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Abstract

This dissertation consists of two parts.

The first part concerns the use of explicit polarization theory (X-Pol), the semiem-

pirical polarized molecular orbital (PMO) method, and the dipole preserving, polar-

ization consistent (DPPC) charge model as a quantum mechanical force field (QMFF).

A detailed discussion of Hartree-Fock theory and X-Pol is provided, along with ex-

pressions for the energy and the analytical first derivative of this QMFF. Test cases

for this QMFF with extensive comparisons to experimental data and other models are

provided for water (XP3P) and hydrogen fluoride (XPHF), showing that the PMO/X-

Pol/DPPC approach discussed in this dissertation is competitive with the most accu-

rate models for those two chemical species over a wide range of chemical and physical

properties.

The second part of this dissertation concerns the development and application of

coarse-grained models for protein dynamics. First, a coarse-grained force field (CGFF)

for macromolecules in crowded environments is introduced and described along with

a visualization environment for the cartoon-like rendering of biomolecules in vivo. This

CGFF is tested against experimental diffusion coefficients for myoglobin (Mb) at a

wide range of concentrations, including volume fractions as high as 40%, finding it

to be surprisingly accurate for its simplicity and level of coarseness. Second, an analyt-

ical coarse-grained (ACG) model for mapping the internal dynamics of proteins into a

spherical harmonic expansion is described.
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from using a spacing of w = 15 Å(center), and the result of contracting

all atoms in a grid entry to a single sphere (right: 107 spheres) . . . . . . 156

5.4 The uniform grid representation with spacings w = 5, 10, 15, 20, and 25,

respectively (top), and the corresponding coarse-grained models with

1592, 269, 107, 37, and 21 sites, respectively (bottom). . . . . . . . . . . . 159

5.5 The component of the MACROSHAKER GUI which selects the level of

coarse-graining to be used. A PDB is first loaded (top) and the grid size

is specified along with the number of copies to use in the simulation

(bottom). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

5.6 The component of the MACROSHAKER GUI in which the box size is

entered and the initial coordinates are randomized; equilibrium steps

can be run to reduce steric clashes and visualized in realtime in this part

of the GUI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

5.7 The visualization component of the MACROSHAKER GUI showing a

box of several of the proteins in albumen. Trajectories can be played

back within the interface or exported to video files. . . . . . . . . . . . . 164

5.8 The van der Waals surface of myoglobin and the corresponding one-to-

one surface from a ray casting procedure. . . . . . . . . . . . . . . . . . . 167

5.9 Spherical harmonic surfaces of a Mb from L = 0 (upper-left) to L = 19

(lower-right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

5.10 Definition of vectors ~V , ~N , and ~L used in shading (left), and the interpo-

lated normals ~Ni (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

5.11 Gouraud shading for various representations of Mb (top), and cel-shading

of the same representations . . . . . . . . . . . . . . . . . . . . . . . . . . 173

xxiv



5.12 A visualization of the enzymes involved in glycolysis using a hybrid

Phong and cel-shading technique (left) and an artistic rendition of a

cross-section of an E. coli cell. [27] . . . . . . . . . . . . . . . . . . . . . . . 173

5.13 Results of MACROSHAKER on a system of 216 myoglobin (Mb) com-

pared to the experimental data of Wittenberg et al. [28] and Longeville et

al. [29] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

5.14 Radial distribution functions of the 216 myoglobin (Mb) from simula-

tions of the MACROSHAKER CGFF at concentrations ranging from 2

mM to 32 mM. As the concentration increases, the peak positions be-

come shorter and the peak heights become higher. A notable exception

from this trend is the slightly shorter peak height at 32 mM, for which

the volume of the Stokes’ spheres is approximately 94% of the simula-

tion box. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

6.1 Histogram of the computed projection of instantaneous molecular struc-

ture of OMPDC in water onto normalized eigenvector directions of the

lowest quansiharmonic mode (black), the second (red), the fourth (pur-

ple), the tenth (green), the fiftieth (blue), the one hundredth (orange),

and the one thousandth (cyan) modes. . . . . . . . . . . . . . . . . . . . . 193

6.2 Sinusoidal fit of harmonic frequencies and phases (with respect to the

structure used at the start of the molecular dynamic simulation of OM-

PDC) to the oscillatory structural projections illustrated in Figure 6.1 for

modes number 1, 2, 4, and 10. . . . . . . . . . . . . . . . . . . . . . . . . . 195

6.3 Spherical harmonic reconstruction of the Lee and Richards surface for

the trimer complex of the capsid protein of turnip yellow mosaic virus

using representation degrees of L = 3, 4, 5, 10, 12, 15, 20, 25, and 30

numbered from top left to bottom right. . . . . . . . . . . . . . . . . . . . 200

xxv



6.4 Sinusoidal fit of harmonic frequencies and phase (with respect to the

structure used at the start of the molecular dynamic simulation of OM-

PDC) to the oscillatory structural projections illustrated in Figure 6.1 for

modes number 5 (a) and 6 (b). Note that if the trajectory of the first 1 ns

is discarded in mode 6 evaluation, the frequency and amplitude are both

reasonable, suggesting there is either a conformational jump or change

in the first 1 ns. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

6.5 Snapshots of three structures of the analytically coarse-grained (ACG)

protein OMPDC using spherical harmonic basis at a representation de-

gree of L = 15 from the 0.25 µs composite fluctuation trajectory using

the amplitudes, frequencies, and phases listed in Tables 6.1 and 6.2. The

three structures on the right-hand side are the same as the corresponding

ones on the left, rotated by 180◦. The ACG protein surfaces are colored

by the surface charge density for the illustration with red representing

negative and blue positive charge densities, respectively. . . . . . . . . . 204

6.6 Histogram of the fluctuation of the excluded volume of the ACG OM-

PDC protein at various resolutions in L, ranging from 5 to 20 along

the internal quasiharmonic fluctuation trajectory. The excluded volume

illustrated in this figure is defined as the cavity enclosed by the Lee-

Richards surface, which is about one solvent layer larger than the van

der Waals surface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

7.1 Screenshots from a program showing the virus assembly model of Wales.

[30] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

7.2 A visualization of the 10 enzymes involved in glycolysis as rendered by

MACROSHAKER. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

xxvi



A.1 The two methods of coarse-graining used for charge fitting. Left to right:

Atomistic model, coarse-graining of Byron, ACG model. . . . . . . . . . 268

xxvii



Preface

This dissertation contains previously published work and is reproduced with permis-

sion from the American Institute of Physics and the American Chemical Society.

Chapter 3

“Quantum mechanical force field for water with explicit electronic polarization”, J.

Han, M. J. M. Mazack, P. Zhang, D. G. Truhlar, J. Gao, Journal of Chemical Physics, 2013,

139, 054503, http://dx.doi.org/10.1063/1.4816280. c©2013 American Insti-

tute of Physics

Chapter 6 & Appendix B

“Internal dynamics of an analytically coarse-grained protein”, M. J. M. Mazack, A. Cem-

bran, J. Gao, Journal of Chemical Theory and Computation, 2010, 6(11), 3601-3612, http:

//dx.doi.org/10.1021/ct100426m. c©2010 American Chemical Society

xxviii

http://dx.doi.org/10.1063/1.4816280
http://dx.doi.org/10.1021/ct100426m
http://dx.doi.org/10.1021/ct100426m


Chapter 1

Introduction

Since the first in silico study of chemical systems [31] on the primitive MANIAC com-

puter at Los Alamos National Laboratory in the wake of the Manhattan Project and

the Second World War, great leaps and bounds have been made in computer simu-

lations of chemical and biophysical systems. At the core of these developments are

improved representations for the potential energy surface, or force fields, of chemical

systems, which describe the intra- and inter-molecular interactions. The accuracy of

these force fields is what ultimately determines the reliability and predictive power of

computational studies of biological systems.

This dissertation is divided into two parts. The first part covers the description

of an electronic structure method for an entire chemical system with periodic bound-

ary conditions, such that electronic polarization and charge transfer can be explicitly

included into the force field. We call this approach the explicit polarization theory (X-

Pol) [32,33], and use it as a quantum mechanical force field (QMFF). In the second part,

we extend the in silico treatment of biological systems to a much greater realm, with the

capability to model a section of a biological cell by developing a coarse-grained force

field (CGFF), and other simulation techniques, to model crowded systems of many

proteins.
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X-Pol moves beyond the current, widely used molecular mechanical approxima-

tion of condensed-phase systems into a more realistic representation using quantum

mechanics, and signals a paradigm shift in the treatment of biological macromolecules,

potentially increasing the accuracy of computer simulations. In contrast, traditional

in silico treatments of chemical and biological systems in the condensed phase have

employed empirical force fields, which consist of spring-like potentials to mimic the

behavior of the chemical bond, and Coulomb’s law with nucleus-centered, fixed, point

charges and Lennard-Jones potential to mimic nonbonded interactions [34]. Although

such molecular mechanics (MM) models continue to be the de facto standard for molec-

ular dynamics (MD) simulations, and are often adequate for many systems, in other

cases – such as liquid hydrogen fluoride, which is highly polar, and characterized by its

ability to form chains of hydrogen bonds – molecular mechanics is inadequate to model

the highly covalent nature of intermolecular interactions. Similar observations for

other polar substances, including the peptide bond and many amino acid sidechains,

have given rise to interest in the development of polarizable force fields, where the lo-

cal dipoles induced by the surrounding electric field directly affect the potential felt

between atoms.

One approach to including polarization effects in a force field is through the ap-

plication of the variationally optimized X-Pol theory [35]. X-Pol is a fragment-based

QM/QM-type method where the bonded interactions within each fragment are fully

described by a chosen level of electronic structure theory, and the nonbonded inter-

actions are described by Coulomb integrals, neglecting short-range exchange repul-

sion. The energy expressions and analytical first derivative for the X-Pol QMFF used

in this dissertation are provided in Chapter 2. Chapters 3 and 4 illustrate two specific

applications to show the performance of X-Pol when using the semiempirical polar-

ized molecular orbital (PMO) method and a dipole-preserving, polarization consistent
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(DPPC) charge method applied to water (XP3P) and hydrogen fluoride (XPHF).

Although our QMFF has been parallelized, the problem of scalability to systems

consisting of several million atoms has not yet been addressed. Others have suc-

cessfully used MM in such cases, and a recent simulation of 64 million atoms, the

largest published simulation to date, was accurate enough to predict the structure of

the HIV virus capsid [36]. Despite the fact that 64 million atoms is a staggering number,

which is orders of magnitude larger than the largest MM simulations of just a decade

ago [37, 38], it is still dwarfed by the number of atoms inside a single living cell.

It has been estimated that a single E. coli cell contains carbon atoms on the order

of 10 billion [39]. Such an estimate originates from the observation that nearly half

the dry mass of E. coli is carbon, suggesting that about one trillion (1012) atoms are

needed to model a living cell with an all atom simulation. In addition to the vast

number of atoms required to simulate a single living cell and the increased spatial

scale that it brings, an increased temporal scale is also required to relate simulation

results to relevant biological phenomena, observed experimentally, which can occur in

the second or longer time regime. This translates to a simulation length on the order

of one quadrillion (1015) simulation steps with standard all-atom MM in a molecular

dynamics simulation.

One way these increased spatial and temporal scale requirements have been ad-

dressed is through the use of coarse-grained force fields (CGFF), which allow for an

increased time step by decreasing the number of degrees of freedom. Historically,

these types of models have been based upon introducing effective sites for groups of

atoms. The first such model used in a simulation of proteins was that of Levitt and

Warshel in 1975 for modeling the folding of the bovine pancreatic trypsin inhibitor

(BPTI), using two coarse-grained sites per amino acid residue [40]. Tanaka and Scher-

aga introduced their own residue-based, coarse-grained model for protein folding the
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following year [41]. Other notable work in this area includes the efforts of Smit [42]

and Voth [43], as well as the MARTINI [44, 45] CGFF proposed by Marrink et al. for

modeling proteins and lipid bilayers.

In light of the ambitious challenge of cell simulation, we introduce a CGFF called

MACROSHAKER for which coarse-grained macromolecules are treated as rigid bod-

ies under the Ermak-McCammon dynamics scheme [46]. The details of this model and

a case study applied to studying the diffusion of myoglobin are given in Chapter 5.

Expanding on the idea of coarse-graining to reduce the degrees of freedom in a sys-

tem, Chapter 6 provides an atomless description of a protein where its surface and

dynamical fluctuations are mapped into oscillating spherical harmonic coefficients.

1.1 Novelty of Results

The novelty of this dissertation is briefly summarized in the bulleted list below.

• The first detailed description of the energy, energy gradient, integral, and other

terms needed to implement the PMO/X-Pol/DPPC QMFF is provided in Chap-

ter 2.

• The first stand-alone library for X-Pol has been developed using the formulas

in Chapter 2. A web-based interface for X-Pol using this library has been intro-

duced.

• The first studies of the PMO/X-Pol/DPPC QMFF are presented in Chapters 3 and

4. Although quantitative studies using Monte Carlo have been carried out with

X-Pol, the first quantitative studies of MD simulations using the X-Pol potential

are presented in Chapters 3 and 4.
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• A new CGFF and software package called MACROSHAKER for protein diffu-

sion in crowded environments is introduced in Chapter 5. This CGFF can re-

produce concentration-dependent diffusion coefficients of myoglobin for volume

fractions as high as 40%.

• A spherical harmonic expansion for a protein surface that fluctuates with time is

introduced in Chapter 6. In contrast to previous work in this area, the functional

form is still a single spherical harmonic expansion.

1.2 Description of Chapters

More detailed descriptions for each of the subsequent chapters in this dissertation are

provided in the following abstracts:

1.2.1 The Explicit Polarization Theory and its
Analytical First Derivative

Chapter 2: The variational explicit polarization theory (X-Pol) provides a framework

for the development of a quantum mechanical force fields (QMFF) that goes beyond

the current molecular mechanics approximation. X-Pol is based on a hierarchy of ap-

proximations to increase the computational efficiency of electronic structure calcula-

tions, and strives for accuracy by parameterization using an effective Hamiltonian.

In this chapter, the theory and implementation of X-Pol as a QMFF and its analyt-

ical first derivative are described. In particular, our focus is on the use of neglect

of diatomic differential overlap (NDDO)-type semiemprical methods, including our

recently-introduced polarized molecular orbital (PMO) approach. In addition, we de-

scribe the application of the dipole-preserving, polarization consistent (DPPC) charges

on calculating the X-Pol energy and derive an analytical expression for its first deriva-

tive. The theoretical method described in this chapter is the basis for developing the
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XP3P model for liquid water and the XPHF model for liquid hydrogen fluoride in sub-

sequent chapters. The analytical first derivatives have been implemented into modi-

fied versions of CHARMM and NAMD, as well as a library and stand-alone program

with an optional web-based interface.

1.2.2 Quantum Mechanical Force Field for Water

Chapter 31 : This chapter describes a quantum mechanical force field (QMFF) for

water. Unlike traditional approaches that use quantum mechanical results and exper-

imental data to parameterize empirical potential energy functions, the present QMFF

uses a quantum mechanical framework to represent intramolecular and intermolecu-

lar interactions in an entire condensed-phase system. In particular, the internal energy

terms used in molecular mechanics are replaced by a quantum mechanical formal-

ism that naturally includes electronic polarization due to intermolecular interactions

and its effects on the force constants of the intramolecular force field. As a quantum

mechanical force field, both intermolecular interactions and the Hamiltonian describ-

ing the individual molecular fragments can be parameterized to strive for accuracy

and computational efficiency. In this chapter, we introduce a polarizable molecular

orbital model Hamiltonian for water and for oxygen- and hydrogen-containing com-

pounds, whereas the electrostatic potential responsible for intermolecular interactions

in the liquid and in solution is modeled by a three-point charge representation that

realistically reproduces the total molecular dipole moment and the local hybridiza-

tion contributions. The present QMFF for water, which is called the XP3P (explicit

polarization with three-point-charge potential) model, is suitable for modeling both

gas-phase clusters and liquid water. The chapter demonstrates the performance of the

XP3P model for water and proton clusters and the properties of the pure liquid from

about 900× 106 self-consistent-field calculations on a periodic system consisting of 267
1 This chapter is a result of collaborative efforts between the author, J. Han, and P. Zhang.
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water molecules. The unusual dipole derivative behavior of water, which is incorrectly

modeled in molecular mechanics, is naturally reproduced as a result of an electronic

structural treatment of chemical bonding by XP3P. We anticipate that the XP3P model

will be useful for studying proton transport in solution and solid phases as well as

across biological ion channels through membranes.

1.2.3 Quantum Mechanical Force Field for
Hydrogen Fluoride

Chapter 4: The X-Pol quantum mechanical force field (QMFF) is extended to liquid

hydrogen fluoride (HF). The parameterization, called XPHF, is built upon the formal-

ism introduced for the XP3P model of liquid water, based on the polarized molecular

orbital (PMO) semiempirical quantum chemistry method, and the dipole-preserving

polarization consistent (DPPC) point charge model. We introduce a fluorine parame-

ter set for PMO, and find good agreement for various gas-phase results of small HF

clusters compared to experiment and ab initio calculations at the M06-2X/MG3S level

of theory. The XPHF model employs the newly introduced fluorine parameter set and

shows good agreement with experiment for a variety of structural and thermodynamic

properties in the liquid state, including radial distribution functions, interaction en-

ergy, diffusion coefficients, and densities at various state points.

1.2.4 MACROSHAKER: A Coarse-Grained Force Field for
Crowded Systems of Many Proteins

Chapter 5: The ultimate goal of biophysical and biochemical studies is the understand-

ing of how living organisms function, in which macromolecular particles, including

proteins, nucleic acids, as well as ions and metabolites are packed in an extremely

crowded environment. However, the vast majority of computational studies concern-

ing enzymes, proteins, RNAs, etc. are conducted in idealized conditions rather than

in the living cell itself. These studies largely ignore the systematic effects of protein
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crowding on the diffusion of enzymes and metabolites as well as protein-protein as-

sociations in signal transduction pathways, casting doubts on the relevance of extrap-

olating results directly to living cells. Our goal is to incorporate these effects, among

others, by the creation of a computational model, called MACROSHAKER, to realis-

tically model biomolecular processes that are directly comparable to that in vivo (i.e.

in life). We seek not only to validate experimental results with our model, but also to

develop a graphical user interface for the construction of initial conditions, the analysis

of dynamic trajectories, and interactive visualization.

1.2.5 Internal Dynamics of an Analytically
Coarse-Grained Protein

Chapter 6: An analytically coarse-grained model (ACG) is introduced to represent in-

dividual macromolecules for the simulation of dynamic processes in cells. In the ACG

model, a macromolecular structure is treated as a fully coarse-grained entity with a uni-

form mass density without the explicit atomic details. The excluded volume and sur-

face of the ACG macromolecular species are explicitly treated by a spherical harmonic

representation in the present study (although ellipsoidal, solid, and radial augmented

functions can be used), which can provide any desired accuracy and detail depend-

ing on the problem of interest. The present chapter focuses on the description of the

internal fluctuations of a single ACG macromolecule, modeled by the superposition

of low frequency quasiharmonic modes from explicit molecular dynamics simulation.

A procedure for estimating the amplitudes, time scales of the quasiharmonic motions,

and the corresponding phases is presented and used to synthesize the complex motion.

The analytical description and numerical algorithm can provide an adequate represen-

tation of the internal protein fluctuations revealed from the corresponding atomistic

simulations, although the internal motions of ACG macromolecules do not explore

motions not exhibited in the dynamic simulations.
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1.2.6 Conclusion & Discussion

Chapter 7: Some of the author’s plans for future work on PMO and X-Pol are described

with some preliminary results. These descriptions include the variational many-body

expansion (VMB), improvements to PMO’s core-core term, and discussion about new

parameters for PMOw. Additionally, plans for future work on MACROSHAKER are

discussed.

1.2.7 A Charge-Fitting Procedure for
Coarse-Grained Proteins

Appendix A: We present a procedure for fitting of effective charges on interaction

sites of proteins in ionic solution for use in the modeling of many protein simulations.

Our model determines effective point-charges for a Debye-Hückel type of ionic screen-

ing potential from numerical solutions of the Poisson-Boltzmann equation. We show

that this procedure works well when charges are assigned to positions on the protein

surface as determined by ACG rather than sites determined from traditional coarse-

graining methods. Our procedure can be used to fit any number surface charges, or

can even be used to fit a charge density in the form of a spherical harmonic expansion.

We present the origin of the Debye-Hückel equation and the charge-fitting procedure

in detail.

1.2.8 Algorithm for Spherical Harmonic
Expansion and Evaluation

Appendix B: An algorithm for fast computation of the spherical harmonic expansion

for use with the techniques described in Chapter 6 is given and explained.
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Chapter 2

The Explicit Polarization Theory
and its Analytical First Derivative

2.1 Introduction

Because of its computational efficiency, molecular mechanics (MM), also known as

force fields, have traditionally been used in molecular dynamics (MD) simulations of

macromolecular systems. Eq 2.1 shows a representative functional form as adopted in

the CHARMM22 force field (Figure 2.1).

ECHARMM22 =
∑

Bonds

kb(b− b0)2 +
∑

Angles

kθ(θ − θ0)2 +
∑

Dihedrals

kφ [1 + cos (nφ− δ)]

+
∑

Impropers

kω(ω − ω0)2 +
∑

Urey-Bradley

ku(u− u0)2

+
∑

Nonbonded

[
qiqj
εlrij

+ ε

[(
Rminij

rij

)12

−
(
Rminij

rij

)6
]]

(2.1)

It is assumed in these types of classical force fields that chemical bonding (b, θ, φ, ω, u) is

adequately described by harmonic potentials about a set of equilibrium values (b0, θ0,
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Figure 2.1: An illustration of the bonded terms in the CHARMM22 force field (Eq. 2.1)
on a phenylalanine molecule.

φ0, ω0, u0), and that nonbonded interactions can be described through a 12-6 Lennard-

Jones potential and Coulomb’s law of electrically charged particles. Such a simple,

empirical description is in stark contrast to the most accurate and rigorous treatment

of molecular systems by electronic structure theory using quantum mechanics (QM),

in which the electronic wave function is obtained from solutions to a partial differential

equation called the Schrödinger equation. However, electronic structure methods are

extremely expensive compared to MM, and MD simulations using full QM to describe

all interactions are intractable for all but small systems with relatively small basis sets

since approximate methods are required to solve the QM problem.

Consequently, there has been much interest in the development of hybrid QM/MM

methods which seek to combine both the accuracy of QM and the speed of MM. Al-

though very useful, traditional QM/MM approaches suffer from the ambiguity in par-

titioning a system into QM and MM spatial regions, and do not explicitly incorporate
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QM effects into all atoms.

The explicit polarization (X-Pol) theory was designed to provide a QM/QM-type

force field through the decomposition of a molecular system into smaller pieces, called

fragments. In X-Pol, the internal motions of atoms are described by full QM on a system

whose nonbonded interactions are modeled through the polarization of the wave func-

tions of constituent fragments. X-Pol was introduced in a non-variationally optimized

form by Gao in 1997 under the name “molecular orbital derived empirical potential for

liquid simulations” (MODEL) [32], and was used the following year in Monte Carlo

simulations of liquid water using the semiempirical AM1 Hamiltonian [47]. In 2003

it was used again with AM1 for liquid simulations of supercritical hydrogen fluo-

ride [48], and in 2008, a variationally optimized version of X-Pol was introduced by

Gao, Truhlar, and co-workers with a fully analytical first derivative for use as a quan-

tum mechanical force field (QMFF) [35].

The first published MD simulation that used X-Pol appeared in 2009 [49], and pro-

duced a 50 ps trajectory of a fully solvated bovine pancreatic trypsin inhibitor (BPTI)

protein, consisting of 14,281 atoms divided into 4519 fragments, of which 4461 were

water molecules and 58 were amino acid residues. This simulation generated 10 ps of

simulation time in 75 hours on a single 2.66-GHz processor, demonstrating the feasi-

bility of using X-Pol with a semiempirical Hamiltonian as a type of QMFF.

The X-Pol QMFF for MD simulations has been implemented into modified ver-

sions of CHARMM [50] and NAMD [51], incorporating recent improvements, includ-

ing the semiempirical polarized molecular orbital (PMO) model [52] and the dipole-

preserving point charge (DPPC) model [53] with analytical gradients.

The purpose of this chapter is to provide the theoretical background for under-

standing and programming the X-Pol method for use as a QMFF in MD simulations.

We begin with a description of Hartree-Fock theory, proceeding to X-Pol, and arriving
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at the analytical gradients needed for the simulating water with the XP3P model and

hydrogen fluoride with the XPHF model. We also clarify and make note of some of the

more subtle details of the X-Pol method, which have not been previously discussed in

the literature.

2.2 Hartree-Fock Theory

Hartree-Fock theory [54, 55] is one of the most successful and widely-used ab inito

(i.e. first principles) quantum chemistry methods for solving the electronic Schrödinger

equation. Although Hartree-Fock theory is an approximate electronic structure method

by its use of a single Slater determinant and a mean-field treatment of electron-electron

repulsion, it is of critical importance to modern quantum chemistry due to its theoret-

ical simplicity and computational efficiency. Nevertheless, the computational cost of

Hartree-Fock theory scales as O(m4) where m is the number of basis functions. A

number of increasingly accurate, post-Hartree-Fock methods have been developed for

which Hartree-Fock theory serves as the foundation, including the popular MP2 [56]

and CCSD(T) [57] methods, which include electron correlation effects. However, these

methods scale atO(m5) andO(m7), respectively. While the success and theory of these

methods is duly noted elsewhere [58], they are beyond the scope of our introductory

description here.

Rather, we provide an introduction to Hartree-Fock theory as a motivation for its

use as a QMFF under X-Pol. For the sake of brevity, our discussion assumes the use

of restricted Hartree-Fock theory (RHF), where each orbital is occupied by a pair of

electrons of opposite spin. Although less restrictive types of Hartree-Fock theory exist

[59, 60], such an assumption is reasonable for a wide range of applications, including

MD simulations of proteins solvated in water, for which an X-Pol-based QMFF has
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been successfully demonstrated [49].

2.2.1 Born-Oppenheimer Approximation

The behavior and interaction of electrons and nuclei are rigorously described by solu-

tions to the Schrödinger equation [61]. Quantum chemistry calculations often employ

a non-relativistic, time-independent molecular Hamiltonian operator to describe the

stationary states of molecular systems. Under this approach, the Schrödinger equation

can be written as Eq. 2.2 where H denotes the molecular Hamiltonian, Ψ denotes the

wave function, and E denotes the associated energy.

H|Ψ〉 = E|Ψ〉 (2.2)

H is a Hermitian, linear operator, and is written in terms of electronic and nuclear

terms with a coupling interaction. The description of H is of critical importance to

the level of accuracy and computational ease of calculating the wave function Ψ and

its associated energy E. Eq. 2.3 gives one such description, in atomic units, where N

denotes the number of electrons and M , ZA, and MA denote the number of nuclei, the

charge of each nucleus, and the mass of each nucleus respectively.

H =

− N∑
i=1

1

2
∇2
i −

N∑
i=1

M∑
A=1

ZA
riA

+

N∑
i=1

N∑
j>i

1

rij

+

[
−

M∑
A=1

1

2MA
∇2
A +

M∑
A=1

M∑
B>A

ZAZB
RAB

]
(2.3)

The individual terms of the molecular Hamiltonian have specific physical descrip-

tions. The three terms in the first set of brackets are, respectively, the kinetic energy
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of the electrons, the electron-nucleus attraction energy, and the electron-electron re-

pulsion, where riA denotes the electron-nucleus distance and rij denotes the electron-

electron distance. Similarly, the two terms in the last set of brackets are regarded as

the kinetic energy of the nuclei and the nucleus-nucleus repulsion, respectively, where

RAB denotes the nucleus-nucleus distance.

The total mass of subatomic particles in the nucleus is orders of magnitude greater

than the mass of the electrons [1], causing the nuclear motion in the stationary state

to appear relatively small compared to the electronic motion. This observation leads

to a simplification of the Hamiltonian known as the Born-Oppenheimer approxima-

tion [62], where nuclear positions are held constant when solving the Schrödinger

equation. The result is a separation of variables between the electronic and nuclear

coordinates, for which the electronic component is solved using the Schrödinger equa-

tion, and the nuclear degrees of freedom are held as external parameters; their motions

can be solved either classically or quantum mechanically, albeit in a separate manner

not depending on varying electronic coordinates.

Such treatment leads to the Hamiltonian operator used in Hartree-Fock theory (Eq.

2.4), in which the only variables are electronic coordinates.

HElec. =

− N∑
i=1

1

2
∇2
i −

N∑
i=1

M∑
A=1

ZA
riA

+
N∑
i=1

N∑
j>i

1

rij

 (2.4)

Despite the assumption that the nuclear coordinates remain fixed, the nucleus-

nucleus repulsion potential is still present under the Born-Oppenheimer approxima-

tion since it only depends on the position of the nuclei and not their motion. However,

this term can be added to the total electronic energy after the Schrödinger equation has

been solved, since Ψ does not explicitly depend on the nucleus-nucleus distance RAB .

The total energy of a chemical system under the Born-Oppenheimer approximation is
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thus given by Eq. 2.5 where EElec. is called the electronic energy.

EHF = EElec. + Vnuc , EElec. = 〈Ψ|HElec.|Ψ〉 , Vnuc =
M∑
A=1

M∑
B>A

ZAZB
RAB

(2.5)

2.2.2 Wave Function Description

Exact, closed-form solutions to the Schödinger equation are in general not known for

molecular systems of more than one electron, requiring any solution of the wave func-

tion Ψ and its associated electronic energy E to be approximations. The molecular

wave function Ψ is approximated in Hartree-Fock theory as a combination of one-

electron orbitals, where the solution is exact in that context, such as the dihydrogen

cation H+
2 [63]. The wave functions in these non-interacting systems are refered to as

molecular orbitals (MOs), which we denote by φi. An ansatz for how the MOs may be

combined into the total wave function Ψ is the Hartree product (Eq. 2.6).

Ψ(x1, x2, · · · , xN ) =
N∏
i=1

φi(xi) (2.6)

It is a trivial exercise to show that the Hartree product indeed satisfies H|Ψ〉 = E|Ψ〉

forH of Eq. 2.4 under the assumption thatHi|φi(xi)〉 = Ei|φi(xi)〉.

The description of Ψ as a Hartree product has its origins in methods for solving sep-

arable partial differential equations, and seems to be a reasonable first guess. Despite

this reasoning, it is known that in addition to the mathematical constraints imposed

on Ψ by the characteristic equation, there is also a physical constraint on Ψ called the
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anti-symmetry requirement, or Pauli exclusion principle [64] (Eq. 2.7).

Ψ(· · · , xi, · · · , xj , · · · ) = −Ψ(· · · , xj , · · · , xi, · · · ) (2.7)

This requirement states that the interchange of elections (or MOs) must change the sign

of the wave function, which is clearly not true for the Hartree product description of Ψ.

However, the anti-symmetry requirement can be satisfied using a linear combination

of Hartree products of MOs, called a Slater determinant [65] (Eq. 2.8).

Ψ =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣∣

φ1(x1) φ2(x1) · · · φN (x1)

φ1(x2) φ2(x2) · · · φN (x2)

...
...

. . .
...

φ1(xN ) φ2(xN ) · · · φN (xN )

∣∣∣∣∣∣∣∣∣∣∣∣∣
(2.8)

The prefactor of 1/
√
N ! in Eq. 2.8 normalizes Ψ∗Ψ = |Ψ|2, which for the electronic

Schrödinger equation is a probability density function for finding an electron in Ψ in

any arbitrary region of space.

In practice, the individual MOs φi of the molecular system (i.e. Slater determinant)

are approximated by a linear combination of atomic orbitals (LCAO), [66] refered to as

a basis set {χ}, often centered on each nucleus (Eq. 2.9).

φi =
m∑
j=1

Cijχ
i
j (2.9)

For reasons of computational tractability, the basis set is taken as a finite set of m func-

tions, although, in general, the basis set can be of infinite dimension in order to span

the entire space of possible φi. In the case of an infinitely large basis set, the result is

called the Hartree-Fock limit.
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Since an analytical solution to the Schrödinger equation for more than one elec-

tron is unavailable, the precise functional form of the ideal basis set is also unknown.

Instead, basis sets of atomic orbitals are typically in the form of Slater-type orbitals

(STOs), [67] of the same form derived from the exact solution of the one-electron hy-

drogen atom. For computational efficiency, a set of Gaussian-type functions (orbitals)

(GTOs) [68], which have more appealing mathematical and computational properties

over STOs, are typically used.

2.2.3 Electronic Integral Calculations

The energy derived from the electronic Schrödinger equation EElec. is in general ob-

tained by an inner product that results in integration. The Hartree-Fock electronic

energy EElec. = 〈Ψ|HElec.|Ψ〉 and our definitions of H and Ψ in Eqs. 2.4 and 2.8, re-

spectively, suggest that the procedure for calculating the electronic energy requires the

integration of several flavors and combinations of MOs. This is indeed the case, and

there are two classes of electronic integrals in the Hartree-Fock method: one-electron

integrals and two-electron integrals.

The one-electron integrals are those which involve only coordinates of one electron.

These one-electron terms have an associated matrix representation Hcore with elements

given by Eq. 2.10 where φi(1) denotes that the integral is over the coordinates of one

electron.

Hcore
µν =

∫
φ∗µ(1)

[
−1

2
∇2 +

∑
A

ZA
r1A

]
φν(1)dτ1 (2.10)

There are two types of one-electron integrals; the kinetic energy integral from the
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Laplacian operator and the electron-nucleus attraction integral. These one-electron in-

tegrals are pairwise in orbital indices, resulting in O(m2) terms for both types of one-

electron integrals.

The second class of integrals in Hartree-Fock theory are the two-electron integrals.

These integrals arise from the electron-electron repulsion potential of the r−1
ij term in

the electronic Hamiltonian, and the series of Hartree products from the anti-symmetric

Slater determinant. Eqs. 2.11 and 2.12 provide the general forms of the two-electron

integrals in the Hartree-Fock method where φi(j) denotes the integration over the co-

ordinates of electron j in orbital φi and the indices µ, ν, λ, and σ refer to the same

orbitals between 2.11 and 2.12.

〈µν|λσ〉 =

∫ ∫
φ∗µ(1)φν(1)(1/r12)φ∗λ(2)φσ(2)dτ1dτ2 (2.11)

〈µλ|νσ〉 =

∫ ∫
φ∗µ(1)φλ(2)(1/r12)φ∗ν(1)φσ(2)dτ1dτ2 (2.12)

The two-electron integral of Eq. 2.11 is referred to as the Coulomb integral and the two-

electron integral of Eq. 2.12 is refered to as the exchange integral. The Coulomb integrals

appear as direct result of the r−1
ij potential, and have a direct correspondence to clas-

sical electron-electron repulsion. On the other hand, the exchange term is entirely a

quantum effect appearing from the linear combination of Hartree products obtained

from the anti-symmetrized wave function that satisfies the Pauli exclusion principle

by way of the Slater determinant.

Taking notice of the four orbital indices in the two-electron integrals, we see that

there are O(m4) terms of both two-electron integral types. The computation of these

“four-center”, two-electron integrals is the dominating cost in the Hartree-Fock method.
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These two-electron integrals are typically computed by Fourier transform for a finite

basis representation of φi(j) in the STO case [69], and by recurrence relations in the

GTO case [70, 71]. When the basis set is real-valued, as it is for GTOs, an eight-fold

symmetry exists allowing for a reduction by a factor of eight in the number of integral

calculations required.

Although the two-electron integral terms introduce a dependence on more than

one set of electronic coordinates, each orbital involved depends on at most one set of

electronic coordinates within the integral. The result of this integration is therefore an

average, effective electron-electron repulsion and is called the mean-field approxima-

tion. This is equivalent to saying that electronic motion in the Hartree-Fock method

is uncorrelated. That is, with the exception of the Pauli exclusion principle where two

particles of the same spin are forbidden from occupying the same MO due to the anti-

symmetric Slater determinant representation of the wave function, Hartree-Fock the-

ory does not consider that multiple electrons cannot simultaneously occupy the same

space, and replaces the exactN -body electron-electron repulsion for each electron with

a mean-field representation from the sum of N − 1 two-body terms.

Similar to the one-electron integrals and their associated matrix representation Hcore,

the two-electron integrals have a matrix representation G (Eq. 2.13),

Gµν =
∑
λσ

Pλσ

[
〈µν|λσ〉 − 1

2
〈µλ|νσ〉

]
(2.13)

where P is called the density matrix and is given by Eq. 2.14

Pλσ = 2

N/2∑
i=1

C∗λiCσi (2.14)

where N/2 denotes the set of doubly-occupied orbitals only.
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The sum of the one-electron matrix Hcore and the two-electron matrix G is called the

Fock matrix, and is discretized analog of the electronic Hamiltonian for the Schrödinger

equation.

F = Hcore + G (2.15)

2.2.4 Self-Consistent Field Procedure

The goal of Hartree-Fock theory is not just to find an electronic energy and a set of

MO coefficients Cµi such that the Schrödinger equation is solved, but rather to find

those Cµi that are variationally optimized such that the energy of Eq. 2.5 is at mini-

mum. Thus, the partial derivative of the Hartree-Fock electronic energy with respect

the MO coefficients is zero (i.e. ∂EElec./∂Cµi = 0) under the constraint that MOs remain

orthonormal (i.e.
∫
φ∗µφνdτ = δµν).

While the inner product 〈Ψ|EElec.|Ψ〉 simplifies to EElec.〈Ψ|Ψ〉 = EElec. in the infinite

dimensional MO space due to the orthonormality of the eigenfunctions of Hermetian

operators, the discretization and approximation of the MOs into LCAOs with finite ba-

sis set {χ} does not necessarily preserve orthonomallity under the same inner product.

The consequence of this discretization is an overlap matrix S whose elements are given

in Eq. 2.16.

Sµν =

∫
χ∗µ(τ)χν(τ)dτ = 〈χµ|χν〉 (2.16)

Notice that construction of S is of computational complexity O(m2) and depends only

on the basis set {χ} from Eq. 2.9. Regardless of the basis set employed, S is a symmet-

ric, positive-definite matrix.

The result of the constrained optimization of the electronic energy produces what
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is known as the Roothaan-Hall equations [66, 72], whose matrix form is given in Eq.

2.17, where ε is a diagonal matrix of orbital energies.

FC = SCε (2.17)

By inspection one can immediately see that the Roothaan-Hall equations are a type

of a generalized eigenvalue problem with generalized eigenvectors C and associated

eigenvalues ε. Since the overlap matrix S is symmetric positive-definite, it is also in-

vertible. This implies that the Roothaan-Hall equations can be reduced to a standard

eigenvalue problem, and can be solved using a variety of numerical methods and ex-

isting codes [73–75].

Although finding the orbital coefficients C appears to be the cost of merely one

generalized eigenvalue problem from Eq. 2.17, on closer inspection one sees that the

Fock matrix F has an explicit dependence on C through the density matrix P by its

appearance in the two-electron matrix G. This second observation leads to what is

known as the self-consistent field (SCF) procedure.

The SCF procedure is an iterative process whereby an initial guess of the density

matrix P is used to construct a Fock matrix for calculating the coefficient matrix C from

the Roothaan-Hall equations. A number of initial guesses can be made with the most

common being the result from diagonalizing Hcore or a diagonal matrix.

A flow chart of the Hartree-Fock algorithm is given in Figure 2.2 where the loop

over the decision on the density convergence is a single SCF step. The SCF procedure

is typically terminated after the maximum magnitude of the difference in the density

matrix between successive iterations is less than an a priori convergence criterion, typ-

ically less than 10−5.

In practice, the SCF procedure can become numerically unstable and difficult to
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Integral
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Figure 2.2: A flow chart showing the steps of the self-consistent field procedure for
the Hartree-Fock method. Iterations of Fock matrix diagonalization, density matrix
calculation, and reconstruction of the Fock matrix are repeated until the maximum
change in density between successive iterations is sufficiently small.

converge at times. Several methods that improve the stability of convergence have

been developed. The most simple of these methods is called damping, where the den-

sity matrix and/or Fock matrix at each step of the SCF procedure is replaced with a

weighted average of itself and that of the previous step. A more general approach of

this same persuasion is the direct inversion of iterative subspace (DIIS) method [76]

which can significantly improve convergence speed, but has higher storage require-

ments. A lucid description of several such methods to stabilize and accelerate conver-

gence is available from Schlegel and McDouall [77].

Once the SCF procedure has converged, the density matrix can be analyzed and

the electronic energy can be calculated. Although it may seem that the total electronic

energy for the Hartree-Fock method should be a simple sum of the individual orbital

energies of eigenvalues in ε, electron-electron repulsion terms are counted twice, and
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must be removed. The full, variationally optimized, Hartree-Fock energy under or-

thonormal constraints for the ground state wave function Ψ represented by a Slater

determinant of MOs consisting of LCAOs can be calculated by applying Eq. 2.18.

EHF =
∑
µν

Pµν

[
Hcore
µν +

1

2

∑
λσ

Pλσ

[
〈µν|λσ〉 − 1

2
〈µλ|νσ〉

]]
+ Vnuc. (2.18)

2.2.5 Analytical First Derivative of Energy

Up to this point we have only discussed Hartree-Fock theory for single-point energy

calculations on a molecular system. While such an application should not be dismissed

as unimportant or uninteresting, there are many problems that require not just the en-

ergy, but also the negative gradient of the energy with respect to the nuclear coordi-

nates – the force.

Although the integral calculations, matrix constructions, and the SCF procedure

may appear to be a complex and perhaps even unruly method, the analytical first

derivative of the Hartree-Fock energy takes on a surprisingly elegant form. The partial

derivative of the Hartree-Fock energyEHF for a nuclear coordinateX on an atomA can

be thought of as the sum of pieces Ê that depend explicitly on that coordinate, such

as electronic integrals, and those which depend implicitly on it through the change of

orbital coefficients (Eq. 2.19).

∂EHF

∂XA
=

∂Ê

∂XA
+
∑
µi

∂EHF

∂Cµi

∂Cµi
∂XA

(2.19)

The variational optimization of the Hartree-Fock method necessarily implies that all
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terms ∂EHF/∂Cµi = 0, causing Eq. 2.19 to reduce to Eq. 2.20.

∂EHF

∂XA
=

∂Ê

∂XA
(2.20)

This is to say that for the first derivative of the variationally optimized Hartree-Fock

energy, there exists an analytical expression that contains only the derivatives of those

terms which have explicit dependence on nuclear coordinates.

Through some tricks which are outlined elsewhere [58], the following expression

for the analytical first derivative of the Hartree-Fock energy can be obtained (Eq. 2.21),

where the matrix W is called the energy-weighted density matrix and has elements

Wµν = 2
∑N/2

i=1 εiC
∗
µiCνi with N/2 having the same interpretation as it does for the

density matrix (Eq. 2.14).

EXAHF =
∑
µν

Pµν

[
HXA
µν +

1

2

∑
λσ

Pλσ

[
〈µν|λσ〉 − 1

2
〈µλ|νσ〉

]XA]

−
∑
µν

WµνS
XA
µν + V XA

nuc

(2.21)

Thus, it is sufficient to use only the derivatives of one-electron, two-electron, and

overlap integrals in calculating the analytical first derivative of the Hartree-Fock en-

ergy. This derivative can be used for finding optimal molecular geometries that mini-

mize total energy via standard optimization techniques such as the conjugate gradient

method, or can be used for a host of other applications including molecular dynamics

(MD) simulations.
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2.3 Explicit Polarization Theory

Full Hartree-Fock treatments of molecular systems consisting of thousands atoms are

rarely employed due to the high computational cost and numerical instability of the

SCF procedure that becomes worse as the matrix size increases. A notable example

of Hartree-Fock on a “large” system was the geometry optimization of a 642 atom

and 42 residue protein called crambin by van Alsenoy and co-workers in 1998 [78].

Although the results of that study agreed well with the structure of crambin from X-ray

crystalography [79], it is a sobering fact that they were not obtained without employing

approximation of the two-electron integrals [80] and the use of the small 4-31G basis

set [81].

As seen in the case of crambin, which would be widely-regarded as a very small

system for the CHARMM22 force field, further approximations beyond Hartree-Fock

theory are necessary for the full quantum mechanical description of “large” systems.

In the case of even larger systems, such as a solvated protein, it becomes even more

necessary to systematically decrease the computational cost of the quantum mechani-

cal method. Thus, a new paradigm for quantum chemistry is required for tractable use

of quantal force fields.

Explicit polarization theory (X-Pol) is one general approach for modeling large sys-

tems with quantum mechanical formalism. X-Pol is based on the separation of the

system into sets of atoms according to structural or functional arrangement called frag-

ments. Fragments may consist of individual molecules, such as water molecules, or

may be individual amino acids divided along a covalent bond using the generalized

hybridized orbital (GHO) theory [82, 83], as in the case of polypeptide chains [33], or

a group of several molecules or amino acids. Here, the bonded interactions within
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a fragment are fully modeled by the QM theory used whereas non-bonded, interac-

tions between different fragments are approximated by a one-electron integral term

specifying Coulomb interactions between charged particles, and empirical terms for

short-range repulsion and long-range dispersion (van der Waals) interactions. Such a

treatment for a system of N fragments, each with m basis function, reduces the com-

putational cost from formally O([Nm]k) for the pure quantum calculation, to a cost of

formally O(Nmk) for the same level of quantum theory under X-Pol1 .

2.3.1 Wave Function Description

Unlike the Hartree-Fock method, for which the anti-symmetry principle is satisfied by

treating the entire wave function as a Slater determinant, the X-Pol method assumes

that electrons within individual fragments are localized, but can be polarized, and that

significant charge transfer does not occur between fragments. This assumption allows

the treatment of the total molecular system of fragments as the Hartree product of

Slater determinants from the N individual fragments (Eq. 2.22).

ΨTOT =
N∏
A=1

ΨA (2.22)

The consequence of this assumption is that electronic exchange-correlation and disper-

sion effects between fragments are ignored. In condensed phase systems, the neglect

of exchange-correlation and dispersion effects can drastically reduce the accuracy of

the model; consequently, they must be corrected, albeit in an approximate way. Al-

though treatments exist for modeling these effects in the context of QM/MM-type

approaches in which density-dependent exchange and repulsion terms can be incor-

porated into the effective Hamiltonian [84], for the sake of simplicity, we assume that

1 As an example, k is formally equal to 4 for Hartree-Fock theory and 5 for MP2.
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the exchange-correlation and dispersion effects between fragments can be modeled in

X-Pol by an empirical Lennard-Jones potential [85] with combining rules εab =
√
εaεb

and σab =
√
σaσb for atoms a in fragment A and b in fragment B.

EXD
AB =

∑
a∈A

∑
b∈B

4εab

[(
σab
rab

)12

−
(
σab
rab

)6
]

(2.23)

2.3.2 The X-Pol Hamiltonian

X-Pol is a fragment-based, or QM/QM, quantum chemistry method where the MOs

of individual fragments are polarized by their surrounding fragments through explicit

Coulomb integrals. The Hamiltonian described here is a variant of the X-Pol method

that approximates the surrounding fragments as point charges, changing what would

normally be a two-electron integral into a one-electron integral2 . If the QM electro-

static potential due to other fragments is directly used instead of the MM point charge

representation, there is no approximation for a given basis set used. However, this

would not reduce computational cost much, since the two-electron integrals would be

retained, scaling at the same complexity as standard Hartree-Fock theory.

For a predetermined set of fragments, the Hamiltonian of the X-Pol method can be

thought of as the sum of two terms (Eq. 2.24).

HXP =
N∑
A=1

HoA +
1

2

N∑
A=1

N∑
B 6=A
HAB (2.24)

The first of these terms, involving HoA, is the sum of the electronic Hamiltonians

of the individual fragments, which may be obtained from any level of QM theory,

including density functional theory, Hartree-Fock, or semiempirical methods [87].

2 Although we only consider point charges here, a more general approach using multipole expansions
is available [86].
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The second term describes the interactions between fragments A and B, where the

total interaction is half of the double summation over allHAB forA 6= B. Eq. 2.25 gives

the expression for HAB where m is the number of electrons in fragment A, MA is the

number of atoms in fragment A, ZAα denotes the nuclear charge of atom α on fragment

A, and EXD
AB is the exchange-correlation and dispersion interaction between fragments

A and B.

HAB = −
m∑
k=1

Vk(ΨB) +

MA∑
α=1

ZAα Vα(ΨB) + EXD
AB (2.25)

Vx(ΨB) is the electrostatic potential of fragment B, at position α of a particle (elec-

tron or nucleus) of fragment A:

Vx(ΨB) = −
∫
ρB(r)dr

|rx − r|
+

MB∑
β=1

ZBβ

|rx −RB
β |
, (2.26)

where MB is the number of atoms in fragment B and x = k and x = α denote an inter-

action at electronic and nuclear positions respectively, and ρB(r) denotes the electron

density of fragment B derived from ΨB . When the electron density ρB(r) of Eq. 2.26

is approximated by partial charges at nuclear positions, as is the case for our purposes

here, the interaction Hamiltonian becomes

HAB = −
m∑
k=1

MB∑
β=1

e · qβ(ΨB)

|rk −Rβ|
+

MA∑
α=1

MB∑
β=1

ZAα qβ(ΨB)

Rαβ
+ EXD

AB, (2.27)

where qβ is the partial charge of atom β, derived from population analysis of the wave

function ΨB , and e is a unit electron charge. If this point-charge approximation is not
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made, the use of the interaction Hamiltonian of Eq. 2.25 will require calculation of ex-

plicit two-electron integrals between fragments instead of effective two-electron inte-

grals approximated by one-electron integrals between the electron density of fragment

A and the point charges of fragment B.

Within Hartree-Fock theory or Kohn-Sham density functional theory, the varia-

tional X-Pol Fock matrix is given by,

FXP,A
µν = FAµν −

1

2

∑
B 6=A

∑
b∈B

qBb 〈µ|
1

r1b
|ν〉 − 1

2

∂qa
∂Pµν

∑
B 6=A

∑
λσ∈B

[
PBλσ〈λ|

1

r1a
|σ〉+

∑
b∈B

ZBb
rABab

]
,

(2.28)

and has a total interaction energy of,

ETOT = 〈ΨTOT|HXP|ΨTOT〉 −
N∑
A=1

〈Ψo
A|HoA|Ψo

A〉, (2.29)

where the superscript “o” denotes the optimized wave function of a single fragment in

the gas phase.

2.3.3 Double Self-Consistent Field Procedure

Similar to the Hartree-Fock method where the Fock matrix has an explicit dependence

on the orbital coefficients, which are also the eigenvectors of the Roothaan-Hall equa-

tions, the polarization term in the X-Pol method depends on partial charges, which

depend on the effects to the density matrix from the polarization term. This problem

is solved in a manner similar to the SCF procedure, and yields what is known as the

double self-consistent field (DSCF) procedure.

In the DSCF method, outlined in Figure 2.3, an initial guess of the partial charges is

made and the polarization and variational terms between all fragments is calculated.
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and polarization
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Figure 2.3: A flow chart showing the steps of the double self-consistent field procedure
used in Hartree-Fock based variants of X-Pol. The box labeled “SCF for all fragments”
denotes only the cyclic portion of the flow chart from Figure 2.2.
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Next, the SCF procedure is carried out on all fragments for the polarized X-Pol Hamil-

tonian, and the total electronic energy from the X-Pol method is calculated. If this

energy is determined to be converged, the DSCF procedure stops; otherwise, the DSCF

procedure repeats using the newly calculated partial charges as the next guess.

In practice, the step where the single SCF is run for each fragment need not con-

verge entirely. This is because the density matrix and partial charges from each frag-

ment obtained from the single SCF are contaminated at the start of the next DSCF

iteration. We have determined empirically that two steps of diagonalization and den-

sity matrix reconstruction in the single SCF procedure for each fragment provides the

fastest convergence in terms of overall computation time for simulations carried out in

Chapters 3 and 4, using semiempirical Hamiltonians.

2.3.4 Analytical First Derivative of Energy

The components of the analytical first derivative of X-Pol can be written as three main

terms: gas-phase Hartree-Fock contribution, X-Pol polarization contribution with nucleus-

nucleus repulsion, and variational terms related to changing partial charges used for

polarization (Eq. 2.30).
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Here qA and qB denote the partial charges of atoms A ∈ m and B ∈ n, ZA and ZB

denote the nuclear charge, and Iµν and Iλσ denote the one-electron integrals used to

build the X-Pol Fock matrix of Eq. 2.28.

2.4 Modified Neglect of Diatomic Overlap Approximation

The computational complexity of the ab initio Hartree-Fock method scales formally at

an order of O(m4), for a chemical system of m basis functions, due to the four atomic

centers in the two-electron integral evaluation3 . A semiempirical way of reducing this

cost is through neglect of diatomic differential overlap (NDDO) approximation, first

proposed by Pople in 1967 [88].

The NDDO approximation assumes that the differential overlap of two atomic or-

bitals on different centers is zero; that is,
∫
φµφνdr = Sµν = δµν . The most direct

consequence of the NDDO approximation is the replacement of the overlap matrix S

by the identity matrix. In addition to the elimination of the overlap matrix, three-center

and four-center electronic integrals are eliminated, resulting in an order ofO(m2) two-

center, two-electron integrals.

Although the number of integrals is reduced by two orders, the matrix diagonaliza-

tion in the SCF procedure, which costs O(m3), becomes the dominating expense. Re-

ducing the order of the computational complexity beyond O(m3) is difficult, although

the number of basis functions m can be reduced to represent only the valence electrons

of an atom, or the use of localized orbitals.

The NDDO-based, modified neglect of differential overlap (MNDO) method, intro-

duced by Dewar and Thiel in 1977 [89], assumes a minimal basis set of s and p orbitals

to represent only the valence electrons of atoms, while fixing the other electrons to the

3 We note that most modern electronic structure codes have much better computational scaling due
to the use of prescreening of electronic integrals and the use of other linear-scaling techinques.
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nuclear center, resulting in an effective core for each atomic center. The approxima-

tions used in MNDO result in major changes to the Hcore matrix, the Fock matrix, and

the nucleus-nucleus repulsion terms compared to ab initio Hartree-Fock theory.

Since we have extensively used MNDO-based methods in this work, we provide

an outline of the MNDO method, noting that a more detailed description, suitable for

writing an implementation, is presented by Stewart in Ref. [90].

2.4.1 Integral Calculations

The largest set of integrals retained in MNDO are the two-center, two-electron inte-

grals. In MNDO and similar NDDO-type semiempirical methods, the two-electron in-

tegrals are calculated through a linear-transformed multipole expansion between two

atoms aligned along the Z-axis (local coordinate system) [91]. These transformed, two-

electron integrals are also used to approximate the two-center, one-electron integrals

〈µ|ZB/r1B|ν〉 ≈ 〈µν|sBsB〉.

The transformation matrix from local to laboratory coordinates for the electronic

integrals between atoms A and B by multipole expansion [92] is given in Eq. 2.31,

T =


X
RAB

Y
RAB

Z
RAB

− Y
RXY

X
RXY

0

XZ
RXY RAB

Y Z
RXY RAB

RXY
RAB

 , (2.31)

where X = xA − xB , Y = yA − yB , Z = zA − zB , and RXY =
√
X2 + Y 2, RAB =

√
X2 + Y 2 + Z2.

For the gradient calculation, the derivative of the rotation matrix is required in

conjunction with the product rule, since both the transformation matrix T and the
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integrals v have an RAB dependence.

∂

∂uC
Tv(RAB(xA, xB, yA, yB, zA, zB)) =

∂T

∂uC
v + T

(
∂v

∂RAB

)(
∂RAB
∂uC

)
, (2.32)

where uC represents a chosen Cartesian coordinate and

∂RAB
∂uC

= − 2uC√
X2 + Y 2 + Z2

. (2.33)

2.4.2 Hcore Matrix

The Hcore matrix in MNDO is constructed using different expressions for diagonal and

off-diagonal blocks. The diagonal blocks of Hcore represent the self-interaction and

polarization on a single atom. In MNDO, the diagonal blocks of the Hcore matrix are

given by,

Hcore
µµ = Uµµ −

∑
B 6=A

ZB〈µµ|sBsB〉,

Hcore
µν = −

∑
B 6=A

ZB〈µν|sBsB〉,
(2.34)

where the parameters Uss and Upp are the one-center, one-electron integrals, and ZB

is the core charge of atom B (i.e. the net charge of the nucleus and core electrons).

There are no Usp or Upp′ parameters due to the orthogonality of the atomic orbitals on a

single nuclear center. Note that the one-electron two-center integrals are approximated

by two-center two-electron integrals in MNDO.

The off-diagonal blocks of Hcore are between two atomic centers, and are called

resonance integrals. The resonance integrals provide a description of the chemical bond.
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In MNDO, the resonance integrals are approximated by,

Hµν =
1

2
(βµ + βν)Sµν , (2.35)

where βµ and βν are parameters, and Sµν is an overlap integral determined by 〈φµ|φν〉.

In principle, this violates the NDDO approximation, but is done in MNDO to provide

a better description of the chemical bond. In practice, Sµν is determined by employing

a STO or GTO basis representation of φµ and φν , using the ζs and ζp parameters as

orbital exponents.

2.4.3 Fock Matrix

Similar to the one-center terms involved in Hcore, the one-center, two-electron integrals

are parameterized into values Gss = 〈ss|ss〉, Gsp = 〈ss|pp〉, Hsp = 〈sp|sp〉, Gpp =

〈pp|pp〉, Gpp′ = 〈pp|p′p′〉, and Hpp′ = 〈pp′|pp′〉. The Gµν parameters are Coulomb-type

integrals and the Hµν parameters are exchange-type integrals. Due to symmetry, it has

been shown that Hpp′ = (Gpp −Gpp′)/2, which preserves rotational invariance.

The one-center terms contribute to the diagonal blocks of the Fock matrix as below

[90],

Fss : PssGss + (Ppxpx + Ppypy + Ppzpz)(Gsp −Hsp)

Fsp : 2PspHsp − Psp(Hsp +Gsp)

Fpp : PssGsp − PssHsp + PppGpp + (Pp′ + Pp′′)Gpp′ − (Pp′ + Pp′′)Hpp′

Fpp′ : 2Ppp′Hpp′ −
1

2
Ppp′(Gpp +Gpp′)

(2.36)

where Pµν are respective elements of the associated density matrix.
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The remainder of the two-electron integrals in MNDO are two-center terms, cal-

culated from the multipole expansion [91]. After transformation of the two-electron

integrals, the diagonal blocks are further modified by,

Fµµ : Hµµ +

A∑
ν

(Pνν〈µµ|νν〉 − Pνν〈µν|µν〉) +
∑
B

B∑
λ

B∑
σ

Pλσ〈µµ|λσ〉,

Fµν : Hµν + 2Pµν〈µν|µν〉 − Pµν(〈µν|µν〉+ 〈µµ|νν〉).

(2.37)

For φµ and φν on different centers (off-diagonal blocks), the MNDO Fock matrix

expression is,

Fµν = Hµν −
A∑
λ

B∑
σ

Pλσ〈µλ|νσ〉 (2.38)

2.4.4 Core-Core Repulsion

The core-charge analog of the nucleus-nucleus repulsion, called the core-core repulsion,

does not take the same form as that of ab initio Hartree-Fock theory. This is due to

the use of the effective core nucleus charges such that the Coulomb interactions are

screened by core (as well as valence) electrons.

The MNDO core-core repulsion term has the general form,

V AB
core = ZAZB〈sAsA|sBsB〉

[
1 + e−αARAB + e−αBRAB

]
(2.39)

and the special form

V AB
core = ZAZH〈sAsA|sHsH〉

[
1 +RAHe

−αARAH + e−αHRAH
]

(2.40)
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for O-H and N-H interactions.

2.4.5 X-Pol with MNDO

Under the MNDO formalism, the one-center, one-electron integral is replaced by the

two-center, two-electron integral in the form 〈µaνa|sbsb〉. Furthermore, Mulliken charges

have a density derivative ∂qa/∂Pµν = −1, due to the approximation of the overlap ma-

trix as identity, which also causes the last term of the X-Pol derivative expression to

vanish (Eq. 2.30).

The Fock matrix for MNDO under X-Pol becomes,

FXP,A
µν = FAµν−

1

2

∑
B 6=A

∑
b∈B

qBb 〈µν|sbsb〉+
1

2

∑
B 6=A

∑
λσ∈B

[
PBλσ〈λσ|sasa〉+

∑
b∈B

ZBb 〈sbsb|sasa〉

]
.

(2.41)

where FAµν is the typical MNDO Fock matrix, and qBb is the Mulliken charge on atom b

of fragment B.

Due to the one-electron integral polarization by partial charges in the X-Pol method,

the standard MNDO core-core repulsion is modified such that the partial charge qa of

the MM atom is used for the interfragment interaction, rather than the core charge Za,

as in the standard MNDO method.

A detailed explanation of the analytical first derivative of the MNDO method is

provided in Ref. [92].

2.4.6 Polarized Molecular Orbital Method

The polarized molecular orbital (PMO) method [52,93,94] is a semiempirical quantum

chemistry method with three main improvements over the MNDO formalism. The
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PMO method was introduced with the aim to improve the description of intermolecu-

lar interactions within the NDDO formalism.

First, a set of p-orbitals is added to hydrogen atoms. This greatly enhances molec-

ular polarizabilities and provides significantly improved hydrogen bonding perfor-

mance over MNDO. The resonance integrals on the additional p-orbitals are damped

to compensate for the increase in overlap terms (Eqs. 2.42 and 2.43), and special expo-

nents are used for homonuclear resonance integral calculations.

HHH
lp = 0, (2.42)

HXH
lp =

βX
l + βH

p

2
SlpAlpe

κlpRXH . (2.43)

Second, the one-electron attraction integral from MNDO (which is approximated

by a two-electron integral) is modified in PMO when both atomsA andB are hydrogen

(Eq. 2.44).

〈pp′|sHsH〉PMO =
[
1−Be−λR

2
HH′
]
〈pp′|sHsH〉MNDO (2.44)

Note that this is only done in the context of the one-electron integral.

Finally, special exponents α̂ are used for homonuclear core-core repulsion in addi-

tion to the existing core-core term of MNDO, and dispersion effects are accounted for

between all atom pairs by the empirical D1 dispersion correction of Grimme [95].

The PMO method has been used with X-Pol and the DPPC charge model (see next

section) to model liquid water (Chapter 3) and liquid hydrogen fluoride (Chapter 4).
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2.5 Dipole-Preserving and Polarization-Consistent Charge

A key component in the X-Pol method is having an accurate and effective representa-

tion of the electrostatic potential based on the QM wave function of each fragment. The

simplest approximation is the use of monopoles only (i.e. atomic partial charges). Mul-

liken population analysis [96] is a widely-used scheme for calculating partial charges.

Under the NDDO approximation, the modification to the overlap matrix Sµν = δµν

causes partial charges qk obtained from Mulliken population analysis to take the form

of Eq. 2.45,

qMP
k = Zk −

∑
µν∈k

(PµνSµν) = Zk −
∑
µ∈k

Pµµ (2.45)

where atom k has core charge Zk and diagonal density matrix elements Pµµ.

In general, dipole moments calculated using Mulliken point charges fail to re-

produce the total molecular dipole moment of a given system under the NDDO ap-

proximation. This is because, in general, the molecular dipole moment in the NDDO

framework is given by two distinct contributions; one from Mulliken population anal-

ysis DMP (monopole contribution), and another from one-center sp-hybridized orbitals

Dhyb (dipole contibution) (Eq. 2.46).

DNDDO = DMP + Dhyb =
N∑
k=1

qMP
k rk −

N∑
k=1

Rk(Psp)k (2.46)

DMP is the sum of the products of Mulliken charge qMP
k and Cartesian position rk of

atom k and Dhyb is the sum of the products of the dipole integral Rk and the one-

center sp-hybridized orbital density matrix elements taken as a vector (Psp)k ∈ R3.

The dipole integral of atom k is in practice twice the dipole displacement used in the

multipole expansion for the semiempirical calculation of two-electron integrals [91].
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The dipole-preserving, polarization-consistent (DPPC) population analysis method

[53] produces a correction to the Mulliken charge which reproduces the NDDO molec-

ular dipole moment under a point charge treatment. We describe the method below

and give an expression for its use with X-Pol and derive its analytical first derivative.

2.5.1 DPPC Method

The DPPC method has its origins in the dipole-preserving charge (DPC) method of

Thole and van Duijnen [97]. In both treatments, a correction to the Mulliken charge for

each atom from all other atoms (Eq. 2.47) is derived subject to the constraints that the

net charge on the system remains constant (Eq. 2.48) and that the hybridized dipole

moment in the point-charge regime is preserved by the corrections (Eq. 2.49).

qk = qMP
k +

N∑
i=1

∆qi (2.47)

N∑
k=1

∆qik = 0 (2.48)

Di
hyb =

N∑
k=1

∆qikrk (2.49)

By inspection, it is clear that satisfying these constraints will reproduce DNDDO, using

only the product of Cartesian coordinates and point charges of Eq. 2.47 for each atom.

The charge correction is minimized subject to a set of weights that decay as a Gaus-

sian with distance, and are scaled by a term related to the relative difference of elec-

tronegativity of the atoms in the system (Eq. 2.50).

wik =

(
1 +

∣∣∣∣ηk − ηiηi

∣∣∣∣) e−λ|rk−ri|2 (2.50)
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In practice, the employment of this weighting function is the main difference between

the DPC and DPPC methods, although we have extended the DPPC method to X-Pol

and provide its analytical gradient here. The value λ = 1 and the Pauling electro-

negativities [98] η of each element are used, some of which are shown in Table 2.1.

Element H C N O P S
η 2.20 2.55 3.04 3.44 2.19 2.58

Table 2.1: Pauling electronegativity for the six most essential elements in living organ-
isms. A list for elements up to atomic number 94 is provided in the CRC handbook. [1]

The minimization of the weighted charge corrections under the two linear con-

straints is solved using Lagrange multipliers (Eq. 2.51).

Li =

(
N∑
k=1

(
∆qik

)2
2wik

)
+

(
0−

N∑
k=1

∆qik

)
αi +

(
Di

hyb −
N∑
k=1

∆qikrk

)T
βi (2.51)

The solution of the minimization problem is given in Eq. 2.52. A full derivation of this

expression and its associated pieces (Eqs. 2.53, 2.54, 2.74) is derived in detail elsewhere

[53].

∆qik =
wik
W i

[
(rk − 〈r〉i)T ·

(
Ωi
)−1 ·Di

hyb

]
(2.52)

W i =
N∑
k=1

wik (2.53)

〈r〉Ti =
1

W i

N∑
k=1

wik (rk)
T (2.54)
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Ωi = 〈rrT 〉i − 〈r〉i〈r〉Ti =
1

Wi

[
N∑
k=1

wikrk (rk)
T

]
− 〈r〉i〈r〉Ti (2.55)

An important detail in the DPPC method is the construction of the Ω matrix. Ω is a

real-valued, symmetric 3 × 3 matrix that requires an inversion in Eq. 2.52. In the case

of linear and planar molecules, such as hydrogen fluroide and water, Ω is singular and

Eq. 2.52 has no unique solution. To prevent this situation, a matrix diagonalization is

performed instead of an inversion [97]. The motivation is explained as follows.

Consider the reformulation of the matrix-vector multiplication Ω−1Dhyb = x into

the solution of the linear system Ωx = Dhyb. Let Ω = UΣUT represent a matrix

diagonalization of Ω. Notice that Ωx = Dhyb ⇔ UΣUTx = Dhyb and that UΣUTx =

Dhyb ⇔ UΣ−1UTDhyb = x, provided that Σ is non-singular.

The matrix Σ is singular if and only if it contains a zero eigenvalue, which is true in

the case of planar and linear molecules. The generally ill-posed Σ matrix is forced to

be non-singular for all systems by a small perturbation of the eigenvalues of Ω. This not

only guarantees that Σ is non-singular, but also that the first derivative of the DPPC

charge is continuous, although some error is introduced.

Let ω denote the eigenvalues of Ω. The perturbation of eigenvalues in the DPPC

method is given in Eq. 2.56, where θ = 10−5 in our implementation.

ω′ = ω + θ(ωmax + θ) (2.56)

2.5.2 Modification to X-Pol Fock matrix by DPPC

The modification to the Fock matrix in the X-Pol method (Eq. 2.57) related to varia-

tional optimization contains two derivative terms involving partial charges (Eqs. 2.58
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and 2.59).

FAµν = fAµν −
1

2

∑
j /∈A

(Ij) qj +
∑
j∈A

Mj (Λj)µν (2.57)

Mj =
∂EQM/MM

∂qj
=

1

2

∑
B(J 6=B)

(
−
∑
λσ∈b

PλσI
j
λσ +

∑
i∈B

Lij

)
(2.58)

(Λj)µν =
∂qj
∂Pµν

(2.59)

The DPPC charge is fundamentally different from Mulliken charge and thus requires a

modification of the term derived from Eq. 2.59.

Since the DPPC method provides a sum of charge corrections to the Mulliken charge,

it is clear that the form of (Λj)µν will be that of Eq. 2.60, due to the linear nature of the

derivative operator.

(Λj)
DPPC
µν = (Λj)

MP
µν +

NA∑
i∈A

(
∆Λij

)
µν

(2.60)

Differentiating the Mulliken charge under the NDDO approximation (Eq. 2.45)

with respect to Pµν for orbitals µ and ν on atom j results in a simple equation of a

negative Kronecker delta (Eq. 2.61).

(Λj)
MP
µν = −δµν . (2.61)

The contribution to the variational term of X-Pol from each DPPC charge correction

∆qik is more complex than the Mulliken case, and requires the differentiation of Eq. 2.52

with respect to Pµν for orbitals µ and ν on atom i. The only density dependent term is

the hybridized dipole contribution Di
hyb, causing (∆Λij)µν to take the form of Eq. 2.62
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where ∂Di
hyb,X/∂Pµν is given by 2.63 and X denotes one of the x, y, or z coordinates.

(
∆Λij

)
µν

=
∂∆qij
∂Pµν

=
wij
W i

[
(rj − 〈r〉i)T ·

(
Ωi
)−1 ·

∂Di
hyb

∂Pµν

]
(2.62)

∂Di
hyb,X

∂Pµν
=

1

2
Ri (δµsδνpX + δνsδµpX )i (2.63)

The factor of a half in front of the dipole integral of Eq. 2.63 exists due to the symmetry

of sp and ps orbitals and prevents double counting.

Eq. 2.63 shows that the DPPC charge density derivative will only modify sp-

hybridized orbitals in the X-Pol Fock matrix. In addition, the observation that (Λj)
MP
µν =

−δµν and further examination of Eqs. 2.57 and 2.58 show that the only terms produced

by the variational part of X-Pol under the NDDO approximation with Mulliken charges

are identical terms along the block diagonals of each atom in a fragment. The combina-

tion of these two facts implies that there are only four terms to calculate per atom-atom

interaction.

The implication of this observation in the context of a parallel implementation is

that these four terms can be calculated on the same processor where the density ma-

trix of the interacting fragment resides, and can be passed to the other processors as

needed, rather than passing the much larger density matrix of needed fragments to

calculate the term of Eq. 2.58 on the processor that requires it. Such an observation of

the variational term greatly increases feasibility of a parallel X-Pol implementation, al-

though it requires the storage of both types of one-electron integrals for A:QM/B:MM

and BQM:/A:MM on each processor.
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2.5.3 DPPC Gradient

The use of X-Pol as a force field requires the derivative of the charge with respect to

the position. Differentiating the DPPC charge correction ∆qik of Eq. 2.52 with respect

to Cartesian coordinates rj where i and j denote atoms within a fragment requires the

product rule, which produces Eq. 2.64.

∂∆qik
∂rj

=
1

W i

∂

∂rj

[
wik (rk − 〈r〉i)T ·

(
Ωi
)−1 ·∆Di

]
− 1

W 2
i

∂W i

∂rj

[
wik (rk − 〈r〉i)T ·

(
Ωi
)−1 ·∆Di

] (2.64)

With the exception of the factor ∂Wi/∂rj , the second term of Eq. 2.64 is immediate

from values already computed for the DPPC charge correction. Recall that Wi is the

sum of the individual weightswik (Eq. 2.53) and that these weights decay in a Gaussian-

like manner with distance (Eq. 2.50). Differentiating wik gives the piecewise equation

in 2.65.

∂wik
∂rj

=



−2λ (rj − ri)

(
1 +

∣∣∣∣ηj − ηiηi

∣∣∣∣) e−λ|rj−ri|2 (j = k)

−2λ (rj − rk)

(
1 +

∣∣∣∣ηk − ηjηj

∣∣∣∣) e−λ|rk−rj |2 (j = i)

= 0 (j 6= i ∩ j 6= k)

(2.65)

The partial derivative ∂Wi/∂rj =
∑N

k=1 ∂w
i
k/∂rj is also piecewise, consisting of either

a summation or single term and takes the form of Eq. 2.66. Thus, the description of the
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second term of Eq. 2.64 is complete.

∂W i

∂rj
=


N∑
k=1

∂wik
∂ri

(j = i)

−2λ (rj − ri)

(
1 +

∣∣∣∣ηj − ηiηi

∣∣∣∣) e−λ|rj−ri|2 (j 6= i)

(2.66)

The derivation of the derivative of the first term of Eq. 2.64 with respect to rj

is much more involved than the second term since there are now three factors with

explicit dependence on rj . Through double application of the product rule we obtain

Eq. 2.67.

∂

∂rj

[
wik (rk − 〈r〉i)T ·

(
Ωi
)−1 ·∆Di

]
=
∂wik
∂rj

(rk − 〈r〉i)T ·
(
Ωi
)−1 ·∆Di

+wik
∂ (rk − 〈r〉i)T

∂rj
·
(
Ωi
)−1 ·∆Di

+wik (rk − 〈r〉i)T ·
∂
(
Ωi
)−1

∂rj
·∆Di

(2.67)

All three terms of Eq. 2.67 contain a product of a single derivative with respect to rj

and three other factors which are used in finding the charge correction ∆qik of Eq. 2.52.

The first term of Eq. 2.67 is fully accounted for from our derivation of Eq. 2.65, but the

second and third terms require further derivations.

The derivative of the second term can be directly calculated to produce Eq. 2.68.

∂ (rk − 〈r〉i)T

∂rj
= δkj −

∂〈r〉Ti
∂rj

(2.68)

Differentiating 〈r〉Ti from Eq. 2.54 with respect to rj produces the remaining piece as
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given in Eq. 2.69.

∂〈r〉Ti
∂rj

=


1

Wi

(
N∑
k=1

∂wik
∂ri

rTk + 1

)
− 1

W 2
i

∂W i

∂ri

N∑
k=1

wikr
T
i (j = i)

1

Wi

(
∂wij
∂rj

rTj + wij

)
− 1

W 2
i

∂Wi

∂rj

N∑
k=1

wikr
T
j (j 6= i)

(2.69)

The third term involves differentiation of the inverse of the 3 × 3 matrix Ω, and is

the most involved calculation. The general definition of this inverse is Ω−1Ω = I, for

which differentiation of both sides and some rearrangement gives Eq. 2.70.

∂
(
Ωi
)−1

∂rj
= −

(
Ωi
)−1 ∂

(
Ωi
)

∂rj

(
Ωi
)−1 (2.70)

The derivative of the matrix (Ωi)−1 with respect to a coordinate X of rj is the

derivative of the elements of that matrix with respect to that same variable (Eq. 2.71).

[
∂
(
Ωi
)−1

∂rj

]X
mn

=
∂
[(

Ωi
)−1
]
nm

∂rXj
(2.71)

The derivative of the matrix-vector product in Eq. 2.67 is,

[
(rk − 〈r〉i)T ·

∂
(
Ωi
)−1

∂rj

]X
m

=
3∑

n=1

[
(rk − 〈r〉i)T

]
n

[
∂
(
Ωi
)−1

∂rj

]X
mn

. (2.72)

Elements n and m of the partial derivative of the Ωi matrix with respect to the X

component of rj are given by Eq. 2.73.
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[ ∂(
Ω
i)

∂
r j

] X n
m

=

                                                  

∂
Ω
i n
m

∂
W

i

∂
W

i

∂
rX j

+
1 W
i

( N ∑ k
=

1

∂
w
i k

∂
rX i

rn k
rm k

+
δ X

n
+
δ X

m

)

−
1

W
2 i

[( N ∑ k
=

1

∂
w
i k

∂
rX i

rn k
+
δ X

n

) N ∑ k
=

1

w
i k
rm k

+

N ∑ k
=

1

w
i k
rn k

( N ∑ k
=

1

∂
w
i k

∂
rX i

rm k
+
δ X

m

)]

(j
=
i)

∂
Ω
i n
m

∂
W

i

∂
W

i

∂
rX j

+
1 W
i

( ∂w
i j

∂
rX j

rn j
rm j

+
w
i j
δ X

n
+
w
i j
δ X

m

)

−
1

W
2 i

[( ∂
w
i j

∂
rX j

rn j
+
w
i j
δ l
n

) N ∑ k
=

1

w
i k
rm k

+

N ∑ k
=

1

w
i k
rn k

( ∂w
i j

∂
rX j

rm j
+
w
i j
δ X

m

)]

(j
6=
i)

(2
.7

3)

w
he

re
,

∂
Ω
i

∂
W
i

=
1 W
i

[ 1 W
i

[ 2
〈r
〉 i
〈r
〉T i
−

N ∑ k
=

1

w
i k
r k

(r
k
)T
]] .

(2
.7

4)
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This completes the description of the terms needed in calculating the DPPC gradi-

ent.

2.6 Sample Data

To provide an initial test of the derivative methods described in the previous section,

we performed several full semiempirical QM and semiempirical X-Pol calculations on

the water dimer geometry given in Table 2.2 and the hydrogen fluoride dimer geome-

try given in Table 2.5. The results of each of these calculations are provided in two pairs

of tables for various combinations of semiempirical theory. Tables 2.3 and 2.6 provide

the heats of formation or X-Pol energy where appropriate, the dipole moment, and the

partial charges on each atom. Tables 2.4 and 2.7 provide the analytical gradients for the

dimers with the same coordinates and choices of semiempirical theory. In each case,

full QM calculations were done for the AM1 and PMOw Hamiltonians along with their

corresponding X-Pol calculations, both with Mulliken charges and DPPC charges. No

dispersion energy EXD
AB was used in any of the calculations. The values in the tables

can be checked against the results of a web-based program linked to in the supporting

information section.

2.7 Conclusion

We have described the theoretical background needed for implementing the X-Pol

method into molecular dynamics packages. In addition to background information,

we have provided the expressions for the analytical first derivative of the variational

version of X-Pol and the DPPC population analysis. Sample data has been given for

testing new implementations, should the reader be inclined to write one. We believe
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Atom x y z

O1x 0.00000 0.00000 0.00000
H1y 0.95231 0.00000 0.00000
H2z -0.28645 0.41092 -0.80818
O2x 3.46074 0.00000 0.00000
H3y 3.78745 -0.89352 0.00000
H4z 3.92180 0.47778 0.68087

Table 2.2: Cartesian coordinates for the water dimer used in our tests of various combi-
nations of theory, semiempirical method, and population analysis scheme. The dashed
line in the table indicates the separation of the fragments for X-Pol calculations.

AM1 AM1/X/M AM1/X/D PMOw PMOw/X/M PMOw/X/D

Energy -119.960 -118.917 -119.822 -140.676 -138.505 -139.928
Dipole 2.476 2.470 2.488 2.599 2.491 2.574
qO1 -0.40529 -0.40651 -0.69411 -0.31354 -0.32628 -0.70000
qH2 0.20984 0.21166 0.35624 0.16521 0.18044 0.36848
qH3 0.19468 0.19485 0.33787 0.14355 0.14583 0.33152
qO2 -0.40584 -0.40654 -0.69573 -0.33493 -0.33462 -0.70736
qH3 0.20304 0.20299 0.34744 0.16913 0.16664 0.35292
qH4 0.20357 0.20355 0.34829 0.17058 0.16798 0.35436

Table 2.3: Heat of formation/X-Pol energy (kcal/mol), dipole moment (Debye), and
charges (e) for the water dimer geometry given in Table 2.2 under various combina-
tions of theory, semiempirical method, and population analysis scheme. Calculations
are performed without exchange-correlation and dispersion contributions for X-Pol re-
sults. “X” denotes the use of X-Pol and “M” and “D” denote the use of Mulliken and
DPPC charges respectively.
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Atom AM1 AM1/X/M AM1/X/D PMOw PMOw/X/M PMOw/X/D
O1x 14.36159 14.64767 14.10543 12.50594 11.34429 12.57168
O1y 9.07860 8.99318 8.95315 5.01112 4.42014 4.96005
O1z -17.52986 -17.47715 -17.24853 -9.39657 -8.49840 -9.33173
H1x -10.86555 -9.86415 -10.18750 -9.58385 -7.61349 -9.42117
H1y -4.11263 -4.13109 -4.15492 -3.35482 -2.87792 -3.46698
H1z 7.74625 7.85911 7.71957 5.86996 5.37791 6.22117
H2x -6.31026 -6.07657 -6.11781 -5.72054 -5.11807 -6.07247
H2y -4.95726 -4.91770 -4.88996 -1.79938 -1.65406 -1.71560
H2z 9.62181 9.59901 9.49175 3.47198 3.21093 3.27865
O2x 20.20417 19.41619 20.06744 13.94524 12.70340 15.54289
O2y -8.93693 -8.99105 -8.70041 -5.41487 -5.02571 -5.23754
O2z 15.41744 15.42969 14.97008 10.01214 9.15550 9.45721
H3x -8.53955 -8.88609 -8.80590 -5.54104 -5.56129 -6.29024
H3y 5.81383 6.01734 5.88210 3.39648 2.77227 2.80485
H3z -6.89995 -6.89524 -6.68533 -4.56260 -4.40846 -4.70050
H4x -8.85040 -9.23705 -9.06165 -5.60574 -5.75484 -6.33068
H4y 3.11439 3.02931 2.91003 2.16147 2.36528 2.65509
H4z -8.3569 -8.51541 -8.24754 -5.39491 -4.83748 -4.92480

Table 2.4: Analytical first derivatives (in kcal mol−1 Å−1) of full semiempirical calcu-
lations, X-Pol calculations, and X-Pol calculations with DPPC population analysis for
the water dimer geometry given in Table 2.2. The results in this table derive from the
use of Eq. 2.30, without exchange-correlation and dispersion contributions for X-Pol
results. The dashed line in the table indicates the separation of the fragments for X-Pol
calculations. “X” denotes the use of X-Pol and “M” and “D” denote the use of Mulliken
and DPPC charges respectively.

Atom x y z

F1x 0.00000 0.00000 0.00000
H1y 0.92500 0.00000 0.00000
F2x 2.75000 0.00000 0.00000
H2y 2.75000 0.92500 0.00000

Table 2.5: Cartesian coordinates for the hydrogen fluoride used in our tests of various
combinations of theory, semiempirical method, and population analysis scheme. The
dashed line in the table indicates the separation of the fragments for X-Pol calculations.

53



AM1 AM1/X/M AM1/X/D PMOw PMOw/X/M PMOw/X/D

Energy -136.517 -137.531 -138.169 -160.541 -159.048 -160.699
Dipole 2.688 2.554 2.560 2.875 2.670 2.689
qF1 -0.30148 -0.29029 -0.40820 -0.19899 -0.20767 -0.42591
qH2 0.28536 0.29029 0.40820 0.17028 0.20767 0.42591
qF2 -0.27484 -0.28816 -0.40638 -0.19330 -0.20981 -0.43134
qH2 0.29096 0.28816 0.40638 0.22201 0.20981 0.43134

Table 2.6: Heat of formation/X-Pol energy (kcal/mol), dipole moment (Debye), and
charges (e) for the hydrogen fluoride dimer geometry given in Table 2.5 under various
combinations of theory, semiempirical method, and population analysis scheme. Cal-
culations are performed without exchange-correlation and dispersion contributions for
X-Pol results. “X” denotes the use of X-Pol and “M” and “D” denote the use of Mul-
liken and DPPC charges respectively.

Atom AM1 AM1/X/M AM1/X/D PMOw PMOw/X/M PMOw/X/D
F1x -106.90225 -112.05861 -112.85115 -0.66265 -9.05080 -9.68167
F1y -1.79738 -1.35207 -1.90772 -2.55965 -1.35252 -2.80668
F1z 0.00000 0.00000 0.00000 0.00000 -0.00000 0.00000
H1x 118.55425 109.37669 109.06714 3.73792 6.46075 4.24874
H1y 5.84047 3.90783 5.51206 7.83053 3.28746 6.77464
H1z 0.00000 -0.00000 -0.00000 -0.00000 0.00000 -0.00001
F2x -5.47239 6.37227 8.98755 4.76430 5.05512 10.45495
F2y -112.58874 -112.87785 -113.71712 -4.13392 -8.98721 -9.56861
F2z 0.00000 0.00000 0.00000 -0.00000 0.00000 0.00001
H2x -6.17962 -3.69034 -5.20353 -7.83956 -2.46507 -5.02202
H2y 108.54566 110.32209 110.11278 -1.13696 7.05227 5.60065
H2z -0.00000 -0.00000 0.00000 0.00000 -0.00000 0.00000

Table 2.7: Analytical first derivatives (in kcal mol−1 Å−1) of full semiempirical calcula-
tions, X-Pol calculations, and X-Pol calculations with DPPC population analysis for the
hydrogen fluoride dimer geometry given in Table 2.5. The results in this table derive
from the use of Eq. 2.30, without exchange-correlation and dispersion contributions
for X-Pol results. The dashed line in the table indicates the separation of the fragments
for X-Pol calculations. “X” denotes the use of X-Pol and “M” and “D” denote the use
of Mulliken and DPPC charges respectively.
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that the ability to use any desired level of QM theory, its formally linear scaling in

the number of fragments, and its more physically-rigorous nature make X-Pol an ideal

generalized framework for polarizable force fields.4

2.8 Supporting Information

A web-based interface for single-point energy, gradient, and partial charge calculations

of NDDO-type semiempirical methods (AM1, AM1-D, MNDO, PM3, PM3-D, PM6,

PMO, PMOw, RM1) and the X-Pol method using either Mulliken or DPPC charges

is available for free use at http://mazack.org/cgi-bin/xpol.pl (accessed on

January 30th, 2014).

4 We would like to thank Peng Zhang for helpful discussions regarding the details of the DPPC
method and its gradient. This work has been partially supported by National Institutes of Health grants
GM46376 and RC1-GM091445.
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Chapter 3

Quantum Mechanical Force Field
for Water

This chapter is a result of collaborative efforts between the author, J. Han, and P. Zhang.

3.1 Introduction

Critical to the success of dynamical simulations of chemical and biological systems is

the potential energy function used to describe intermolecular interactions. [99,100] Be-

cause of the importance of aqueous solution and its unique roles in biomolecular inter-

actions, water has been a subject of extensive and continuous investigation (a review in

2002 included a partial list of 46 water models, [101] while at least two dozen new mod-

els have appeared since that time). [102,103] An accurate and efficient model for liquid

water also serves as an anchor for developing force fields for proteins, nucleic acids,

and carbohydrates. Traditionally, the Lifson-type of effective, pairwise potentials have

been used, [99,100,104] and much effort has also been devoted to incorporating many-

body polarization effects into such force fields. [105] However, unlike the development

of pairwise potentials, there is a great deal of uncertainty in the treatment of polariza-

tion effects, both in the choice of the functional form and in the associated parameters.
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This is reflected in the fact that simple point charge models such as SPC, [106] TIP3P

and TIP4P [107] quickly emerged as the standards in the 1980s for biomolecular force

fields, but no standard model for water has emerged although dozens of polarizable

potentials for water have been proposed. [2, 101, 102] We have developed a quantum

mechanical framework in which each individual molecular fragment is treated by elec-

tronic structure theory. [32, 35, 47, 49] Since polarization effects are naturally included

in the self-consistent field (SCF) optimization of molecular wave functions, we call this

method the explicit polarization (X-Pol) theory. [32,33,35] Recent studies demonstrated

the feasibility of X-Pol as a next generation force field for biomolecular simulations, [49]

and encouraging results have been obtained using standard semiempirical Hamiltoni-

ans. [47, 48] In this chapter we describe a novel model for water, called XP3P, based

on X-Pol theory and a three-point charge representation of the electrostatic potential,

as a first step in our effort to develop a full quantum mechanical X-Pol force field for

biomolecular and materials simulations.

The present quantum mechanical force field (QMFF) may be compared with phe-

nomenological representations of electronic polarization in three commonly used meth-

ods in molecular mechanics, namely induced-dipole, Drude-oscillator, and fluctuating-

charge models. In the induced-dipole approach, [108–111] atomic polarizabilities are

assigned to the interaction sites, typically located on, but not limited to, atomic centers,

from which induced point dipoles, representing the total electric field of the system,

are obtained. [112] A commonly used method to assign atomic polarizabilities is the

dipole interaction model (DIM) popularized by Applequist et al. [113] and extended

by Thole [114] to incorporate short-range damping functions. Remarkably, the values

optimized in DIM are quite transferable, [115] requiring typically one parameter per

element. The Drude-oscillator model may be considered as a point-charge equivalent
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of the induced-dipole method. [116,117] Here, one or a set of point charges are harmon-

ically linked to a polarizable site, in which the directions and distances of the Drude

oscillators give rise to the corresponding induced dipole moments. The fluctuating-

charge [118–121] approach employs a chemical potential equalization scheme, in which

the instantaneous partial charges minimize the energy of the system. The fundamental

parameters used in the fluctuating-charge model correspond to the atomic electroneg-

ativity and hardness that are rigorously defined in density functional theory. [122]

Each of these classical methods has its advantages and shortcomings in practice.

In the fluctuating-charge model, unphysical charge transfer effects between distant

monomers can occur. Thus, charge constraints are required. On the other hand, the

induced-dipole and the Drude-oscillator model are difficult to use for representing

molecular polarization involving a significant charge delocalization such as that across

a conjugated polyene chain and the polarization of push-pull compounds (e.g., the

crystal of p-nitroaniline). The Drude-oscillator model has the advantage of simplicity

in practice since any dynamics simulation code can be conveniently adapted to treat

polarization effects by that method.

The X-Pol method relies on the partition of a large, condensed-phase system into

molecular or submolecular fragments (or blocks), [32, 33, 47] which can be single sol-

vent molecules like water, amino acid residues or nucleotide bases, small ions or en-

zyme cofactors, or a collection of these small units. The wave function of each molecu-

lar fragment is described by a Slater determinant of block-localized molecular orbitals

that are expanded over basis functions located on atoms of the fragment. The total

molecular wave function is approximated as a Hartree product of these fragmental,

determinant functions. Consequently, Coulombic interactions between different frag-

ments are naturally incorporated into the Hamiltonian, but short-range exchange re-

pulsion, charge delocalization (also called charge transfer) and long-range dispersion
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interactions are not explicitly treated in the quantum chemical formalism. [84,123,124]

These effects are included and optimized empirically to strive for accuracy (and effi-

ciency) in X-Pol in the same spirit as that in force field development. The determinan-

tal wave function for each monomer fragment can be approximated by wave function

theory (WFT) at either an ab initio or a semiempirical level, [47, 87] the density may be

approximated by density functional theory (DFT), [87, 125] or one can combine levels

of theory, [126] but in this study we use only semiempirical wave function theory. Al-

though the present work involves only water, we note that the X-Pol theory can be used

to model electronic polarization involving conjugated systems and significant charge

delocalization contributions, [127] and the X-Pol model is also a reactive force field for

modeling systems involving bond-forming and bond-breaking processes.

Semiempirical methods employing neglect diatomic differential overlap (NDDO)

[128] are especially suited for QMFF development because of their computational ef-

ficiency. However, most such semiempirical models were not optimized to describe

intermolecular interactions that are essential for modeling condensed-phase systems.

[90,129–131] Part of this problem has been remedied through the incorporation of em-

pirically damped dispersion functions. [52, 132–136] Another important deficiency of

many semiempirical models for treating non-bonded interactions is that molecular po-

larization is systematically underestimated. Recently, a polarized molecular orbital

(PMO) has been introduced as an alternative, [52,93,94] in which a set of p-orbitals are

added to each hydrogen atom. [137] It was found that the computed molecular polariz-

abilities for a range of compounds containing hydrogen, carbon, and oxygen are signif-

icantly improved. [52,94] Employing this strategy, we report here a parametrization of

the PMO model for water (PMOw), which can be used in X-Pol for liquid simulations.

In the following, Sec. 3.2 summarizes the PMO parameterization for water and the

development of the XP3P model liquid water. Computational details are given in Sec.
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3.3. In Sec. 3.4, we present results and discussion. Sec. 3.5 concludes the chapter with

a summary of major findings.

3.2 Method

The X-Pol quantum mechanical force field is designed to model condensed phase sys-

tems with or without bond-forming and bond-breaking processes. Thus, the X-Pol

method can be used as a general-purpose force field in dynamics simulations of sol-

vated proteins or as a reactive force field to model chemical reactions in solutions and

in enzymes. In this section, we first describe the quantum chemical model designated

as PMOw for water and compounds containing oxygen and hydrogen atoms. The

acronym PMO is used to describe the general semiempirical model in which, in addi-

tion to a minimal basis set, a set of p-orbitals is added to hydrogen atoms. [52,94] Then,

we highlight its incorporation in X-Pol, called the XP3P model, for simulation of liquid

water.

3.2.1 Polarized molecular orbital model for water

The PMOw model is a new parameterization of the PMO method, [52] which is based

on the MNDO formalism [89] with three key enhancements. First, a set of diffuse p-

type basis functions is added on the hydrogen atoms. [93] This greatly improves the

quality of the computed molecular polarizabilities and hence the treatment of hydro-

gen bonding interactions. Second, a damped dispersion function, following the work

of Tang and Toennies in wave function theory [138] and Grimme in density functional

theory, [139] is included as a post-SCF correction to the electronic energy. In the present

implementation, we have adopted the method and parameters proposed by Hillier and

co-workers in the PM3-D method. [132–134] The inclusion of the damped dispersion
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terms further improves the description of intermolecular interactions and the perfor-

mance of PMO on small molecular clusters. [52, 94, 132–135] Third, the PMOw model

is parameterized for general applications to a specific class of compounds (see Sec.

3.4.1 for the set of parametrization data), and the optimization targets include molecu-

lar polarizabilities and non-bonded interactions as well as other properties used in the

traditional semiempirical parameterization. [52] The parameters presented here are op-

timized for compounds containing oxygen and hydrogen atoms, especially for study-

ing liquids, aqueous solutions, and proton transport. We note here that, in the same

way that atoms are assigned types in molecular mechanics, the parameters for oxygen

and hydrogen atoms in functional groups other than water (e.g., peptide bonds) need

not be restricted to the same as used for such atoms in water. This departs from the

philosophy that has usually been used in semiempirical methods, [140, 141] in which

general atomic parameters are used for all functionalities.

In the MNDO formalism, [89,142] there are 12 atomic parameters for each element,

and the PMOw values for water and other compounds containing oxygen and hydro-

gen are listed in Table 3.1. These values are similar in many respects to the PMOv1

model introduced previously, [52] but they result from a new parametrization pre-

sented below. Three exceptions were made to the MNDO functional forms because of

the addition of diffuse p basis functions on hydrogen atoms, [52] and they are listed as

follows:

1. For the resonance integral involving p orbitals on hydrogen, the following con-

ventions are used:

βHH
lp = 0, (3.1)
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βOH
lp =

βO
l + βH

p

2
SlpAlpe

κlpROH , (3.2)

where l is the angular momentum quantum number, having the values of 0 (s orbital)

and 1 (p orbital), and the subscript p denotes a p-orbital on hydrogen. Notice that Eq.

3.2 is slightly different from the expression used in Ref. [52], in which the exponential

function is absent. In Eq. 3.2, βO
l and βH

p are standard MNDO-type parameters,Alp and

κlp are additional parameters introduced in PMO, and ROH is the distance between

oxygen and hydrogen atoms. Slp in Eq. 3.2 is an overlap integral (〈Ol|Hp〉) between

oxygen and hydrogen Slater-type orbitals using the parameters listed in Table 3.1, but

specific exponents, ζOO and ζHH, are used for H–H and O–O pairs, respectively, in

PMOw.

2. In standard MNDO, [89, 142] the nucleus-electron attraction integral, HA
µν , be-

tween electronic charge density on atom A and nucleus B is evaluated on the basis of

the two-electron repulsion integral, 〈µAνA|sBsB〉. [91] In PMOw, if both A and B are

hydrogen atoms, for a distribution of p orbitals (pp′), this is screened as follows:

HH
pp′ =

[
1−Be−λR2

HH’

] (
HH
pp′

)
MNDO

(3.3)

3. For the homonuclear core-core repulsion integrals between oxygen-oxygen and

a hydrogen-hydrogen atom pairs, [52, 89, 142] the standard values for αO and αH are

replaced by α̂O and α̂H. Note that αO and αH are used as in standard MNDO for core-

core repulsion integrals between oxygen and hydrogen atoms.

The parameters in the standard MNDO formalism [89] (Table 3.1) and the addi-

tional parameters (Table 3.2) described above were adjusted by iterative optimization

using a genetic algorithm for some of the systems and properties listed in Table S1 in

the supporting information. In comparison with the results in Ref. [52], the present
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H O
Uss (eV) -11.15043 -111.86028
Upp (eV) -7.35459 -78.64105
βs (eV) -6.88125 -25.57063
βp (eV) -3.52628 -31.90404
ζs (bohr−1) 1.17236 3.05303
ζp (bohr−1) 1.05333 3.12265
α (Å−1) 3.05440 3.76880
gss (eV) 12.73667 17.36659
gsp (eV) 8.04688 13.37288
gpp (eV) 6.98401 14.78196
gpp′ (eV) 10.65161 13.49319
hsp (eV) 1.92149 4.42643

Table 3.1: Semiempirical parameters for H and O Atoms in the PMOw model.
The derived parameter, hpp, is determined from gpp and gpp′ and has been set
to a minimum value of 0.1 eV as implemented in the MOPAC program, hpp =
max {0.1eV, (gpp − gpp′)/2}.

Parameter Value
Asp 0.03000
App 0.15000
B 1.00000
κsp (Å−1) 0.47069
κpp (Å−1) 0.47069
λ (Å−2) 1.10000
α̂H (Å−1) 2.52552
α̂O (Å−1) 3.03253
ζHH (bohr−1) 1.28000
ζOO (bohr−1) 2.76400
σH (Å) 0.800
σO (Å) 3.225
εH (kcal/mol) 0.05
εO (kcal/mol) 0.15

Table 3.2: Additional semiempirical parameters for oxygen and hydrogen in the polar-
ized molecular orbital model and the Lennard-Jones parameters in explicit polarization
model for liquid water.
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PMOw XP3P AMOEBA POL5.TZ Ab initio Expt. [143]
H2O AE (kcal/mol) 233.0 233.0 229.3 [144] 232.2

IP (eV) 13.20 13.20 12.42 12.68
r (Å) 0.955 0.957 0.957 0.957 0.9589 [145] 0.9572
θ (◦) 104.6 104.5 108.5 104.5 104.16 [145] 104.52
α (Å3) 1.27 1.27 1.41 1.29 1.45 [146] 1.45
qH (e) 0.16 0.34 0.26 0.35 N/A
qO (e) -0.31 -0.67 -0.52 -0.70 N/A
µ (Debye) 1.88 1.88 1.77 1.85 1.84 [146] 1.86 [147]

(H2O)2 ∆Eb -5.1 -5.2 -4.96 -4.96 -5.0 [3] -5.44
ROO 2.89 2.90 2.89 2.90 2.92 2.98
α 6.2 1.3 4.2 4.7 4.8 -1 ± 10
φ 115 165 123 117 125 123 ± 10
〈µmol〉 2.10 2.16
µ 2.39 3.85 2.54 2.44 2.65 2.64

Table 3.3: Computed equilibrium properties for water monomer and dimer from dif-
ferent polarizable water models and ab initio MP2/(CBS) with CCSD(T) corrections
along with experimental data.

parameter set further improves the calculated molecular polarizability and dipole mo-

ment of water in the gas phase as well as the binding energy and dipole moment of

water dimer (Table 3.3).

3.2.2 Explicit polarization theory

In X-Pol, [32,33,47] the system is partitioned into molecular or submolecular fragments,

in which the total wave function of the system is assumed to be a Hartree product

of the determinant wave functions of the individual fragments. In the present case,

each fragment is simply a single water molecule, and the overall wave function of the

system is

Φ =
N∏
a=1

Ψa, (3.4)

where N is the number of fragments in the system, and Ψa is a Slater determinant of

doubly-occupied molecular orbitals (MOs) block-localized on molecule (fragment) a.
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The approximation of Eq. 3.4 implies neglect of the short-range exchange repulsion

[123] and long-range dispersion interactions [148] between different fragments, which

are corrected empirically below. [32, 33, 47] Use of Eq. 3.4 reduces the computational

costs, allowing molecular dynamics and Monte Carlo simulations to be carried out for

large systems efficiently with sufficient sampling. [47, 49]

The effective Hamiltonian of the system is given by

H =

N∑
a=1

Ho
a +

1

2

N∑
a=1

∑
b 6=a

Hab, (3.5)

where Ho
a is the electronic Hamiltonian of fragment a in the gas phase and Hab repre-

sents the effective interactions between molecules a and b:

Hab(ρb) = −
M∑
i=1

Vi(ρb) +

Q∑
A 6=1

ZaAVA(ρb) + EXD
ab , (3.6)

where M is the number of electrons and Q is the number of atoms in fragment a, ZaA

would be the nuclear charge of atom A of fragment a if all electrons were treated ex-

plicitly, but here it is the core charge since 1s electrons of oxygen atoms are in the

core, and EXD
ab is the exchange-dispersion, correlation energy. The electrostatic poten-

tial Vx(ρb), either at the electronic (x = i) or at the nuclear (x = A) position, due to the

instantaneous charge density of fragment b is given by

Vx(ρb) = −
∫
ρb(r)dr

|rx − r|
+

Q∑
B=1

ZbB∣∣rx −Rb
B

∣∣ . (3.7)

Here, ρb(r) is the electron density of fragment b derived from the corresponding wave

function Ψb (or Kohn–Sham Slater determinant), [32, 47] and RbB denotes the nuclear
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coordinates.

We define the total interaction energy of a condensed phase system by

Etot = 〈Φ|H|Φ〉 −
N∑
a=1

〈Ψo
a|H|Ψo

a〉. (3.8)

The energy defined in Eq. 3.8 corresponds to the total energy of the condensed-phase

system relative to that of infinitively separated fragments. Since all molecules are iden-

tical in pure liquid water in the present study, the last summation term in Eq. 3.8 is

simply NEoa with Eoa = 〈Ψo
a|Ho

a |Ψo
a〉 being the energy of an isolated monomer. It is

often useful for interpretive purposes to consider the dimeric interaction energies be-

tween two fragments even for a potential that includes many-body polarization effects

as in the present X-Pol potential. To this end, we define the interaction energy between

fragments a and b by [47]

Eab =
1

2
(〈Ψa|Hab|Ψa〉 − 〈Ψb|Hba|Ψb〉) . (3.9)

The two terms in Eq. 3.9 corresponds to a embedding in b and b embedding in a, respec-

tively, both in the presence of the rest of the system, and they are not always numer-

ically equivalent in practice [32] even though they describe the same intermolecular

interactions. The definition of Eq. 3.9 ensures that Eab = Eba.

The exchange-dispersion, correlation energy can be incorporated with an explicit

density dependent term and added to the Fock operator as described in the work of

York and co-workers. [84,149] Alternatively, the damped dispersion term that is an in-

trinsic part of the PMOw model can be used with the addition of a repulsive potential.

Here, in the spirit of simplicity for a force field, we adopt a Lennard-Jones potential to

approximate the remaining energy contributions [32,33,47] not included in the PMOw
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electronic structure method. [52] (Thus there are two R−6 terms, one in PMOw for

intrafragment interactions and one in the Lennard-Jones term associated with inter-

fragment interactions.) The Lennard-Jones term introduces two empirical parameters

per atom type:

EXD
ab =

Q∑
A

Q∑
B

4εAB

[(
σAB
RAB

)12

−
(
σAB
RAB

)6
]
, (3.10)

where εAB and σAB are obtained from the geometric mean of atomic parameters such

that εAB = (εAεB)1/2 and σAB = (σAσB)1/2. These parameters are also listed in Table

3.2.

3.2.3 The XP3P model for liquid water

The electrostatic potential (ESP) in Eq. 3.7 can be determined explicitly by evaluat-

ing the associated one-electron integrals. However, this would have not saved much

computational time in SCF calculations since integration of two-electron coordinates is

needed, and would have missed the point of developing a fragment-based technique

in electronic structure calculations. As we have proposed previously, [32, 33, 87] it is

desirable to employ a more computationally efficient method to approximate the ex-

ternal potential Vx(Ψb). In the present application to liquid water, we use a simple,

three-point-charge approximation to Vx(Ψb). Consequently, we call this X-Pol poten-

tial with three-point charges for water the XP3P model.

Several methods based on atomic partial charges for approximating the quantum

external potential were described originally for the X-Pol potential, [32,47] and some of

them were adopted later in other fragment-based molecular orbital models. [150] Al-

though the use of atomic charges obtained from fitting the quantum mechanical Vx(Ψb)

has been successfully used in several molecular mechanics force fields, [151, 152] it
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is known that the ESP-fitting method sometimes yields unreasonably large partial

charges on structurally buried atoms. [153] In addition, large variations could occur

as a result of structural fluctuations to expose buried atoms during a dynamics sim-

ulation. A general approach is the multi-center multipole expansion of the quantum

mechanical ESP, [154] and this method has been used in the effective fragment po-

tential model; [155] multi-center multipolar representations could also be used with

X-Pol. [86] A conceptually simple alternative is to use atomic charges derived from a

population analysis such as the Mulliken or Löwdin population method. [156] When

used with small, well balanced basis sets, the Mulliken or Löwdin charges can provide

a good representation of the relative atomic electronegativity and they are computa-

tionally efficient. Scaled Mulliken population charges have been used and shown to

be effective in statistical mechanical Monte Carlo simulations of liquid water using an

explicit QMFF. [47]

Another way of approximating the external potential for intermolecular interac-

tions is to employ partial atomic charges that are mapped from the density matrix

to reproduce experimental dipole moments (in contrast to ESP fitting). This has been

called a class IV charge model, and it can be parametrized to show good consistency for

a variety of electronic structure methods and basis sets. [157,158] Alternatively, partial

atomic charges can be derived to rigorously reproduce the molecular moments to any

order of accuracy from a Lagrangian multiplier procedure. Following the method pro-

posed by Thole and van Duijnen [97] and extended by Swart and van Duijnen, [159] we

applied the Lagrangian multiplier approach to semiempirical methods, [53] which are

known to yield excellent molecular dipole moments in comparison with experiments.

In this approach, both the total molecular dipole moment and the local atomic hy-

bridization contributions of the approximate NDDO wave function are reproduced ex-

actly. In the present implementation, we preserve the total and local molecular dipole
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moments. In addition, we included in the procedure the capability to reproduce exper-

imental molecular polarizability and its atomic decomposition according to the dipole

interaction model. [53] We called this method the dipole preserving and polarization

consistent (DPPC) charge model. [53]

Specifically, the DPPC charge has two contributions, the Mulliken population charge

qMP
A and the residual charges ∆qBA due to preservation of atomic s and p hybridization

dipole moments: [53]

qDPPC
A = qMP

A +

Q∑
B=1

∆qBA , (3.11)

where the residual charge ∆qBA on atom A due to the constraint that the residual mo-

ment is identical to the atomic hybridization contribution from atom B:

µ
hyb
B = −(Psp)B ·DB =

Q∑
A=1

∆qBARA, (3.12)

where (Psp)B is a diagonal matrix with the densities PBspx , PBspy , and PBspz , on atom B,

DB is the corresponding dipole integral, and RA denotes the coordinates of atom A.

The residual charges ∆qBA that reproduce the hybridization component of molecular

dipole moment, µhyb
B , are predominantly localized on atoms closest to atom B.

Since the molecular dipole moment is determined from

µQM =

Q∑
A=1

qMP
A RA +

Q∑
B=1

µ
hyb
B (3.13)

in semiempirical methods employing the NDDO approximation, [160] it is clear that

the atomic charges given in Eq. 3.11 reproduce exactly the full quantum mechanical
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dipole moment and the local, atomic hybridization contributions:

Q∑
A=1

qDPPC
A RA = µQM. (3.14)

The residual charges depend on geometry and atomic electronegativity, and an expres-

sion for them was given in Ref. [53]. The advantage of using the DPPC charges over the

ESP-fitted ones is that local properties of the dipole integrals are explicitly accounted

for and fully utilized to generate the partial atomic charges. The method to generate

DPPC charges is applicable both to neutral and ionic molecules, independent of the

origin of coordinates. [53]

3.3 Computational Details

The parameterization of the PMOw model was carried out by iterative optimization

using a genetic algorithm that has been detailed in Ref. [52]. The PMOv1 set of pa-

rameters overestimated the dipole moment of water (2.19 D) and underestimated the

interaction energy for the water dimer (4.7 kcal/mol) in comparison with the target val-

ues of 1.85 D from experiment [147] and 5.0 kcal/mol from CCSD(T) and MP2/(CBS)

calculations. [3] The PMOw parametrization improves these quantities for application

to water and its ions.

Statistical mechanical Monte Carlo simulations were performed on a system con-

sisting of 267 water molecules in a cubic box, employing the PMOw Hamiltonian.

Based on procedures described previously, [47, 48] periodic boundary conditions were

used along with the isothermal-isobaric ensemble (NPT) at 1 atm and temperature

ranging from -40 to 100◦C. As in the development of other empirical potentials in-

cluding the successful SPC, [106] TIP3P, and TIP4P models [107] and the polarizable

AMEOBA, [2] SWM4-NDP [117] and POL5/TZ [161] potentials for water (and many
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other water models not explicitly compared in this paper), the parameterization was

performed only at 25◦C. The XP3P model based on the PMOw Hamiltonian has four

Lennard-Jones parameters, εO, εH, σO, and σH. We have kept the εH and σH values used

in a previous X-Pol simulation of liquid water with the AM1 Hamiltonian (called the

MODEL potential for water), and we made small adjustments of the other two values

(3.24 Å and 0.16 kcal/mol) [47] to reproduce the liquid density and heat of vaporization

within 1% of the experimental values at 25◦C. In the parameterization stage, spherical

cutoff with a switching function between 8.5 Å and 9.0 Å based on oxygen-oxygen

separations was employed, and a long-range correction to the Lennard-Jones poten-

tial was included. (The SPC and TIP3P/TIP4P models [106, 107] and later the TIP5P

model [6] were also developed using cutoff distances, which were as small as 7.5 Å

with a box of 125 or 216 water molecules.) Although it is possible to use Ewald sums

to treat long-range electrostatic interactions, [162] we have not used the particle-mesh

Ewald implementation in the present Monte Carlo calculation.

In Monte Carlo simulations, new configurations were generated by randomly trans-

lating and rotating a randomly selected water molecule within ranges of ±0.13 Å and

±13◦. In addition, the volume of the system was changed randomly within the limit of

±150 Å3 on every 550th attempted move, and the coordinates of oxygen atoms were

scaled accordingly. (Note that in the Monte Carlo calculations, the waters are rigid,

so the hydrogen positions also adjust when the oxygen positions are adjusted.) These

options were slightly adjusted to maintain an acceptance rate of about 45% at each

temperature in the Metropolis sampling. In each simulation, at least 5× 106 configura-

tions were discarded for equilibration, which was followed by an additional 1× 107 to

1.1 × 108 configurations for averaging. About 6 × 106 configurations can be executed

per day on a 6-core Intel Xeon X7542 Westmere processor at 2.66 GHz.

The XP3P model was further examined in molecular dynamics simulations for 500
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ps in the NVT ensemble, using the Lowe-Andersen thermostat [163, 164] and a vol-

ume fixed at the average value from the Monte Carlo simulation; the number of water

molecules in the dynamics simulations was also 267. The monomer geometries were

enforced by the SHAKE/RATTLE procedure. [165] Although long-range electrostatic

interactions can be computed using the particle-mesh Ewald summation that has been

extended for the X-Pol potential, [162, 166] we have used a 9.0Å cutoff in the present

study. The velocity Verlet integration algorithm was used with a 1fs time step. The total

energy of the system was obtained from fully converged wave functions for each water

molecule for each microscopic configuration, although different procedures were uti-

lized in the Monte Carlo sampling and in molecular dynamics simulations. In Monte

Carlo, an initial set of DPPC charges, derived from an initial guess of the X-Pol wave

function, e.g., that from the previous configuration (with random perturbation to some

randomly selected elements in the density matrix), are incorporated into the Fock ma-

trix in terms of one-electron integrals (as in combined QM/MM schemes) in the sub-

sequent iteration step during the self-consistent field (SCF) optimization. Then, a new

set of orbital coefficients is obtained to generate updated DPPC charges for the next

iteration until the electronic energy is converged to 5× 10−5 eV for each monomer and

to 10−5 for the partial atomic charges (in atomic units) between consecutive iterations.

In Monte Carlo simulations, the Fock operator is constructed analogously to a com-

bined QM/MM scheme, [167] which is not fully variational with respect to the change

of the charge density; the external potential does incorporate the complete electro-

static effects in a self-consistent manner. [32, 47] The procedure is efficient in Monte

Carlo simulations since the electronic integrals are not required from all other molec-

ular fragments, and it does not pose problems because gradients are not needed. This

is the method proposed in the original development of the method for Monte Carlo

calculations, [32,47] and it was used a few years later in the fragment molecular orbital
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model of Kitaura and co-workers. [168] For molecular dynamics simulations, a fully

variational Fock operator for each monomer was used in which the external potential

consists of contributions both from the DPPC charges and the explicit electron densities

of all other fragments. [35, 87] Here, analytic gradients can be directly obtained from

the optimized X-Pol wave function. In molecular dynamics simulations, the criteria

for energy and density conversion were set as 10−9 eV for energy and 10−6 for density

matrix elements. The average energy difference from the two approaches in Monte

Carlo and molecular dynamics is less than 1.5% in the computed heat of vaporization.

The Monte Carlo simulations were performed using the MCSOL program for X-

Pol simulations, [169] while molecular dynamics simulations were carried out using a

newly developed X-Pol program [170] written in C++ which has been interfaced both

with CHARMM [50] and NAMD. [51] All ab initio electronic structure calculations were

performed using GAUSSIAN 09. [171] All calculations were run on a constellation of

clusters at the Minnesota Supercomputing Institute.

3.4 Results and Discussion

3.4.1 Gas-phase properties

Properties for the optimized water monomer and dimer using the PMOw and XP3P

models are listed in Table 3.3 along with experimental data and the results from two

empirical polarizable potentials that have been examined by Ren and Ponder. [2] The

PMOw parameters were optimized against experimental or high-level ab initio data for

a series of small molecules containing hydrogen and oxygen atoms (supporting infor-

mation), including the properties listed in Table 3.3. In particular, the computed at-

omization energy (233.0 kcal/mol) and dipole moment (1.88 D) for water from PMOw
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agree with the corresponding experimental data that have been summarized in Ref.

[52] (232.6 kcal/mol and 1.85 D, respectively). The Mulliken population charges from

the PMOw wave function and the DPPC charges used in the XP3P potential are also

listed in Table 3.3; the latter yields exactly the same molecular dipole moment as

that from the QM calculation. An important quantity critical to describing hydrogen-

bonding interactions is the molecular polarizability, which also shows good agreement

with experiment (a deviation of 14%). This represents a major improvement over all

previous NDDO-based models, which typically have errors more than 60% for water.

Nevertheless, a question arises on whether or not the somewhat smaller polarizability

would affect liquid properties. To address this issue, it is interesting to consider polar-

izable potential functions for water, in which the experimental gas-phase electrostatic

properties are not always enforced. This is illustrated by the use of smaller molecular

polarizabilities in these empirical force fields, and this was justified as to reflect the

relatively larger electric field than the mean field of the bulk due to the highly inho-

mogeneous environment in the first solvation shell; [172] for example, polarizabilities

are set to 1.41, 1.29, and 0.98 Å3 in the AMOEBA, [2] POL5/TZ [2], [161] and SWM4-

NDP [117] models, respectively, all of which yield similar heats of vaporization and

similar densities of liquid water at ambient conditions.

The optimized bond length and bond angle for water are 0.9552 Å and 104.61◦

using PMOw; these values are in excellent agreement with the experimental values of

0.9572 Å and 104.54◦ [173] Thus, either the optimized or the experimental monomer

geometry can be used in the XP3P potential for liquid simulations discussed below.

The change of the molecular dipole moment with geometry variation for the water

monomer has an intriguing nonlinear dependence, which is not correctly reproduced

in nearly all polarizable and non-polarizable potentials for water, except the TTM2-F

model [174] that was specifically fitted with a function to reproduce an accurate ab initio
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Figure 3.1: Illustration of the angle between the molecular dipole moment derivative
and the O–H bond vector in water monomer. Experimental values are given first,
followed by the PMOw results in parentheses.

dipole moment surface. [175] This is illustrated in Figure 3.1, which shows that the

dipole derivative with respect to an O–H stretch, ∂µ/∂ROH, lies significantly outside

of the two O–H bonds of water. An angle of ∆θ = 22.8◦ was obtained based on the

vibrational absorption intensities. [174, 176, 177] For comparison, the present PMOw

model yields a value of ∆θ = 17.1◦, in reasonable agreement with experiment. This

is encouraging since this information was not included in the PMOw parametrization

process; it is purely a result of the qualitatively correct treatment of chemical bonding

interactions in the present quantum mechanical model.

The potential energy profile for the water dimer along the O–O separation is illus-

trated in Figure 3.2, and the computed binding energies from PMOw and the XP3P

potential are -5.1 and -5.2 kcal/mol, respectively, slightly greater than the best esti-

mate of -5.0 kcal/mol from ab initio calculations using MP2/(CBS)+ CCSD(T) with

the 6-311++G(d,p) basis set, [3] but somewhat smaller than an estimated value (-5.4

kcal/mol) based on measured molecular vibrations. [178] For comparison, both the

POL5/TZ [161] model and the AMOEBA model yield a binding energy of -5.0 kcal/mol.

[2] The equilibrium structures optimized using the full PMOw Hamiltonian and the

fragmental XP3P potential are listed in Table 3.3. [5, 143–146] The O–O distances from

the PMOw and XP3P models agree well with those from POL5/TZ and AMOEBA,
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Figure 3.2: Potential energy profiles for a water dimer at the hydrogen bonding con-
figuration from the PMOw (black) and the XP3P (blue) models for water along with
CCSD(T) results (red). Definition of the geometrical parameters listed in Table 3.3 are
given in the structure shown as inset in the upper right-hand corner. The CCSD(T)
results are obtained with the aug-cc-pVDZ basis set on fully optimized geometries at
various fixed O–O distances. Studies have shown that extrapolation to the complete
basis set limit from the current size does not affect the computed energies by more than
0.2 kcal/mol. [5] All other geometric parameters are optimized.

which yield 2.89 Å and with the ab initio value of 2.91 Å. [3] Ren and Ponder found

that the flap angle φ (the flap angle is defined as the angle between the C2 axis of the

hydrogen bond acceptor monomer and the O–O distance vector, depicted in the inset

of Figure 3.2) is dependent on the monomer quadrupole moment, and that it was nec-

essary to use explicit quadrupole terms in the AMOEBA model to yield a flap angle in

agreement with the ab initio results. The results on the flap angle in the water dimer

from the PMOw and XP3P models are also good, and the small tilt angle, α, from the

hydrogen bond donor is also predicted. However, the large flap angle is not preserved

in the XP3P model. The structures and energies on other stationary points of water

dimer are given in the supporting information.
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Small water clusters (Figures 3.3 and 3.4), including the cyclic configurations of the

trimer, tetramer, and pentamer, four configurations of the hexamer, and the cubic D2h

arrangement of the octamer have been examined (Table 3.4). All clusters were fully

optimized with PMOw using the conjugated gradient method with NAMD. [51,170] A

configuration was considered optimized when its gradient norm fell below 0.5 kcal

mol−1 Å−1. The best theoretical estimates for these systems are from the work of

Bryantsev et al., who performed single-point MP2/(CBS) along with a CCSD(T) correc-

tion (simply called CCSD(T) results in this discussion) at the B3LYP/6-311++G(2d,2p)

optimized structures. [3] As in the work of Ren and Ponder, [2] we list in Table 3.4 the

total binding energies, the average O–O distances (ROO), average O. . .H–O hydrogen

bond angles (〈φ〉), and the total (µ) and average monomer (〈µmol〉) dipole moments.

Of all water clusters, the average monomer dipole moments from the POL5/TZ and

AMOEBA models [2] fall between the values computed using the PMOw and the XP3P

method, and the trends are in accord with that estimated by Gregory et al. [4] using a

portioning scheme for the electron density. Overall, the computed binding energies

from PMOw and XP3P methods are in good agreement with the CCSD(T) results, with

root-mean-square (RMS) deviations of 1.2 and 2.4 kcal/mol, respectively. The perfor-

mance of the AMOEBA force field is excellent, whereas the POL5/TZ model slightly

underestimates the binding energies. [2,161] For the hexamers, the ordering of relative

stability is cage > book > prism > cyclic from CCSD(T), and cage = prism > book >

cyclic from PMOw. For comparison, the ordering from the MP2/CBS+CCSD(T) calcu-

lations with 6-311++G(d,p) basis [3] and AMOEBA optimizations is prism > cage >

book > cyclic. [2] In any event, the three non-cyclic structures of the water hexamer

are energetically similar in binding, whereas the cyclic configuration is noticeably less

stable than the other three.

We have also examined several configurations of micro-solvated proton H+(H2O)n,
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Figure 3.3: Optimized water clusters with PMOw
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Figure 3.4: Optimized water clusters with XP3P
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PMOw XP3P POL5/TZa AMOEBAa Ab initiob,c Expt.
Trimer cyclic ∆Eb -14.8 -15.7 -13.4 -15.3 -15.8

〈ROO〉 2.87 2.77 2.90 2.81 2.81 2.845
〈φ〉 105.1 125.6 151.5 110.4 152
〈µmol〉 2.14 2.46 2.22 2.29 2.3
µ 1.19 0.01 1.21 1.09 1.07

Tetramer cyclic ∆Eb -27.5 -28.9 25.5 27.7 -27.4
〈ROO〉 2.74 2.68 2.769 2.76 2.75 2.79
〈φ〉 116.5 145.9 168.0 121.6
〈µmol〉 2.22 2.71 2.47 2.55 2.6
µ 0.0 0.0 0.0 0.0 0.0

Pentamer cyclic ∆Eb -35.7 -39.7 34.1 36.5 -35.9
〈ROO〉 2.73 2.66 2.74 2.76 2.73 2.76
〈φ〉 126 159 176 132
〈µmol〉 2.26 2.82 2.57 2.64 2.7
µ 1.17 0.02 1.19 0.92 0.93

Hexamer cyclic ∆Eb -43.3 -49.0 41.8 44.8 -44.3
〈ROO〉 2.72 2.65 2.74 2.75 2.72 2.76
〈φ〉 130 167 179 139
〈µmol〉 2.28 2.86 2.62 2.70 2.7
µ 0.0 0.0 0.02 0.0

Hexamer prism ∆Eb -47.8 -44.4 41.9 45.9 -45.3
〈ROO〉 2.84 2.76 2.79 2.80 2.86
〈φ〉 121.0 128.7 123.1
〈µmol〉 2.24 2.72 2.52 2.60
µ 2.40 3.29 2.91 2.57 2.70

Hexamer cage ∆Eb -47.8 -45.2 41.8 45.9 -46.0
〈ROO〉 2.80 2.76 2.78 2.80 2.83 2.82
〈φ〉 118 126 121
〈µmol〉 2.22 2.72 2.49 2.58 2.6
µ 2.05 2.01 2.44 2.16 1.90 1.82–2.07c

Hexamer book ∆Eb -46.2 -48.3 42.5 45.8 -45.8
〈ROO〉 2.75 2.70 2.79 2.78 2.78
〈φ〉 121 144 127
〈µmol〉 2.24 2.79 2.55 2.63
µ 2.40 2.22 2.45 2.29

Octamer ∆Eb -77.7 -69.5 -72.64d

〈ROO〉 2.74 2.72 2.81
〈φ〉 163 164 163
〈µmol〉 2.20 2.86
µ 0.0 0.0 0.0

Table 3.4: Computed and experimental properties for water clusters. The angle 〈φ〉
is the average O. . .H–O angle of the hydrogen bonds in a given cluster. (a) Ref. [2].
(b) [3]. (c) [4]. (d) MP2/(CBS) limit [5].
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where n = 2, 3, 4, and 6 (Figure 3.5). Depicted in Figure 3.6 are the potential energy

profile for a proton migration between two water molecules at fixed O–O distances of

the global minimum Rmin(OO), Rmin(OO) + 0.2 Å, andRmin(OO) + 0.4 Å from PMOw,

MP2/aug-cc-pVDZ, B3LYP/aug-cc-pVTZ, and M06-2X/aug-cc-pVTZ optimizations.

The equilibrium structure has an Rmin(OO) separation of 2.46, 2.40, 2.41, and 2.39 Å,

respectively, from these theoretical models. With a basis set comparable to aug-cc-

pVDZ, the MP2 results on these proton clusters are very close to CCSD(T)-F12 results

with jun-cc-pVTZ basis. [179] The PMOw O–O distance is about 0.05 Å longer than the

MP2 result, while DFT values are in close agreement with MP2. In all cases, the proton

is essentially symmetrically located between the two water molecules (Figure 3.6a).

A small barrier appears when the O–O distance is stretched by 0.2 Å. The PMOw

model yields a barrier of 1.9 kcal/mol, compared to 1.9, 1.4, and 1.3 kcal/mol from

MP2, B3LYP, and M06-2X. Further stretching the O–O distance to Rmin(OO) + 0.4 Å

increases the barrier heights to 7.9, 7.5, 6.7, and 6.9 kcal/mol, respectively. There are

numerous studies of proton-water clusters and proton transfer barriers with a variety

of computational methods; [179–182] a thorough comparison with earlier studies is

beyond the scope of the present work.

The binding energies between additional water molecules and H5O+
2 are listed in

Table 3.5, along with the MP2/aug-cc-pVDZ results. Overall, the agreement is good,

with a mean-signed deviation of 1.6 kcal/mol. Note that unconstrained optimization

of the structure H+(H2O)6 (IV) using PMOw collapses to isomer (III). Thus, the value

in Table 3.5 was obtained by fixing the relative torsion angles of the hydrogen atoms of

the central H5O+
2 unit to the MP2 values. Overall, the results from the PMOw model

are in good accord with MP2 calculations and other theoretical models.
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Figure 3.5: Optimized geometries of H+(H2O)n clusters from PMOw.
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Figure 3.6: Potential energy profile for H5O+
2 in the gas phase as a function of the

proton transfer coordinate , defined as the distance from the mid-point between the
two oxygen atoms, (a) at the minimum geometry , (b) at a fixed O–O separation of Å,
and (c) at a fixed O–O distance of Å from PMOw (black), and CCSD(T)/aug-cc-pVDZ
(red) calculations. Geometries were optimized with fixed O–O distances.
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Complex PMOw MP2
H5O+

2 . . .H2O -21.4 -23.8
H5O+

2 . . .(H2O)2 -39.8 -43.8
H5O+

2 . . .(H2O)4 (Isomer I) -68.9 -71.8
H5O+

2 . . .(H2O)4 (Isomer II) -67.3 -71.8
H5O+

2 . . .(H2O)4 (Isomer III) -66.6 -71.0
H5O+

2 . . .(H2O)4 (Isomer IV) -60.5 -69.7

Table 3.5: Computed interaction energies in kcal/mol for H+(H2O)n complexes
from the PMOw and MP2 methods. Interaction energies are calculated by ∆E =
E(cluster)−

[
E(H5O+

2 ) + nE(H2O)
]
, where n is the number of water molecules.

3.4.2 Liquid properties

Properties at 25◦C

The computed and experimental thermodynamic and dynamic properties of liquid wa-

ter at 25◦C and 1 atm are listed in Table 3.6, along with the results from TIP3P, [6,7,107]

AMOEBA, [2] and SWM4-NDP. [117] The standard errors (±1σ) were obtained from

fluctuations of separate averages over blocks of 2−4×105 configurations. A correction,

by integrating the Lennard-Jones potential beyond the cutoff distance, for the Lennard-

Jones potential neglected by the cutoff has been included, and this contributes to the

total computed heat of vaporization by about 1%. Long-range electrostatic interactions

were not corrected in the Monte Carlo simulations. Previous studies using empirical

force fields indicate that there is little size dependency of the computed properties for

liquid water, and these effects will be investigated in a future study. (The TIP3P and

TIP4P potential functions were developed with 125 water molecules with a cutoff of

7.5 Å without long-range corrections. [6, 7, 107, 183])

The average density of XP3P is 0.996 ± 0.001 g/cm3 at 25◦C, which is within 1%

of the experimental value and is similar to results obtained with other polarizable and
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XP3P TIP3Pa AMOEBAb SWM4-NDPc Expt.d

E(l) (kcal/mol) -9.83 ± 0.01e -9.82 -9.89 -9.92 -9.98
∆Hv (kcal/mol) 10.42 ± 0.01e 10.41 10.48 10.51 10.51
d (g/cm3) 0.996 ± 0.001 1.002 1.000 1.000 0.997
Cp (cal mol−1 K−1) 21.8 ± 1.0 20.0 20.9 18.0
106κ (atm−1) 25 ± 2 60 46
105α (K−1) 37 ± 3 75 26
µgas (D) 1.88 2.31 1.77 1.85 1.85
µliq (D) 2.524 ± 0.002 2.31 2.78 2.33 2.3–2.6
105D (cm2/s) 2.7 5.1 2.02 2.3 2.3
ε 97 ± 8 92 82 79 ± 3 78
τD (ps) 8.8 11 ± 2 8.3
τNMR (ps) 2.6 1.87 ± 0.03 2.1

Table 3.6: Liquid properties of the XP3P model for water along with those from exper-
iments, and the TIP3P, AMOEBA, and SWM4-NDP models. (a) Refs. [6, 7]. (b) Ref. [2].
(c) Ref. [8]. (d) See text for details. (e) The average Ei(l) from molecular dynamics sim-
ulations employing the variational Fock operator is -9.99 kcal/mol over 400 ps. This
gives a heat of vaporization of 10.52 kcal/mol.

non-polarizable force fields (Table 3.6). [2, 6, 7, 117] The total energy per monomer of

liquid water, Ei(l), is related to the heat of vaporization by

∆Hv = −Ei(l) + P (Vgas − Vliq) + ∆Q− (Ho −H), (3.15)

where Vgas and Vliq are the molar volumes of water in the gas phase (ideal) and in the

liquid, P is the pressure, ∆Q is the quantum corrections to inter and intramolecular

degrees of freedom between the gas and liquid, and the last term, (Ho − H), is the

enthalpy departure function. [184] Although ∆Q and (Ho − H) has been tabulated

and can be explicitly included [47, 107, 183] and this amount to a total correction of

-0.06 kcal/mol at 25◦C, they have typically been neglected. [2, 6, 117] In this case, ∆Hv

is simply approximated by −Ei(l) + RT , which is also adopted in the present study

(Table 3.6). The calculated heat of vaporization from the XP3P model is 10.42 ± 0.01
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kcal/mol using the non-variational approximation in Monte Carlo simulations, [32,47]

and the value is increased to 10.58 kcal/mol using the variational Fock operator in

molecular dynamics. [35, 87, 170] The variational X-Pol approach used in molecular

dynamics simulations lowers the interaction energy of the liquid by about 1.5% relative

to the non-variational approach used in Monte Carlo. Overall, the agreement with

experiment [185,186] is good, although there is greater deviation in the non-variational

approach. The quality of the XP3P quantum mechanical potential for these two critical

thermodynamic properties is comparable to that of the widely used SPC, TIP3P and

TIP4P models for water [106, 107] and to that of the recent polarizable models. [2, 117,

161, 187]

The distribution of the magnitudes of monomer dipole moments from polarized

wave functions in the liquid is shown in Figure 3.7; these dipole moments span a range

from 2.1 to 2.9 D, and they yield an average 〈µliq〉 of 2.524 ± 0.002 D. The width at half

maximum in the dipole distribution is 0.30 D (a half-width of 0.8 D was reported for

the AMOEBA model, [2] which seems to be unrealistically large). Clearly, there is a

major enhancement of the molecular dipole moment in the liquid, amounting to an in-

crease over 35% relative to the gas phase value. For comparison, the AMOEBA model

produced a much greater average, 2.78 D, or 50% greater than its gas phase value. The

SWM4-NDP model yielded an average of 2.46 D, [117] similar to the present XP3P

quantum mechanical model. Our previous investigation, employing the AM1 Hamil-

tonian to represent water monomers in X-Pol, resulted in an average dipole moment of

2.29 D; [47] however, the smaller value in that study is partly due to the much smaller

molecular polarizability from AM1, and the weak polarization effect was corrected by

scaling Mulliken population charges. There is no experimental value for the dipole

moment of liquid water (and in fact this quantity is not well defined), but values rang-

ing from 2.3 to 2.6 D have been cited based on an estimate for ice Ih. [188, 189] Finally,
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Figure 3.7: Distribution of the scalar molecular dipole moment in liquid water from
Monte Carlo simulations with the XP3P potential at 25◦C and 1 atm. The units for the
ordinate are mole percent per Debye.

we note that ab initio molecular dynamics simulations yielded dipole moments ranging

from 2.3 D to 3.8 D, depending on the method and functional used in DFT. [190] ab ini-

tio molecular dynamics simulations seem to produce greater average dipole moments

than polarizable force fields and the present XP3P model.

The dielectric constant of the liquid is related to the fluctuations of the total dipole

moment of the simulation box and it is dependent on the boundary conditions used to

treat long-range electrostatics. [191,192] We employed the reaction field approximation

in the NVT ensemble at 25◦C and experimental density, where intermolecular interac-

tions are truncated atRcut = 9.0 Å. Under these conditions, a reaction field contribution

is added to the electrostatic potential in Eq. 3.7: [191, 193]

V RF
x = Vx(ρb)

[
1 +

2(εRF − 1)

2εRF + 1

(∣∣rx −Rb
B

∣∣
Rcut

)]
(3.16)

where εRF is the dielectric constant of the continuum. The static dielectric constant ε is
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determined from Eq. 3.17. [193–195]

(ε− 1)(2εRF + 1)

2εRF + ε
=

4π

3kBT

〈M2〉
〈V 〉

(3.17)

where M is the total dipole moment of the simulation box and 〈V 〉 is the average vol-

ume per monomer. Ideally the reaction field dielectric εRF should be the same as that

of the liquid in the cutoff sphere, although previous studies suggest that a choice of

εRF in the range of ε ≤ εRF <∞ typically yields consistent results, [196] and a value of

160 has been used in the present study. The liquid dipole fluctuation converges slowly,

and we have carried out 16 separate simulations, each lasting about 15 × 106 configu-

rations at 25◦C. An average value of 97 ± 8 was obtained by removing the two highest

and two lowest values from the 16 samples; the present average is greater than the ex-

perimental value of 78. Interestingly, Sprik argued that an average dipole moment of

2.5–2.6 D in liquid water would lead to the correct dielectric constant at room temper-

ature, [197] and a similar observation was used in the parameter optimization process

by Lamoureux et al. [172] In view of the average dipole moment from the XP3P liquid,

which falls in the middle of this range, it is likely that a better agreement with exper-

iment could be obtained if the simulations were further converged by extending the

simulation to 100 × 106 configurations or more in each simulation. It is interesting to

note that Ren and Ponder obtained a static dielectric constant of 82, in spite of a signif-

icantly larger dipole moment of 2.78 D of the liquid from the AMEOBA potential. [2]

In that work, the authors argued that the correct average H–O–H angle was respon-

sible for the good agreement between experimental and calculated liquid dielectric

constant. [2, 198, 199]

Displayed in Figure 3.8 are the distributions of the binding energies per monomer

in liquid water at a temperature range of -40◦C to 100◦C. The binding energies in Figure

88



Figure 3.8: Distribution of the binding energies of water in the liquid at temperatures
ranging from -40◦C to 100◦C. The binding energy corresponds to the total interaction
energy of one water with the rest of the bulk solvent.

3.8 correspond to the interaction energy of one monomer with the rest of the system. In

a polarizable model, the total energy of the liquid also includes the energy cost needed

to polarize the electronic wave function (also called self-energy, see below). Thus, in

contrast to the use of a pairwise potential, the average energy, Ei(l), per monomer in

Table 3.6 is not exactly equal to half of the binding energy at 25◦C from Figure 3.8. but

it is smaller by the amount of the self-energy. This is a reflection of the non-additive

nature of a polarizable force field. [200] Note that such a self-energy term has been

used to develop the SPC/E model. [201]

We have estimated several thermodynamic properties involving molecular fluctu-

ations. The intermolecular contribution to the isobaric heat capacity CP of water is

defined below and can also be computed from the enthalpy fluctuations by

CP =

(
∂〈Hi(l)〉
∂T

)
P

+ 3R =
〈Hi(l)

2〉 − 〈Hi(l)〉2

RT 2
+ 3R (3.18)
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where Hi(l) = Ei(l) + PVliq is the average enthalpy of the system per monomer.

The total heat capacity of the liquid CP for a rigid monomer model is determined

by adding the classical kinetic energy contributions from translation and rotation of a

water molecule (3R). [6] The average from the fluctuation formula in Eq. 3.18 is 22 ±

1 cal mol-1 K-1, which is greater than the experimental value at 25◦C. [202, 203] Path

integral simulations by Vega et al. showed that inclusion of nuclear quantum effects

lowers the computed heat capacity by up to 6 cal/mol. [204] Quantities based on the

fluctuation formula, including CP (isobaric heat capacity), α (coefficient of thermal ex-

pansion), and κ (isothermal compressibility) are difficult to converge; they can also be

estimated from the numerical derivatives of their definitions. The derivative estimate

from liquid enthalpies vs. T yields a CP of 19 cal mol-1 K-1 at 25◦C. The coefficient

of thermal expansion (α) and the isothermal compressibility (κ) are determined from

fluctuations of volume and enthalpy, with a computed value of 37×10−5K−1 for α and

25 × 10−6 atm−1 for κ, respectively. These quantities show relatively large deviations

from experiment (α = 25.6 × 10−5K−1 and κ = 45.8 × 10−6 atm−1) [202] due to their

convergence.

The self-diffusion coefficient of liquid water was determined using the Einstein

formula [195] from molecular dynamics simulations with constant volume and tem-

perature:

D = lim
t→∞

1

6t
〈|r(t)− r(0)|2〉, (3.19)

where r(t) is the position of the oxygen atom of water at time t. The diffusion coef-

ficient was obtained as the slope from a linear fit of 〈|r(t) − r(0)|2〉/6 as a function of

t, and we obtained a value of 2.7 × 105 cm2 s−1, which agrees with experiment. [205]

It is known that non-polarizable potentials for water, such as SPC, TIP3P, and TIP4P,
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tend to overestimate the self-diffusion coefficient, while most polarizable force fields,

including the present XP3P model, show significant improvement. [2,117,161,187] The

computed diffusion coefficient is also affected by finite size of the simulation box, and

extrapolation to infinity will further increase the value of the diffusion coefficient. [206]

The rotational correlation times, τα2 , of water with respect to the H–H and O–H

axes are obtained from least-square fits of the orientational time-correlation function

to a single exponential function, Cα2 (t) = Ae−t/τ
α
2 , where α specifies the rotation axis.

The orientation time-correlation function is defined as follows: [195]

Cα2 (t) = 〈P2 [uαi (t)uαi (0)]〉, (3.20)

where P2 is the second-order Legendre polynomial, and uαi (t) is the unit vector along

the α rotation axis of molecule i at time t. The time-integral of Eq. 3.20, AτHH
2 , cor-

responds to the NMR rotational relaxation time of H2O, τNMR; [207] the present XP3P

model yields a value of 2.6 ps, which may be compared with the experimental value

(2.1 ps). [208] For comparison, the SWM4-NDP model predicts a τNMR value of 1.9

ps. [117] Similarly, the Debye dielectric relaxation time was determined from an expo-

nential fit to the normalized autocorrelation function of the total dipole moment M of

the system: [195]

CD(t) =
〈M(t)M(0)〉
〈M2(0)〉

. (3.21)

The Debye relaxation time characterizes the relaxation time of the hydrogen bonding

network in the liquid. The XP3P model shows that the Debye relaxation time is about

6% faster than the observed values (8.3 ps). [209] In comparison with other models, the

present XP3P model performs well for these dynamic properties. [2, 117, 187]

The structure of liquid water is characterized by radial distribution functions (RDFs),
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gxy(r), which gives the probability of finding an atom of type y at a distance r from an

atom of type x relative to the bulk. The RDFs computed at 25◦C from Monte Carlo

simulations are shown in Figure 3.9 along with the neutron diffraction data. Overall,

the agreement with experimental results is excellent. For the XP3P potential, the lo-

cation of the maximum of the first peak of the O–O RDF is 2.78 ± 0.05 Å with a peak

height of 3.0 (Figure 3.9a). For comparison, the corresponding experimental values are

2.73 Å and 2.8 from neutron diffraction. [210, 211] Integration of the O–O RDF to the

first minimum at 3.30 Å yields an estimated coordination number of 4.5, which is in

good agreement with the neutron diffraction result of 4.51 (integrated to 3.36 Å), but

somewhat smaller than the X-ray diffraction result (4.7). The oxygen-hydrogen and

hydrogen-hydrogen radial distribution functions are also in accord with experiments.

Temperature-dependent liquid properties

The computed liquid properties for ∆Hv, CP , ρ, α, and κ, at different temperatures

ranging from -40 to 100◦C are listed in Table 3.7, and some of these are compared with

experimental data in Figures 3.10,3.11,3.12. The formulas involving fluctuations of en-

thalpy and volume for CP , α, and κ are known to have slow convergence even when

Monte Carlo simulations were extended to over hundreds of millions of configura-

tions. In the present simulations, CP and α can also be determined directly from the

enthalpy and volume derivatives with respect to temperature. For the isothermal com-

pressibility, the fluctuation formula was used since the pressure was not changed in

the present study.

The heats vaporization from -40 to 100◦C were obtained from the average energies

plus RT for the PV term of an ideal gas; here, we have ignored the small corrections

for the quantum vibrational energy difference and enthalpy departure function. For

comparison, we have included the computed heats of vaporization in Figure 3.10 from
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Figure 3.9: Computed (black) and experimental (red, dashed) oxygen-oxygen (a),
oxygen-hydrogen (b), and hydrogen-hydrogen (c) radial distribution functions of liq-
uid water at 25◦C and 1 atm.
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∆Hvap Cp ρ 105 α 106 κ

-40 ◦C 11.36 ± 0.01 20.8 ± 0.7 (14) 1.008 ± 0.001 1.9 ± 3.5 (-77) 31.7 ± 2.2
-30 ◦C 11.30 ± 0.01 17.4 ± 0.4 (18) 1.016 ± 0.001 29.8 ± 2.0 (-117) 16.5 ± 0.6
-20 ◦C 11.16 ± 0.01 19.3 ± 0.5 (22) 1.032 ± 0.001 56.6 ± 3.6 (-39) 22.4 ± 1.2
-10 ◦C 11.02 ± 0.01 22.2 ± 0.8 (24) 1.024 ± 0.001 30.2 ± 2.2 (50) 23.9 ± 1.3

0 ◦C 10.83 ± 0.01 21.7 ± 0.7 (27) 1.022 ± 0.001 43.7 ± 2.6 (44) 39.3 ± 2.8
10 ◦C 10.64 ± 0.01 21.2 ± 1.0 (25) 1.015 ± 0.001 35.0 ± 4.0 (95) 28.2 ± 2.0
25 ◦C 10.42 ± 0.01 21.8 ± 1.0 (25) 0.996 ± 0.001 36.6 ± 3.0 (105) 25.0 ± 1.6
50 ◦C 9.96 ± 0.01 25.5 ± 1.4 (28) 0.975 ± 0.001 79.3 ± 6.2 (101) 33.8 ± 2.3
70 ◦C 9.54 ± 0.01 22.9 ± 1.1 (27) 0.953 ± 0.002 141.3 ± 13.8 (111) 78.3 ± 8.1

100 ◦C 9.03 ± 0.01 21.8 ± 0.9 (25) 0.923 ± 0.002 107.6 ± 8.0 (105) 76.2 ± 6.8

Table 3.7: Computed average thermodynamic properties of water at different tempera-
tures between -40 ◦C and 100 ◦C (values in parentheses for Cp and α are obtained from
the direct derivative calculations). The corresponding units are kcal/mol (∆Hvap),
cal/(mol K) (Cp), g/cm3 (ρ), K−1 (105α), and atm−1 (106κ).

Figure 3.10: Computed (black) and experimental (red) heats of vaporization for liquid
water. The results from the TIP5P model are illustrated in green.

94



Figure 3.11: Computed (black) and experimental (red) densities for liquid water, along
with those from the TIP3P (brown), the TIP4P (maroon), and the TIP5P (green) models.

Figure 3.12: Computed and experimental coefficients of thermal expansion (α) for liq-
uid water. The α values are determined from numerical derivatives of liquid volume
variations with temperature.
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Figure 3.13: Computed heat capacities from the fluctuation formula and direct numer-
ical derivatives from XP3P at temperatures ranging from -40 ◦C to 100 ◦C, compared
to those from experiment.

the TIP5P model. The XP3P model agrees with the results from TIP5P quantitatively

at temperature above 25◦C. Both XP3P and TIP5P overestimate ∆Hv at temperature

lower than 25◦C, but the TIP5P model yielded a greater deviation on supercooled wa-

ter. Figure 3.10 shows that the change in ∆Hv is nearly linear over the entire temper-

ature range considered. This agrees with the experimental results on heat capacity,

which is nearly constant at about 20 cal mol−1 K−1. [202] The changes of heat capacity

with temperature are given in Figure 3.13. The trends are in reasonable agreement with

experiment at temperatures above 0◦C, although the sharp increase of CP below 20◦C

is not reproduced by the present simulations.

The liquid density as a function of temperature is presented in Figure 3.11 along

with the experimental density of liquid water. The XP3P model, which is optimized

to reproduce the heat of vaporization and density at 25◦C, yields a maximum density
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at about -20◦C. Although the density maximum is significantly lower than the exper-

imental value at 4◦C, [202] it is in fact remarkable in that there is a density maximum

at all from the present model because other three-point-charge models do not possess

this property with a reasonable temperature (except the SPC/E with much enhanced

electrostatics). The computed density at temperature greater than 25◦C shows more

rapid decline with increasing temperatures than experimental results. [202] This trend

is similar to that found in the TIPxP series of models. [6] The densities for supercooled

water are overestimated by 2%–5% compared with the experimental data. [202] For

comparison, among the non-polarizable models that do possess a density maximum,

SPC/E [201] has a density maximum at -38◦C, [212] TIP4P at -15◦C, [7] and TIP5P

at about 0◦C; the TIP5P model was optimized to reproduce the temperature depen-

dence of liquid density of water. [6] The AMOEBA model has a density maximum at

17◦C. [199]

The temperature dependences of the computed density and ∆Hv from the non-

polarizable TIPxP series of models [6, 7] and the polarizable AMEOBA potential [199]

indicate that it is difficult, with fixed empirical parameters, to obtain good agreement

(within 1%) with experiment for the entire temperature range from the supercooled

liquid to the boiling point. This difficulty has been pointed out by Siepmann and co-

workers, who used a charge-dependent van der Waals radius for oxygen in a fluctuat-

ing charge model for water. [213] Giese and York [84] developed a density-dependent

van der Waals potential that can be directly incorporated into QM/MM style simu-

lations. We have further optimized σO at 100◦C to yield a better agreement with the

experimental liquid density ρ. We found that a small change in σO from 3.225 to 3.205

Å is sufficient to produce a liquid density (0.962 g/cm3) in good agreement with exper-

iment (0.958 g/cm3). This is shown by the blue cross point in Figure 3.11. Interestingly,

the computed ∆Hv (9.70 kcal/mol) was also found to be in excellent agreement with
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experiment (9.72 kcal/mol) [185] after this small adjustment (blue cross point in Fig-

ure 3.10). With this change, the average dipole moment is computed to be 2.470 ±

0.001 D, representing an increase of 0.042 D from 2.428 D computed with the original

Lennard-Jones parameters in Table 3.2.

In view of the small change in the σO value, we suggest a simple temperature-

dependent relationship for σO,

σO(T ) = 3.225− 2.667× 10−4(T − 298.15) (3.22)

in Å3 where T is the absolute temperature. Alternatively, Eq. 3.22 may be rewritten

in terms molecular dipole moment, which translates the expression to an aesthetically

appealing, density-dependent one. In any event, it is straightforward to use Eq. 3.22

in Monte Carlo simulations, while it can be conveniently incorporated into a thermo-

stat algorithm in molecular dynamics simulations. [164,214,215] However, a thorough

examination of the performance of temperature-dependent van der Waals parameters

is beyond the scope of the present work.

The computed coefficient of thermal expansion, α, follows the experimental trends

nicely in Figure 3.12, and the negative values for supercooled water are consistent with

the experimental values as a result of the existence of a density maximum vs. temper-

ature.

The average dipole moment from the XP3P model decreases monotonically with

increasing temperature (inset of Figure 3.14). The distributions of scalar dipole mo-

ment in the liquid at different temperatures are given in Figure 3.14. Consistent with

Figure 3.8, the maximum positions are shifted towards smaller values as temperature

increases, and this shift is accompanied by an increase in half width from about 0.26 D

to about 0.32 D. The broader distribution of molecular dipole moment in liquid water
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at higher temperature reflects greater variations in the local hydrogen bonding net-

works and reduced average binding energies (Figure 3.8) and heats of vaporization

(Figure 3.10). It is interesting to notice that the maximum dipole values in the distri-

butions are not shifted at different temperatures (Figure 3.14); it is the population of

the molecular dipole moment in the liquid that is broadened. This results in a shift of

the maximum position towards smaller average values as the temperature increases.

In a recent study, Raabe and Sadus suggested that the introduction of bond and angle

flexibility in a water model is responsible for the decrease in the dipole moment with

increased temperature and for the good performance on computed dielectric constant

and pressure-temperature-density behavior using a flexible water model. [216] How-

ever, the water geometry was severely distorted from the gas-phase structure and the

average bond lengths and angles in the liquid states are both significantly larger than

commonly accepted values of liquid water. [216, 217] The results displayed in Figure

3.14 show that the change in electronic polarization at different thermodynamic state

points also makes critical contributions to the variation of the molecular dipole mo-

ment.

Computed radial distribution functions, which exhibit the expected trends as func-

tions of temperature, are given in the supporting information. The loss of the liq-

uid structure is observed with increasing temperature, and the height of the first peak

in gOO(r) declines with broadening of the peak as the first minimum disappears at

high temperature (Figure S7 of the supporting information). On the contrary, gOO(r) at

low temperatures exhibits more structured RDFs. Similar trends are observed in both

gOH(r) and gHH(r) as functions of temperature (Figures S8 and S9 of the supporting

information).
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Figure 3.14: Computed average molecular dipole moments for liquid water at different
temperatures.

Energy decomposition analysis of liquid water

The total binding energy, Ei(l), from the XP3P water can be decomposed into specific

contributing factors, [47,167,200] including vertical interaction energy and polarization

energy. This analysis is useful for understanding the energy terms that are implicitly

fitted in the development of polarizable or non-polarizable empirical potentials.

The vertical interaction energy represents the total energy of the liquid in which

the wave function of each water molecule is not polarized, corresponding to that in the

gas phase,

∆Evert =
1

2

N∑
a=1

N∑
b 6=a
〈Ψo

a|Ho
ab (ρob) |Ψo

a〉+ EXD (3.23)

where Ho
ab(ρ

o
b) is the interaction Hamiltonian between molecules a and b, in which

the electrostatic potential defined in Eqs. 3.6 & 3.7 is obtained using the density of
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molecule b in the gas phase, ρob , andEXD =
∑

a>bE
XD
ab is the total van der Waals (i.e., the

exchange-correlation term approximated by the Lennard-Jones potential in Eq. 3.10).

We emphasize that the term “vertical interaction energy” in energy decomposi-

tion analysis (EDA) is used to describe the interaction energy of the solvent molecules

with their gas-phase, non-polarized electronic wave function relative to that of non-

interacting molecules (Eq. 3.23). [167, 200, 218] This differs from the meaning of “verti-

cal” that is associated with processes such as ionization and electronic excitation, where

the geometries of the solute and the surrounding solvent are hypothetically kept in the

un-ionized or the ground-state equilibrium configuration. In both cases the electronic

wave function of the solute does change. In condensed-phase simulations, however,

the energy accompanying the change of the electronic wave function is called polariza-

tion energy. Therefore, the term vertical is used to specify the interaction energy from

an electronic state that is kept to remain in its gas-phase (electronic) configuration,

prior to polarization.

The wave functions of the solvent molecules are polarized in the liquid, and the en-

ergy change induced by the mutual interactions with the rest of the system corresponds

to the polarization interaction energy, which is defined by Eq. 3.24. [47, 167, 200]

∆Epol = (〈Φ|H|Φ〉 −NEoa)−∆Evert = Etot −∆Evert (3.24)

The polarization energy can be further separated into two physically significant terms,

corresponding to the so-called self-energy, ∆Eself, which is an energy cost (also called

energy penalty) needed to pay for distorting the molecular wave function, and a net

stabilizing contribution, ∆Estab, which is responsible for polarizing the electronic wave

function to lower the total energy of the system. These energy terms are given below,
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[47, 127, 167, 200]

∆Eself =
N∑
a=1

[〈Ψa|Ho
a |Ψa〉 − 〈Ψo

a|Ho
a |Ψo

a〉] =
N∑
a=1

∆Ea (3.25)

∆Estab =
1

2

N∑
a=1

N∑
b 6=a

[
〈Ψa|Ĥab(ρb)|Ψa〉 − 〈Ψo

a|Ĥo
ab(ρ

o
b)|Ψo

a〉
]

=
1

2

N∑
a=1

N∑
b6=a

∆∆Eab. (3.26)

Shown in Table 3.8 and Figure 3.15 are the XP3P energy components at different

temperatures. The vertical interaction energy contributes an almost constant percent-

age of the total binding energy, ranging from 60.8% at -40◦C to 65.0% at 100◦C. The in-

crease of the percentage with increasing temperature can be attributed to the increased

volume of the system and reduced polarization effects at higher temperatures. At all

temperatures used in the simulations, polarization effects are significant, contributing

35.0%–39.2% of the total binding energies. At 25◦C, the average polarization energy is

-3.66 kcal/mol (37.2% of Ei(l)). The van der Waals (or exchange-dispersion) term EXD

is dominated by the repulsive potential. The total electrostatic (non-van der Waals)

component of the binding energy, Ei(l), is the sum of the vertical and polarization in-

teraction energies less the EXD term, and it is about 20%–30% greater than the total

binding energy in the 140◦C temperature range.

Table 3.8 shows that the average energy cost, i.e., self-energy (Eq. 3.25), needed to

polarize the molecular wave function, is 3.10 ± 0.01 kcal/mol from the XP3P mode at

25◦C. This value is somewhat greater than the value estimated using the AM1 Hamil-

tonian (3.03 ± 0.01 kcal/mol). [47] If the classical expression for the self-energy, [201]

∆Ecl
self = ∆µ2

ind/2α (3.27)
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T (◦C) Ei(l) Evert Epol ∆Estab ∆Eself EXD Eele
-40 -10.89 -6.62 -4.27 -7.98 3.71 3.17 -14.06
-30 -10.81 -6.57 -4.24 -7.92 3.68 3.12 -13.93
-20 -10.66 -6.52 -4.14 -7.71 3.57 2.97 -13.63
-10 -10.50 -6.44 -4.06 -7.56 3.50 2.90 -13.40

0 -10.29 -6.35 -3.94 -7.30 3.36 2.74 -13.03
10 -10.08 -6.26 -3.82 -7.07 3.25 2.62 -12.70
25 -9.83 -6.17 -3.66 -6.76 3.10 2.49 -12.32
50 -9.32 -5.90 -3.42 -6.26 2.84 2.20 -11.52
70 -8.86 -5.69 -3.17 -5.78 2.61 1.97 -10.83

100 -8.28 -5.38 -2.90 -5.23 2.33 1.69 -9.97

Table 3.8: Temperature-dependent energy components (units in kcal/mol).

Figure 3.15: Average total interaction energies (black) per water in the liquid and their
contributing components, including vertical interaction energies (blue), polarization
energies (green), total electrostatic interaction energies (red), and exchange-dispersion
correlation energies (magenta).
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is used, where ∆µind is the induced dipole moment in the liquid, which is 0.64 D at

25◦C, and α is the molecular polarizability (1.27 Å3) from the XP3P model, we obtain

a self-energy of 2.35 kcal/mol, somewhat smaller than the quantum mechanical result

(Eq. 3.24). The self-energy was used to correct the total energy of liquid water in the

SPC/E model, [201] which has an effective dipole of 2.35 D (∆µind = 0.50D). In that

work, an estimate of ∆Ecl
self = 1.25 kcal/mol was used as an energy correction based on

experimental polarizability of water. Table 3.8 shows that over the temperature range

of -40 to 100◦C, ∆Eself varies from 3.69 kcal/mol to 2.33 kcal/mol, and the correspond-

ing total polarization energies change from -4.25 to -2.90 kcal/mol.

3.5 Conclusions

A quantum mechanical force field (QMFF) for water with the explicit treatment of elec-

tronic polarization (X-Pol) has been described. Moving beyond the current Lifson-type,

molecular mechanics force fields (MMFF) that have been under continuous develop-

ment in the past half century, [219–221] the present QMFF represents the condensed-

phase system explicitly by an electronic structure method. Consequently, the internal

energy terms in the traditional MMFF are replaced by a quantum mechanical formal-

ism that naturally includes electronic polarization. An important aspect of the present

procedure is the partition of a solution into molecular fragments such that the total

wave function of the system is approximated as a Hartree product of antisymmet-

ric, fragment wave functions. This approximation requires an empirical treatment of

short-range intermolecular exchange repulsion and long-range dispersion interactions

between different molecular fragments; however, one can model these effects using

customary empirical formalisms. To this end, we have introduced a polarizable molec-

ular orbital (PMO) model in the framework of the neglect diatomic differential overlap
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approximation. The present study represents a first step towards the goal of develop-

ing a full QMFF for the dynamic simulations of macromolecular systems as tradition-

ally carried out with MMFF.

In this work, we introduce the first generation of a QMFF for water, making use of

the PMO model specifically parameterized for compounds composed of hydrogen and

oxygen, i.e., PMOw. The electrostatic potential responsible for the interactions among

different fragments is model by a three-point charge representation that reproduces the

total molecular dipole moment and the local hybridization contributions exactly. Con-

sequently, the present QMFF for water, suitable for modeling gas-phase clusters, pure

liquids, solid isomorphs, aqueous solutions, and the self-dissociation along with pro-

ton and anion transport, is called the XP3P model. The work in this chapter highlights

the performance of the PMOw model for small water and proton clusters and simple

proton transfer reactions, and the properties of liquid water using XP3P from a con-

glomeration of about 900 × 106 self-consistent-field calculations on a periodic system

consisting of 267 water molecules. It is no exaggeration to say that this is the longest

quantum mechanical simulation performed to date. More significantly, the unusual

dipole derivative behavior of water, which is incorrectly modeled in molecular me-

chanics, but is critical for a flexible water model, is naturally reproduced as a result

of an electronic structural treatment of chemical bonding by XP3P. Much remains to

be tested and investigated in future studies with the combined use of large clusters

treated by PMOw embedded the XP3P liquid water. We anticipate that the present

model is useful for studying proton transport in solution and solid phases as well as

across biological membranes through ion channels.1

1 Jaebeom Han and Peng Zhang provided the simulation results from Monte Carlo and the PMOw
parameterizations, respectively. This work has been partially supported by the National Institutes of
Health, Grant Nos. GM46376 and RC1-GM091445, and by the National Science Foundation Grant Nos.
CHE09-56776 and CHE09-57162. Part of the computations has been performed on an SGI Altix cluster
acquired through an NIH grant (Grant No. S10-RR029467). We thank an anonymous referee for several
insightful comments.
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3.6 Supporting Information

See supplementary material for optimized geometries and computed properties for

water clusters and proton-water clusters using the PMOw and XP3P method and var-

ious ab initio molecular orbital and density functional theory approaches mentioned

in the text, and average thermodynamic properties for liquid water at temperature

ranging from -40 to 100 ◦C. In addition, figures depicting optimized structures for wa-

ter clusters, computed reorientation and molecular dipole time-correlation functions,

root-of-mean square displacement, heat capacities, isothermal compressibilities, and

radial distributions functions for liquid water are provided. This information is avail-

able free of charge via the Internet at http://dx.doi.org/10.1063/1.4816280.
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Chapter 4

Quantum Mechanical Force Field
for Hydrogen Fluoride

4.1 Introduction

Hydrogen fluoride (HF) is a highly corrosive and toxic compound with a boiling point

temperature of 19.5 ◦C at atmospheric pressure [222]. It is commonly used in indus-

trial applications such as glass etching, where it reacts with silicon dioxide to produce

hexafluorosilic acid [223].

SiO2 + 6HF→ H2SiF6 + 2H2O

H2SiF6 → SiF4 + 2HF
(4.1)

Although progress has been made [9, 10, 13, 16, 18–20, 26, 222, 224–227], the amount of

experimental data concerning the structure and physical properties of HF is scarce in

comparison to other simple fluids of small molecules. As a result, there is great interest

in developing computational models for HF, which can produce accurate dynamic and

thermodynamic properties across a wide range of temperatures and pressures.

The first computational studies of HF in the liquid state date back to the works of

Cournoyer and Jorgensen [228–230] and the works of Klein and McDonald [231, 232]
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in the late 1970s. The approach of Cournoyer and Jorgensen used in Monte Carlo sim-

ulations of the liquid employed a pairwise 12-6-3-1 interaction potential between rigid

monomers of the gas-phase geometry. The potential function was fitted to reproduce

binding energies of molecular complexes from ab initio Hartree-Fock theory [54,55] us-

ing the STO-3G [233] and 6-31G [81] basis sets. Similarly, Klein and McDonald used

molecular dynamics simulations to model the liquid state, in which a mixture of expo-

nential and inverse power functions were parameterized to reproduce ab initio energies

of the HF dimer [234].

Both groups employed three-site models in their studies, but did not make use of

condensed phase experimental data in their parameterizations. In 1984 Cournoyer and

Jorgensen introduced the three-site TIPS model for liquid HF [17], which was greatly

improved over their previous models and parameterized to reproduce experimentally-

measured thermodynamic properties of the liquid state [19,20,224]. The following year,

the first neutron diffraction study of deuterium fluoride (DF) was published [225], pro-

viding structural information, including radial distribution functions at 293 K. A direct

comparison to predictions from the TIPS model was provided in that study, showing

TIPS to be surprisingly accurate at 293 K.

In 1997, two three-site models for liquid HF were introduced by Jedlovszky and

Vallauri [235, 236]. These models consisted of a non-polarizable potential called JV-NP

and a polarizable alternative called JV-P, both of which employed the experimental H-

F bond length of 0.973Å, determined by electron diffraction in the vapor phase [226].

This was a departure from all previous models, which employed an H-F bond length

of 0.917Å for the monomer in the gas phase [9]. In 2000, a more extensive set of ex-

perimental data for two liquid and four supercritical states of DF was reported by
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Pfleiderer and co-workers [18], which was followed by a study from Jedlovsky and co-

workers using the TIPS, JV-NP, and JV-P potentials. Comparison with the new exper-

imental data revealed that the polarizable JV-P model was clearly superior compared

to the non-polarizable potentials [23].

In 2003, Wierzchowski et al. introduced a quantum mechanical potential for liquid

HF, which incorporated electronic polarization directly in the molecular wave func-

tion [48]. This method, which was initially called a molecular orbital derived empirical

potential for liquids (MODEL) [32, 47], has been subsequently called the explicit po-

larization (X-Pol) theory [33, 35, 87], and has been used in studies of liquid water [237]

and a molecular dynamics simulation of a solvated protein [49]. In the study of Wierz-

chowski et al., the semiempirical AM1 model [129] was used to represent the individual

monomers in the liquid, and the polarization of the molecular wave function of each

HF molecule by the surrounding monomers was directly incorporated into the one-

electron Hamiltonian. To account for short-range exchange repulsion and long-range

dispersion interactions, Lennard-Jones terms were used. Parameters for both the H-F

bond lengths of 0.917Å and 0.973Å were provided, and simulation results suggested

that the AM1 model was not sufficiently polarized for liquid HF.

In 2005, Kreitmeir et al. published a paper where the JV-NP model was used with a

slightly shorter H-F bond length of 0.950Å to obtain improved results over the original

JV-NP model [238]. This observation led to a reparameterization of the JV-P model by

Pártay, Jedlovszky, and Vallauri, called PJV-P, resulting in a bond length of 0.930Å [21].

Pártay and co-workers provided an extensive comparison of the PJV-P model with

several other models for liquid HF at many different states in that study. Addition-

ally, comparisons were made for 11 different state points using the newly available

experimental results of McLain and co-workers [16, 26].

Recent years have seen numerous studies using ab initio molecular dynamics (AIMD)
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techniques, including Born-Oppenheimer MD (BOMD) and Car-Parrinello MD (CPMD)

[239], to simulate the vapor and liquid phases of HF [240–244]. In these studies, den-

sity functional theory (DFT) with the BLYP exchange-correlation functional [245, 246],

which is known to lack an adequate description of dispersion effects, is typically used.

The AIMD studies have shown that although HF monomers are flexible, dissociation of

the H-F bond does not occur in the anhydrous liquid, agreeing with experiments [240].

However, results from these simulations, even with dispersion corrections, have not

been on the level of accuracy of the empirical models, such as PJV-P and JV-P, and have

produced densities that are siginificantly higher than those observed experimentally,

leading McGrath et al. to conclude that BLYP with the D2 dispersion correction [247] is

unsatisfactory for describing HF [244].

While the modeling of liquid water by X-Pol under the AM1 method with Mul-

liken charges to represent the intermolecular electrostatic potential yielded accurate

thermodynamic results [47], a similar attempt by Wierzchowski et al. at modeling liq-

uid HF was not as fruitful [48]. However, they recognized that the H-F bond length

could greatly affect the simulation results and should be considered as a parameter

in the potential function optimization for a rigid model, which was not attempted in

any HF model until a few years later. Additionally, it was noted that the AM1 method

yielded poor molecular polarizability and that the Mulliken population charges used

for polarization were too small.

The explicit polarization model for hydrogen fluoride introduced here seeks to rec-

tify these problems. As in earlier studies [48, 242], a two-site monomer is used in the

X-Pol model for hydrogen fluoride (XPHF), as opposed to the more common three-

site approach. In contrast to the approach by Wierzchowski et al., in which AM1 was

adopted, we employ a recently introduced semiempirical quantum chemistry model

called the polarized molecular orbital (PMO) method [52, 93, 94]. By introducing a
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set of p-orbitals onto hydrogen atoms in PMO, it was found that the performance of

molecular polarization and hydrogen-bonding was significantly improved over exist-

ing semiempirical models. The PMO Hamiltonian has been successfully used to de-

velop a quantum mechanical force field for liquid water, called XP3P [237]. In addition,

we have employed an alternative population analysis for calculating partial charges,

called the dipole-preserving polarization consistent (DPPC) charge method [53], which

reproduces the total molecular dipole moment of each monomer, eliminating the need

for the charge scaling parameter in previous X-Pol simulations. Finally, the model has

been parameterized extensively using experimental data not available at the time of the

previous study [16, 26], and has employed an optimized H-F bond length of 0.930Å.

In this work, a set of parameters for fluorine is incorporated into the PMOw method,

originally developed for oxygen and hydrogen containing compounds. These pa-

rameters were optimized by fitting against experimental and ab initio data on the HF

monomer, HF dimer, HF trimer, (HF)(H2O) complex, and OF2. In the present study,

the PMO formalism is identical to that of the XP3P model for liquid water. As in the

case of XP3P, the XPHF method has been implemented into the MCSOL Monte Carlo

program [248] and a modified version of NAMD [51].

4.2 Semiempirical PMO Method for Hydrogen Fluoride

4.2.1 Polarized Molecular Orbital Method

The polarized molecular orbital method (PMO) is based on the formalisms of the

MNDO method [89], which makes use of the neglect of diatomic differential overlap

approximation (NDDO) [88, 91]. Three key modifications were introduced in PMO.
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Since the method has been reported in detail previously [52, 93, 94, 237], we only pro-

vide a brief summary of its key departures from MNDO.

First, a set of p-orbitals is introduced on hydrogen atoms. The addition of the p-

orbitals greatly improves the performance on calculated molecular polarizabilities for

a range of compounds, and provides an excellent description of hydrogen-bonding in-

teractions. To prevent unphysical bonding interactions from the additional p-orbitals,

the resonance integrals involving hydrogen are damped (Eqs. 4.2 and 4.3).

βHH
lp = 0, (4.2)

βFH
lp =

βF
l + βH

p

2
SlpAlpe

κlpRFH . (4.3)

The Slp of Eq. 4.3 is the overlap integral 〈Fl|Hp〉 between fluorine and hydrogen p-type

orbitals, which uses the typical MNDO exponent ζ. In the more general case that this

integral needs to be evaluated for homonuclear pairs (e.g. 〈Fl|Fl〉), the specialized ζPMO

exponents are used.

Second, as is done in the MNDO formalism [89,142], the nucleus-electron attraction

integral, HA
µν , between the electronic charge density of atomA and the nucleus of atom

B, is evaluated by the two-electron repulsion integral 〈µAνA|sBsB〉, where sB denotes

an s-orbital on nucleus B [91]. This attraction integral is modified in the PMO model

when both A and B are hydrogen atoms (Eq. 4.4).

HH
pp′ =

[
1−Be−λR

2
HH′
] (
HH
pp′

)
MNDO

(4.4)

The third and final departure from MNDO is concerned with core-core interactions.
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Similar to homonuclear overlap integrals, special exponents α̂ are used for homonu-

clear core-core repulsion. In addition, as is commonly used in DFT, the pairwise D1

dispersion correction of Grimme [95] is used between all atom pairs.

At present, three different variations of the PMO method have been reported, PMOv1

[52], PMO2 [94], and PMOw [237], none of which contain parameters for fluorine. The

variant of PMO for which we have decided to introduce the F parameters is the PMOw

model, having kept all other parameters fixed to those reported in Chapter 3.

4.2.2 Motivation for using PMOw

The starting point for parameterization of empirical models for vapor and liquid phase

simulations is an accurate description of dimer interactions. Here, the PMOw model

has been parameterized with the goal of accurately describing the HF dimer, as well as

other HF clusters.

As a motivation for introducing a new PMOw parameter set for F, we performed

several single-point energy calculations and geometry optimizations on the HF dimer

using the MOPAC [90] software with the NDDO-type MNDO [89], AM1 [129], RM1

[130], PM3 [249], and PM6 [131] semiempirical methods. Interaction energies for fixed

F-F distances with optimized H coordinates for each method were tabulated. In addi-

tion to the MOPAC calculations, analogous PMOw and ab initio calculations at the M06-

2X/MG3S level [250–252] were performed with an in-house code [253] and NWChem

version 5.1.1 [254], respectively.

This series of calculations showed that with the exception of the PM3 method,

all existing semiempirical methods tested produced an optimized geometry for the

HF dimer that is qualitatively incorrect in comparison with experimental and M06-

2X/MG3S derived results (Figure 4.1). In addition, these methods failed to accurately
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reproduce the HF dimer interaction energy profile (Figure 4.2) and its minimum inter-

action energy, which is -4.54 kcal/mol with F-F distance 2.72Å from experiment [12,13],

-4.94 kcal/mol with F-F distance 2.7316Å at the CCSD(T)/TZ2P(f ,d) level [11] and -

5.13 kcal/mol with F-F distance 2.7242Å at the M06-2X/MG3S level.

It is worth noting that although the PM3 optimized geometry appears qualitatively

correct, the HF dimer interaction energy profile was found to be qualitatively incorrect.

Thus, none of the existing NDDO-type semiempirical methods tested are adequate for

accurately describing the HF dimer interaction.

Figure 4.1: Optimized HF dimers using several NDDO-type semiempirical methods,
PMOw, DFT at the M06-2X/MG3S level, and that measured from experiment [13]. All
non-PMOw semiempirical dimers, with the exception of the PM3 optimized geome-
try, exhibit a qualitatively incorrect structure compared to ab initio and experimental
results.

114



Figure 4.2: Interaction energy profile of optimized HF dimers with respect to con-
strained F-F distance for several NDDO-type semiempirical methods, PMOw, XPHF,
and DFT at the M06-2X/MG3S level. Notice the odd behavior of the interaction energy
curve for PM3, which produced a qualitatively correct optimized HF dimer geometry.
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4.2.3 Fluorine Parameters for PMOw

The poor HF dimer descriptions of existing semiemprical methods and the success

of the PMOw-based XP3P water model led to the decision to include fluorine in the

PMOw model in connection with the original parameters for O and H for use with

XPHF. The parameters for F in PMOw were obtained from the minimization of a fitness

function that is defined as a weighted sum of absolute differences for properties of

the HF monomer, HF dimer, HF trimer, (HF)(H2O) complex, and OF2 molecule; these

properties include bond length, bond angle, dipole moment, and interaction energies

of optimized geometries.

Target values for the fitness function were set to experimental values where avail-

able and to ab initio derived values when experimental data were absent. Minimization

of the fitness function was performed using stochastic optimization, starting from the

RM1 parameter for F [130] and the PMOw specific parameters for O as the initial guess

with Asp and App held fixed. All previous parameters of PMOw for H and O were kept

fixed to ensure that the PMOw results for water remained reproducible. The results of

the optimized parameters are listed in Table 4.1, where the columns for H and O are

reproduced from Chapter 3.

4.2.4 Hydrogen Fluoride Clusters

We tested our PMOw parameter set for F on a series of cyclic HF clusters from the

trimer to the octamer as well as the monomer and dimer. We present a comparison

to experimental results where available, previously published ab initio data, and addi-

tional DFT calculations at the M06-2X level with the MG3S basis set.

Table 4.2 lists bond lengths, angles, and dipole moments of the HF monomer and

dimer at the PMOw, M06-2X/MG3S, and CCSD(T)/TZ2P(f ,d) levels of theory as well
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H O F
Uss (eV) -11.15043 -111.86028 -139.42406
Upp (eV) -7.35459 -78.64105 -109.03911
βs (eV) -6.88125 -25.57063 -69.32684
βp (eV) -3.52628 -31.90404 -34.08908
ζs (Bohr−1) 1.17236 3.05303 5.60791
ζp (Bohr−1) 1.05333 3.12265 3.11602
α (Å−1) 3.05440 3.76880 4.29492
gss (eV) 12.73667 17.36659 16.39526
gsp (eV) 8.04688 13.37288 18.38443
gpp (eV) 6.98401 14.78196 16.67384
gpp′ (eV) 10.65161 13.49319 14.77192
hsp (eV) 1.92149 4.42643 4.30118
α̂ (Å−1) 2.52552 3.03253 3.48493
ζPMO (Bohr−1) 1.280 2.764 2.786
Asp NA 0.03 0.03
App NA 0.15 0.15
κsp (Å−1) NA 0.47069 0.48605
κpp (Å−1) NA 0.47069 0.38879

Table 4.1: Parameters in the PMOw model. The parameters for F were obtained by
stochastic optimization starting from the RM1 parameter for F using a fitness func-
tion related to experimental and ab initio calculated quantities of HF, (HF)2, (HF)3,
(HF)(H2O), and OF2. The parameters for H and O come from Chapter 3.
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as corresponding experimental values. The definitions for lengths and angles in Table

4.2 are shown in Figure 4.3. The experimental results of Table 4.2 are the same values

used in the training set for parameterization of F.

The optimized HF monomer bond length and dipole moment from PMOw are

0.917Å and 1.80 Debye respectively, showing excellent agreement with the experi-

mental values of 0.917Å [9] and 1.80 Debye [10]. The F-F separation of the optimized

dimer structure using PMOw was 2.72Å, in good accord with the experimental value

of 2.72±0.03Å. The optimized tilt (θ) and flap (φ) angles of 8.5◦ and 67.3◦ for the dimer

fall within the uncertainty range of the experimental data 10◦±6◦ and 63◦±6◦ [13], re-

spectively. The computed binding energy was -4.64 kcal/mol for the HF dimer and the

corresponding total dipole moment was 3.26 Debye, which is in agreement with the

CCSD(T)/TZ2P(f ,d) results of -4.94 kcal/mol and 3.33 Debye [11]. The corresponding

experimental dipole moment has been reported to be 2.99 Debye [13].

Figure 4.3: Labeled quantities for the HF dimer corresponding to quantities given in
Table 4.2.

The results of geometry optimization on the larger clusters (HF)n for n = 3, · · · , 8

using PMOw and M06-2X/MG3S along with the “best estimates” of Maerker and co-

workers [14] are given in Table 4.3. The quantities listed in the table are labeled in

Figure 4.4 for the trimer, and are similar for larger clusters. As in the case of the

monomer and dimer, the trimer was included in the parameterization training set, and

118



PMOw M06-2X/MG3S CCSD(T)/TZ2P(f ,d) Expt.
HF
rHF (Å) 0.917 0.918 0.918c 0.917a

µ (Debye) 1.80 1.88 1.82c 1.80b

(HF)2

Eint (kcal/mol) -4.64 -5.13 −4.94c −4.54d

rAHF (Å) 0.925 0.924 0.923c –
rBHF (Å) 0.924 0.921 0.921c –
rFF (Å) 2.72 2.72 2.73c 2.72± 0.03e

θ (◦) 8.5 11.3 6.4c 10± 6e

φ (◦) 67.3 71.8 68.8c 63± 6e

µ (Debye) 3.27 3.26 3.33c 2.99e

Table 4.2: HF monomer properties of PMOw compared to ab initio and experimental
results; (a): Ref. [9], (b): Ref. [10], (c): Ref. [11], (d): Ref. [12], (e): Ref. [13].

the optimized properties are in good agreement with the M06-2X/MG3S results and

the “best estimates”. Overall, the larger clusters, which were not included in the train-

ing set, also exhibit good agreement between PMOw, M06-2X/MG3S, and the “best

estimates”. Figure 4.5 illustrates the cyclic clusters obtained from geometry optimiza-

tion using PMOw and M06-2X/MG3S, color-coded and displayed side-by-side.

4.2.5 (HF)n(H2O)n Complexes

In addition to HF clusters, we also examined three different (HF)n(H2O)n complexes

where n = 1, 2, 4 and compared the optimized structures with those obtained at the

MP2/TZP level [15] (Table 4.4). The complex with n = 1 was included in the parame-

terization training set. Partial charges were computed by Mulliken population analy-

sis [96] using PMOw, whereas partial charges for the MP2/TZP results were computed

by Löwdin population analysis [255].

The complexes for the cases with n = 2 and n = 4 exhibit ionic bonding behavior

in the optimized geometries using PMOw (Figure 4.6). However, these structures are
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PMOw M06-2X/MG3S “Best Estimate”a

(HF)3

Eint (kcal/mol) -13.92 -17.50 –
〈rHF〉 (Å) 0.935 0.934 0.933
〈rFF〉 (Å) 2.66 2.60 2.59
〈θ〉 (◦) 25.6 23.4 24
(HF)4

Eint (kcal/mol) -26.56 -29.73 –
〈rHF〉 (Å) 0.952 0.943 0.944
〈rFF〉 (Å) 2.54 2.54 2.51
〈θ〉 (◦) 12.8 11.2 12
(HF)5

Eint (kcal/mol) -36.32 -40.02 –
〈rHF〉 (Å) 0.957 0.947 0.948
〈rFF〉 (Å) 2.51 2.50 2.48
〈θ〉 (◦) 5.7 5.1 6
(HF)6

Eint (kcal/mol) -43.95 -49.04 –
〈rHF〉 (Å) 0.957 0.949 0.949
〈rFF〉 (Å) 2.51 2.49 2.47
〈θ〉 (◦) 1.5 1.5 3
(HF)7

Eint (kcal/mol) -50.44 -57.23 –
〈rHF〉 (Å) 0.956 0.948 –
〈rFF〉 (Å) 2.51 2.49 –
〈θ〉 (◦) 1.3 0.8 –
(HF)8

Eint (kcal/mol) -56.32 -64.97 –
〈rHF〉 (Å) 0.954 0.946 –
〈rFF〉 (Å) 2.51 2.50 –
〈θ〉 (◦) 3.2 2.4 –

Table 4.3: Properties of HF cyclic clusters at the PMOw and M06-2X/MG3S levels with
a combination of experimental and ab initio data that forms “best estimates” [14]. (a):
Ref. [14].
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Figure 4.4: Labeled quantities for the HF trimer corresponding to quantities given in
Table 4.3. Entries in the table for clusters larger than the trimer have analogous quan-
tities to the labels in the figure.

not global minima in the MP2/TZP optimization as reported by Chaban and Gerber.

For the (HF)2(H2O)2 optimization, the relevant chemical bonds were purely covalent

in character and no local minimum with ionic bonds (shared proton) was reported. In

contrast to n = 2, Chaban and Gerber report both covalent and ionic structures for the

case of n = 4, noting that the ionic structure is a local minimum. For comparison, we

have included data for the covalent structures in the MP2/TZP column of Table 4.4 for

n = 1, 2 and data for the ionic structure for n = 4. The large charges on the oxygen

atoms at the PMOw level in the n = 2 and n = 4 complex suggest that the PMOw

oxygen parameter may be too electronegative for the current hydrogen parameter.

To understand the behavior of the (HF)n(H2O)n clusters, we included OF2 in the

F-parameter optimization; however, the optimized geometrical parameters show rela-

tively large deviations from the experimental targets. In particular, an FOF bond angle
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Figure 4.5: Cyclic clusters of HF at PMOw level (top) and the M06-2X/MG3S level
(bottom). The various monomer colors indicate their respective cluster, and are as
follows: dimer (red), trimer (blue), tetramer (yellow), pentamer (cyan), hexamer (ma-
genta), heptamer (orange), octamer (black). The multicolored monomer at the bottom
of each pane indicates the first monomer in each cluster.
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PMOw MP2/TZPa

(HF)(H2O)
rHF (Å) 0.925 0.933
rOH (Å) 0.961 0.958
rOF (Å) 2.63 2.64
qH, HF (e) 0.19 0.20
qF, HF (e) -0.22 -0.28
qO H2O (e) -0.40 -0.36
qH, H2O (e) 0.21 0.22
(HF)2(H2O)2

rHF (Å) 1.09 0.957
rOH1 (Å) 1.18 0.969
rOH2 (Å) 0.959 0.957
rOF (Å) 2.24 1.82
qH, HF (e) 0.27 0.21
qF, HF (e) -0.22 -0.28
qO, H2O (e) -0.53 -0.36
qH1, H2O (e) 0.27 0.22
qH2, H2O (e) 0.21 0.21
(HF)4(H2O)4

rHF (Å) 1.24 1.02
rOH (Å) 1.08 1.49
rOF (Å) 2.26 –
qH (e) 0.27 0.22
qO (e) -0.48 -0.13
qF (e) -0.34 -0.54

Table 4.4: Properties of (HF)n(H2O)n complexes at the PMOw and MP2/TZP levels
for n = 1, 2, 4. Partial charges were obtained from Mulliken and Löwdin population
analysis for PMOw and MP2/TZP respectively. (a) Ref. [15].
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Figure 4.6: Three (HF)n(H2O)n complexes: (HF)(H2O) (top), (HF)2(H2O)2 (bottom
left), (HF)4(H2O)4 (bottom right). The (HF)(H2O) complex exhibits a hydrogen bond
while the (HF)2(H2O)2 and (HF)4(H2O)4 complexes show an ionic bonding behavior.

of 115.7◦ and an OF bond length of 1.16Å were obtained, which may be compared to

the experimental values of 103.2◦ and 1.41Å, respectively [256]. This suggests that re-

optimization of the parameters associated with the F and O pair may be necessary to

correctly reproduce the qualitative results of (HF)n(H2O)n complexes using the PMOw

method.

4.3 XPHF Model for Liquid HF

The explicit polarization model for liquid HF (XPHF) follows the same formalism of

X-Pol reported previously [32, 33, 35, 87]. The X-Pol method has been applied to liq-

uid water [47, 237], liquid HF [48], and a solvated bovine pancreatic trypsin inhibitor

protein using the semiempirical AM1 model to represent individual fragments [49].

X-Pol is a fragment-based electronic structure method that incorporates electronic

polarization by wave function theory for a condensed-phase system. For this reason,

X-Pol is regarded as a QM/QM-type method or a QM force field (QMFF) if relevant
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parameters are optimized to reproduce experimental properties of liquids and solu-

tions.

In earlier studies, aimed at demonstrating the feasibility of the idea of a QMFF

for fluid and biomolecular simulations, the semiempirical AM1 Hamiltonian [129]

and Mulliken charges [96] were used to model intermolecular interactions. The XP3P

model for water and the XPHF model for hydrogen fluoride in the present study adopt

a new approach, where the PMO method is used as the QM model for individual frag-

ments and the dipole-preserving polarization consistent (DPPC) charge method [53] is

used to represent partial charges in calculating the interfragment potential, providing

a more rigorous and accurate framework for QMFF development.

We now provide a brief description of the X-Pol method, noting that it is covered

in greater detail elsewhere [32, 33, 35, 87].

4.3.1 Wave Function Description

The X-Pol method approximates the total wave function of a chemical system Φ as the

Hartree product of the wave functions Ψi of N smaller subsystems called fragments.

Φ =
N∏
i=1

Ψi (4.5)

In the present case, Ψi is considered to be a Slater determinant [65] of each HF monomer,

which takes the form of Eq. 4.6,

Ψi =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣∣

φ1(x1) φ2(x1) · · · φN (x1)

φ1(x2) φ2(x2) · · · φN (x2)

...
...

. . .
...

φ1(xN ) φ2(xN ) · · · φN (xN )

∣∣∣∣∣∣∣∣∣∣∣∣∣
(4.6)
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where φk is a molecular orbital formed by a linear combination of m atomic orbitals

(LCAO) described by the basis set {χ} (Eq. 4.7).

φk =
m∑
µ

Ckµχ
k
µ (4.7)

The molecular orbitals are subjected to the orthonormalization condition (Eq. 4.8).

Λij =
m∑
µ

CiµC
j
µ − δij = 0 (4.8)

The Hatree-product approximation (Eq. 4.5) greatly reduces the computational

cost of of the quantum calculation from a formally O([Nm]k) scaling to O(N2mk),

where k depends on the level of quantum theory used. Note that the cost may be

reduced to O[Nm log (Nm)] by using particle mesh Ewald for electrostatics between

monomers [162]. The caveat of the Hartree-product approximation is the neglect of

the exchange-correlation and dispersion interactions between fragments. However, it

is worth noting that the intrafragment exchange-correlation and dispersion are pre-

served at the level of quantum theory employed in calculating Ψi.

4.3.2 Effective Hamiltonian and Energy Expression

The Hamiltonian used in X-Pol is defined as the sum of the electronic Hamiltonians of

individual fragmentsHoi plus all interfragment interactionsHij .

HXP =
N∑
i=1

Hoi +
1

2

N∑
i=1

N∑
j 6=j
Hij (4.9)

Hij is defined as the interaction between fragment i and fragment j. Eq. 4.10 gives
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the expression forHij

Hij = −
m∑
k=1

Vk(Ψj) +
A∑
α=1

ZiαVα(Ψj) + EXD
ij , (4.10)

where m is the number of electrons in fragment i, A is the number of atoms in frag-

ment i, Ziα denotes the core charge of atom α on fragment i, and EXD
ij is the exchange-

correlation and dispersion interaction between fragments i and j.

The term Vx(Ψj) describes the electrostatic potential at position x due to the j-th

QM fragment, and is given by Eq. 4.11

Vx(Ψj) = −
∫
ρj(r)dr

|rx − r|
+

B∑
β=1

Zjβ

|rx −Rj
β|
, (4.11)

where B is the number of atoms in fragment j and x = k and x = α denote an inter-

action at electronic and nuclear positions respectively, and ρj(r) denotes the electron

density of fragment j derived from Ψj .

The total interaction energy of the system is defined by Eq. 4.12

EXP
tot = 〈Φ|HXP|Φ〉 −

N∑
i=1

〈Ψo
i |Hoi |Ψo

i 〉, (4.12)

where Ψo
i is the optimized wave function associated with the geometry of fragment i

in the gas phase.

The energy calculation can be done in a variational way with respect to partial

charges obtained from Mulliken population analysis, leading to an analytical expres-

sion for its gradient to be used in molecular dynamics simulations [35].
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4.3.3 X-Pol with PMOw

The XPHF model employs the semiempirical PMOw Hamiltonian with the parameters

introduced in the previous section to determine the wave functions Ψi for individual

fragments. Under the MNDO formalism [89, 92], which is used in PMOw, all one-

electron integrals are approximated as two-electron integrals where a charge density

is represented by an s-type distribution. In our implementation, these two-electron

integrals are computed by a multipole expansion [91] and partial charges are calculated

by the DPPC population analysis [53]. The functional form and methods used in the

XPHF model are identical to those employed in the XP3P model, and only differ by

parameters and the system of question.

In the present model, exchange-correlation and dispersion are empirically described

by the Lennard-Jones 12-6 potential (Eq. 4.13), though explicit density dependence can

be incorporated into the Fock matrix in a manner described by York and co-workers

[84].

EXD
ij =

A∑
α=1

B∑
β=1

4εαβ

[(
σαβ
rαβ

)12

−
(
σαβ
rαβ

)6
]

(4.13)

Standard combining rules are used such that εαβ =
√
εαεβ and σαβ =

√
σασβ for inter-

actions between different atom types, and the Lennard-Jones parameters used in the

XPHF model for F and H are εF = 0.145 kcal/mol, εH = 0.05 kcal/mol, σF = 2.97Å,

and σH = 0.80Å.

4.4 Simulation of Liquid HF with XPHF

We performed Monte Carlo simulations under the isothermal-isobaric ensemble (NPT)

at temperature and pressure conditions listed in Table 4.5. Subsequently, molecular
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dynamics simulations under the isothermal-isochoric ensemble (NVT) at experimental

density for the same 11 state points were performed. The 11 state points were chosen

to correspond with other simulation studies of liquid HF, for which the most com-

prehensive comparison of various models with experiment is given by Pártay and co-

workers [21].

State T (K) P (bar) ρ (g/cm3)
A 195 0.1 1.058a

B 246 0.1 1.038a

C 203 1.0 1.176b,d

D 273 1.0 1.015b,e

E 296 1.2 0.997a

F 300 2.0 0.962c

G 373 12 0.796c

H 473 78 0.236c

I 473 84 0.398c

J 473 166 0.647c

K 473 319 0.796c

Table 4.5: The state 11 points used in our liquid simulations of HF and their corre-
sponding experimental densities. (a) Ref. [16], (b) Ref. [17], (c) Ref. [18], (d) Ref. [19],
(e) Ref. [20].

4.4.1 Simulation Setup

All Monte Carlo simulations were performed using the MCSOL program [248] which

implements the non-variational X-Pol potential [32,47]. Each simulation box contained

267 rigid HF monomers with an H-F bond length of 0.930 Å. A switching function was

used to smooth intermolecular interactions to zero in the region of 8.5 to 9.5 Å. Each

Monte Carlo move was performed by randomly selecting an HF monomer, randomly

translating along a randomly chosen axis at a maximum distance of 0.18 Å, and ran-

domly rotating the monomer about a randomly selected axis centered at the fluorine

atom a maximum angle of 17◦. Volume moves were attempted every 500 steps with a
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maximum volume change of 150 Å3. All states were initialized with random position

and orientation and given at least 108 configurations for equilibration. The averaging

of quantities in the Monte Carlo simulations for each state was carried out over at least

an additional 107 configurations after equilibration. About 6 × 106 configurations can

be executed per day on a 6-core 2.66 GHz Intel Xeon X7542 Westmer processor for a

system of this size using the current version of MCSOL.

All molecular dynamics simulations of the same 11 states were carried out using a

version of NAMD modified to incorporate the variational X-Pol potential. Each sim-

ulation box was modeled under the NVT ensemble at experimental density, and con-

tained 267 rigid HF monomers that were constrained at an H-F bond length of 0.930

Å by RATTLE [257]. A switching function between 8.5 Å and 9.5 Å was employed

to evaluate Lennard-Jones interactions, and electronic interfragment interactions were

truncated at 9.0 Å. Each state was equilibrated for no less than 106 steps from a set of

random coordinates. A time step of 2 fs was used for simulations of each state, and

trajectories of 500 ps were used for calculating diffusion coefficients.

4.4.2 Energetic Properties

Energies per molecule of each of the 11 states are given in Table 4.6 for XPHF and

the PJV-P, JV-P, JV-NP, HF-Kr and TIPS models along with experimental values ob-

tained from the Visco-Kofke equation [22]. XPHF appears to have similar performance

compared with other polarizable models both in the non-supercritical states A-G and

in the supercritical states H-K. In some cases (states C, D, and G) the XPHF model

slightly underestimates the energy per molecule compared to experiment, while the

other polarizable models consistently overestimate the energy per molecule of every

state.
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State XPHF PJV-P JV-P JV-NP HF-Kr TIPS Expt.
A -34.32 ± 0.106 -32.32 -31.33 -32.41 -29.58 -30.04 -38.55a,b

B -33.89 ± 0.513 -29.97 -31.03 -32.66 -27.36 -28.03 -34.40a,b

C -34.01 ± 0.081 -31.87 -31.36 -32.24 -28.90 -29.64 -31.94c

D -32.55 ± 1.103 -28.53 -27.68 -29.18 -26.00 -26.77 -29.01c

E -29.20 ± 0.151 -27.17 -26.29 -28.36 -24.98 -25.30 -30.36a,b

F -29.11 ± 0.368 -27.02 -26.11 -28.10 -24.74 -24.90 -28.22a,d

G -24.50 ± 0.173 -22.84 -22.21 -14.49 -11.10 -20.96 -23.08a,d

H -6.89 ± 0.702 -6.82 -5.98 -10.27 -7.32 -8.81 -19.75a,d

I -7.33 ± 0.947 -7.73 -7.28 -11.32 -7.48 -9.17 -19.83a,d

J -16.30 ± 0.695 -16.77 -14.08 -16.40 -12.59 -16.01 -23.39a,d

K -18.98 ± 0.186 -18.23 -17.24 -19.14 -15.70 -17.52 -27.49a,d

Table 4.6: Energy per molecule of the 11 states in kJ/mol from XPHF compared to sev-
eral other models and experiment. All values for the other models originate from Table
III of Ref. [21], in which uncertainties are also listed. (a) From Visco-Kofke equation of
state [22]; (b,c) See Ref. [21] for details; (d) Ref. [23].

4.4.3 Electronic Properties

The average dipole moment of the 11 states with uncertainties for XPHF are given in

Table 4.7 along with results from the polarizable JV-P model [23] and static values from

JV-NP and TIPS. It is seen from the table that XPHF is in good agreement with the JV-P

model despite its reported large uncertainties.

Average dipole moments from a previous study using the X-Pol formalism by

Wierzchowski et al. employing the AM1 model and Mulliken charges were provided

for states F and H. The values were 1.99 and 1.79 Debye respectively, with a bond

length of 0.917Å, and values of 2.03 and 1.79 Debye for a bond length of 0.973Å. When

compared to the average values from XPHF of 2.27 and 1.96 Debye for states F and H,

respectively, and the mean values of JV-P of 2.17 and 2.02 Debye, the poor polarizabil-

ity of the AM1 model is clearly seen.
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State XPHF JV-P JV-NP TIPS
A 2.34 ± 0.0011 – 1.83 2.04
B 2.34 ± 0.0078 – 1.83 2.04
C 2.34 ± 0.0013 – 1.83 2.04
D 2.32 ± 0.0015 – 1.83 2.04
E 2.27 ± 0.0019 – 1.83 2.04
F 2.27 ± 0.0045 2.17 ± 0.49 1.83 2.04
G 2.21 ± 0.0025 2.11 ± 0.42 1.83 2.04
H 1.96 ± 0.0105 2.02 ± 0.08 1.83 2.04
I 1.97 ± 0.0140 2.04 ± 0.24 1.83 2.04
J 2.09 ± 0.0092 2.06 ± 0.32 1.83 2.04
K 2.13 ± 0.0024 2.07 ± 0.08 1.83 2.04

Table 4.7: The average dipole moments of the 11 states in Debye for XPHF and JV-P
along with the static values from JV-NP and the TIPS models found in Ref. [23].

Figure 4.7 shows the distribution of dipole moments for each of the 11 states simu-

lated with XPHF. Dipole moments in each state are clearly enhanced beyond the gas-

phase dipole of 1.80 Debye, with the least enhancement occurring in the states with the

lowest density (states H and I). General trends with respect to pressure and tempera-

ture are apparent, such as the positive correlation of the dipole distribution width with

respect to increasing pressure, and the negative correlation in the enhancement of the

dipole moment beyond the gas phase value with respect to temperature.

4.4.4 Density

The densities of the 11 states from Monte Carlo simulations are tabulated in Table 4.8

and compared to the PJV-P, JV-P, JV-NP, HF-Kr, and TIPS models as well as experiment.

Uncertainties for all models besides XPHF are given by Pártay and co-workers [21].

The XPHF model tends to underestimate the densities of the states when compared to

experiment, but appears to be comparable to the polarizable PJV-P and JV-P models in

terms of overall trend.

132



Figure 4.7: The mole fraction of average dipole moments for each of the 11 states tested
with XPHF. In supercritical states H and I the distribution appears to take a maximum
value near the gas-phase dipole moment, while supercritical states J and K show a
wider distribution across many values.
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A comparison of experimental densities from Sim and Bouknight [19] at tempera-

tures ranging from 199.3 K to 277.4 K and atmospheric pressure to state points C (203 K,

1 bar) and D (273 K, 1 bar) of the HF models is shown in Figure 4.8. It can be seen in the

figure that the polarizable models (XPHF, PJV-P, and JV-P) are in better agreement with

experiment than the non-polarizable models (JV-NP, HF-Kr, TIPS). The non-polarizable

models tend to predict densities much higher than experiment, especially in the case

of the TIPS model. However, it is noteworthy that the densities given by Pártay and

co-workers for the TIPS model at states C (1.276 ± 0.021 g/cm3) and D (1.300 ± 0.041

g/cm3) are within uncertainty of each other, suggesting that the qualitatively incorrect

trend of the TIPS model may be due to convergence issues.

Although the trend is clearly linear in the temperature dependence of density for

the experimental data set shown in Figure 4.8, the linear interpolation between states C

and D of the computational models may be an over-simplification, and more investiga-

tion is required to make a definitive conclusion on the linearity of isobaric temperature

dependence of density under the various models.

4.4.5 Structural Properties

Historically, experimental radial distribution functions (RDFs) for HF have been re-

ported as a total RDF, for which a weighted decomposition of the three pair correlation

functions was suggested by Pfleiderer and co-workers [18] (Eq. 4.14).

G(r) = 0.4966gHF(r) + 0.2104gFF(r) + 0.2930gHH(r) (4.14)

Using these weights, we constructed the total RDFs the supercritical states H-K from

NVT molecular dynamics trajectories of XPHF at the experimental densities, and com-

pared them to RDFs of other models and experiment [18]. These total RDFs are plotted
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Figure 4.8: The temperature dependence of liquid HF density at atmospheric pressure
from XPHF and other models at states C and D compared to the experimental values
of Simons and Bouknight [19]. Notice that the polarizable models (XPHF, PJV-P, JV-
P) predict densities in better qualitative and quantitative agreement with experiment
than the non-polarizable models (JV-NP, HF-Kr, TIPS).
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State XPHF PJV-P JV-P JV-NP HF-Kr TIPS Expt.
A 1.112 ± 0.024 1.182 1.143 1.350 1.507 1.300 1.058a

B 1.081 ± 0.015 1.085 1.101 1.336 1.371 1.224 1.038a

C 1.122 ± 0.021 1.171 1.151 1.424 1.426 1.276 1.176b,c

D 1.055 ± 0.055 1.014 1.000 1.270 1.248 1.300 1.015b,d

E 0.911 ± 0.030 0.950 0.923 1.234 1.190 1.019 0.997a

F 0.902 ± 0.041 0.951 0.924 1.230 1.171 0.971e 0.962f

G 0.748 ± 0.015 0.769 0.774e 0.019e 0.029 0.633e 0.796f

H 0.068 ± 0.006 0.065 0.068e 0.073e 0.068 0.081e 0.236f

I 0.078 ± 0.011 0.083 0.081e 0.097e 0.070 0.091e 0.398f

J 0.392 ± 0.050 0.490 0.334e 0.294e 0.240 0.423e 0.647f

K 0.636 ± 0.018 0.634 0.584e 0.615e 0.511 0.579e 0.796f

Table 4.8: Densities of the 11 states in g/cm3 from XPHF compared to several other
models and experiment. Unless otherwise noted, all values for the other models orig-
inate from Table IV of Ref. [21], in which uncertainties are also listed. (a) Ref. [16]; (b)
Ref. [17]; (c) Ref. [19]; (d) Ref. [20]; (e) Ref. [23].

in Figure 4.9, showing that XPHF produces slightly better agreement with experiment

than the JV-P and JV-NP models for each state. However, it is worth noting that some

of the same qualitative differences of those models compared with experiments are

observed in XPHF. In particular, state J shows peaks that are much shorter than their

values from experiment.

The partial RDFs of HF (i.e. gFF, gFH and gHH) were first resolved experimentally

in 2004 by McLain and co-workers [26], and reported for a temperature and pressure

of 296 K and 1.2 bar (state E). Figure 4.10 shows a comparison of XPHF and the PJV-

P model [21] to these partial RDFs and the BOMD result of McGrath and co-workers

[244] at the BLYP-D2/TZV2P level with temperature and pressure of 300 K and 1.0 bar.

Figure 4.10 shows that the partial RDFs of the XPHF model are in agreement with

those of the PJV-P model and they are consistent with experiment. The first peak of

the gFF(r) RDF for XPHF appears to be in slightly better agreement with experiment
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Figure 4.9: Total RDFs of the XPHF (red), JV-P (cyan), JV-NP (orange), and TIPS (blue)
models with experimental data (black) [18] for the four supercritical states at 473 K.
The TIPS model is over-structured for all tested supercritical states but J (473 K, 166
bar). XPHF gives results that appear slightly better than the JV-P model, but with more
qualitatively-correct peaks.

137



than that of PJV-P in terms of peak position and height. The gFH(r) RDFs behave simi-

larly between the XPHF and PJV-P models in terms of position, with XPHF displaying

somewhat higher first and second peaks. Finally, the gHH(r) RDF peak positions are

nearly half an Ångstrom too long for both the XPHF and PJV-P models compared to

experiment, with the peak heights being higher for XPHF and lower for PJV-P.

The partial RDFs of the BOMD simulation in the NPT ensemble by McGrath and

co-workers at a slightly different state point show somewhat better agreement with

experiment than the XPHF and PJV-P models at peak positions, particularly in the

case of gHH. It has been suggested by Pártay and co-workers that the drop to zero

in the experimental gHH RDF is the result of measurement anomaly. This is further

supported by the BOMD-derived RDFs, which with that exception have similar first

and second peak heights and positions compared to experiment. Although McGrath

and co-workers stated that BLYP-D2 was unsatisfactory for accurately describing HF

at that state point based upon the calculated density, the partial RDFs are in agreement

with experiment and exhibit qualitatively correct behavior for the HH pair correlation

function.

Due to the Hartree-product approximation in X-Pol and the use of a two-site model

for the HF monomer, the optimized HF dimer in the XPHF model is a linear structure

similar to the full MNDO result, but with a better interaction energy profile, as in-

dicated in Figure 4.2. Although the optimized dimer structure is completely linear,

the hydrogen-bonded monomer displays an enhanced charge on the hydrogen atom.

Since each monomer must maintain a neutral net charge, the fluorine atom associated

with the enhanced charge on the hydrogen atom is also enhanced. This is equivalent to

stating that the XPHF model does not incorporate or consider charge transfer effects.

On the basis that a bent dimer similar to the full PMOw result, which includes charge

transfer effects, has a shorter H-H distance than an analogous linear structure with the
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same F-F distance, we suggest that the first peak in the gHH RDF could be shortened

by the incorporation of charge transfer effects into XPHF.

4.4.6 Diffusion

The self-diffusion coefficients of hydrogen fluoride for the 11 states were determined

using the Einstein formula [195] on 500 ps trajectories from MD simulations in the NVT

ensemble at experimental densities. Eq. 4.15 gives the Einstein formula,

D = lim
t→∞

1

6t
〈|r(t)− r(0)|2〉, (4.15)

where r(t) denotes the position of the fluorine atom at time t. Diffusion coefficients

were measured using a linear fit of 〈|r(t)− r(0)|2〉/6 in the middle region of the curve

from the MD trajectories. Diffusion coefficients from XPHF and experiments [24] are

given in Table 4.9. Experimental values for states A-H and K were determined from

the Arrhenius equation DExpt. = D0 exp(−EA/RT ) where EA = 9.92 kJ/mol and the

values for D0 are 452 × 109 and 398 × 10−9 m2/s for standard vapor pressure (A-H)

and 500 Bar (K), respectively.

The computed diffusion coefficients for states D, E, F, G, and K show good agree-

ment with the Arrhenius equations derived from experiments, while those from states

A, B, C, and H show noticeable discrepancies. In the case of state H, the predicted

diffusion coefficient is nearly three times that of experiment, indicating that state H is

approaching the vapor phase under XPHF.

As for states A, B, and C, further inspection of the MD trajectories shows the pres-

ence of a series of antiparallel chains of HF. Such chain-forming behavior is consistent

with observations of HF in the solid state by X-ray diffraction [227], for which a freez-

ing point of -83.4 ◦C was reported. These antiparallel chains are the most rigid in states
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Figure 4.10: A comparison of the partial RDFs of HF at state E (296 K, 1.2 bar), for XPHF
(red), PJV-P (blue), BOMD at the BLYP-D2/TZV2P level (orange), and the experiment
of McLain and co-workers (black) [26]. XPHF shows agreement with experiment that
is comparable to the results of the PJV-P model. Note that the BOMD simulation was
performed at a slightly different state of 300 K and 1.0 bar.
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A and C, while state B shows some flexibility. Since the temperatures of states A, B,

and C are near the experimental freezing point, we suggest that the freezing point

temperature predicted by XPHF model might be too high.

State T (K) ρ (g/cm3) DXPHF DExpt.
A 195 1.058 0.07 1.00
B 246 1.038 0.63 3.54
C 203 1.176 0.03 1.27
D 273 1.015 5.24 5.72
E 296 0.997 7.19 8.03
F 300 0.962 7.28 8.47
G 373 0.796 21.43 18.45
H 473 0.236 111.10 36.28
I 473 0.398 71.02 –
J 473 0.647 45.37 –
K 473 0.796 34.53 31.95

Table 4.9: Diffusion coefficients in 10−9 m2/s as predicted by XPHF at the 11 state
points with comparison to experiment [24]. Experimental values for states A-H and
K were determined from the Arrhenius equation DExpt. = D0 exp(−EA/RT ) where
EA = 9.92 kJ/mol and D0 = 452 and D0 = 398 10−9m2/s for standard vapor pressure
(A-H) and 500 Bar (K) respectively.

4.4.7 Deviation in Supercritical States

Pártay and co-workers stated that the poor performance of energetic, density, and

structural properties of HF in the supercritical states H-K compared to experiments

may be due to an overestimation of the pressure at which the maximum value of the

isothermal compressibility curve occurs [21]. This observation was made by noting

that the deviation in these properties compared to experiments is much larger at lower

pressures than at higher pressures (see Tables 4.6 and 4.8). Shortly following that study,

Baburao and Visco suggested that the isothermal compressibility of HF in the super-

critical region may exhibit more than one maximum [258], further complicating the
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understanding of HF in the supercritical states.

We estimated the isothermal compressibility κ for the supercritical states H-K by

using

κ =
1

ρ

(
∂ρ

∂P

)
T

≈ 1

ρ

∆ρ

∆P
, (4.16)

where ρ and P denote the density and pressure, respectively, at each state for T = 473 K.

Taking a one-sided finite difference for the end points (states H and K) and an average

of two one-sided finite differences for the middle points (states I and J), we found κ

to be 0.0245, 0.0352, 0.007, and 0.003 bar−1 for states H, I, J, and K, respectively. This

behavior of κ is in accord with the other models for HF (see Figure 5 of Ref. [21]),

suggesting that the accuracy of the XPHF model in the supercritical states may also be

affected by this type of overestimation.

4.5 Conclusion

We have introduced a fluorine parameter into the PMOw model for use with X-Pol as a

QMFF for HF – the XPHF model. XPHF shows good agreement with experiments, and

is comparable to the JV-P model and its PJV-P re-parameterization in terms of radial

distribution functions, energies per molecule, average dipole moments, and density

profiles.

Although the results of the XPHF model are comparable to the PJV-P and JV-P

models for most quantities tested, several of the same limitations of those models are

present in XPHF. Pártay and co-workers suggested that the r−12 term in the Lennard-

Jones potential of the PJV-P and JV-P models limits the accuracy of the predicted densi-

ties. The XPHF model could be improved by incorporating these exchange-correlation

and dispersion effects directly into the Fock matrix using an approach similar to that
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used by York and co-workers [84]. Further, a two-body correction to the X-Pol method

which incorporates charge transfer effects into individual fragments by examining all

interactions of fragment pairs could be used [148]. In addition to including charge

transfer effects, such an “XP2HF” model could immediately incorporate exchange-

correlation and dispersion effects through PMO’s pairwise D1 dispersion [95], though

such treatment would be empirical. Finally, the semiempirical parameters could be

further optimized to give more accurate results, although as in the case of the JV-P and

PJV-P models, the improvement would likely not be drastic.

The XPHF model is greatly improved over the previous attempt of modeling HF

with X-Pol based on the AM1 model, and our results show that a two-site model for

HF can be as accurate as three-site, polarizable models such as PJV-P and JV-P. This fur-

ther demonstrates the utility of the PMO/X-Pol/DPPC methods for use in force field

development beyond the XP3P model for liquid water, suggesting that this approach

may be useful as a general framework for a polarizable force field.1

1 We thank Pal Jedlovszky for providing us with the total RDFs of the supercritical states for the
TIPS, JV-NP, and JV-P models, and Sylvia McLain for the partial RDFs of the experiment at 296 K and 1.2
bar. We also thank Matthew McGrath and J. Ilja Siepmann for providing us with the BLYP-D2/TZV2P
trajectory of 64 HF under the NPT ensemble at 300 K and 1 bar, allowing us to calculate the partial RDFs
and make comparisons with that result. This work has been partially supported by National Institutes
of Health grants GM46376 and RC1-GM091445. Computations were performed on an SGI Altix cluster
acquired through National Institutes of Health grant S10-RR029467.
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Chapter 5

MACROSHAKER: A
Coarse-Grained Force Field for
Crowded Systems of many Proteins

5.1 Introduction

Macromolecular crowding is a characteristic feature of living cells, due to the large

size of the confined macromolecules compared to the relatively small, finite cellular

compartments that hold them. Even at low concentrations of individual proteins, the

excluded volume of the cellular compartments can be high, leading to exceptionally

large activity coefficients up to 106 [259]. Experimental studies [259–264] have exam-

ined the effects of macromolecular crowding on numerous properties. For example,

reaction rates in vivo can be drastically different from those in vitro. According to El-

lis [262], “it can be stated with some confidence that many estimates of reaction rates

and equilibria made with uncrowded solutions in the test tube differ by orders of mag-

nitude from those of the same reactions operating under crowded conditions within

cells.” Therefore, it is of paramount importance to include the effects of macromolec-

ular crowding when modeling the biochemical and biophysical processes occurring in

living cells.
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Figure 5.1: An artistic rendition of a cross-section of an E. coli cell clearly showing a
crowded environment of macromolecules. Reproduced with the permission of D.S.
Goodsell, Scripps Research Institute [27].
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The vast majority of molecular dynamics (MD) simulations of biological systems

to date have focused on the explicit modeling all atoms, which limits the integration

time step in the equations of motion to a value on the order of 1 fs. The conditions

in such simulations are often close to in vitro experiments, making them convenient

for comparison with observed data at very low concentrations of proteins. However,

such conditions are far from the reality of the crowded compartments in a living cell,

as vividly depicted by Goodsell’s artistic perception (Figure 5.1) [27]. Furthermore, all-

atom MD simulations have prohibitively high computational cost for a system at even

a fraction of the size of a cell. Therefore, there is an urgent need for the development of

a “mesoscopic” computational model for specific biological processes taking place in

the cell under conditions closely resembling the real system that includes all relevant

macromolecular particles1 .

The goal of this study is to develop a theoretical and computational model for the

representation of macromolecular particles that can be conveniently used to model

a section of the cell, which can adequately describe intermolecular interactions and

the execution of the dynamic and reactive trajectories of cellular processes, such as

metabolism and signal transduction. As an initial step towards this goal, we introduce

a model to reproduce concentration-dependent diffusion coefficients obtained from

experiment.

One approach to model macromolecular diffusion and transport is to use Brownian

dynamics. Studies such as those described in Refs. [265–273] have demonstrated that

Brownian dynamics can be useful for modeling macromolecular transport in cellular

organelles. Consequently, our computational model is based on stochastic processes,

and uses the Brownian dynamics scheme of Ermak and McCammon [46]. Another

1 We refer to “large” molecules other than metabolites, enzyme cofactors, single molecules, ions and
solute, or a small fragment of polypeptide as macromolecular particles. They include folded proteins,
nucleic acids, protein-nucleic acid complexes, protein complexes, ribosomes, and lipid bilayers. For sim-
plicity, at present time, we do not consider intrinsically disordered proteins.
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approach we take is the reduced complexity of the macromolecules through the con-

traction of several groups of atoms into single “beads”, or coarse-graining. Our model

incorporates a coarse-graining scheme using a superimposed “uniformly”-spaced grid

similar to, but also different from, the approach of Byron [274]. The approximation

scheme is nearly volume-preserving, and preserves the center of mass of the original

macromolecule. In addition to Brownian dynamics and coarse-graining, we treat the

macromolecules as rigid bodies, and use quaternions and the techniques of Bulgac and

Adamuţi-Trache for rotational dynamics [275].

Our model, called MACROSHAKER2 , has been implemented into a software

package of the same name, and has a graphical user interface for the generation of con-

figuration files and an interactive visualization environment that renders a scene sim-

ilar to the artistic works of Goodsell [27]. The remainder of this chapter describes our

implementation of dynamics for the diffusive process, our coarse-grained force field,

and our graphical user interface with visualization environment. We also provide a

comparison of concentration-dependent diffusion coefficients for myoglobin obtained

from MACROSHAKER with those obtained from experiments.

2 MACROSHAKER is a portmanteau of “macromolecule” and “shaker”. The “macromolecule” part
comes from the types of molecules we use in simulations, while the “shaker” part comes from the random
movements of these particles while undergoing Brownian dynamics. The name MACROSHAKER is not
an acronym, but rather is capitalized solely for dramatic effect, in the same fashion as many other scientific
programs.
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5.2 Dynamics in MACROSHAKER

In all-atom simulations of many proteins, the number of solvent molecules dwarfs the

number of proteins by several orders of magnitude, and the detailed, short-range re-

pulsive force requires the use of a small integration time step for the equations of mo-

tion. MACROSHAKER attempts to address the solvent problem by employing Brow-

nian dynamics.

The equations of motion for Brownian dynamics have been established since the

early works of Einstein in 1905 [276] and Langevin in 1908 [277]. The most widely

used form of Brownian dynamics is Langevin’s stochastic differential equation, which

is often written as Eq. 5.1,

m
d2~r

dt2
= −ξ d~r

dt
−∇V (~r) + ~S(t), (5.1)

where m is the mass of the particle, ξ is a damping coefficient related to the diffu-

sion coefficient and solvent viscosity, V (~r) is a potential energy function, and ~S(t) is a

stochastic force satisfying the conditions,

〈
~S(t)

〉
= 0 and

〈
~S(t) · ~S(t′)

〉
= 6ξkBTδ(t− t′), (5.2)

where T is absolute temperature and kB is Boltzmann’s constant.

By inspection, one can see that the Langevin equation is indeed a form of Newton’s

equation of motion with a stochastic term, which, in our case, represents the effects of

the solvent on the macromolecules. The computational benefit of such an approach is

clear, and several numerical integration schemes for the Langevin equation have been

proposed.

148



5.2.1 Ermak-McCammon Integration

The most widely used numerical method to perform Brownian dynamics simulations

with a large time step was introduced by Ermak and McCammon in 1978 [46]. The

Ermak-McCammon scheme arises from the integration of the Langevin equation over

a time step ∆t >> m/ξ, which implies
〈
md2~r/dt2

〉
∆t
≈ 0.

Integrating the Langevin equation under the assumption that ∆t >> m/ξ produces

the translational Brownian dynamics scheme of Ermak and McCammon in Eq. 5.5,

where F = −∇V is the systematic force due to intermolecular interactions of Brownian

particles and Dt is the translational diffusion constant.

~r(t+ ∆t) = ~r(t)−∇V ∆t

ξ
+

∫ t′+∆t

t′

~S(t)

ξ
dt′ = ~r(t) +

Dt
~F

kBT
∆t+ ~R(∆t) (5.3)

Here, F = −∇V is derived from the total potential energy of the system describing

intermolecular interactions, and R(∆t) is a term describing the random displacement

at each step due to collisions by the implicitly treated solvent molecules. Similar to

the Langevin equation, the stochastic displacement term R(∆t) of Eq. 5.5 satisfies the

conditions given in Eq. 5.4.

〈
~R(∆t)

〉
= 0 and

〈
~R(∆t) · ~R(∆t)

〉
= 6Dt∆t. (5.4)

The valueDt = kBT/ξ represents the translational diffusion constant of a given macro-

molecule where ξ = 6πηR for a solvent with a viscosity η and the macromolecule with

a Stokes’ radiusR. Dt is molecule dependent and tends to decrease as the mass and/or

Stokes’ radius of the molecule increases [278].

Strictly speaking,Dt is a 3N×3N matrix representing a more generalized pairwise-

distance dependent diffusion tensor used for hydrodynamic interactions [46]. In this
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more detailed case, the equation describing translational motion becomes

~ri(t+ ∆t) = ~ri(t) +
∑
j

∂Do
ij

∂rj
∆t+

∑
j

Do
ijF

o
j

kBT
∆t+ ~Ri(∆t), (5.5)

where the superscript “o” indicates evaluation at the beginning of each time step.

While hydrodynamic effects have been used extensively by others such as Skolnick

et al. [269, 279–282], the diffusion tensor is regarded as a 3N × 3N diagonal matrix in

this work (Eq. 5.6).

Do
ij = (kBT/ξ)I, (5.6)

Nevertheless, an implementation of the commonly-used Rotne-Prager-Yamakawa (Eq.

5.7) [283] and Rotne-Prager (Eq. 5.8) [284] diffusion tensors for non-overlapping (rab ≥

(Ra +Rb)) and overlapping (rab < (Ra +Rb)) particles, respectively, is available to use

with MACROSHAKER.

Do
ij =

[
I + (~rab~r

T
ab)/r

2
ab + (2R2/3r2

ab)(I− 3(~rab~r
T
ab)/r

2
ab

)
]/(8πηrab), (5.7)

for non-overlapping spheres, and

Do
ij = (kBT/ξ)

[
(1− 9rab/32R)I + (3/32R)(~rab~r

T
ab)/r

2
ab

]
, (5.8)

for overlapping spheres.

The derivation and equation for rotational Brownian dynamics under the Ermak-

McCammon scheme is analogous to that of translational motions with the substitution

of the angular counterparts, notably the torque τ = r × ~F . Eq. 5.9 gives the Ermak-

McCammon scheme for rotational motions satisfying the conditions in Eq. 5.10, where
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the value Dr = kBT/8πηR
3 is called the rotational diffusion constant.

~θ(t+ ∆t) = ~θ(t) +
Dr~τ

kBT
∆t+ ~Θ(∆t) (5.9)

〈
~Θ(∆t)

〉
= 0 and

〈
~Θ(∆t) · ~Θ(∆t)

〉
= 6Dr∆t. (5.10)

At this point, we have not addressed the details of the stochastic terms used in the

dynamics scheme. These terms are determined such that the mean value is zero and the

variance satisfies the fluctuation-dissipation theorem (Eqs. 5.4 and 5.10). Numerically,

they are represented as independent random variables from a normal distribution.

We have used a Box-Muller transform to generate random normally-distributed

numbers from random, uniformly-distributed numbers [285]. In particular, for inde-

pendent random variables U1 and U2 from the same uniform distribution on the in-

terval (0, 1), X1 and X2 give a pair of independent random variables from the same

normal distribution with mean zero and unit variance (Eq. 5.11).

X1 =
√
−2 lnU1 cos(2πU2)

X2 =
√
−2 lnU1 sin(2πU2)

(5.11)

After generation,X1 andX2 can be multiplied by an appropriate scale-factor to enforce

the necessary constraints on the stochastic terms seen in Eqs. 5.4 and 5.10.

5.2.2 Rigid-body Mechanics

In MACROSHAKER, the coarse-grained macromolecules are treated as rigid bodies

during simulations. The data structure storing the coarse-grained model contains the

center of mass of the macromolecule and the coordinates of the beads relative to that
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Figure 5.2: The Cartesian coordinates of the center of mass of a myoglobin under
Ermak-McCammon dynamics over a period of 1 µs.

center. This allows for translational motions described by simple center of mass dy-

namics, as accomplished by Eq. 5.5.

Rotational motions of the macromolecules are more complicated than translational

motions. We use a conversion from Z − X ′ − Z ′′ Euler angles to quaternions at each

step to account for the rotational motion seen in Eq. 5.9. The rotation matrices and

quaternion conversion formulas follow the pattern of those in Ref. [275]. The Z −

X ′ − Z ′′ Euler angles α, β, and γ describing the initial orientation of a molecule can be

converted to a quaternion ~q = q0 + iq1 + jq2 + kq3, where
∑3

m=0(qm)2 = 1, using Eq.

5.12.

q0 = cos(β/2) cos [(α+ γ) /2]

q1 = sin(β/2) cos [(α− γ) /2]

q2 = sin(β/2) sin [(α− γ) /2]

q3 = cos(β/2) sin [(α+ γ) /2]

(5.12)
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Since rotational motion accumulates with each rotation, it is necessary to consider

only the change in angular orientation at each time step of the Brownian dynamics

simulation, rather than the actual orientation of the rigid molecule. This can be done

by using Eq. 5.13 as opposed to Eq. 5.9 which describes the actual orientation at each

t.

d~θ(t+ ∆t) =
Dr~τ

kBT
∆t+ ~Θ(∆t) (5.13)

These changes in angular orientation can be transformed to a change in quaternions

using techniques similar to those found in Ref. [275]. The result is the matrix-vector

product below.



dq0

dq1

dq2

dq3


=

1

2



q0 −q1 −q2 −q3

q1 q0 −q3 q2

q2 q3 q0 −q1

q3 −q2 q1 q0





0

dθx

dθy

dθz


(5.14)

Eq. 5.14 is applied for each rigid-body macromolecule at each time step, producing

a time-dependent quaternion, describing its orientation, by q(t+ ∆t) = ~q(t) + d~q. This

results in an extra step to ensure that the updated time-dependent quaternion has been

normalized by applying the constraint
∑3

m=0(qm(t+ ∆t))2 = 1.

The application of Eqs. 5.13 and 5.14 and the renormalization of quaternions allows

us to produce a 3× 3 rotation matrix for the rotation of the bead position vectors in R3,
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relative to the center of mass, of each coarse-grained macromolecule.


q2

0 + q2
1 − q2

2 − q2
3 2(q1q2 + q0q3) 2(q1q3 − q0q2)

2(q1q2 − q0q3) q2
0 − q2

1 + q2
2 − q2

3 2(q2q3 + q0q1)

2(q1q3 + q0q2) 2(q2q3 − q0q1) q2
0 − q2

1 − q2
2 + q2

3

 (5.15)

This rotation matrix is orthogonal, and can be used to rotate each bead position vector

as needed. Such a scheme is preferred to the permanent rotation of the position vectors

which can lead to numerical instability [275]. It is also useful in practice considering

that one coarse-grained model can be stored in the memory while multiple instanti-

ations of the model can be created by only describing its center of mass location and

angular orientation.

5.3 Coarse-Grained Force Field

Due to the n-body nature of atomistic MD simulations, the cost of calculating the in-

termolecular forces in an MD simulation is naı̈vely O(n2). For large n, the calculation

of these forces is expensive. One method of reducing the cost of the n-body prob-

lem is to reduce n by replacing clusters of atoms with single “beads”. This technique,

called coarse graining, has become popular in recent years for representation of lipids,

macromolecules, proteins, and nanoparticles. Levitt and Warshel introduced the first

coarse-grained model for proteins, based on amino acid residues, in 1975 to model the

folding process of the bovine pancreatic trypsin inhibitor (BPTI) [40]. The following

year, Tanaka and Scheraga used their own residue based model for studying protein

folding [41]. Other work includes that of Smit et al., who developed a simple coarse-

graining approach for the representation of oil and water particles for simulating mix-

ing at their interface in 1990 [42]. More recent work has focused on coarse-graining
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with the explicit preservation of physical characteristics of the original particles such

as center of mass, moment of inertia, and certain thermodynamic properties by re-

searchers such as Voth et al. [43]

Our coarse-graining method in MACROSHAKER is based upon the work of Byron

[274], and uses the superimposition of a “uniformly”-spaced grid to determine the

atomic clusters to be replaced by a single interaction site called a bead. However, the

present approach is fundamentally different in that it explicitly preserves the center of

mass of the original particle while heuristically preserving the volume of the molecular

system.

The structural information of macromolecules in MACROSHAKER is obtained from

PDBs [286] hosted by the RCSB Protein Data Bank [287]. Each atom is treated as a

sphere of its van der Waals radius obtained from the X-ray diffraction experiments of

Bondi [288]. For the purpose of our rigid-body dynamics simulations, the relevant

information needed for each atom consists of its position ~p, its van der Waals radius

r, its mass m, and its charge q. Our coarse-graining method seeks to re-create these

properties for a single coarse-grained bead representing a cluster of atoms.

5.3.1 Coarse-Grained Model

We now describe the current coarse-graining method in MACROSHAKER. A nearly

uniformly-spaced grid of spacing w is superimposed on the smallest bounding box

containing the molecule in question. The bottom-left-far corner coordinates and the

top-right-near corner coordinates of the bounding box are stored as vectors ~B and ~T ,

respectively; ~B stores the minimum x, y, and z coordinates from all atoms, while ~T

stores the maximum x, y, and z coordinates from all atoms. The number and types

of atoms in each grid entry are recorded, and a resulting coarse-grained approxima-

tion is formed. This process is illustrated in Figure 5.3 on the crystal structure of a
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Figure 5.3: The van der Waals surface of a deoxyhemoglobin S (PDB: 2HBS) (left; 8760
heavy atoms), the bounding volume and grid representation formed from using a spac-
ing ofw = 15 Å(center), and the result of contracting all atoms in a grid entry to a single
sphere (right: 107 spheres)

deoxyhemoglobin S dimer [289].

Due to the use of a fixed bounding box, which can have different integer numbers

of elements in each dimension, the grid is said to be nearly uniformly-spaced. For a

desired grid spacing w, we determine the number of grid entries in the x, y, and z

directions using Eq. 5.16. After the dimensions of the grid are calculated, the new grid

spacings in each direction dx, dy, and dz are computed using Eq. 5.17. The use of the

floor function in Eq. 5.16 ensures that the grid dimensions are of an integer number,

and results in spacings dx, dy, and dz all greater than or equal to w.

nx = bTx −Bx
w

c, ny = bTy −By
w

c, nz = bTz −Bz
w

c. (5.16)

dx =
Tx −Bx
nx

, dy =
Ty −By
ny

, dz =
Tz −Bz
nz

. (5.17)

After the computation of the dimensions and new spacings, each entry of the grid

is visited and a list of atoms whose centers lie in each entry are recorded. These lists
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ALA ARG ASN ASP CYS GLU GLN GLY HIS ISO
0 1 0 -1 0 -1 0 0 0 0

LEU LYS MET PHE PRO SER THR TRP TYR VAL
0 1 0 0 0 0 0 0 0 0

Table 5.1: The net charges of each amino acid residue used by MACROSHAKER in
the creation of coarse-grained models. Charges are centered on the α-carbon of each
residue and are summed to determine the charge on the bead that contains them.

are used to compute the mass contained in each grid entry, the net charge of each grid

entry, as well as a bounding volume formed from the sum of the volume of those grid

entries which contain atoms (center pane of Figure 5.3). These three quantities are

given in Eq. 5.18 as M , Q, and Vtot respectively, where N is the number of atoms in a

particular grid entry and NG is the total number of grid entries which contain at least

one atom.

M =

N∑
k=1

mk, Q =

N∑
k=1

qk, Vtot = dxdydzNG (5.18)

For the sake of simplicity, charges on the beads are currently determined by summing

the charges on the α-carbon sites 3 located within each bead according to Table 5.1

A more sophisticated scheme for determining charges on the beads is discussed in

Appendix A.

The recording of the lists of atoms in each grid entry not only allows us to find the

quantitiesM andQ for each entry in the grid, but also the location of the center of mass

for each grid entry containing at least one atom. By placing each coarse-grained bead

with mass M at the center of mass of its grid entry ~P , we preserve the center of mass

of the entire system. The center of mass is calculated for each non-empty grid entry

3 At the present time, histidine (HIS) is considered to be neutrally charged. In reality, HIS can be
either neutral or positive depending on the residues it interacts with and its exposure to the solvent. This
remains an issue to be addressed in the future.
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using Eq. 5.19, where ~pk denotes the position of an individual atom.

~P =
1

M

N∑
k=1

mk~pk (5.19)

The next step in the method is to determine the radius of the coarse-grained bead.

The radius R of the coarse-grained bead is related to the total mass Mtot and total grid-

based bounding volume Vtot of the macromolecule. The radius R is determined by

relating the total volume derived from the non-empty grid entries to the percentage of

mass contained within a particular grid entry, given by M/Mtot. We compute R using

Eq. 5.20.

R =

((
3

4π

)(
M

Mtot
Vtot

))(1/3)

(5.20)

The bead radius R is identical to the σ parameter used in our dispersion potential (see

next section).

Once the quantities of Eqs. 5.18, 5.19, and 5.20 are known, the final step is to initial-

ize and allocate the memory for a data structure containing them. The total number of

resulting coarse-grained beads is NG.

Figure 5.4 shows several renderings of the grid representation and coarse-grained

representation of a deoxyhemoglobin S dimer containing 8760 heavy atoms [289]. The

results seen in Figure 5.4 indicate that the present coarse-graining method not only

significantly reduces the number of interaction sites compared to the number of atoms,

but also preserves molecular shape for large grid spacings.
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Figure 5.4: The uniform grid representation with spacings w = 5, 10, 15, 20, and 25,
respectively (top), and the corresponding coarse-grained models with 1592, 269, 107,
37, and 21 sites, respectively (bottom).

5.3.2 Potential Energy

A force field is only as good as the potential energy function which describes it. It is

well known that the repulsive wall between two particles A and B in close proxim-

ity, originating from Pauli exchange, has a great influence on the overall structure of

condensed-phase systems [290]. In classical MD simulations, this repulsive wall is of-

ten represented by a 12-6 Lennard-Jones potential, which has a singularity at rAB = 0.

While traditional MD simulations use a small enough time step to avoid this singular-

ity by forcing a gradual climb of the repulsive wall at very short distances, the random

displacement in Brownian dynamics along with its larger time step make rAB ≈ 0 ac-

cessible during the simulation. Consequently, the component of the potential which

describes the repulsive force must be softer and have a finite value at rAB = 0.
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Although the ideal functional form of the potential is unknown in our case, we sug-

gest a simple harmonic potential based upon the overlap of Stokes’ spheres of macro-

molecules A and B to represent Pauli exchange-repulsion,

V Exch.(rAB) =


c
2

(
rAB−(RA+RB)

(RA+RB)

)2
when rAB ≤ (RA +RB),

0 when rAB > (RA +RB),
(5.21)

where c is a constant fit to reproduce the concentration-dependent diffusion coeffi-

cients, and RA and RB are the Stokes’ radii determined by the Stokes-Einstein relation

Dt = kBT/6πηR.

In contrast to the case of the repulsive potential, the attractive component of the

12-6 Lennard-Jones potential, which begins at rab = 21/6σab, is free of singularity.

MACROSHAKER retains the attractive part of the Lennard-Jones potential as a de-

scription of dispersion between beads a and b,

V Disp.(rab) =


4εab

[(
σab
rab

)12
−
(
σab
rab

)6
]

when rab ≥ 2
1
6σab,

−ε when rab < 2
1
6σab,

(5.22)

where σab = σa + σb with σa and σb equal to the radius of the beads from the grid-

based coarse-graining model (i.e. σ = R of Eq. 5.20) and εab = (εa + εb)/2 with εa and

εb chosen to fit the concentration-dependent diffusion coefficients.

Together, Eqs. 5.21 and 5.22 give a description of the short-range repulsive and

long-range dispersion interactions between two coarse-grained macromolecules. What
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remains is a description of an intermolecular electrostatic potential that takes the screen-

ing effects of the implicit solvent into consideration. Using the assumption that a so-

lution of water and ions surrounds each macromolecule and a series of approxima-

tions to the Poisson equation outlined in Appendix A, the Debye-Hückel equation (Eq.

5.23) [291] emerges,

V Elec.(rab) =
qaqbe

−κrab

4πεrε0

√
r2
ab + α

(5.23)

where qa and qb represent the charges of beads a and b, εr and ε0 are the dielectric

constant of the solvent and vacuum permittivity, κ−1 is the Debye-Hückel screening

length, which is related to the ionic concentration, and α = 0.1Å2 is used to avoid the

singularity caused by overlapping beads.

In the end, the net force acting on each bead is projected into components in the

direction to the center of mass for the force involved in translational motion, and an

orthogonal component for the torque involved in rotational motion.

5.4 Graphical User Interface

A graphical user interface (GUI) for generating the initial configurations and setting

up simulation conditions and for visualization of the Brownian dynamics trajectories

was written in C++ using OpenGL and the Qt toolkit. The graphical interface has the

capability to load PDB files for constructing coarse-grained models (Figure 5.5). The

user can select a protein or a nucleic acid structure from the PDB, and can choose the

number of molecules to be placed in the simulation box. The size of the simulation

box can be specified in the GUI, for which randomized positions and orientations of

the macromolecular particles can be generated (Figure 5.6). Equilibrium steps can be

run within the GUI prior to saving the initial coordinates if desired. Simulations using
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Figure 5.5: The component of the MACROSHAKER GUI which selects the level of
coarse-graining to be used. A PDB is first loaded (top) and the grid size is specified
along with the number of copies to use in the simulation (bottom).
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Figure 5.6: The component of the MACROSHAKER GUI in which the box size is en-
tered and the initial coordinates are randomized; equilibrium steps can be run to re-
duce steric clashes and visualized in realtime in this part of the GUI.

the MACROSHAKER CGFF can be run within the GUI or on the command line after

saving the configuration files. Trajectories of completed simulations can be visualized

in the GUI and saved to a video file if desired (Figure 5.7).

5.5 Visualization in MACROSHAKER

The Brownian dynamics trajectory generated from simulations using MACROSHAKER

can be visualized by using spherical harmonic expansions of the macromolecular sur-

faces. Such representation of macromolecules provides not only a smooth and aes-

thetically pleasing surface, but also allows for evaluating surface properties such as

normal vectors and principal curvature. Our implementation makes use of a modified
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Figure 5.7: The visualization component of the MACROSHAKER GUI showing a box
of several of the proteins in albumen. Trajectories can be played back within the inter-
face or exported to video files.
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approach of Duncan and Olson [292] with non-photorealistic, cartoon-like rendering

techniques similar to those of Decaudin [293]. The coupling of spherical harmonic sur-

faces and cartoon-like rendering techniques allows us to achieve a final result visually

similar to the widely known artistic works of Goodsell [27].

5.5.1 Spherical Harmonic Expansions

Arising from the solution of Laplace’s equation in spherical coordinates, the spherical

harmonic expansion is the spherical coordinate analog of the widely used Fourier se-

ries expansion. As Fourier series expansions require a one-to-one set of input points

in Cartesian coordinates for an accurate expansion, the same is true for spherical har-

monic expansions in the case of spherical coordinates. For any one-to-one surface S in

the spherical coordinate system, often called a star-like surface, there exists a spherical

harmonic expansion (Eq. 5.24).

S(θ, φ) =
∞∑
l=0

m=l∑
m=−l

clmY
m
l (θ, φ) (5.24)

The clm and the Y m
l of Eq. 5.24 are the coefficients and basis functions of the expansion

respectively. The basis functions Y m
l are defined in Eq. 5.25, where Pml is a real-valued,

m-th order Legendre polynomial of the l-th kind.

Y m
l (θ, φ) =

√
2l + 1

4π

(l −m)!

(l +m)!
Pml (cos θ)eimφ (5.25)

Several methods exist for evaluating the Legendre polynomials of Eq. 5.25, one of

which is discussed in Ref. [294].

As the spherical coordinate analog of the Fourier series expansion, the spherical

harmonic expansion retains the useful property that its basis functions are orthogonal

165



under the L2 inner product. This allows for the determination of an arbitrary coeffi-

cient clm by computing the integral of Eq. 5.26.

clm =

∫ 2π

0

∫ π

0
S(θ, φ)Y m

l (θ, φ) sin θdθdφ (5.26)

In general, the coefficients clm and the basis Y m
l functions are complex-valued. How-

ever, since the original surface S ∈ R3 is real-valued, it is often desirable to use what are

called the real spherical harmonic basis functions. These real basis functions are merely lin-

ear combinations of the complex-valued basis functions Y m
l . Consequently, the above

analysis remains the same, albeit with a different definition of Y m
l [292].

Due to the finiteness of computing resources, the infinite sum of Eq. 5.24 is trun-

cated to a relatively small value L which produces an approximation R to the original

surface S. Thus, it is only necessary to determine (L+1)2 coefficients, all of which may

be precomputed and stored for the evaluation of points on the approximated surface

given by R.

S(θ, φ) ≈ R(θ, φ) =
L∑
l=0

m=l∑
m=−l

clmY
m
l (θ, φ) (5.27)

The approximationR to the original surface S can be used to obtain vertices for use in a

triangular mesh by using the usual formula to convert between spherical and Cartesian

coordinates.


x(θ, φ)

y(θ, φ)

z(θ, φ)

 =


R(θ, φ) sin θ cosφ

R(θ, φ) sin θ sinφ

R(θ, φ) cos θ

 . (5.28)

In order to compute the coefficients using Eq. 5.26, a one-to-one input surface S

with respect to θ and φ is required. Typically, solvent-accessible surfaces are used; here,
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Figure 5.8: The van der Waals surface of myoglobin and the corresponding one-to-one
surface from a ray casting procedure.

we propose a technique in the spirit of ray casting [295] for determining the outermost

point of a macromolecule by finding the furthest ray-sphere intersection on its van der

Waals surface using a ray starting from the center of mass.

A ray ~r(t) starting at the center of mass of a macromolecule p with unit-length

direction ~d takes the form of Eq. 5.29 for t ≥ 0. Similarly, a sphere of radius ρ centered

about the point s takes the form of Eq. 5.30. For a given pair of angles (θ, φ), Eq. 5.28

can be used to find ~d = (dx, dy, dz) by takingR(θ, φ) = 1, and ρ can be determined from

the van der Waals radius of each atom.

~r(t) = t~d+ p = t(dx, dy, dz) + (px, py, pz) (5.29)

(x− sx)2 + (y − sy)2 + (z − sz)2 = ρ2 (5.30)
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The composition of Eq. 5.29 and Eq. 5.30 results in Eq. 5.31.

(tdx + (px − sx))2 + (tdy + (py − sy))2 + (tdz + (pz − sz))2 = ρ2 (5.31)

Eq. 5.31 is quadratic in t, and can be solved to yield,

t =
−B ±

√
B2 − 4AC

2A
, (5.32)

where

A = ‖~d‖2 , B = 2(~d · (p− s)) , C = ‖p− s‖2 − ρ2. (5.33)

For all possible (θ, φ), the greatest intersection time over all atoms is stored. The

intersection point corresponding to the greatest time is guaranteed to lie on the van

der Waals surface. The maximum ray-sphere intersection time tmax is obtained for each

(θ, φ) pair, and the corresponding intersection point (‖~r(tmax)‖, θ, φ) is stored. If no

valid intersection is found, the intersection point is set to (0, θ, φ)4 . This scheme yields

a one-to-one surface S(θ, φ) ∈ R3 which is suitable for use in obtaining a spherical

harmonic expansion.

Figure 5.9 shows several renderings of spherical harmonic expansions of a Mb [25]

from the RCSB Protein Data Bank. The L values increase from left to right and top to

bottom respectively. All renderings were created with MACROSHAKER. As can be

seen, the characteristic shape of the protein is clearly identifiable when L = 5, and

greater details are well presented with L = 10. At this level, a total of 121 coefficients

are needed in the spherical harmonic expansion.

4 This step can be modified to trace a sphere along those rays which have no intersection, stopping at
a value of tmax where no atom is partially contained in the casted sphere. This results in a much smoother
surface, but has a larger volume and surface area. Such surfaces were used in the creation of the figures.
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Figure 5.9: Spherical harmonic surfaces of a Mb from L = 0 (upper-left) to L = 19
(lower-right).
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5.5.2 Non-photorealistic Rendering

Macromolecules are quite large by molecular standards, but are still small enough to

be invisible to the naked eye, and lack intrinsic color. Consequently, visualizations

of macromolecules which do not shade models based upon electrostatic potential or

similar properties merely attempt to produce an aesthetically pleasing rendering with

respect to color and shading. As a result, we seek to develop a shading model similar

to the hand drawings of macromolecules by Goodsell [27].

Many classical reflectance models make use of Lambertian reflectance for diffuse

shading [296]. Such shading tends to be very smooth for smooth surfaces due to a

varying surface normal. However, cartoon-like drawings tend to use very few colors

and relatively little shading variation despite the curved nature of surfaces and varying

surface normals. In 1996, Decaudin [293] proposed a technique for creating cartoon-

like renderings by discretizing a smoothly shaded surface into regions of specific color

intensities. Such techniques are commonly called cel-shading. Our cel-shading tech-

nique is similar to that of Decaudin, but differs in the criteria for discretization and

ignores other aspects such as shadows.

According to the Lambertian reflectance model [296], the diffuse reflectance inten-

sity is given by the magnitude of the projection of the normalized light vector ~L onto

the surface normal ~N . Since the two vectors are normalized, the magnitude of this

projection can be thought of as the percentage of light reflecting off the surface back to

the eye. An easy way to achieve a cartoon-like rendering is through binning of these

percentages. For example, if a reflectance percentage is greater than 50%, the percent-

age is set to 100%, and if a reflectance percentage is less than or equal to 50%, the

percentage is set to 50%. Such a scheme guarantees only two possible intensity values

for the reflectance, which results in a cartoon-like rendering. This can be represented
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Figure 5.10: Definition of vectors ~V , ~N , and ~L used in shading (left), and the interpo-
lated normals ~Ni (right).

mathematically by Eq. 5.34.

Id = bmax {~L · ~N, 0}+ 0.5c (5.34)

Another aspect of hand drawn figures is that of outlines. While there are several

methods for determining outlines [293], a simple (but naı̈ve) way is to consider the

dot-product of the view vector ~V and the surface normal ~N . Points that directly form

the edge of a smooth surface satisfy the condition ~V · ~N = 0, while those not on the

edge will have ~V · ~N 6= 0. However, since surfaces are drawn from a discrete number

of polygons and the interpolation of vertex normals is not exact, it is wise to use a

threshold value to better determine where edges are present.

Consequently, we create a multiplier taking a 0 or 1 value based upon a threshold h

which we call the “edge fraction”. This edge fraction can be multiplied by the diffuse

reflectance intensity to create dark places where there are edges, while leaving the sur-

rounding non-edge places unaffected. We also note that the choice of h is related to the
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deviation allowed from the orthogonality of ~V and ~N , and is given by the expression

for ψ in Eq. 5.36. Choosing a value of h = 0.25 gives ψ = 90◦ − cos−1(0.25) ≈ 14.48◦.

Ef = bmax {~V · ~N, 0}+ (1− h)c (5.35)

ψ = 90◦ − cos−1(h) (5.36)

Our implementation is for a scene with M light sources where Ia is an ambient

intensity is given below.

I = Ef (Ia + Id) = bmax {~V · ~N, 0}+ 0.75c

Ia + b0.5 +
M∑
j=1

max { ~Lj · ~N, 0}c


(5.37)

In practice, this formula is “clamped” between the values of 0 and 1 at various stages

to avoid calculating intensities greater than I = 1.

We implemented our cartoon-like cel-shading model using the OpenGL Shading

Language (GLSL) [297]. Figure 5.11 compares our cel-shading reflectance model to the

standard OpenGL Gouraud shading. The discretization of shading intensities is clearly

visible in the cel-shaded models, giving the renderings a hand-drawn appearance. The

outlines are also noticeably present in the figure, but are more difficult to see due to

the distortion from the embedding of a rasterized images into the document.

Combining the techniques of spherical harmonic expansions and cel-shading re-

sults in the screen capture from MACROSHAKER’s trajectory playback program illus-

trated in the left pane of Figure 5.12. Through the use of spherical harmonic expansions

and cel-shading, we achieve a result similar to the hand drawings of Goodsell.
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Figure 5.11: Gouraud shading for various representations of Mb (top), and cel-shading
of the same representations

Figure 5.12: A visualization of the enzymes involved in glycolysis using a hybrid
Phong and cel-shading technique (left) and an artistic rendition of a cross-section of
an E. coli cell. [27]
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5.6 Illustrative Example: Diffusion of Myoglobin as a Func-
tion of Protein Concentration

To illustrate the feasibility of using the MACROSHAKER CGFF described in this work

to model a crowded macromolecular environment, we carried out a total of 16 Brown-

ian dynamics simulations on systems of 216 myoglobin (Mb) in an implicit ionic solu-

tion of D2O at 310 K for concentrations ranging from 2 mM to 32 mM. Each simulation

used a time step of 10 ps, lasting a total simulation time of 1 µs, after an equilibration

phase of 1 µs from random starting coordinates.

A grid spacing of 16 Å was used on coordinates from a PDB file containing the

crystal structure of Mb [25] for the creation of the coarse-grained model, resulting in

the eight-site model presented in Table 5.2. The Stokes’ radius used in the simulation

had a value of 22.68 Å, which was derived from a translational self-diffusion constant

of Mb in dilute D2O solution at 310 K of Dt = 10 × 10−7 cm2/s, which is close to

experimental values 9.38-11.3 ×10−7 cm2/s under similar conditions [28]. A value for

Dr of 1.6158 × 10−5 ps−1 was used, derived from the Stokes’ radius and the solvent

viscosity η = 1.001 mPa·s [298]. The Debye-Hükel screening length κ−1 and dielectric

constant εr of Eq. 5.23 were set to 7.952 Å−1 and 74.32, respectively. Finally, the c

parameter of Eq. 5.21 was set to 119.5 kcal/mol.

The Mb-Mb center of mass radial distribution functions (RDFs) for each of the 16

concentrations are shown in Figure 5.14. From the figure, it is clearly seen that the

peak positions became shorter and the peak heights became higher with an increase

in Mb concentration. At the very high concentration of 32 mM, for which the volume

fraction of the protein Mb from Stokes’ spheres was greater than 94% of the total box

volume (Table 5.3), the first peak of the RDF is lower, deviating from the trend 5 . This

5 Experiments have indicated that the Mb volume fraction at 30 mM is around 40% [29,299], which in
our case corresponds to a removal of about three solvation layers from the Stokes’ sphere.
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Bead x (Å) y (Å) z (Å) σ (Å) ε (kcal/mol) Charge (e) Mass (Da)
1 -5.702 -4.998 -3.886 10.784 0.113 -2.0 1224.32
2 -7.506 -8.667 10.371 13.769 0.145 -2.0 2548.01
3 -8.968 7.492 -6.488 15.266 0.161 4.0 3473.01
4 -8.708 4.910 8.553 11.663 0.123 1.0 1548.79
5 7.979 -4.907 -5.277 12.716 0.134 -1.0 2007.32
6 6.252 -8.808 8.361 12.575 0.132 -1.0 1941.05
7 11.052 5.459 -7.550 14.907 0.157 0.0 3233.76
8 6.828 3.862 6.378 10.091 0.106 1.0 1003.11

Table 5.2: An eight-site, coarse-grained model of myoglobin [25] using our grid-based
method with a spacing of 16 Å. The Cartesian coordinates of each bead are given rel-
ative to the center of mass. The ε values for use in Eq. 5.22 were fit to reproduce
the concentration-dependent diffusion by experiment from a scaling of σ by 0.0105
kcal/(mol Å).

suggests that model applicability at very high concentrations is of some concern, which

is further seen by the small change in interaction energy Ei between concentrations 30

mM and 32 mM compared to the very linear trend for lower concentrations (Table 5.3).

In addition to RDFs, the concentration-dependent diffusion coefficients of Mb were

computed for each of the 16 trajectories and compared to values from tracer particle

and neutron spin-echo experiments [28, 29]. Figure 5.13 shows a scatter plot of the

concentration-dependent diffusion coefficients of Mb obtained from experiments to

those obtained from the MACROSHAKER CGFF. It is clearly seen that values from

MACROSHAKER agree well with experiment for the concentrations tested, although

the computed values are slightly higher than experiments. Wittenberg et al. (squares

of Figure 5.13) suggested that systematic error that underestimates the self-diffusion

coefficients of Mb was present in their experimental data [28].
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Figure 5.13: Results of MACROSHAKER on a system of 216 myoglobin (Mb) compared
to the experimental data of Wittenberg et al. [28] and Longeville et al. [29]
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Concentration (mM) 107 Dt (cm2/s) Ei (kcal/mol) Stokes’ Volume Fraction
2 9.33 -1.00 0.059
4 8.51 -1.93 0.118
6 7.79 -2.69 0.177
8 6.91 -3.48 0.236

10 6.69 -4.16 0.294
12 6.11 -4.88 0.353
14 5.35 -5.62 0.412
16 4.60 -6.40 0.471
18 3.61 -7.28 0.530
20 3.28 -8.21 0.589
22 2.52 -9.19 0.648
24 2.01 -10.12 0.707
26 1.41 -11.01 0.765
28 1.09 -11.79 0.824
30 0.086 -12.45 0.883
32 0.072 -12.94 0.942

Table 5.3: The concentration-dependent diffusion coefficients of Mb, average Mb in-
teraction energy, and the Mb volume fraction for each concentration. The Mb volume
fraction was calculated using N(4/3)πσ3/V where N = 216 and σ = 22.683Å and V
denotes the simulation box volume.
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Figure 5.14: Radial distribution functions of the 216 myoglobin (Mb) from simulations
of the MACROSHAKER CGFF at concentrations ranging from 2 mM to 32 mM. As
the concentration increases, the peak positions become shorter and the peak heights
become higher. A notable exception from this trend is the slightly shorter peak height
at 32 mM, for which the volume of the Stokes’ spheres is approximately 94% of the
simulation box.
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5.7 Conclusion

We have shown that the Ermak-McCammon scheme of Brownian dynamics provides

promising results for effectively modeling the concentration-dependent translational

diffusion of myoglobin along with the use of the present coarse-grained force field.

In principle, the coarse-graining method used in MACROSHAKER is applicable to

other macromolecules. In this chapter, we showed that MACROSHAKER provides a

first-step towards a computational model for reaction-diffusion systems of crowded

proteins, RNAs, polysaccharides, and other macromolecules in vivo, although much

remains to be accomplished, especially in the coupling of reactions. In future work,

we plan to parameterize MACROSHAKER for many more proteins, including those

involved in the reaction-diffusion process of metabolic pathways, such as glycolysis.6

6 We thank David S. Goodsell of the Scripps Research Institute for granting permission to reproduce
his artistic rendition of the cross-section of an E. coli cell. This work has been partially supported by
National Institutes of Health grant GM46736. Computations were performed on an SGI Altix cluster
acquired through National Institutes of Health grant S10-RR029467.

179



Chapter 6

Internal Dynamics of an
Analytically Coarse-Grained Protein

6.1 Introduction

Molecular dynamics simulations of biological macromolecules in explicit aqueous so-

lution offer the most detailed information at the atomic level, which is essential for the

understanding of dynamics, binding, and activity of these systems. [300] Tremendous

progress has been made both in the advance of computer architecture and in the de-

velopment of computational algorithms, enabling atomistic dynamics simulations to

treat systems containing millions of atoms [38] and the dynamics lasting up to mil-

liseconds. [301, 302] However, the spatial and temporal scales needed to address ques-

tions relevant to cellular processes such as protein-protein and protein-nucleic acid

interactions and macromolecular assembly dwarfs the most sophisticated atomistic

approaches available today and perhaps in the distant future. [303] In such a meso-

scopic system, it is necessary to use a coarse-grained approach to describe the individ-

ual macromolecular components. [304, 305] We present an analytically coarse-grained

(ACG) model to represent macromolecular entities such as proteins and nucleic acids

as single building blocks that can be used to study macromolecular interactions and
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assembly in biological cells.

In the past decade, significant efforts have been devoted to the development of

coarse-grained models to circumvent the need for describing molecular systems with

increasing demands in size and time. [43] Nevertheless, the concepts of atoms and

molecules are deeply rooted in our perception of intermolecular interactions; not sur-

prisingly, coarse-grained models typically involve interaction sites in terms of reduced

representation of the detailed atomic features of the target system. The early united-

atom force field is an example of this type of coarse graining, [306, 307] and recent ad-

vances have enabled a much larger number of atoms to be grouped into a united site

along with continuum elastic network models. [43] However, to model macromolec-

ular interactions and assembly such as the mechanism of a virus capsid formation,

the detailed sequence and the “united-atom” constituents are no longer critical, and it

becomes unnecessary to enumerate the specific pairwise interactions between coarse-

grained groups among proteins. On the other hand, the use of regular geometrical

shapes seems too crude. Indeed, the key structural components are the specific shape

and the excluded volume of each capsid protein along with their intrinsic dynamic

fluctuations and the accompanying surface electrostatic potential and surface tension.

The detailed atomistic interactions, of course, are essential for recognition and binding

when two macromolecular particles are in close contact, but these are not the types of

details needed for transport processes in the cell. It appears to be desirable to develop a

theoretical method that is not restricted to the detailed features of atoms and molecules

or coarse-grained interacting groups in a large system; yet, the individual macromolec-

ular species still retain the information of, and are constructed based on the detailed

atomistic coordinates determined experimentally, which also provide all physical and

biological properties needed to model the dynamic system. Furthermore, the intrinsic
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fluctuations of the coarse-grained macromolecules relevant to the time scale of the dy-

namic model for the mesoscopic system need to be taken into account. [43] To limit the

scope of discussion, the present chapter is only concerned with the representation of

the internal dynamic fluctuations of an ACG macromolecule itself, which are derived

from explicit molecular dynamics simulations.

To this end, we make use of the mathematical tools of spherical harmonic analysis

to represent the macromolecular particles of interest; spherical harmonic analysis has

been extensively applied in a wide range of areas such as geopotential, [308] topogra-

phy, [309] and physics as well as motion picture and gaming animation. Since analyti-

cal harmonic basis functions are used, the method that we design for modeling cellular

processes is called the analytical coarse-graining (ACG) of macromolecules. The har-

monic representation can also be used directly to describe the physical interactions and

to model the dynamics of the system, which will be detailed in later studies. Our strat-

egy provides a single, unifying theory and computational algorithm to study macro-

molecular systems consisting of thousands of macromolecular particles and entities. In

such an approach, each macromolecular unit, such as a protein, is “coarse-grained” as

a single moiety of uniform mass density whose excluded volume is encompassed by

its solvent-accessible surface that is represented by a set of analytical harmonic basis

functions. Furthermore, its physical and biological properties can be treated by exactly

the same mathematical procedure as the representation of the macromolecule. Here,

we describe the treatment of the intrinsic dynamic fluctuations of a single ACG protein

using spherical harmonic functions.

Although the mathematical tools of spherical harmonic computation have been es-

tablished since the 1780s and modern numerical techniques have greatly enhanced the

computational speed, [310, 311] Max and Getzoff, [312] and Olson and co-workers,

were among the first to apply spherical harmonic functions to the visualization of
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molecular surfaces as a graphics rendering tool. [292, 313–316] Recent years have seen

the increased usage of this technique to model protein-ligand interactions and protein

docking. [317–321] Buchete et al. used spherical harmonics to analyze coarse-grained

potentials for folding calculations. [8] In a subsequent publication, Duncan and Olson

described the possibility of animating the dynamic motion of a protein to render real-

time graphics visualization; [322] however, it does not appear that specific investiga-

tions have been reported. The approach described by Olson and co-workers was aimed

to follow the time-dependent Cartesian coordinates of a protein surface as modeled by

normal mode dynamics; the method provides an efficient procedure to generate graph-

ics rendering, but it does not guarantee single-valued properties on the surface, nor is

it suitable for modeling protein dynamic motions. [315, 322] In contrast, the method

described in this chapter focuses on radial fluctuations of an ACG protein surface that

concerns no atomic details, but it is designed to model the most significant dynamic

motions revealed from an explicit molecular dynamics trajectory, in which the radial

fluctuations are decomposed based on quasiharmonic dynamic analysis. The latter has

been extensively explored to characterize large amplitude motions and quasiharmonic

vibrational modes of proteins and nucleic acids; [323–327] it provides an adequate an-

alytical procedure to describe the global large amplitude motions of a fully coarse-

grained macromolecule with spherical harmonic representation. In addition, for a set

of well-chosen numerical quadrature points in the spherical harmonic analysis, our

approach provides an efficient procedure for evaluation of molecular properties.

In the following, we first present the analytically coarse-grained (ACG) model and

computational details, focusing on the use of spherical harmonic basis functions. Then,

we describe a procedure for constructing a mathematical approach to describe the in-

trinsic quasiharmonic dynamic fluctuations of a protein based on the information from
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molecular dynamics simulations in explicit solvent. This is followed by an illustra-

tive example to show the feasibility of modeling protein fluctuations without explicit

atomic details using the ACG model. Finally, we summarize the key findings of the

present study.

6.2 Method

Throughout this chapter, we mainly use the homodimeric enzyme called orotidine 5’-

monophosphate decarboxylase (OMPDC) as an illustrative example, which consists

of two β-barrels of eight strands of β-sheet and eight α-helices. [328] In this chapter,

for convenience of discussion, we focus on the use of a spherical harmonic basis, with

which the ACG method is applicable to any macromolecular systems that have star-

like topology. [312] We note here that this is not a restriction because any geometrical

shapes including non-star-like macromolecules can be represented in the ACG model

by augmenting radial functions such as the Zernike function or Slater-type radial func-

tions, [318–321, 329, 330] but we shall not discuss these approaches here. For the rest

of this chapter, we interchangeably use the terms of “protein” and “macromolecule”,

which include proteins, nucleic acids, lipids, and other components of a macromolec-

ular assembly, without specific distinction. In this section, we first outline a quali-

tative description of the coarse-grained macromolecular model. Then, we provide a

brief summary of spherical harmonic representation of the surface of a macromolec-

ular structure. This is followed by the description of incorporating internal dynamic
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fluctuations of the protein based on the information obtained from principal compo-

nent analysis (PCA) [324, 325] of the atomistic molecular dynamic trajectory of OM-

PDC in water. [328] The purpose in this chapter is not aimed at studying the dynam-

ics of proteins using quasiharmonic dynamics; the latter has been thoroughly investi-

gated and its applications and limitations have been characterized. [324–327] The goal

here is to illustrate the capability and procedure of incorporating low-frequency, large-

amplitude dynamic fluctuations, as revealed by an explicit dynamics simulation, into

a fully coarse-grained protein model.

6.2.1 Description of a Macromolecular Particle

We consider a macromolecular structure, which can be a protein or a domain of a

protein complex, a segment of nucleic acids, or a protein-nucleic acid complex, as a

single entity of uniform mass density. The excluded volume of a given macromolec-

ular structure is defined as the cavity enclosed by the solvent-accessible surface (or

the van der Waals surface depending on needs), originating from the detailed three-

dimensional atomic structure determined experimentally by X-ray crystallography or

NMR, or generated computationally by homology modeling and protein-folding pre-

diction in the absence of experimental data. Note that the solvent-accessible surface

encloses a molecular volume which may be significantly greater than that defined

by its van der Waals surface, the latter of which is more appropriate for evaluating

the macromolecular density. All biochemical functions and physical properties of the

macromolecule are fully encoded in the three-dimensional structure, necessary for mi-

croscopic and mesoscopic modeling of intermolecular interactions, including electro-

statics and hydrophobic surface tension. The characteristic features of a macromolec-

ular structure are considered to have distinguishing features both in size and prop-

erty from small molecules, peptide fragments, ligands and cofactors, ions and solvent
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molecules, although the specific criteria depends on a particular application.

From the onset, we do not consider the detailed atomic coordinates or interaction

sites; the entire macromolecular unit is a single coarse-grained entity. This is justi-

fied as a result of statistical averaging over the spatial and temporal scales to be used

to model the dynamic system, which is the cell. However, the size, as defined by

the excluded volume occupied by the individual atoms, ligands, and perhaps a small

number of buried or surface solvent molecules, and the shape, as represented by the

solvent-accessible surface, of a given macromolecule are necessary and critical to a

physics-based approach; they are well-defined in our ACG model (vide infra) by a sin-

gle mathematical approach for all types of macromolecular particles of different sizes

and shapes, which can be used to systematically provide any desired accuracy and

detail of the coarse-grained macromolecule. The definition of a uniform mass density

within its excluded volume is akin to the use of a continuum solvent model and a single

interior low dielectric constant for a protein in Poisson-Boltzmann calculations and is

consistent with our goal of modeling the dynamics of the entire system, which involves

the integration of equations of motion at a time step in the order of tens of picoseconds

to nanoseconds per iteration. Thus, the representation of the macromolecular species is

an average of the system over the time series of the coarse-grained model, [43,331,332]

involving the internal atomic fluctuation and spatial orientation when the center of

mass of the macromolecule is chosen as a reference point.

Throughout this chapter, the method of Lee and Richards is used to define the

macromolecular surface and the excluded volume, [333] although other approaches

are available. [334]
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6.2.2 Spherical Harmonic Representation of a Macromolecular Particle

The method of using spherical harmonics functions to represent the surface of globu-

lar proteins was described by Max and Getzoff [312] and later by Duncan and Olson

and by others. [292, 313, 315, 316] Here, we briefly summarize the key elements of this

approach and highlight the numerical details employed in our implementation.

Arising from the solution of Laplace’s equation in spherical coordinates, the spher-

ical harmonic expansion is the spherical coordinate analog of the widely used Fourier

series expansion. Spherical harmonic representations of macromolecules provide not

only a smooth and aesthetically pleasing surface, but also the ability for evaluating

surface properties such as normal vectors and principal curvature. For any star-like

surface, which is single valued in the radial direction of (θ, φ) with respect to an origin,

there exists a spherical harmonic expansion given as follows:

S(θ, φ) =
∞∑
l=0

l∑
m=−l

almY
m
l (θ, φ) (6.1)

where θ denotes the latitudinal or zenith angle (0 ≤ θ ≤ π), specifies the longitudinal

or azimuth angle (0 ≤ φ < 2π), S(θ, φ) is the radial distance of the surface at angular

coordinate (θ, φ), alm are the expansion coefficients and Y m
l (θ, φ) are the real spherical

harmonic basis functions, which are orthonormal under the L2 inner product. We have

used the center of mass as the origin in all calculations, and the local axis is generally

chosen to coincide with the principal moments of inertia. In general, S(θ, φ) can be any

scalar physical or chemical property mapped on to the surface of a unit sphere.
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The real spherical harmonic basis functions are defined by

Y m
l (θ, φ) =


1√
2π
P

0
l (cos θ) m = 0

1√
π
P
m
l (cos θ) cosmφ m > 0

1√
π
P
−m
l (cos θ) sinmφ m < 0

(6.2)

where Pml (cos θ) denotes the normalized associated Legendre polynomial of the first

kind, of order m and degree l. Methods exist for evaluating the Legendre polynomials

of Eq. 6.2, one of which is discussed in Ref. [294], and Ref. [318] lists a technique

yielding more numerically stable results.

Making use of the orthonormal property of the real spherical harmonic basis func-

tions under the L2 inner product, the expansion coefficients in Eq. 6.1 are given by

alm =

∫ 2π

0

∫ π

0
S(θ, φ)Y m

l (θ, φ) sin θdθdφ (6.3)

In practice, the infinite sum of Eq. 6.1 is truncated to a relatively small value L,

which produces an approximate surface S. Thus, it is only necessary to determine

(L+ 1)2 coefficients and function values for the evaluation of points on the surface:

S(θ, φ) ≈
L∑
l=0

l∑
m=−l

almY
m
l (θ, φ) (6.4)

The Cartesian coordinates of vertices used to form a triangulated mesh for graphics

display are obtained from the corresponding values in the polar spherical coordinates.

This differs from the approach of Duncan and Olson [292,313], who used spherical har-

monics expansions to directly approximate the Cartesian coordinates of surface points.

Although the direct representation of the surface Cartesian coordinates is convenient

for graphics display, it is not suitable for computation of molecular properties of the
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system, including intermolecular interactions.

6.2.3 Dynamic Motion

Quasiharmonic Dynamics

We use the lowest frequency modes from principal component analysis (PCA) of a

molecular dynamics trajectory of a solvated protein to represent its dynamic fluctua-

tions; the dimeric enzyme OMPDC is employed as an illustrative example. The PCA

results show the directionality and frequency of protein dynamic motions, in which the

lowest frequency modes are typically correlated with protein conformational changes

and have been used to interpret conformational variations observed experimentally.

[335] Although other approaches such as the continuum elastic network model can

be used, [336] for an analytically represented coarse-grained protein without the ex-

plicit details of atomic structure, the PCA modes provide the most direct connection

to the dynamic motions sampled during an explicit molecular dynamics simulation.

The animation of atomic motions following a given normal mode and quasiharmonic

dynamics simulation of the complex motions of a macromolecule have been widely

used in structure and dynamics analyses at the atomic details. Voth and co-workers

described a method to map coarse-grained sites on the basis of PCA modes, [337] and

the model has been extended to using the low-frequency normal modes of an elastic

network model for the protein. [338] Our method follows a different route of repre-

sentation than that of Zhang et al. ; [337, 338] in ACG, the model is used to represent

and animate the low-frequency PCA modes, rather than being derived from PCA. We

apply the approach of quasiharmonic dynamics to model the internal fluctuations of

coarse-grained macromolecules.
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The overall protein fluctuation is obtained by the superposition of individual quasi-

harmonic modes:

Rj(t) = Rj(0) +
K∑
k=1

Qjkσk cos (ωkt+ λk) (6.5)

where Rj(0) and Rj(t) are the coordinates of atom j at time 0 and t, respectively, andK

is the number of quasiharmonic modes used to animate the total dynamic fluctuation

of the system. In Eq. 6.5, the parameters associated with mode k, ωk, Qk, λk, and

σk are the frequency, mode direction eigenvector, phase, and amplitude, respectively.

The phase λk is associated with the initial atomic positions, and the thermal average

of the second moment of the amplitude distribution is given by σ2
k = kBT/ω

2
k, where

kB is Boltzman’s constant and T is temperature. The value of K in Eq. 6.5 restricted

by the integration time increment, τ , used to propagate the dynamic equations of the

coarse-grained system such that τ > 2π/ωK . Typically, the inclusion of the lowest 10

to 20 modes is more than sufficient to represent the most significant large-amplitude

motions.

Here, we use the lowest frequency quasiharmonic motions to represent the internal

dynamic fluctuations of analytically coarse-grained macromolecule particles. The limi-

tation of this approach is that it will not produce information for even larger amplitude

motions that have not been uncovered in the explicit molecular dynamics simulation.

Thus, if the protein undergoes folding and unfolding exchange, it is not appropriate to

use the present model; however, it is possible to incorporate into the present treatment

conformational transitions for which structures in different conformation substates

have been determined experimentally (e.g., by X-ray crystallography or NMR). Never-

theless, our approach is not a simple reproduction of the fluctuation of the molecular
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dynamics trajectory itself because collision between different coarse-grained macro-

molecular species can cause random changes in the amplitude and phase of each quasi-

harmonic mode, resulting in different combinations of modes and trajectories.

Previously, Duncan and Olson proposed a method for shape analysis of protein

dynamic surfaces. [322] In that approach, the Cartesian coordinate displacements of

surface points corresponding to triangulation vertices were obtained from the static

surface and the expansion coefficients for the normal mode eigenvectors projected to

these points. Although the method is extremely useful for fast visualization of surface

motion, it is not designed to model real-time dynamics. Furthermore, the displace-

ments of triangulation vertices in such a shape analysis algorithm are not suited for

property evaluation because the quadrature points and weights will have to be recom-

puted, which is impractical for real time dynamics simulations. In our approach, the

surface deformation is restricted to the direction along the radial vector, consequently

preserving the angular coordinates (θi, φj) and the precomputed numerical weights.

Definition of Surface Displacement Vector

We begin with a molecular dynamics trajectory R(tn);n = 0, 1, · · · , N that was saved

at time slice tn, where R(tn) is a vector of all atomic coordinates. Principal component

analysis of this trajectory yields a set of quasiharmonic vibrations with frequencies

{ωk} and eigenvectors {Qk}. The K lowest frequency modes will be used to model

the total dynamic motions that have been sampled by the original molecular dynamics

simulation.

For each mode k, we use two distorted configurations generated by following the

eigenvector direction stretched to−2σk and +2σk from its mean, denoted by R−2σ
k and

R+2σ
k , to represent approximately the “lower” and “upper” bound of an amplitude,

respectively. Let {S−2σk
k } and {S+2σ

k } be the solvent-accessible surfaces (SAS) for the
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two extreme configurations associated with mode k. Given a set of surface points,

{uij = (θi, φj); i = 1, · · · ,Mθ; j = 1, · · · ,Mφ}, where Mθ and Mφ are the number of

quadrature points, the radial displacement, due to quasiharmonic vibration of mode

k, at the surface point uij = (θi, φj) is defined as the 2σk variance:

qkij =
1

2

[
S2σ
k (θi, φj)− S−2σ

k (θi, φj)
]

(6.6)

The vector qk, which can be considered as a property of a unit sphere, represents the

approximate amplitude (see below) and direction of surface deformation associated

with PCA quasiharmonic mode k:

qk =



qk11

qk21

...

qkPθPφ


(6.7)

Consequently, the radial displacement vector can also be expressed by a spherical har-

monic expansion whose coefficients are determined using the same procedure as for

the molecular surface itself (Eq. 6.3):

qkij =

L∑
l=0

l∑
m=−l

cklmY
m
l (θi, φj) (6.8)

Frequency and Phase

Although the rank of the low frequency modes from principal component analysis is

very reasonable, the quantitative values of the lowest quasiharmonic vibrational fre-

quencies and the associated time scales are not expected to be accurate to represent

the real time dynamic motion. [324–327] Thus, one needs to seek a different way to
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Figure 6.1: Histogram of the computed projection of instantaneous molecular structure
of OMPDC in water onto normalized eigenvector directions of the lowest quansihar-
monic mode (black), the second (red), the fourth (purple), the tenth (green), the fiftieth
(blue), the one hundredth (orange), and the one thousandth (cyan) modes.

obtain the desired oscillatory frequencies. We examined the time dependence of the

projections of the instantaneous coordinate vector onto the normalized quasiharmonic

eigenvectors, seven of which are shown in Figure 6.1, corresponding to PCA mode

numbers 1, 2, 4, 10, 50, 100, and 1000 over a total of 8 ns MD trajectory. Although

not unexpected, we are pleased to see the oscillatoroy behavior of each mode, and the

amplitudes and frequencies of these oscillations roughly coincide with the order of the

PCA modes. For modes above number 50, the fluctuations illustrated in Figure 6.1 can

be considered as noise (friction) with respect to the motions of the lowest frequency

modes. Importantly, it appears that the PCA mode-projection results can be used to es-

timate the quantitative frequencies as well as the phase with respect to the structure at

time t0 = 0 needed to animate the complex motion of the superimposed fluctuations.

To this end, we used a sinusoidal fitting procedure to optimize the amplitude Ak

(not used for mode animation, see below), frequency ωk, and phase λk in Eq. 6.9 for
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each mode to best reproduce the time-dependent quasiharmonic mode projection data.

Mk(t) = Ak cos (ωkt+ λk) (6.9)

In Figure 6.2, we depict the fitted curves against the raw data for modes 1, 2, 4,

and 10, whereas the results for the first 20 modes are given as Supporting Information.

6.1 lists the optimized amplitudes, frequencies, and phases for the first 20 modes, the

first 10 of which are used to represent the overall protein dynamics fluctuations as

an illustrative example in this chapter. An alternative approach is to use the spectral

transform of the autocorrelation function of the quasiharmonic mode fluctuations.

Time Evolution of the Dynamic Fluctuation

The SAS surface S(t0) corresponding to the structure R(t0) at time t0 = 0 in the dy-

namic trajectory is chosen as the starting configuration and is expressed in terms of

spherical harmonics basis as follows:

Sij(0) ≡ S(t = 0, θi, φj) =

L∑
l=0

l∑
m=−l

aolmY
m
l (θi, φj) (6.10)

where Sij(0) is the radial distance at an angular coordinate uij = (θi, φj), and the

coefficients {aolm} are determined according to Eq. 6.3. We assume that the dynamic

modulation of the protein surface associated with mode k also has the same frequency.

Thus, the atomic coordinates in Eq. 6.5 are replaced by protein surface points, and we
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Figure 6.2: Sinusoidal fit of harmonic frequencies and phases (with respect to the struc-
ture used at the start of the molecular dynamic simulation of OMPDC) to the oscillatory
structural projections illustrated in Figure 6.1 for modes number 1, 2, 4, and 10.
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Mode Ak ωk λk
1 18.0 0.60 2.25
2 13.4 0.86 5.89
3 9.8 1.55 1.05
4 7.3 1.37 6.17
5 3.0 2.71 2.50
6 1.3 7.37 4.02
7 6.5 2.12 2.97
8 5.0 2.72 1.62
9 3.9 2.66 3.32
10 4.8 3.33 1.10
11 3.2 3.37 6.00
12 3.3 2.65 1.22
13 0.4 3.79 0.69
14 2.7 4.10 5.47
15 2.6 4.17 2.66
16 0.9 5.01 6.21
17 2.1 4.72 1.33
18 2.5 4.22 5.78
19 1.7 7.59 1.71
20 1.2 7.59 1.60

Table 6.1: Optimized amplitudes (Å), frequencies (rad/ns), and phase (rad) for the
time-dependent quasiharmonic mode projection along the molecular dynamics trajec-
tory of the protein orotidine monophosphate decarboxylase as represented by Eq. 6.16.
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write the total surface radial displacement at point uij = (θi, φj) as follows:

Sij(t) = Sij(0) +
K∑
k=1

Wkq
k
ij cos (ωkt+ λk)

=

L∑
l=0

l∑
m=−l

[
aolm +

K∑
k=1

Wkc
k
lm cos (ωkt+ λk)

]
Y m
l (θi, φj)

(6.11)

where Wk is a mode weighting factor to be determined by least-squares fit to the in-

stantaneous surfaces Ŝ(tn) of the structures sampled by the explicit molecular dynam-

ics simulations in the entire trajectory, {R(tn)→ Ŝ(tn);n = 0, 1, · · · , N}. Equation 6.11

preserves the angular coordinates, consequently all precomputed values of the spher-

ical harmonic functions and quadrature weights needed for property evaluations (as

well as for real-time graphics animation). [339]

The mode weighting factors in Eq. 6.11 are determined by minimizing the follow-

ing error function:

ε =
1

N

N∑
n=1

∑
ij

[
Sij(tn)− Ŝij(tn)

]2
(6.12)

It is straightforward to show that the minimization yields a linear equation that can be

conveniently solved.

K∑
k=1

BqkWk = Dq; q = 1, · · · ,K (6.13)

where the matrix elements are defined as follows:

Dq =
1

N

N∑
n=1

∑
ij

[
Ŝij(tn)− Ŝij(0)

]
U qij(tn) (6.14)
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Bqk =
1

N

N∑
n=1

∑
ij

U qij(tn)Ukij(tn) (6.15)

U qij(tn) =

L∑
l=0

l∑
m=−l

cqlm cos (ωqtn + λq)Y
m
l (θi, φj) (6.16)

6.3 Numerical Considerations

The spherical harmonic expansion coefficients are determined by sampling surface val-

ues (coordinates) to approximate the integral of Eq. 6.3. A number of methods for

optimizing surface point distribution are available including the use of a geodesic unit

sphere. [340] In the present application, realizing that the integral in θ is formally a

Fourier transform, the numerical integration can be evaluated using M equispaced

points to take advantage of fast Fourier transform (FFT) at a computing scaling of

O(M log (M)). There are two ways of selecting points in φ; the first is to use Gauss-

Legendre quadrature nodes and weights, which needs only M/2 points, whereas a set

of equally spaced points can be selected, which is equivalent to Chebychev nodes in

cosφ . [339,341] The latter is convenient to use but less efficient computationally and re-

quires a total of M points for the same accuracy. The numerical scaling for integrating

in is O(M3).

If the sampling points used in the evaluation of the integral in Eq. 6.3 are cho-

sen to coincide with the numerical quadrature values, {(θp, φq); p = 1, · · · ,Mθ; q =

1, · · · ,Mφ}, the numerical procedure for property calculation can be greatly simpli-

fied. In all cases, the associated Legendre function values are precomputed along with

the measure, sin θi, and quadrature weights (see Appendix B) for a given structure and

stored. The use of (sin θi)
1/2P

m
l (θi, φj) preconditioning in property calculations can
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greatly increase numerical stability by keeping the product roughly constant. [341]

All computations and illustrations are performed using a software package written

in our laboratory.

6.4 Discussion

Figure 6.3 illustrates the spherical harmonic rendering of the trimeric structure of the

capsid protein (2FZ2) of turnip yellow mosaic virus at various degrees of representa-

tion up to L = 30. By simple inspection, the domed triangular shape is not directly

associated with a unit sphere, but the 3-fold symmetry of the complex is already rep-

resented at L = 3, and the domed structural feature is clearly visible with L = 4 and

5. As the degree of spherical harmonic basis increases, the molecular shape and detail

is well described with an L above 10, while greater local features can be found using

higher degrees. In principle, the spherical harmonic representation can yield any de-

sired accuracy by increasing the value ofL. However, it should be kept in mind that the

protein or macromolecular structure that we model is a coarse-grained representation

of a distribution over the time scale of the integration step used in Brownian dynamics

simulations. Thus, there is no reason to use a very high degree of L to generate an “ac-

curate” surface that is in fact beyond the variance of the surface amplitude fluctuation

over the time interval in Brownian dynamics simulations. In fact, a certain degree of

fuzziness is especially desired for these computations, a subject to be addressed in the

future. We have found that a value of L = 10−15 is adequate to provide a compromise

of quantitative shape and volume description and sufficient distinguishing details of

different proteins. At this level of representation, a total of 121 to 256 terms is needed

in the spherical harmonic expansion in Eq. 6.1.
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Figure 6.3: Spherical harmonic reconstruction of the Lee and Richards surface for the
trimer complex of the capsid protein of turnip yellow mosaic virus using representa-
tion degrees of L = 3, 4, 5, 10, 12, 15, 20, 25, and 30 numbered from top left to bottom
right.
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To animate the dynamic fluctuation of spherical harmonics coarse-grained OM-

PDC, we have determined the surface radial displacement amplitudes of the ten low-

est quasiharmonic modes of vibration from principal component analysis, which con-

tribute to the overall fluctuation throughout the 8 ns molecular dynamics simulation.

The optimized mode weighting factors in Eq. 6.11 for the first ten modes are listed in

Table 6.2. The weighting factors are about 0.5 for these low frequency modes, which

is a reflection that the approximate “amplitudes” used to define the surface radial dis-

placement vectors by stretching the quasiharmonic deformation to ±2σ limits is used

so as to obtain a large contrast in the analysis. The minimization procedure reduces the

initial large variations to about ±1σ, further suggesting that the procedure employed

in the present study is a reasonable approximation to represent the overall protein fluc-

tuation. However, as the frequency (mode number) increases, one standard deviation

is not a good measure of the dynamic contributions due to stochastic collision and cou-

pling with fast motions. The small weighting factors for modes 5 and 6 indicate that

the associated fluctuations from the principal component analysis may not be well

described by quasiharmonic vibrational motions (6.4), perhaps due to conformational

jumps, or a longer equilibration that is needed in the original MD simulation, or the

fact that the explicit molecular dynamics simulation is rather short.

Using the frequencies, phases, and amplitudes optimized using the procedure out-

lined in section 2 by means of principal component analysis of a molecular dynamics

trajectory to train the large amplitude dynamic behavior of the ACG model for OM-

PDC, we carried out quasiharmonic dynamics animation of the compounded motion

of the ten lowest frequency quasiharmonic modes for 0.25 µs at an integration incre-

ment of 25 ps per step, which took about 1 min on a desktop workstation. 6.5 shows

three structures from the trajectory using the initial conditions listed in Tables 6.1 and

6.2. Although it is difficult to distinguish the relatively small surface variations in the
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Figure 6.4: Sinusoidal fit of harmonic frequencies and phase (with respect to the struc-
ture used at the start of the molecular dynamic simulation of OMPDC) to the oscillatory
structural projections illustrated in Figure 6.1 for modes number 5 (a) and 6 (b). Note
that if the trajectory of the first 1 ns is discarded in mode 6 evaluation, the frequency
and amplitude are both reasonable, suggesting there is either a conformational jump
or change in the first 1 ns.
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Mode Wk

1 0.53892
2 0.48497
3 0.48692
4 0.42098
5 0.09645
6 0.05428
7 0.42884
8 0.29127
9 0.33406
10 0.37536

Table 6.2: Computed mode weighting factors to represent the overall complex protein
fluctuations using the first ten lowest quasiharmonic modes

static pictures, a movie that is given as Supporting Information (SMovie 1) does pro-

vide a more vivid depiction of the dynamic fluctuations of the trajectory. 6.6 shows

the computed volume histogram of the ACG protein. Not surprisingly, the primary

periodicity is dictated by the lowest frequency mode, which has the largest amplitude

contributions to the complex motion (Tables 6.1 and 6.2), and the spectral transform of

6.6 shows frequencies that coincide with the input listed in Table 6.1.

Note that although the surface radial displacement vectors were obtained by con-

sidering the corresponding quasiharmonic modes of atomic vibrations, the radial vec-

tors do not possess an orthogonality relationship, and the least-squares fitting pro-

cedure used to optimize the displacement amplitudes also introduces contributions

from other modes not specifically characterized purely by each quasiharmonic mode.

Further, the amplitude for each quasiharmonic mode represents an average fluctua-

tion sampled in the original molecular dynamics simulation; however, the maximum

fluctuations can be significantly greater than the individual averages due to stochastic

collisions with solvent molecules as well as mode coupling. Consequently, stochastic

effects may be included in mode synthesis by randomly increasing and decreasing the
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Figure 6.5: Snapshots of three structures of the analytically coarse-grained (ACG) pro-
tein OMPDC using spherical harmonic basis at a representation degree of L = 15
from the 0.25 µs composite fluctuation trajectory using the amplitudes, frequencies,
and phases listed in Tables 6.1 and 6.2. The three structures on the right-hand side are
the same as the corresponding ones on the left, rotated by 180◦. The ACG protein sur-
faces are colored by the surface charge density for the illustration with red representing
negative and blue positive charge densities, respectively.
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Figure 6.6: Histogram of the fluctuation of the excluded volume of the ACG OMPDC
protein at various resolutions in L, ranging from 5 to 20 along the internal quasihar-
monic fluctuation trajectory. The excluded volume illustrated in this figure is defined
as the cavity enclosed by the Lee-Richards surface, which is about one solvent layer
larger than the van der Waals surface.

amplitudes that yield the correct means over a long trajectory and satisfy the condition

of the second dissipation theorem.

The fluctuation of the excluded volume defined by the protein surface for OMPDC,

which can be conveniently determined by

V =

∫ 2π

0

∫ π

0

∫ S(θ,φ)

0
r2 sin θdθdφdr =

1

3

∫ 2π

0

∫ π

0
S3(θ, φ) sin θdθdφ ≈ 1

3

∑
ij

S3(θi, φj) sin θiwiwj

(6.17)

is shown in Table 6.6 at different degrees of approximation from L = 5 to L = 20. In

Eq. 6.17, wi and wj are the quadrature weights and the values {S(θi, φj)} are already

determined during the dynamics animation. There is no major difference for the results

obtained using L = 15 and L = 20, suggesting that the use of a spherical harmonic
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representation of degree 15 is sufficiently accurate to model the molecular volume. At

L = 10, the average volume is about 84.3 ± 0.2 nm3, which is less than 0.4% smaller

than an average value of about 84.6 ± 0.2 nm3 at higher orders. The lower order at

L = 5 introduces an error of about 1% in volume. Note that the excluded volume

determined by solvent-accessible surface is significantly larger than that encompassed

by the van der Waals surface of the macromolecule. Using the initial structure in the

molecular dynamics simulation, the ratio between the volumes defined by the solvent-

accessible surface and the Bondi van der Waals surface (scaled by 1.20 as proposed by

Luque and Orozco [342] in the calculation of solvation free energies treating the solvent

as a polarizable dielectric continuum) is 1.46. If this factor is taken into account, the

average molecular density of dry (without solvent molecules) OMPDC is estimated to

be 1.315± 0.002 g/cm3, in excellent agreement with the typical protein density (1.35−

1.40 g/cm3) estimated experimentally. [343, 344] If the extra volume enclosed by the

solvent-accessible surface is filled with water molecules (about 850 water molecules)

at the bulk density, the average density of cavity included in the spherical harmonics

coarse-grained protein is estimated to be about 1.20 g/cm3, which may be considered

as the macromolecular structure solvated by one solvent shell.

6.5 Conclusion

An analytical coarse-graining (ACG) model has been introduced to represent biological

macromolecules, making use of a spherical harmonic basis in the present study. In our

approach, a macromolecular structure is treated as a fully coarse-grained entity with

a uniform mass density without the explicit description of atomic details or “coarse-

grained” interaction sites. The use of a uniform density of the ACG macromolecule is

justified because the model represents an ensemble average relevant to the time series
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used in the dynamics simulation of cellular processes. However, the excluded volume

and specific shape of the ACG macromolecule species are critical, which are explic-

itly treated by a spherical harmonic representation. In principle, spherical harmonic

analysis can provide any desired accuracy and detail of the macromolecular surface.

The present chapter focuses on the first issue in a fully coarse-grained protein model,

that is, the description of the internal fluctuation of the ACG macromolecule. Here,

we make use of the dimeric enzyme OMPDC, consisting of 416 amino acids and 2

substrate molecules in the active site, as an illustrative example.

The internal fluctuation of the ACG protein is modeled by the superposition of

a selected number of lowest frequency quasiharmonic modes of vibration, which are

derived from an explicit molecular dynamics simulation of the fully solvated protein

in water. A procedure for estimating the amplitudes, time scales (frequencies) of the

quasiharmonic motions, and the corresponding phase is presented and used to synthe-

size the complex motion (note that the eigenvalues of the lowest quasiharmonic modes

are close to zero and they are not quantitative for description of the time scales of the

corresponding motions). In principle, all modes up to a frequency, limited by the time

interval of the coarse-grained dynamics, can be included, but as numerous studies

have shown, when employing principal component analysis and quasiharmonic es-

sential dynamics, only a fraction of the lowest frequency modes are important in such

a representation. The analytical description and numerical algorithm presented here

can in principle provide a representation of the internal protein fluctuations as closely

as needed in comparison with the atomistic molecular dynamics simulation; however,

the internal motion is restricted by the short-time nature of molecular dynamic trajec-

tories, and the present method is not designed for the description of unfolding events

unless such transitions occur during the molecular dynamics simulation.1

1 This work has been partially supported by National Institutes of Health grant GM46736.
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6.6 Supporting Information

Projected structural fluctuations on to the first 20 lowest frequency modes and a movie

animating the trajectory of the dynamic fluctuation of the ACG protein OMPDC rep-

resented by using spherical harmonic basis functions. This material is available free of

charge via the Internet at http://dx.doi.org/10.1021/ct100426m.

208

http://dx.doi.org/10.1021/ct100426m


Chapter 7

Conclusion & Discussion

7.1 Conclusion

The description of the potential energy surface, or force field, is of paramount impor-

tance to the accurate modeling of chemical systems in silico. The PMO/X-Pol/DPPC

quantum mechanical force field (QMFF) and MACROSHAKER coarse-grained force

field (CGFF) represent new paradigms in computational chemistry beyond the de facto

molecular mechanics force field (MMFF).

In the first part of this dissertation, we showed that QMFFs based upon the ex-

plicit polarization theory (X-Pol) can provide an accurate description of polar liquids.

Chapter 2 presented the Hartree-Fock and the X-Pol theories with their analytical first

derivatives, as well as the class IV DPPC charge model. Chapters 3 and 4 showed

that the addition of p-orbitals onto the MNDO Hamiltonian and the use of genetic and

stochastic optimization algorithms for semiempirical parameterization were sufficient

for accurately modeling the behavior of small clusters of water and hydrogen fluoride

compared to results from experiments and ab initio calculations. In addition, through

the use of DPPC charges and a 12-6 Lennard-Jones potential for modeling exchange-

correlation and dispersion interactions, we found that X-Pol could accurately model
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energetic, thermodynamic, and dynamical properties of liquid water and liquid hy-

drogen fluoride compared to experiments and other polarizable models.

The second part of this dissertation examined coarse-grained models for simulat-

ing crowded systems of many proteins. We showed in Chapter 5 that the Brownian

dynamics of Ermak and McCammon [46] can be used with rigid, coarse-grained mod-

els to accurately reproduce the concentration-dependent diffusion coefficients of myo-

globin at volume fractions as large as 40%. Although the approach we used involving

beads was successful, Chapter 6 introduced the notion of representing coarse-grained

proteins as atomless, analytical functions, whose internal dynamics are described by

quasiharmonic fluctuations, for simulations in the cellular environment. In principle,

these analytical functions could be used with formalism similar to that found in elec-

tronic structure methods to produce a CGFF for proteins.

We believe that the force fields introduced in this dissertation will be of great use

as they are further refined and parameterized. What follows are some of our ideas for

future work.

7.2 Future Work on QMFFs

7.2.1 Variational many-body expansion

The many-body expansion for QM calculations proposed by Stoll and Preuß [345] was

recently extended to the variational X-Pol theory under the name variational many-body

expansion (VMB) [148]. The VMB corrects the X-Pol energy E1 through summing all

energy differences between E1 and the energy computed through permutations of the

repartitioning of fragments into a single dimer, trimer, or higher-order fragment with

all other monomer fragments from the X-Pol calculation. The benefit of this approach
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Full PMOw X-Pol VMB2 VMB3
Prism 46.9 24.3 45.9 46.8
Cage 46.6 25.0 45.7 46.5
Book 44.9 26.7 43.6 44.8
Cyclic 41.8 28.6 40.0 41.6
MUD 0.0 18.9 1.2 0.1
RMSD 0.0 19.2 1.2 0.1

Table 7.1: Binding energy in kcal/mol of various water hexamers for PMOw using
full QM, X-Pol, VMB2, and VMB3. Mean unsigned deviations (MUD) and root-mean
square deviations (RMSD) compared to the full PMOw result show that both VMB2
and VMB3 agree significantly better with the full energy than the X-Pol method alone.
All calculations were done without Lennard-Jones terms and used Mulliken charges.

is that charge-transfer effects within the higher-order fragments are fully described by

the level of QM theory employed, but at an increased cost. The total energy of the VMB

system is written as

ETOT = E1 + ∆E2 + ∆E3 + · · ·+ ∆EN (7.1)

where

∆E2 =

N∑
I<J

∆EIJ =

N∑
I<J

(EIJ − E1), (7.2)

and

∆E3 =

N∑
I<J<K

∆EIJK =

N∑
I<J<K

(EIJK − E1 −∆EIJ −∆EIK −∆EJK) (7.3)

with analogous definitions of higher-order terms. Eq. 7.1 is often truncated at the

two-body level (VMB2) or three-body level (VMB3) to reduce cost.

Table 7.1 gives the binding energies of several water hexamers for the full PMOw

method, X-Pol, VMB2, and VMB3 all without Lennard-Jones terms and using Mulliken
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partial charges. These preliminary results show that VMB2 and VMB3 are in signifi-

cantly better agreement with the full PMOw result than the single-body version of

X-Pol.

Since ETOT is a sum of terms (Eq. 7.1), each with an analytical gradient, ETOT also

has a straightforward analytical gradient and may be used for geometry optimization

or MD simulations. A parallel version of the VMB2 method with analytical gradient

has been implemented into our modified version of NAMD [51], which we hope to use

for studying liquid hydrogen fluoride.

7.2.2 Unpolarizable core in PMO

It was found by Stewart during the development of the PM6 method [131] that in

rare instances nearly “nuclear-fused” geometries were the optimal molecular struc-

tures, due to what Stewart called the “complete neglect of the unpolarizable core”

of the atoms in that method. During our parameterization of fluorine for PMOw,

we observed similar fusion-like behavior, which, through decomposition of gradient

terms, we found to be originating from the inclusion of the D1 dispersion correction of

Grimme [95] (also used by PM6) on hydrogen atoms. This same behavior was also ob-

served for a gas-phase water molecule when the HOH bond angle became very small

during a vapor-phase Monte Carlo simulation using PMOw.

In the case of PM6, Stewart proposed the addition of a simple function to the core-

core term of atoms designed to be vanishingly small at normal bonding distances, but

very large at shorter, unphysical distances. This term takes the form of Eq. 7.4

fAB = c


(
Z

1/3
A + Z

1/3
B

)
RAB

12

(7.4)

where ZA and ZB denote the core charges of atoms A and B and c = 10−8 [131].
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A correction of this type to the PMO method will be absolutely essential for VMB2

MD simulations, due to the full QM treatment of dimer pairs and the likely possibility

that integration error could cause two hydrogen atoms to have a close approach.

7.2.3 Additional parameters for PMO

The success of the PMO-based XP3P and XPHF models provides encouraging progress

towards a general framework for polarizable force fields. At the time of this writing,

PMO has only been parameterized for elements H and O in its PMOv1 form [52], H,

O, and F in its PMOw form [237], and H, C, and O in its PMO2 form [94].

Similar to oxygen and fluorine, nitrogen is a highly-electronegative atom that heav-

ily participates in hydrogen bonding. Recognizing this, optimization of a nitrogen pa-

rameter for PMOw using the existing formalism is currently underway. In addition to

being a stepping stone for protein simulations which at minimum requires parameters

for H, C, N, and O, we plan to introduce an X-Pol model for liquid ammonia called

XPNH3. Beyond nitrogen, chlorine, bromine, and iodine parameterizations for PMOw

are under investigation.

7.3 Future work on CGFFs

7.3.1 Macromolecular Assembly

Our goal in building MACROSHAKER is not only to model the diffusion process of

macromolecules by a CGFF, but also to model the assembly process of large com-

plexes such as the dynamics of macromolecules in a biological cell, and the capsid

self-assembly of viruses. Progress has been made on the implementation of the coarse-

grained virus assembly model of Wales [30] (see Figure 7.1), which was later extended
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Figure 7.1: Screenshots from a program showing the virus assembly model of Wales.
[30]

to a model involving spherical crowders [346].

7.3.2 Metabolic Processes

An immediate target application of the coarse-grained models in this dissertation is to

study the direct and secondary (feed-back) control and regulation of ATP production

in glycolysis under realistic conditions in a cell. To this end, we plan on using the

glycolysis process taking place in the red blood cell as a model, since it represents one

of the simplest cases that we can test the influence of crowding effects on the modeling

of a sequence of enzymatic processes. Furthermore, the glycolytic process of the red

blood cell is well understood, and all rate constants and properties of the ten enzymes

are known. The dominant (more than 95% of dry mass [347]) component of proteins in

a red blood cell is hemoglobin. Thus, it is possible to construct a model with ten copies

of each glycolytic enzyme immersed in a bath of hemoglobin at a relative ratio of 1:10,

1:15, and 1:20 to examine crowding effects. A key question is crowding effects on the

effective concentration (activity) of enzymes, which has been a focal point in the study

of crowding effects.

214



Figure 7.2: A visualization of the 10 enzymes involved in glycolysis as rendered by
MACROSHAKER.
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7.3.3 Interactive Visualization

With a slight modification to the visualization component of MACROSHAKER, we

can employ the use of shutter-glasses to view a crowded cellular environment in 3D.

Motion tracking technology could be coupled into the visualization code so that the

cellular environment could be explored through walking around within a room and

the turning of one’s head. Additionally, force-feedback devices could be used to drag

and/or rotate individual proteins during the 3D walk-through experience.
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ture of the Hydrophobic Protein Crambin at 130 K. Journal of Molecular Biology,

230(1):292–311, 1993.

[80] C. van Alsenoy. Ab initio calculations on large molecules: The multiplicative

integral approximation. Journal of Computational Chemistry, 9(6):620–626, 1988.

[81] R. Ditchfield, W.J. Hehre, and J.A. Pople. Self-Consistent Molecular-Orbital

Methods. IX. An Extended Gaussian-Type Basis for Molecular-Orbital Studies

of Organic Molecules. The Journal of Chemical Physics, 54(2):724–728, 1971.

226



[82] J. Gao, P. Amara, C. Alhambra, and M.J. Field. A Generalized Hybrid Orbital

(GHO) Method for the Treatment of Boundary Atoms in Combined QM/MM

Calculations. The Journal of Physical Chemistry A, 102(24):4714–4721, 1998.

[83] P. Amara, M.J. Field, C. Alhambra, and J. Gao. The generalized hybrid orbital

method for combined quantum mechanical/molecular mechanical calculations:

formulation and tests of the analytical derivatives. Theoretical Chemistry Accounts,

104(5):336–343, 2000.

[84] T.J. Giese and D.M. York. Charge-dependent model for many-body polarization,

exchange, and dispersion interactions in hybrid quantum mechanical/molecular

mechanical calculations. The Journal of Chemical Physics, 127(19):194101, 2007.

[85] J.E. Jones. On the Determination of Molecular Fields. II. From the Equation of

State of a Gas. Proceedings of the Royal Society of London. Series A, 106(738):463–477,

1924.

[86] H.R. Leverentz, J. Gao, and D.G. Truhlar. Using multipole point charge distribu-

tions to provide the electrostatic potential in the variational explicit polarization

(X-Pol) potential. Theoretical Chemistry Accounts, 129(1):3–13, 2011.

[87] L. Song, J. Han, Y.-L. Lin, W. Xie, and J. Gao. Explicit Polarization (X-Pol) Poten-

tial Using ab Initio Molecular Orbital Theory and Density Functional Theory. The

Journal of Physical Chemistry A, 113(43):11656–11664, 2009. PMID: 19618944.

[88] J.A. Pople, D.L. Beveridge, and P.A. Dobosh. Approximate Self-Consistent

Molecular-Orbital Theory. V. Intermediate Neglect of Differential Overlap. The

Journal of Chemical Physics, 47(6):2026–2033, 1967.

227



[89] M.J.S. Dewar and W. Thiel. Ground states of molecules. 38. The MNDO

method. Approximations and parameters. Journal of the American Chemical So-

ciety, 99(15):4899–4907, 1977.

[90] J.J.P. Stewart. MOPAC: A semiempirical molecular orbital program. Journal of

Computer-Aided Molecular Design, 4(1):1–103, 1990.

[91] M.J.S. Dewar and W. Thiel. A semiempirical model for the two-center repulsion

integrals in the NDDO approximation. Theoretica chimica acta, 46(2):89–104, 1977.

[92] M.J.S. Dewar and Y. Yamaguchi. Analytical first derivatives of the energy in

MNDO. Computers & Chemistry, 2(1):25–29, 1978.

[93] L. Fiedler, J. Gao, and D.G. Truhlar. Polarized Molecular Orbital Model Chem-

istry. 1. Ab Initio Foundations. Journal of Chemical Theory and Computation,

7(4):852–856, 2011.

[94] M. Isegawa, L. Fiedler, H.R. Leverentz, Y. Wang, S. Nachimuthu, J. Gao, and D.G.

Truhlar. Polarized Molecular Orbital Model Chemistry 3. The PMO Method Ex-

tended to Organic Chemistry. Journal of Chemical Theory and Computation, 9(1):33–

45, 2013.

[95] S. Grimme. Accurate description of van der Waals complexes by density func-

tional theory including empirical corrections. Journal of Computational Chemistry,

25(12):1463–1473, 2004.

[96] R.S. Mulliken. Electronic Population Analysis on LCAO[Single Bond]MO Molec-

ular Wave Functions. I. The Journal of Chemical Physics, 23(10):1833–1840, 1955.

[97] B.T. Thole and P.T. van Duijnen. A general population analysis preserving the

dipole moment. Theoretica chimica acta, 63(3):209–221, 1983.

228



[98] L. Pauling. The Nature of the Chemical Bond. IV. The Energy of Single Bonds and

the Relative Electronegativity of Atoms. Journal of the American Chemical Society,

54(9):3570–3582, 1932.

[99] A.D. Mackerell. Empirical force fields for biological macromolecules: Overview

and issues. Journal of Computational Chemistry, 25(13):1584–1604, 2004.

[100] J.W. Ponder and D.A. Case. Force Fields for Protein Simulations. In V. Daggett,

editor, Protein Simulations, volume 66 of Advances in Protein Chemistry, pages 27 –

85. Academic Press, 2003.

[101] B. Guillot. A reappraisal of what we have learnt during three decades of com-

puter simulations on water. Journal of Molecular Liquids, 101(13):219 – 260, 2002.

Molecular Liquids. Water at the New Millenium.

[102] C. Vega, J.L.F. Abascal, and P.G. Debenedetti. Physics and chemistry of water

and ice. Phys. Chem. Chem. Phys., 13(44):19660–19662, 2011.

[103] B. Schropp and P. Tavan. The Polarizability of Point-Polarizable Water Models:

Density Functional Theory/Molecular Mechanics Results. The Journal of Physical

Chemistry B, 112(19):6233–6240, 2008. PMID: 18198859.

[104] J.D. Bernal and R.H. Fowler. A Theory of Water and Ionic Solution, with Partic-

ular Reference to Hydrogen and Hydroxyl Ions. The Journal of Chemical Physics,

1(8):515–548, 1933.

[105] W.L. Jorgensen. Special Issue on Polarization. Journal of Chemical Theory and

Computation, 3(6):1877–1877, 2007.

229



[106] H. J. C. Berendsen, J. P. M. Postama, W. F. van Gunsteren, and J. Hermans. In

B. Pullmann, editor, Intermolecular Forces, page 331. D. Reidel Publishing Com-

pany, Dordrecht, 1981.

[107] W.L. Jorgensen, J. Chandrasekhar, J.D. Madura, R.W. Impey, and M.L. Klein.

Comparison of simple potential functions for simulating liquid water. The Journal

of Chemical Physics, 79(2):926–935, 1983.

[108] F.J. Vesely. N-particle dynamics of polarizable Stockmayer-type molecules. Jour-

nal of Computational Physics, 24(4):361 – 371, 1977.

[109] A.E. Howard, U.C. Singh, M. Billeter, and P.A. Kollman. Many-body potential

for molecular interactions. Journal of the American Chemical Society, 110(21):6984–

6991, 1988.

[110] D.N. Bernardo, Y. Ding, K. Krogh-Jespersen, and R.M. Levy. An Anisotropic Po-

larizable Water Model: Incorporation of All-Atom Polarizabilities into Molecular

Mechanics Force Fields. The Journal of Physical Chemistry, 98(15):4180–4187, 1994.

[111] J. Gao, D. Habibollazadeh, and L. Shao. A Polarizable Intermolecular Potential

Function for Simulation of Liquid Alcohols. The Journal of Physical Chemistry,

99(44):16460–16467, 1995.

[112] J.M. Stout and C.E. Dykstra. A Distributed Model of the Electrical Response of

Organic Molecules. The Journal of Physical Chemistry A, 102(9):1576–1582, 1998.

[113] J. Applequist, J.R. Carl, and K.-K. Fung. Atom dipole interaction model for

molecular polarizability. Application to polyatomic molecules and determina-

tion of atom polarizabilities. Journal of the American Chemical Society, 94(9):2952–

2960, 1972.

230



[114] B.T. Thole. Molecular polarizabilities calculated with a modified dipole interac-

tion. Chemical Physics, 59(3):341 – 350, 1981.

[115] P.T. van Duijnen and M. Swart. Molecular and Atomic Polarizabilities: Thole’s

Model Revisited. The Journal of Physical Chemistry A, 102(14):2399–2407, 1998.

[116] H. Yu, T. Hansson, and W.F. van Gunsteren. Development of a simple, self-

consistent polarizable model for liquid water. The Journal of Chemical Physics,

118(1):221–234, 2003.

[117] G. Lamoureux, E. Harder, I.V. Vorobyov, B. Roux, and A.D. MacKerell Jr. A po-

larizable model of water for molecular dynamics simulations of biomolecules.

Chemical Physics Letters, 418(1-3):245 – 249, 2006.

[118] A.K. Rappe and W.A. Goddard. Charge equilibration for molecular dynamics

simulations. The Journal of Physical Chemistry, 95(8):3358–3363, 1991.

[119] S.W. Rick, S.J. Stuart, and B.J. Berne. Dynamical fluctuating charge force fields:

Application to liquid water. The Journal of Chemical Physics, 101(7):6141–6156,

1994.

[120] G.A. Kaminski, H.A. Stern, B.J. Berne, and R.A. Friesner. Development of an

Accurate and Robust Polarizable Molecular Mechanics Force Field from ab Initio

Quantum Chemistry. The Journal of Physical Chemistry A, 108(4):621–627, 2004.

[121] S.M. Valone. Quantum Mechanical Origins of the Iczkowski–Margrave Model of

Chemical Potential. Journal of Chemical Theory and Computation, 7(7):2253–2261,

2011.

[122] W. Kohn, A.D. Becke, and R.G. Parr. Density Functional Theory of Electronic

Structure. The Journal of Physical Chemistry, 100(31):12974–12980, 1996.

231



[123] A. Cembran, P. Bao, Y. Wang, L. Song, D.G. Truhlar, and J. Gao. On the Interfrag-

ment Exchange in the X-Pol Method. Journal of Chemical Theory and Computation,

6(8):2469–2476, 2010.

[124] J. Gao, A. Cembran, and Y. Mo. Generalized X-Pol Theory and Charge Delocal-

ization States. Journal of Chemical Theory and Computation, 6(8):2402–2410, 2010.

[125] J. Han, D.G. Truhlar, and J. Gao. Optimization of the explicit polarization (X-

Pol) potential using a hybrid density functional. Theoretical Chemistry Accounts,

131(3):1–15, 2012.

[126] Y. Wang, C.P. Sosa, A. Cembran, D.G. Truhlar, and J. Gao. Multilevel X-Pol: A

Fragment-Based Method with Mixed Quantum Mechanical Representations of

Different Fragments. The Journal of Physical Chemistry B, 116(23):6781–6788, 2012.

[127] Y. Mo, P. Bao, and J. Gao. Energy decomposition analysis based on a block-

localized wavefunction and multistate density functional theory. Phys. Chem.

Chem. Phys., 13(15):6760–6775, 2011.

[128] J.A. Pople, D.P. Santry, and G.A. Segal. Approximate Self-Consistent Molec-

ular Orbital Theory. I. Invariant Procedures. The Journal of Chemical Physics,

43(10):S129–S135, 1965.

[129] M.J.S. Dewar, E.G. Zoebisch, E.F. Healy, and J.J.P. Stewart. Development and

use of quantum mechanical molecular models. 76. AM1: a new general purpose

quantum mechanical molecular model. Journal of the American Chemical Society,

107(13):3902–3909, 1985.

[130] G.B. Rocha, R.O. Freire, A.M. Simas, and J.J.P. Stewart. RM1: A reparameteriza-

tion of AM1 for H, C, N, O, P, S, F, Cl, Br, and I. Journal of Computational Chemistry,

27(10):1101–1111, 2006.

232



[131] J.J.P. Stewart. Optimization of parameters for semiempirical methods V: Mod-

ification of NDDO approximations and application to 70 elements. Journal of

Molecular Modeling, 13(12):1173–1213, 2007.

[132] C.A. Morgado, J.P. McNamara, I.H. Hillier, N.A. Burton, and M.A. Vincent. Den-

sity Functional and Semiempirical Molecular Orbital Methods Including Disper-

sion Corrections for the Accurate Description of Noncovalent Interactions In-

volving Sulfur-Containing Molecules. Journal of Chemical Theory and Computation,

3(5):1656–1664, 2007.

[133] J.P. McNamara and I.H. Hillier. Semi-empirical molecular orbital methods in-

cluding dispersion corrections for the accurate prediction of the full range of

intermolecular interactions in biomolecules. Phys. Chem. Chem. Phys., 9(19):2362–

2370, 2007.

[134] J.P. McNamara, R. Sharma, M.A. Vincent, I.H. Hillier, and C.A. Morgado. The

non-covalent functionalisation of carbon nanotubes studied by density func-

tional and semi-empirical molecular orbital methods including dispersion cor-

rections. Phys. Chem. Chem. Phys., 10(1):128–135, 2008.

[135] T. Tuttle and W. Thiel. OMx-D: semiempirical methods with orthogonalization

and dispersion corrections. Implementation and biochemical application. Phys.

Chem. Chem. Phys., 10(16):2159–2166, 2008.

[136] M. Korth and W. Thiel. Benchmarking Semiempirical Methods for Thermo-

chemistry, Kinetics, and Noncovalent Interactions: OMx Methods Are Almost

As Accurate and Robust As DFT-GGA Methods for Organic Molecules. Journal

of Chemical Theory and Computation, 7(9):2929–2936, 2011.

233



[137] K. Jug and G. Geudtner. Treatment of hydrogen bonding in SINDO1. Journal of

Computational Chemistry, 14(6):639–646, 1993.

[138] K.T. Tang and J.P. Toennies. An improved simple model for the van der Waals

potential based on universal damping functions for the dispersion coefficients.

The Journal of Chemical Physics, 80(8):3726–3741, 1984.

[139] S. Grimme, J. Antony, S. Ehrlich, and H. Krieg. A consistent and accurate ab initio

parametrization of density functional dispersion correction (DFT-D) for the 94

elements H-Pu. The Journal of Chemical Physics, 132(15):154104, 2010.

[140] J.J.P. Stewart. Semiempirical Molecular Orbital Methods, pages 45–81. John Wiley &

Sons, Inc., 2007.

[141] M.C. Zerner. Semiempirical Molecular Orbital Methods, pages 313–365. John Wiley

& Sons, Inc., 2007.

[142] M.J.S. Dewar and W. Thiel. Ground states of molecules. 39. MNDO results for

molecules containing hydrogen, carbon, nitrogen, and oxygen. Journal of the

American Chemical Society, 99(15):4907–4917, 1977.

[143] K. Liu, M.G. Brown, and R.J. Saykally. Terahertz Laser Vibration-Rotation Tun-

neling Spectroscopy and Dipole Moment of a Cage Form of the Water Hexamer.

The Journal of Physical Chemistry A, 101(48):8995–9010, 1997.

[144] M. Piris, J.M. Matxain, X. Lopez, and J.M. Ugalde. Communications: Accurate

description of atoms and molecules by natural orbital functional theory. The

Journal of Chemical Physics, 132(3):031103, 2010.

[145] G.S. Tschumper, M.L. Leininger, B.C. Hoffman, E.F. Valeev, H.F. Schaefer III, and

M. Quack. Anchoring the water dimer potential energy surface with explicitly

234



correlated computations and focal point analyses. The Journal of Chemical Physics,

116(2):690–701, 2002.

[146] G. Maroulis. Static hyperpolarizability of the water dimer and the interaction

hyperpolarizability of two water molecules. The Journal of Chemical Physics,

113(5):1813–1820, 2000.

[147] S.A. Clough, Y. Beers, G.P. Klein, and L.S. Rothman. Dipole moment of water

from Stark measurements of H2O, HDO, and D2O. The Journal of Chemical Physics,

59(5):2254–2259, 1973.

[148] J. Gao and Y. Wang. Communication: Variational many-body expansion: Ac-

counting for exchange repulsion, charge delocalization, and dispersion in the

fragment-based explicit polarization method. The Journal of Chemical Physics,

136(7):071101, 2012.

[149] T.J. Giese, H. Chen, T. Dissanayake, G.M. Giambau, H. Heldenbrand, M. Huang,

E.R. Kuechler, T.-S. Lee, M.T. Panteva, B.K. Radak, and D.M. York. A Varia-

tional Linear-Scaling Framework to Build Practical, Efficient Next-Generation

Orbital-Based Quantum Force Fields. Journal of Chemical Theory and Computation,

9(3):1417–1427, 2013.

[150] T. Nakano, T. Kaminuma, T. Sato, K. Fukuzawa, Y. Akiyama, M. Uebayasi, and

K. Kitaura. Fragment molecular orbital method: use of approximate electrostatic

potential. Chemical Physics Letters, 351(56):475 – 480, 2002.

[151] W.D. Cornell, P. Cieplak, C.I. Bayly, I.R. Gould, K.M. Merz, D.M. Ferguson, D.C.

Spellmeyer, T. Fox, J.W. Caldwell, and P.A. Kollman. A Second Generation Force

Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules. Jour-

nal of the American Chemical Society, 117(19):5179–5197, 1995.

235



[152] P. Cieplak, J. Caldwell, and P. Kollman. Molecular mechanical models for or-

ganic and biological systems going beyond the atom centered two body additive

approximation: aqueous solution free energies of methanol and N-methyl ac-

etamide, nucleic acid base, and amide hydrogen bonding and chloroform/water

partition coefficients of the nucleic acid bases. Journal of Computational Chemistry,

22(10):1048–1057, 2001.

[153] J. Wang, P. Cieplak, and P.A. Kollman. How well does a restrained electrostatic

potential (RESP) model perform in calculating conformational energies of or-

ganic and biological molecules? Journal of Computational Chemistry, 21(12):1049–

1074, 2000.

[154] A.J. Stone. The theory of intermolecular forces. Oxford University Press, Oxford,

1996.

[155] M.S. Gordon, L. Slipchenko, H. Li, and J.H. Jensen. Chapter 10 The Effective

Fragment Potential: A General Method for Predicting Intermolecular Interac-

tions. volume 3 of Annual Reports in Computational Chemistry, pages 177 – 193.

Elsevier, 2007.

[156] W.J. Hehre, L. Radom, P.v.R. Schleyer, and J.A. Pople. Ab initio Molecular Orbital

Theory. John Wiley & Sons, New York, 1986.

[157] J. Li, T. Zhu, C.J. Cramer, and D.G. Truhlar. New Class IV Charge Model for

Extracting Accurate Partial Charges from Wave Functions. The Journal of Physical

Chemistry A, 102(10):1820–1831, 1998.

[158] A.V. Marenich, S.V. Jerome, C.J. Cramer, and D.G. Truhlar. Charge Model 5:

An Extension of Hirshfeld Population Analysis for the Accurate Description of

236



Molecular Interactions in Gaseous and Condensed Phases. Journal of Chemical

Theory and Computation, 8(2):527–541, 2012.

[159] M. Swart, P.T. van Duijnen, and J.G. Snijders. A charge analysis derived from

an atomic multipole expansion. Journal of Computational Chemistry, 22(1):79–88,

2001.

[160] J.A. Pople and G.A. Segal. Approximate Self-Consistent Molecular Orbital The-

ory. II. Calculations with Complete Neglect of Differential Overlap. The Journal

of Chemical Physics, 43(10):S136–S151, 1965.

[161] H.A. Stern, F. Rittner, B.J. Berne, and R.A. Friesner. Combined fluctuating charge

and polarizable dipole models: Application to a five-site water potential func-

tion. The Journal of Chemical Physics, 115(5):2237–2251, 2001.

[162] P. Zhang, D.G. Truhlar, and J. Gao. Fragment-based quantum mechanical

methods for periodic systems with Ewald summation and mean image charge

convention for long-range electrostatic interactions. Phys. Chem. Chem. Phys.,

14(21):7821–7829, 2012.

[163] H.C. Andersen. Molecular dynamics simulations at constant pressure and/or

temperature. The Journal of Chemical Physics, 72(4):2384–2393, 1980.

[164] E.A. Koopman and C.P. Lowe. Advantages of a Lowe-Andersen thermostat in

molecular dynamics simulations. The Journal of Chemical Physics, 124(20):204103,

2006.

[165] S. Miyamoto and P. A. Kollman. Settle: An analytical version of the SHAKE and

RATTLE algorithm for rigid water models. Journal of Computational Chemistry,

13(8):952–962, 1992.

237



[166] K. Nam, J. Gao, and D.M. York. An Efficient Linear-Scaling Ewald Method for

Long-Range Electrostatic Interactions in Combined QM/MM Calculations. Jour-

nal of Chemical Theory and Computation, 1(1):2–13, 2005.

[167] J. Gao and X. Xia. A priori evaluation of aqueous polarization effects through

Monte Carlo QM-MM simulations. Science, 258(5082):631–635, 1992.

[168] K. Kitaura, E. Ikeo, T. Asada, T. Nakano, and M. Uebayasi. Fragment molecu-

lar orbital method: an approximate computational method for large molecules.

Chemical Physics Letters, 313(34):701 – 706, 1999.

[169] J. Gao, J. Han, and P. Zhang. MCSOL, version 2012xp. Minneapolis, 2012.

[170] M.J.M. Mazack and J. Gao. X-Pol, version 2013a1. University of Minnesota, 2013.

[171] M.J. Frisch, G.W. Trucks, and H.B. Schlegel et al. GAUSSIAN 09, Rev A.02. Gaus-

sian, Inc., Wallingford, CT, 2009.

[172] G. Lamoureux, Jr. A.D. MacKerell, and B. Roux. A simple polarizable model

of water based on classical Drude oscillators. The Journal of Chemical Physics,

119(10):5185–5197, 2003.

[173] W.S. Benedict, N. Gailar, and E.K. Plyler. Rotation-Vibration Spectra of Deuter-

ated Water Vapor. The Journal of Chemical Physics, 24(6):1139–1165, 1956.

[174] C.J. Burnham and S.S. Xantheas. Development of transferable interaction mod-

els for water. IV. A flexible, all-atom polarizable potential (TTM2-F) based on

geometry dependent charges derived from an ab initio monomer dipole moment

surface. The Journal of Chemical Physics, 116(12):5115–5124, 2002.

238



[175] H. Partridge and D.W. Schwenke. The determination of an accurate isotope de-

pendent potential energy surface for water from extensive ab initio calculations

and experimental data. The Journal of Chemical Physics, 106(11):4618–4639, 1997.

[176] E. Whalley and D.D. Klug. Effect of hydrogen bonding on the direction of the

dipole-moment derivative of the O–H bond in the water molecule. The Journal of

Chemical Physics, 84(1):78–80, 1986.

[177] L.S. Rothman, C.P. Rinsland, A. Goldman, S.T. Massie, D.P. Edwards, J.-M. Flaud,

A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, and A. McCann.

Reprint of: The HITRAN molecular spectroscopic database and HAWKS (HI-

TRAN Atmospheric Workstation): 1996 edition. Journal of Quantitative Spec-

troscopy and Radiative Transfer, 111(11):1568 – 1613, 2010. 50 Years of JQSRT.

[178] L.A. Curtiss, D.J. Frurip, and M. Blander. Studies of molecular association in

H2O and D2O vapors by measurement of thermal conductivity. The Journal of

Chemical Physics, 71(6):2703–2711, 1979.

[179] S. Nachimuthu, J. Gao, and D.G. Truhlar. A benchmark test suite for proton trans-

fer energies and its use to test electronic structure model chemistries. Chemical

Physics, 400:8 – 12, 2012.

[180] S. Sadhukhan, D. Mu noz, C. Adamo, and G.E. Scuseria. Predicting proton trans-

fer barriers with density functional methods. Chemical Physics Letters, 306(1-2):83

– 87, 1999.

[181] R. Kumar, R.A. Christie, and K.D. Jordan. A Modified MSEVB Force Field for

Protonated Water Clusters. The Journal of Physical Chemistry B, 113(13):4111–4118,

2009.

239



[182] P. Goyal, M. Elstner, and Q. Cui. Application of the SCC-DFTB Method to Neu-

tral and Protonated Water Clusters and Bulk Water. The Journal of Physical Chem-

istry B, 115(20):6790–6805, 2011.

[183] W.L. Jorgensen and J.D. Madura. Temperature and size dependence for Monte

Carlo simulations of TIP4P water. Molecular Physics, 56(6):1381–1392, 1985.

[184] B.G. Kyle. Chemical and Process Thermodynamics. Prentice Hall PTR, 1999.

[185] W. Wagner and A. Pruss. The IAPWS Formulation 1995 for the Thermodynamic

Properties of Ordinary Water Substance for General and Scientific Use. Journal of

Physical and Chemical Reference Data, 31(2):387–535, 2002.

[186] L. Haar, E. Gallagher, and G. Kell. NBS/NRC Steam Tables: Thermodynamic and

Transport Properties and Computer Programs for Vapor and Liquid States of Water in

SI Units. Hemisphere Publishing Corporation, Washington, 1984.

[187] J. Wang, P. Cieplak, Q. Cai, M.-J. Hsieh, J. Wang, Y. Duan, and R. Luo. Devel-

opment of Polarizable Models for Molecular Mechanical Calculations. 3. Polar-

izable Water Models Conforming to Thole Polarization Screening Schemes. The

Journal of Physical Chemistry B, 116(28):7999–8008, 2012.

[188] C.A. Coulson and D. Eisenberg. Interactions of H2O Molecules in Ice. I. The

Dipole Moment of an H2O Molecule in Ice. Proceedings of the Royal Society of

London. Series A. Mathematical and Physical Sciences, 291(1427):445–453, 1966.

[189] J.W. Caldwell and P.A. Kollman. Structure and Properties of Neat Liquids Using

Nonadditive Molecular Dynamics: Water, Methanol, and N-Methylacetamide.

The Journal of Physical Chemistry, 99(16):6208–6219, 1995.

240



[190] P.L. Silvestrelli and M. Parrinello. Water Molecule Dipole in the Gas and in the

Liquid Phase. Phys. Rev. Lett., 82(16):3308–3311, Apr 1999.

[191] M. Neumann. The dielectric constant of water. Computer simulations with the

MCY potential. The Journal of Chemical Physics, 82(12):5663–5672, 1985.

[192] J.L. Aragones, L.G. MacDowell, and C. Vega. Dielectric Constant of Ices and

Water: A Lesson about Water Interactions. The Journal of Physical Chemistry A,

115(23):5745–5758, 2011.

[193] H.E. Alper and R.M. Levy. Computer simulations of the dielectric properties

of water: Studies of the simple point charge and transferrable intermolecular

potential models. The Journal of Chemical Physics, 91(2):1242–1251, 1989.

[194] J.A. Barker and R.O. Watts. Monte Carlo studies of the dielectric properties of

water-like models. Molecular Physics, 26(3):789–792, 1973.

[195] M.P. Allen and D.J. Tildesley. Computer Simulations of liquids. Oxford University

Press, Oxford, 1987.

[196] S.-B. Zhu and C.F. Wong. Sensitivity analysis of water thermodynamics. The

Journal of Chemical Physics, 98(11):8892–8899, 1993.

[197] M. Sprik. Hydrogen bonding and the static dielectric constant in liquid water.

The Journal of Chemical Physics, 95(9):6762–6769, 1991.

[198] P. Hochtl, S. Boresch, W. Bitomsky, and O. Steinhauser. Rationalization of the

dielectric properties of common three-site water models in terms of their force

field parameters. The Journal of Chemical Physics, 109(12):4927–4937, 1998.

[199] P. Ren and J.W. Ponder. Temperature and Pressure Dependence of the AMOEBA

Water Model. The Journal of Physical Chemistry B, 108(35):13427–13437, 2004.

241



[200] J. Gao. Energy components of aqueous solution: Insight from hybrid QM/MM

simulations using a polarizable solvent model. Journal of Computational Chem-

istry, 18(8):1061–1071, 1997.

[201] H.J.C. Berendsen, J.R. Grigera, and T.P. Straatsma. The missing term in effective

pair potentials. The Journal of Physical Chemistry, 91(24):6269–6271, 1987.

[202] G.S. Kell. Density, thermal expansivity, and compressibility of liquid water from

0◦ to 150◦. Correlations and tables for atmospheric pressure and saturation re-

viewed and expressed on 1968 temperature scale. Journal of Chemical & Engineer-

ing Data, 20(1):97–105, 1975.

[203] C.A. Angell, W.J. Sichina, and M. Oguni. Heat capacity of water at extremes of

supercooling and superheating. The Journal of Physical Chemistry, 86(6):998–1002,

1982.

[204] C. Vega, M.M. Conde, C. McBride, J.L.F. Abascal, E.G. Noya, R. Ramirez, and

L.M. Sese. Heat capacity of water: A signature of nuclear quantum effects. The

Journal of Chemical Physics, 132(4):046101, 2010.

[205] K. Krynicki, C.D. Green, and D.W. Sawyer. Pressure and temperature depen-

dence of self-diffusion in water. Faraday Discuss. Chem. Soc., 66(0):199–208, 1978.

[206] S. Tazi, A. Bot,an, M. Salanne, V. Marry, P. Turq, and B. Rotenberg. Diffusion

coefficient and shear viscosity of rigid water models. Journal of Physics: Condensed

Matter, 24(28):284117, 2012.

[207] A. Abragam. The Principles of Nuclear Magnetism. Clarendon Press, Oxford Eng-

land, 1961.

242



[208] D.J. Wilbur, T. DeFries, and J. Jonas. Self-diffusion in compressed liquid heavy

water. The Journal of Chemical Physics, 65(5):1783–1786, 1976.

[209] J. Barthel, K. Bachhuber, R. Buchner, and H. Hetzenauer. Dielectric spectra of

some common solvents in the microwave region. Water and lower alcohols.

Chemical Physics Letters, 165(4):369 – 373, 1990.

[210] A.K. Soper. The radial distribution functions of water and ice from 220 to 673 K

and at pressures up to 400 MPa. Chemical Physics, 258(23):121 – 137, 2000.

[211] T. Head-Gordon and M.E. Johnson. Tetrahedral structure or chains for liquid

water. Proceedings of the National Academy of Sciences, 103(21):7973–7977, 2006.

[212] L.A. Baez and P. Clancy. Existence of a density maximum in extended simple

point charge water. The Journal of Chemical Physics, 101(11):9837–9840, 1994.

[213] B. Chen, J. Xing, and J.I. Siepmann. Development of Polarizable Water Force

Fields for Phase Equilibrium Calculations. The Journal of Physical Chemistry B,

104(10):2391–2401, 2000.

[214] S. Nose. A unified formulation of the constant temperature molecular dynamics

methods. The Journal of Chemical Physics, 81(1):511–519, 1984.

[215] W.G. Hoover. Canonical dynamics: Equilibrium phase-space distributions. Phys.

Rev. A, 31(3):1695–1697, Mar 1985.

[216] G. Raabe and R.J. Sadus. Molecular dynamics simulation of the dielectric con-

stant of water: The effect of bond flexibility. The Journal of Chemical Physics,

134(23):234501, 2011.

243



[217] K. Ichikawa, Y. Kameda, T. Yamaguchi, H. Wakita, and M. Misawa. Neutron-

diffraction investigation of the intramolecular structure of a water molecule in

the liquid phase at high temperatures. Molecular Physics, 73(1):79–86, 1991.

[218] Y. Mo and J. Gao. Polarization and Charge-Transfer Effects in Aqueous So-

lution via Ab Initio QM/MM Simulations. The Journal of Physical Chemistry B,

110(7):2976–2980, 2006.

[219] S. Lifson. J. Chim. Phys. Physicochim. Biol., 65(40), 1968.

[220] M. Levitt and S. Lifson. Refinement of protein conformations using a macro-

molecular energy minimization procedure. Journal of Molecular Biology, 46(2):269

– 279, 1969.

[221] M. Levitt. The birth of computational structural biology. Nature Structural Biol-

ogy, 8(5):392 – 393, 1969.

[222] A.G. Streng. Miscibility and compatibility of some liquefied and solidified gases

at low temperatures. Journal of Chemical & Engineering Data, 16(3):357–359, 1971.

[223] R. McIntosh, T.-S. Kuan, and E. Defresart. Hydrogen fluoride vapor etching for

Pre-Epi silicon surface preparation. Journal of Electronic Materials, 21(1):57–60,

1992.

[224] A.L. Horvath. Heat Capacity of Liquid Hydrogen Fluoride-A Discrepancy.

Zeitschrift für Physikalische Chemie, 78:209–210, 1972.

[225] M. Deraman, J.C. Dore, J.G. Powles, J.H. Holloway, and P. Chieux. Structural

studies of liquid hydrogen fluoride by neutron diffraction. Molecular Physics,

55(6):1351–1367, 1985.

244



[226] J. Janzen and L.S. Bartell. Electron-Diffraction Structural Study of Polymeric

Gaseous Hydrogen Fluoride. The Journal of Chemical Physics, 50(8):3611–3618,

1969.

[227] M. Atoji and W. N. Lipscomb. The crystal structure of hydrogen fluoride. Acta

Cryst., 7(2):173–175, 1954.

[228] W.L. Jorgensen and M.E. Cournoyer. Quantum and statistical studies of liquids.

1. An intermolecular potential function for the hydrogen fluoride dimer from ab

initio 6-31G computations. Journal of the American Chemical Society, 100(16):4942–

4945, 1978.

[229] W.L. Jorgensen. Quantum and statistical mechanical studies of liquids. 2. Monte-

Carlo simulations of liquid hydrogen fluoride. Journal of the American Chemical

Society, 100(25):7824–7831, 1978.

[230] W.L. Jorgensen. Basis set dependence of the structure and properties of liquid

hydrogen fluoride. The Journal of Chemical Physics, 70(12):5888–5897, 1979.

[231] M.L. Klein, I.R. McDonald, and S.F. O’Shea. An intermolecular force model for

(HF)2. The Journal of Chemical Physics, 69(1):63–66, 1978.

[232] M.L. Klein and I.R. McDonald. Structure and dynamics of associated molecu-

lar systems. I. Computer simulation of liquid hydrogen fluoride. The Journal of

Chemical Physics, 71(1):298–308, 1979.

[233] W.J. Hehre, R.F. Stewart, and J.A. Pople. Self-Consistent Molecular-Orbital Meth-

ods. I. Use of Gaussian Expansions of Slater-Type Atomic Orbitals. The Journal of

Chemical Physics, 51(6):2657–2664, 1969.

245



[234] D.R. Yarkony, S.V. O’Neil, H.F. Schaefer III, C.P. Baskin, and C.F. Bender. Inter-

action potential between two rigid HF molecules. The Journal of Chemical Physics,

60(3):855–865, 1974.

[235] P. Jedlovszky and R. Vallauri. Computer simulation study of liquid HF with a

new effective pair potential model. Molecular Physics, 92(2):331–336, 1997.

[236] P. Jedlovszky and R. Vallauri. Computer simulations of liquid HF by a

newly developed polarizable potential model. The Journal of Chemical Physics,

107(23):10166–10176, 1997.

[237] J. Han, M.J.M. Mazack, P. Zhang, D.G. Truhlar, and J. Gao. Quantum mechanical

force field for water with explicit electronic polarization. The Journal of Chemical

Physics, 139(5):054503, 2013.

[238] M. Kreitmeir, G. Heusel, H. Bertagnolli, K. Todheide, C.J. Mundy, and G.J.

Cuello. Structure of dense hydrogen fluoride gas from neutron diffraction and

molecular dynamics simulations. The Journal of Chemical Physics, 122(15):154511,

2005.

[239] R. Car and M. Parrinello. Unified Approach for Molecular Dynamics and

Density-Functional Theory. Phys. Rev. Lett., 55(22):2471–2474, Nov 1985.
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Appendix A

A Charge-Fitting Procedure for
Coarse-Grained Proteins

A.1 Introduction

The accurate modeling of electrostatics in simulating protein-protein interactions is a

critically important component in the construction of a force field for use in many pro-

tein simulations. In this appendix, we present the physical description of electrostatic

potential in the presence of an ionic solution, and how to fit effective, point charges

using numerical solutions of the Poisson-Boltzmann equation. The method presented

here is nearly identical to the method of Gabdoulline and Wade [348], and uses the

linear, least-squares charge-fitting procedure of Besler, Merz, and Kollman [349].

A.2 Background

A.2.1 Poisson Equation

Electrostatic potential can be described by Poisson’s equation. Poisson’s equation is an

elliptic partial differential equation arising as a direct consequence of Gauss’ law (Eq.

A.1) and Faraday’s law of induction in the absence of a changing magnetic field (Eq.
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A.2) [350].

∇ · E =
ρ

ε0
(A.1)

∇× E = −∂B
∂t

= 0 ⇔ E = −∇U (A.2)

Together, these two equations give rise to Poisson’s equation (Eq. A.3), which deter-

mines the electrostatic potential U for a given charge density ρ where ε0 is the permit-

tivity of free space.

∇2U =
ρ

ε0
(A.3)

In general, the principal difficulty in solving Poisson’s equation is the large computa-

tional cost required for using the charge density of the atomistic system with explicit

solvent. In practice, the solvent is treated implicitly through the use of a Boltzmann

distribution, which results in the more frequently used Poisson-Boltzmann equation.

A.2.2 Poisson-Boltzmann Equation

Interactions between charged particles, such as proteins in ionic solution, can be de-

scribed by the Poisson-Boltzmann equation (PBE) (Eq. A.4). In this approach, the pro-

teins are treated as low dielectric cavities containing partial charges described by the

charge density ρf . The remaining ρ̄m term, further detailed in Eq. A.5, describes the

charge density of the solvent, where c∞i is the concentration of the ion type i at a dis-

tance of infinity from the solute. Additionally, ε(~r) describes the position-dependent

distribution of the dielectric media. The PBE is essentially a modified version of Pois-

son’s equation, describing the ions in solution by a Boltzmann distribution.

∇ · [ε(~r)∇U(~r)] = ρ̄m(~r)− ρf (~r) (A.4)
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ρ̄m =
∑
i

c∞i ziqe
−ziqU(~r)

kT (A.5)

The PBE is nonlinear due to the exponential term in Eq. A.5. To avoid this non-

linearity, the exponential term is expanded into a two-term Taylor series under the

assumption that (ziqU/kT ) << 1, resulting in Eq. A.6, which is called the linearized

Poisson-Boltzmann equation (LPBE) [351].

∇ · [ε(~r)∇U(~r)] =

(∑
i

c∞i
z2
i q

2

kT

)
U(~r)− ρf (A.6)

While Eq. A.6 is much easier to solve than Eq. A.4, its solution requires the use

of numerical techniques such as finite difference, finite element, or boundary element

methods. Such methods can produce very accurate results, but have a high compu-

tational cost, making a faster, approximate method desirable for coarse-grained MD

simulations of many proteins.

A.2.3 Debye-Hückel Equation

The Debye-Hückel equation is the result of approximating the solution to the LPBE

by ignoring the effects from the charge density ρf and forcing the distribution of the

dielectric media to be uniform (i.e. ε(~r) = εrε0) [291]. Such assumptions result in Eq.

A.7 – a form of the Helmholtz equation.

∇2U(~r) =
1

εrε0

(∑
i

c∞i
z2
i q

2

kT

)
U(~r) (A.7)

In the spherical coordinate system, the general solution to this Helmholtz equation is
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simply a linear combination of two exponential functions divided by the radial dis-

tance r.

U(~r) = A
e−κr

r
+B

eκr

r
= A

e−κr

r
(A.8)

For electrostatic potential problems, the arbitrary constant B is 0 due to the condition

that electrostatic potential decays as r →∞. In general, the other arbitrary constant A

depends on the properties of the ionic solution as well as the units. The constant κ−1,

called the Debye-Hückel screening length, can be interpreted as the distance needed

for significant charge separation to occur and is equal to the reciprocal square root of

the summation in Eq. A.7.

Because of its simplicity, the Debye-Hückel equation provides a convenient means

for quickly approximating the solution of the LPBE, and is therefore desirable to use as

a potential for charge fitting and modeling protein-protein interactions.

A.3 Charge Fitting

The goal of any approximation is to increase the simplicity in solving the problem

while minimizing the deviation from the ideal solution. Such is the philosophy behind

what is called charge fitting.

A.3.1 Description

In charge fitting, n coarse-grained charge sites are chosen for a system of N atoms,

where n << N . The benefit of such an approach is clear in that the computational

cost of computing the pairwise interaction forces between charged sites is O(n2) <<

O(N2). Charges are fit to each site using a linear, least-squares procedure to minimize

the error in electrostatic potential between that produced by the fit charges using the

Debye-Hückel equation and a numerical solution to the PBE on a Cartesian grid. Due
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to the approximation made when deriving the Debye-Hückel equation that ignores

the charge density on the inside of the protein, those grid points which are inside the

protein are removed from the least-squares fitting procedure.

A.3.2 Computational Details

The charge fitting procedure is based upon finding the charges q1, q2, . . . , qn such that

the function z of Eq. A.9 reaches a global minimum.

z = γ + λg (A.9)

γ(q1, q2, . . . , qn) =
m∑
i=1

(Vi − Ei)2 (A.10)

Ei =
n∑
j=1

qje
−κrij

rij
(A.11)

g =

n∑
j=1

(qj − qtot) = 0 (A.12)

The fitting procedure contains one linear constraint, g of Eq. A.12, requiring the sum-

mation of the individual charges to be equal to the charge of the protein. After substi-

tution of all variables and constraints, we obtain the following expression for z.

z =

m∑
i=1

Vi − n∑
j=1

qje
−κrij

rij

2

+ λ

n∑
j=1

(qj − qtot) (A.13)

Upon finding the roots of the n+ 1 partial derivatives of z, we arrive at the system

of equations Aq = B seen in Eqs. A.14, A.15, and A.16, which can be solved by matrix

inversion due to the fact that rank(A) = n+1. Note that
∑n

j=1 qj = qtot is satisfied, and
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the last element of the q vector is the Lagrange multiplier for the total charge constraint.



A11 A12 · · · A1n 1

A11 A12 · · · A1n 1

...
...

. . .
... 1

An1 An2 · · · Ann 1

1 1 1 1 0





q1

q2

...

qn

λ


=



B1

B2

...

Bn

qtot


(A.14)

Ajk =
m∑
i=1

e−κ(rij+rik)

rijrik
(A.15)

Bk =

m∑
i=1

Vie
−κrik

rik
(A.16)

The above provides a general procedure for determining effective charge at a given

position for an ionically-screened system modeled by the Debye-Hückel equation. Note

that all charge positions and charge distances rij and rik are known a priori. We discuss

their selection in the following section.

A.4 Selecting Charge Sites

In principle, all charge sites can be selected arbitrarily. However, it is important to

choose sites which give physically plausible charges. In order to make some gener-

alizations about how the sites should be chosen, we tried selecting charge sites based

upon two different coarse-graining models applied to the crystal structure of a hemoglobin

(PDB:2DN2) having a net charge of +2.

The numerical solution of the PBE was calculated by a finite difference method us-

ing CHARMM c36a5 [50] and automatically-generated scripts from http://charmm-gui.

org [352,353]. A Cartesian grid was placed at the center of mass of the crystal structure

of the hemoglobin, reaching an additional 5Å on each of the six sides of the grid for
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Figure A.1: The two methods of coarse-graining used for charge fitting. Left to right:
Atomistic model, coarse-graining of Byron, ACG model.

additional grid points outside of the protein. The spacing between grid points was 1Å

and the grid had dimensions of 77x77x69.

A.4.1 Coarse-Graining of Byron

Our first selection of sites for fitting used a coarse-graining model similar to the uniform-

grid coarse-graining approach of Byron [274]. In this approach, the center of each of

the 36 beads we used for approximating the hemoglobin was assigned a charge using

the fitting procedure described here. We observed from this fit that charges centered

on beads in the interior of the hemoglobin were very large in magnitude and had a

high standard deviation of 19.9 (Table A.1).

A.4.2 Surface Sites

Next, fit charges on 12 and 42 sites on the ACG surface [354] of the protein using the

angular grid of a geodesic sphere. The results of the fitting showed the charges to be of

a much more plausible value than those of the spatial/volume approximating coarse-

graining model of Byron, having a standard deviation of around 4.4 and 3.9 for the

12 and 42 surface charges respectively (Table A.1). This result suggests that surface

charges are more important than the buried charges in the determination of the overall
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Statistic Byron ACG (42) ACG (12)
Mean 0.0556 0.0476 0.1667
StdDev 19.914 3.932 4.400
Min -88.66 -14.39 -7.442
Max 37.94 8.923 8.457
Range 126.60 23.32 15.90
Sum 2.000 2.000 2.000

Table A.1: Table showing statistical data for charged sites using the coarse-graining of
Byron with 36 sites and geodesically spaced ACG surface charges for 12 and 42 sites
respectively. Unites are given in electron charge.

potential from the numerically solved PBE.

A.4.3 ACG Charges

One possible improvement of the surface model, which uses a finite number of sites

for charges, could be achieved through the assignment of a continuous surface-charge

density, which interacting proteins could feel through an integration over space. Simi-

lar to ACG, this could be represented as a spherical harmonic expansion (Eq. A.17).

ρ(θ, φ) =

L∑
l=0

l∑
m=−l

clmY
m
l (θ, φ) (A.17)

A.5 Conclusion

Our goal in using this charge-fitting procedure is ultimately to use the results for mod-

eling protein-protein interactions in a cellular environment. One conclusion that can

be drawn from the fact that fit surface-charges are more physically plausible than the

fit charges on buried sites is that the correct modeling of the properties on the protein

surface are more relevant to accurately modeling protein-protein interactions than the

properties of buried atoms. This principle is well-fitting with the analytical coarse-

graining philosophy of our ACG model for proteins.
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Appendix B

Algorithm for Spherical Harmonic
Expansion and Evaluation

In this appendix, we summarize a numerical procedure for spherical harmonic ex-

pansion and evaluation; additional details may be found in Ref. [310] (see also Refs.

[341, 355]). The numerical methods are widely used in geopotential modeling and

an expansion of degree, and order up to 3800 has been reported corresponding to a

ground resolution of about 5 km [356] (for the protein OMPDC considered here, it

would correspond to an astonishing surface resolution of about 0.005 Å). It is useful

to recast Eq. 6.1 for the surface function S(θ, φ) in terms of harmonic coefficients as

follows:

S(θ, φ) =
L∑

m=0

L∑
l=m

aclmP
m
l (cos θ) cosmφ+ aslmP

m
l (cos θ) sinmφ (B.1)

Notice also that the order of the summations over degree and order has been switched.

This is especially important in modern spherical harmonic analysis because the lat-

itude and longitude data can now be treated independently, resulting in a two-step

computational algorithm. [310,311,341] The expansion coefficients are determined based

on a set of sampling data {S(θi, φj)} on a grid of equispaced 2M points in (for Fourier
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transform) and M Gauss-Legendre quadrature nodes in cos θ (for integration):

aclm =

∫ π

0

[∫ 2π

0

1√
(1 + δm0)π

S(θ, φ) cos (mφ)dφ

]
P
m
l (cos θ) sin θdθ (B.2)

aslm =

∫ π

0

[∫ 2π

0

1√
(1 + δm0)π

S(θ, φ) sin (mφ)dφ

]
P
m
l (cos θ) sin θdθ (B.3)

The grid points are defined as follows:

φj = j∆φ = j
π

M
; j = 0, 1, . . . , 2M − 1 (B.4)

PM+1(cos θi) = 0; i = 1, 2, . . . ,M + 1 (B.5)

wherePM+1(cos θi) is the Legendre polynomial. The Gauss-Legendre quadrature weights

can be determined using the expression [294, 339]

wi = 2

[
sin (θi)

(M + 1)PM (cos θi)

]2

(B.6)

From this set of data, the maximum degree of the expansion coefficients that can be

determined is L = M because the maximum number of terms in the summation over

l in Eq. B.1, which is L + 1 when m = 0, must be less than or equal to the number of

sampling points in the longitudinal direction θ. Here, we do not address the issue of

aliasing, [357] and we typically use a larger number of sampled grid points than the

maximum degree used in the expansion.

Alternatively, if equal spaced points are used in θ, which is equivalent to the Cheby-

chev nodes in cos θ, at least 2M + 1 sampling points are needed for degree L in the
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expansion coefficients as opposed to a minimum of M = L+ 1 points with the Gauss-

Legendre quadrature. In this case, the Chebychev weights are obtained using the for-

mula below: [341, 358, 359]

wi =

√
2

M

M−1∑
l=0

1

2l + 1
sin ([2l + 1]θi) (B.7)

For convenience in the rest of the discussion, we use the degree of the expansion L

to define the grid divisions throughout.

B.1 Spherical Harmonic Expansion

For the spherical harmonics expansion, a two-step computation algorithm is used. The

first step corresponds to a Fourier transform in the inner integrals in Eqs. B.2 and B.3.

For a given value m, the discretized Fourier series in the inner integrals of Eqs. B.2 and

B.3 are expressed as follows:

U(θi, m̂) =
1√

(1 + δm0)π

2L−1∑
j=0

S(θi, φj) cosmφj , i = 1, . . . , L+ 1 (B.8)

V (θi, m̂) =
1√

(1 + δm0)π

2L−1∑
j=0

S(θi, φj) sinmφj , i = 1, . . . , L+ 1 (B.9)

where δm0 is the Kronecker delta, and the notation m̂ is used to emphasize that the

Fourier series can be efficiently performed by Fast Fourier Transform (FFT).

The second step involves integration by Gauss-Legendre quadrature (or equally

spaced Chebychev quadrature which requires twice as many sampling points) to yield
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the 2× (L−m+ 1) expansion coefficients:

aclm =
L+1∑
i=1

wiP̄
l
m(cos θi)U(θi, m̂); l = m, . . . , L (B.10)

aslm =
L+1∑
i=1

wiP̄
l
m(cos θi)V (θi, m̂); l = m, . . . , L (B.11)

If the values U(θi, m̂) and V (θi, m̂) are arranged as column vectors u(m̂) and v(m̂),

respectively, the above equations can be conveniently written in matrix form:

acm = P(m)TWu(m̂) (B.12)

asm = P(m)TWv(m̂) (B.13)

where acm and asm are the expansion coefficients of Eqs. B.10 and B.11 arranged as

column vectors, W = diag{wi} is an (L + 1) × (L + 1) diagonal matrix consisting of

the quadrature weights and the matrix for the precomputed values of the normalized

associated Legendre polynomial is arranged as follows:

P(m) =


P̄mm (cos θ1) · · · P̄mL (cos θ1)

...
. . .

...

P̄mm (cos θL+1) · · · P̄mL (cos θL+1)

 (B.14)

The operation for the first step has a computation scale of O(L log (L)) using FFT,

whereas the second step is of O(L2) for each order m. Thus, the overall procedure

scales O(L2 log (L)) + O(L3). Obviously, the L + 1 parallels can be fully distributed

over different processors, each having an overall computational scaling of O(L2); this

is particularly suited for GPUs by choosing the number of parallels equal to that of the
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processors. Note that a fast spherical harmonic transform algorithm similar to that of

FFT has been described. [341, 358]

B.2 Spherical Harmonic Evaluation

Evaluation (or spherical harmonic synthesis) of surface function values also involves

two computational steps. For a fixed colatitude θi, the first step is to compute interme-

diate vectors û(θi) and v̂(θi) over l for 0 ≤ m ≤ L:

û(θi) = Pi(m)acm (B.15)

v̂(θi) = Pi(m)asm (B.16)

In the second step, the 2L longitudinal values are computed by Fast Fourier Trans-

form for the following discrete series:

S(θi, φj) =
L∑

m=0

Û(θi,m) cosmφj + V̂ (θi,m) sinmφj , j = 0, . . . , 2L− 1 (B.17)

The overall computational scaling is also O(L3), which can be distributed to L pro-

cessors as the two computational steps are fully independent. The use of parities in the

construction of the associated Legendre polynomials reduces computation by a factor

of 2. [310]
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