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Abstract: eauthors propose a location choice procedure that is capable of handling changing conditions of aspects with different time hori-
zons. It integrates expected travel time, current location effectiveness, prospective location effectiveness, and individual unexplained location
perception into a decision heuristic that considers different planning horizons simultaneously and decides on-the-fly about future location
visits. Multiple simulation runs illustrate agents’ location choice behavior in various situations and confirm that the model enables agents to
simultaneously consider seasonal effects, weather conditions, expected travel times, and individual unexplained location preference in their
location choice.
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1 Introduction

Microscopic travel demand simulation soware uses a direct representation of virtual people (usually referred to as agents) to
generate demand in the form of activity plans. is leads to a high computational complexity that oen results in computational
performance and memory issues. Microscopic models typically introduce constraints to counter such issues. For instance, Balmer
(2007) limited the maximum simulation horizon of standard size scenarios to a single day, making it difficult to investigate effects
occurring over a period of days or weeks. Another limitation of Balmer’s model is that agents must commit to a specific day plan,
making it challenging to simulate unexpected events realistically (Charypar et al. (2009); Dobler et al. (2012)). Including such
flexible behavior requires a different simulation approach that is capable of modeling demand continuously over multiple days and
weeks, i.e., agents should be able to make decisions about upcoming activities on-the-fly and with an open time horizon (see also
empirical insights from the work of Doherty (2005)).

We proposed a microscopic travel demand simulation in Märki et al. (2012a) and Märki et al. (2012b) (we refer to it as C-
TAP -ContinuousTarget-BasedActivity Planning) that is capable of modeling demand continuously (i.e., continual in time over
long periods) by using behavioral targets to guide agents through their decision space. ese targets are closely related to observed
behavior, e.g., the execution frequency or time spent on a given activity, and can take account of exogenous effects like social and
cultural norms. Our agents continuously track their performance and compare it to their behavioral targets using observationwin-
dows of different durations. Deviations from the desired behavior cause discomfort, which is conveyed to a planning heuristic that
makes decisions about which future activities the agents should execute. is enables agents to react spontaneously to unexpected
events. At the same time, it also reduces memory consumption because agents do not need to keep track of complete schedules,
making simulation periods of several months feasible.

e aim of this work is to address the question on how to integrate location choice into C-TAP while preserving its ability
to simulate long periods in reasonable time and keeping its memory footprint small. e envisaged procedure also needs to be
able to consider changing conditions of aspects with different time horizons like long-term phenomena (seasonal effects), mid-
term aspects (recurrent visits of relatives or changing weather conditions), and short-term elements (expected travel times). We
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propose a combination of expected travel time, current location effectiveness, prospective location effectiveness, and individual
unexplained location preference as basis for the continuous location choice procedure. e combination of these elements not
only allows investigations of aspects with different time horizons but also enables variety seeking and produces realistic location
choice decisions.

e remainder of this paper is structured as follows: first, we will introduce the target-based approach and discuss the decision
heuristic used by the model. e section thereaer will start with a comparison of continuous location choice (i.e., continual in
time considering changing conditions of aspects with different time horizons) to location choice used in single-day simulation
models. is will be followed by an outline of the continuous location choice procedure, its components, and their relevance
in the decision process. e subsequent section will validate the proposed continuous location choice procedure by considering
seasonal aspects, weather conditions, location accessibility, and individual perception for leisure activities. We will conclude the
paper by summarizing the highlights of the proposed approach and providing an outlook on future research.

2 RelatedWork

e target-based approach shows similarities to the need-based theory introduced by Arentze and Timmermans (2006, 2009).
Whereas Arentze and Timmermans postulated that needs motivate people to execute activities, we assume that people form a
conception of their desired performance as they reported in the data collected by the Swiss Federal Statistical Office (BFS) (2006)
as well as in other travel diaries (e.g., Axhausen et al. 2007, 2002; Schönfelder 2006). Peoples’ conception of performance is
transformed into targets. Consequently, targets are directly observable in the available data, and it is therefore possible to overcome
the hidden source problemof the need-basedmodel. Nonetheless, we keptC-TAPgeneric in the sense that the satisfaction of needs
may still be one possible target inC-TAP.We incorporateWinston’s (1982) suggestion to use time-dependent utilities for activities
(see also Axhausen (1990, 34-38) for a summary or Gliebe and Kim (2010) for recent work in this tradition) and introduce time-
dependent effectiveness functions to describe the effectiveness of activities and locations with respect to discomfort reduction.
Since different locations can provide different effectiveness definitions, location effectiveness becomes an important element of the
location choice procedure. e individual unexplained preference for a certain location is modeled as a random variable similar to
the proposal of Horni et al. (2012). e target-based model was introduced in Märki et al. (2012a) and validated in Märki et al.
(2012b) using an existing six-week continuous travel diary (Axhausen et al. (2007); Schönfelder (2006)).

3 Target-Based Model

is section introduces a microscopic travel demand simulation that enables a continuous simulation of several weeks. Agents,
representing virtual people, are the central component of C-TAP. Each agent is motivated to execute activities, specifying his or
her desired performance beforehand through behavioral targets. Targets describe agents’ internal conditions based on personal
desires, preferences, and goals. Deviations from these behavioral targets result in discomfort, which induces agents to take action
against the deviation; higher deviations result in greater discomfort, which in turn leads to a greater urge to take action. Agents can
reduce their discomfort by executing activities at different locations, and we assume that agents prefer activity/location pairs that
provide more discomfort reduction. is is similar to the work of Arentze and Timmermans (2009), who proposed that activity
utility is a function of need reduction. e model uses effectiveness functions to specify the efficacy of discomfort reduction at
a specific location, i.e., effectiveness functions describe the external conditions agents experience when they interact with their
environment.

3.1 Targets

e core assumption of this work is that people are motivated to execute activities and that they have a conception of their mo-
tivation in terms of the performance they want to achieve. People specify this performance through behavioral targets and try to
comply with them across observation windows of different durations. For instance, a person might wish to exercise for roughly
two hours twice a week. is person might be satisfied with one hour of exercise once a week and state that up to 2.5 hours of
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exercise three times a week would still be compatible with his of her weekly schedule. e targeted behavior could be transformed
into targets as follows:

• epercentage of time target defines the amountof the time apersonwould like to spendonan activitywithin an observation
window. In order to simplify themodeler’s task, it is possible to specify the total execution duration, which is then internally
converted to the percentage of time target. For the above example, the modeler would specify a target value of two hours
of exercise, a bandwidth of +0.5

−1 hours (the upper and lower bounds of the target value) and an observation window of one
week (see Fig. 1a).

• efrequency target defines the number of activity executions a personwould like to accomplishwithin an observationwin-
dow. For the above example, the modeler would specify a target value of two executions with a bandwidth of +1

−1 executions
and an observation window of one week.

(a) Schematic illustration of a target configuration that defines the average time a personwould like to spend on
executing an activity. Target values as well as upper and lower bounds (which define the behavioral band-
width) can be static or dynamic and are therefore modeled as functions in time.

(b) Schematic illustration of performancemonitoring. e state value (dashed green line) is calculated through
a convolution of the activity execution pattern with an exponential kernel, resulting in an exponentially
weighted moving average. e observation window, in which the person tries to comply with the target,
defines the kernel length.

Figure 1: Illustration of agent configuration and performance monitoring.

Playing tennis, swimming, and hiking are all forms of exercise. At the same time, playing tennis is also a chance to socialize or
even a means of maintaining business relationships (see, e.g., Arentze and Timmermans (2009) for a discussion of multipurpose
activities). C-TAP allows for activities to serve multiple targets, and it is possible to assign a target to several activities. is
facilitates the configuration of interacting effects, as outlined above.

epresentedmodel also supports static anddynamic targets. Static targets are used tomodel constant behavioral patterns and
dynamic targets to model variable behavioral patterns (also referred to as behavioral rhythms). Behavioral rhythms are conditions
in which activity executions vary across observationwindows (e.g., leisure activitiesmight bemore common during weekends than
weekdays).
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Agents monitor their performance during the simulation and compare state values to their target values (see Fig. 1b). State
values are exponentially discounted over the observation window of targets. is simulates a forgetting process in which agents
give more weight to recent behavior and gradually discount their past performance.

3.2 Effectiveness Functions

People seem to have time-dependent preferences for executing activities and/or visiting locations. Reasons for this behavior can
be manifold, and they vary according to constraints (e.g., opening hours), norms (e.g., business hours), and contingencies (e.g.,
weather conditions) as well as combinations of such effects. Effectiveness functions are a simple but comprehensiveway to describe
such interdependencies and are expressed as the percentage of execution effectiveness. Effectiveness functions inform agents about
the efficacy of activities and locations with respect to discomfort reduction. is is similar to the work of Winston (1982), who
proposed time-dependent utilities for activities (see also Axhausen (1990, 34-38) for a summary or Gliebe and Kim (2010) for
recent work in this tradition). Possible effects that can be modeled by effectiveness functions include:

• Shop opening hours for daily shopping activities. Agents can use this information either to determine whether they can
execute a shopping activity without delay and for how long, or to estimate how long it will take until the next opportu-
nity to engage in that activity will arise. Since effectiveness functions can be location dependent, it is also possible to model
location-dependent shop opening hours. Furthermore, the effectiveness function can also contain time-dependent informa-
tion about shop crowdedness. We assume that shopping in overcrowded shops is less efficient (smaller value) and therefore
takes longer.

• Circadian rhythm for sleep activities. is function specifies the light intensity. Agents can, for instance, use this informa-
tion as an indication of sleep effectiveness. We assume that people sleep at night and have already adapted to their current
time zone.

• Business hours for work activities. is function can be seen both as a cultural norm (different cultures may keep different
business hours) and a social norm (social groups, e.g., professions, may have different business hours). Agents can use this
information as an indication of work effectiveness. We assume that people depend on coworkers to be able to do their work
(the degree of dependence can vary according to the profession).

4 Planning Heuristic

e aim of the planning heuristic is to schedule activities based on agents’ preferences and goals (defined by targets) as well as
external conditions (defined by effectiveness functions) agents experience when they interact with their environment. Existing
approaches to agent-based microsimulations have exhibited various disadvantages when it came to activity scheduling. Balmer
(2007) re-planned the same day until he produced an optimal state. is procedure led to high computational costs. Kuhnimhof
andGringmuth (2009) struggledwith inflexibilities when agents should have spontaneously reacted to unexpected events. Chary-
par and Nagel (2006) formulated the planning procedure as a reinforcement learning problem and reported that this approach
performed poorly for large scenarios. is work uses a planning heuristic to overcome the above limitations.

eproposedheuristic applies a decision scheme that uses a continuous planning approach, i.e., agents planupcoming activities
on-the-fly considering different planning horizons. Because agents make decisions as they go along, they can react spontaneously
to unexpected events and continuously adjust their decisions. As a result, the proposed decision scheme supports within-day
replanning by default. e proposed decision scheme also implements a forgetting process in which agents give more weight to
recent behavior and gradually discount their past performance (see Fig. 1b). Similarly, agents also paymore attention to their near
future and less to opportunities further in their future (see Section 4.2.4 for a description). Applying such a decision scheme limits
agents’ view into their past and future. is has similarities to reality, where people cannot include their complete record and
every prospective opportunity into their decision-making process. Because agents only consider a locally limited time period for
their decisions, it also helps to overcome computational demand and memory issues. Since a heuristic is intended to approximate
a good solution, it is also possible to use incomplete knowledge about the state of mind and plans of other agents. is is also
helpful since complete knowledge generally leads to high computational and memory costs, especially if simulations are executed



Location choice for a continuous simulation 

on distributed computation environments in order to speed up the simulation. One could argue that people seek optimal day plans
and that applying a heuristic makes this infeasible. However, other authors (e.g., Schlich 2004; Simon 1955) doubt that behavior
can be explained as a function of utility maximization that aims at a global optimum. People seem to maximize their utility, but
with a limited view similar to a search for a local optimum.

e next subsection will outline the decision procedure, which will be followed by a detailed explanation of its components.

4.1 The Decision Procedure

Anagentdecides uponhis orhernext actionby applying a three-stepdecisionprocedure to all his or her promising activity/location
pairs. is decision procedure combines different planning aspects into a heuristic function. ese aspects include a comparison
of the past performance with the targeted performance, an evaluation of the immediate execution options, an estimate of the
prospective activity executionopportunities, a considerationof the travel time, and a randomtermmodeling individual perception.
e heuristic function H F is defined as:

H F (tt s , te s , tee ) =DR(te s , tee ) · EE(te s , tee ) · LA(tee )︸ ︷︷ ︸
step 1: activity duration

·ET R(tt s , te s , tee )

︸ ︷︷ ︸
step 2: gain per time invested

·(1+ ε)

︸ ︷︷ ︸
step 3: random fluctuation [optional]

(1)
where DR is the discomfort reduction, EE is the execution effectiveness, LA is the look-ahead index, ET R is the execution

time ratio, (1+ε) is a scaled random term, tt s is the start of travel, te s is the start of execution, and tee is the end of execution (see
Section 4.2 for an explanation of the individual factors).

In the first step, an agent determines the optimal end of execution tee by maximizing the product of DR · EE · LA using a
numerical optimization known as Brent’s method (Press et al. 2007, 496-499). is step defines the duration of the activity and
thus, the presented model generates activity durations as a function of agents’ state (see also Section 7.1). e integration of DR
results in a preference for alternatives (activity/location pairs) which provide discomfort reduction, using EE favors alternatives
which are commonly selected (e.g., based on cultural or social norms), and the inclusion of LA fosters the selection of alternatives
that have a certain inflexibility with regard to being postponed to a later point in time. In the second step, the agent multiplies the
maximized value by ET R, introducing a preference for accessible locations. So far, the decision procedure is homogeneous for all
agents in the sense that agents having the same state and facing the same situation will make the same decision. Clearly, this does
not match the heterogeneity of observed behavior (see, e.g., Chikaraishi et al. 2010; Schönfelder 2006). In order to introduce
variation, agents can incorporate a scaled random term into the decision-making procedure as an optional third step. In the final
step, the agent decides to implement the activity/location pair yielding the highest value of the heuristic. is is similar to the
work of Arentze and Timmermans (2009), who proposed that activity utility is a function of need reduction and implemented a
procedure that selected activities in respect thereof.

4.2 Components of the Planning Heuristic

4.2.1 Discomfort

Discomfort builds on targets and is a function of the difference between targeted and actual behavior (i.e., the difference between
target values and state values) and thus, it is a measure that considers agents’ past performance. Discomfort levels identify the
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urgency an agent experiences to take action against the origin of the discomfort. e discomfort an agent feels from an activity at
time t is defined as:

D(t ) =
n∑

k=1
( f k

t a r g e t (t )− f k
s t at e (t ))

2 ·
(

wk
1 if f k

s t at e (t )≤ f k
t a r g e t (t )

wk
2 otherwise

(2)

wk
1 =

1

( f k
t a r g e t (t )− f k

l owe r−b ound (t ))
2

(3)

wk
2 =

1

( f k
t a r g e t (t )− f k

u p pe r−b ound (t ))
2

(4)

where k is the index of the target, f k
t a r g e t (t ) is the function defining the target value, f k

s t at e (t ) is the function used to calculate

the agent’s state value, f k
l owe r−b ound

(t ) is the function defining the lower bound, and f k
u p pe r−b ound

(t ) is the function defining

the upper bound. e weight factors wk
1 and wk

2 normalize D(t ) and ensure that it equals 1 at the lower and the upper bound.

4.2.2 Discomfort Reduction

e reduction in discomfort that an agent experiences as a consequence of executing an activity at a specific location is defined as:

DR(te s , tee ) =D(te s )−D(tee ) (5)

where D(te s ) is the discomfort at the start of execution and D(tee ) is the discomfort at the end of execution. Using this
index introduces a preference for activity/location pairs that yield higher levels of discomfort reduction. Discomfort reduction is
a measure that considers agents’ past performance.

4.2.3 Execution Effectiveness

e execution effectiveness an agent experiences for executing an activity at a given location is defined as:

EE(te s , tee ) =

tee∫
te s

fe f f e c t (t )dt

tee − te s
(6)

where fe f f e c t (t ) represents the effectiveness function, te s is the start of execution, and tee is the end of execution. Using this
index introduces a preference for executing activity/location pairs during efficient time windows (whereby efficiency is defined by
whatever the effectiveness function represents, e.g., a combination of several effects like social and cultural norms), and it helps
to prevent agents from executing activities during time windows when the agent cannot or can only partially execute the activity
(e.g., because the shop closes). Execution effectiveness is a measure that considers agents’ immediate and upcoming possibilities.

4.2.4 Look-Ahead Index

Atkinson (1994) and Ioannou et al. (2001) highlighted the importance of information about future execution options for schedul-
ing problems with time-window constraints. Effectiveness functions provide information about future execution options. For in-
stance, agents can check shop opening hours to get information onwhether they can execute a shopping activity at a given time and
for how long, or how long they must wait until the next opportunity to shop will arise. Agents can use such information to plan
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ahead, for instance by postponing activities withmore execution options/higher prospective effectiveness in favor ofmore pressing
activities for immediate execution (e.g., do daily shopping duties because shops are going to close soon, therefore postponing some
other activities).

e aim of the look-ahead index is to provide agents with an awareness of potentially decreasing activity execution options.
A simple approach for the example of the shop opening hours would be to measure the percentage of total time available for a
potential execution of shopping in the near future (e.g., within the next four days). is approach has the disadvantage that it
does not distinguish between execution options that will open soon and those that will open later. Applying higher weights to
execution options that open sooner alleviates this problem. is is done through a convolution of the effectiveness function with
an exponential kernel (see Fig. 2), similar to the convolution used to calculate state values. e look-ahead value an agent achieves
for executing an activity at time t is defined as:

LA(t ) =

 1+w1 · (1−
h∫
0
( fe f f e c t (t + x) · ke r ne l (x))dx) if fe f f e c t (t )> 0

1 otherwise
(7)

where w1 is a weight factor, h is the look-ahead horizon of the kernel, and fe f f e c t (t ) is the effectiveness function. Intuitively,
one could understand LA(t ) as an index describing the urgency to execute an activitywhenprospective execution options decrease.
erefore, it was designed in such a way that it yields a value in the range of [1..w1] (1 for low urgency and a value approaching w1
for decreasing execution options). Since the heuristic function incorporates LA(t ) as a factor, it is important to define it≥ 1. For
the same reason, it is set to 1 if fe f f e c t (t )≤ 0, resulting in an indifference for this index when the effectiveness function prevents
an execution. e look-ahead index is a measure that considers agents’ prospective opportunities.

Figure 2: Illustration of the look-ahead index for shop opening hours on short and long weekends, comparing different look-ahead
windows (2 and 7 days). e higher the value, the closer the end of the given shop opening hours window. e value
is higher before weekends, indicating fewer shopping options in the near future. e look-ahead index with a kernel of
7 days can differentiate between short and long weekends (value is higher before a long weekend). Choosing the right
kernel length is therefore important, so we propose a duration of approximately two to three times the average interval
between the execution of two activities of the same type (e.g., 3 · 2 days = 6 days for daily shopping).
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4.2.5 Execution Time Ratio

e execution time ratio an agent accomplishes for executing an activity at a location is defined as:

ET R(tt s , te s , tee ) =
tee − te s

tee − tt s
(8)

where tee− te s defines the activity duration and tee− tt s the duration between the start of travel (defined by the end of the last
activity at the previous location) and the end of execution tee . Accordingly, a higher share spent traveling results in a smaller factor.
is parameter introduces an aversion to traveling and a preference for activity execution. Consequently, it produces a preference
for accessible locations (locations that can be reached fast) and fosters activity chaining. e execution time ratio is a measure that
considers agents’ immediate possibilities as well as predictions of prospective travel times.

4.2.6 Individual Perception

A decision procedure that only uses the above components would make homogeneous decisions, i.e., agents having the same state
and facing the same situation would make the same decisions. Clearly, this does not match the heterogeneity of observed behav-
ior (see, e.g., Chikaraishi et al. 2010; Schönfelder 2006). A possible workaround to improve heterogeneity is to introduce an
unexplained preference, modeled as a random variable altering the perception of alternatives (see, e.g., Horni et al. 2012; Mc-
Fadden and Train 2000, for other studies modeling heterogeneity in a population by random variables). Agents can incorporate
an optional scaled random term into their decision procedure. is step activates agents’ individual perceptions and the decision
procedure becomes nondeterministic.

5 Continuous Location Choice

e aim of this section is to discuss the location choice integrated into the continuous simulation model. e continuous model
aims at time horizons that go beyond the 24-hours scenario of other agent-based soware packages (e.g., Balmer 2007). As a
consequence, a continuous location choice procedure alsoneeds to consider aspects that are in addition to the aspects consideredby
existing procedures (see, e.g., Horni et al. (2012) for a study concerning MATSim). For instance, it should also consider changing
conditions of long-term phenomena (like seasonal effects), mid-term aspects (like recurrent visits of relatives or changing weather
conditions), and short-term elements (like expected travel times). e continuous simulation considers these elements by using
a location choice procedure that combines expected travel time, current location effectiveness, prospective location effectiveness,
and an individual unexplained location preference. e combination of these elements not only allows investigations of aspects
with different time horizons (like seasonal aspects and weather conditions) but also enables variety seeking and produces location
choice decisions in acceptable time and with a reasonable memory footprint.

e next subsection explains how the decision procedure implements a preference for accessible locations. is is followed by
a subsection illustrating how the decision procedure considers changing conditions of aspects with different time horizons. e
last subsection presents agents’ individual location perception, enabling a nondeterministic location choice procedure.

5.1 Preference for Accessibility

People tend to execute their activities (e.g., satisfy their daily shopping needs) in their surroundings. e decision heuristic con-
siders this preference through the execution time ratio (see Eq. (8)). e resulting factor penalizes travel time by being higher for
alternatives with a lower travel share. is introduces a preference for accessible locations and activity chaining.

5.2 Location Effectiveness

C-TAP aims at the continuous simulation of long time periods like weeks or months. Accordingly, a continuous location choice
procedure needs to be able to consider changing conditions of aspects with different time horizons (e.g., long-term phenomena
like seasonal effects as well as mid-term aspects like changing weather conditions). C-TAP provides this ability for each individual
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location through the definition of an effectiveness function, informing agents about the effectiveness of a location with respect to
discomfort reduction (also see Section 3.2 for a discussion of effectiveness functions).

Effectiveness functions combine different effects (constraints, norms, long-term phenomena, continuous aspects, etc.), which
canbe static (e.g., precomputedmeasures like openinghours) or dynamic (e.g., measures computed on-the-fly coming froma sensor
observing the environment). Effectiveness functions are considered by the planning heuristic (see Section 4) through discomfort
reduction, execution effectiveness and the look-ahead index and as a consequence, they are an important element of the location
choice procedure.

Effectiveness functions can model many location choice aspects. e following list gives an idea of the range of problems they
can address:

• Congestion-sensitive location choice: One way to prevent location overuse is by incorporating information on crowd-
edness into the effectiveness function of locations. is example builds on the assumption that executing an activity at
overcrowded locations (e.g., shops) is less efficient and therefore takes longer than at less crowded locations. Information
on crowdedness can build on people’s experience of how many people visit the location at a given time (in this case the
function would be static) or on the number of agents actually visiting the location and the space limitation of the location
(in this case the function is computed dynamically). e planning heuristic equips agents with a preference for less crowded
locations (because discomfort reduces faster) and it urges agents to execute activities before locations get crowded (through
the look-ahead index).

• Weather-sensitive location choice: One way to model weather sensitivity is by incorporating weather forecast informa-
tion into the effectiveness function of locations hosting weather-sensitive activities. is example builds on the assumption
that people have a preference to execute weather-sensitive activities when weather conditions are good. e weather infor-
mation and their categorization can come from external sources (e.g., from the Swiss Federal Office of Meteorology and
Climatology) or modelers can come up with weather information that are in accordance with their scenario and the ques-
tion they want to investigate. e weather categories are then graded by the modeler and receive an effectiveness measure
according their closeness to their best category (e.g., sunny weather receives effectiveness 1 whereas heavy snowfall receives
effectiveness 0.1). e planning heuristic prevents agents from executing weather-sensitive activities during snowy days (be-
cause discomfort reduces slower) and it urges agents to execute them ahead of bad weather fronts (through the look-ahead
index).

• Pattern-sensitive location choice: In some contexts, it might be desirable to produce a location choice behavior follow-
ing certain patterns (e.g., recurrent visits of social contacts like friends or parents). is can be modeled by incorporating
information on the elapsed time since the last visit into the effectiveness function of an activity modeling visits to social
contacts. is example builds on the assumption that people have a repetitive visiting pattern. erefore, the effectiveness
function increases (e.g., it approaches 1) as the time since the last visit approaches the desired interval time. Since the plan-
ning heuristic provides agents with a preference for effective locations, the probability of an agent visiting a social contact
also increases as the time since the last visit approaches the desired interval time. e effectiveness function could be as-
signed to the activity (modeling the meeting pattern to social contacts in general) or to a specific location (modeling the
meeting pattern to specific social contacts like parents).

• Seasonal location choice: One way to model seasonal effects is by incorporating seasonal rhythms into the effectiveness
function of locations hosting seasonal activities. For example, a ski resort is more effective during the winter months aer
a snowfall, whereas the yacht club is more effective during the summer months, when sunny weather and a good breeze are
more likely. is function enables agents to follow seasonal rhythms by providing a preference to ski at a ski resort during
the winter and a preference to sail at a yacht club during the summer (see Section 6 for such an application).

• Income-sensitive locationchoice: Visits to some locationsmightdependon income (e.g., visits to luxuriousplaces/commodities).
is can be modeled by adding information on income and price level correlation to the effectiveness function of income-
sensitive activities and locations (e.g., for a long-term shopping or dine out activity). is example builds on the assumption
that wealthier people can afford luxurious places/commodities that poorer people cannot. is is modeled by a dynamic



       .

effectiveness function taking income and price level into account, resulting in a high effectiveness when levelsmatch and de-
creasing effectiveness as the difference increases. Since the planning heuristic takes effectiveness into account, agents prefer
locations matching their income level.

• Habitual/explorative location choice: One way to model habitual behavior is by incorporating information on visiting
frequencies into the effectiveness function of locations. is example builds on the assumption that people’s behavior has
habitual elements, resulting in a preference for locations they already know. Accordingly, the effectiveness increases as the
number of past visits increases. Explorative behavior (counteracting habitual behavior) can be integrated through a decline
function, leading to decreasing effectiveness as the time since the last visit increases.

5.3 Individual Perception

Individual perception introduces heterogeneity into the location choice procedure using a random variable altering the perception
of an agent for an alternative (see also Section 4.2.6). is introduces an individual unexplained preference for certain locations.

Employing random utility theory, the utility of an alternative is

Upi =Vpi + εpi (9)

where p is the person/agent index and i the index of the alternative. V denotes the systematic part of the utility (identical to
every agent), ε the random offset, and U the resulting utility. Horni et al. (2012) used a Gumbel distribution and considered
three approaches to calculate εpi and thus, to improve the heterogeneity of their location choice procedure:

(a) Freezing the applied global sequence of random number generation.

(b) Computing and storing a separate εpi for every combination of agent p and alternative i .

(c) Re-calculating εpi on-the-fly by using a random seed spi = f (p, i) that depends on agent p and alternative i .

Option (a) turned out to be infeasible because it is difficult to freeze a drawing sequence (e.g., in a computer program that runs in
parallel) and (b) exceededmemory resources for large-scale scenarios. is le (c) as the only feasible solution that was adopted for
the continuous decision procedure presented here. e scaled random term ε(p, i , te s ) of the planning heuristic is a linear combi-
nation of two weighted random variables. e first random variable uses a seed depending on agent p and alternative i , providing
each agent with a consistent (but different among each agent) order of preference for alternatives. e second random variable
uses a seed depending on execution day, altering the variety-seeking behavior between decisions while preserving deterministic be-
havior between simulation runs. is is necessary because in contrast to Horni et al. (2012), C-TAP does not iteratively simulate
the same day but performs a continuous simulation of longer periods where people might face the same decision at different days
without choosing the same alternative.

6 Location Choice Validation

is section validates the proposed continuous location choice procedure using amodel configuration focusing on seasonal aspects,
weather conditions, location accessibility, and individual perception for leisure activities. We start with a description of the model
configuration and then discuss simulation results.

6.1 Model Configuration

We use a grid of 50 × 50 cells. Each cell defines the home location of an agent. Each agent can choose between four locations
(Fig. 5 shows their positioning on the grid) for executing leisure activities and, as an alternative, agents can always choose to execute
activities at home. e locations for leisure activities are split into two summer locations (e.g., executed at the shore of a lake)
and two winter locations (e.g., executed at a ski resort). One of each seasonal location type is susceptible to weather conditions.
Opening hours of each leisure location starts at 7 a.m. and ends at 8 p.m. e simulation scenario assumes a year of 12 days,
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with three days for each season (days 1-3 for summer, days 4-6 for autumn, days 7-9 for winter, and days 10-12 for spring). Travel
times are calculated based on the Euclidean distance between locations, simplifying identification of effects originating from the
preference for accessible locations.

Fig. 3 illustrates the functions used by the simulation to create the effectiveness functions for the leisure locations shown in
Fig. 4. Leisure locations either use the summer or winter function of Fig. 3a, dependent on being more effective in summer or
winter; might integrate the function of Fig. 3b dependent on being susceptible to weather conditions; and use the function of
Fig. 3c to integrate opening hours into their effectiveness function. is results in four different effectiveness functions, two for
locations being more effective in summer—one with (lake 1 - see Fig. 4a) and one without (lake 2 - see Fig. 4b) susceptibility to
weather conditions—and two for locations being more effective in winter—one with (ski 1 - see Fig. 4c) and one without (ski 2 -
see Fig. 4d) susceptibility to weather conditions.

6.2 Simulation Results

Weperform three simulation runs, one with deactivated individual perception (no randomness) and twowith activated individual
perception using a small and a large random share. We only activate the second random variable (see Section 5.3) since agents
should have a neutral base attitude towards all four leisure locations. Fig. 5 illustrates the simulation results of days 1, 5, 7, and 11.
e first picture of each row shows results with deactivated and the second and third pictures with activated individual perception
(the second using a small and the third using a large random share). e home cell of an agent traveling to lake 1 is colored orange,
to lake 2 yellow, to ski 1 dark blue, and to ski 2 light blue.

• Fig. 5a compares the simulation results of day 1. Since it is a sunny summer day, agents prefer locations with highest effec-
tiveness in summer (lake 1 and lake 2). With deactivated individual perception, agents choose the closest andmost effective
location (first figure). e decision border starts to blur as the variance of individual perception increases (second and
third figures). ese simulations show that agents choose the most effective location and that the influence of effectiveness
decreases as individual perception increases.

• Fig. 5b compares the simulation results of day 5. Since it is a snowy autumn day, agents prefer locations ski 2 and lake 2
because they are insusceptible to weather conditions and because seasonal effects cancel out at day 5. With deactivated
individual perception, agents choose the closest and most effective location (first figure). e decision border starts to blur
as the variance of individual perception increases (second and third figures). ese simulations show that agents react to
weather conditions and choose locations insusceptible to weather when conditions are bad.

• Fig. 5c compares the simulation results of day 7. Since it is a sunny winter day, agents prefer locations with highest effec-
tiveness in winter (ski 1 and ski 2). With deactivated individual perception, agents choose the closest and most effective
location (first figure). e decision border starts to blur as the variance of individual perception increases (second and third
figure). ese simulations show that agents follow seasonal rhythms and choose to execute winter activities in winter and
summer activities in summer (see Fig. 5a to compare to summer conditions).

• Fig. 5d compares the simulation results of day 11. Since it is a sunny spring day and seasonal effects cancel out, all locations
have the same effectiveness. Accordingly, agents choose the closest location (first figure) and the decision borders start to
blur as the variance of individual perception increases (second and third figure). ese simulations show that agents base
their decision on locations’ accessibility when other effects cancel out.

In the above simulations, we use the Euclidean distance between locations to calculate travel times (simplifying identification
of effects originating from the preference for accessible locations). Accordingly, it is not surprising that increasing individual per-
ception (higher random share) moves the travel time distribution towards longer travel times (see Fig. 6). is shows a possibility
to calibrate the simulated travel time and travel distance distributions through altering the parameters of the random term. Horni
et al. (2011) observed this effect as well and used it to calibrate their model to fit travel distance distributions of the Swiss National
Travel Survey (Swiss Federal Statistical Office (BFS) (2006)).
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(a) Functions modeling seasonal effects (days 1-3 for summer, days 4-6 for autumn, days 7-9 for winter, and days 10-12
for spring). Locations more effective during summer use the summer function and locations more effective during
winter use the winter function.

(b) Function modeling weather conditions. Locations integrate this function into their effectiveness if they are sus-
ceptible to weather conditions. Day 2 represents a rainy day, days 5 and 8 are snowy days, and all others are sunny
days.

(c) Function modeling opening hours. All locations integrate this function into their effectiveness.

Figure 3: Illustration of the functions used by the simulation to create the effectiveness functions for the leisure locations shown in
Fig. 4.
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(a) Effectiveness function for the location (lake 1) being more effective in summer. is location is susceptible to
weather conditions (days 2, 5, and 8).

(b) Effectiveness function for the location (lake 2) being more effective in summer. is location is insusceptible to
weather conditions.

(c) Effectiveness function for the location (ski 1) being more effective in winter. is location is susceptible to weather
conditions (days 2, 5, and 8).

(d) Effectiveness function for the location (ski 2) beingmore effective inwinter. is location is insusceptible toweather
conditions.

Figure 4: Illustration of the location effectiveness functions created by the simulation using the functions shown in Fig. 3.



       .

...

lake 1

.

lake 2

.
ski 1

.

ski 2

...

lake 1

.

lake 2

.
ski 1

.

ski 2

...

lake 1

.

lake 2

.
ski 1

.

ski 2

(a) Simulation results of day 1. A sunny summer day with a preference for summer locations (lake 1 and lake 2).
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(b) Simulation results of day 5. A snowy autumn day with seasonal effects canceling out and a preference for locations insusceptible to weather
conditions (ski 2 and lake 2).
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(c) Simulation results of day 7. A sunny winter day with a preference for winter locations (ski 1 and ski 2).
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(d) Simulation results of day 11. A sunny spring day with seasonal effects canceling out (agents choose locations based on their accessibility).

Figure 5: Illustration of the simulation results of days 1, 5, 7, and 11 (see Section 6.2 for a detailed discussion). e first picture of
each row shows results with deactivated individual perception, the second picture with activated individual perception
using a small random share, and the third picture using a large random share. e home cell of an agent traveling to lake
1 is colored orange, to lake 2 yellow, to ski 1 dark blue, and to ski 2 light blue.
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Figure 6: Illustration of the travel time distribution with activated individual perception using a small (green) and a high (blue)
random share.

7 Conclusions

7.1 Discussions

iswork is a step towards a travel demand generation framework that allows for a continuous simulation of large scalemulti-week
scenarios. In the design process, it was important to formulate an extensible approach that uses configuration parameters that have
an intuitive interpretation and describe behavior as perceived by people. e proposed approach uses activity execution frequency
and percentage of time spent for an activity to characterize targets (modeling agents’ internal conditions like goals and prefer-
ences) and uses effectiveness functions to describe execution efficacy of activities at locations (modeling external conditions agents
encounter at a location). is results in an intuitive model that uses customizable parameters that directly influence behavior, i.e.,
the effects on the resulting behavior are directly predictable.

Implementing the concept of time horizons by applying a convolution with an exponentially weighted kernel simulates a
forgetting process inwhich agents givemoreweight to recent behavior and gradually discount their past performance (see Fig. 1b).
Similarly, agents also pay more attention to their near future and less to opportunities further in their future (see Fig. 2 for an
illustration and Section 4.2.4 for a description). Applying such a decision scheme limits agents’ view into their past and future.
is has similarities to reality, where people cannot include their complete record and every prospective opportunity in their
decision-making process. Consequently, the decision procedure generates decision sequences based on limited information on
agents’ past performance and future opportunities, similar to a local optimization. Like other authors (e.g., Schlich 2004; Simon
1955), this work takes up the viewpoint that using a nonrecurring decision scheme is behaviorallymore authentic than the iterative
search for the globally best decision sequences (as e.g., Balmer 2007, applies).

Arentze and Timmermans (2007) pointed out that the dynamics of activity planning range from long-term dynamics related
to life trajectories to short-term activity-travel rescheduling behavior, and several time horizons between these extremes. e
decision procedure presented here plans activities on-the-fly considering different time horizons. On one hand, this procedure
enables agents to react spontaneously to unexpected events since they can continuously adjust their decisions based on a changing
environment. On the other hand, the kernel-based approach of targets and look-ahead indices allows agents to consider different
time horizons simultaneously. For instance, it would be possible to assign targets with kernel lengths of one week, onemonth, and
one year to a work activity, ensuring that agents adhere to their weekly, monthly, and yearly work quota.

C-TAP derives activity durations from agents’ state and external conditions. Agents monitor their performance during the
simulation and compare it to their targeted behavior (see Fig. 1b). is allows for varying activity durations because they are
based on the time needed to adjust state values to target values (i.e., reduce discomfort). Accordingly, an activity’s execution
duration varies with the time since its last execution. Furthermore, the execution duration also varies with its execution efficacy
defined by the effectiveness function. For instance, if an effectiveness function takes shop crowdedness into account, shopping
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at an overcrowded shop takes longer than at a less crowded shop because the effectiveness influences the increase rate of the state
value.

e proposed continuous location choice procedure builds on a combination of expected travel time, current location effec-
tiveness, prospective location effectiveness, and individual unexplained location preference. e combination of these elements
not only allows investigations of changing conditions of aspects with different time horizons but also enables variety seeking and
produces realistic location choice decisions (see Section 6). Using effectiveness functions as an indication for locations’ current
and prospective effectiveness with respect to discomfort reduction is a broad concept that can model many aspects (e.g., suscepti-
bility to weather conditions, recurrent visiting patterns, and seasonal effects). Due to the generality of the effectiveness approach,
it should be possible to extend the location choice procedure in order to satisfy future modeling needs.

e simulation presented in this work uses OpenMP to parallelize our algorithms, which are implemented in C++. e
current algorithms allow for a real-time simulation of approximately one million agents using 16 threads on two Intel Xeon E7-
8837 processors with 8-cores and 2.66 GHz each. is should render it possible to simulate large-scale scenarios.

7.2 Future Work

e long-term goal is to build a scenario for a full one-year simulation. is project should be capable of reproducing annual
demand profiles (e.g., Bernard and Axhausen (2008, 2010)) and behavioral rhythms of individuals (e.g., Axhausen et al. (2002);
Habib et al. (2008); Schlich and Axhausen (2003)). To the best of our knowledge, Bieger and Lässer (2008) and the Bureau of
Transportation Statistics (2012) are the only data sources covering such long periods. Accordingly, we will have to explore possi-
bilities to generate effectiveness functions using other available resources like historical data (e.g., weather conditions or daylight
intensities) and options to combine them with information coming from surveys with shorter duration (we are not planning to
conduct a new survey). It is also unclear how to recognize and model phase transitions in people’s lives (i.e., abrupt changes like
the birth of a child) and the time thereaer when this exceptional situation becomes everyday life. We will have to determine to
what extent expert knowledge can help to overcome such ambiguities.

8 Summary

is paper proposes a continuous location choice procedure and integrates it into C-TAP (Continuous Target-Based Activity
Planning) whose decision heuristic considers different planning horizons simultaneously and decides on-the-fly about future lo-
cation visits. e proposed location choice combines following elements: first, it integrates expected travel time as a preference for
accessible locations, i.e., agents prefer close-by locations they can reach fast. Second, it utilizes effectiveness functions as an indi-
cation for locations’ current and prospective effectiveness with respect to discomfort reduction. Location effectiveness is a broad
concept that can model many aspects, e.g., susceptibility to weather conditions, recurrent visiting patterns, and seasonal effects.
ird, it uses individual perception tomodel unexplained preference for certain locations, resulting in an increase in heterogeneity
for simulated location choice behavior. e combination of these elements results in a location choice procedure that is capable
of handling changing conditions of aspects with different time horizons, enables variety seeking, and produces realistic location
choice patterns. Multiple simulation runs validate the continuous location choice procedure showing agents’ behavior in various
situations.
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