
Sparse Models for Positive Definite Matrices

A DISSERTATION

SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL

OF THE UNIVERSITY OF MINNESOTA

BY

Ravishankar Sivalingam

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

Doctor of Philosophy

Nikolaos P. Papanikolopoulos, Adviser

February, 2015

c© Ravishankar Sivalingam 2015

ALL RIGHTS RESERVED

Acknowledgements

I sincerely thank my adviser Prof. Nikolaos Papanikolopoulos for his mentorship and guid-

ance during my graduate education, and his trust and support during this period. I also

thank my co-advisors Prof. Vassilios Morellas and Prof. Daniel Boley, for their guidance. In

addition, I thank Profs. Arindam Banerjee, Gilad Lerman, Guillermo Sapiro, Jarvis Haupt

for their collaboration and support of this thesis topic. I would also like to thank Prof. Tom

Luo, since this thesis was spawned from a class project in his Convex Optimization course.

I express my deepest appreciation for these and countless other collaborators in the course

of my graduate education.

I thank all of my colleagues in the Distributed Robotics Laboratory, who provided great

peer support beginning from my entry into research to the completion of my dissertation. I

would specifically like to thank Dr. Guruprasad Somasundaram, a great friend, colleague,

and collaborator of many years. I also thank my various funding agencies which have helped

me with my research, learn and grow to produce this thesis.

I thank all my friends and family, who have stood by me throughout my graduate

education, providing great moral support. While these are too numerous to name here, I

would specifically like to thank my best friends: Arvind Karthikeyan, Aswini Gauthama

Sankar, Avanidhar Chandrasekharan, and Priyadharshini Vijayakumar.

Most importantly, I sincerely thank my parents, Mr. E. Sivalingam and Mrs. Nir-

maladevi Sivalingam, and my sister Mohanapriya Sivalingam, for their moral and financial

support not just during my graduate education, but throughout my life.

i

Dedication

To my parents

i

Abstract

Sparse models have proven to be extremely successful in image processing, computer

vision and machine learning. However, a majority of the effort has been focused on vector-

valued signals. Higher-order signals like matrices are usually vectorized as a pre-processing

step, and treated like vectors thereafter for sparse modeling. Symmetric positive definite

(SPD) matrices arise in probability and statistics and the many domains built upon them. In

computer vision, a certain type of feature descriptor called the region covariance descriptor,

used to characterize an object or image region, belongs to this class of matrices. Region

covariances are immensely popular in object detection, tracking, and classification. Human

detection and recognition, texture classification, face recognition, and action recognition are

some of the problems tackled using this powerful class of descriptors. They have also caught

on as useful features for speech processing and recognition.

Due to the popularity of sparse modeling in the vector domain, it is enticing to apply

sparse representation techniques to SPD matrices as well. However, SPD matrices cannot be

directly vectorized for sparse modeling, since their implicit structure is lost in the process,

and the resulting vectors do not adhere to the positive definite manifold geometry. There-

fore, to extend the benefits of sparse modeling to the space of positive definite matrices, we

must develop dedicated sparse algorithms that respect the positive definite structure and

the geometry of the manifold.

The primary goal of this thesis is to develop sparse modeling techniques for symmetric

positive definite matrices. First, we propose a novel sparse coding technique for represent-

ing SPD matrices using sparse linear combinations of a dictionary of atomic SPD matrices.

Next, we present a dictionary learning approach wherein these atoms are themselves learned

from the given data, in a task-driven manner. The sparse coding and dictionary learning

approaches are then specialized to the case of rank-1 positive semi-definite matrices. A

ii

discriminative dictionary learning approach from vector sparse modeling is extended to the

scenario of positive definite dictionaries. We present efficient algorithms and implementa-

tions, with practical applications in image processing and computer vision for the proposed

techniques.

iii

Contents

Acknowledgements i

Dedication i

Abstract ii

List of Tables viii

List of Figures ix

1 Introduction 1

1.1 The Need for Dedicated Positive Definite Sparse Models 2

1.2 Organization of the Thesis . 3

2 Related Work 5

2.1 Positive Definite Matrices . 5

2.2 Region Covariance Descriptors . 8

2.3 Sparse Modeling . 13

2.3.1 Sparse Coding . 13

2.3.2 Dictionary Learning . 16

2.4 Sparse Models for Positive Definite Matrices 18

iv

3 Positive Definite Sparse Coding 20

3.1 The Tensor Sparse Coding Problem . 22

3.2 The LogDet Divergence . 24

3.3 The Tensor Sparse Coding Formulation . 26

3.4 The MAXDET problem . 29

3.4.1 Type I: `1-regularized Sparse Coding 29

3.4.2 Type II: `1-constrained Sparse Coding 30

3.4.3 Semidefinite Signals . 31

3.5 Effect of Sparsity Constraints . 32

3.6 Effect of Atom Normalization . 35

3.7 Atom Coherence . 37

3.8 Completeness and Coefficient Recovery . 38

3.9 Comparison with Vector Sparse Coding . 41

3.10 Relation between Dgeo and Dld . 44

3.11 Relaxation of the Residual Constraint . 48

3.12 An Efficient Sparse Coding Algorithm . 50

3.13 Tensor Sparse Coding for Classification . 56

3.13.1 Human Appearance Descriptors . 58

3.13.2 Tensor Sparse Coding for Face Recognition 61

3.13.3 Tensor Sparse Coding for Texture Classification 64

3.13.4 Action Recognition with Kinect Motion Capture 65

4 Positive Definite Dictionary Learning 69

4.1 Dictionary Learning Formulation . 70

4.2 Approach: Alternating Minimization . 71

4.3 Atom Update . 72

4.3.1 Gradient Descent . 75

v

4.3.2 Newton Descent . 76

4.3.3 Comparison of Atom Update Techniques 78

4.3.4 Matrix Conjugate Gradient . 80

4.4 Online Dictionary Learning . 83

4.5 Time Complexity . 84

4.5.1 Sparse Coding . 84

4.5.2 Dictionary Learning . 84

4.6 Face Detection with Tensor Dictionary Learning 85

4.7 Cancer Tissue Classification with Positive Definite Dictionaries 87

5 Rank-One Tensor Dictionaries 90

5.1 Efficient Sparse Coding over Rank-1 Dictionaries 92

5.2 Experiments with Rank-1 Sparse Coding . 96

5.3 Learning Rank-1 Dictionaries . 99

5.3.1 Gradient Descent . 101

5.3.2 Newton Descent . 101

5.3.3 Reconstruction Update . 102

5.4 Time Complexity . 103

5.4.1 Sparse Coding . 103

5.4.2 Dictionary Update . 103

5.5 Atom Recovery . 105

5.6 USPS Digits Classification with Rank-1 Dictionaries 106

6 Discriminative Dictionary Learning 108

6.1 Discriminative Dictionary Learning Formulation 109

6.2 Discriminative Dictionaries for Brodatz Textures 113

6.3 USPS Digits Classification with Discriminative Dictionary Learning 115

6.4 Action Recognition with Discriminative Learned Dictionaries 116

vi

7 TeSLa: Tensor Sparse Library 119

7.1 Sparse Coding . 120

7.2 Dictionary Learning . 122

7.3 Discriminative Dictionary Learning . 123

8 Summary and Contributions 124

8.1 Contributions of the Thesis . 124

8.2 Future Directions . 125

References 127

vii

List of Tables

3.1 Mean classification accuracy for the Cam5 dataset 60

3.2 Features used in construction of region covariances for face recognition on

the FERET face dataset. 61

3.3 Mean classification accuracy for the FERET face recognition dataset. 62

3.4 Mean classification accuracy for the Brodatz mosaic dataset. 65

3.5 Cross-validation accuracies over the Kinect motion capture dataset 68

4.1 Tissue classification results with positive definite dictionaries 89

6.1 Discriminative dictionary learning on the USPS dataset 115

6.2 Action recognition on the KTH dataset . 118

viii

List of Figures

3.1 Data points S on the manifold of positive definite matrices are to be repre-

sented by a linear combination of atoms Ai from the dictionary A. 22

3.2 Convex feasible set for the signal reconstruction 31

3.3 Effect of sparsity constraints - `1-regularized sparse coding 33

3.4 Effect of sparsity constraints - `1-constrained sparse coding 34

3.5 Effect of atom normalization . 36

3.6 Phase transition diagram for sparse coefficient recovery when x ≥ 0 40

3.7 Comparison of 1-NN, tensor and vector sparse coding 43

3.8 Comparison of dissimilarity measures Dld and Dgeo 47

3.9 Improvement in reconstruction quality with relaxation of the residual constraint 49

3.10 Coordinate descent algorithm for sparse coding 52

3.11 Average sparse coding times . 54

3.12 Average sparse coding times for varying λ 55

3.13 Representative images from the Cam5 dataset. 59

3.14 Variation in classification accuracy (texture 12) with parameter choice. . . . 66

3.15 Screenshots from the OpenNI tracking program 67

4.1 Comparison of atom update methods . 79

4.2 Average speedup of matrix conjugate gradient 82

4.3 Face detection results with positive definite dictionaries 86

4.4 Tissue image analysis with region covariance dictionaries 88

ix

5.1 Coefficient error for sparse coding over rank-1 dictionaries 97

5.2 Objective function improvement for sparse coding over rank-1 dictionaries . . 98

5.3 Average sparse coding times for rank-1 dictionaries 104

5.4 Recovery of rank-1 atoms through dictionary learning 105

5.5 USPS sample digit images . 106

5.6 USPS digit classification with rank-1 dictionaries 107

6.1 Reduction in coherence between dictionaries with discriminative learning . . 112

6.2 Discriminative dictionary learning on brodatz textures 114

7.1 Average sparse coding computation times for the TeSLa software 121

x

List of Algorithms

1 Coordinate Descent Algorithm for Positive Definite Sparse Coding 52

2 Dictionary Learning . 74

3 Atom Update . 74

4 Matrix Conjugate Gradient . 81

5 Efficient Sparse Coding for Rank-1 Dictionaries 95

6 Rank-1 Dictionary Learning . 100

7 Rank-1 Atom Update . 100

8 Discriminative Dictionary Learning . 111

xi

Chapter 1

Introduction

The past decade has witnessed an enormous growth in the development of theory and al-

gorithms for sparse representation and modeling. Sparse linear models have proven to be

extremely successful in image processing, computer vision and machine learning. Image

reconstruction, compression, denoising, inpainting and segmentation, and object detection,

classification and recognition are some of the problems in image processing and computer

vision which have benefited from the application of sparse representation techniques. How-

ever, a majority of the effort has been focused on vector-valued signals. Higher-order signals

like matrices are usually vectorized as a pre-processing step, and treated like vectors there-

after for sparse modeling.

Symmetric positive definite (SPD) matrices arise in probability and statistics and the

many domains built upon them. They also appear in control systems, diffusion tensor imag-

ing and various other fields. In computer vision, region covariances are SPD matrices used

as feature descriptors to characterize an object or image region. Since their introduction

as image features in 2006, region covariance descriptors (RCDs) have become immensely

popular in object detection, tracking, and classification. Human detection and recognition,

texture classification, and face recognition are some of the problems tackled using this pow-

erful class of descriptors. The employment of spatio-temporal features for region covariances

1

2

also helps in mining information from video data, such as for action recognition. Region

covariances have also caught on as useful features for speech processing and recognition.

The diffusion tensors used to represent water diffusion in human tissue in DT-MRI, kernel

matrices in machine learning and dynamic covariances used for modeling time-varying phe-

nomena such as stock prices and climate variables are some other examples where positive

definite matrices are encountered.

1.1 The Need for Dedicated Positive Definite Sparse

Models

Due to the popularity of sparse modeling in the vector domain, it is enticing to apply sparse

representation techniques to SPD matrices as well. The advantages of sparse modeling

include not only compact representations, but also the development of interpretable models.

The components of the learned models usually incorporate semantic information relevant to

the problem domain. In images, there is an inherent sparsity in image patches under certain

bases (for e.g., DCT). Similarly, there can be inherent sparsity in the positive definite signals

we are trying to model, based on the data they are derived from. Even if the SPD matrices

themselves are not generated from sparse models, the use of sparsity has been shown to

be a suitable regularization technique for learning classifiers, where parsimonious models

are preferred. Further, a sparse linear model can be used as a powerful hyper-prior for

parameters in certain exponential family models, such as for the covariance (or precision)

matrix of a multivariate Gaussian model. In machine learning, data-dependent kernels

are learned by selecting a sparse subset of parametric kernels whose combination performs

the best classification. The use of sparsity in image denoising and inpainting applications

suggests the use of similar models for positive definite tensor fields, such as those occurring

in diffusion tensor imaging (DTI).

3

However, SPD matrices cannot be directly vectorized for sparse modeling, as is often

done for general matrices. Positive definite matrices bear an implicit structure in their

eigenvalues, which become meaningless upon vectorization. Further, the geometry of the

manifold of SPD matrices is lost when they are vectorized. Therefore to extend the benefits

of sparse modeling to the space of positive definite matrices, it is imperative to develop

dedicated sparse algorithms that respect the positive definite structure and the geometry

of the manifold. A new sparse toolbox for handling positive definite data can significantly

enhance the state-of-the-art techniques in the many fields in which they occur.

1.2 Organization of the Thesis

The thesis is organized as follows:

• In Chapter 2 we give an overview of positive definite matrices, the related work on

covariance descriptors, and sparse coding and dictionary learning approaches in the

vector sparse modeling domain.

• Chapter 3 proposes a novel sparse coding approach for representing positive definite

matrices as a non-negative linear combination of a dictionary of atomic positive (semi-

) definite matrices. The effect of the various parameters involved are analyzed, and

an efficient coordinate descent approach is developed to solve the sparse coding prob-

lem. Practical applications of positive definite sparse coding are shown, showing the

suitability of the approach to real-world computer vision problems.

• Chapter 4 develops a sparse modeling procedure to learn positive definite dictionaries

from the training data, in a task-driven manner. The non-convex formulation is tackled

using an alternating minimization approach, and an online generalization is also briefly

outlined.

4

• In Chapter 5, we extend the positive definite sparse coding and dictionary learning

approaches to rank-1 semidefinite dictionary atoms, and derive efficient algorithms

suited to this specialized case.

• Chapter 6 incorporates the cross-coherence between different class dictionaries into the

learning procedure, and provides a way to learn the dictionaries in a discriminative

manner.

• Chapter 7 presents the Tensor Sparse Library (TeSLa), a collection of optimized C++

implementations of the algorithms presented in this thesis.

• We conclude the thesis in Chapter 8, and discuss potential future research directions.

Chapter 2

Related Work

2.1 Positive Definite Matrices

An n × n symmetric1 matrix A is said to be positive semidefinite (denoted by Sn+) if, for

any non-trivial vector v ∈ Rn,

vTAv ≥ 0. (2.1)

When the above holds with strict inequality, A is said to be positive definite (denoted by

Sn++). Another equivalent definition of a positive definite (or semidefinite) matrix is that it

has only positive (or non-negative) eigenvalues. A positive definite (semidefinite) matrix is

a natural generalization to a positive (non-negative) number.

Conversely, a negative definite (semidefinite) matrix is one in which vTAv < 0 (≤ 0) for

any non-trivial vector v ∈ Rn. The eigenvalues are appropriately negative or non-positive.

If neither of these inequalities hold, and A has both positive and negative eigenvalues, it is

denoted as indefinite.

1 Throughout this work, positive (semi-)definite indicates symmetric matrices only. Although it is
possible to have a non-symmetric matrix A such that vTAv ≥ 0, we are interested only in the symmetric
case, since most of the data we consider with - covariances, kernels, diffusion tensors - are all symmetric
matrices by construction.

5

6

The space of n×n positive definite2 matrices forms a connected Riemannian manifold.

Given two PD matrices A and B, the Riemannian distance metric Dgeo(A,B) gives the

length of the geodesic connecting these two points on this manifold. This is given by

[Pennec et al., 2006],

Dgeo(A,B) =
∥∥log

(
B−1/2AB−1/2

)∥∥
F
, (2.2)

where log(·) represents the matrix logarithm and ‖ · ‖F is the Frobenius norm. This can

also be written as

Dgeo(A,B) =

√√√√
n∑

i=1

log2 λi (A,B), (2.3)

where λi (A,B) , i = 1, . . . , n are the generalized eigenvalues of (A,B). The geodesic distance

is affine-invariant, in that any non-singular transformation on the covariances does not

change the distance:

Dgeo(XAX
T , XBXT) = Dgeo(A,B) for any invertible X. (2.4)

The logarithm map of A ∈ Sn+ at B ∈ Sn++ associated with the Riemannian manifold is:

logB(A) = B1/2 log
(
B−1/2AB−1/2

)
B1/2, (2.5)

and the exponential map of A at B is:

expB(A) = B1/2 exp
(
B−1/2AB−1/2

)
B1/2, (2.6)

where log and exp are the matrix logarithm and matrix exponential respectively. The loga-

rithm map is associated with the projection of A onto the tangent space of the Riemannian

manifold at B, which is given by log
(
B−1/2AB−1/2

)
. The tangent space of PD matrices Sn++

is the space of n×n symmetric matrices Sn, which is Euclidean. It does not have structure

in the eigenvalues like the points on the positive definite manifold, and symmetry is the

2 We will refer to symmetric positive definite matrices as SPD or PD matrices (symmetry is implicitly
understood.) Symmetric positive semidefinite matrices are denoted as SPSD or PSD.

7

only constraint. Therefore, it is possible to vectorize the upper triangular part of symmetric

matrix for further processing. The Riemannian manifold and its tangent space both have

dimension n(n+ 1)/2.

The geodesic distance metric is computationally intensive in that when computing dis-

tances between all pairs of matrices in a set of N PD matrices we need to solve N(N − 1)/2

generalized eigenvalue problems. Therefore, as an approximation, [Arsigny et al., 2006] pro-

pose another metric known as the Log-Euclidean metric, given by:

DLE(A,B) = ‖logA− logB‖F . (2.7)

This is essentially the Euclidean distance between the projections of A and B onto the

tangent space of the manifold at the identity matrix. The Log-Euclidean metric is a lower

bound on the actual geodesic distance [Bhatia, 2007], and is exact when the two matrices

commute. To compute all the pairwise distances in a set of N PD matrices, we only need

to solve N generalized eigenvalue problems. Many works in the literature use this distance

metric due to its efficiency.

Positive definite and semidefinite matrices arise in many domains. Covariance (and pre-

cision) matrices in probability and statistics are, in general, positive semidefinite. PD/PSD

matrices also occur in control systems, and as kernel matrices in machine learning. In med-

ical imaging, there is a new technique known as diffusion tensor imaging (DTI), where each

voxel that is imaged is represented as a 3 × 3 positive definite matrix, called the diffusion

tensor. The principal eigenvalue and eigenvector of this matrix give the physical magnitude

and direction of diffusion of water molecules in that voxel. The fact that positive definite

matrices should be treated as such, without vectorization, is most evident in this example,

since the positive eigenvalue actually signifies physical magnitude. The magnitude of wa-

ter diffusion cannot be negative, and so it would not make sense to have an indefinite or

negative semidefinite tensor. Therefore, any processing step should not violate the positive

definiteness of the diffusion tensors.

8

In recent literature, covariances have been used extensively as feature descriptors of

image regions in computer vision and image processing. We will elaborate on these region

descriptors in the next section.

2.2 Region Covariance Descriptors

Region Covariance Descriptors (RCDs) were introduced by [Tuzel et al., 2006] as a novel

region descriptor for object detection and texture classification. Given an image I, let φ

define a mapping function that extracts an n-dimensional feature vector zi from each pixel

i ∈ I, such that

φ(I, xi, yi) = zi , (2.8)

where zi ∈ Rn, and (xi, yi) is the location of the ith pixel. A given image region R is

represented by the n × n covariance matrix CR of the feature vectors {zi}|R|i=1 of the pixels

in region R. Thus the region covariance descriptor is given by

CR =
1

|R| − 1

|R|∑

i=1

(zi − µR) (zi − µR)T , (2.9)

where, µR is the mean vector,

µR =
1

|R|

|R|∑

i=1

zi . (2.10)

The feature vector z usually consists of color information (in some preferred color–space,

usually RGB) and information about the first and higher order spatial derivatives of the

image intensity, depending on the application intended.

Although covariance matrices can be positive semi–definite in general, the covariance

descriptors themselves are regularized by adding a small constant multiple of the identity

matrix, making them strictly positive definite. Thus, the region covariance descriptors

belong to Sn++.

9

As mentioned earlier, the geodesic distance is affine-invariant under a non-singular trans-

formation X. This corresponds to a linear transformation of the feature vectors zi 7→ Xzi.

Region covariances are invariant to illumination, orientation and scale of the image region,

depending on the features used and how the regions are defined. Many existing classifi-

cation algorithms for region covariances use the geodesic distance in a K-nearest-neighbor

framework. The geodesic distance can also be used with a modified K-means algorithm for

clustering.

[Porikli and Tuzel, 2006] describe a technique for fast construction of region covariances

for rectangular image windows, using integral images, enabling the use of these compact

features for many practical applications that demand real–time performance.

[Wildenauer et al., 2007] incorporate the region covariances with connected regions from

multi-scale segmentations to efficiently segment textures. [Tou et al., 2009] use Gabor-based

covariance descriptors for texture classification. [Ge and Yu, 2008a] perform scene classifi-

cation by regarding them as textures, using vectorized region covariances as inputs to SVM

classifiers.

[Porikli et al., 2006] use the covariance descriptors for tracking non-rigid objects with

an update mechanism based on a Lie algebra defined at the tangent space of the identity

matrix.

[Prakash et al., 2007, Sharif et al., 2008b, Wu et al., 2008, Wang et al., 2009, Wu et al., 2009a,

Wu et al., 2009b, Yinghui and Jianjun, 2009, Ding et al., 2010, Austvoll and Kwolek, 2010]

all use the covariance descriptors for object tracking. [Li et al., 2008], [Wang and Yagi, 2008]

use the covariance descriptor with the Log-Euclidean distance metric for robust object track-

ing. In [Ge and Yu, 2008b, Hu et al., 2008, Palaio and Batista, 2008, Palaio et al., 2009,

Palaio and Batista, 2009a, Palaio and Batista, 2009b] region covariances are combined with

particle filters for object tracking. In [Kwolek, 2009], the author describes a particle swarm

optimization algorithm for object tracking using region covariances. [Karasev et al., 2008]

compute a kernel-weighted region covariance for object tracking. [Kwon and Park, 2008]

10

perform visual tracking using incremental principal geodesic analysis. [Arif and Vela, 2009]

introduce a kernelized version of the region covariance using kernel PCA and apply it to

object tracking. [Artner et al., 2009] apply an elaborate framework for tracking articu-

lated objects in a coarse-to-fine pyramidal approach. [Zheng et al., 2009] apply a manifold

learning method for tracking people with region covariances. [Wang and Wu, 2010] perform

object tracking using region covariances by incrementally learning a low-dimensional model

for the covariances in an adaptive manner.

In [Porikli and Kocak, 2006], the authors develop an algorithm for robust license plate

detection using covariance descriptors, by using them as feature inputs for a neural network.

[Ruta et al., 2009] use region covariances, among other features, for traffic sign detection.

In [Osman, 2009a, Osman, 2009b], a hardware setup for object recognition using region

covariances is described, along with an online variation of the random forests classifier.

In [Cargill et al., 2009], the authors provide a performance evaluation of the covariance

descriptor as a suitable feature for generic target detection.

In [Tuzel et al., 2007, Tuzel et al., 2008], region covariances are vectorized and used in

a cascade of LogitBoost classifiers for pedestrian detection. [Martelli et al., 2010] present

an FPGA architecture for classification based on the above algorithm. [Gualdi et al., 2009]

also use covariance descriptors in a LogitBoost framework for human detection, but also

incorporate motion information as well as scene structure. In [Gualdi et al., 2010], they

further incorporate relevance feedback along with weak calibration of the scene as con-

textual information for improved human detection. [Paisitkriangkrai et al., 2008b] also

use a cascade of boosted classifiers based on region covariances for pedestrian detection.

[Paisitkriangkrai et al., 2007, Paisitkriangkrai et al., 2008a, Paisitkriangkrai et al., 2008c] com-

pare the performance of covariance descriptors with other state-of-the-art image features for

pedestrian detection. [Hussein et al., 2009] provide a comprehensive evaluation of different

features for the problem of human detection.

11

In [Ma et al., 2007], the authors use region covariances for image retrieval in a multi-

camera surveillance setting. Each person in each frame is represented by the covariance de-

scriptor of that region, and the geodesic distance is used as a metric for query-based retrieval

of other frames where the person was present. In [Alahi et al., 2008], region covariances are

used for object matching across two cameras, which are described as a master-slave setup.

[Cai et al., 2010] use region covariances for matching groups of people across cameras with

non-overlapping fields-of-view. [Sivalingam et al., 2009] describe a framework for metric

learning over positive semi-definite matrices, for the semi-supervised clustering of human

appearance descriptors across multiple cameras. [Kwolek, 2010, Kuo et al., 2010] also use

region covariances for inter-camera association. In [Sharif et al., 2008a], crowd behavior is

monitored to detect abnormal events using covariance matrices computed over the optical

flow of crowd motion.

In [Pang et al., 2008], the authors use covariance descriptors computed over Gabor filter

responses for face recognition. [Huo and Feng, 2010] combine Gabor-based region covari-

ances with an Active Appearance Model (AAM) for face recognition. [Zheng et al., 2010]

recognize facial emotions using covariance descriptors within a Bayesian discriminant anal-

ysis framework. In [Han et al., 2009], a symmetric correlation matrix of directional features

is used for palmprint recognition. [Lu et al., 2009] use covariance descriptors on Gabor filter

responses for palmprint recognition.

[Guo et al., 2010b] use region covariances based on optical flow for action recognition.

In [Yuan et al., 2010], the authors also perform action recognition using the Log-Euclidean

distance metric. In [Guo et al., 2010a], the covariance descriptors are taken to the tangent

space, by the logarithm map, which is Euclidean and vector sparse coding is performed in

this space. The resultant algorithm performs extremely well for action recognition in video.

Region covariances have spread to some other domains as well. [Ye et al., 2008] use

covariance descriptors computed over acoustic features for speech emotion recognition.

12

[Shinohara et al., 2010] perform clustering of covariance descriptors for acoustic applica-

tions. [Kilic et al., 2010] use region covariances for classification of images of colonic polyps

in CT-colonography.

[Porikli, 2010] provides a collective description of most of the different learning algo-

rithms used above for region covariances. The most successful algorithms are those which

respect the structure of the Riemannian manifold. Hence it is imperative to do the same

for the development of successful sparse representation models in this domain.

Next we explore some of the related work on sparse representation and modeling in the

vector domain.

13

2.3 Sparse Modeling

Linear regression involves the representation of an output signal, or response, by a linear

combination of a set of input signals, or predictor variables. These inputs constitute a

dictionary. The set of regression coefficients obtained may be dense, i.e.,, the response may

depend on all of the inputs. However, in many practical scenarios or due to the preference

of parsimonious models, the output is modeled as depending only on a sparse subset of the

inputs.

Sparse linear regression, or sparse coding, involves the representation of a signal by a

linear combination of a sparse subset of signals from a dictionary. It is a fundamental tool

required for the development of sparse linear models.

In this section, we review the relevant literature on vector sparse coding and modeling

techniques. The development of sparse representation models involves two primary steps:

Sparse coding Sparse linear regression, or sparse coding, involves the decomposition of a

given signal x in terms of sparse linear combination α of atoms from a fixed (usually

over-complete) dictionary D.

Dictionary Learning In many applications, it is also desirable to learn this dictionary

D in a data-driven manner, to encode prior knowledge about the problem domain.

Given a sufficiently large set of training signals X = {xi}, a sparsity-promoting, over-

complete dictionary D and the corresponding sparse coefficients A = {αi} are learned.

2.3.1 Sparse Coding

Sparse linear regression and sparse signal recovery can be considered as two faces of the

same coin. In the former, we are given a signal x and dictionary D, and we attempt to find

a decomposition α of the signal by a linear combination of a sparse subset of columns from

the dictionary, called atoms. In sparse signal recovery, we assume the signal of interest is α,

14

and D is a measurement matrix. The measurements available x consist of inner products

of the rows of the dictionary D with the signal α, and the goal is to recover α by solving

this under-determined system of equations. In essence, both these problems are equivalent,

but the different interpretations give rise to different ways of analyzing the sparse coding

process.

Ideally, sparsity is quantified by the `0 ‘pseudo-norm’, which is the number of non-zero

elements in a vector. The sparse coding problem is given by

min
α

‖α‖0 (2.11)

s.t. x = Dα , (2.12)

or, in a sparsity-constrained version given by

min
α

‖x−Dα‖22 (2.13)

s.t. ‖α‖0 ≤ T , (2.14)

where T is a constraint on the maximum number of non-zero elements allowed in α. As the

`0-term is a non-convex function, solving for the exact optimum is not possible. The prob-

lem is combinatorial and requires time exponential in the dimension of α. However, greedy

approximation algorithms such as the Matching Pursuit (MP) of [Mallat and Zhang, 1993],

the Orthogonal Matching Pursuit (OMP) of [Pati et al., 1993], [Davis et al., 1997] have been

used extensively, and performance guarantees for OMP and necessary conditions for optimal-

ity are provided in [Tropp, 2004, Tropp and Gilbert, 2007]. These algorithms sequentially

select the best atom in the dictionary for reducing the current objective, in a greedy fash-

ion. [Donoho et al., 2006] also introduced the Stagewise OMP (StOMP) procedure, which

selects sets of atoms at each step.

A convex relation of the `0 constraint, involves regularization or constraint by using

the `1 norm of the signal. [Tropp, 2006] elaborates in detail the convex relation of the

15

above problem, especially in the presence of noise, and proves that under certain condi-

tions, solving for the `1 criterion gives almost the exact solution for the `0 problem. Some

of the `1-regularized/constrained formulations include the LASSO of [Tibshirani, 1996] as

well as the Basis Pursuit (BP) and the Basis Pursuit De-Noising (BPDN) problems by

[Chen et al., 2001]. Different algorithms have been introduced to solve the `1 sparse coding

problems, such as LARS/homotopy-based methods [Efron et al., 2004, Osborne et al., 2000].

The many variants of the `1 sparse coding problem are:

min
α

‖α‖1

s.t. x = Dα or ‖x−Dα‖22 ≤ ε ,

or

min
α

‖x−Dα‖22

s.t. ‖α‖1 ≤ T ,

or

min
α

‖x−Dα‖22 + λ‖α‖1 .

[Wright et al., 2009] apply sparse representation for face recognition, with immense suc-

cess. They do not learn a dictionary, but simply use the training data directly as the

dictionary. [Wright et al., 2010] provide a review of some successful applications of sparse

representation techniques to solve problems in computer vision.

16

2.3.2 Dictionary Learning

The K-SVD algorithm for dictionary learning was developed by [Aharon et al., 2006] for

learning an over-complete dictionary D from a training set of signals X = {xi}. Dictio-

nary update and sparse coding stages are alternated, with the dictionary learning stage

optimizing each atom sequentially. [Engan et al., 1999] also developed the Method of Op-

timal Directions (MOD), which is simply a least-squares method of solving for the entire

dictionary directly. However, this method does not consider the sparsity structure of the co-

efficients, and therefore is not sparsity-promoting. Further, the K-SVD algorithm has been

extremely successful and popular for its speed of convergence and excellent results, and has

been the algorithm of choice for dictionary learning applications. [Rubinstein et al., 2010a]

provides a survey of various approaches for training a dictionary from a given set of training

signals.

Dictionary learning been used for image denoising in [Elad and Aharon, 2006], and

[Mairal et al., 2008a] perform denoising, demosaicking and image inpainting using dictio-

nary learning. Also, in [Mairal et al., 2009] the authors use dictionary learning and sparse

coding in a non-local-means-type framework for image denoising.

[Mairal et al., 2007] learn dictionaries at multiple scales on a quad-tree decomposition,

aiming for the multi-scale performance characteristic of wavelet dictionaries. [Rubinstein et al., 2010b]

learn sparse dictionaries as well as sparse coefficients, denoted as double sparsity. [Bar and Sapiro, 2010]

use dictionary learning in a hierarchical architecture to make the process invariant to rigid

transformations. [Duarte-Carvajalino and Sapiro, 2009] use dictionary learning in a com-

pressive sensing framework, where they learn both the dictionary as well as the sensing

matrix simultaneously, given a training set of signals.

17

[Mairal et al., 2009, Mairal et al., 2010] present an online algorithm for dictionary learn-

ing which is highly suited for large datasets, extremely fast, and enjoys theoretical perfor-

mance guarantees. [Mairal et al., 2008, Mairal et al., 2008b] augment the dictionary learn-

ing optimization with a discriminative term for performing classification with multiple dic-

tionaries. [Sprechmann and Sapiro, 2010] use dictionary learning in an EM framework for

unsupervised clustering. [Ramirez et al., 2010] apply dictionary learning to both clustering

and classification applications. In [Castrodad and Sapiro, 2011], the authors learn dictio-

naries at two levels, one on the image features and the next on the consolidated sparse

coefficients from sparse coding over the first dictionary. With this approach, they demon-

strate state-of-the-art results for action recognition on various datasets.

This list described above is not claimed to be a comprehensive review of sparsity-related

algorithms, but a representative sample which is relevant to the domain of computer vision

and image processing. They show the power of sparse models in solving computer vision

problems, and motivate the need to extend these powerful models to other classes of features,

such as covariance matrices.

18

2.4 Sparse Models for Positive Definite Matrices

The vector sparse modeling tools of sparse coding and dictionary learning have been helpful

not only for learning compact representations, but also for developing interpretable models

and extracting semantic information from the signals of interest. The extension of these

tools for positive definite matrices will therefore greatly benefit not only computer vision

applications, but also many of the other domains where the data points are positive definite

matrices.

The literature on region covariances shows the many different applications of these de-

scriptors, and the variety of algorithms used. Although there has been extensive work in

the machine learning and statistics literature on low-rank modeling of matrices and sparse

inverse covariance estimation, there has been very little work attempting to extend sparse

linear regression to positive definite matrices.

In [Guo et al., 2010a], the authors take the covariance descriptors to the tangent space

at the identity, resulting in symmetric matrices which are then vectorized. They then

perform vector sparse coding in this Euclidean space. This is still an approximation, and

the decomposition is not linear in the covariances themselves, but linear in the logarithmic

map. In fact, their decomposition can be viewed in a way as a sparse product of dictionary

atoms, rather than a sparse linear combination. However, the excellent results demonstrated

in this work motivates the development of sparse coding and dictionary learning techniques

which can operate directly on the manifold of region covariances.

[Pfander et al., 2008] decompose a general matrix as a sparse linear combination of a

dictionary of matrices by multiplying all the involved matrices on a known vector re-

ducing the matrix problem to a known vector problem with well-established guarantees.

[Wang et al., 2010] present the Common Component Analysis problem, where the authors

learn a common low-dimensional subspace for a set of high-dimensional covariance matrices.

19

In a similar approach, [Sra and Cherian, 2011] learn a generalized dictionary of rank-1 pos-

itive semidefinite atoms to sparsely represent covariance descriptors. However, the authors

in the above two approaches use the Frobenius norm as the error metric.

In this thesis, we present a novel sparse coding approach that uses a distortion function

more appropriate for positive definite matrices - motivated from the Wishart probability

distribution and respecting the Riemannian manifold geometry. A sparse modeling ap-

proach to learn dictionaries of positive definite matrices from the training data is proposed,

and extensions to rank-1 dictionary atoms and discriminative dictionary learning are also

presented. We explore the effects of various quantities involved in the sparse coding and

dictionary learning framework, and provide efficient implementations for the algorithms in

this thesis. From the community, [Wang et al., 2012] have already used our proposed sparse

coding and dictionary learning approaches to model the covariance matrix Σ in a graphical

model and apply this model to classify images from different scene categories. The useful-

ness of the sparse covariance models described in this thesis to the computer vision and

image processing community is demonstrated by the experiments presented in this thesis.

Chapter 3

Positive Definite Sparse Coding

The first step is the development of sparse models for positive definite matrices is the design

of sparse linear regression techniques. We denote this as tensor sparse coding1 to contrast

this with the usual methods of vector sparse coding.

In this chapter, we formulate the tensor sparse coding problem with an appropriate dis-

tortion measure for positive semidefinite matrices. We then show that our formulation falls

under a well-known class of convex optimization problems. The effects of various parameters

such as the dictionary size, sparsity regularizer, data dimension, and normalization scheme

are explored, giving an in-depth understanding of the possibilities of tensor sparse coding.

An empirical phase transition diagram showing the coefficient recovery properties of this

formulation, under a compressive sensing viewpoint.

Next, we compare the performance of our method with vector sparse coding on a syn-

thetic dataset, showing the necessity of a direct tensor approach to sparse coding positive

definite matrices. A relation between our sparse coding distortion measure and the Rie-

mannian geodesic distance is derived, showing that our proposed method conforms to the

manifold structure. An efficient algorithm for solving the sparse coding problem is also

1 The name tensor is inspired from diffusion tensor imaging, where the positive definite matrix at each
voxel is referred to as the diffusion tensor.

20

21

presented, which gives 2 orders of magnitude speed-up over off-the-shelf interior point meth-

ods. Experiments on real-world computer vision applications show the practical usefulness

of positive definite sparse coding.

22

3.1 The Tensor Sparse Coding Problem

We begin with a known dictionary consisting of K n × n positive definite matrices A =

{Ai}Ki=1, where each Ai ∈ Sn++ is referred to as a dictionary atom. Given a signal S ∈ Sn++,

our goal is to represent S as a linear combination of the dictionary atoms, i.e.,

S = x1A1 + x2A2 + . . .+ xKAK =
K∑

i=1

xiAi, (3.1)

where x = (x1, x2, . . . , xK)T is the coefficient vector.

With a slight abuse of notation, we will henceforth represent the sum
∑K

i=1 xiAi as Ax

for the sake of convenience2 .

Aj

M
Ai

S

Figure 3.1: Data points S on the manifold of positive definite matrices are to be represented
by a linear combination of atoms Ai from the dictionary A.

Since only a non-negative linear combination of positive definite matrices is guaranteed

to yield a positive definite matrix, we impose the constraint x ≥ 0 on the coefficient vector.

However, we will also explore the effect of removing this constraint in later sections.

It is to be noted that the given matrix S need not always be exactly representable as

a sparse non-negative linear combination of the dictionary atoms. In other words, S need

2 This can be distinguished from the regular Ax matrix-vector multiplication through the calligraphic
notation of A.

23

not be exactly sparse in the space of the dictionary A. Hence, we will try to find the best

approximation Ŝ = Ax to S, by minimizing the residual approximation error.

S ≈ Ŝ = Ax∗, where x∗ = arg min
x

d (Ax, S) , (3.2)

and d(·, ·) is an appropriate distortion measure over positive definite matrices.

Since we are reconstructing a positive definite signal S, we also require the approximation

Ŝ to be positive definite,

Ŝ � 0 =⇒ x1A1 + x2A2 + . . .+ xKAK � 0. (3.3)

Although this would be ensured by construction due to the non-negativity of x and the

strictly positive definite dictionary atoms, we nonetheless retain this constraint explicitly

for reasons which will become clear shortly.

We further require that the representation be sparse, i.e., S is to be represented by a

sparse linear combination of the dictionary atoms. To this effect, we impose a constraint

on the `0 “pseudo-norm” of x,

‖x‖0 ≤ T, (3.4)

where T is a pre-defined parameter, denoting the maximum number of non-zero elements

of x.

Next we need to select the distortion measure in Equation (3.2). While the Riemannian

geodesic distance (2.2) would be our first choice - however it is a non-convex function

(consider | log x|) and therefore difficult to optimize directly. Hence we search for another

loss function to optimize. The LogDet divergence, as we will elaborate next, is a well-suited

distortion measure, not only due to its significant relation with Wishart and Gaussian

distributions, but also because it results in a well-known and tractable convex optimization

problem.

24

3.2 The LogDet Divergence

The LogDet divergence [Kulis et al., 2006]Dld (X, Y) is a Bregman divergence [Bregman, 1967]

between two matrices X ∈ Sn+ and Y ∈ Sn++, and is given by,

Dld(X, Y) = tr
(
XY −1

)
− log det

(
XY −1

)
− n. (3.5)

It is asymmetric (and therefore, a divergence) Dld (X, Y) 6= Dld (Y,X), and is convex only

in the first argument. It is also known as Stein’s loss in covariance estimation in statistics,

or the Burg matrix divergence (a matrix generalization of the Burg divergence).

The LogDet divergence is equal to twice the Kullback-Leibler divergence (K-L diver-

gence) between two multivariate Gaussians with equal mean [Davis et al., 2007]. Consider:

Px = N (µx,Σx) , (3.6)

Py = N (µy,Σy) , (3.7)

where µx, µy ∈ Rn and Σx,Σy ∈ Sn++. The K-L divergence between Px and Py is given by

DKL (Px‖Py) =
1

2

(
tr
(
Σ−1y Σx

)
− log det

(
Σ−1y Σx

)
+ (µx − µy)T Σ−1y (µx − µy)− n

)
. (3.8)

When µx = µy,

DKL (Px‖Py) =
1

2

(
tr
(
Σ−1y Σx

)
− log det

(
Σ−1y Σx

)
− n

)
, (3.9)

∴ DKL (Px‖Py) =
1

2
Dld (Σx,Σy) . (3.10)

According to [Banerjee et al., 2005], there exists a bijection between regular exponential

families and a large class of Bregman divergences known as regular Bregman divergences.

For example, the squared-error loss function which is minimized in vector sparse coding

methods comes from the squared Euclidean distance, which is the Bregman divergence cor-

responding to the multivariate Gaussian distribution. Thus, the minimization of a squared

25

error objective function corresponds to the assumption of Gaussian noise. The Wishart

distribution [Wishart, 1928], which is a distribution over n × n positive definite matrices,

with positive definite parameter matrix Θ ∈ Sn++ and degrees of freedom p ≥ n, is given by

Pr(X|Θ, p) =
|X|(p−n−1)/2 exp

(
−1

2
tr (Θ−1X)

)

2pn/2|Θ|p/2Γn(p/2)
, (3.11)

where | · | is the determinant. The LogDet divergence Dld(X,Θ) is the Bregman divergence

corresponding to the Wishart distribution Pr(X|Θ, p) [Wang et al., 2009].

The Wishart distribution is also a conjugate prior for the inverse sample covariance

matrix (or precision matrix) of a multivariate Gaussian distribution. Correspondingly,

the inverse Wishart distribution is the conjugate prior for the sample covariance matrix.

[Gelman et al., 2003]. Since

Dld(X, Y) = Dld(Y −1, X−1), (3.12)

the Bregman divergence for the inverse Wishart distribution Pr(X−1|Θ−1, p) isDld(Θ−1, X−1).

Here Θ−1 refers to the true covariance of the multivariate Gaussian distribution and X−1

the sample covariance matrix.

In the sparse coding framework, if Ŝ is the true covariance, and S is the sample covariance

signal3, the goal is to estimate the true covariance as a sparse linear combination of certain

basis atoms. Therefore, the Logdet divergence Dld(Ŝ, S) appears to be a suitable candidate

as the objective function for the sparse coding formulation.

Note that the LogDet divergence is also affine-invariant like the geodesic distance, in

terms of its arguments:

Dld(XAXT , XBXT) = Dld(A,B) for any invertible X. (3.13)

In the later sections we will also show a further relation between the Riemannian geodesic

distance (2.2) and the LogDet divergence (3.5).

3 The notation is, unfortunately, counter-intuitive, since we usually denote the true signal X and the
estimate X̂.

26

3.3 The Tensor Sparse Coding Formulation

Motivated by the aforementioned reasons, the optimization problem is defined as minimizing

the LogDet divergence Dld(Ŝ, S) between the approximation Ŝ and the given matrix S.

Dld(Ŝ, S) = tr
(
S−1Ax

)
− log det

(
S−1Ax

)
− n. (3.14)

In order to reduce the problem to a canonical form, and to improve numerical stability,

we apply the invariant property of the trace and the log det under similarity transformations.

The objective function is unaffected by the similarity map X 7→ S1/2XS−1/2, where X is

the argument of the trace or log det.

Dld(Ŝ, S) = tr
(
S−1/2 (Ax)S−1/2

)
− log det

(
S−1/2 (Ax)S−1/2

)
− n (3.15)

= tr
(
Âx
)
− log det

(
Âx
)
− n, (3.16)

where Â == {Âi}Ki=1, and Âi = S−1/2AiS
−1/2. Exploiting the linearity of the trace, setting

c : ci = trÂi, and discarding the constant n,

f (x) = Dld(Ŝ, S) = cTx− log det
(
Âx
)
. (3.17)

In order to learn the dictionary A, it becomes necessary to impose a constraint that the

residual E = S− Ŝ be positive semidefinite, and not indefinite. The minimum eigenvalue of

the residual λmin

(
S − Ŝ

)
should therefore be non-negative and as close to zero as possible.

Later, we will compare the effects of relaxing this constraint in the experiments.

Ŝ = Ax � S or Âx � In, (3.18)

where In is the n× n identity matrix. Combining with Equation (3.3), we get

0 � Âx � In. (3.19)

The `0 sparsity constraint in Equation (3.4) is non-convex and and therefore we replace

this with its nearest convex relaxation - the `1 norm of x. Under certain assumptions

27

[Tropp, 2006], minimizing the `1 penalty has been proven to yield equivalent results as

minimizing ‖x‖0 for sparse vector decompositions. Hence it is appealing to perform the

same relaxation here as well.

Combining all the above constraints with the objective function we wish to minimize,

we have the following optimization problem:

min
x≥0

cTx− log det
(
Âx
)

+ λ ‖x‖1 (3.20)

s.t. 0 � Âx � In, (3.21)

where λ ≥ 0 is a parameter which represents a trade–off between a sparser representation

and a more accurate reconstruction. Since the xi’s are non–negative, the `1 norm simply

becomes the sum of the components of x, i.e.,

‖x‖1 =
K∑

i=1

xi, (3.22)

yielding the optimization problem:

min
x≥0

ĉTx− log det
(
Âx
)

(3.23a)

s.t. 0 � Âx � In, (3.23b)

where the sparse regularization is absorbed into the first linear term, with ĉi = ci + λ.

Concurrent with other vector sparse coding techniques, we may express this optimization

problem in an alternate form which puts a hard constraint on the `1 norm of x instead of

a penalty term λ ‖x‖1 in the objective function.

min
x≥0

cTx− log det
(
Âx
)

(3.24a)

s.t.
K∑

i=1

xi ≤ T (3.24b)

0 � Âx � In, (3.24c)

28

We denote the optimization problems defined by (3.23) and (3.24) as Type I (`1-regularized)

and Type II (`1-constrained) respectively.

Tensor Sparse Coding: Type-I (`1-regularized)

Given S � 0, A = {Ai | Ai � 0}Ki=1:

min
x

K∑

i=1

xitr
(
AiS

−1)− log det

(
K∑

i=1

xiAiS
−1

)
+ λ ‖x‖1

s.t.
x ≥ 0

0 �∑K
i=1 xiAi � S

Tensor Sparse Coding: Type-II (`1-constrained)

Given S � 0, A = {Ai | Ai � 0}Ki=1:

min
x

K∑

i=1

xitr
(
AiS

−1)− log det

(
K∑

i=1

xiAiS
−1

)

s.t.

x ≥ 0

‖x‖1 ≤ T

0 �∑K
i=1 xiAi � S

29

3.4 The MAXDET problem

The above formulations of tensor sparse coding fall under a general class of optimiza-

tion problems known as determinant maximization problems [Vandenberghe et al., 1998],

(MAXDET), of which semi-definite programming (SDP) and linear programming (LP) are

special cases. The MAXDET problem is defined as [Vandenberghe et al., 1998]:

min
x

cTx + log detG(x)−1 (3.25a)

s.t. G(x) , G0 + x1G1 + . . .+ xKGK � 0 (3.25b)

F (x) , F0 + x1F1 + . . .+ xKFK � 0, (3.25c)

where x ∈ RK , Gi ∈ Sn and Fi ∈ SN . The MAXDET problem is convex and efficient

interior point (IP) methods exist for solving them.

Note that the G(x) inside the log det term also explicitly appears as a constraint in

the standard form of the MAXDET problem, leading to our inclusion of the same in our

formulation.

3.4.1 Type I: `1-regularized Sparse Coding

Comparing to the optimization problem Type I in (3.23), we have

ci = trÂi + λ, for i = 1, . . . , K (3.26)

G(x) =
K∑

i=1

xiÂi � 0 (3.27)

F (x) =

 diag(x) 0

0 In −
∑K

i=1 xiÂi

 � 0, (3.28)

30

with N = K + n. The corresponding component matrices are given by

G0 = 0, Gi = Âi, for i = 1, . . . , K,

F0 =

 0 0

0 In

, Fi =

 diag(ei) 0

0 −Âi

, for i = 1, . . . , K,

(3.29)

where ei, i = 1, . . . , K are the canonical basis vectors in RK .

3.4.2 Type II: `1-constrained Sparse Coding

Comparing to the optimization problem Type II in (3.24), we have

ci = trÂi, for i = 1, . . . , K (3.30)

G(x) =
K∑

i=1

xiÂi � 0 (3.31)

F (x) =

diag(x) 0 0

0 T −∑K
i=1 xi 0

0 0 In −
∑K

i=1 xiÂi

 � 0, (3.32)

with N = K + n. The corresponding component matrices are given by

G0 = 0, Gi = Âi, for i = 1, . . . , K,

F0 =

0 0 0

0 T 0

0 0 In

, Fi =

diag(ei) 0 0

0 −1 0

0 0 −Âi

, for i = 1, . . . , K,

(3.33)

where ei, i = 1, . . . , K are the canonical basis vectors in RK .

Thus, we have formulated two variations of our tensor sparse coding problem (`1-

regularized and `1-constrained), both of which are convex and have been expressed in the

standard MAXDET form. The feasible set consists of the region of intersection of two

positive semidefinite cones (see Figure 3.2), one centered at the origin O, and the other

31

M
o

SS

Figure 3.2: The convex feasible set for reconstruction Ŝ : 0 � Ŝ � S

- an inverted cone centered at S. The approximation Ŝ lies in the strict interior of this

closed convex set. The − log det term in the objective serves two purposes - a) it pushes the

approximation Ŝ toward S, motivating a better approximation, and b) it serves as the log-

barrier function preventing the reconstruction from becoming indefinite. The linear term

serves as a weighted regularizer on the coefficients x.

3.4.3 Semidefinite Signals

It is important to note here that the signal S must be strictly positive definite in our sparse

coding problem, but the atoms in the dictionary can be semidefinite (in fact, even rank-1,

which will be handled in a specialized manner in Chapter 5). In order to sparse code positive

semidefinite signals S ∈ Sn+, we suggest the following procedure:

1. Add a small multiple δ > 0 times the n × n identity matrix In to the signal: S̃ ←
S + δIn.

2. Concatenate the dictionary with the identity matrix: Ã ← [A In].

3. Sparse code S̃ over Ã to get x̃ = [x xI], where xI corresponds to the coefficient of

In.

4. Ignore xI and compute the reconstruction Ŝ = Ax.

32

3.5 Effect of Sparsity Constraints

Our first set of experiments were run on a synthetic data set, comprised of covariance

matrices. We start with a randomly generated n × n covariance matrix C (n = 5) and

generate sets of samples from a multivariate Gaussian distributionN (0, C). There are O(n2)

samples per set, from which we compute the sample covariance for each of these sample sets.

These covariance matrices forms our data set. We select K = 60 of these matrices to form

our dictionary A = {Ai}Ki=1. The sample point S to be sparse-coded is also generated

in this manner. The covariance matrix of a multivariate Gaussian distribution follows an

inverse Wishart distribution, and therefore our optimization problem is well-suited to this

model. The quantities we consider to represent the performance of the reconstruction are the

LogDet divergence Dld(Ŝ, S), the geodesic distance Dgeo(Ŝ, S), the `1 norm of the optimal

coefficient vector ‖x∗‖1 and the minimum eigenvalue of the residual λmin(S − Ŝ).

Figure 3.3 shows the effect of varying λ on the quality of reconstruction, under the `1-

regularized problem. The geodesic distance can be seen to vary in a smooth and similar

fashion to the LogDet divergence, reaffirming our choice of objective function. We also show

the actual solution vector x∗ for λ = 0, where it can be seen that even the unconstrained case

results in a sparse solution vector. This is due to the non-negativity constraint on the coef-

ficient vector, and it is widely noted in the vector-domain that non-negative decompositions

result in sparsity, under certain conditions [Donoho and Tanner, 2005, Donoho and Stodden, 2004,

Lee and Seung, 2000].

Figure 3.4 shows a similar set of plots for the `1-constrained problem. Instead of plotting

‖x‖1, which is anyways constrained to be less than or equal to T , we plot ‖x‖0 vs. T . We

set a threshold of 10−8 for the coefficients (Note the staircase-like graph of ‖x‖0).

33

10
−2

10
0

10
2

0

2

4

6

8

10

λ

D
ld

(Ŝ
,S

)

Dld(Ŝ, S) vs. λ

10
−2

10
0

10
2

0

1

2

3

4

5

6

7

λ

D
g
e
o
(Ŝ

,S
)

Dgeo(Ŝ, S) vs. λ

10
−2

10
0

10
2

0

0.2

0.4

0.6

0.8

1

λ

‖x
∗ ‖

1

‖x∗‖1 vs. λ

10
−2

10
0

10
2

10
−20

10
−15

10
−10

10
−5

λ

λ
m

in
(Ŝ

−
S
)

λmin (Ŝ − S) vs. λ

0 10 20 30 40 50 60
0

0.05

0.1

0.15

0.2

0.25
Solution vector x∗ for λ = 0

Figure 3.3: Effect of sparsity constraints, shown for n = 5, K = 60. We show Dld(Ŝ, S),
Dgeo(Ŝ, S), ‖x∗‖1, as well as λmin(S − Ŝ) plotted in logarithmic scale. The λ values are
varied logarithmically. The solution vector x∗ in the unconstrained case is also shown on
the right, and is observed to be sparse even without explicitly enforcing any sparsity.

34

0 2 4 6
0

2

4

6

8

10

12

14
Variation of Dld(Ŝ, S) with T

T

D
ld

(Ŝ
,S

)

0 2 4 6
0

2

4

6

8

10
Variation of dgeo(Ŝ, S) with T

T

d
g
e
o
(Ŝ

,S
)

0 2 4 6
2

4

6

8

10
Variation of ‖x‖0 with T

T

‖x
‖ 0

0 2 4 6
10

−10

10
−5

10
0

Variation of λmin(S − Ŝ) with T

T

λ
m

in
(Ŝ

,S
)

Figure 3.4: Plot of the various quantities vs. T for n = 5, K = 60. We show Dld(Ŝ, S),
Dgeo(Ŝ, S), ‖x∗‖1, as well as λmin(S−Ŝ) plotted in logarithmic scale. The T values are varied
linearly, from Tmin to Tmax, in steps of Tstep. The solution vector x∗ in the unconstrained
case T =∞ is exactly the same as shown in Figure 3.3.

35

3.6 Effect of Atom Normalization

In vector sparse coding and dictionary learning, when trying to approximate a signal x by a

dictionary D and a coefficient vector α, the dictionary atoms are usually normalized to have

unit length, since the decomposition x = Dα can be determined only up to a scaling factor.

We have this same issue in the tensor sparse coding problem as well, and hence we need a

standard method of normalization throughout this work. Different ways to normalize the

dictionary atoms were tested:

• normalization by spectral norm, ‖Ai‖2 = 1.

• normalization by Frobenius norm, ‖Ai‖F = 1.

• normalization by trace, tr (Ai) = 1.

Since all matrix norms are equivalent [Golub and Loan, 1996], we expect to see only a

proportional change in any of the output characteristics between the different normalization

schemes. Figure 3.5 shows that this is indeed the case. Throughout the rest of this work,

we adhere to normalization by Frobenius norm, due to the relation to the atom coherence

definition in the next section.

36

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5
Variation of Dld(Ŝ, S) with λ

λ

D
ld

(Ŝ
,S

)

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3
Variation of dgeo(Ŝ, S) with λ

λ

d
g
e
o
(Ŝ

,S
)

0 0.2 0.4 0.6 0.8 1
2

4

6

8

10

12

14
Variation of ‖x‖1 with λ

λ

‖x
‖ 1

0 0.2 0.4 0.6 0.8 1
10

−15

10
−10

10
−5

10
0

Variation of λmin(S − Ŝ) with λ

λ

λ
m

in
(Ŝ

,S
)

Figure 3.5: Plot of the various quantities vs. λ for n = 5, k = 60, showing the effect of
different normalizations - (i) blue line - 2-norm, (ii) green line - Frobenius norm, and (iii)
red line - trace. We show the LogDet divergence Dld(Ŝ, S), the geodesic distance Dgeo(Ŝ, S),

the `1 norm of x ‖x‖1, and the minimum eigenvalue of the residual λmin(S − Ŝ) plotted in
logarithmic scale.

37

3.7 Atom Coherence

Before we proceed any further, it is important to define a fundamental property of the

dictionary. We extend the coherence property for vector dictionaries to dictionaries of

positive semi-definite atoms. The inner product in a positive definite matrix space is given

by 〈Ai, Aj〉 = tr (AiAj).

Definition 1. The coherence between two symmetric positive (semi-)definite dictionary

atoms Ai and Aj is given by

µ (Ai, Aj) = 〈Ai, Aj〉 = tr (AiAj) , (3.34)

where 〈·, ·〉 denotes the inner product in matrix space.

The triangle inequality gives

tr (AiAj) ≤ ‖Ai‖F ‖Aj‖F . (3.35)

Therefore if the atoms are normalized to unit Frobenius norm as mentioned in the previous

section, we have the following bounds on the coherence measure:

0 ≤ µ (Ai, Aj) ≤ 1, for Ai, Aj ∈ Sn+, ‖Ai‖F = ‖Aj‖F = 1. (3.36)

For non-trivial Ai and Aj:

• µ (Ai, Aj) = 0 if and only if they are low-rank (semi-definite) and their eigenspaces

are disjoint.

• µ (Ai, Aj) = 1 if and only if Ai = Aj.

38

3.8 Completeness and Coefficient Recovery

We define the terms undercomplete, complete and overcomplete with respect to positive

semidefinite atoms. Since there are M = n(n+1)/2 variables in an n×n positive semidefinite

matrix, this denotes the ambient dimension in which these matrices are present. There can

be at most M linearly independent n × n positive semidefinite matrices. Although there

are further constraints on the eigenvalues, we define completeness with reference to this

quantity.

Definition 2. A complete dictionary of positive semidefinite matrices has K = M =

n(n+ 1)/2 atoms. A dictionary with K < M is denoted as undercomplete and that with

K > M is overcomplete.

The MAXDET formulation (3.25) guarantees a unique optimal solution as long as the

dictionary atoms Ai, i = 1, . . . , K are linearly independent [Vandenberghe et al., 1998],

regardless of the sparsity of the coefficient vector x ∈ RK . Therefore, so long as K ≤ M ,

the MAXDET optimal solution is unique.

However, we are more interested in the overcomplete case (K > M) and the solution

vector x∗ is sparse, with only k non-zero elements in K dimensions (k-sparse). From the

signal measurement and recovery viewpoint of compressed sensing, we may consider M as

the number of measurements.

[Donoho and Tanner, 2005, Donoho and Tanner, 2009, Donoho and Tanner, 2010] use

phase transition diagrams to show the conditions of exact recovery of sparse signals, in

terms of the sparsity fraction ρ = k/M and the undersampling ratio δ = M/K. We show

a similar empirical phase transition diagram in Figure 3.6 through the following described

experiment.

A synthetic dictionary A of K n×n positive definite atoms is generated, and a random

sparse vector x∗ ∈ RK
+ is synthesized, with varying sparsity k = 1, . . . ,M . A signal is

constructed S = Ax∗, and sparse-coded over A to obtained the recovered estimate x̂. The

39

sparse vector x∗ is said to be correctly recovered if the relative error is less than or equal to

1%:
‖x̂− x∗‖2
‖x∗‖2

≤ 0.01

The experiment was performed for n ∈ {3, 4, 5, 6} and averaged over N = 500 trials each,

and the fraction of correct recovery is shown in Figure 3.6. We see a similar trend as

shown in [Donoho and Tanner, 2009], where even for extremely overcomplete dictionaries,

when the signal is sparse enough, it is correctly recovered. The overlaid line indicates the

boundary of ∼ 50% correct reconstruction.

Throughout this thesis, we constrain x to be non-negative, since only non-negative linear

combinations of positive definite matrices are guaranteed to be positive definite. However,

the MAXDET problem [Vandenberghe et al., 1998] itself does not have such constraints on

the coefficients. The semidefinite constraints are sufficient to keep the reconstruction Ŝ

positive definite. The guarantee of unique recovery when K ≤ M still holds for general

x ∈ RK for any sparsity k.

To test whether unique recovery of general x is still possible with overcomplete dictionar-

ies K > M , we relax the non-negative constraints on the coefficients x. The ground truth

x∗ ∈ RK is generated by ensuring that the reconstruction S = Ax∗ is positive definite4

(S � 0). When the same experiment as above is repeated for general x, the coefficient

recovery fails for all sparsity levels k = 1, . . . ,M , when K > M .

Thus, non-negativity of the coefficients x is a required constraint in our sparse coding

formulation.

4 This is non-trivial, and requires some sort of “eigenvalue completion”, wherein the general signed
coefficients are first randomly sampled, and then adjusted to make the reconstruction S positive definite.
Due to this reason, we cannot have a k = 1-sparse negative coefficient vector.

40

Figure 3.6: Empirical phase transition diagram showing the fraction of correct recovery
(corresponding to a relative reconstruction error ≤ 1%) for varying undersampling ratio
δ = M/K and sparsity fraction ρ = k/M . Results are averaged over n ∈ {3, 4, 5, 6} for 500
trials each.

41

3.9 Comparison with Vector Sparse Coding

In order to clarify the need for a direct tensor sparse coding method, instead of vectorizing

the SPD matrix and performing vector sparse coding, the advantages of the former over the

latter must be demonstrated.

The dictionary A = {Ai}Kk=1 is generated as follows: each positive definite dictionary

atom is computed as Ak = WkW
T
k , where Wk ∈ Rn×n and each Wk(i, j), i, j = 1, . . . , n, is

sampled i.i.d from U(0, 1). A known k-sparse vector x∗ ∈ RK
+ is first generated - the support

of x∗ is generated by selecting k of K locations uniformly at random without replacement,

and the non-zero values in x∗ are sampled i.i.d. from U(0, 1). The true signal is constructed

as S∗ = Ax∗, and the test signal S to be sparse-coded is obtained as the sample covariance

from a set of N i.i.d. multivariate Gaussian samples from N (0, S∗) (with N = 10n2).

The sample covariance matrix of a multivariate Gaussian distribution follows a Wishart

distribution [Wishart, 1928], and therefore our optimization problem is well suited to this

model.

The quantities we consider to represent the performance of the reconstruction are the

Logdet divergence Dld(Ŝ, S), the geodesic distance Dgeo(Ŝ, S), the `1 norm ‖x̂‖1 of the

estimated coefficient vector x̂ and the minimum eigenvalue λmin(S − Ŝ) of the residual

(S − Ŝ).

Since we know the true x∗ that generated the test signal S from the dictionary, we can

consider the efficiency in recovering this true coefficient vector. The `1-constrained sparse

coding technique is used, where the constraint T is varied as a fraction of the true required

‘budget’ ‖x∗‖1, i.e., T ∈ [0, ‖x∗‖1]. We show results for cases where the constraint Ŝ � S is

retained (“2-cone”) and relaxed (“1-cone”). For a baseline, we also show the performance

of the 1-nearest-neighbor reconstruction (1-NN), where x∗ is an all-zero vector except for a

non-zero coefficient at the index corresponding to the nearest atom.

For the vector sparse coding case, we vectorize, for both the signal and the dictionary,

42

and solve the following optimization problem:

min
x≥0

‖s−Dx‖22

s.t. ‖x‖1 ≤ T,

where s = vecu(S), D = [a1 . . . aK] where ai = vecu(Ai), and vecu is a function denot-

ing the vectorization of the upper triangular part of the argument matrix. We retain the

non-negativity constraint on the coefficients here as well for a fair comparison. The matrix

reconstruction is then obtained as Ŝ = vecu−1(ŝ) where ŝ = Dx and vecu−1 denotes the in-

verse of the upper triangular vectorization operation. This is repeated for matrix logarithms

(since log : Sn++ 7→ Sn) and the Cholesky factors of the positive definite matrices.

We compare the geodesic distance between the reconstruction and the true covariance

Dgeo(Ŝ, S
∗) as well as the error in the coefficient vector ‖x− x∗‖22 in the tensor and vector

sparse coding approaches.

This is performed over 100 different coefficient vectors, given a fixed dictionary. The

`1-constrained sparse coding is used for both the tensor and vector cases, and the constraint

T is varied as a fraction of the true required ‘budget’ ‖x∗‖1.
Figure 3.7 shows the comparison of geodesic distance between the reconstruction and

the true covariance, for varying ‘budget’ constraints on the `1 norm of x. Clearly the tensor

sparse coding provides a more rigorous reconstruction in terms of the distance metric on the

manifold. In fact even when the full `1 budget is provided, the vector case does not provide

as good a reconstruction as the tensor algorithm that operates directly in the space of SPD

matrices. The plot is shown in a log-scale to clearly show the gap between the two curves

at T = ‖x∗‖1. The “1-cone” and “2-cone” curves are alike up to a certain T , but after that

the effect of the extra constraint in preventing a more closer approximation is visible.

From a sparse signal recovery viewpoint, we may compare the coefficient estimation

error, also shown in Figure 3.7. In this case as well, the tensor sparse coding outperforms

the vector method above a certain `1 constraint limit. The results are shown for three

43

different problem sizes (n,K, k): (5, 15, 3), (6, 18, 3) and (7, 28, 3).

This experiment validates the importance of being able to perform sparse coding of

positive definite matrices directly without resorting to vectorization.

0 0.2 0.4 0.6 0.8 1
10

−1

10
0

10
1

T/‖x∗‖1

D
g
e
o
(Ŝ

,S
)

TSC (1−cone)
TSC (2−cone)
1−NN
Vec
Chol+Vec
Log+Vec

0 0.2 0.4 0.6 0.8 1
10

−1

10
0

10
1

T/‖x∗‖1

D
g
e
o
(Ŝ

,S
)

TSC (1−cone)
TSC (2−cone)
1−NN
Vec
Chol+Vec
Log+Vec

0 0.2 0.4 0.6 0.8 1
10

−1

10
0

10
1

T/‖x∗‖1

D
g
e
o
(Ŝ

,S
)

TSC (1−cone)
TSC (2−cone)
1−NN
Vec
Chol+Vec
Log+Vec

0 0.2 0.4 0.6 0.8 1
10

−2

10
−1

10
0

T/‖x∗‖1

‖x
−

x
∗ ‖

2

TSC (1−cone)
TSC (2−cone)
1−NN
Vec
Chol+Vec
Log+Vec

0 0.2 0.4 0.6 0.8 1
10

−2

10
−1

10
0

T/‖x∗‖1

‖x
−

x
∗ ‖

2

TSC (1−cone)
TSC (2−cone)
1−NN
Vec
Chol+Vec
Log+Vec

0 0.2 0.4 0.6 0.8 1
10

−2

10
−1

10
0

T/‖x∗‖1

‖x
−

x
∗ ‖

2

TSC (1−cone)
TSC (2−cone)
1−NN
Vec
Chol+Vec
Log+Vec

Figure 3.7: Comparison of 1-NN, tensor and vector sparse coding - geodesic distance (upper
row) and coefficient estimation error (lower row). The x-axis shows the normalized `1
constraint parameter T/‖x∗‖1, i.e., the `1 ‘budget’ is varied as a fraction of the `1 norm of
the true solution x∗. The problem sizes are (n,K, k) = (5, 15, 3) for column 1, (6, 18, 3) for
column 2, and (7, 28, 3) for column 3 (Best viewed in color).

44

3.10 Relation between Dgeo and Dld

In this section we derive an interesting connection between the Riemannian geodesic distance

and the LogDet divergence. Let λ ∼ λ(A,B) be the generalized eigenvalues of two positive

definite matrices (A,B).

The Riemannian geodesic distance between A and B is given by

Dgeo(A,B) =
∥∥log

(
B−1/2AB−1/2

)∥∥
F
. (3.37)

In terms of the generalized eigenvalues, the geodesic distance

Dgeo(A,B) = ‖log λ‖2 =

∥∥∥∥log

(
1

λ

)∥∥∥∥
2

. (3.38)

The general form of a Bregman divergence for matrix arguments is given by [Kulis et al., 2009]

Dϕ(X, Y) = ϕ(X)− ϕ(Y)− 〈∇ϕ(Y), (X − Y)〉, (3.39)

where ϕ(·) is a strictly convex function over a convex set S, and is differentiable in relint(S)

(relative interior). The last term denotes the matrix inner product 〈A,B〉 = tr
(
ABT

)
.

The LogDet divergence is derived from ϕ(X) = − log detX and is given by:

Dld(A,B) = log detA−1 − log detB−1 − 〈−B−1, A−B〉

since ∇ (− log detX) = −X−1

= − log det
(
B−1A

)
+ tr

(
B−1A−B−1B

)

∴ Dld(A,B) = tr
(
B−1A

)
− log det

(
B−1A

)
− n. (3.40)

The second term in the above equation can be written in terms of λ as:

− log det
(
B−1A

)
= tr

(
log
(
B−1A

)−1)
=

n∑

i=1

log

(
1

λi

)
. (3.41)

45

In our sparse coding formulation, we require that the approximation Ŝ � S, the original

signal. If B = S and A = Ŝ, then A � B, or B−1A � In. Therefore, for i = 1, . . . , n,

λi ≤ 1 =⇒ 1

λi
≥ 1 =⇒ log

(
1

λi

)
≥ 0. (3.42)

Since the elements in the sum are all non-negative,

− log det
(
AB−1

)
=

n∑

i=1

log

(
1

λi

)
=

n∑

i=1

∣∣∣∣log

(
1

λi

)∣∣∣∣ (3.43)

=

∥∥∥∥log

(
1

λ

)∥∥∥∥
1

. (3.44)

Looking back into the expression for the Logdet divergence, we have

Dld(A,B) =

∥∥∥∥log

(
1

λ

)∥∥∥∥
1

+ 〈B−1, A−B〉, (3.45)

which is a combination of

1. an `1-norm term of reciprocal generalized eigenvalues of (A,B), denoted by DL1(A,B),

and

2. the component of the difference between A and B in the direction of the tangent of

ϕ(·) = − log det(·) evaluated at B.

When λ is very close to 1, or |1 − λ| � 1, setting x = 1 − λ and using the Taylor’s

approximation log(1 + x) ≈ x when |x| � 1, the geodesic distance can be rewritten as

follows:

Dgeo(A,B) = ‖log(λ)‖2 ≈ ‖λ− 1‖2

=
∥∥B−1A− In

∥∥
F

=
∥∥B−1 (A−B)

∥∥
F

D2
geo(A,B) ≈ tr

{(
B−1 (A−B)

)2}
when λ ≈ 1. (3.46)

46

Similarly, rewriting the second term in Equation (3.45), we get

Dld(A,B) =

∥∥∥∥log

(
1

λ

)∥∥∥∥
1

+ tr
{
B−1 (A−B)

}
. (3.47)

It is interesting that the second term of the Logdet divergence forms a different `1-`2

type similarity with the approximate geodesic distance when λ ≈ 1. Thus there is a two-fold

connection between the Riemannian geodesic distance and the LogDet divergence.

Therefore, in our framework, specifically under the condition that Ŝ � S,

Dgeo(A,B) =

∥∥∥∥log

(
1

λ

)∥∥∥∥
2

(3.48)

DL1(A,B) =

∥∥∥∥log

(
1

λ

)∥∥∥∥
1

(3.49)

Dld(A,B) = DL1(A,B) + tr
{
B−1 (A−B)

}
(3.50)

D2
geo(A,B) ≈ tr

{(
B−1 (A−B)

)2}
when λ ≈ 1. (3.51)

This clearly illustrates an analogy of the geodesic distance and the LogDet divergence

to the `2 and `1 distances in more than one way.

This supports the use of the LogDet divergence in our model, and also intuitively ex-

plains the similarity in the trend of the geodesic distance and LogDet divergence across

varying approximations in the sparse coding decompositions. Further, since the `1 norm

tends to push most of the components to zero, the `1 term on the log-reciprocal general-

ized eigenvalues pushes most of the generalized eigenvalues to 1, thus giving us a closer

approximation Ŝ to S, and a semidefinite residual E = S − Ŝ.

The three dissimilarity measures can be compared for the simple case of 2 × 2 SPD

matrices, and the eigenvalues (λ1, λ2) are varied in [0, 1], the domain of our problem. In

Figure 3.8, we show the slice of this surface at λ1 = λ2.

47

0 0.5 1 1.5
0

1

2

3

4

λ

D

Dgeo = ‖ log 1
λ‖2

Dld =
∑(

λ + log 1
λ − 1

)

DL1 = ‖ log 1
λ‖1

Figure 3.8: Comparison of dissimilarity measures in the 2 × 2 case: Slice at λ1 = λ2 = λ.
Clearly all three distance functions have their minimum at λ1 = λ2 = 1. In terms of how
‘strong’ the objective function is in pushing the λi’s to 1, Dld < Dgeo < DL1.

48

3.11 Relaxation of the Residual Constraint

In other sparse-coding or reconstruction problems, the goal is to reach within a certain ε-ball

around the target, from any possible direction. Since the constraint of Ax � S allows us

to approach the target only from one side, we relax this to achieve a closer approximation,

with all other constraints and parameters staying the same. While it is straightforward to

understand that the relaxation of this constraint enables better approximations, this is also

illustrated in the following experiment.

For different values of the data dimension n, we synthesize dictionaries of K = n(n+1)/2

atoms. Random positive definite signals S = {S1, . . . , S100} are generated, and are sparse

coded over the corresponding dictionary, both with and without the constraint Ax � S.

The optimum approximation error using both approaches are compared - we denote D1 to

be the average approximation error when the constraint is removed, and D2 to be that when

the constraint is present. The results were averaged over 10 trials, and the ratio D1/D2 is

shown in Figure 3.9. As n increases, the improvement in the approximation when the upper

cone constraint is relaxed is more pronounced.

49

5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Dimensions (n)

R
at

io
 :

D
1 /

D
2

Figure 3.9: Relative reconstruction error with the estimated coefficient vector x̂ with (D2)
and without (D1) the Ax � S constraint. The improvement in the approximation error
is shown for different values of n, and averaged over 25 iterations. As n increases, this
improvement is more pronounced. (1σ bars are also shown.)

50

3.12 An Efficient Sparse Coding Algorithm

In this section, we present our implementation for solving the `1-regularized sparse coding

problem, in which the upper cone constraint is relaxed:

min
x≥0

Dld (Ax, S) + λ ‖x‖1 (3.52a)

s.t. Ax � 0 (3.52b)

We developed a first-order coordinate descent approach [Luo and Tseng, 1992] to sparse

coding, which updates one coordinate in the coefficient vector x at a time. We cyclically

iterate over each of the coefficients and repeat this process until convergence.

Expanding and simplifying the objective in the sparse coding problem (3.52) and remov-

ing terms independent of x:

min
x≥0

K∑

i=1

(ci + λ)xi − log det

(
K∑

i=1

xiAi

)
(3.53a)

s.t.
K∑

i=1

xiAi � 0, (3.53b)

where ci = tr (AiS
−1), i = 1, . . . , K. Let the objective in (3.53) be denoted by f (x).

To update coordinate xk,

min
xk≥0

(ck + λ)xk − log det

(
K∑

i=1

xiAi

)
. (3.54)

Denote the objective in (3.54) to be g(xk). The gradient with respect to the variable xk is:

∇g(xk) = ck + λ− tr

(

K∑

i=1

xiAi

)−1
Ak

 = ck + λ− tr

(
AkŜ

−1
)
. (3.55)

The minimum of the convex function g(xk) can be found by setting ∇g(xk) = 0. Unfor-

tunately, this does not admit a closed form expression to solve for xk. However, we can

51

solve this one-dimensional optimization by proceeding along the gradient descent direction

δxk = −∇g(xk) at the appropriate stepsize β selected by exact line search. Since the mag-

nitude of δxk can be absorbed into the stepsize β, we are only interested in the sign of

δxk.

Therefore, the update expression for coordinate xk is given by:

xk ← xk + βδxk (3.56)

with the descent direction

δxk = sign
(

tr
(
AkŜ

−1
)
− ck − λ

)
. (3.57)

The stepsize β is chosen by line search along δxk such that it minimizes f (x + βδxkek),

where ek ∈ RK is the k-th canonical basis vector. While exact line search is preferred, it is

also possible to use backtracking (Armijo) line search to ensure a sufficient reduction in the

objective function at each iteration.

We mention here some empirical observations seen in practice: we see that a single

step of stepsize β = |∇f(xk)|/|∇2f(xk)| at each iteration works amazingly well. In very few

iteration, the zeros of the true coefficient x∗ are attained, and the non-zero coordinates come

very close to their true target values, thereafter converging linearly. This behavior is shown

for a synthetic example in Figure 3.10. We can further speed up the algorithm by choosing a

smart initialization of x. Note that when the true solution x∗ is 1-sparse, that one non-zero

value is equal to minλ λ(S,Ai∗), where i∗ is the location of the non-zero coordinate, and

λ(S,Ai) are the generalized eigenvalues of the pair (S,Ai). Therefore, instead of initializing

the coefficients to ε, we observed that setting the initial value xi = minλ λ(S,Ai) gives the

fastest solution. When x∗ is 1-sparse the corresponding coordinate in the initial x already

has the right coefficient, and it now becomes a matter of just identifying the right support

(which as mentioned is extremely fast).

52

Algorithm 1 Coordinate Descent Algorithm for Positive Definite Sparse Coding

Input: Signal S, dictionary A = {Ai}Ki=1, parameter λ

Output: Coefficient vector x

Compute c: ci = tr (AiS
−1), i = 1, . . . , K

Initialize x = ε1, ε > 0

Compute Ŝ =
∑K

i=1 xiAi

repeat

for k = 1 to K do

Compute descent direction δxk = sign
(

tr
(
AkŜ

−1
)
− ck − λ

)

Compute stepsize β along δxk that minimizes f (x + βδxkek)

Update xk ← (xk + βδxk)+, where (a)+ = max (a, 0)

Set α = xnewk − xoldk
Update Ŝ ← Ŝ + αAk

end for

until convergence

10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Iteration

C
oe

ff
ic

ie
nt

s

(a)

10 20 30 40 50 60

10
−10

10
−5

Iteration

‖x
−

x
∗ ‖

2 2

(b)

Figure 3.10: Convergence of the coordinate descent procedure for tensor sparse coding
(n = 5, K = 15, k = 3.) In very few iterations, the zeros are attained and the non-zeros
reach close to their final values.

53

Our optimized C++ implementation of the sparse coding coordinate descent algorithm

yields an average of 2 orders of magnitude5 speed-up compared to the interior-point imple-

mentations of SDPT3 [Tutuncu et al., 2003] (with YALMIP [Löfberg, 2004]) in MATLAB.

We utilize the Eigen library [Guennebaud et al., 2010] with OpenMP on an Intel Core i7-

Q720 1.6GHz 64-bit QuadCore laptop with 4GB RAM. Figure 3.11 shows the average sparse

coding time in milliseconds per signal for different values of (n,K), averaged over 50 runs of

1000 signals each. Figure 3.12 shows the sparse coding timing for different values of (K,λ)

for n = 10.

5 In practice we saw speed-ups between 50 and 250.

54

10 20 30 40 50
0

1

2

3

4

5

6

7

Dictionary size (K)

T
im

e/
si

gn
al

 (
m

s)

n=5
n=10
n=15
n=20

Figure 3.11: Average sparse coding times per n×n positive definite signal S over a dictionary
A of size K, using the coordinate descent algorithm (λ = 0.1). 3σ bars are also shown.

55

10 20 30 40 50
0

5

10

15

20

25

Dictionary size (K)

T
im

e/
si

gn
al

 (
m

s)

λ=0
λ=0.1
λ=1
λ=10

Figure 3.12: Average sparse coding times per 10 × 10 positive definite signal S over a
dictionary A of size K, using the coordinate descent algorithm for varying λ. 3σ bars are
also shown.

56

3.13 Tensor Sparse Coding for Classification

Sparse coding has been applied to classification problems in many domains. Here we present

applications where we use the tensor sparse coding for classification. Let us denote the

number of classes by C. Two of the main approaches to classifying with dictionaries are:

1. Maintain separate dictionaries for each class A1,A2, . . . ,AC . Sparse code the test

signal S independently over each dictionary to get the coefficients x1,x2, . . . ,xC re-

spectively.

2. Create a combined dictionary A = [A1 | A2 | . . . | AC] by concatenating the indi-

vidual class dictionaries, each of size Nc, c = 1, . . . , C. The test signal S is sparse coded

over the combined dictionary to obtain the coefficient vector x, which is then split into

the components corresponding to each of the sub-dictionaries x =
[

xT1 xT2 . . . xTC
]T

.

The different class reconstructions are computed as Ŝc = Acxc, c = 1, . . . , C, and the test

signal is assigned the label c∗ of the class which gives the closest approximation:

label c∗ = arg min
c

Dld

(
Ŝc, S

)
. (3.58)

These two approaches are usually referred to as reconstruction error-based classifiers - the

former is denoted the separate dictionary approach, and the latter as the combined dictionary

approach.

It is also possible to get the reconstruction error for different values of the regular-

izer λ (or constraint T in Type-II sparse coding), and use the sequence of reconstruction

errors Dld(λ) (or Dld(T)) as a feature for classification with another classifier, say, sup-

port vector machines (SVM). The coefficients themselves are useful indicators and can

be used as features. In a combined dictionary approach, the distribution of the coef-

ficients over the different classes shows a sort of affinity towards the respective classes.

[Castrodad and Sapiro, 2011] use the `1 norms of the individual class coefficient vectors as

57

features φ = [‖x1‖1 ‖x2‖1 . . . ‖xC‖1]T ∈ RC in a second level of dictionary learning,

forming a type of deep learning approach.

58

3.13.1 Human Appearance Descriptors

In this section, we present experiments on classification of human appearances, based on re-

gion covariance features. We use a subset of the 18-class Cam5 dataset from [Sivalingam et al., 2009],

from which we choose the 16 classes which contain at least 10 data points each. The

dataset contains a total of 407 images from these 16 classes. Representative images from

the dataset are shown in Figure 3.13. The descriptors are 5× 5 covariances computed from

the {R,G,B,Ix,Iy} features at each pixel corresponding to the human foreground blobs.

From each of the 16 classes, we select 5 points for training and the remaining are used for

testing.

Our sparse coding method is used for classification as follows: The training data from

each class forms a dictionary Am, m = 1, . . . ,M , where M is the number of classes (M = 16

here). The class dictionaries are concatenated into one large dictionary A:

A = [A1 | A2 | . . . | AM] .

The test signal S is sparse coded over this combined dictionary, to yield a sparse coefficient

vector x. This vector consists of the coefficients corresponding to atoms from different

classes 1, . . . ,M , and can be written as

x =
[

xT1 | xT2 | . . . | xTM
]T
.

The class-wise reconstruction Ŝm is then obtained as Ŝm = Amxm, and the class-wise

reconstruction error is computed as Em = Dld

(
Ŝm, S

)
. The label m∗ of the dictionary

offering the minimum reconstruction error is then assigned to the test signal S.

m∗ = arg min
m

Dld

(
Ŝm, S

)
.

This approach is adapted from [Wright et al., 2009], and we refer to this as the combined

dictionary approach.

We apply this combined dictionary approach to the problem of classifying human ap-

pearances, forming a dictionary A of K = 80 atoms. For this experiment, in addition to

59

the reconstruction error-based classification (REC), we also compute a weighted label vote

(WLV) for each class from the corresponding coefficient values, and use this as a score for

classification:

m∗ = arg max
m

‖xm‖1.

Figure 3.13: Representative images from the Cam5 dataset.

The classification accuracy for this dataset averaged over 100 random train-test splits

is shown in Table 3.1. The sparse coding results provide a notable increase in accuracy

compared to the KNN or SVM techniques. We also show the REC and WLV classification

accuracies with the vectorized upper-triangular parts of the covariances. This is obtained

using traditional vector sparse coding (VSC), i.e., the Lasso problem of [Tibshirani, 1996].

In addition, the vectorized upper-triangular part of the Cholesky factor of each positive

definite matrix descriptor is also used in the vector sparse coding framework for both REC

and WLV classification. These results are also included in Table 3.1.

The tensor sparse coding approaches for appearance recognition outperform the KNN

and SVM baseline algorithms, and also the vector sparse coding-based approaches. This

demonstrates that sparse coding techniques that retain the positive definiteness of the data

60

.

Classifier Accuracy (%)

Geo-KNN (K = 5) 66.95 (4.89)

Geo-SVM (σ = 0.5) 77.64 (5.96)

VSC + WLV (Vec) 62.00 (3.89)

VSC + REC (Vec) 62.16 (3.67)

VSC + WLV (Chol) 73.53 (2.98)

VSC + REC (Chol) 76.40 (2.84)

TSC + WLV 78.62 (1.49)

TSC + REC 77.85 (2.50)

Table 3.1: Mean classification accuracy for the Cam5 dataset. Results are averaged over
100 trials and standard deviation values are also shown in parentheses.

points yield better results not only with synthetic data but also in practical computer vision

applications.

61

3.13.2 Tensor Sparse Coding for Face Recognition

In this section, we present experimental results for face recognition from grayscale images.

This is performed over a subset of the FERET face database [Phillips et al., 2000], consisting

of grayscale images of 10 subjects, where each individual represents a separate class. The

frontal or near-frontal images corresponding to the two-letter codes ‘ba’, ‘bd’, ‘be’, ‘bf ’, ‘bg’,

‘bj’, and ‘bk’ are used for our experiments, leading to a total of 70 face images. We extract

Gabor-based region covariances from each face image following the approach of Pang et

al. [Pang et al., 2008].

We crop the images based on the eye positions, and resize them to be of size 60 × 60

pixels. The Gabor filters [Pang et al., 2008] corresponding to 8 orientations (u = 0, . . . , 7)

and 5 scales (v = 0, . . . , 4) are applied to each image, resulting in 40 different filter responses

guv. In addition, we also test on features such as (x, y) spatial location of pixels in the im-

age, image intensity I, derivatives of image intensity Ix, Iy, Ixx, Iyy and gradient orientation

arctan Iy/Ix. The different sets of features used in the covariance descriptor construction

are described in Table 3.2.

.

Mode Feature Set

1 [x y I |Ix| |Iy| |Ixx| |Iyy|]

2
[
x y |Ix| |Iy| |Ixx| |Iyy| arctan |Iy ||Ix|

]

3 [x y |Ix| |Iy| |Ixx| |Iyy|]

4
[
x y I |Ix| |Iy| |Ixx| |Iyy| arctan |Iy ||Ix|

]

5 [x y g00 g01 . . . g7vmax]

6 [x y I g00 g01 . . . g7vmax]

7 [g00 g01 . . . g7vmax]

Table 3.2: Features used in construction of region covariances for face recognition on the
FERET face dataset. Feature sets 5–7 consist of 5 subsets each (a)–(e), where the number
of octaves is varied from vmax = 0, . . . , 4.

62

.

Table 3.3: Mean classification accuracy for the FERET face recognition dataset. Results
are averaged are over 35 trials, and standard deviations are provided in parenthesis.
Mode Covariances Precisions Geo-KNN Geo-SVM

(n) Separate (%) Combined (%) Separate (%) Combined (%) (%) (%)

1-cone 2-cone 1-cone 2-cone 1-cone 2-cone 1-cone 2-cone K = 1 σ = 20.0

1 (7) 85.81 (9.57) 85.81 (10.40) 83.24 (10.40) 79.14 (11.14) 76.48 (10.26) 76.67 (11.63) 40.86 (6.14) 43.81 (5.17) 77.62 (9.55) 66.95 (7.23)

2 (7) 69.24 (12.75) 64.76 (11.93) 71.33 (11.82) 64.19 (13.20) 53.71 (10.59) 54.95 (11.94) 20.95 (7.28) 24.76 (6.49) 62.67 (9.62) 49.62 (8.08)

3 (6) 65.24 (11.96) 64.48 (14.14) 71.43 (13.12) 65.33 (13.62) 53.24 (10.00) 52.57 (10.78) 16.48 (6.90) 17.43 (6.81) 61.33 (10.76) 49.33 (7.51)

4 (8) 86.76 (9.27) 84.19 (10.55) 84.76 (10.46) 76.95 (9.87) 77.33 (10.47) 79.05 (11.00) 44.10 (3.57) 48.57 (4.67) 78.48 (10.28) 67.71 (7.84)

5a (10) 83.52 (10.69) 73.05 (11.69) 83.52 (12.39) 75.62 (11.43) 38.67 (8.33) 38.29 (9.74) 18.38 (6.87) 18.48 (6.96) 79.62 (12.47) 70.57 (8.38)

5b (18) 93.24 (4.81) 80.00 (8.69) 94.10 (4.79) 79.81 (8.35) 47.43 (10.14) 53.43 (9.68) 20.19 (7.47) 23.71 (6.51) 86.10 (7.83) 83.62 (7.62)

5c (26) 93.81 (4.79) 76.19 (7.35) 91.43 (4.80) 72.95 (6.98) 72.57 (10.51) 71.81 (11.91) 50.38 (9.94) 56.10 (8.49) 90.57 (6.78) 88.86 (6.76)

5d (34) 95.81 (3.77) 74.29 (9.55) 92.48 (4.80) 67.52 (9.41) 81.52 (10.15) 67.14 (10.99) 58.38 (8.52) 63.52 (9.39) 91.81 (6.34) 91.71 (6.29)

5e (42) 94.76 (5.36) 70.00 (10.54) 90.10 (7.01) 64.10 (8.73) 91.62 (6.49) 69.52 (9.92) 76.29 (8.57) 63.62 (10.37) 92.48 (5.54) 94.95 (4.67)

6a (11) 89.24 (7.81) 80.95 (11.73) 89.33 (7.92) 81.33 (10.87) 48.76 (10.24) 48.67 (10.05) 20.10 (9.61) 20.19 (9.79) 85.81 (9.10) 79.14 (7.57)

6b (19) 94.10 (4.79) 83.90 (8.22) 95.33 (4.52) 83.05 (7.53) 54.38 (12.03) 61.81 (8.45) 22.00 (7.61) 27.90 (6.62) 89.81 (5.91) 88.19 (7.53)

6c (27) 95.62 (3.63) 79.43 (6.64) 92.86 (4.00) 76.00 (8.20) 74.48 (10.98) 76.10 (12.28) 51.43 (9.80) 58.86 (10.30) 93.14 (6.07) 91.14 (6.37)

6d (35) 96.48 (3.73) 75.14 (9.13) 94.29 (4.33) 70.38 (8.76) 84.19 (8.99) 68.67 (11.77) 61.43 (8.02) 65.33 (9.77) 92.76 (6.09) 92.57 (5.41)

6e (43) 95.52 (4.91) 71.05 (11.35) 91.24 (6.67) 65.24 (10.09) 93.24 (5.77) 70.10 (9.14) 78.10 (7.86) 64.57 (10.11) 92.76 (5.49) 95.52 (4.29)

7a (8) 78.76 (9.30) 73.24 (11.03) 79.52 (9.96) 73.24 (9.81) 38.86 (9.01) 39.24 (8.84) 25.71 (6.20) 25.81 (6.14) 70.95 (12.74) 63.43 (10.88)

7b (16) 92.19 (5.80) 77.81 (8.24) 91.71 (5.93) 77.52 (7.74) 46.29 (10.26) 50.10 (7.99) 20.67 (6.70) 21.90 (5.82) 83.62 (9.84) 84.29 (7.02)

7c (24) 92.10 (5.86) 75.43 (5.35) 87.14 (5.92) 71.90 (8.41) 69.62 (9.01) 65.71 (11.42) 48.86 (9.15) 53.14 (8.35) 86.10 (7.62) 86.29 (7.47)

7d (32) 93.05 (4.94) 72.29 (9.49) 90.48 (5.86) 65.24 (9.16) 78.67 (8.88) 62.29 (11.15) 53.05 (9.51) 57.81 (8.76) 89.14 (7.14) 89.43 (6.50)

7e (40) 93.05 (5.77) 68.86 (11.27) 88.29 (6.34) 61.90 (12.35) 84.95 (7.36) 68.86 (9.01) 72.67 (8.00) 60.67 (9.75) 89.71 (6.44) 92.95 (5.39)

Mean 88.86 % 75.31 % 87.50 % 72.18 % 66.63 % 61.84 % 42.11 % 42.96 % 83.92 % 80.33 %

We compute the region covariance descriptor over the entire face only, and not sub-

sections of each face image as was done in [Pang et al., 2008]. At each iteration of the

experiment, 4 out of 7 images from each subject are taken for training, and the remaining

3 are used as test images, yielding a total of
(
7
3

)
= 35 different train-test splits.

The face recognition is performed using the reconstruction error-based approach. In

addition to the combined dictionary approach explained before, we also classify the signal

by sparse coding it with each class dictionary Am independently to obtain the coefficient

63

vector xm, and predicting the label m∗ as:

m∗ = arg min
m

Dld

(
Ŝm, S

)
.

We refer to this method as the separate dictionary approach.

The dictionaries are composed of the covariance descriptors from the training images.

This is compared to the recognition performance using geodesic KNN and geodesic SVM.

Since the inverse of a positive definite matrix is also positive definite, we repeat the same

experiment with the inverse covariances (or precision matrices). Since the geodesic distance

between two matrices A and B is identical to that between A−1 and B−1,

Dgeo (A,B) = Dgeo

(
A−1, B−1

)
,

the KNN and SVM classifiers do not differ in performance between covariance and precision

matrices.

Further, we show the recognition performance when the upper cone constraint is relaxed

(“1-cone”) and compare it to the case where it is retained (“2-cone”).

The mean classification accuracy over 35 trials is presented in Table 3.3 for each covari-

ance feature mode. The best performance is obtained when using feature set 6d - the (x, y)

location, image intensity, and 4 octaves of Gabor filter responses.

64

3.13.3 Tensor Sparse Coding for Texture Classification

In this section we present experimental results on texture classification with the Brodatz

dataset [Randen and Husøy, 1999]. We use the training images from the dataset which form

the five 5-class, two 10-class, two 16-class, and three 2-class texture mosaics. Each texture

class corresponds to one training image of 256 × 256 pixels, which is broken down into

non-overlapping blocks of 32 × 32 pixels. A 5 × 5 covariance descriptor is then computed

from each of these blocks, using the grayscale intensities and absolute values of the first-

and second-order spatial derivatives, {I, |Ix|, |Iy|, |Ixx|, |Iyy|}.
There are 64 covariance descriptors from each texture class, of which 8 descriptors from

each class are chosen for training, and the remaining are used for testing. The classification

results are averaged over 20 random train-test splits, and are shown in Table 3.4.

Similar to the previous section, we also repeat the same experiments with the inverse

covariances descriptors, and by relaxing the extra cone constraint. The best sparse coding-

based approach performs competitively with the baseline KNN and SVM approaches.

Note that the KNN and SVM approaches have had their respective parameters optimized

for best performance through cross-validation. Their accuracy varies quite drastically for

different parameter choices. On the other hand, our method’s classification performance

does not vary substantially with λ. In fact, for a wide variation in the values of λ, the final

classification performance does not change drastically (although the individual coefficients

of sparse coding do). While increasing λ results in a poorer reconstruction Ŝ, we are com-

paring the effect of different class dictionaries - the quality of approximation is decreased

(Dld(Ŝm, S) increases) for all classes m = 1, . . . ,M , leading to similar classification accura-

cies. This shows a certain robustness in our method with respect to the choice of parameter.

Figure 3.14 shows how the accuracy varies with parameter choice for our method against

the geodesic SVM for texture 12.

65

.

Table 3.4: Mean classification accuracy for the Brodatz mosaic dataset. Results are averaged
are over 20 trials, and standard deviations are provided in parenthesis.
Mode Covariances Precisions Geo-KNN Geo-SVM

(n) Separate (%) Combined (%) Separate (%) Combined (%) (%) (%)

1-cone 2-cone 1-cone 2-cone 1-cone 2-cone 1-cone 2-cone K = 1 σ = 0.6

1 (5) 99.43 (0.63) 99.00 (0.62) 99.29 (0.41) 98.79 (0.74) 99.41 (0.62) 99.45 (0.47) 99.18 (0.41) 98.84 (0.54) 98.88 (0.63) 99.14 (0.72)

2 (5) 93.13 (2.75) 91.66 (2.97) 86.09 (2.36) 84.89 (2.31) 93.20 (2.61) 92.32 (2.87) 87.98 (2.47) 86.86 (2.50) 92.00 (2.27) 91.04 (2.31)

3 (5) 89.25 (2.47) 87.95 (2.55) 81.93 (2.59) 80.00 (3.04) 89.32 (2.20) 87.86 (2.89) 82.54 (2.87) 82.11 (2.61) 87.21 (2.19) 88.79 (2.19)

4 (5) 85.36 (3.28) 84.05 (3.14) 83.41 (2.59) 82.05 (2.55) 85.64 (2.84) 84.05 (2.82) 83.66 (1.97) 82.39 (2.57) 92.55 (1.47) 94.79 (1.38)

5 (5) 86.52 (1.83) 84.21 (2.48) 76.91 (3.26) 74.39 (3.38) 87.02 (1.50) 86.93 (1.99) 75.34 (2.51) 73.89 (2.61) 92.84 (1.48) 94.55 (0.98)

6 (16) 85.59 (1.02) 84.19 (0.84) 80.02 (1.15) 78.90 (1.05) 85.56 (1.08) 84.50 (1.36) 79.47 (0.97) 78.33 (1.11) 83.91 (0.98) 82.04 (1.98)

7 (16) 78.95 (1.52) 76.57 (1.30) 70.11 (0.99) 68.47 (1.35) 79.15 (1.35) 77.58 (1.67) 71.73 (1.32) 70.08 (1.47) 76.57 (1.34) 80.18 (1.07)

8 (10) 87.71 (1.65) 86.13 (2.15) 84.81 (2.20) 83.79 (2.03) 87.48 (1.48) 86.59 (1.77) 84.40 (2.04) 83.46 (2.06) 87.84 (1.48) 86.83 (3.94)

9 (10) 80.19 (1.88) 78.26 (1.69) 71.63 (1.84) 70.29 (2.84) 81.06 (1.83) 79.78 (1.97) 71.80 (2.19) 71.50 (2.15) 80.45 (2.08) 82.21 (4.01)

10 (2) 99.87 (0.32) 99.87 (0.32) 99.91 (0.27) 99.82 (0.36) 99.96 (0.19) 100.00 (0.00) 99.87 (0.32) 99.78 (0.56) 99.15 (0.82) 99.82 (0.36)

11 (2) 99.20 (1.23) 98.84 (1.41) 98.79 (1.17) 97.99 (1.46) 99.42 (1.07) 99.33 (1.26) 98.53 (1.50) 98.93 (1.40) 99.82 (0.36) 100.00 (0.00)

12 (2) 98.30 (1.49) 96.43 (2.02) 96.34 (2.49) 94.33 (2.51) 98.62 (1.48) 99.06 (0.96) 98.13 (1.54) 98.79 (1.30) 100.00 (0.00) 100.00 (0.00)

Mean 90.29 % 88.93 % 85.77 % 84.48 % 90.49 % 89.79 % 86.05 % 85.41 % 90.94 % 91.62 %

3.13.4 Action Recognition with Kinect Motion Capture

Since the time that the Microsoft Kinect sensor was introduced (end of 2010) there has been

a great impact on many application areas of computer vision mainly due to its low cost and

its augmented information content (depth information). We used the Kinect to obtain

motion capture data of different individuals performing a set of actions. The OpenNI6

platform and PrimeSense software were used to obtain motion information of tracked joints

of the human body. The following 15 joints of the human skeleton were tracked: head, neck,

torso, right shoulder, left shoulder, right elbow, left elbow, right hand, left hand, right hip,

left hip, right knee, left knee, right foot, left foot. Data was obtained in our laboratory

from 6 subjects, in 3 sessions of 10 actions each. This resulted in a total of 180 sequences.

The actions studied were: jumping, boxing, jogging, left hand waving, right hand waving,

both hands waving, jumping jack, shuffling, marching and clapping. Two of these actions

6 http://www.openni.org/

66

−3 −2 −1 0 1 2 3
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

logΘ

A
cc

ur
ac

y

TSC+REC
TSC+WLV
Geo−SVM

Figure 3.14: Variation in classification accuracy (texture 12) with parameter choice for
tensor sparse coding and SVM approaches. The parameter log10 Θ is varied along the x-
axis, and Θ = λ for the tensor sparse coding approach and Θ = σ for the geodesic SVM
classifier. The former approach shows a largely consistent high performance. 1σ standard
deviation bars are also shown (Best viewed in color).

are shown in Figure 3.15.

The motion capture was acquired at a sampling rate of 30 frames per second. Each action

was recorded for 10 seconds after the initial skeleton calibration was performed. From the

tracker we obtain the (x, y, z) information for all 15, joints resulting in a 45-dimensional

feature per sample, and then compute the 45× 45 covariance of these features across each

sequence.

Action recognition was performed using leave-person-out cross-validation (LPOCV),

where in each iteration, we keep the data from 5 subjects for training and use the 6th

subject for testing. We also performed leave-session-out cross-validation (LSOCV), where

out of 18 sessions, 1 session was kept as test data and the remaining were used for training.

The training covariances from each action class constitute the dictionary for that class, and

a separate dictionary approach was used. The average cross-validation accuracy for both

67

Figure 3.15: Screenshots from the OpenNI tracking program. Top row shows the jumping
jack action and the bottom row shows the shuffling action.

68

K-nearest-neighbor and tensor sparse coding approaches are presented in Table 3.5.

Cross-validation K-NN TSC+REC

LPOCV 98.33% 97.78%

LSOCV 98.89% 98.89%

Table 3.5: Cross-validation accuracies over the Kinect motion capture dataset

Chapter 4

Positive Definite Dictionary Learning

Sparse coding methods transform a given signal into a set of sparse coefficients with the

help of a dictionary or basis set. In the vector domain, pre-defined dictionaries are available

which can be constructed using analytical expressions - for e.g.: Fourier, DCT, wavelets,

etc. However, for applications involving only specific classes of signals, it is more interesting

to use a domain-specific dictionary rather than universal dictionaries. Previous experiments

in this thesis used the training data (or a subset thereof) to form the dictionary.

This chapter addresses the issue of learning a data-driven dictionary from a training set

of positive definite matrices. The dictionary learning problem is formulated, analogous to

similar approaches in vector dictionary learning. An alternating minimization approach to

learn the dictionary is presented, and iterative gradient and Newton methods for updating

the dictionary atoms are derived. When the dimensions of the data become too large, we

propose an efficient matrix conjugate gradient approach to compute the Newton direction.

A way to learn the dictionary in an online manner is also briefly explained. As a practical

application, we apply the dictionary learning to learn face dictionaries, and use the learned

model to detect faces. We also show the usefulness of covariance dictionaries to model tissue

architecture and classify tissue image regions in surgical pathology.

69

70

4.1 Dictionary Learning Formulation

Given a training set S = {Sj}Nj=1, Sj ∈ Sn++, the problem of learning the dictionary

A = {Ai}Ki=1, Ai ∈ Sn++ can be formulated as:

Dictionary Learning:

min
A,X

N∑

j=1

Dld (Axj, Sj) + λ ‖xj‖1 (4.1a)

s.t. xj ≥ 0 for j = 1, . . . , N (4.1b)

Ai � 0 for i = 1, . . . , K (4.1c)

‖Ai‖2F ≤ 1 for i = 1, . . . , K (4.1d)

Axj � 0 for j = 1, . . . , N (4.1e)

Here xj denotes the j-th column of coefficient matrixX. As mentioned earlier in Section 3.6,

the atoms should be normalized by their Frobenius norm. However, the constraint ‖Ai‖2F =

1 is non-convex, and therefore we relax the constraint to be convex ‖Ai‖2F ≤ 1.

The dictionary learning problem (4.1) is non-convex in (A, X), and therefore there is no

unique minimizer (A∗, X∗). However, the problem is convex in one argument given the other

fixed, as is also the case in the vector dictionary learning problem. This naturally leads to

an alternating minimization approach to arrive at a stationary point of the optimization

problem.

71

4.2 Approach: Alternating Minimization

Similar to other dictionary learning algorithms [Aharon et al., 2006], we approach this prob-

lem through alternating minimization, repeating the following steps:

(a) Given S and A fixed, solve for X.

(b) Given S and X fixed, solve for A.

Although this approach does not guarantee reaching a universal minimizer, we are guaran-

teed to reach a local minimum of the objective function in (4.1). The first step mentioned

above is simply the sparse coding of the training set S, which we will refer to as the sparse

coding step of the dictionary learning procedure. The second step involves updating the dic-

tionary atoms while keeping the sparse coefficients fixed, which we denote as the dictionary

update step. The training data is sampled to initialize the dictionary A0.

Motivated by the K-SVD algorithm by [Aharon et al., 2006], the dictionary update is

performed sequentially, updating one atom Ai ∈ A at a time, keeping the sparsity structure

of X fixed, but allowing the corresponding non-zero coefficients of Ai to change in value.

At iteration k of the dictionary learning procedure (denoted in the superscript), the atom

Ak−1i is updated to Aki , given
{
Ak1, A

k
2, . . . , A

k
i−1, A

k−1
i+1 , . . . A

k−1
K

}
and Xk.

72

4.3 Atom Update

In this section, we present the optimization subroutine to update atom Ai in the dictionary

update step. Let ωi be the active set, ωi = {j|j ⊆ {1, . . . , N}, xij 6= 0}, i.e., the subset of

signals which use atom Ai.

The reconstruction Ŝj of each Sj, j ∈ ωi can be decomposed into the constant and

variable components under the optimization of Ai:

Ŝj =
∑

i′ 6=i

xi′jAi′ + xijAi = Ŝ
(i)
j + xijAi. (4.2)

Ŝ
(i)
j is the reconstruction of Sj without the contribution of Ai.

The sub-problem of (4.1) to optimize atom Ai keeping all other atoms fixed, is given by:

min
Ai�0

∑

j∈ωi

Dld

(∑

i′ 6=i

xi′jAi′ + xijAi, Sj

)
(4.3)

Expanding Equation (4.3):

min
Ai�0

∑

j∈ωi

[
tr

((∑

i′ 6=i

xi′jAi′ + xijAi

)
S−1j

)
− log det

((∑

i′ 6=i

xi′jAi′ + xijAi

)
S−1j

)]

min
Ai�0

∑

j∈ωi

[∑

i′ 6=i

xi′jtr
(
Ai′S

−1
j

)
+ xijtr

(
AiS

−1
j

)
− log det

(∑

i′ 6=i

xi′jAi′ + xijAi

)
+ log detSj

]

Retaining only the terms relevant to Ai, we get:

min
Ai�0

∑

j∈ωi

[
xijtr

(
AiS

−1
j

)
− log det

(∑

i′ 6=i

xi′jAi′ + xijAi

)]
(4.4)

Let the objective function for the atom update sub-problem be denoted as f(Ai).

f (Ai) =
∑

j∈ωi

[
xijtr

(
AiS

−1
j

)
− log det

(∑

i′ 6=i

xi′jAi′ + xijAi

)]
(4.5)

Taking the gradient of Equation (4.5) w.r.t. Ai,

∇f(Ai) =
∑

j∈ωi

xijS
−1
j − xij

(
Ŝ
(i)
j + xijAi

)−1
. (4.6)

73

There is no closed form solution to the equation ∇f(Ai) = 0, and therefore we resort to

iterative descent methods such as gradient descent and Newton descent.

74

Algorithm 2 Dictionary Learning

Input: Data S = {Sj}Nj=1, dictionary size K, sparsity parameter λ

Output: A = {Ai}Ki=1

k = 0

Initialize A0 sampled from S
repeat

k ← k + 1

Given S and Ak−1, compute the sparse coefficients Xk

for i = 1 to K do

Update atom Ak−1i to Aki , along with the corresponding coefficients in Xk (Algo-
rithm 3)

end for

until convergence

Algorithm 3 Atom Update

Input: Ai,
{
xij, Sj, Ŝj | j ∈ ωi

}

Output: Ai,
{
xij, Ŝj | j ∈ ωi

}

repeat

Compute descent direction ∆Ai using (4.8) or (4.13)

Choose stepsize α by line search s.t. Ai + α∆Ai � 0

Anew
i ← Ai + α∆Ai

Ŝj ← Ŝj + xij (Anew
i − Ai) ∀j ∈ ωi

t = max {‖Anew
i ‖F , 1}

Ai ← Anew
i /t

xij ← t xij ∀j ∈ ωi
until convergence

75

4.3.1 Gradient Descent

The gradient of the objective (4.5) is given by:

∇f(Ai) =
∑

j∈ωi

xij

(
S−1j − Ŝ−1j

)
. (4.7)

The gradient descent direction ∆Agi is given by the negative of the gradient:

∆Agi =
∑

j∈ωi

xij

(
Ŝ−1j − S−1j

)
. (4.8)

The gradient descent update algorithm is, therefore,

Aki ← Ak−1i + α∆Agi s.t. Aki � 0, (4.9)

with stepsize α ≥ 0 determined using line search techniques. The stepsize should also satisfy

the constraint that the updated atom Aki is positive semi-definite.

Two possibilities are to use the the exact line search or the backtracking (Armijo) line

search. In practice, we see that these two methods do not provide much improvement in

the objective function in each atom update iteration. Instead, we use the Barzilai-Borwein

(BB) step sizes [Barzilai and Borwein, 1988]:

αkBB1 =

〈
Aki − Ak−1i ,∇f

(
Aki
)
−∇f

(
Ak−1i

)〉
∥∥∇f

(
Aki
)
−∇f

(
Ak−1i

)∥∥2
F

, (4.10)

αkBB2 =

∥∥Aki − Ak−1i

∥∥2
F〈

Aki − Ak−1i ,∇f
(
Aki
)
−∇f

(
Ak−1i

)〉 , (4.11)

for iteration k. The BB stepsize choice yields a much stronger net decrease in the objective

function value compared to exact or backtracking line searches.

76

4.3.2 Newton Descent

Taking the second derivative of the gradient (4.7), we get the expression for the Hessian:

∇2f(Ai) =
∑

j∈ωi

[
xij

(
xijAi + Ŝ

(i)
j

)−1
⊗ xij

(
xijAi + Ŝ

(i)
j

)−1]

∴ ∇2f(Ai) =
∑

j∈ωi

(
xijŜ

−1
j

)
⊗
(
xijŜ

−1
j

)
(4.12)

The Newton descent direction ∆ANi is obtained by solving:

∇2f(Ai) ∆ANi = −∇f(Ai)

∑

j∈ωi

x2ijŜ
−1
j ∆ANi Ŝ

−1
j =

∑

j∈ωi

xij

(
Ŝ−1j − S−1j

)
(4.13)

The Newton descent update algorithm is, therefore,

Aki ← Ak−1i + α∆ANi s.t. Aki � 0, (4.14)

with stepsize α ≥ 0.

The Newton direction computation involves solving an n2×n2 system of linear equations,

given by:

∑

j∈ωi

(
xijŜ

−1
j

)
⊗
(
xijŜ

−1
j

)

︸ ︷︷ ︸
n2×n2

vec
(
∆ANi

)
= vec

(∑

j∈ωi

xij

(
Ŝ−1j − S−1j

))
. (4.15)

Let us denote this positive definite system as Ax = b, with A =
∑

j∈ωi

(
xijŜ

−1
j

)
⊗
(
xijŜ

−1
j

)
,

x = vec
(
∆ANi

)
, and b = vec

(∑
j∈ωi xij

(
Ŝ−1j − S−1j

))
.

Explicitly forming A and solving the system is an expensive operation, even with de-

composition methods. The cost of directly solving for the Newton direction has a cost of

O (n6), where n denotes the dimension of the dictionary atoms. In most of our applications

77

pertaining to region covariance descriptors, n is very small (∼ 5− 10), and therefore this is

still acceptable in practice.

When n is much larger, we can take advantage of the fact that although solving for

Ax = b with an explicit A is expensive, it is relatively inexpensive to apply the operator A

on a given x. This is due to the fact that A is composed of a sum of Kronecker products. This

enables us to use iterative methods like conjugate gradient to directly solve Equation (4.13).

78

4.3.3 Comparison of Atom Update Techniques

We compare the gradient and Newton atom update techniques in terms of their effectiveness

in optimizing the dictionary learning objective function. A set of K n× n positive definite

atoms A0 were synthesized (n = 3). N k-sparse vectors {xj}Nj=1 with k < n were sampled,

and signals S = {S1, . . . , SN} were constructed. The number of signals generated was

proportional to the dimensions and dictionary size N = 4n2K. The dictionary learning was

run for a maximum of 25 iterations, and the net reduction in the objective function was

compared.

We used dictionary sizes of K = 4, 6, and 12, and repeated each (n,K) combination for

10 random trials. The choice of K covers three different scenarios - K < M , K = M , and

K > M , where M = n(n+ 1)/2 - undercomplete, complete, and overcomplete cases.

Three atom update techniques were compared:

1. gradient descent with backtracking line search

2. gradient descent with Barzilai-Borwein stepsize (4.11)

3. Newton descent

The different techniques were initialized with the same random dictionary. The objective

function values f(Â) at the end of the learning procedure relative to the initial objective

f(A0) are estimated as an indicator of the quality of the local minimum attained in each

learning procedure. This is shown in Figure 4.1(a). The Newton update method performs

the best, as is expected, but the BB stepsize method greatly improves upon the gradient

descent with backtracking line search.

We also test the number of atoms correctly recovered in the learned dictionary in each

update technique. The learned atoms Âi are matched with the ground truth atoms A∗j using

a coherence threshold of µ = tr
(
Âi, A

∗
j

)
≥ 0.95. The Newton dictionary update approach

does very well in recovering the dictionary atoms, and the Gradient+BB method performing

equally well when K is small.

79

4 6 12
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Dictionary size (K)

N
or

m
al

iz
ed

 o
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

Gradient + Armijo
Gradient + BB
Newton + Armijo

(a)

4 6 12
0.5

0.6

0.7

0.8

0.9

1

Dictionary size (K)

Fr
ac

tio
n

of
 r

ec
ov

er
ed

 a
to

m
s

Gradient + Armijo
Gradient + BB
Newton + Armijo

(b)

Figure 4.1: Comparison of atom update methods: (a) Objective function values f(Â) at
the end of the learning procedure relative to the initial objective f(A0) and (b) Fraction
of recovered atoms with a coherence threshold of µmin = 0.95. Size of the dictionary K is
varied in {4, 6, 12} and the results are averaged over 10 different random trials.

80

4.3.4 Matrix Conjugate Gradient

In this section, we present a conjugate gradient method to directly solve (4.13) for the

Newton descent direction. Writing the general form1 of Equation (4.13),

M∑

i=1

AiXA
T
i = B. (4.16)

The matrix conjugate gradient algorithm to iteratively solve Equation (4.16) for X is given

in Algorithm 4.

We compare the direct inversion approach and the matrix conjugate gradient approach

for computing the Newton direction during actual dictionary update iterations for synthetic

datasets of varying dimensions n. The matrix conjugate gradient is implemented in MAT-

LAB without any further code optimization. The time taken to explicitly construct A is

also included in the computation time of the direct approach. The dimensions n is varied

from 5 to 50 in steps of 5. The computation times for dimension n are averaged over 25n

trials. In all comparisons, the returned solution from the conjugate gradient method Xcg is

within 10−5 relative error of the direct solution X∗.

The average speedup obtained by using the matrix conjugate gradient algorithm over

the direct inversion method is presented in Figure 4.2, along with 1σ standard deviation

bars. The horizontal line at speedup of 1 shows the cross-over point when the conjugate

gradient method overtakes the direct inversion approach in computation time. For n ≤ 15,

it is faster to directly solve for x than using iterative methods. For n ≥ 20, the matrix

conjugate gradient method gives significant speedups in solving systems of the presented

structure. The speedup reported was obtained on the same machine used in Section 3.12.

As mentioned earlier, the code was not optimized at the low-level - for e.g., exploiting

the symmetry of all involved matrices. This optimization can yield improved computation

times in practice, but does not change the order complexity of the algorithms themselves.

1 The notations Ai, X,B in this section are different from the variables of the dictionary learning
problem.

81

Algorithm 4 Matrix Conjugate Gradient

Input: {Ai}Mi=1, B

Output: X∗

X0 = 0n×n

R0 = B −∑M
i=1AiX0A

T
i

P0 = R0

k = 0

repeat

αk = 〈 Rk , Rk 〉
〈 Pk ,

∑M
i=1 AiPkA

T
i 〉

Xk+1 = Xk + αkPk

Rk+1 = Rk − αk
∑M

i=1AiPkA
T
i

βk = 〈 Rk+1 , Rk+1 〉
〈 Rk , Rk 〉

Pk+1 = Rk+1 + βkPk

k ← k + 1

until convergence

X∗ = Xk+1

82

5 10 15 20 25 30 35 40 45 50 55
01

20

40

60

Dimension (n)

Sp
ee

du
p

Figure 4.2: Average speedup of matrix conjugate gradient vs. direct Ax = b linear system
solution for computation of the Newton descent direction. 1σ bars are also shown.

83

4.4 Online Dictionary Learning

The dictionary learning approach can be extended to an online learning setting, using

stochastic gradient descent [Bottou, 1998]. Suppose at time t we get a new data point

St, which sparse coded over the existing dictionary At−1 results in the reconstruction Ŝt,

with coefficients xi,t for i = 1, . . . , K. The atoms which are used {i | xi,t > 0} can be

updated sequentially, and the rest of the atoms are left unchanged.

The online update using only the gradient information pertaining to the new data point

can be written as:

Ai,t ← Ai,t−1 − αtxi,t
(
S−1t − Ŝ−1t

)
, (4.17)

for a diminishing stepsize αt, When the data comes in batches, i.e., at each step t, we get a

set of points St of size Nt, and their coefficients Xt are obtained by sparse coding over the

current dictionary At−1. The relevant atoms in i ∈ {1, . . . , K} are updated as:

Ai,t ← Ai,t−1 − αt
Nt∑

j=1

xij,t

(
S−1j,t − Ŝ−1j,t

)
. (4.18)

Using the second order information from the cost function is known to improve the

online dictionary update performance [Bottou, 1998], and so we can include the online

Hessian estimate for each atom i separately, accumulating over iterations t′ = 1, . . . , t.

Hi,t =
t∑

t′=1

[
Nt′∑

j=1

(
xij,t′Ŝ

−1
j,t

)
⊗
(
xij,t′Ŝ

−1
j,t

)]
. (4.19)

Gi,t =
Nt∑

j=1

xij,t

(
S−1j,t − Ŝ−1j,t

)
. (4.20)

Ai,t ← Ai,t−1 −H−1i,t Gi,t (4.21)

84

4.5 Time Complexity

4.5.1 Sparse Coding

When the upper cone constraint is relaed, the MAXDET problem has a time complexity

of O(K2n2) per Newton iteration [Vandenberghe et al., 1998], with a worst-case complexity

of O(
√
n) Newton iterations at each step in the interior point algorithm. Our coordinate

descent approach has a time complexity of O(Kn3) per iteration over all the coordinates.

The n3 term comes from the computation of matrix inverses, generalized eigenvalues and

their sums. Since n is pretty small in most of our applications, and the size of the dictionary

is large, our specialized approach and implementation yields faster run times.

4.5.2 Dictionary Learning

The dictionary learning approach has a time complexity of O(n3Lmax) per atom update for

the gradient descent methods, and the Newton descent has a time complexity of O(n6Lmax)

since it involves solving an n2×n2 system of equations. Lmax denotes the maximum number

of inner iterations within each atom update step (Usually this is small in practice: ≤ 5 for

initial iterations and just 1 or 2 for later iterations). The rest of the computation in each

atom update step is subsumed by complexity of computing the descent direction.

85

4.6 Face Detection with Tensor Dictionary Learning

We apply the positive definite dictionary learning approach to detect faces in images, from

the GRAZ01 person dataset [Opelt et al., 2004]. We trained the dictionaries on the face

images of 109 people from the grayscale FERET database [Phillips et al., 2000], used in

Section 3.13.2. We trained the dictionary using 7 images from each subject, for a total

763 training covariance matrices. The feature mode 6b) from Section 3.13.2, consisting of

the pixel coordinates (x, y), image intensity I and two octaves of the Gabor filter features

g00, . . . , g07, g10, . . . , g17. The resulting covariance descriptors are of dimension n = 19. A

dictionary of size K = 2n = 38 atoms was learned, with λ = 0.1.

A sample set of 10 face images from the GRAZ01 dataset was used to test the face

detection capability of this learned positive definite dictionary. A sliding window of a single

scale of size 60× 60 pixels, and stepsize 15 pixels was used, and the Gabor covariances were

computed. The reconstruction error Dld from sparse coding these descriptors over the face

dictionary was used to compute the face score of each block.

score = exp

(
−D

2
ld(Ŝ, S)

2σ2

)
.

The parameter σ was computed as the standard deviation over all the reconstruction errors

in the test image. The score is then normalized to be in the range [0, 1], and smoothed

with a Gaussian filter. We show the detection score images along with the original images

in Figure 4.3. The ground truth bounding boxes are marked manually, but the detections

(true positives, false positives, etc.) are computed pixel-wise. The precision-recall curve

averaged over these 10 images is also shown.

This experiment shows the usefulness of learning positive definite matrix dictionaries for

computer vision applications.

86

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

Pr
ec

is
io

n

Average Precision = 0.7504

Figure 4.3: Face detection results on sample images from the GRAZ01 person dataset.
Images and corresponding their detection scores are shown. The pixel-level precision-recall
curve over the test set is also shown.

87

4.7 Cancer Tissue Classification with Positive Definite

Dictionaries

Early diagnosis of any disease is quintessential for effective treatment. This is no less true in

the diagnosis and treatment of cancer. For a surgical pathologist, the most time-consuming

aspect of the diagnostic process involves arduously scrutinizing tissue slides under a mi-

croscope for the evidence of disease. As a result, even a skilled pathologist is able to

diagnose only a few patients every day. However, it is possible to expedite this process

through computer-assisted diagnosis. Towards this end, we apply the positive definite dic-

tionary learning algorithms towards classification of tissue image regions as cancerous or

benign. We use region covariance descriptors to characterize the image blocks extracted

from the tissue, since the distinction between the two classes of healthy vs. cancerous tis-

sue is based on the architecture or texture. Our work on using region covariances for this

classification, along with vector sparse dictionary learning, has been published earlier in

[Sivalingam et al., 2011] and [Sivalingam et al., 2012] where we deal with endometrial and

prostate cancer tissue images respectively.

We show results with positive definite dictionary learning with the endometrial tissue

images from [Sivalingam et al., 2011]. Sample images from the healthy and endometrioid

carcinoma tissue classes, the description of the covariance features used are shown in Fig-

ure 4.4. A combination of spatial and intensity features, with a block size of 200x200 pixels at

5x resolution was seen to give the best performance in [Sivalingam et al., 2011]. We choose

4 images each from the healthy and carcinoma classes, and sample 200 blocks from each

image. We use this set of 1600 covariance descriptors and perform 4-fold cross-validation

- using 1 image from each class for testing and keeping the remaining 3 for training. An

ISOMAP embedding [Tenenbaum et al., 2000] showing the covariance descriptors from the

two classes is also shown in Figure 4.4.

In each fold, we use the 8× 8 training covariances to learn tensor dictionaries of varying

88

(a)

(b)

(c)

(d)

Figure 4.4: Samples from the healthy (top left) and cancerous (top right) images. The co-
variance feature used is described on the bottom row, and an ISOMAP embedding depicting
the covariance descriptors from the two classes is also shown.

89

sizes, and classify the test features by the usual least reconstruction error approach. The

parameter λ was set to 0.001. We compare with learned dictionaries constructed by ran-

domly sampling the training data. We also compare the performance with a baseline K-NN

classifier (with K = 5 chosen by cross-validation). The results are shown in Table 4.1 for

different values of the dictionary size K.

Algorithm Accuracy

5-NN 94.31 %

T
en

so
r

D
ic

ti
on

ar
ie

s

K Random Learned

4 90.75 % 92.75 %

8 92.25 % 93.25 %

16 92.44 % 93.31 %

20 93.13 % 93.88 %

28 93.88 % 94.63 %

32 94.50 % 95.38 %

Table 4.1: Average classification accuracy with 4-fold cross-validation between healthy and
endometrioid cancer tissue image patches.

The dictionary learning procedure helps in improving the accuracy of dictionary-based

classification, compared to randomly choosing data points for the model. We beat the

baseline K-nearest-neighbor classification, while just maintaining only a few atoms derived

from the data - a 32-atom dictionary stores only about 5% of the number of matrices as the

K-NN classifier.

Chapter 5

Rank-One Tensor Dictionaries

The sparse coding and dictionary learning algorithms for positive definite matrices presented

so far in this thesis only require that the signal S and the reconstruction Ŝ be positive

definite. They do not require the dictionary atoms Ai, i = 1, . . . , K to be strictly positive

definite. Hence it is possible to use rank-deficient positive semi-definite matrices as atoms

in the dictionary A.

In this chapter, we deal with the extreme case when all the dictionary atoms are formed

by rank-1 outer products, i.e., Ai = viv
T
i for i = 1, . . . , K. While the structure of the atoms

can be exploited in the sparse coding and dictionary learning algorithms for semidefinite

atoms of any rank, the rank-1 case is tackled here in detail since we can reduce all of the

computations in terms of the dictionary vectors vi. We present efficient versions of the

sparse coding and dictionary learning algorithms in this chapter, tailored to this special

case.

The time complexity of the specialized sparse coding and dictionary update algorithms

are also discussed, along with timing experiments with our C++ implementation. A syn-

thetic experiment shows the ability of the proposed approach to recover ground truth atoms

from which the data was generated. As a practical application, we handle digit classification

with the USPS dataset, showing the performance of rank-1 dictionaries.

90

91

Instead of representing the dictionary as the set A = {Ai}Ki=1, we can concisely represent

it by an n×K matrix V = [v1 | v2 | . . . | vK]. In order to maintain the atom normaliza-

tion constraint ‖Ai‖2F = 1, and noting that ‖Ai‖F = tr
(
viv

T
i

)
= vTi vi, we set the vectors

vi to have unit `2-norm ‖vi‖22 = 1. Therefore, the columns of V are constrained to be unit

length.

In the rest of this work, we will interchangeably use the term rank-1 dictionaries to

imply tensor dictionaries whose atoms are rank-1 positive semidefinite matrices.

92

5.1 Efficient Sparse Coding over Rank-1 Dictionaries

We extend the cyclic coordinate descent approach presented in Section 3.12 to the special

case of rank-1 dictionaries in this section. The sparse coding problem over rank-1 dictionaries

is given by:

min
x≥0

tr

(
K∑

i=1

xiviv
T
i S
−1

)
− log det

(
K∑

i=1

xiviv
T
i S
−1

)
+ λ

K∑

i=1

xi (5.1a)

s.t.
K∑

i=1

xiviv
T
i � 0. (5.1b)

The objective function f (x) can be simplified as:

f (x) =
K∑

i=1

xitr
(
viv

T
i S
−1)− log det

(
K∑

i=1

xiviv
T
i

)
+ log detS + λ

K∑

i=1

xi

=
K∑

i=1

xiv
T
i S
−1vi − log det

(
K∑

i=1

xiviv
T
i

)
+ λ

K∑

i=1

xi + terms independent of x.

Setting ci = vTi S
−1vi with c = [c1, . . . , cK]T and plugging the final expression back into

the objective, we have:

min
x≥0

cTx− log det

(
K∑

i=1

xiviv
T
i

)
+ λ

K∑

i=1

xi (5.2a)

s.t.
K∑

i=1

xiviv
T
i � 0. (5.2b)

The gradient of the objective f(x) from (5.2), with respect to the coordinate xk being

updated, is given by:

∂f (x)

∂xk
= ck + λ− tr

(

K∑

i=1

xiviv
T
i

)−1
vkv

T
k

∴
∂f (x)

∂xk
= ck + λ− vTk Ŝ

−1vk.

93

The gradient descent direction is therefore given by the negative of the gradient:

δxk = −∂f (x)

∂xk
= vTk Ŝ

−1vk − ck − λ. (5.3)

This is a one-dimensional minimization problem along the coordinate xk, and so the sign

of δxk is sufficient to identify the descent direction - i.e., whether we should proceed along

increasing xk or decreasing xk. The actual magnitude of the gradient descent step can be

absorbed into the stepsize β (which we can find using exact line search). Therefore, the

descent direction is given by:

δxk = sign
(
vTk Ŝ

−1vk − ck − λ
)
, (5.4)

and the coordinate update is given by:

xk ← xk + βδxk. (5.5)

Due to the nature of the update expression in the coordinate descent algorithm, the

current values of vTk S
−1vk and vTk Ŝ

−1vk are required at each iteration. While the former is

constant and is already computed (= ck), the later has to be updated continuously since Ŝ

is a function of the current iterate of x: Ŝ(x) = Ax.

In the inner loop of the coordinate descent algorithm, when updating xk, the reconstruc-

tion Ŝ is locally updated as:

Ŝ ← Ŝ +
(
xnewk − xoldk

)
Ak. (5.6)

Replacing Ak = vkv
T
k and letting α = xnewk − xoldk , the update becomes

Ŝ ← Ŝ + αvkv
T
k . (5.7)

In order to keep a continuously updated set of values
{

vTi Ŝ
−1vj | i, j = 1, . . . , K

}
while

Ŝ is being changed, we can exploit the Sherman-Morrison-Woodbury (SMW) formula. The

general form of the SMW formula is given by:

(
A+ uvT

)−1
= A−1 − A−1uvTA−1

1 + vTA−1u
. (5.8)

94

Substituting uvT = αvkv
T
k and A = Ŝ, we have, for i, j = 1, . . . , K:

(
Ŝ + αvkv

T
k

)−1
= Ŝ−1 −

(
αŜ−1vkv

T
k Ŝ
−1

1 + αvTk Ŝ
−1vk

)
(5.9)

The inner products vTi Ŝ
−1vj can be updated using:

vTi

(
Ŝ + αvkv

T
k

)−1
vj = vTi Ŝ

−1vj − vTi

(
αŜ−1vkv

T
k Ŝ
−1

1 + αvTk Ŝ
−1vk

)
vj (5.10)

= vTi Ŝ
−1vj −

α
(
vTi Ŝ

−1vk

)(
vTj Ŝ

−1vk

)

(
1 + αvTk Ŝ

−1vk

) . (5.11)

Define the Mahalanobis Gram matrix Q:

Q = V T Ŝ−1V, (5.12)

such that Qij = vTi Ŝ
−1vj. Rewriting Equation (5.11) using the elements of Q,

Qnew
ij = Qij −

αQikQjk

1 + αQkk

∴ Qnew = Q−
(

α

1 + αQkk

)
qkq

T
k (5.13)

where qk denotes the k-th row (or column) of the symmetric matrix Q.

Therefore, when Ŝ is updated as in Equation (5.6), the Q matrix should be updated using

Equation (5.13), enabling us to efficiently maintain an updated set of values for vTi Ŝ
−1vj

for i, j = 1, . . . , K, during the coordinate descent iterations of the sparse coding procedure.

This eliminates the need for inverting the new Ŝ at each iteration, resulting in only one

n× n inversion of Ŝ0 = Ŝ(x0) during the initialization of the sparse coding algorithm.

The coordinate descent sparse coding algorithm for rank-1 dictionaries is presented in

Algorithm 5.

95

Algorithm 5 Efficient Sparse Coding for Rank-1 Dictionaries

Input: Signal S, dictionary V = [v1 | v2 | . . . | vK], parameter λ

Output: Coefficient vector x

Compute c: ci = vTi S
−1vi, i = 1, . . . , K

Initialize x = ε1, ε > 0

Compute Ŝ =
∑K

i=1 xiviv
T
i

Compute Q = V T Ŝ−1V

repeat

for k = 1 to K do

Compute descent direction δxk = sign
(
vTk Ŝ

−1vk − ck − λ
)

= sign (Qkk − ck − λ)

Compute stepsize β along δxk that minimizes f (x + βδxkek)

Update xk ← (xk + βδxk)+, where (a)+ = max (a, 0)

Set α = xnewk − xoldk
Update Ŝ ← Ŝ + αvkv

T
k

Update Q← Q−
(

α
1+αQkk

)
qkq

T
k

end for

until convergence

96

5.2 Experiments with Rank-1 Sparse Coding

In this section, we show synthetic experiments for sparse coding over rank-1 dictionaries,

comparing the interior point implementations in YALMIP+SDPT3 with our proposed co-

ordinate descent approach of Algorithm 5.

Synthetic rank-1 dictionaries V were generated with different dimensions n and number

of atoms K. N = 100 random sparse vectors X∗ = {x∗j , j = 1, . . . , N} with sparsity

k = n were generated. These coefficients were used as ground-truth and the signals S =

{Sj, j = 1, . . . , N} were synthesized. The signals were sparse-coded with the dictionary with

Algorithm 5, setting the parameter λ = 0. The coefficient estimation error ‖x− x∗‖2 and

the objective function value Dld

(∑K
i=1 xiviv

T
i , S

)
are shown in Figure 5.1 and Figure 5.2

respectively.

The experiment is repeated for different values of (n,K), each averaged over 20 iterations.

The performance of the proposed algorithm and the interior point implementation (both in

MATLAB) are compared, and our method provides improved accuracy in both measured

quantities.

97

−7

−6

−5

−4

−3

−2

−1

0

lo
g

1
0
‖x

−
x
∗ ‖

2

 (
5,

 1
0)

 (
5,

 1
5)

 (
8,

 1
6)

 (
8,

 2
4)

 (
8,

 3
2)

 (
10

, 2
0)

 (
10

, 3
0)

 (
10

, 4
0)

 (
10

, 5
0)

 (
12

, 2
4)

 (
12

, 3
6)

 (
12

, 4
8)

 (
12

, 6
0)

 (
12

, 7
2)

 (
15

, 3
0)

 (
15

, 4
5)

 (
15

, 6
0)

 (
15

, 7
5)

 (
15

, 9
0)

 (
15

, 1
05

)

 (
15

, 1
20

)

SDPT3
R1−CCD

Figure 5.1: Average coefficient estimation error for sparse coding over rank-1 dictionaries,
with different (n,K) values indicated in the X-axis. SDPT3 indicates the interior-point
algorithm implemented in YALMIP+SDPT3, while R1-CCD denotes our proposed coordi-
nate descent method in Algorithm 5. We show an improvement in the coefficient error by
1-2 orders of magnitude. 1σ bars are also shown.

98

−12

−10

−8

−6

−4

−2

0

lo
g

1
0
D

∗ ld

 (
5,

 1
0)

 (
5,

 1
5)

 (
8,

 1
6)

 (
8,

 2
4)

 (
8,

 3
2)

 (
10

, 2
0)

 (
10

, 3
0)

 (
10

, 4
0)

 (
10

, 5
0)

 (
12

, 2
4)

 (
12

, 3
6)

 (
12

, 4
8)

 (
12

, 6
0)

 (
12

, 7
2)

 (
15

, 3
0)

 (
15

, 4
5)

 (
15

, 6
0)

 (
15

, 7
5)

 (
15

, 9
0)

 (
15

, 1
05

)

 (
15

, 1
20

)

SDPT3
R1−CCD

Figure 5.2: Average objective function value for sparse coding over rank-1 dictionaries, with
different (n,K) values indicated in the X-axis. SDPT3 indicates the interior-point algorithm
implemented in YALMIP+SDPT3, while R1-CCD denotes our proposed coordinate descent
method in Algorithm 5. We show an consistent improvement in the converged objective
function value, up to 2 orders of magnitude. 1σ bars are also shown.

99

5.3 Learning Rank-1 Dictionaries

The dictionary learning problem for rank-1 dictionary atoms is given by:

min
V,X

N∑

j=1

{
tr

(
K∑

i=1

xijviv
T
i S
−1
j

)
− log det

(
K∑

i=1

xijviv
T
i S
−1
j

)
+ λ

K∑

i=1

xij

}
(5.14a)

s.t. xij ≥ 0 for i = 1, . . . , K, j = 1, . . . , N

∑K
i=1 xijviv

T
i � 0 for j = 1, . . . , N

‖vi‖22 ≤ 1 for i = 1, . . . , K

(5.14b)

Similar to the positive definite dictionary learning problem from Chapter 4, we also use

the alternating minimization approach to learn the dictionary V . The dictionary V 0 is

initialized by sampling a random subset of K signals from S and computing their princi-

pal eigenvectors. The sparse coding is performed efficiently using the algorithm presented

Section 5.1. The dictionary learning algorithm is presented in Algorithm 6.

The dictionary update step involves sequentially updating one atom at a time. To update

atom vi, the optimization sub-problem (over the active set ωi) is:

min
vi:vTi vi≤1

∑

j∈ωi

{
xijtr

(
viv

T
i S
−1
j

)
− log det

(
K∑

i′=1

xi′jvi′v
T
i′S
−1
j

)}
. (5.15)

Define the objective in (5.15) as f(vi), ignoring the terms which are independent of vi:

f(vi) =
∑

j∈ωi

{
xijv

T
i S
−1
j vi − log det

(
K∑

i′=1

xi′jvi′v
T
i′

)}
. (5.16)

100

Algorithm 6 Rank-1 Dictionary Learning

Input: Data S = {Sj}Nj=1, dictionary size K, sparsity parameter λ

Output: V = [vi] , i = 1, . . . , K

k = 0

Initialize V 0 by sampling from principal eigenvectors of data points in S
repeat

k ← k + 1

Given S and V k−1, compute the sparse coefficients Xk using Algorithm 5

for i = 1 to K do

Update atom vk−1i to vki , along with the corresponding coefficients in Xk (Algo-
rithm 7)

end for

until convergence

Algorithm 7 Rank-1 Atom Update

Input: vi,
{
xij, Sj, Ŝj | j ∈ ωi

}

Output: vi,
{
xij, Ŝj | j ∈ ωi

}

repeat

Compute descent direction ∆vi using (5.18) or (5.22)

Choose stepsize α by line search

vnew
i ← vi + α∆vi

Ŝj ← Ŝj + xij

(
vnew
i (vnew

i)T − viv
T
i

)
∀j ∈ ωi

t = max {‖vnew
i ‖2 , 1}

vi ← vnew
i /t

xij ← t2 xij ∀j ∈ ωi
until convergence

101

5.3.1 Gradient Descent

Taking the gradient of f(vi) w.r.t. vi,

∂f(vi)

∂vi
=
∑

j∈ωi

2xijS

−1
j vi − 2xij

(
xijviv

T
i +

∑

i′ 6=i

xi′jvi′v
T
i′

)−1
vi

= 2
∑

j∈ωi

xij

{
S−1j − Ŝ−1j

}
vi (5.17)

The gradient descent direction ∆vgi is given by the negative of the gradient:

∆vgi = 2
∑

j∈ωi

xij

{
Ŝ−1j − S−1j

}
vi (5.18)

The gradient descent update algorithm is, therefore,

vki ← vk−1i + α∆vgi , (5.19)

with stepsize α ≥ 0 determined using line search techniques, such as exact or backtracking

(Armijo) line search.

5.3.2 Newton Descent

The Hessian of f(vi) w.r.t. vi is given by:

∂2f(vi)

∂v2
i

= 2
∑

j∈ωi

xij

{
S−1j − Ŝ−1j + xijŜ

−1viv
T
i Ŝ
−1 + xij

(
vTi Ŝ

−1vi

)
Ŝ−1

}
(5.20)

= 2
∑

j∈ωi

xij

{
S−1j +

[
xijv

T
i Ŝ
−1
j vi − 1

]
Ŝ−1j + xij

(
Ŝ−1j vi

)(
Ŝ−1j vi

)T}
(5.21)

The Newton descent direction ∆vNi is obtained by solving:

∂2f(vi)

∂v2
i

∆vNi = −∂f(vi)

∂vi
, (5.22)

and the Newton descent update algorithm is, therefore,

vki ← vk−1i + α∆vNi , (5.23)

with stepsize α ≥ 0.

102

5.3.3 Reconstruction Update

When the atom vi is modified, the reconstructions Ŝj, j ∈ ωi are also updated, according

to Algorithm 7:

Ŝj ← Ŝj + xij

(
vnew
i (vnew

i)T − viv
T
i

)
∀j ∈ ωi. (5.24)

Since this is a rank-2 update, we can compute the modified inverses Ŝ−1j using the low-rank

version of the Sherman-Morrison-Woodbury formula:

(A+ UCV)−1 = A−1 − A−1U
(
C−1 + V A−1U

)−1
V A−1, (5.25)

by setting

A = Ŝj, C =

 xij 0

0 −xij

 , U = V T = [vnew

i | vi] . (5.26)

This is equivalent to two iterations of the rank-1 update (5.8) and therefore has the same

order-complexity.

103

5.4 Time Complexity

5.4.1 Sparse Coding

The sparse coding algorithm for rank-1 dictionaries has a cost of O (n2) for updating each

coordinate. For each outer iteration, therefore, the cost isO (n2K). If the maximum number

of outer iterations is denoted by Lmax, the complexity of sparse coding one signal S over a

dictionary of K n× n rank-1 atoms is O (n2KLmax).

We show sparse coding computation times on an AMD Phenom II X6-1090T 3.2 GHz

64-bit 6-core desktop computer with 8GB RAM. Figure 5.3 shows the average sparse coding

time per signal for different values of (n,K), averaged over 50 runs of 1000 signals each. The

parameter λ is also varied in {0, 0.1, 1, 10}. When K < 3n, the sparse coding is very fast

(much faster than the general sparse coding algorithm), but when K ≥ 3n, the algorithm

takes longer to converge to the specified precision.

5.4.2 Dictionary Update

The Newton direction can be computed in O (n3 + n2N) time, accounting for the n × n

matrix inversion and computing sums of matrices over the active set ωi, |ωi| ≤ N . The

stepsize estimation using line search involves at most one generalized eigenvalue computa-

tion, costing O (n3). The reconstruction update takes O (n2N) time. Bounding the number

of inner iterations in the atom update by Mmax, the complexity of one atom update is

O ((n3 + n2N)Mmax). Since the number of training samples is usually large compared to

the data dimension N � n - for e.g., in the case of region covariance descriptors, this can

be approximated as O (n2NMmax). Therefore one iteration of the dictionary update stage

has a time complexity of O (n2KNMmax).

104

0 1 2 3 4 5 6 7 8 9 10 11 12
 (5, 5)

 (5, 10)
 (5, 15)

 (10, 10)
 (10, 15)
 (10, 20)
 (10, 25)
 (10, 30)
 (10, 35)
 (10, 40)
 (10, 45)
 (10, 50)
 (15, 15)
 (15, 20)
 (15, 25)
 (15, 30)
 (15, 35)
 (15, 40)
 (15, 45)
 (15, 50)
 (20, 20)
 (20, 25)
 (20, 30)
 (20, 35)
 (20, 40)
 (20, 45)
 (20, 50)

Time/signal (ms)

(n
,K

)

λ=0
λ=0.1
λ=1
λ=10

Figure 5.3: Average sparse coding times over rank-1 dictionaries, for different (n,K) value
pairs. The parameter λ is also varied. Results are averaged over 50 runs, and 1σ bars are
also shown.

105

5.5 Atom Recovery

We test the rank-1 dictionary learning approach by generating a ground-truth synthetic

dictionary V ∗ = [v∗1 | v∗2 | . . . | v∗K] of size n × K, with unit-norm columns. Random

sparse vectors x are generated and signals S are synthesized (N = 4nK). The dictionary

learning approach from Algorithm 6 is applied with Newton descent for a maximum of 50

iterations, setting λ = 0. We test the number of atoms correctly recovered in the learned

dictionary V̂ from the original dictionary V ∗, as in [Aharon et al., 2006]. The atoms are

matched using a threshold of |〈v∗i , v̂i〉| ≥ 0.99. The percentage of atoms correctly recovered

for different values of (n,K) is shown in Figure 5.4. It can be seen that for small values of

K, the atoms are recovered almost exactly.

n=5, K=10 n=5, K=15 n=10, K=15 n=10, K=20

10

20

30

40

50

60

70

80

90

100

Pe
rc

en
ta

ge
 o

f
co

rr
ec

t a
to

m
s

re
co

ve
re

d
(%

)

Figure 5.4: Boxplot of the percentage of atoms correctly recovered for different values of
(n,K), over 20 trials, with N = 4nK training samples.

106

5.6 USPS Digits Classification with Rank-1 Dictionar-

ies

In this section, we apply the dictionary learning algorithm for rank-1 positive semidefinite

dictionary atoms to classification of handwritten digits from the USPS dataset. We use

a subset of 1100 samples from each class, split into 1000 training and 100 test samples.

From each 16× 16 digit image, a 5× 5 region covariance descriptor is computed using the

grayscale intensity and absolute values of the first- and second-order spatial derivatives,

{I, |Ix|, |Iy|, |Ixx|, |Iyy|}. Some sample images from class are shown in Figure 5.5.

Figure 5.5: Sample images from each class in the USPS digit recognition dataset.

Dictionaries V0, V1, . . . , V9 each of size K = 10 were learned independently for each digit

class 0, 1, . . . , 9, and then used for classifying the test data based on the class dictionary

yielding the minimum reconstruction error. The classification accuracy was tested at each

iteration in the dictionary training process, as a measure of how well the rank-1 dictionary

learning process models the positive definite signals from each class. This is shown in

Figure 5.6. The initial dictionaries are randomly sampled from the data, and in a few

training iterations the accuracy shows a marked improvement.

107

0 5 10 15 20 25
10

15

20

25

30

35

40

45

50

Iterations

A
cc

ur
ac

y
(%

)

Figure 5.6: Classification accuracy of USPS digits vs. number of dictionary learning itera-
tions. The initial dictionary is randomly sampled from the data. In a few learning iterations,
the dictionaries model the individual classes and show a marked increase in the classification
accuracy.

Chapter 6

Discriminative Dictionary Learning

Sparse models have been used extensively to classify or cluster data. Learning dictionaries

for each class independently without information from the other classes can be compared

to generative modeling, which may not be able to classify or cluster data with sufficient

accuracy when there is significant overlap in the feature space. Such a scenario calls for the

use of discriminative modeling, where the learning should promote discrimination between

the sparse models of each class. In other words, the dictionary learned for a certain class

should provide good reconstruction for the signals from that class, and poor reconstruction

for signals that do not belong to that class. Conversely, a signal from a certain class

should be reconstructed best by a dictionary of the same class, compared to all other class

dictionaries.

In the vector sparse modeling literature, [Mairal et al., 2008, Ramirez et al., 2010] have

used different formulations to solve the dictionary learning problem while increasing the dis-

criminative power of the learned dictionaries. [Mairal et al., 2008] use a logistic loss term in

their objective function that penalizes for misclassification of signals. In [Ramirez et al., 2010],

however, the discrimination is learned in terms of the incoherence between atoms of different

class dictionaries. We follow the latter approach in learning discriminative positive definite

dictionaries.

108

109

6.1 Discriminative Dictionary Learning Formulation

Given training data from C different classes, we will attempt to learn the dictionary for

each class c = 1, . . . , C. The sizes of the training data from each class c is given by Nc. The

training data from class c is specified as S(c) =
{
S
(c)
j

}
, j = 1, . . . , Nc, and the dictionary

learned to model this data is denoted by A(c) =
{
A

(c)
i

}
, i = 1, . . . , Kc, Kc being the

dictionary size for class c.

The discriminative power of the dictionaries is induced by including a term which pro-

motes incoherence between the dictionaries of different classes - i.e., between each class c

dictionary A(c) and all other dictionaries A(c′), c′ 6= c. This is motivated by the work of

[Ramirez et al., 2010] in learning discriminative dictionaries for classification and clustering.

Similar to their work, we will use our definition of atom coherence from Section 3.7 and

penalize for the coherence between atoms from dictionaries of different classes.

We define the coherence between two dictionaries A(c) and A(c′) by

Q
(
A(c),A(c′)

)
=

Kc∑

i=1

Kc′∑

i′=1

〈
A

(c)
i , A

(c′)
i′

〉
. (6.1)

The discriminative dictionary learning problem is given by:

min
A(1),...,A(C)

C∑

c=1

Nc∑

j=1

min
x ≥ 0

A(c)x � 0

Dld

(
A(c)x, S

(c)
j

)
+ λ ‖x‖1

+ η
∑

c′ 6=c

Q
(
A(c),A(c′)

)

(6.2a)

s.t. A
(c)
i � 0 for i = 1, . . . , Kc, c = 1, . . . , C

∥∥∥A(c)
i

∥∥∥
2

F
≤ 1 for i = 1, . . . , Kc, c = 1, . . . , C

(6.2b)

This coherence term is convex (in fact, linear) in one argument, given the other fixed.

Therefore, while updating the class c dictionary A(c), all other class dictionaries are fixed.

110

The alternating minimization between the sparse coding and dictionary update stages is

the same as in the usual dictionary learning approach.

Writing out the coherence term Q in (6.2),

∑

c′ 6=c

Q
(
A(c),A(c′)

)
=
∑

c′ 6=c

Kc∑

i=1

Kc′∑

i′=1

tr
(
A

(c)
i A

(c′)
i′

)

=
Kc∑

i=1

tr

(
A

(c)
i

(∑

c′ 6=c

Kc′∑

i′=1

A
(c′)
i′

))

=
Kc∑

i=1

tr
(
A

(c)
i M

(c)
)

where M (c) =
∑

c′ 6=c

Kc′∑

i′=1

A
(c′)
i′ .

While updating the dictionary from class c, the factor M (c) encompasses the influence of all

the other class dictionary atoms. This is independent of the atom number i in dictionary

A(c). The linear penalty tr
(
A

(c)
i M

(c)
)

merely adds an ηM (c) term to the gradient expression

for the dictionary learning problem in Equation (4.7). Denoting the objective in (6.2) by

f
(
A(1), . . . ,A(C)

)
, the gradient w.r.t. A

(c)
i is given by:

∂

∂A
(c)
i

f
(
A(1), . . . ,A(C)

)
=
∑

j∈ω(c)
i

x
(c)
ij

[(
S
(c)
j

)−1
−
(
Ŝ
(c)
j

)−1]
+ ηM (c). (6.3)

The Hessian from the dictionary learning problem in Equation (4.12) does not change since

the coherence term Q is linear.

The discriminative atom update in Algorithm 8 can be performed using either the gra-

dient descent or Newton descent methods in Section 4.3.

111

Algorithm 8 Discriminative Dictionary Learning

Input: Data S(c) =
{
S
(c)
j

}Nc
j=1

, c = 1, . . . , C, dictionary size K, sparsity parameter λ,

incoherence parameter η

Output: A(c) =
{
A

(c)
i

}K
i=1

, c = 1, . . . , C

k = 0

for c = 1 to C do

Initialize A(c)
0 sampled from S(c)

end for

repeat

k ← k + 1

for c = 1 to C do

Given S(c) and A(c)
k−1, compute the sparse coefficients X

(c)
k

end for

for c = 1 to C do

Given S(c), X
(c)
k , and other class dictionaries

{
A(1)
k , . . . ,A(c−1)

k ,A(c+1)
k−1 , . . . ,A

(C)
k−1

}
,

compute the updated dictionary A(c)
k

end for

until convergence

112

To show that the discriminative dictionary learning approach presented here does reduce

the coherence between the dictionaries, we pick the two textures from a mosaic in the

Brodatz dataset [Randen and Husøy, 1999], shown in Figure 6.1(a). The texture descriptor

is computed as in Section 3.13.3 producing 5 × 5 covariances. Individual dictionaries of

varying sizes (K = 10, 15, 20, 50) are learned for each class, with (η = 5) and without

(η = 0) the discriminative penalty term. The decrease in the average cross-coherence

between atoms of the two dictionaries is shown in Figure 6.1(b). The use of the coherence

penalty term shows a clear improvement in the resultant average cross-coherence between

the trained dictionaries. Next we will show improvements in the classification accuracy for

practical applications.

(a)

0 5 10 15 20

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Iteration

A
ve

ra
ge

 C
ro

ss
−

C
oh

er
en

ce

(b)

Figure 6.1: Plot of the average cross-coherence between atoms of two dictionaries for the
texture (a) against the number of discriminative dictionary learning iterations. The dictio-
nary size is varied as K = 10 (red), K = 15 (green), K = 20 (blue) and K = 50 (black).
The symbol ◦ denotes dictionary learning without the discriminative term η = 0, and ♦
denotes discriminative dictionary learning, with η = 5. Discriminative learning reduces the
average coherence between the dictionary atoms of the different classes.

113

6.2 Discriminative Dictionaries for Brodatz Textures

We apply the discriminative dictionary learning algorithm from Algorithm 8 to classify

two example textures from the Brodatz texture mosaics dataset [Randen and Husøy, 1999].

Each of these examples have 5 different texture classes. The same procedure as in Sec-

tion 3.13.3 was applied, but with different types of dictionaries:

1. Randomly sampled from the data

2. Learned from the data independently in each class (denoted as DL)

3. Learned from the data discriminatively with the coherence penalty (denoted as DDL)

We chose a dictionary size of K = 4, and varied the sparsity regularizer λ. The value of

η was set to be 0.1. The improvement of accuracy in the texture classification is shown

in Figure 6.2. The learned dictionary improves the classification performance, and the

discriminative training proves a further boost to the accuracy, sometimes substantially.

114

(a)

0 0.01 0.1
80

82

84

86

88

90

92

λ

A
cc

ur
ac

y
(%

)

Random
DL
DDL

(b)

(c)

0 0.01 0.1

76

78

80

82

84

86

88

90

92

94

λ

A
cc

ur
ac

y
(%

)

Random
DL
DDL

(d)

Figure 6.2: Comparison of accuracy between randomly initialized dictionaries (random)
and dictionaries learned with (DDL) and without (DL) the discriminative penalty. The
corresponding textures are shown on the left.

115

6.3 USPS Digits Classification with Discriminative Dic-

tionary Learning

The USPS dataset from Section 5.6, with 1000 training and 100 test examples from each

class {0, . . . , 9}, was used to learn discriminative dictionaries for digit recognition. We

denote the number of classes by C - C = 10. Two dictionary sizes K = 15 and K = 30

were tested, and λ was set to 0.1. The discriminative dictionary learning was applied for

10 iterations each, with the dictionary initialization obtained through K-means clustering

of the individual data classes.

Table 6.1 shows the classification accuracy over the test set, comparing the use of inde-

pendently and discriminatively trained dictionaries, with η = 0 and η = 1/C respectively.

The improvement in accuracy ∆ shows that the use of discriminative dictionary learning

definitely provides a benefit in the classification setting. Arbitrarily increasing η, however,

does not always give improved performance - when we set η = 10 in this data set, the

accuracy dropped by around 30%.

K
Accuracy

∆
η = 0 η = 1

C

15 60.8 % 67.2 % + 6.4 %

30 59.5 % 67.0 % + 7.5 %

Table 6.1: Classification accuracy on the USPS dataset with our tensor discriminative
dictionary learning approach. The improvement ∆ in the accuracy is shown on the right.
The discriminative training improves the classification accuracy by a significant margin.

116

6.4 Action Recognition with Discriminative Learned

Dictionaries

We apply the discriminative dictionary learning approach to classify actions from the KTH

dataset from [Schuldt et al., 2004]. There are 6 different actions performed about 4 times

each by 25 subjects (for a total of 598 sequences). We use the covariance feature representa-

tion from [Guo et al., 2010a], using the optical flow of the video frames. The features used

are:

φ(x, y, t) = [x, y, t, It, u, v, ut, vt, Div, V or,Gten, Sten]T ,

where (x, y, t) are the spatio-temporal coordinates of the corresponding pixels, and (u, v)

are the optical flow values. It, ut, vt are the temporal gradient of the image intensity and

optical flow features respectively. Div, V or, Gten, and Sten are the features derived from

the optical flow, from [Guo et al., 2010a]:

Div(x, y, t) =
∂u(x, y, t)

∂x
+
∂v(x, y, t)

∂y
,

V or(x, y, t) =
∂v(x, y, t)

∂x
− ∂u(x, y, t)

∂y
,

Gten(x, y, t) =
1

2

{
tr (∇u(x, y, t))2 − tr

(
∇u(x, y, t)2

)}
,

where ∇u(x, y, t) =

∂u(x,y,t)
∂x

∂u(x,y,t)
∂y

∂v(x,y,t)
∂x

∂v(x,y,t)
∂y

 ,

Sten(x, y, t) =
1

2

{
tr (S(x, y, t))2 − tr

(
S(x, y, t)2

)}
,

where S(x, y, t) =
1

2

(
∇u(x, y, t) +∇u(x, y, t)T

)
.

These features are combined to form 12×12 covariance descriptors, computed over each

subsequence in each action video, the start- and stop-frames of which are indicated in the

117

KTH dataset. In each frame, only the pixels with magnitude of optical flow above a certain

threshold are used in the construction of the optical flow covariance descriptors.

We use the 8 training and 9 test subjects indicated in the dataset, and test our discrimi-

native dictionary learning approach. We compare this with the baseline K-nearest-neighbors

classification (best K = 6), as well as the vectorized-log-covariance sparse coding approach

from [Guo et al., 2010a] (best sparsity k = 2 with our implementation). We only com-

pare with these two methods using optical flow-based region covariance descriptors, and

the classification accuracy is shown in Table 6.2. The procedure for our dictionary-based

classification is the same as in the previous chapters. DL implies dictionary learning without

discrimination (η = 0), and DDL denotes discriminative dictionary learning (η 6= 0). K,

the number of dictionary atoms for each class dictionary, was also varied. λ was set to 0.1.

Note that in the first two approaches, the entire training data is available to the classifier

during test time, which is not the case in our approach. The learned dictionary models

the features from the different classes, and the discriminative term improves the overall

classification accuracy.

These experiments show that including a discriminative penalty term in the training pro-

cedure produces better results than learning the different class dictionaries independently.

118

Classification Approach Accuracy

K-NN (K = 2) 82.50 %

[Guo et al., 2010a] 83.89 %

DL (K = 15) 83.43 %

DDL (K = 15) 83.78 %

DL (K = 30) 84.01 %

DDL (K = 30) 84.59 %

DL (K = 60) 85.75 %

DDL (K = 60) 86.37 %

Table 6.2: Classification accuracy on the KTH dataset, comparing the tensor dictionary
learning approaches with K-nearest neighbor and Euclidean sparse coding over vectorized
log-covariances. The discriminative dictionary learning approach provides the best accuracy
in this experiment.

Chapter 7

TeSLa: Tensor Sparse Library

As part of the contributions of this thesis, we provide a software package called Tensor

Sparse Library, or TeSLa, containing efficient and optimized C++ implementations of the

main tensor sparse coding and dictionary learning algorithms presented here. The software

uses the Eigen library [Guennebaud et al., 2010] with OpenMP, and has been tested in

Windows and Mac environments.

MATLAB scripts are provided for reading and writing data, dictionary and coefficient

files in the format compatible with the C++ software. These are written as separate text

files whose names are then passed as arguments to the different programs. The data is

encoded by vectorizing the upper triangular part of each matrix, in a column-major format.

The data dimensions n and number of training points N are provided in the header. The

dictionary atoms are formatted as complete n× n matrices, along with a header indicating

n and dictionary size K. The coefficients xj, j = 1, . . . , N , are written out as a K × N

matrix.

119

120

7.1 Sparse Coding

The program TensorSC solves the tensor sparse coding using the coordinate descent algo-

rithm inAlgorithm 1. It takes the data S = {Sj}Nj=1, Sj ∈ Sn++ and dictionary A = {Ai}Ki=1,

Ai ∈ Sn+ as inputs and returns the sparse coefficients X ∈ RK×N
+ . The regularization pa-

rameter λ can be specified, or it defaults to λ = 0. The program automatically determines if

the dictionaries are rank-1 outer products, and switches to the efficient rank-1 sparse coding

algorithm from Algorithm 5.

Arguments:

-input < inputFilename > Data input filename

-dictionary < dictionaryFilename > Dictionary input filename

-lambda < lambdaValue > λ input sparsity parameter

-output < outputFilename > Coefficient output filename

We show sparse coding computation times on an AMD Phenom II X6-1090T 3.2 GHz

64-bit 6-core desktop computer with 8GB RAM. Figure 7.1 shows the average sparse coding

time per signal for different values of (n,K), averaged over 50 runs of 1000 signals each.

The typical dimension of region covariance descriptors is n = 5, and it can be seen that for

reasonable dictionary sizes K ≤ 50 the sparse coding takes under 1 millisecond.

121

5 10 15 20
0

1

2

3

4

5

6

7

8

9

10

Dimensions (n)

T
im

e/
si

gn
al

 (
m

s)

K=10
K=20
K=30
K=40
K=50

Figure 7.1: Average sparse coding times per n×n positive definite signal S over a dictionary
A of size K, using the coordinate descent algorithm (λ = 0). 3σ bars are also shown.

122

7.2 Dictionary Learning

The program TensorDL solves the tensor dictionary learning problem using alternative min-

imization. It alternates between the sparse coding and dictionary update stages, for a

specified number of iterations. Both the gradient atom update and Newton atom update

strategies are implemented, along with the rank-1 dictionary update mode. The training

data set S = {Sj}Nj=1 is passed as input to the program, along with the dictionary size

K, regularization parameter λ, and the number of iterations nIters. The choice of learning

rank-1 dictionaries can be specified by setting a Boolean flag rank1 = true, which is false by

default. The sparse coefficients are not returned in this program.

Arguments:

-input < inputFilename > Data input filename

-K < Kvalue > Dictionary size parameter

-lambda < lambdaValue > λ input sparsity parameter

-nIters < numberOfIters > Number of iterations

-rank1 < flag > Flag specifying use of rank-1 dictionaries

-dictionary < dictionaryFilename > Dictionary output filename

123

7.3 Discriminative Dictionary Learning

The program TensorDDL solves the tensor discriminative dictionary learning problem. The

number of classes C is provided as an input, and the training data set is provided in a set

of C different input files with a common prefix - i.e., filename1, filename2, . . . , filenameC.

Only the prefix filename needs to be specified. Similarly, the learned dictionaries are written

to C different files with the specified dictionary filename prefix. The sparsity regularization

parameter λ and incoherence regularization parameter η are provided as inputs, or use

default values of λ = 0, η = 0. When η = 0, the dictionaries are not learned discriminatively,

rather the dictionaries for the different classes are learned independently of each other.

Arguments:

-input < inputFilenamePrefix > Data input filename prefix

-C < Cvalue > Number of classes

-K < Kvalue > Dictionary size parameter

-lambda < lambdaValue > λ input sparsity parameter

-eta < etaValue > η input incoherence parameter

-nIters < numberOfIters > Number of iterations

-rank1 < flag > Flag for using rank-1 dictionaries

-dictionary < dictionaryFilenamePrefix > Dictionary output filename prefix

Chapter 8

Summary and Contributions

In this thesis, we have proposed novel sparse modeling techniques for positive definite matri-

ces. The vast success of vector sparse modeling approaches in computer vision and machine

learning served as the motivation to develop sparse models for the special case of positive

definite matrices, which appear in many areas including probability, statistics, control the-

ory, and medical imaging. We present sparse coding and dictionary learning techniques,

with efficient implementations for each. The effects of the various quantities involved in

the modeling are explored to get a deeper understanding of the presented methods. Special

extensions to dictionaries with rank-one matrices and discriminative models are developed

and applied to practical scenarios.

8.1 Contributions of the Thesis

• We designed a new tensor sparse coding technique from the ground up, from the choice

of an appropriate distortion measure to the convex formulation belonging to a rich

class of MAXDET optimization problems. This is augmented by an efficient algorithm

and implementation for solving the positive definite sparse coding problem.

124

125

• We explore the effects of atom normalization, sparsity regularization, dictionary size,

and data dimension in the sparse coding problem. We show an empirical phase transi-

tion diagram, analogous to that used in the vector sparse recovery literature, showing

the unique recoverability of the sparse coefficients from a signal processing and com-

pressive sensing viewpoint.

• A novel sparse modeling approach for learning dictionaries of positive definite atoms

is presented, and solved using alternating minimization. Iterative descent methods

for updating the atoms of the dictionary are shown, and computational improvements

are suggested to handle cases of large dimensions.

• Both the sparse coding and dictionary learning methods are extended and efficiently

reduced to the case when the dictionary atoms are rank-1 outer products, simplifying

many of the computations.

• An approach to learn positive definite sparse models for classification is presented,

by incorporating cross-coherence between the atoms of different class dictionaries,

analogous to similar vector sparse modeling techniques.

• A software package has been developed, comprising optimized C++ implementations

of the algorithms in this thesis, for use by other researchers in our field.

8.2 Future Directions

• The sparsity model used in this thesis can be extended further to incorporate group

sparsity and hierarchical sparsity in the coefficients.

• The dictionary learning approach can be used to learn vocabularies for Bag-of-Words

(BoW) type features, where the features are positive definite matrices such as region

126

covariances, yielding Bag-of-Covariance-Words (BoCW) features. The sparse coeffi-

cients can be summed up and used as the feature vector for further classification with

powerful classifiers like SVMs.

• Throughout this thesis, we have assumed the dictionary size to be a user-defined

parameter. While heuristic methods can be applied to prune dictionaries based on

coherence, it would be of great value to have a way to automatically determine the

number of dictionary atoms to model each data class.

• To tackle the scalability of the sparse coding approach to extremely large dictionaries,

greedy and/or heuristic techniques to quickly narrow down a subset of dictionary

atoms are essential. This would override the need to visit each atom at every iteration

of the coordinate descent procedure, improving scalability. Hashing-type approaches

based on the atom coherence defined here would be interesting to explore further.

• Just as vector sparse models are used to denoise image patches, the sparse dictionary

models from this thesis can be applied to denoising positive definite tensor fields, such

as those arising in diffusion tensor imaging.

• Sparse regression on covariance models can be applied towards prediction of dynamic

covariances, such as those occurring in the stock market, climate modeling, etc.

• Feature selection is a critical task in many computer vision/image processing appli-

cations. While this has been explored in vector descriptors, not much has been done

for feature selection in covariance descriptors. Sparse positive definite atoms in the

dictionary could enable us to perform feature selection in covariance descriptor data.

References

[Aharon et al., 2006] Aharon, M., Elad, M. and Bruckstein, A. (2006). K-SVD: An Algorithm for

Designing Overcomplete Dictionaries for Sparse Representation. IEEE Transactions on Signal

Processing 54, 4311–4322.

[Alahi et al., 2008] Alahi, A., Marimon, D., Bierlaire, M. and Kunt, M. (2008). A master-slave

approach for object detection and matching with fixed and mobile cameras. In 15th IEEE

International Conference on Image Processing 2008 pp. 1712–1715,.

[Arif and Vela, 2009] Arif, O. and Vela, P. (2009). Kernel covariance image region description for

object tracking. In 16th IEEE International Conference on Image Processing, 2009 pp. 865–868,.

[Arsigny et al., 2006] Arsigny, V., Fillard, P., Pennec, X. and Ayache, N. (2006). Log-Euclidean

Metrics for Fast and Simple Calculus on Diffusion Tensors. Magnetic Resonance in Medicine

56, 411–421.

[Artner et al., 2009] Artner, N., Ion, A. and Kropatsch, W. (2009). Coarse-to-Fine Tracking of

Articulated Objects Using a Hierarchical Spring System. In Computer Analysis of Images and

Patterns, (Jiang, X. and Petkov, N., eds), vol. 5702, of Lecture Notes in Computer Science pp.

1011–1018. Springer Berlin / Heidelberg.

[Austvoll and Kwolek, 2010] Austvoll, I. and Kwolek, B. (2010). Region Covariance Matrix-Based

Object Tracking with Occlusions Handling. In Computer Vision and Graphics, (Bolc, L.,

Tadeusiewicz, R., Chmielewski, L. and Wojciechowski, K., eds), vol. 6374, of Lecture Notes

in Computer Science pp. 201–208. Springer Berlin / Heidelberg.

127

128

[Banerjee et al., 2005] Banerjee, A., Merugu, S., Dhillon, I. S. and Ghosh, J. (2005). Clustering

with Bregman Divergences. J. Mach. Learn. Res. 6, 1705–1749.

[Bar and Sapiro, 2010] Bar, L. and Sapiro, G. (2010). Hierarchical dictionary learning for invariant

classification. In IEEE International Conference on Acoustics Speech and Signal Processing 2010

pp. 3578–3581,.

[Barzilai and Borwein, 1988] Barzilai, J. and Borwein, J. M. (1988). Two-Point Step Size Gradient

Methods. IMA Journal of Numerical Analysis 8, 141–148.

[Bhatia, 2007] Bhatia, R. (2007). Positive Definite Matrices. Princeton University Press, Prince-

ton, NJ, USA.

[Bottou, 1998] Bottou, L. (1998). Online learning in neural networks. chapter Online learning and

stochastic approximations, pp. 9–42. Cambridge University Press New York, NY, USA.

[Bregman, 1967] Bregman, L. M. (1967). The relaxation method of finding the common point

of convex sets and its application to the solution of problems in convex programming. USSR

Computational Mathematics and Mathematical Physics 7, 200–217.

[Cai et al., 2010] Cai, Y., Takala, V. and Pietikainen, M. (2010). Matching Groups of People

by Covariance Descriptor. In 20th International Conference on Pattern Recognition 2010 pp.

2744–2747,.

[Cargill et al., 2009] Cargill, P. C., Rius, C. U., Quiroz, D. M. and Soto, A. (2009). Performance

Evaluation of the Covariance Descriptor for Target Detection. In Intl. Conf. of the Chilean

Computer Science Society 2009 pp. 133–141,.

[Castrodad and Sapiro, 2011] Castrodad, A. and Sapiro, G. (2011). Sparse modeling of human

actions from motion imagery. Technical Report 2378 Institute for Mathematics and its Appli-

cations, University of Minnesota.

[Chen et al., 2001] Chen, S. S., Donoho, D. L. and Saunders, M. A. (2001). Atomic Decomposition

by Basis Pursuit. SIAM Rev. 43, 129–159.

129

[Davis et al., 1997] Davis, G., Mallat, S. and Avellaneda, M. (1997). Adaptive greedy approxima-

tions. Constructive Approximation 13, 57–98.

[Davis et al., 2007] Davis, J. V., Kulis, B., Jain, P., Sra, S. and Dhillon, I. S. (2007). Information-

theoretic metric learning. In 24th Intl. Conf. on Machine learning ICML ’07 pp. 209–216, ACM,

New York, NY, USA.

[Ding et al., 2010] Ding, X., Huang, C., Huang, F., Xu, L. and fang Li, X. (2010). Region covari-

ance based object tracking using Monte Carlo method. In 8th IEEE International Conference

on Control and Automation 2010 pp. 1802–1805,.

[Donoho and Stodden, 2004] Donoho, D. and Stodden, V. (2004). When Does Non-Negative Ma-

trix Factorization Give a Correct Decomposition into Parts? In Advances in Neural Information

Processing Systems 16. MIT Press Cambridge, MA.

[Donoho and Tanner, 2009] Donoho, D. and Tanner, J. (2009). Observed universality of phase

transitions in high-dimensional geometry, with implications for modern data analysis and signal

processing. Philosophical Transactions of the Royal Society A: Mathematical, Physical and

Engineering Sciences 367, 4273–4293.

[Donoho and Tanner, 2010] Donoho, D. and Tanner, J. (2010). Precise Undersampling Theorems.

Proceedings of the IEEE 98, 913–924.

[Donoho et al., 2006] Donoho, D., Tsaig, Y., Drori, I. and Starck, J. L. (2006). Sparse solution

of underdetermined linear equations by stagewise orthogonal matching pursuit. Tech. Report.

2006-2 Department of Statistics, Stanford University.

[Donoho and Tanner, 2005] Donoho, D. L. and Tanner, J. (2005). Sparse nonnegative solution of

underdetermined linear equations by linear programming. Proceedings of the National Academy

of Sciences of the United States of America 102, 9446–9451.

[Duarte-Carvajalino and Sapiro, 2009] Duarte-Carvajalino, J. and Sapiro, G. (2009). Learning to

Sense Sparse Signals: Simultaneous Sensing Matrix and Sparsifying Dictionary Optimization.

IEEE Transactions on Image Processing 18, 1395–1408.

130

[Efron et al., 2004] Efron, B., Hastie, T., Johnstone, I. and Tibshirani, R. (2004). Least Angle

Regression. The Annals of Statistics 32, 407–451.

[Elad and Aharon, 2006] Elad, M. and Aharon, M. (2006). Image Denoising Via Sparse and Re-

dundant Representations Over Learned Dictionaries. IEEE Transactions on Image Processing

15, 3736–3745.

[Engan et al., 1999] Engan, K., Aase, S. and Hakon Husoy, J. (1999). Method of optimal directions

for frame design. In IEEE International Conference on Acoustics, Speech, and Signal Processing

1999 vol. 5, pp. 2443–2446,.

[Ge and Yu, 2008a] Ge, Y. and Yu, J. (2008a). A scene recognition algorithm based on covariance

descriptor. In IEEE Conference on Cybernetics and Intelligent Systems, 2008 pp. 838–842,.

[Ge and Yu, 2008b] Ge, Y. and Yu, J. (2008b). Robust visual tracking using incremental appear-

ance descriptor update. In IEEE International Conference on Automation and Logistics, 2008.

pp. 316–321,.

[Gelman et al., 2003] Gelman, A., Carlin, J. B., Stern, H. S. and Rubin, D. S. (2003). Bayesian

Data Analysis, Second Edition. Chapman & Hall/CRC, Boca Raton.

[Golub and Loan, 1996] Golub, G. H. and Loan, C. F. V. (1996). Matrix Computations. 3rd

edition, The Johns Hopkins University Press.

[Gualdi et al., 2009] Gualdi, G., Prati, A. and Cucchiara, R. (2009). Covariance descriptors on

moving regions for human detection in very complex outdoor scenes. In Third ACM/IEEE

International Conference on Distributed Smart Cameras, 2009. pp. 1–8,.

[Gualdi et al., 2010] Gualdi, G., Prati, A. and Cucchiara, R. (2010). Perspective and appear-

ance context for people surveillance in open areas. In IEEE Computer Society Conference on

Computer Vision and Pattern Recognition Workshops 2010 pp. 13–18,.

[Guennebaud et al., 2010] Guennebaud, G., Jacob, B. et al. (2010). Eigen v3.

http://eigen.tuxfamily.org.

131

[Guo et al., 2010a] Guo, K., Ishwar, P. and Konrad, J. (2010a). Action Recognition Using Sparse

Representation on Covariance Manifolds of Optical Flow. In Seventh IEEE International Con-

ference on Advanced Video and Signal Based Surveillance 2010 pp. 188–195,.

[Guo et al., 2010b] Guo, K., Ishwar, P. and Konrad, J. (2010b). Action change detection in video

by covariance matching of silhouette tunnels. In IEEE International Conference on Acoustics

Speech and Signal Processing 2010 pp. 1110–1113,.

[Han et al., 2009] Han, Y., Sun, Z., Tan, T. and Hao, Y. (2009). Palmprint Recognition Based

on Regional Rank Correlation of Directional Features. In Advances in Biometrics, (Tistarelli,

M. and Nixon, M., eds), vol. 5558, of Lecture Notes in Computer Science pp. 587–596. Springer

Berlin / Heidelberg.

[Hu et al., 2008] Hu, H., Qin, J., Lin, Y. and Xu, Y. (2008). Region covariance based probabilistic

tracking. In 7th World Congress on Intelligent Control and Automation 2008 pp. 575–580,.

[Huo and Feng, 2010] Huo, H. and Feng, J. (2010). Face Recognition via AAM and Multi-features

Fusion on Riemannian Manifolds. In Computer Vision ACCV 2009, (Zha, H., Taniguchi, R.-i.

and Maybank, S., eds), vol. 5996, of Lecture Notes in Computer Science pp. 591–600. Springer

Berlin / Heidelberg.

[Hussein et al., 2009] Hussein, M., Porikli, F. and Davis, L. (2009). A Comprehensive Evaluation

Framework and a Comparative Study for Human Detectors. IEEE Transactions on Intelligent

Transportation Systems 10, 417 –427.

[Karasev et al., 2008] Karasev, P., Malcolm, J. and Tannenbaum, A. (2008). Kernel-based high-

dimensional histogram estimation for visual tracking. In 15th IEEE International Conference

on Image Processing 2008 pp. 2728–2731,.

[Kilic et al., 2010] Kilic, N., Kursun, O. and Ucan, O. (2010). Classification of the Colonic Polyps

in CT-Colonography Using Region Covariance as Descriptor Features of Suspicious Regions.

Journal of Medical Systems 34, 101–105.

132

[Kulis et al., 2006] Kulis, B., Sustik, M. and Dhillon, I. (2006). Learning low-rank kernel matrices.

In Proc. 23rd Intl. Conf. on Machine learning ICML ’06 pp. 505–512, ACM, New York, NY,

USA.

[Kulis et al., 2009] Kulis, B., Sustik, M. A. and Dhillon, I. S. (2009). Low-Rank Kernel Learning

with Bregman Matrix Divergences. J. Mach. Learn. Res. 10, 341–376.

[Kuo et al., 2010] Kuo, C.-H., Huang, C. and Nevatia, R. (2010). Inter-camera Association of

Multi-target Tracks by On-Line Learned Appearance Affinity Models. In Computer Vision

ECCV 2010, (Daniilidis, K., Maragos, P. and Paragios, N., eds), vol. 6311, of Lecture Notes in

Computer Science pp. 383–396. Springer Berlin / Heidelberg.

[Kwolek, 2009] Kwolek, B. (2009). Object Tracking via Multi-region Covariance and Particle

Swarm Optimization. In Sixth IEEE International Conference on Advanced Video and Signal

Based Surveillance, 2009 pp. 418–423,.

[Kwolek, 2010] Kwolek, B. (2010). Multi Camera-Based Person Tracking Using Region Covariance

and Homography Constraint. In Seventh IEEE International Conference on Advanced Video

and Signal Based Surveillance 2010 pp. 294–299,.

[Kwon and Park, 2008] Kwon, J. and Park, F. (2008). Visual tracking via particle filtering on the

affine group. In International Conference on Information and Automation, 2008 pp. 997–1002,.

[Lee and Seung, 2000] Lee, D. D. and Seung, H. S. (2000). Algorithms for Non-negative Matrix

Factorization. In Advances in Neural Information Processing Systems 16, (Leen, T., Dietterich,

T. and Tresp, V., eds), vol. 13, pp. 556–562. MIT Press Cambridge, MA.

[Li et al., 2008] Li, X., Hu, W., Zhang, Z. and Zhang, X. (2008). Robust Visual Tracking Based

on an Effective Appearance Model. In Computer Vision ECCV 2008, (Forsyth, D., Torr, P.

and Zisserman, A., eds), vol. 5305, of Lecture Notes in Computer Science pp. 396–408. Springer

Berlin / Heidelberg.

[Löfberg, 2004] Löfberg, J. (2004). YALMIP : A Toolbox for Modeling and Optimization in MAT-

LAB. In Proceedings of the CACSD Conference, Taipei, Taiwan.

133

[Lu et al., 2009] Lu, J., Zhao, Y. and Hu, J. (2009). Enhanced gabor-based region covariance

matrices for palmprint recognition. Electronics Letters 45, 880 –881.

[Luo and Tseng, 1992] Luo, Z. Q. and Tseng, P. (1992). On the convergence of the coordinate

descent method for convex differentiable minimization. Journal of Optimization Theory and

Applications 72, 7–35.

[Ma et al., 2007] Ma, Y., Miller, B. and Cohen, I. (2007). Video Sequence Querying Using Clus-

tering of Objects Appearance Models. In Advances in Visual Computing vol. 4842, of Lecture

Notes in Computer Science pp. 328–339. Springer Berlin / Heidelberg.

[Mairal et al., 2009] Mairal, J., Bach, F., Ponce, J. and Sapiro, G. (2009). Online dictionary

learning for sparse coding. In Proceedings of the 26th Annual International Conference on

Machine Learning ICML ’09 pp. 689–696, ACM, New York, NY, USA.

[Mairal et al., 2010] Mairal, J., Bach, F., Ponce, J. and Sapiro, G. (2010). Online Learning for

Matrix Factorization and Sparse Coding. J. Mach. Learn. Res. 11, 19–60.

[Mairal et al., 2008] Mairal, J., Bach, F., Ponce, J., Sapiro, G. and Zisserman, A. (2008). Discrim-

inative learned dictionaries for local image analysis. In IEEE Conference on Computer Vision

and Pattern Recognition, 2008 pp. 1–8,.

[Mairal et al., 2009] Mairal, J., Bach, F., Ponce, J., Sapiro, G. and Zisserman, A. (2009). Non-

local sparse models for image restoration. In 12th IEEE International Conference on Computer

Vision, 2009 pp. 2272–2279,.

[Mairal et al., 2008a] Mairal, J., Elad, M. and Sapiro, G. (2008a). Sparse Representation for Color

Image Restoration. IEEE Transactions on Image Processing 17, 53 –69.

[Mairal et al., 2008b] Mairal, J., Leordeanu, M., Bach, F., Hebert, M. and Ponce, J. (2008b).

Discriminative Sparse Image Models for Class-Specific Edge Detection and Image Interpretation.

In Proceedings of the 10th European Conference on Computer Vision: Part III pp. 43–56,

Springer-Verlag, Berlin, Heidelberg.

134

[Mairal et al., 2007] Mairal, J., Sapiro, G. and Elad, M. (2007). Multiscale Sparse Image Repre-

sentation with Learned Dictionaries. In IEEE International Conference on Image Processing,

2007 vol. 3, pp. III –105 –III –108,.

[Mallat and Zhang, 1993] Mallat, S. and Zhang, Z. (1993). Matching pursuits with time-frequency

dictionaries. IEEE Transactions on Signal Processing 41, 3397–3415.

[Martelli et al., 2010] Martelli, S., Tosato, D., Farenzena, M., Cristani, M. and Murino, V.

(2010). An FPGA-based Classification Architecture on Riemannian Manifolds. In Workshop

on Database and Expert Systems Applications 2010 pp. 215–220,.

[Opelt et al., 2004] Opelt, A., Fussenegger, M., Pinz, A. and Auer, P. (2004). Weak Hypotheses

and Boosting for Generic Object Detection and Recognition. In Computer Vision - ECCV 2004,

(Pajdla, T. and Matas, J., eds), vol. 3022, of Lecture Notes in Computer Science pp. 71–84.

Springer Berlin / Heidelberg.

[Osborne et al., 2000] Osborne, M., Presnell, B. and Turlach, B. (2000). A new approach to

variable selection in least squares problems. IMA Journal of Numerical Analysis 20, 389–403.

[Osman, 2009a] Osman, H. (2009a). Covariance-based recognition using an incremental learning

approach. Artificial Life and Robotics 14, 233–236.

[Osman, 2009b] Osman, H. (2009b). Hardware-Based Solutions Utilizing Random Forests for

Object Recognition. In Advances in Neuro-Information Processing, (Kppen, M., Kasabov, N.

and Coghill, G., eds), vol. 5507, of Lecture Notes in Computer Science pp. 760–767. Springer

Berlin / Heidelberg.

[Paisitkriangkrai et al., 2007] Paisitkriangkrai, S., Shen, C. and Zhang, J. (2007). An Experi-

mental Evaluation of Local Features for Pedestrian Classification. In 9th Biennial Conference

of the Australian Pattern Recognition Society on Digital Image Computing Techniques and

Applications pp. 53–60,.

135

[Paisitkriangkrai et al., 2008a] Paisitkriangkrai, S., Shen, C. and Zhang, J. (2008a). Performance

evaluation of local features in human classification and detection. IET Computer Vision 2,

236–246.

[Paisitkriangkrai et al., 2008b] Paisitkriangkrai, S., Shen, C. and Zhang, J. (2008b). Fast Pedes-

trian Detection Using a Cascade of Boosted Covariance Features. IEEE Transactions on Circuits

and Systems for Video Technology 18, 1140 –1151.

[Paisitkriangkrai et al., 2008c] Paisitkriangkrai, S., Shen, C. and Zhang, J. (2008c). An experi-

mental study on pedestrian classification using local features. In IEEE International Symposium

on Circuits and Systems, 2008 pp. 2741–2744,.

[Palaio and Batista, 2008] Palaio, H. and Batista, J. (2008). Multi-object tracking using an adap-

tive transition model particle filter with region covariance data association. In 19th Intl. Conf.

on Pattern Recognition, 2008. pp. 1–4,.

[Palaio and Batista, 2009a] Palaio, H. and Batista, J. (2009a). A kernel particle filter multi-object

tracking using gabor-based region covariance matrices. In 16th IEEE International Conference

on Image Processing 2009 pp. 4085–4088,.

[Palaio and Batista, 2009b] Palaio, H. and Batista, J. (2009b). Kernel Based Multi-object Track-

ing Using Gabor Functions Embedded in a Region Covariance Matrix. In Pattern Recognition

and Image Analysis, (Araujo, H., Mendona, A., Pinho, A. and Torres, M., eds), vol. 5524, of

Lecture Notes in Computer Science pp. 72–79. Springer Berlin / Heidelberg.

[Palaio et al., 2009] Palaio, H., Maduro, C., Batista, K. and Batista, J. (2009). Ground plane

velocity estimation embedding rectification on a particle filter multi-target tracking. In IEEE

International Conference on Robotics and Automation, 2009 pp. 825–830,.

[Pang et al., 2008] Pang, Y., Yuan, Y. and Li, X. (2008). Gabor-Based Region Covariance Matrices

for Face Recognition. IEEE Trans. Circuits Syst. Video Technol. 18, 989–993.

136

[Pati et al., 1993] Pati, Y., Rezaiifar, R. and Krishnaprasad, P. (1993). Orthogonal matching pur-

suit: recursive function approximation with applications to wavelet decomposition. In Twenty-

Seventh Asilomar Conference on Signals, Systems and Computers 1993 vol. 1, pp. 40–44,.

[Pennec et al., 2006] Pennec, X., Fillard, P. and Ayache, N. (2006). A Riemannian Framework for

Tensor Computing. Int. J. Comput. Vision 66, 41–66.

[Pfander et al., 2008] Pfander, G., Rauhut, H. and Tanner, J. (2008). Identification of Matrices

Having a Sparse Representation. IEEE Trans. Signal Process. 56, 5376–5388.

[Phillips et al., 2000] Phillips, P., Moon, H., Rizvi, S. and Rauss, P. (2000). The FERET evalua-

tion methodology for face-recognition algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 22,

1090–1104.

[Porikli, 2010] Porikli, F. (2010). Learning on Manifolds. In Structural, Syntactic, and Statistical

Pattern Recognition, (Hancock, E., Wilson, R., Windeatt, T., Ulusoy, I. and Escolano, F., eds),

vol. 6218, of Lecture Notes in Computer Science pp. 20–39. Springer Berlin / Heidelberg.

[Porikli and Kocak, 2006] Porikli, F. and Kocak, T. (2006). Robust License Plate Detection Using

Covariance Descriptor in a Neural Network Framework. In IEEE Intl. Conf. on Video and Signal

Based Surveillance, 2006. pp. 107–107,.

[Porikli and Tuzel, 2006] Porikli, F. and Tuzel, O. (2006). Fast Construction of Covariance Ma-

trices for Arbitrary Size Image Windows. In IEEE Intl. Conf. on Image Processing, 2006 pp.

1581–1584,.

[Porikli et al., 2006] Porikli, F., Tuzel, O. and Meer, P. (2006). Covariance Tracking using Model

Update Based on Lie Algebra. In IEEE Comp. Soc. Conf. on Computer Vision and Pattern

Recognition 2006 vol. 1, pp. 728–735,.

[Prakash et al., 2007] Prakash, C., Paluri, B., Nalin Pradeep, S. and Shah, H. (2007). Fragments

Based Parametric Tracking. In Computer Vision ACCV 2007, (Yagi, Y., Kang, S., Kweon, I.

and Zha, H., eds), vol. 4843, of Lecture Notes in Computer Science pp. 522–531. Springer Berlin

/ Heidelberg.

137

[Ramirez et al., 2010] Ramirez, I., Sprechmann, P. and Sapiro, G. (2010). Classification and clus-

tering via dictionary learning with structured incoherence and shared features. In IEEE Con-

ference on Computer Vision and Pattern Recognition 2010 pp. 3501–3508,.

[Randen and Husøy, 1999] Randen, T. and Husøy, J. H. (1999). Filtering for Texture Classifica-

tion: A Comparative Study. IEEE Trans. Pattern Anal. Mach. Intell. 21, 291–310.

[Rubinstein et al., 2010a] Rubinstein, R., Bruckstein, A. and Elad, M. (2010a). Dictionaries for

Sparse Representation Modeling. Proceedings of the IEEE 98, 1045–1057.

[Rubinstein et al., 2010b] Rubinstein, R., Zibulevsky, M. and Elad, M. (2010b). Double Sparsity:

Learning Sparse Dictionaries for Sparse Signal Approximation. IEEE Transactions on Signal

Processing 58, 1553–1564.

[Ruta et al., 2009] Ruta, A., Porikli, F., Watanabe, S. and Li, Y. (2009). In-vehicle camera traffic

sign detection and recognition. Machine Vision and Applications 1, 1–17.

[Schuldt et al., 2004] Schuldt, C., Laptev, I. and Caputo, B. (2004). Recognizing Human Actions:

A Local SVM Approach. In 17th International Conference on Pattern Recognition ICPR ’04

pp. 32–36,.

[Sharif et al., 2008a] Sharif, M., Ihaddadene, N. and Djeraba, C. (2008a). Covariance Matrices

for Crowd Behaviour Monitoring on the Escalator Exits. In Advances in Visual Computing vol.

5359, of Lecture Notes in Computer Science pp. 470–481. Springer Berlin / Heidelberg.

[Sharif et al., 2008b] Sharif, M. H., Martinet, J. and Djeraba, C. (2008b). Object Tracking in

Video Using Covariance Matrices. In Encyclopedia of Multimedia, (Furht, B., ed.), pp. 676–

679. Springer US.

[Shinohara et al., 2010] Shinohara, Y., Masuko, T. and Akamine, M. (2010). Covariance clustering

on Riemannian manifolds for acoustic model compression. In IEEE International Conference

on Acoustics Speech and Signal Processing, 2010 pp. 4326–4329,.

138

[Sivalingam et al., 2009] Sivalingam, R., Morellas, V., Boley, D. and Papanikolopoulos, N. (2009).

Metric learning for semi-supervised clustering of Region Covariance Descriptors. In Proc. 3rd

ACM/IEEE Intl. Conf. on Distributed Smart Cameras 2009 pp. 1–8,.

[Sivalingam et al., 2012] Sivalingam, R., Somasundaram, G., Li, X., Kaplan, A., Henriksen, J.,

Banerjee, A., Morellas, V., Papanikolopoulos, N., and Truskinovsky, A. (2012). Diagnosing

Adenocarcinoma of the Prostate by Computer Vision Methods. In Annual Meeting of the

United States and Canadian Academy of Pathology (USCAP).

[Sivalingam et al., 2011] Sivalingam, R., Somasundaram, G., Ragipindi, A., Banerjee, A., Morel-

las, V., Papanikolopoulos, N. and Truskinovsky, A. (2011). Diagnosing Endometrial Carcinoma

via Computer-Assisted Image Analysis. In Annual Meeting of the United States and Canadian

Academy of Pathology (USCAP).

[Sprechmann and Sapiro, 2010] Sprechmann, P. and Sapiro, G. (2010). Dictionary learning and

sparse coding for unsupervised clustering. In IEEE International Conference on Acoustics Speech

and Signal Processing 2010 pp. 2042–2045,.

[Sra and Cherian, 2011] Sra, S. and Cherian, A. (2011). Generalized dictionary learning for sym-

metric positive definite matrices with application to nearest neighbor retrieval. In Proc. 2011

European Conf. on Machine Learning and Knowledge Discovery in Databases - Volume Part III

pp. 318–332, Springer-Verlag, Berlin, Heidelberg.

[Tenenbaum et al., 2000] Tenenbaum, J. B., Silva, V. and Langford, J. C. (2000). A Global Geo-

metric Framework for Nonlinear Dimensionality Reduction. Science 290, 2319–2323.

[Tibshirani, 1996] Tibshirani, R. (1996). Regression Shrinkage and Selection via the Lasso. Journal

of the Royal Statistical Society (Series B) 58, 267–288.

[Tou et al., 2009] Tou, J., Tay, Y. and Lau, P. (2009). Gabor Filters as Feature Images for Covari-

ance Matrix on Texture Classification Problem. In Advances in Neuro-Information Processing,

(Kppen, M., Kasabov, N. and Coghill, G., eds), vol. 5507, of Lecture Notes in Computer Science

pp. 745–751. Springer Berlin / Heidelberg.

139

[Tropp, 2004] Tropp, J. (2004). Greed is good: algorithmic results for sparse approximation. IEEE

Transactions on Information Theory 50, 2231–2242.

[Tropp, 2006] Tropp, J. (2006). Just relax: convex programming methods for identifying sparse

signals in noise. IEEE Trans. Inf. Theory 52, 1030–1051.

[Tropp and Gilbert, 2007] Tropp, J. and Gilbert, A. (2007). Signal Recovery From Random Mea-

surements Via Orthogonal Matching Pursuit. IEEE Trans. Inf. Theory 53, 4655–4666.

[Tutuncu et al., 2003] Tutuncu, R. H., Toh, K. C. and Todd, M. J. (2003). Solving semidefinite-

quadratic-linear programs using SDPT3. Math. Program. 95, 189–217.

[Tuzel et al., 2006] Tuzel, O., Porikli, F. and Meer, P. (2006). Region Covariance: A Fast Descrip-

tor for Detection and Classification. In Computer Vision ECCV 2006, (Leonardis, A., Bischof,

H. and Pinz, A., eds), vol. 3952, of Lecture Notes in Computer Science pp. 589–600. Springer

Berlin / Heidelberg.

[Tuzel et al., 2007] Tuzel, O., Porikli, F. and Meer, P. (2007). Human Detection via Classification

on Riemannian Manifolds. In IEEE Conference on Computer Vision and Pattern Recognition,

2007 pp. 1–8,.

[Tuzel et al., 2008] Tuzel, O., Porikli, F. and Meer, P. (2008). Pedestrian Detection via Classifi-

cation on Riemannian Manifolds. IEEE Trans. Pattern Anal. Mach. Intell. 30, 1713–1727.

[Vandenberghe et al., 1998] Vandenberghe, L., Boyd, S. and Wu, S.-P. (1998). Determinant Max-

imization with Linear Matrix Inequality Constraints. SIAM J. Matrix Anal. Appl. 19, 499–533.

[Wang et al., 2009] Wang, G., Liu, Y. and Shi, H. (2009). Covariance Tracking via Geometric

Particle Filtering. In Second International Conference on Intelligent Computation Technology

and Automation, 2009 vol. 1, pp. 250–254,.

[Wang et al., 2010] Wang, H., Banerjee, A. and Boley, D. (2010). Modeling Time Varying Covari-

ance Matrices in Low Dimensions. Technical Report TR-10-017 Dept. of Computer Science and

Engineering, University of Minnesota.

140

[Wang and Wu, 2010] Wang, J. and Wu, Y. (2010). Visual Tracking via Incremental Covariance

Model Learning. In Second Intl. Conf. on Computer Modeling and Simulation 2010 vol. 1, pp.

277–280,.

[Wang and Yagi, 2008] Wang, J. and Yagi, Y. (2008). Switching local and covariance matching

for efficient object tracking. In 19th International Conference on Pattern Recognition, 2008 pp.

1–4,.

[Wang et al., 2012] Wang, L., Li, Y., Jia, J., Sun, J., Wipf, D. and Rehg, J. M. (2012). Learning

sparse covariance patterns for natural scenes. To appear in CVPR 2012.

[Wildenauer et al., 2007] Wildenauer, H., Mičuš́ık, B. and Vincze, M. (2007). Efficient texture

representation using multi-scale regions. In Proc. 8th Asian Conf. on Computer vision - Volume

Part I ACCV’07 pp. 65–74,.

[Wishart, 1928] Wishart, J. (1928). The generalized product moment distribution in samples from

a normal multivariate population. Biometrika 20A, 32–52.

[Wright et al., 2010] Wright, J., Ma, Y., Mairal, J., Sapiro, G., Huang, T. and Yan, S. (2010).

Sparse Representation for Computer Vision and Pattern Recognition. Proc. IEEE 98, 1031–

1044.

[Wright et al., 2009] Wright, J., Yang, A., Ganesh, A., Sastry, S. and Ma, Y. (2009). Robust Face

Recognition via Sparse Representation. IEEE Trans. Pattern Anal. Mach. Intell 31, 210–227.

[Wu et al., 2009a] Wu, Y., Wang, J. and Lu, H. (2009a). Robust Bayesian tracking on Riemannian

manifolds via fragments-based representation. In IEEE International Conference on Acoustics,

Speech and Signal Processing, 2009 pp. 765–768,.

[Wu et al., 2009b] Wu, Y., Wang, J. and Lu, H. (2009b). Real-Time Visual Tracking via Incremen-

tal Covariance Model Update on Log-Euclidean Riemannian Manifold. In Chinese Conference

on Pattern Recognition, 2009. pp. 1–5,.

[Wu et al., 2008] Wu, Y., Wu, B., Liu, J. and Lu, H. (2008). Probabilistic tracking on Riemannian

manifolds. In 19th International Conference on Pattern Recognition, 2008 pp. 1–4,.

141

[Ye et al., 2008] Ye, C., Liu, J., Chen, C., Song, M. and Bu, J. (2008). Speech Emotion Classifi-

cation on a Riemannian Manifold. In Advances in Multimedia Information Processing - PCM

2008, (Huang, Y.-M., Xu, C., Cheng, K.-S., Yang, J.-F., Swamy, M., Li, S. and Ding, J.-W.,

eds), vol. 5353, of Lecture Notes in Computer Science pp. 61–69. Springer Berlin / Heidelberg.

[Yinghui and Jianjun, 2009] Yinghui, G. and Jianjun, Y. (2009). Multi-target tracking using

mixed spatio-temporal features learning model. In IEEE International Conference on Automa-

tion and Logistics, 2009 pp. 799–803,.

[Yuan et al., 2010] Yuan, C., Hu, W., Li, X., Maybank, S. and Luo, G. (2010). Human Action

Recognition under Log-Euclidean Riemannian Metric. In Computer Vision ACCV 2009, (Zha,

H., Taniguchi, R.-i. and Maybank, S., eds), vol. 5994, of Lecture Notes in Computer Science pp.

343–353. Springer Berlin / Heidelberg.

[Zheng et al., 2009] Zheng, S., Qiao, H., Zhang, B. and Zhang, P. (2009). The application of

intrinsic variable preserving manifold learning method to tracking multiple people with occlusion

reasoning. In IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems 2009. pp. 2993–2998,.

[Zheng et al., 2010] Zheng, W., Tang, H., Lin, Z. and Huang, T. S. (2010). Emotion Recognition

from Arbitrary View Facial Images. In Computer Vision ECCV 2010, (Daniilidis, K., Maragos,

P. and Paragios, N., eds), vol. 6316, of Lecture Notes in Computer Science pp. 490–503. Springer

Berlin / Heidelberg.

	Acknowledgements
	Dedication
	Abstract
	List of Tables
	List of Figures
	Introduction
	The Need for Dedicated Positive Definite Sparse Models
	Organization of the Thesis

	Related Work
	Positive Definite Matrices
	Region Covariance Descriptors
	Sparse Modeling
	Sparse Coding
	Dictionary Learning

	Sparse Models for Positive Definite Matrices

	Positive Definite Sparse Coding
	The Tensor Sparse Coding Problem
	The LogDet Divergence
	The Tensor Sparse Coding Formulation
	The MAXDET problem
	Type I: 1-regularized Sparse Coding
	Type II: 1-constrained Sparse Coding
	Semidefinite Signals

	Effect of Sparsity Constraints
	Effect of Atom Normalization
	Atom Coherence
	Completeness and Coefficient Recovery
	Comparison with Vector Sparse Coding
	Relation between Dgeo and Dld
	Relaxation of the Residual Constraint
	An Efficient Sparse Coding Algorithm
	Tensor Sparse Coding for Classification
	Human Appearance Descriptors
	Tensor Sparse Coding for Face Recognition
	Tensor Sparse Coding for Texture Classification
	Action Recognition with Kinect Motion Capture

	Positive Definite Dictionary Learning
	Dictionary Learning Formulation
	Approach: Alternating Minimization
	Atom Update
	Gradient Descent
	Newton Descent
	Comparison of Atom Update Techniques
	Matrix Conjugate Gradient

	Online Dictionary Learning
	Time Complexity
	Sparse Coding
	Dictionary Learning

	Face Detection with Tensor Dictionary Learning
	Cancer Tissue Classification with Positive Definite Dictionaries

	Rank-One Tensor Dictionaries
	Efficient Sparse Coding over Rank-1 Dictionaries
	Experiments with Rank-1 Sparse Coding
	Learning Rank-1 Dictionaries
	Gradient Descent
	Newton Descent
	Reconstruction Update

	Time Complexity
	Sparse Coding
	Dictionary Update

	Atom Recovery
	USPS Digits Classification with Rank-1 Dictionaries

	Discriminative Dictionary Learning
	Discriminative Dictionary Learning Formulation
	Discriminative Dictionaries for Brodatz Textures
	USPS Digits Classification with Discriminative Dictionary Learning
	Action Recognition with Discriminative Learned Dictionaries

	TeSLa: Tensor Sparse Library
	Sparse Coding
	Dictionary Learning
	Discriminative Dictionary Learning

	Summary and Contributions
	Contributions of the Thesis
	Future Directions

	References

