0;1 0 0;1 0.0416666679084301 0;... 
    1 0.0833333358168602 0;1 0.125 0;1 0.16666667163372 0;... 
    1 0.20833332836628 0;1 0.25 0;1 0.291666656732559 0;... 
    1 0.333333343267441 0;1 0.375 0;1 0.416666656732559 0;... 
    1 0.458333343267441 0;1 0.5 0;1 0.541666686534882 0;... 
    1 0.583333313465118 0;1 0.625 0;1 0.666666686534882 0;... 
    1 0.708333313465118 0;1 0.75 0;1 0.791666686534882 0;... 
    1 0.833333313465118 0;1 0.875 0;1 0.916666686534882 0;... 
    1 0.958333313465118 0;1 1 0;1 1 0.0625;1 1 0.125;1 1 0.1875;... 
    1 1 0.25;1 1 0.3125;1 1 0.375;1 1 0.4375;1 1 0.5;1 1 0.5625;... 
    1 1 0.625;1 1 0.6875;1 1 0.75;1 1 0.8125;1 1 0.875;1 1 0.9375;... 
    1 1 1],'Color',[1 1 1],'Position',fsize); 
%ratio 1 
axes1 = axes('Parent',figure1,'YTick',zeros(1,0),'YDir','reverse',... 
    'XTick',zeros(1,0),... 
    'PlotBoxAspectRatio',[200 10 1],... 
    'OuterPosition',[0 zz-yy*(-1+1) 1 0.5],... 
    'Layer','top',... 
    'DataAspectRatio',[1 1 1],... 
    'CLim',[0 plotRatioHi]); 
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box(axes1,'on'); 
hold(axes1,'all'); 
image(RatioFiltered(:,:,1),'Parent',axes1,'CDataMapping','scaled'); 
title({tRatio1},'FontWeight','bold',... 
    'FontSize',msize,... 
    'FontName','Arial'); 
colorbar('peer',axes1,'fontsize',12); 
%ratio 2 
axes2 = axes('Parent',figure1,'YTick',zeros(1,0),'YDir','reverse',... 
    'XTick',zeros(1,0),... 
    'PlotBoxAspectRatio',[200 10 1],... 
    'OuterPosition',[0 zz-yy*(-1+2) 1 0.5],... 
    'Layer','top',... 
    'DataAspectRatio',[1 1 1],... 
    'CLim',[0 plotRatioHi]); 
box(axes2,'on'); 
hold(axes2,'all'); 
image(RatioFiltered(:,:,2),'Parent',axes2,'CDataMapping','scaled'); 
title({tRatio2},'FontWeight','bold',... 
    'FontSize',msize,... 
    'FontName','Arial'); 
colorbar('peer',axes2,'fontsize',12); 
%ratio 3 
axes3 = axes('Parent',figure1,'YTick',zeros(1,0),'YDir','reverse',... 
    'XTick',zeros(1,0),... 
    'PlotBoxAspectRatio',[200 10 1],... 
    'OuterPosition',[0 zz-yy*(-1+3) 1 0.5],... 
    'Layer','top',... 
    'DataAspectRatio',[1 1 1],... 
    'CLim',[0 plotRatioHi]); 
box(axes3,'on'); 
hold(axes3,'all'); 
% Create image 
image(RatioFiltered(:,:,3),'Parent',axes3,'CDataMapping','scaled'); 
title({tRatio3},'FontWeight','bold',... 
    'FontSize',msize,... 
    'FontName','Arial'); 
colorbar('peer',axes3,'fontsize',12); 
%ratio 4 
axes4 = axes('Parent',figure1,'YTick',zeros(1,0),'YDir','reverse',... 
    'XTick',zeros(1,0),... 
    'PlotBoxAspectRatio',[200 10 1],... 
    'OuterPosition',[0 zz-yy*(-1+4) 1 0.5],... 
    'Layer','top',... 
    'DataAspectRatio',[1 1 1],... 
    'CLim',[0 plotRatioHi]); 
box(axes4,'on'); 
hold(axes4,'all'); 
image(RatioFiltered(:,:,4),'Parent',axes4,'CDataMapping','scaled'); 
title({tRatio4},'FontWeight','bold',... 
    'FontSize',msize,... 
    'FontName','Arial'); 
colorbar('peer',axes4,'fontsize',12); 
%ratio 5 
axes5 = axes('Parent',figure1,'YTick',zeros(1,0),'YDir','reverse',... 
    'XTick',zeros(1,0),... 
    'PlotBoxAspectRatio',[200 10 1],... 
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    'OuterPosition',[0 zz-yy*(-1+5) 1 0.5],... 
    'Layer','top',... 
    'DataAspectRatio',[1 1 1],... 
    'CLim',[0 plotRatioHi]); 
box(axes5,'on'); 
hold(axes5,'all'); 
image(RatioFiltered(:,:,5),'Parent',axes5,'CDataMapping','scaled'); 
title({tRatio5},'FontWeight','bold',... 
    'FontSize',msize,... 
    'FontName','Arial'); 
colorbar('peer',axes5,'fontsize',12); 
%ratio 6 
axes6 = axes('Parent',figure1,'YTick',zeros(1,0),'YDir','reverse',... 
    'XTick',zeros(1,0),... 
    'PlotBoxAspectRatio',[200 10 1],... 
    'OuterPosition',[0 zz-yy*(-1+6) 1 0.5],... 
    'Layer','top',... 
    'DataAspectRatio',[1 1 1],... 
    'CLim',[0 plotRatioHi]); 
box(axes6,'on'); 
hold(axes6,'all'); 
image(RatioFiltered(:,:,6),'Parent',axes6,'CDataMapping','scaled'); 
title({tRatio6},'FontWeight','bold',... 
    'FontSize',msize,... 
    'FontName','Arial'); 
colorbar('peer',axes6,'fontsize',12); 
axes7 = axes('Parent',figure1,'YTick',zeros(1,0),'YDir','reverse',... 
    'XTick',zeros(1,0),... 
    'PlotBoxAspectRatio',[200 10 1],... 
    'OuterPosition',[0 zz-yy*(-1+7) 1 0.5],... 
    'Layer','top',... 
    'DataAspectRatio',[1 1 1],... 
    'CLim',[0 plotRatioHi]); 
box(axes7,'on'); 
hold(axes7,'all'); 
image(RatioFiltered(:,:,7),'Parent',axes7,'CDataMapping','scaled'); 
title({tRatio7},'FontWeight','bold',... 
    'FontSize',msize,... 
    'FontName','Arial'); 
colorbar('peer',axes7,'fontsize',12); 
saveas(figure1,'Ratio1.bmp') 

  
% Create ratio figure 2 
figure2 = figure('Colormap',... 
    [0.0416666679084301 0 0;0.0833333358168602 0 0;0.125 0 0;... 
    0.16666667163372 0 0;0.20833332836628 0 0;0.25 0 

0;0.291666656732559... 
    0 0;0.333333343267441 0 0;0.375 0 0;0.416666656732559 0 0;... 
    0.458333343267441 0 0;0.5 0 0;0.541666686534882 0 0;... 
    0.583333313465118 0 0;0.625 0 0;0.666666686534882 0 0;... 
    0.708333313465118 0 0;0.75 0 0;0.791666686534882 0 0;... 
    0.833333313465118 0 0;0.875 0 0;0.916666686534882 0 0;... 
    0.958333313465118 0 0;1 0 0;1 0.0416666679084301 0;... 
    1 0.0833333358168602 0;1 0.125 0;1 0.16666667163372 0;... 
    1 0.20833332836628 0;1 0.25 0;1 0.291666656732559 0;... 
    1 0.333333343267441 0;1 0.375 0;1 0.416666656732559 0;... 
    1 0.458333343267441 0;1 0.5 0;1 0.541666686534882 0;... 
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    1 0.583333313465118 0;1 0.625 0;1 0.666666686534882 0;... 
    1 0.708333313465118 0;1 0.75 0;1 0.791666686534882 0;... 
    1 0.833333313465118 0;1 0.875 0;1 0.916666686534882 0;... 
    1 0.958333313465118 0;1 1 0;1 1 0.0625;1 1 0.125;1 1 0.1875;... 
    1 1 0.25;1 1 0.3125;1 1 0.375;1 1 0.4375;1 1 0.5;1 1 0.5625;... 
    1 1 0.625;1 1 0.6875;1 1 0.75;1 1 0.8125;1 1 0.875;1 1 0.9375;... 
    1 1 1],'Color',[1 1 1],'Position',fsize); 
axes8 = axes('Parent',figure2,'YTick',zeros(1,0),'YDir','reverse',... 
    'XTick',zeros(1,0),... 
    'PlotBoxAspectRatio',[200 10 1],... 
    'OuterPosition',[0 zz-yy*(-1+1) 1 0.5],... 
    'Layer','top',... 
    'DataAspectRatio',[1 1 1],... 
    'CLim',[0 plotRatioHi]); 
box(axes8,'on'); 
hold(axes8,'all'); 
image(RatioFiltered(:,:,8),'Parent',axes8,'CDataMapping','scaled'); 
title({tRatio8},'FontWeight','bold',... 
    'FontSize',msize,... 
    'FontName','Arial'); 
colorbar('peer',axes8,'fontsize',12); 
%ratio 9 
if files>8 
axes9 = axes('Parent',figure2,'YTick',zeros(1,0),'YDir','reverse',... 
    'XTick',zeros(1,0),... 
    'PlotBoxAspectRatio',[200 10 1],... 
    'OuterPosition',[0 zz-yy*(-1+2) 1 0.5],... 
    'Layer','top',... 
    'DataAspectRatio',[1 1 1],... 
    'CLim',[0 plotRatioHi]); 
box(axes9,'on'); 
hold(axes9,'all'); 
image(RatioFiltered(:,:,9),'Parent',axes9,'CDataMapping','scaled'); 
title({tRatio9},'FontWeight','bold',... 
    'FontSize',msize,... 
    'FontName','Arial'); 
colorbar('peer',axes9,'fontsize',12); 
end 
%ratio 10 
if files>9 
axes10 = axes('Parent',figure2,'YTick',zeros(1,0),'YDir','reverse',... 
    'XTick',zeros(1,0),... 
    'PlotBoxAspectRatio',[200 10 1],... 
    'OuterPosition',[0 zz-yy*(-1+3) 1 0.5],... 
    'Layer','top',... 
    'DataAspectRatio',[1 1 1],... 
    'CLim',[0 plotRatioHi]); 
box(axes10,'on'); 
hold(axes10,'all'); 
image(RatioFiltered(:,:,10),'Parent',axes10,'CDataMapping','scaled'); 
title({tRatio10},'FontWeight','bold',... 
    'FontSize',msize,... 
    'FontName','Arial'); 
colorbar('peer',axes10,'fontsize',12); 
end 
%ratio 11 
if files>10 
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axes11 = axes('Parent',figure2,'YTick',zeros(1,0),'YDir','reverse',... 
    'XTick',zeros(1,0),... 
    'PlotBoxAspectRatio',[200 10 1],... 
    'OuterPosition',[0 zz-yy*(-1+4) 1 0.5],... 
    'Layer','top',... 
    'DataAspectRatio',[1 1 1],... 
    'CLim',[0 plotRatioHi]); 
box(axes11,'on'); 
hold(axes11,'all'); 
image(RatioFiltered(:,:,11),'Parent',axes11,'CDataMapping','scaled'); 
title({tRatio11},'FontWeight','bold',... 
    'FontSize',msize,... 
    'FontName','Arial'); 
colorbar('peer',axes11,'fontsize',12); 
end 
%ratio 12 
if files>11 
axes12 = axes('Parent',figure2,'YTick',zeros(1,0),'YDir','reverse',... 
    'XTick',zeros(1,0),... 
    'PlotBoxAspectRatio',[200 10 1],... 
    'OuterPosition',[0 zz-yy*(-1+5) 1 0.5],... 
    'Layer','top',... 
    'DataAspectRatio',[1 1 1],... 
    'CLim',[0 plotRatioHi]); 
box(axes12,'on'); 
hold(axes12,'all'); 
image(RatioFiltered(:,:,12),'Parent',axes12,'CDataMapping','scaled'); 
title({tRatio12},'FontWeight','bold',... 
    'FontSize',msize,... 
    'FontName','Arial'); 
colorbar('peer',axes12,'fontsize',12); 
end 
%ratio 13 
if files>12 
axes13 = axes('Parent',figure2,'YTick',zeros(1,0),'YDir','reverse',... 
    'XTick',zeros(1,0),... 
    'PlotBoxAspectRatio',[200 10 1],... 
    'OuterPosition',[0 zz-yy*(-1+6) 1 0.5],... 
    'Layer','top',... 
    'DataAspectRatio',[1 1 1],... 
    'CLim',[0 plotRatioHi]); 
box(axes13,'on'); 
hold(axes13,'all'); 
image(RatioFiltered(:,:,13),'Parent',axes13,'CDataMapping','scaled'); 
title({tRatio13},'FontWeight','bold',... 
    'FontSize',msize,... 
    'FontName','Arial'); 
colorbar('peer',axes13,'fontsize',12); 
end 
%ratio 14 
if files>13 
axes14 = axes('Parent',figure2,'YTick',zeros(1,0),'YDir','reverse',... 
    'XTick',zeros(1,0),... 
    'PlotBoxAspectRatio',[200 10 1],... 
    'OuterPosition',[0 zz-yy*(-1+7) 1 0.5],... 
    'Layer','top',... 
    'DataAspectRatio',[1 1 1],... 
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    'CLim',[0 plotRatioHi]); 
box(axes14,'on'); 
hold(axes14,'all'); 
image(RatioFiltered(:,:,14),'Parent',axes14,'CDataMapping','scaled'); 
title({tRatio14},'FontWeight','bold',... 
    'FontSize',msize,... 
    'FontName','Arial'); 
colorbar('peer',axes14,'fontsize',12); 
end 
saveas(figure2,'Ratio2.bmp') 

  
% Create figure 1 for filtered Trehalose 
figure1 = figure('Colormap',... 
    [0.0416666679084301 0 0;0.0833333358168602 0 0;0.125 0 0;... 
    0.16666667163372 0 0;0.20833332836628 0 0;0.25 0 

0;0.291666656732559... 
    0 0;0.333333343267441 0 0;0.375 0 0;0.416666656732559 0 0;... 
    0.458333343267441 0 0;0.5 0 0;0.541666686534882 0 0;... 
    0.583333313465118 0 0;0.625 0 0;0.666666686534882 0 0;... 
    0.708333313465118 0 0;0.75 0 0;0.791666686534882 0 0;... 
    0.833333313465118 0 0;0.875 0 0;0.916666686534882 0 0;... 
    0.958333313465118 0 0;1 0 0;1 0.0416666679084301 0;... 
    1 0.0833333358168602 0;1 0.125 0;1 0.16666667163372 0;... 
    1 0.20833332836628 0;1 0.25 0;1 0.291666656732559 0;... 
    1 0.333333343267441 0;1 0.375 0;1 0.416666656732559 0;... 
    1 0.458333343267441 0;1 0.5 0;1 0.541666686534882 0;... 
    1 0.583333313465118 0;1 0.625 0;1 0.666666686534882 0;... 
    1 0.708333313465118 0;1 0.75 0;1 0.791666686534882 0;... 
    1 0.833333313465118 0;1 0.875 0;1 0.916666686534882 0;... 
    1 0.958333313465118 0;1 1 0;1 1 0.0625;1 1 0.125;1 1 0.1875;... 
    1 1 0.25;1 1 0.3125;1 1 0.375;1 1 0.4375;1 1 0.5;1 1 0.5625;... 
    1 1 0.625;1 1 0.6875;1 1 0.75;1 1 0.8125;1 1 0.875;1 1 0.9375;... 
    1 1 1],'Color',[1 1 1],'Position',fsize); 
%trehalose 1 
axes1 = axes('Parent',figure1,'YTick',zeros(1,0),'YDir','reverse',... 
    'XTick',zeros(1,0),... 
    'PlotBoxAspectRatio',[200 10 1],... 
    'OuterPosition',[0 zz-yy*(-1+1) 1 0.5],... 
    'Layer','top',... 
    'DataAspectRatio',[1 1 1],... 
    'CLim',[0 (20+trecon)]); 
box(axes1,'on'); 
hold(axes1,'all'); 
image(TrehaloseFiltered(:,:,1),'Parent',axes1,'CDataMapping','scaled'); 
title({tTre1},'FontWeight','bold',... 
    'FontSize',msize,... 
    'FontName','Arial'); 
colorbar('peer',axes1,'fontsize',12); 
%trehalose 2 
axes2 = axes('Parent',figure1,'YTick',zeros(1,0),'YDir','reverse',... 
    'XTick',zeros(1,0),... 
    'PlotBoxAspectRatio',[200 10 1],... 
    'OuterPosition',[0 zz-yy*(-1+2) 1 0.5],... 
    'Layer','top',... 
    'DataAspectRatio',[1 1 1],... 
    'CLim',[0 (20+trecon)]); 
box(axes2,'on'); 
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hold(axes2,'all'); 
image(TrehaloseFiltered(:,:,2),'Parent',axes2,'CDataMapping','scaled'); 
title({tTre2},'FontWeight','bold',... 
    'FontSize',msize,... 
    'FontName','Arial'); 
colorbar('peer',axes2,'fontsize',12); 
%trehalose 3 
axes3 = axes('Parent',figure1,'YTick',zeros(1,0),'YDir','reverse',... 
    'XTick',zeros(1,0),... 
    'PlotBoxAspectRatio',[200 10 1],... 
    'OuterPosition',[0 zz-yy*(-1+3) 1 0.5],... 
    'Layer','top',... 
    'DataAspectRatio',[1 1 1],... 
    'CLim',[0 (20+trecon)]); 
box(axes3,'on'); 
hold(axes3,'all'); 
% Create image 
image(TrehaloseFiltered(:,:,3),'Parent',axes3,'CDataMapping','scaled'); 
title({tTre3},'FontWeight','bold',... 
    'FontSize',msize,... 
    'FontName','Arial'); 
colorbar('peer',axes3,'fontsize',12); 
%trehalose 4 
axes4 = axes('Parent',figure1,'YTick',zeros(1,0),'YDir','reverse',... 
    'XTick',zeros(1,0),... 
    'PlotBoxAspectRatio',[200 10 1],... 
    'OuterPosition',[0 zz-yy*(-1+4) 1 0.5],... 
    'Layer','top',... 
    'DataAspectRatio',[1 1 1],... 
    'CLim',[0 (20+trecon)]); 
box(axes4,'on'); 
hold(axes4,'all'); 
image(TrehaloseFiltered(:,:,4),'Parent',axes4,'CDataMapping','scaled'); 
title({tTre4},'FontWeight','bold',... 
    'FontSize',msize,... 
    'FontName','Arial'); 
colorbar('peer',axes4,'fontsize',12); 
%trehalose 5 
axes5 = axes('Parent',figure1,'YTick',zeros(1,0),'YDir','reverse',... 
    'XTick',zeros(1,0),... 
    'PlotBoxAspectRatio',[200 10 1],... 
    'OuterPosition',[0 zz-yy*(-1+5) 1 0.5],... 
    'Layer','top',... 
    'DataAspectRatio',[1 1 1],... 
    'CLim',[0 (20+trecon)]); 
box(axes5,'on'); 
hold(axes5,'all'); 
image(TrehaloseFiltered(:,:,5),'Parent',axes5,'CDataMapping','scaled'); 
title({tTre5},'FontWeight','bold',... 
    'FontSize',msize,... 
    'FontName','Arial'); 
colorbar('peer',axes5,'fontsize',12); 
%trehalose 6 
axes6 = axes('Parent',figure1,'YTick',zeros(1,0),'YDir','reverse',... 
    'XTick',zeros(1,0),... 
    'PlotBoxAspectRatio',[200 10 1],... 
    'OuterPosition',[0 zz-yy*(-1+6) 1 0.5],... 
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    'Layer','top',... 
    'DataAspectRatio',[1 1 1],... 
    'CLim',[0 (20+trecon)]); 
box(axes6,'on'); 
hold(axes6,'all'); 
image(TrehaloseFiltered(:,:,6),'Parent',axes6,'CDataMapping','scaled'); 
title({tTre6},'FontWeight','bold',... 
    'FontSize',msize,... 
    'FontName','Arial'); 
colorbar('peer',axes6,'fontsize',12); 
axes7 = axes('Parent',figure1,'YTick',zeros(1,0),'YDir','reverse',... 
    'XTick',zeros(1,0),... 
    'PlotBoxAspectRatio',[200 10 1],... 
    'OuterPosition',[0 zz-yy*(-1+7) 1 0.5],... 
    'Layer','top',... 
    'DataAspectRatio',[1 1 1],... 
    'CLim',[0 (20+trecon)]); 
box(axes7,'on'); 
hold(axes7,'all'); 
image(TrehaloseFiltered(:,:,7),'Parent',axes7,'CDataMapping','scaled'); 
title({tTre7},'FontWeight','bold',... 
    'FontSize',msize,... 
    'FontName','Arial'); 
colorbar('peer',axes7,'fontsize',12); 
saveas(figure1,'Tre1.bmp') 

  
% Create trehalose figure 2 
figure2 = figure('Colormap',... 
    [0.0416666679084301 0 0;0.0833333358168602 0 0;0.125 0 0;... 
    0.16666667163372 0 0;0.20833332836628 0 0;0.25 0 

0;0.291666656732559... 
    0 0;0.333333343267441 0 0;0.375 0 0;0.416666656732559 0 0;... 
    0.458333343267441 0 0;0.5 0 0;0.541666686534882 0 0;... 
    0.583333313465118 0 0;0.625 0 0;0.666666686534882 0 0;... 
    0.708333313465118 0 0;0.75 0 0;0.791666686534882 0 0;... 
    0.833333313465118 0 0;0.875 0 0;0.916666686534882 0 0;... 
    0.958333313465118 0 0;1 0 0;1 0.0416666679084301 0;... 
    1 0.0833333358168602 0;1 0.125 0;1 0.16666667163372 0;... 
    1 0.20833332836628 0;1 0.25 0;1 0.291666656732559 0;... 
    1 0.333333343267441 0;1 0.375 0;1 0.416666656732559 0;... 
    1 0.458333343267441 0;1 0.5 0;1 0.541666686534882 0;... 
    1 0.583333313465118 0;1 0.625 0;1 0.666666686534882 0;... 
    1 0.708333313465118 0;1 0.75 0;1 0.791666686534882 0;... 
    1 0.833333313465118 0;1 0.875 0;1 0.916666686534882 0;... 
    1 0.958333313465118 0;1 1 0;1 1 0.0625;1 1 0.125;1 1 0.1875;... 
    1 1 0.25;1 1 0.3125;1 1 0.375;1 1 0.4375;1 1 0.5;1 1 0.5625;... 
    1 1 0.625;1 1 0.6875;1 1 0.75;1 1 0.8125;1 1 0.875;1 1 0.9375;... 
    1 1 1],'Color',[1 1 1],'Position',fsize); 
axes8 = axes('Parent',figure2,'YTick',zeros(1,0),'YDir','reverse',... 
    'XTick',zeros(1,0),... 
    'PlotBoxAspectRatio',[200 10 1],... 
    'OuterPosition',[0 zz-yy*(-1+1) 1 0.5],... 
    'Layer','top',... 
    'DataAspectRatio',[1 1 1],... 
    'CLim',[0 (20+trecon)]); 
box(axes8,'on'); 
hold(axes8,'all'); 
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image(TrehaloseFiltered(:,:,8),'Parent',axes8,'CDataMapping','scaled'); 
title({tTre8},'FontWeight','bold',... 
    'FontSize',msize,... 
    'FontName','Arial'); 
colorbar('peer',axes8,'fontsize',12); 
%trehalose 9 
if files>8 
axes9 = axes('Parent',figure2,'YTick',zeros(1,0),'YDir','reverse',... 
    'XTick',zeros(1,0),... 
    'PlotBoxAspectRatio',[200 10 1],... 
    'OuterPosition',[0 zz-yy*(-1+2) 1 0.5],... 
    'Layer','top',... 
    'DataAspectRatio',[1 1 1],... 
    'CLim',[0 (20+trecon)]); 
box(axes9,'on'); 
hold(axes9,'all'); 
image(TrehaloseFiltered(:,:,9),'Parent',axes9,'CDataMapping','scaled'); 
title({tTre9},'FontWeight','bold',... 
    'FontSize',msize,... 
    'FontName','Arial'); 
colorbar('peer',axes9,'fontsize',12); 
end 
%trehalose 10 
if files>9 
axes10 = axes('Parent',figure2,'YTick',zeros(1,0),'YDir','reverse',... 
    'XTick',zeros(1,0),... 
    'PlotBoxAspectRatio',[200 10 1],... 
    'OuterPosition',[0 zz-yy*(-1+3) 1 0.5],... 
    'Layer','top',... 
    'DataAspectRatio',[1 1 1],... 
    'CLim',[0 (20+trecon)]); 
box(axes10,'on'); 
hold(axes10,'all'); 
image(TrehaloseFiltered(:,:,10),'Parent',axes10,'CDataMapping','scaled'

); 
title({tTre10},'FontWeight','bold',... 
    'FontSize',msize,... 
    'FontName','Arial'); 
colorbar('peer',axes10,'fontsize',12); 
end 
%trehalose 11 
if files>10 
axes11 = axes('Parent',figure2,'YTick',zeros(1,0),'YDir','reverse',... 
    'XTick',zeros(1,0),... 
    'PlotBoxAspectRatio',[200 10 1],... 
    'OuterPosition',[0 zz-yy*(-1+4) 1 0.5],... 
    'Layer','top',... 
    'DataAspectRatio',[1 1 1],... 
    'CLim',[0 (20+trecon)]); 
box(axes11,'on'); 
hold(axes11,'all'); 
image(TrehaloseFiltered(:,:,11),'Parent',axes11,'CDataMapping','scaled'

); 
title({tTre11},'FontWeight','bold',... 
    'FontSize',msize,... 
    'FontName','Arial'); 
colorbar('peer',axes11,'fontsize',12); 
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end 
%trehalose 12 
if files>11 
axes12 = axes('Parent',figure2,'YTick',zeros(1,0),'YDir','reverse',... 
    'XTick',zeros(1,0),... 
    'PlotBoxAspectRatio',[200 10 1],... 
    'OuterPosition',[0 zz-yy*(-1+5) 1 0.5],... 
    'Layer','top',... 
    'DataAspectRatio',[1 1 1],... 
    'CLim',[0 (20+trecon)]); 
box(axes12,'on'); 
hold(axes12,'all'); 
image(TrehaloseFiltered(:,:,12),'Parent',axes12,'CDataMapping','scaled'

); 
title({tTre12},'FontWeight','bold',... 
    'FontSize',msize,... 
    'FontName','Arial'); 
colorbar('peer',axes12,'fontsize',12); 
end 
%trehalose 13 
if files>12 
axes13 = axes('Parent',figure2,'YTick',zeros(1,0),'YDir','reverse',... 
    'XTick',zeros(1,0),... 
    'PlotBoxAspectRatio',[200 10 1],... 
    'OuterPosition',[0 zz-yy*(-1+6) 1 0.5],... 
    'Layer','top',... 
    'DataAspectRatio',[1 1 1],... 
    'CLim',[0 (20+trecon)]); 
box(axes13,'on'); 
hold(axes13,'all'); 
image(TrehaloseFiltered(:,:,13),'Parent',axes13,'CDataMapping','scaled'

); 
title({tTre13},'FontWeight','bold',... 
    'FontSize',msize,... 
    'FontName','Arial'); 
colorbar('peer',axes13,'fontsize',12); 
end 
%trehalose 14 
if files>13 
axes14 = axes('Parent',figure2,'YTick',zeros(1,0),'YDir','reverse',... 
    'XTick',zeros(1,0),... 
    'PlotBoxAspectRatio',[200 10 1],... 
    'OuterPosition',[0 zz-yy*(-1+7) 1 0.5],... 
    'Layer','top',... 
    'DataAspectRatio',[1 1 1],... 
    'CLim',[0 (20+trecon)]); 
box(axes14,'on'); 
hold(axes14,'all'); 
image(TrehaloseFiltered(:,:,14),'Parent',axes14,'CDataMapping','scaled'

); 
title({tTre14},'FontWeight','bold',... 
    'FontSize',msize,... 
    'FontName','Arial'); 
colorbar('peer',axes14,'fontsize',12); 
end 
saveas(figure2,'Tre2.bmp') 
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% Create figure 1 for Ice 
figure1 = figure('Colormap',... 
    [0.0416666679084301 0 0;0.0833333358168602 0 0;0.125 0 0;... 
    0.16666667163372 0 0;0.20833332836628 0 0;0.25 0 

0;0.291666656732559... 
    0 0;0.333333343267441 0 0;0.375 0 0;0.416666656732559 0 0;... 
    0.458333343267441 0 0;0.5 0 0;0.541666686534882 0 0;... 
    0.583333313465118 0 0;0.625 0 0;0.666666686534882 0 0;... 
    0.708333313465118 0 0;0.75 0 0;0.791666686534882 0 0;... 
    0.833333313465118 0 0;0.875 0 0;0.916666686534882 0 0;... 
    0.958333313465118 0 0;1 0 0;1 0.0416666679084301 0;... 
    1 0.0833333358168602 0;1 0.125 0;1 0.16666667163372 0;... 
    1 0.20833332836628 0;1 0.25 0;1 0.291666656732559 0;... 
    1 0.333333343267441 0;1 0.375 0;1 0.416666656732559 0;... 
    1 0.458333343267441 0;1 0.5 0;1 0.541666686534882 0;... 
    1 0.583333313465118 0;1 0.625 0;1 0.666666686534882 0;... 
    1 0.708333313465118 0;1 0.75 0;1 0.791666686534882 0;... 
    1 0.833333313465118 0;1 0.875 0;1 0.916666686534882 0;... 
    1 0.958333313465118 0;1 1 0;1 1 0.0625;1 1 0.125;1 1 0.1875;... 
    1 1 0.25;1 1 0.3125;1 1 0.375;1 1 0.4375;1 1 0.5;1 1 0.5625;... 
    1 1 0.625;1 1 0.6875;1 1 0.75;1 1 0.8125;1 1 0.875;1 1 0.9375;... 
    1 1 1],'Color',[1 1 1],'Position',fsize); 
%ice 1 
axes1 = axes('Parent',figure1,'YTick',zeros(1,0),'YDir','reverse',... 
    'XTick',zeros(1,0),... 
    'PlotBoxAspectRatio',[200 10 1],... 
    'OuterPosition',[0 zz-yy*(-1+1) 1 0.5],... 
    'Layer','top',... 
    'DataAspectRatio',[1 1 1],... 
    'CLim',[0 (50-trecon)]); 
box(axes1,'on'); 
hold(axes1,'all'); 
image(B(:,:,1),'Parent',axes1,'CDataMapping','scaled'); 
title({tIce1},'FontWeight','bold',... 
    'FontSize',msize,... 
    'FontName','Arial'); 
colorbar('peer',axes1,'fontsize',12); 
%ice 2 
axes2 = axes('Parent',figure1,'YTick',zeros(1,0),'YDir','reverse',... 
    'XTick',zeros(1,0),... 
    'PlotBoxAspectRatio',[200 10 1],... 
    'OuterPosition',[0 zz-yy*(-1+2) 1 0.5],... 
    'Layer','top',... 
    'DataAspectRatio',[1 1 1],... 
    'CLim',[0 (50-trecon)]); 
box(axes2,'on'); 
hold(axes2,'all'); 
image(B(:,:,2),'Parent',axes2,'CDataMapping','scaled'); 
title({tIce2},'FontWeight','bold',... 
    'FontSize',msize,... 
    'FontName','Arial'); 
colorbar('peer',axes2,'fontsize',12); 
%ice 3 
axes3 = axes('Parent',figure1,'YTick',zeros(1,0),'YDir','reverse',... 
    'XTick',zeros(1,0),... 
    'PlotBoxAspectRatio',[200 10 1],... 
    'OuterPosition',[0 zz-yy*(-1+3) 1 0.5],... 
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    'Layer','top',... 
    'DataAspectRatio',[1 1 1],... 
    'CLim',[0 (50-trecon)]); 
box(axes3,'on'); 
hold(axes3,'all'); 
% Create image 
image(B(:,:,3),'Parent',axes3,'CDataMapping','scaled'); 
title({tIce3},'FontWeight','bold',... 
    'FontSize',msize,... 
    'FontName','Arial'); 
colorbar('peer',axes3,'fontsize',12); 
%ice 4 
axes4 = axes('Parent',figure1,'YTick',zeros(1,0),'YDir','reverse',... 
    'XTick',zeros(1,0),... 
    'PlotBoxAspectRatio',[200 10 1],... 
    'OuterPosition',[0 zz-yy*(-1+4) 1 0.5],... 
    'Layer','top',... 
    'DataAspectRatio',[1 1 1],... 
    'CLim',[0 (50-trecon)]); 
box(axes4,'on'); 
hold(axes4,'all'); 
image(B(:,:,4),'Parent',axes4,'CDataMapping','scaled'); 
title({tIce4},'FontWeight','bold',... 
    'FontSize',msize,... 
    'FontName','Arial'); 
colorbar('peer',axes4,'fontsize',12); 
%ice 5 
axes5 = axes('Parent',figure1,'YTick',zeros(1,0),'YDir','reverse',... 
    'XTick',zeros(1,0),... 
    'PlotBoxAspectRatio',[200 10 1],... 
    'OuterPosition',[0 zz-yy*(-1+5) 1 0.5],... 
    'Layer','top',... 
    'DataAspectRatio',[1 1 1],... 
    'CLim',[0 (50-trecon)]); 
box(axes5,'on'); 
hold(axes5,'all'); 
image(B(:,:,5),'Parent',axes5,'CDataMapping','scaled'); 
title({tIce5},'FontWeight','bold',... 
    'FontSize',msize,... 
    'FontName','Arial'); 
colorbar('peer',axes5,'fontsize',12); 
%ice 6 
axes6 = axes('Parent',figure1,'YTick',zeros(1,0),'YDir','reverse',... 
    'XTick',zeros(1,0),... 
    'PlotBoxAspectRatio',[200 10 1],... 
    'OuterPosition',[0 zz-yy*(-1+6) 1 0.5],... 
    'Layer','top',... 
    'DataAspectRatio',[1 1 1],... 
    'CLim',[0 (50-trecon)]); 
box(axes6,'on'); 
hold(axes6,'all'); 
image(B(:,:,6),'Parent',axes6,'CDataMapping','scaled'); 
title({tIce6},'FontWeight','bold',... 
    'FontSize',msize,... 
    'FontName','Arial'); 
colorbar('peer',axes6,'fontsize',12); 
axes7 = axes('Parent',figure1,'YTick',zeros(1,0),'YDir','reverse',... 
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    'XTick',zeros(1,0),... 
    'PlotBoxAspectRatio',[200 10 1],... 
    'OuterPosition',[0 zz-yy*(-1+7) 1 0.5],... 
    'Layer','top',... 
    'DataAspectRatio',[1 1 1],... 
    'CLim',[0 (50-trecon)]); 
box(axes7,'on'); 
hold(axes7,'all'); 
image(B(:,:,7),'Parent',axes7,'CDataMapping','scaled'); 
title({tIce7},'FontWeight','bold',... 
    'FontSize',msize,... 
    'FontName','Arial'); 
colorbar('peer',axes7,'fontsize',12); 
saveas(figure1,'Ice1.bmp') 

  
% Create ice figure 2 
figure2 = figure('Colormap',... 
    [0.0416666679084301 0 0;0.0833333358168602 0 0;0.125 0 0;... 
    0.16666667163372 0 0;0.20833332836628 0 0;0.25 0 

0;0.291666656732559... 
    0 0;0.333333343267441 0 0;0.375 0 0;0.416666656732559 0 0;... 
    0.458333343267441 0 0;0.5 0 0;0.541666686534882 0 0;... 
    0.583333313465118 0 0;0.625 0 0;0.666666686534882 0 0;... 
    0.708333313465118 0 0;0.75 0 0;0.791666686534882 0 0;... 
    0.833333313465118 0 0;0.875 0 0;0.916666686534882 0 0;... 
    0.958333313465118 0 0;1 0 0;1 0.0416666679084301 0;... 
    1 0.0833333358168602 0;1 0.125 0;1 0.16666667163372 0;... 
    1 0.20833332836628 0;1 0.25 0;1 0.291666656732559 0;... 
    1 0.333333343267441 0;1 0.375 0;1 0.416666656732559 0;... 
    1 0.458333343267441 0;1 0.5 0;1 0.541666686534882 0;... 
    1 0.583333313465118 0;1 0.625 0;1 0.666666686534882 0;... 
    1 0.708333313465118 0;1 0.75 0;1 0.791666686534882 0;... 
    1 0.833333313465118 0;1 0.875 0;1 0.916666686534882 0;... 
    1 0.958333313465118 0;1 1 0;1 1 0.0625;1 1 0.125;1 1 0.1875;... 
    1 1 0.25;1 1 0.3125;1 1 0.375;1 1 0.4375;1 1 0.5;1 1 0.5625;... 
    1 1 0.625;1 1 0.6875;1 1 0.75;1 1 0.8125;1 1 0.875;1 1 0.9375;... 
    1 1 1],'Color',[1 1 1],'Position',fsize); 
axes8 = axes('Parent',figure2,'YTick',zeros(1,0),'YDir','reverse',... 
    'XTick',zeros(1,0),... 
    'PlotBoxAspectRatio',[200 10 1],... 
    'OuterPosition',[0 zz-yy*(-1+1) 1 0.5],... 
    'Layer','top',... 
    'DataAspectRatio',[1 1 1],... 
    'CLim',[0 (50-trecon)]); 
box(axes8,'on'); 
hold(axes8,'all'); 
image(B(:,:,8),'Parent',axes8,'CDataMapping','scaled'); 
title({tIce8},'FontWeight','bold',... 
    'FontSize',msize,... 
    'FontName','Arial'); 
colorbar('peer',axes8,'fontsize',12); 
%ice 9 
if files>8 
axes9 = axes('Parent',figure2,'YTick',zeros(1,0),'YDir','reverse',... 
    'XTick',zeros(1,0),... 
    'PlotBoxAspectRatio',[200 10 1],... 
    'OuterPosition',[0 zz-yy*(-1+2) 1 0.5],... 
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    'Layer','top',... 
    'DataAspectRatio',[1 1 1],... 
    'CLim',[0 (50-trecon)]); 
box(axes9,'on'); 
hold(axes9,'all'); 
image(B(:,:,9),'Parent',axes9,'CDataMapping','scaled'); 
title({tIce9},'FontWeight','bold',... 
    'FontSize',msize,... 
    'FontName','Arial'); 
colorbar('peer',axes9,'fontsize',12); 
end 
%ice 10 
if files>9 
axes10 = axes('Parent',figure2,'YTick',zeros(1,0),'YDir','reverse',... 
    'XTick',zeros(1,0),... 
    'PlotBoxAspectRatio',[200 10 1],... 
    'OuterPosition',[0 zz-yy*(-1+3) 1 0.5],... 
    'Layer','top',... 
    'DataAspectRatio',[1 1 1],... 
    'CLim',[0 (50-trecon)]); 
box(axes10,'on'); 
hold(axes10,'all'); 
image(B(:,:,10),'Parent',axes10,'CDataMapping','scaled'); 
title({tIce10},'FontWeight','bold',... 
    'FontSize',msize,... 
    'FontName','Arial'); 
colorbar('peer',axes10,'fontsize',12); 
end 
%ice 11 
if files>10 
axes11 = axes('Parent',figure2,'YTick',zeros(1,0),'YDir','reverse',... 
    'XTick',zeros(1,0),... 
    'PlotBoxAspectRatio',[200 10 1],... 
    'OuterPosition',[0 zz-yy*(-1+4) 1 0.5],... 
    'Layer','top',... 
    'DataAspectRatio',[1 1 1],... 
    'CLim',[0 (50-trecon)]); 
box(axes11,'on'); 
hold(axes11,'all'); 
image(B(:,:,11),'Parent',axes11,'CDataMapping','scaled'); 
title({tIce11},'FontWeight','bold',... 
    'FontSize',msize,... 
    'FontName','Arial'); 
colorbar('peer',axes11,'fontsize',12); 
end 
%ice 12 
if files>11 
axes12 = axes('Parent',figure2,'YTick',zeros(1,0),'YDir','reverse',... 
    'XTick',zeros(1,0),... 
    'PlotBoxAspectRatio',[200 10 1],... 
    'OuterPosition',[0 zz-yy*(-1+5) 1 0.5],... 
    'Layer','top',... 
    'DataAspectRatio',[1 1 1],... 
    'CLim',[0 (50-trecon)]); 
box(axes12,'on'); 
hold(axes12,'all'); 
image(B(:,:,12),'Parent',axes12,'CDataMapping','scaled'); 
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title({tIce12},'FontWeight','bold',... 
    'FontSize',msize,... 
    'FontName','Arial'); 
colorbar('peer',axes12,'fontsize',12); 
end 
%ice 13 
if files>12 
axes13 = axes('Parent',figure2,'YTick',zeros(1,0),'YDir','reverse',... 
    'XTick',zeros(1,0),... 
    'PlotBoxAspectRatio',[200 10 1],... 
    'OuterPosition',[0 zz-yy*(-1+6) 1 0.5],... 
    'Layer','top',... 
    'DataAspectRatio',[1 1 1],... 
    'CLim',[0 (50-trecon)]); 
box(axes13,'on'); 
hold(axes13,'all'); 
image(B(:,:,13),'Parent',axes13,'CDataMapping','scaled'); 
title({tIce13},'FontWeight','bold',... 
    'FontSize',msize,... 
    'FontName','Arial'); 
colorbar('peer',axes13,'fontsize',12); 
end 
%ice 14 
if files>13 
axes14 = axes('Parent',figure2,'YTick',zeros(1,0),'YDir','reverse',... 
    'XTick',zeros(1,0),... 
    'PlotBoxAspectRatio',[200 10 1],... 
    'OuterPosition',[0 zz-yy*(-1+7) 1 0.5],... 
    'Layer','top',... 
    'DataAspectRatio',[1 1 1],... 
    'CLim',[0 (50-trecon)]); 
box(axes14,'on'); 
hold(axes14,'all'); 
image(B(:,:,14),'Parent',axes14,'CDataMapping','scaled'); 
title({tIce14},'FontWeight','bold',... 
    'FontSize',msize,... 
    'FontName','Arial'); 
colorbar('peer',axes14,'fontsize',12); 
end 
saveas(figure2,'Ice2.bmp') 

  
% Mean Ratio of Alb/Trehalose as a % of nominal value 
% Create figure 
figure1 = figure('Position', fsize); 
% Create axes 
axes1 = axes('Parent',figure1,'FontSize',xsize,'FontName','Arial'); 
xlim(axes1,[Tlow Thigh]); 
ylim(axes1,[PctLow PctHigh]); 
box(axes1,'on'); 
hold(axes1,'all'); 
% Create plot 
plot(MeanTemp,MeanRatioPercentage,'MarkerSize',24,'Marker','.',... 
    'LineStyle','none',... 
    'DisplayName','AlbuminPercentage vs. MeanTemp'); 
xlabel('Temperature [°C]','FontSize',xsize,'FontName','Arial'); 
ylabel('Mean Albumin/Trehalose [% of 

nominal]','FontSize',ysize,'FontName','Arial'); 
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title({tAlbTre1,tAlbTre2},'FontSize',tsize,... 
    'FontName','Arial'); 
saveas(figure1,'MeanAlbTre.bmp') 

  
% Total Trehalose Content in control volume percentage of starting 

amount 
% Create figure 
figure1 = figure('Position', fsize); 
% Create axes 
axes1 = axes('Parent',figure1,'FontSize',xsize,'FontName','Arial'); 
xlim(axes1,[Tlow Thigh]); 
ylim(axes1,[PctLow PctHigh]); 
box(axes1,'on'); 
hold(axes1,'all'); 
% Create plot 
plot(MeanTemp,TrehalosePercentage,'MarkerSize',24,'Marker','.',... 
    'LineStyle','none',... 
    'DisplayName','AlbuminPercentage vs. MeanTemp'); 
xlabel('Temperature [°C]','FontSize',xsize,'FontName','Arial'); 
ylabel('Mean Trehalose Concentration [% of 

nominal]','FontSize',ysize,'FontName','Arial'); 
title({tTreDist1,tTreDist2},'FontSize',tsize,... 
    'FontName','Arial'); 
saveas(figure1,'TrehaloseNominal.bmp') 

  
% Plot the albumin/trehalose ratio for varying concentrations: 
figure1 = figure('Color',[1 1 1],'Position', fsize); 
% Create axes 
axes1 = axes('Parent',figure1,'FontWeight','bold','FontSize',xsize,... 
    'FontName','Arial'); 
% Uncomment the following line to preserve the X-limits of the axes 
xlim(axes1,[Tlow Thigh]); 
% Uncomment the following line to preserve the Y-limits of the axes 
ylim(axes1,[PctLow PctHigh]); 
box(axes1,'on'); 
hold(axes1,'all'); 
% Create xlabel 
xlabel('Temperature [°C]','FontWeight','bold','FontSize',xsize,... 
    'FontName','Arial'); 
% Create ylabel 
ylabel({'Normalized Albumin/Trehalose Ratio [%]'},'FontSize',ysize,... 
    'FontName','Arial'); 
% Create title 
title({tAlbTre1,tAlbTre2},'FontWeight','bold',... 
    'FontSize',tsize,... 
    'FontName','Arial'); 
% Create multiple lines using matrix input to plot 
plot1 = plot(MeanTemp,RmPCT2_10_15filtered,... 
    MeanTemp,RmPCT2_15_20filtered,... 
    MeanTemp,RmPCT2_20_25filtered,... 
    MeanTemp,RmPCT2_25_30filtered,... 
    MeanTemp,RmPCT2_30_100filtered,... 
    MeanTemp,MeanRatioPercentage,... 
    'Parent',axes1,'LineStyle','none'); 
set(plot1(1),'MarkerFaceColor',[1 0 0],'MarkerEdgeColor',[1 0 0],... 
    'MarkerSize',11,... 
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    'Marker','*',... 
    'DisplayName','10-15 wt% Trehalose Equivalent'); 
set(plot1(2),'MarkerFaceColor',[0 1 1],'MarkerEdgeColor',[0 1 1],... 
    'MarkerSize',24,... 
    'Marker','.',... 
    'DisplayName','15-20 wt% Trehalose Equivalent'); 
set(plot1(3),'MarkerFaceColor',[0 0 1],'MarkerEdgeColor',[0 0 1],... 
    'MarkerSize',8,...     
    'Marker','v',... 
    'DisplayName','20-25 wt% Trehalose Equivalent'); 
set(plot1(4),'MarkerFaceColor',[1 0 1],'MarkerEdgeColor',[1 0 1],... 
    'MarkerSize',8,...  
    'Marker','square',... 
    'DisplayName','25-30 wt% Trehalose Equivalent'); 
set(plot1(5),'MarkerFaceColor',[0 0.498039215803146 0],... 
    'MarkerEdgeColor',[0 0.498039215803146 0],... 
    'MarkerSize',8,... 
    'Marker','diamond',... 
    'DisplayName','>30 wt%    Trehalose Equivalent'); 
set(plot1(6),'MarkerFaceColor',[0 1 0],'MarkerEdgeColor',[0 1 0],... 
    'MarkerSize',11,... 
    'Marker','hexagram',... 
    'DisplayName','Mean Solution'); 
% Create plot 
plot(NominalTemp,Nominal,'Parent',axes1,'LineWidth',3,'LineStyle','--

',... 
    'DisplayName','Nominal Solution',... 
    'Color',[0 0 0]); 
% Create legend 
legend1 = legend(axes1,'show'); 
set(legend1,... 
    'Position',fposition); 
saveas(figure1,'AlbTreNominal.bmp') 

  
% Plot the frequency of each concentration: 
figure1 = figure('Color',[1 1 1],'Position', fsize); 
% Create axes 
axes1 = axes('Parent',figure1,'FontWeight','bold','FontSize',xsize,... 
    'FontName','Arial'); 
% Uncomment the following line to preserve the X-limits of the axes 
xlim(axes1,[Tlow Thigh]); 
% Uncomment the following line to preserve the Y-limits of the axes 
ylim(axes1,[0 trehi]); 
box(axes1,'on'); 
hold(axes1,'all'); 
% Create xlabel 
xlabel('Temperature [°C]','FontWeight','bold','FontSize',xsize,... 
    'FontName','Arial'); 
% Create ylabel 
ylabel({'Concentration Frequency [%]'},'FontSize',ysize,... 
    'FontName','Arial'); 
% Create title 
title({tTreDist1,tTreDist2},'FontWeight','bold',... 
    'FontSize',tsize,... 
    'FontName','Arial'); 
% Create multiple lines using matrix input to plot 
plot1 = plot(MeanTemp,Count_10_15,... 
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    MeanTemp,Count_15_20,... 
    MeanTemp,Count_20_25,... 
    MeanTemp,Count_25_30,... 
    MeanTemp,Count_30_100,... 
    MeanTemp,Count_nominal,... 
    'Parent',axes1,'LineStyle','none'); 
set(plot1(1),'MarkerFaceColor',[1 0 0],'MarkerEdgeColor',[1 0 0],... 
    'MarkerSize',11,... 
    'Marker','*',... 
    'DisplayName','10-15 wt% Trehalose Equivalent'); 
set(plot1(2),'MarkerFaceColor',[0 1 1],'MarkerEdgeColor',[0 1 1],... 
    'MarkerSize',24,... 
    'Marker','.',... 
    'DisplayName','15-20 wt% Trehalose Equivalent'); 
set(plot1(3),'MarkerFaceColor',[0 0 1],'MarkerEdgeColor',[0 0 1],... 
    'MarkerSize',8,...     
    'Marker','v',... 
    'DisplayName','20-25 wt% Trehalose Equivalent'); 
set(plot1(4),'MarkerFaceColor',[1 0 1],'MarkerEdgeColor',[1 0 1],... 
    'MarkerSize',8,...  
    'Marker','square',... 
    'DisplayName','25-30 wt% Trehalose Equivalent'); 
set(plot1(5),'MarkerFaceColor',[0 0.498039215803146 0],... 
    'MarkerEdgeColor',[0 0.498039215803146 0],... 
    'MarkerSize',8,... 
    'Marker','diamond',... 
    'DisplayName','>30 wt%    Trehalose Equivalent'); 
set(plot1(6),'MarkerFaceColor',[0 1 0],'MarkerEdgeColor',[0 1 0],... 
    'MarkerSize',11,... 
    'Marker','hexagram',... 
    'DisplayName','Nominal Solution +/- 5 wt%'); 

  
% Create legend 
legend1 = legend(axes1,'show'); 
set(legend1,... 
    'Position',(fposition)+[0 .45 0 0 ]); 
saveas(figure1,'TreFreq.bmp') 

  

  
% Plot the albumin/trehalose ratio for varying concentrations 

normalized 
% the mean value: 
figure1 = figure('Color',[1 1 1],'Position', fsize); 
% Create axes 
axes1 = axes('Parent',figure1,'FontWeight','bold','FontSize',xsize,... 
    'FontName','Arial'); 
% Uncomment the following line to preserve the X-limits of the axes 
xlim(axes1,[Tlow Thigh]); 
% Uncomment the following line to preserve the Y-limits of the axes 
ylim(axes1,[PctLow PctHigh]); 
box(axes1,'on'); 
hold(axes1,'all'); 
% Create xlabel 
xlabel('Temperature [°C]','FontWeight','bold','FontSize',xsize,... 
    'FontName','Arial'); 
% Create ylabel 
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ylabel({'Normalized Albumin/Trehalose Ratio [%]'},'FontSize',ysize,... 
    'FontName','Arial'); 
% Create title 
title({tAlbTre1,tAlbTre2},'FontWeight','bold',... 
    'FontSize',tsize,... 
    'FontName','Arial'); 
% Create multiple lines using matrix input to plot 
plot1 = plot(MeanTemp,RmNorm_10_15,... 
    MeanTemp,RmNorm_15_20,... 
    MeanTemp,RmNorm_20_25,... 
    MeanTemp,RmNorm_25_30,... 
    MeanTemp,RmNorm_30_100,... 
    'Parent',axes1,'LineStyle','none'); 
set(plot1(1),'MarkerFaceColor',[1 0 0],'MarkerEdgeColor',[1 0 0],... 
    'MarkerSize',11,... 
    'Marker','*',... 
    'DisplayName','10-15 wt% Trehalose Equivalent'); 
set(plot1(2),'MarkerFaceColor',[0 1 1],'MarkerEdgeColor',[0 1 1],... 
    'MarkerSize',24,... 
    'Marker','.',... 
    'DisplayName','15-20 wt% Trehalose Equivalent'); 
set(plot1(3),'MarkerFaceColor',[0 0 1],'MarkerEdgeColor',[0 0 1],... 
    'MarkerSize',8,...     
    'Marker','v',... 
    'DisplayName','20-25 wt% Trehalose Equivalent'); 
set(plot1(4),'MarkerFaceColor',[1 0 1],'MarkerEdgeColor',[1 0 1],... 
    'MarkerSize',8,...  
    'Marker','square',... 
    'DisplayName','25-30 wt% Trehalose Equivalent'); 
set(plot1(5),'MarkerFaceColor',[0 0.498039215803146 0],... 
    'MarkerEdgeColor',[0 0.498039215803146 0],... 
    'MarkerSize',8,... 
    'Marker','diamond',... 
    'DisplayName','>30 wt%    Trehalose Equivalent'); 
% Create plot 
plot(NominalTemp,Nominal,'Parent',axes1,'LineWidth',3,'LineStyle','--

',... 
    'DisplayName','Mean Value',... 
    'Color',[0 0 0]); 
% Create legend 
legend1 = legend(axes1,'show'); 
set(legend1,... 
    'Position',fposition); 
saveas(figure1,'AlbTreNorm.bmp') 

  

  

  

  
% Figures to include Ice, Trehalose Albumin/Trehalose Ratio: 

  
% Create figure 1 for filtered Albumin/Trehalose Ratio 
for h=1:files 
figure1 = figure('Colormap',... 
    [0.0416666679084301 0 0;0.0833333358168602 0 0;0.125 0 0;... 
    0.16666667163372 0 0;0.20833332836628 0 0;0.25 0 

0;0.291666656732559... 
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    0 0;0.333333343267441 0 0;0.375 0 0;0.416666656732559 0 0;... 
    0.458333343267441 0 0;0.5 0 0;0.541666686534882 0 0;... 
    0.583333313465118 0 0;0.625 0 0;0.666666686534882 0 0;... 
    0.708333313465118 0 0;0.75 0 0;0.791666686534882 0 0;... 
    0.833333313465118 0 0;0.875 0 0;0.916666686534882 0 0;... 
    0.958333313465118 0 0;1 0 0;1 0.0416666679084301 0;... 
    1 0.0833333358168602 0;1 0.125 0;1 0.16666667163372 0;... 
    1 0.20833332836628 0;1 0.25 0;1 0.291666656732559 0;... 
    1 0.333333343267441 0;1 0.375 0;1 0.416666656732559 0;... 
    1 0.458333343267441 0;1 0.5 0;1 0.541666686534882 0;... 
    1 0.583333313465118 0;1 0.625 0;1 0.666666686534882 0;... 
    1 0.708333313465118 0;1 0.75 0;1 0.791666686534882 0;... 
    1 0.833333313465118 0;1 0.875 0;1 0.916666686534882 0;... 
    1 0.958333313465118 0;1 1 0;1 1 0.0625;1 1 0.125;1 1 0.1875;... 
    1 1 0.25;1 1 0.3125;1 1 0.375;1 1 0.4375;1 1 0.5;1 1 0.5625;... 
    1 1 0.625;1 1 0.6875;1 1 0.75;1 1 0.8125;1 1 0.875;1 1 0.9375;... 
    1 1 1],'Color',[1 1 1],'Position',fsize); 
% Set title names: 
if h==1 
    tIce=tIce1; 
    tTre=tTre1; 
    tRatio=tRatio1; 
end 
if h==2 
    tIce=tIce2; 
    tTre=tTre2; 
    tRatio=tRatio2; 
end 
if h==3 
    tIce=tIce3; 
    tTre=tTre3; 
    tRatio=tRatio3; 
end 
if h==4 
    tIce=tIce4; 
    tTre=tTre4; 
    tRatio=tRatio4; 
end 
if h==5 
    tIce=tIce5; 
    tTre=tTre5; 
    tRatio=tRatio5; 
end 
if h==6 
    tIce=tIce6; 
    tTre=tTre6; 
    tRatio=tRatio6; 
end 
if h==7 
    tIce=tIce7; 
    tTre=tTre7; 
    tRatio=tRatio7; 
end 
if h==8 
    tIce=tIce8; 
    tTre=tTre8; 
    tRatio=tRatio8; 
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end 
if h==9 
    tIce=tIce9; 
    tTre=tTre9; 
    tRatio=tRatio9; 
end 
if h==10 
    tIce=tIce10; 
    tTre=tTre10; 
    tRatio=tRatio10; 
end 
if h==11 
    tIce=tIce11; 
    tTre=tTre11; 
    tRatio=tRatio11; 
end 
if h==12 
    tIce=tIce12; 
    tTre=tTre12; 
    tRatio=tRatio12; 
end 
if h==13 
    tIce=tIce13; 
    tTre=tTre13; 
    tRatio=tRatio13; 
end 
if h==14 
    tIce=tIce14; 
    tTre=tTre14; 
    tRatio=tRatio14; 
end 

  
%ice 1 
axes1 = axes('Parent',figure1,'YTick',zeros(1,0),'YDir','reverse',... 
    'XTick',zeros(1,0),... 
    'PlotBoxAspectRatio',[200 10 1],... 
    'OuterPosition',[0 zz-yy*(-1+1) 1 0.5],... 
    'Layer','top',... 
    'DataAspectRatio',[1 1 1],... 
    'CLim',[0 (45-trecon)]); 
box(axes1,'on'); 
hold(axes1,'all'); 
image(B(:,:,h),'Parent',axes1,'CDataMapping','scaled'); 
title({tIce},'FontWeight','bold',... 
    'FontSize',msize,... 
    'FontName','Arial'); 
f=colorbar('peer',axes1,'fontsize',12,'fontWeight','bold'); 
xlabel(f,'[a.u.]') 
%trehalose 2 
axes2 = axes('Parent',figure1,'YTick',zeros(1,0),'YDir','reverse',... 
    'XTick',zeros(1,0),... 
    'PlotBoxAspectRatio',[200 10 1],... 
    'OuterPosition',[0 zz-yy*(-1+2) 1 0.5],... 
    'Layer','top',... 
    'DataAspectRatio',[1 1 1],... 
    'CLim',[0 (20+trecon)]); 
box(axes2,'on'); 



   92 

 

hold(axes2,'all'); 
image(TrehaloseFiltered(:,:,h),'Parent',axes2,'CDataMapping','scaled'); 
title({tTre},'FontWeight','bold',... 
    'FontSize',msize,... 
    'FontName','Arial'); 
f=colorbar('peer',axes2,'fontsize',12,'fontWeight','bold'); 
xlabel(f,'[wt%]') 
%ratio 3 
axes3 = axes('Parent',figure1,'YTick',zeros(1,0),'YDir','reverse',... 
    'XTick',zeros(1,0),... 
    'PlotBoxAspectRatio',[200 10 1],... 
    'OuterPosition',[0 zz-yy*(-1+3) 1 0.5],... 
    'Layer','top',... 
    'DataAspectRatio',[1 1 1],... 
    'CLim',[0 plotRatioHi]); 
box(axes3,'on'); 
hold(axes3,'all'); 
% Create image 
image(RatioFiltered(:,:,h),'Parent',axes3,'CDataMapping','scaled'); 
title({tRatio},'FontWeight','bold',... 
    'FontSize',msize,... 
    'FontName','Arial'); 
f=colorbar('peer',axes3,'fontsize',12,'fontWeight','bold'); 
xlabel(f,'[w/w]') 

  
% namef=AlbTreNorm+num2str(h).bmp; 
if h==1 
saveas(figure1,'Summary1.bmp') 
end 
if h==2 
saveas(figure1,'Summary2.bmp') 
end 
if h==3 
saveas(figure1,'Summary3.bmp') 
end 
if h==4 
saveas(figure1,'Summary4.bmp') 
end 
if h==5 
saveas(figure1,'Summary5.bmp') 
end 
if h==6 
saveas(figure1,'Summary6.bmp') 
end 
if h==7 
saveas(figure1,'Summary7.bmp') 
end 
if h==8 
saveas(figure1,'Summary8.bmp') 
end 
if h==9 
saveas(figure1,'Summary9.bmp') 
end 
if h==10 
saveas(figure1,'Summary10.bmp') 
end 
if h==11 
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saveas(figure1,'Summary11.bmp') 
end 
if h==12 
saveas(figure1,'Summary12.bmp') 
end 
if h==13 
saveas(figure1,'Summary13.bmp') 
end 
if h==14 
saveas(figure1,'Summary14.bmp') 
end 
end 
 


