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Spatial modeling of bicycle activity at signalized intersections

Jillian Strauss a  Luis F Miranda-Moreno b  
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Abstract: This paper presents a methodology to investigate the link between bicycle activity and built environment, road and transit network 
characteristics, and bicycle facilities while also accounting for spatial autocorrelation between intersections. The methodology includes the 
normalization of manual cyclist counts to average seasonal daily volumes (ASDV), taking into account temporal variations and using hourly, 
daily, and monthly expansion factors obtained from automatic bicycle count data. To correct for weather conditions, two approaches were 
used. In the first approach, a relative weather ridership model was generated using the automatic bicycle count and weather data. In the second 
approach, weather variables were introduced directly into the model. For each approach, the effects of built environment, road and transit 
characteristics, and bicycle facilities on cyclist volumes were determined. It was found that employment, schools, metro stations, bus stops, 
parks, land mix, mean income, bicycle facility type (bicycle lanes and cycle tracks), length of bicycle facilities, average street length, and pres-
ence of parking entrances were associated with bicycle activity. From these, it was found that the main factors associated with bicycle activity 
were land-use mix, cycle track presence, and employment density. For instance, intersections with cycle tracks have on average 61 percent more 
cyclists than intersections without. An increase of 10 percent in land-use mix or employment density would cause an increase of 8 percent 
or 5.3 percent, respectively, in bicycle flows. The methods and results proposed in this research are helpful for planning bicycle facilities and 
analyzing cyclist safety. Limitations and future work are discussed at the end of this paper. 
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1 Introduction

Active transportation is an essential component of every city’s 
transportation system, whether it is used as the only mode or 
in combination with other modes, providing access to or from 
the transit network. The use of the bicycle as a mode choice is 
currently on the rise in some Canadian cities, such as Montreal 
(Statistics Canada 2003; Miranda-Moreno and Nosal 2011; 
Vélo Québec 2005). The many recognized benefits of cycling 
as well as the continuously increasing bicycle activity give rise 
to some practical and research questions related to the built 
environment, bicycle facilities, and data collection techniques. 
Among these are three key issues:

1. What is the link between built environment (BE), bi-
cycle facilities, and road designs on bicycle activity at the 
microlevel (e.g., at intersections)? Intuitively, one would 
expect to witness higher cyclist concentrations at intersec-
tions with bicycle facilities and appropriate designs, but 
what is the magnitude of the impact of different facility 
designs (e.g., bicycle lanes versus cycle tracks)? Knowl-
edge of the factors that increase or decrease bicycle activ-
ity, referred to here also as bicycle flows or volumes at an 
intersection, is an essential  component in the planning, 

operation, and design of bicycle facilities, road safety 
analysis, etc. Transportation engineers and planners are 
interested in estimating the impact of built-environment 
changes and the impact that installing new bicycle facili-
ties has at intersections. 

2. Is it possible to estimate bicycle activity based on statistical 
methods? Bicycle activity is a key variable in safety analy-
sis at intersections. Bicycle flows are required to provide a 
complete definition of risk exposure measures. However, 
many agencies refrain from collecting such data since 
carrying out manual cyclist counts is expensive and time 
consuming. To try to solve this issue, previous studies 
have proposed cyclist and pedestrian activity estimation 
methods to quantify volumes at intersections with miss-
ing data. Among the proposed approaches are the mod-
els developed by Haynes and Andrzejewski (2010), Jones 
et al. (2010) and Griswold et al. (2011). These models 
apply linear or log-linear regression to evaluate cyclist  
and pedestrian volumes as functions of built environ-
ment, road and transit characteristics, and other vari-
ables.
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3. How can manual bicycle counts be standardized to ob-
tain average annual daily volumes accounting for tem-
poral patterns and weather effects? At sites where bicycle 
counts are available, such counts are often only provided 
for short periods of time. A method to standardize a few 
hours of manual counts taken any time during the day 
is required since such data is a necessary input for safety 
studies and for transportation agencies and governments 
to guide the design, location, and allocation of resources 
for new bicycle facilities.

Despite these recent developments, previous work on cy-
clist activity models have not used normalized average seasonal 
daily flows correcting for the potential effects of weather condi-
tions on manual bicycle counts. One of the few studies using 
average daily volumes is that done by Schneider et al. (2009); 
however, counts were not corrected for weather conditions. 
Moreover, most studies have employed simple statistical meth-
ods that do not correct for spatial autocorrelation. In addition, 
due to the data limitations, small to moderate sample sizes have 
been used in previous research. Accordingly, this paper has two 
main objectives:

1. Propose a methodology to normalize manual cyclist 
counts at intersections to average seasonal bicycle flows 
correcting for temporal trends and weather effects. 

2. Develop spatial bicycle ridership models to investigate 
the link between cyclist volumes and built environment, 
road and transit network attributes, and bicycle facilities. 
These models account for the presence of spatial auto-
correlation among intersections.

This paper is broken down into several sections. Section 
2 offers a literature review. Section 3 presents the modeling 
framework. Section 4 reveals the case study for this paper and 
describes the different sources of data used as well as the models 
and results, and Section 5 presents the conclusions drawn from 
this study and directions for future work. 

2 Literature review

Research looking into different aspects of non-motorized trans-
portation is growing in interest. Among other research topics, 
several studies have focused on the impact of socio-demo-
graphic and built-environment factors as well as the presence 
of bicycle infrastructure on bicycle usage. In many cases, this 
has been studied using survey data and travel-behavior models 
(Dill and Carr 2003; Dill and Gliebe 2008; Garrard et al. 2008; 
Hillman 1993; Kim et al. 2007; Krizek et al. 2009; McCahill 
and Garrick 2008; Moudon et al. 2005; Pucher and Buehler 

2006; Pucher et al. 2010; Stinson and Bhat 2003; Xing et al. 
2010). An extensive study carried out in Dutch, Danish, and 
German cities found that providing separate bicycle facilities 
along popular roads as well as implementing traffic-calming 
measures were a necessity to promoting convenience and safety 
for cyclists (Pucher and Buehler 2008). Xing et al. (2010) also 
concluded that improving and expanding the bicycle network 
as well as making changes to the physical environment, mainly 
encouraging mixed land use, can have a positive effect on bi-
cycle activity in a given area. Krizek et al. (2009) were inter-
ested in comparing bicycle activity in 1990 to that in 2000 as 
a function of the presence and proximity of bicycle facilities 
at both on- and off-street facilities. Overall it was found that 
areas closer to facilities witness larger cyclist volumes. The study 
done by Moudon et al. (2005) found similar results; providing 
exclusive bicycle facilities can yield an increase in cyclist num-
bers. Concerning this result, one cannot infer causality. The 
presence of the facility can be either the cause or the effect of 
elevated cyclist flows, and therefore further work is required to 
determine causality.

Three recent studies in California have reported bicycle 
activity models linking observed bicycle volumes to built-en-
vironment factors, road characteristic, and socio-demographic 
attributes. These studies developed regression models without 
accounting for the potential presence of spatial autocorrelation. 
In the city of Santa Monica, afternoon bus frequency, land-use 
mix, density of residents under the age of 18, and proximity to 
the bicycle network were used as variables to predict weekday 
afternoon peak-hour bicycle volumes through intersections 
(Haynes and Andrzejewski 2010). Another study in San Di-
ego calibrated a log-linear regression model using employment 
density and the length of nearby multi-use trails to predict 
weekday 7 a.m. to 9 a.m. bicycle volumes (Jones et al. 2010). A 
different study carried out in Alameda County developed mod-
els based on two-hour bicycle counts performed at a sample of 
81 intersections in 2008 and 2009 during spring (Griswold et 
al. 2011). The explanatory variables were generated by extract-
ing land use, transportation system, and socio-demographic 
characteristics within different radial distances from the in-
tersections. The models tested had adjusted R-squared values 
ranging from 0.39 to 0.60. These models showed that bicycle 
volumes tended to be higher at intersections surrounded by 
more commercial retail properties within 0.1 mile, closer to a 
major university, with a marked bicycle facility on at least one 
leg of the intersection, surrounded by less hilly terrain within 
0.5 mile, and surrounded by a more connected roadway net-
work. 

In Cambridge, Massachusetts, a space syntax method was 
applied to model cyclist activity (McCahill and Garrick 2008). 
This method is a tool capable of assessing the quality of ex-
isting bicycle infrastructure as well as the significance of that 
facility within the entire network. With only a small sample 
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of intersections, the model still performed well and identified 
population and employment density as two variables explain-
ing most of the variation in bicycle flows. Also in the United 
States, Stinson and Bhat (2003) carried out a stated preference 
survey and identified that cyclists prefer, among others things: 
shorter travel times, local roads instead of arterials, bicycle fa-
cilities, streets where parallel parking is prohibited, and fewer 
stop signs and intersections to cross. 

Griswold et al. (2011) provide a summary of the previ-
ous bicycle studies and the BE, road and bicycle network, and 
socio-demographic factors associated with bicycle activity. To 
mention a few, population and employment density as well as 
the presence of bicycle facilities, bus frequency, and smooth 
pavement all have a positive effect on cycling. On the other 
hand, some of the factors that would induce lower bicycle vol-
umes are: slope, motor-vehicle volume, parallel parking, and 
major roads.

Despite these previous studies, methods for obtaining and 
studying bicycle volumes at and along different facilities are 
only now beginning to gain popularity, and more work is still 
required. In general, past studies (mainly cross-sectional) have 
been based on relatively small samples of intersections, due 
to being restricted to locations with counts. Also, past studies 
have not used normalized average daily counts, using hourly, 
daily, and monthly expansion factors and have not corrected 
for the effect of weather when the manual counts were taken. 
In addition, spatial autocorrelation has not yet been addressed.

3 Modeling framework

Consider Ci as the outcome of interest representing the num-
ber of cyclists observed at a certain intersection i during a given 
period of time (e.g., one day or several hours). A proportion 
of the cyclists (trips) have their origins or destinations in the 
proximity of a given intersection i; however, other cyclists have 
their origins or destinations out of the proximity of the inter-
section—cyclists merely passing through.

The attraction or production of cyclist trips in the area 
surrounding an intersection should be highly correlated with 
the land-use and road-network characteristics as well as demo-
graphic factors. For instance, as residential or commercial den-
sities increase, the production and attraction of cyclist trips in 
this area are expected to be higher. On the other hand, bicycle 
flows through an intersection that neither originate nor end 
within its vicinity should be associated with road connectivity 
as well as the presence and types of bicycle facilities. In addi-
tion, there are other factors (observed and unobserved) such 
as travel demand patterns (hourly, daily, and monthly) and 
weather or seasonal conditions that could have an important 
affect on observed flows (Ci). 

Then, to identify the main factors associated with bicycle 

volumes and their order of magnitudes, a spatial lag regression 
model is formulated. This is given by Equation 1.

ln(Ci) = α+βLUi + γUF &Di + ϕGDi + τCFi + ηWi + ρωCj + εi   (1) 

where i stands for the intersection i (i=1,...,n) and j stands for 
all intersections in the vicinity of i.

LUi= Land-use characteristics. These variables include 
residential, commercial, governmental, industrial, and parks, 
and recreational. 

UF & Di = Urban form and demographics. These attri-
butes cover area demographics such as population, employ-
ment, income levels, and presence of schools as well as road 
and transit characteristics, such as the presence of bus stops and 
length of bus routes, presence of metro stations, number of 
intersections, portion of major roads, etc.  

GDi = Geometric design at the intersection. This includes 
the presence of a median, presence of one-way approaches, 
number of approaches, number of lanes, and typology of in-
tersecting streets. 

CFi = Cyclist infrastructure such as presence and length of 
bicycle lanes or cycle tracks. 

Wi= Hourly weather conditions (temperature, humidity, 
and precipitation) during the period when the manual counts 
were taken. Data from the same weather station was used for 
the entire area.

ωCj = ΣωijCj,  where ωC represents the influence (spill-
over effect) of the bicycle activity at neighboring intersections. 
This depends on the bicycle activity at intersections j (with j ≠ 
i) and the inverse of the distance from i to j, represented by ωj. 
Cyclists observed at a given intersection can be divided in those 
starting or ending a trip in its vicinity or those passing through 
the intersection. The spatial influence of neighboring intersec-
tions can help to capture this effect.   

εi = Independent error term representing unobserved het-
erogeneities.

α, β, λ, ϕ, τ, η, ρ = Parameters to be estimated from the 
data.

This model stipulates that bicycle activity at intersection 
i also depends on the bicycle activity at surrounding intersec-
tions j. The expected bicycle activity at intersection i no longer 
depends solely on microlevel factors at i but also on a spatial 
correlation component that depends on the level of bicycle ac-
tivity among neighboring intersections j. A proportion of cy-
clist trips at a given intersection start or end somewhere else 
in the city, and therefore part of the cyclist traffic at a given 
intersection i is simply through traffic. 

To represent spatial autocorrelation, two types of prox-
imity measures have been proposed in the literature: 1) adja-
cency-based and 2) distance-based (Drukker et al. 2011). An 
adjacency-based measure specifies ωj = 1 if intersections i and j 
are neighboring sites and 0 otherwise. For instance, the neigh-

n

j=1
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boring intersections of location i can be those that are located 
in the same administrative area (e.g., in the same borough). 
Alternatively there are more general weight functions based on 
the distances between intersections that have also been suggest-
ed for ωj. This paper employs the more general distance-based 
method where the entries in the distance-based vector, ωj, ac-
quire non-zero values for all intersections j that are defined as 
connected to i. Applying one of these weight matrices to the 
model creates what is known as a spatial lag model. To take into 
account the effects that nearby intersections have on the bicycle 
activity through intersection i, an inverse distance matrix needs 
to be created. This matrix can be generated using the X and Y 
coordinates of the adjacent intersections. This matrix, ωj, is n × 
n and each entry represents the inverse of the distance between 
intersections i and j, 1/di,j

α, where α is the scale parameter. Dif-
ferent values of α can then be tested including 0.8, 1.0, 1.2.

To estimate the model parameters, different steps and 
sources of data are needed including average daily cyclist vol-
umes, built environment, intersection design attributes, and 
information on bicycle infrastructure. The modeling frame-
work proposed in this work is illustrated using a rich dataset 
that has been assembled for the island of Montreal.

4 Case study: The island of Montreal

The island of Montreal, Quebec, Canada, was used as the ap-
plication environment. In this study, a sample of 758 intersec-
tions is used, and a significant proportion of these intersections 
are located in the central neighborhoods of the island. This 
sample represents more than one-third of the total number 
of signalized intersections on the island and considers a range 
of land-use and urban-form attributes to capture the factors 
affecting bicycle activity. These specific intersections were se-
lected since they meet the following criteria: 1) recent cyclist 
counts were available (mostly obtained in 2009 by the Mon-
treal Department of Transportation), and 2) counts were done 
during the cycling season from April 1 to November 30, when 
bicycle facilities are open. See Figure 1 for the locations of these 
intersections and their respective annual average daily bicycle 
flows (after being adjusted for temporal trends as discussed 
later in the document).

4.1 Built environment and geometric design

Several geometric design and built-environment characteristics 
have been identified for each intersection individually using 
Geographic Information Systems (GIS), namely ArcMap and 
Google Street View and through field visits. The geometric de-
sign variables that were included in the analysis are:

•	 Number of approaches per intersection
•	 Presence of a median in one or all approaches
•	 Presence of one-way streets in one or all approaches

•	 Maximum speed limit of all approaches in an intersec-
tion

•	 Typology of the intersecting streets (combinations of 
arterial, collector, and local streets)

•	 Presence of bicycle facilities, bicycle lanes, or cycle 
tracks, within 15 meters of the intersection

Motor-vehicle flows passing through each intersection ag-
gregated by movement type, left turning, right turning, and 
through moving motor-vehicle flows.

Figure 1: Intersections and their respective bicycle flows.

To generate the land-use, urban-form and bicycle-facility 
characteristics, four buffer dimensions, 50 meters, 150 meters, 
400 meters and 800 meters, were defined for each intersection. 
Different buffer dimensions were used to test the impact that 
certain features such as land use, demographics, and transit and 
bicycle-facility network availability have on bicycle activity. As 
mentioned previously, the majority of the intersections are lo-
cated in the central neighborhoods of Montreal, which is char-
acterized as being a dense area with a good land-use mix as well 
as having good transit coverage. This reality justifies the use of 
small buffer sizes. The 50-meter buffer serves to determine how 
the area in the immediate vicinity of the intersection affects 
bicycle activity. The 150-meter buffer scans a bit farther past 
the intersection but is still quite close to the intersection itself. 
The 400-meter buffer reaches even farther and covers an area 
of short travel distance from the intersection. The 800-meter 
buffer expands farther past the intersection while still present-
ing a fairly short travel distance by bicycle. The land-use and 
urban-form characteristics came from two sources, Statistics 
Canada and DMTI Spatial Inc. Census tract data, demograph-
ics, and road and transit network data were all intersected with 
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the buffers of differing dimensions. These categories were then 
decomposed into the specific data needed for this analysis, fur-
ther described in Table 1. In addition to several road and geo-
metric design characteristics, bicycle infrastructure attributes in 
the vicinity of the intersections were incorporated in the analy-
sis such as the presence of a bicycle lane or cycle track in one or 
more of the approaches and the total length of bicycle facilities 
within the buffer. In this paper, bicycle lane is the term used to 
describe any bicycle facility that is not separated from the road-
way by any physical barrier and often just has painted lines or 
sharrows. Cycle tracks often have concrete medians or bollards 
separating them from car traffic. Bicycle facilities slightly offset 
from the road are also considered cycle tracks.

An additional variable, land mix, was generated for each 
buffer based on the different land-use types present. Land mix 
is modeled after an entropy index, which measures the level 
of homogeneity or mix in a given buffer (Kockelman 1997), 
achieved by applying Equation 2,

      (2)

where Ej = land mix entropy index, Aij = the area of land use i 
in buffer j, Dj = area of buffer j excluding open space and water 
body, and n = the number of land-use types. In this analysis, 
n is 5, representing residential, commercial, industrial, govern-
mental, and parks and recreational. The value of the land-mix 
index ranges from 0 to 1, representing the case of a homog-
enous buffer, only one land-use type present, to a well-mixed 
and diverse buffer, respectively.

For population and employment variables, Equation 3 
was applied to approximate the value of those variables within 
the buffer,

      (3)

where Xi = population or number of jobs within buffer i,  
Xj = population or number of jobs in the census block j, Aji 
= area of the census block inside the buffer i and Aj = area of 
census block j. 

4.2 Daily bicycle volumes

Manual and automatic cyclist counts were combined to 
obtain average seasonal daily flows taking into account tem-
poral trends. Manual bicycle counts used in this study were 
collected by the city of Montreal on a weekday during 2008 
and 2009 over an eight-hour period. These eight hours include 
morning peak from 6 a.m.  to 9 a.m., noon period from 11 
a.m. to 1 p.m.. and evening peak from 3:30 p.m. to 6:30 p.m. 
However, these counts were not all collected on the same date, 
as is usually done in traffic studies. To normalize these flows, 
average seasonal daily bicycle flows were computed using ex-

pansion factors estimated from permanent automatic bicycle 
count stations. This was accomplished following the standard 
procedure used in traffic engineering (World Road Association 
2003). 

To convert hourly flows into annual average daily flows, 
automatic bicycle count data were used. Automatic counts 
were collected for long periods of continuous time (years) from 
automatic bicycle counters, loop detectors (permanent count 
stations), located in specific areas along five of Montreal’s bi-
cycle facilities running alongside specific streets. These counters 
are located: 1) along de Brébeuf between Rachel and Marie-
Anne, 2) along Berri between de Maisonneuve and Ontario, 3) 
along de Maisonneuve between Berri and Saint Denis, 4) along 
de Maisonneuve between Peel and Stanley, and 5) along Saint 
Urbain between Mont-Royal and Villeneuve. These counters 
are continuously obtaining bicycle count data; however, for the 
purpose of this study, the dataset was filtered to only include 
the months of interest for which Montreal’s bicycle facilities are 
open (April 1 to November 30). Data is provided in 15-min-
ute intervals for both directions, but for the sake of this study, 
these flows have been aggregated per hour and path (direction 
of travel is irrelevant). Based on the automatic count data, ex-
pansion factors were obtained to correct for the hour, day, and 
month in which the manual counts were recorded. 

Aij ln
Aij

Dj Dj

ln(n)

( )
Ej = – Σn

i=1

Aji

Aj
Xi = Σj *Xj
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a. Hourly, daily, and monthly expansion factors
Using the automatic count dataset, expansion factors for 

hour, day, and month were obtained, independent of weather. 
Since the vast majority of the counts used were obtained in 
2009 and only during weekdays, only the 2009 weekday data 
are used to generate the hourly, daily, and monthly factors. The 
process of developing expansion factors is in accordance with 
the one used for developing motor-vehicle expansion factors 
(World Road Association 2003). Hourly factors were obtained 
by computing the average bicycle flows per hour. The hourly 
factors were then calculated by dividing each individual hourly 
average by the average of the averages for all 24 hours. The 
first step in obtaining both the daily and monthly factors was 
aggregating the full 24-hour flows for each day. The daily fac-

tors were then calculated by dividing the average individual 
daily values by the average of the averages for the five week-
days. The monthly factors were obtained in the same way by 
dividing the average individual monthly values by the average 
of the averages for all eight months (April to November). Us-
ing expansion factors, average seasonal daily volumes (ASDV) 
were obtained by dividing the eight-hour flows by the hourly, 
daily, and monthly factors. These factors have been reported 
in Strauss and Miranda-Moreno (2011). The eight hours for 
which we have bicycle counts account for about 51 percent 
of the daily ridership. Looking at the days of the week, Mon-
day and Friday experience slightly fewer bicycles than Tuesday, 
Wednesday, and Thursday, which witness roughly the same 
ridership. In terms of monthly ridership, April has a fairly low 

Category Variable Units
Buffer: 50 m Buffer: 150 m Buffer: 400 m Buffer 800 m

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

La
nd

 U
se

Residential
Commercial
Governmental
Industrial
Park and Recreational
Open Space
Land-Mix Index

m2

(1000s)

value 0 
to 1

3.58 2.38
0.79 1.34
0.54 1.20
1.33 1.85
0.31 0.94
1.28 1.71
0.342 0.242

35.10 19.53
5.52 9.91
5.65 10.04
13.69 16.72
3.05 6.95
7.56 11.10
0.429 0.227

301.44 2766.61
22.96 49.27
33.36 47.13
86.01 105.58
22.74 33.68
31.54 47.73
0.515 0.194

953.52 349.29
112.52 131.20
181.00 152.54
413.60 335.42
125.68 122.42
129.95 121.65
0.661 0.148

D
em

og
ra

ph
ics

Population
Workers
Median Income
Average Income

Number of Schools

Count
(1000s)

$ (1000s)

Count

0.052 0.039
0.024 0.019
42.47 21.03
57.93 33.91
0.021 0.161

0.469 0.337
0.218 0.164
42.52 20.50
58.14 32.99
0.145 0.439

3.221 1.922
1.497 0.940
42.91 18.58
59.09 30.00
1.033 1.228

12.202 6.034
5.663 2.979
44.71 16.91
62.52 28.27
4.169 2.901

Tr
an

sit Number of Metro Stops
Number of Bus Stops

0, 1
Count

0.008 0.089
0.021 0.161

0.073 0.279
0.145 0.439

0.406 0.673
1.033 1.228

1.418 1.793
4.169 2.901

Ro
ad

Number of Intersections
Average Street Length
Length of Bicycle Facilities

Count

km

1.94 1.36
0.12 0.05
0.022 0.044

7.58 4.57
0.25 0.12
0.099 0.167

46.34 22.28
0.43 0.14
0.583 0.639

168.80 71.50
1.66 4.47
2.072 1.721

In
te

rse
ct

io
n

Number of Approaches*
Presence of a Median
Maximum Posted Speed Limit
Presence of One-Way Approach
Presence of Parking Entrance
Presence of Bicycle Lane
Presence of Cycle Track

0,1

km/h

0, 1

0.77 0.42
0.46 0.50
61.57 10.01
0.74 0.44
0.15 0.35
0.09 0.29
0.13 0.33

Attributes of the intersections are independent of buffer sizes
(* 0 if three-leg intersection and 1 if four or more legs)

W
ea

th
er Temperature

Humidity
Presence of Precipitation

˚C
%

0, 1

13.93 6.81
63.74 17.40
0.27 0.44

Weather conditions are independent of buffer sizes

Bi
cy

cle
 

Fl
ow

Adjusted for Weather-Hourly
Adjusted for Weather-Daily
Weather as Variable

Count
283.8 624.4
276.8 587.9
208.9 447.7

Dependent Variables

Table 1:  Summary statistics.
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ridership, which continuously increases from May to Septem-
ber and then drops even lower in October and November.  

b. Weather correction method
Previous studies have addressed the sensitivity of weather 

conditions on bicycle activity (Brandenberg et al. 2007; Nan-
kervis 1999a; Nankervis 1999b; Thomas et al. 2009; Winters 
et al. 2007; Richardson 2000; Richardson 2006). Counts tak-
en in April for instance, during the same hour and the same 
day of the week can be very different depending on weather 
conditions such as temperature, humidity, and precipitation. 
To take into account the effects of weather conditions on the 
observed bicycle flows, two approaches were used:

Approach 1 consists of the development and applica-
tion of a relative weather model generated from automatic 
count data. Automatic hourly bicycle counts were matched to 
their corresponding hourly weather conditions and a relative 
ridership model was calibrated—for more detail, we refer to 
Miranda-Moreno and Nosal (2011). The weather variables in 
this dataset, temperature, relative humidity, and precipitation 
were applied to generate a model to determine the percent in-
crease or decrease in hourly ridership due to relative changes in 
weather conditions from their mean values for the same path, 
month, year, day of the week, and hour. The relative changes 
(in percentage, represented by ΔR) were measured as the devia-
tion of absolute ridership (represented by R) from the average 
hourly value for the same bicycle facility, month, and day of the 
week (represented as R ) as expressed in Equation 4. A similar 
procedure was carried out to generate a daily weather model; 
however, in this case the total ridership for the day was com-
pared to the average ridership for that same path, month, year, 
and day. 

                              ΔR =                                          (4)

The relative ridership model to account for weather effects 
on cycling was then defined as shown in Equation 5. The im-
pact of certain extreme weather conditions, such as very warm 
(temperatures greater than 32° C), very cold (lower than mi-
nus 20° C), a combination of warm temperatures and high 
humidity, and the presence of rain within three hours prior to 
the count as well as other lag effects were tested. In accordance 
with Nankervis (1999a), morning weather conditions can 
affect a cyclist’s decision to bike or not. Using the automatic 
count data, complex models were generated containing tem-

perature, humidity, precipitation, and other variables, where  
ΔR = Deviation in percentage of ridership due to the relative 
changes in temperature, humidity, and amount of precipita-
tion from the normal conditions for that month and year, 
ΔTemperature = Relative change in temperature from the aver-
age monthly conditions for that year, ΔHumidity = Relative 
change in humidity from the average monthly conditions for 
that year, Rain1 = Less than 15 millimeters of rain per hour 
or less than 45 millimeters of rain during the day, Rain2 = 
Between 15 and 50 millimeters of rain during the hour or 
between 45 and 100 millimeters of rain during the day, and  
Rain3 = Greater than 50 millimeters of rain during the hour or 
greater than 100 millimeters of rain during the day.

These rain values represent low, moderate, and high 
amounts of precipitation and the range of values is based on 
the National Weather Service’s convention that has been ad-
justed to suit Montreal (Nosal and Miranda-Moreno 2012).

β0, β1, β2, β3, β4, and β5 are model parameters to be esti-
mated from the automatic count data.

Using the relative ridership model, the observed manual 
hourly bicycle counts at each intersection were adjusted for 
weather. Then, applying the expansion factors, manual hourly 
flows were converted to average seasonal daily flows.

Approach 2 directly introduces weather conditions into 
the bicycle activity model. In this case, temperature, humidity, 
and precipitation, observed at the time of the count, obtained 
from the same source as in Approach 1, are input into the bi-
cycle activity model.  

The hourly weather conditions during the times in which 
counts were taken were obtained from Environment Canada’s 
National Climate Data (ECNCD) Information Archive. This 
paper controls for weather conditions but does not focus on 
estimating its impact. The McGill University weather station 
was used to obtain data regarding temperature, relative humid-
ity, and amount of precipitation. This station is located within 
four kilometers of all the intersections, which are mostly lo-
cated in the central neighborhoods of the island of Montreal. 
The Montreal Pierre Elliot Trudeau Airport weather station 
was used when the McTavish data was missing.

ΔR = β0 + β1 ΔTemperature + β2 ΔHumidity + β3 Rain1  + β4 Rain2  +β5 Rain3                      (5)       

–

(R – R)
R

–
–
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After model calibration, the parameters in Equation 5, 
for both the hourly and daily models can be seen in Table 2. 
These parameters reveal that cyclists prefer cycling in warm 
temperature conditions. A 10 percent increase in temperature 
is expected to increase cyclist flows by more than 2 percent. 
Humidity and precipitation have the opposite effect of temper-
ature. A rise in humidity by 10 percent would cause ridership 
to decrease by about 6.5 percent. As anticipated, cyclists do not 
like biking in the presence of rain, and cyclist numbers are ex-
pected to drop by an increasing amount the more rain there is. 

4.3 Bicycle activity model

Bicycle activity is a positively skewed count variable, and there-
fore both log-linear and negative binomial regression model 
settings are tested. Equation 1 shows the log-linear formula-
tion with the natural log of bicycle activity, ln(Ci), as the de-
pendent variable. This analysis was carried out separately for 
the three dependent variables of interest: bicycle flows adjusted 
for weather conditions using the hourly model, bicycle flows 
adjusted for weather conditions using the daily model, and bi-
cycle flows with weather conditions as variables in the model. 
This study was carried out at an intersection level to capture the 
specific design attributes of the intersection, such as presence 
of a median, number of approaches, typology of the intersect-
ing streets, and the presence of a bicycle facility, as well as the 
characteristics of the area surrounding each intersection. Again, 
to test the sensitivity and impact of the buffer dimensions, dif-
ferent buffer sizes were used: 50 meters, 150 meters, 400 me-
ters, and 800 meters. Note that when using model Approach 2, 
weather conditions, temperature, humidity, and precipitation 
during the hourly period when manual counts were obtained 
were also added to the model.

The number of correlated variables has been observed to 
increase with increasing buffer size, and therefore the variable 
selection was done very carefully. Although bicycle activity may 
be better predicted using larger buffer sizes, caution must be 
taken when selecting variables for the model since the propor-
tion of correlated variables is very likely to increase with increas-
ing buffer size, which has occurred with the four buffer sizes 

in this analysis. Correlation matrices are not reported in this 
paper; however, they were useful in identifying which variables 
and to what extent the variables were related to bicycle activity. 
For this analysis, to prevent problems caused by multicolinear-
ity, if two variables were highly correlated, correlation greater 
than 0.4, the variable with the stronger relationship with bi-
cycle activity was retained while the other variable was omitted 
from the model. Correlation matrices were built for every buf-
fer dimension separately and following every proposed model 
to double check the correlation between the model variables. 
After exhaustively trying different combinations of variables, 
the best model was selected for each dependent variable and 
these results are reported in Table 3. The best model was select-
ed based on the following criteria: i) all variables in the model 
must be significant, ideally to the 5 percent level, ii) variables in 
the model cannot be correlated with one another (correlation 
greater than 0.4), and iii) the model meeting the first two crite-
ria and with the greatest adjusted R-squared value was chosen.

Table 3 shows the variables that have an effect on bicycle 
flows. These include employment, presence of schools, metro 
stations, bus stops, land mix, mean income, presence of bicycle 
paths and cycle tracks, length of bicycle facilities, average street 
length, and presence of parking entrance, regardless of how 
weather is accounted for. The effects of these variables are at 
different buffer sizes. Note that temperature is not significant 
in the model with weather as variables, possibly since most of 
the counts were done in similar temperature conditions result-
ing in insufficient variability in the temperature to see an ef-
fect. Note that since the results for the models accounting for 
weather using the hourly and daily weather models are very 
similar, Table 3 is only reporting the results based on the hourly 
model.

In terms of goodness of fit based on Akaike’s Informa-
tion Criterion (AIC), the spatial models perform better overall 
compared to the models without spatial autocorrelation. Based 
on AIC values, the spatial model generated using an α value of 
0.8 performed the best for all models with AIC values of 2144 
and 2145 for the model adjusted using the hourly model and 
with weather as variables, respectively. 

In general, the models accounting for spatial lag have low-
er standard error values than models that neglect spatial effects. 
This highlights the importance of accounting for spatial cor-
relation. Lagged spatial models not only fit the data better than 
non-spatial models but also provide appropriate estimates and 
levels of significant values. However, it is also worth noting that 
while all the variables included in the models are significant 
to the 5 percent level in the model without a spatial effect, in 
some cases they are no longer significant to this level once the 
spatial effect is introduced.

The elasticities reported in Table 3 are those correspond-
ing to the model with the best fit, which, in every case, is the 
model with a friction value of 0.8. The following discussion 

Table 2:  Hourly and daily weather model results.

Variables Hourly Model Daily Model
Coef.  P-value Elasticity* Coef. P-value Elasticity*

Temperature
Humidity
Rain 1
Rain 2
Rain 3

   0.235 0.000 2.4
  -0.657 0.000 -6.6
-13.459 0.000 -134.6
-22.892 0.000 -228.9
-24.041 0.000 -240.4

   0.288 0.000 2.9
  -0.643 0.000 -6.4
  -6.197 0.000 -62.0
-17.829 0.000 -178.3
-24.646 0.000 -246.5

Constant
R-Squared

   0.949    4.160
   0.390    0.554

*Elasticities are expressed in terms of a 10 percent change in the independent variable.



55Spatial modeling of bicycle activity at signalized intersections

will be based solely on the model containing weather condi-
tions as variables. From this, one can observe that increasing 
the number of working people within 400 meters of the inter-
section by 10 percent would cause a 5.35 percent increase in 
bicycle flows. The presence of a school or metro station would 
cause a 1.28 percent and 3.51 percent increase in bicycle ac-
tivity, respectively. Average street length and the presence of a 
parking entrance at an intersection have a negative effect on bi-
cycle activity. Shorter street lengths imply greater connectivity 
due to shorter block distances. Perhaps one of the most impor-
tant results to mention is the important effect of the presence 
of bicycle facilities, which varies according to the facility type. 
Introducing a bicycle lane or a cycle track at an intersection 

would cause an increase in bicycle volumes by 36 percent and 
61 percent, respectively. While all the variables discussed above 
are indeed significant across all models, some of these results 
do not imply causality. The effect of transit variables such as 
metro stations and bus stops can be interpreted as having a 
direct effect on bicycle activity through mode transfers during 
the trip (which might be marginal). An indirect link can also 
be observed since, in general, neighborhoods that use transit 
also tend to walk and cycle more, and therefore these central 
neighborhoods may have a high bicycle modal share.      

Table 3:  Results. 

Variables
Hourly Weather Model
No Spatial Effect α=1 α=1.2 α=0.8 ElasticityCoef. Std. Err. P>t Coef. Std. Err. P>z Coef. Std. Err. P>z Coef. Std. Err. P>z

400m Employment (1000)
400m Presence of Schools
800m Metro Stations
150m Bus Stops
800m Land Mix
50m Mean Income (1000s)
Presence of a Bicycle Lane
Presence of a Cycle Track
800m Length of Bicycle Facilities
800m Average Street Length
Presence of Parking Entrance
Constant
Rho

0.378 0.044 0.000
0.251 0.082 0.002
0.256 0.023 0.000
0.087 0.016 0.000
1.244 0.279 0.000
0.005 0.001 0.000
0.451 0.133 0.001
0.989 0.111 0.000
0.070 0.025 0.006
-0.016 0.008 0.055
-0.301 0.106 0.005
2.592 0.202 0.000

0.359 0.044 0.000
0.246 0.081 0.002
0.245 0.023 0.000
0.086 0.016 0.000
1.215 0.275 0.000
0.005 0.001 0.000
0.453 0.131 0.001
0.955 0.110 0.000
0.064 0.025 0.011
-0.015 0.008 0.062
-0.304 0.104 0.004
3.006 0.236 0.000
-0.0004 0.000 0.001

0.363 0.044 0.000
0.249 0.081 0.002
0.248 0.023 0.000
0.087 0.016 0.000
1.222 0.276 0.000
0.005 0.001 0.000
0.453 0.132 0.001
0.966 0.110 0.000
0.066 0.025 0.009
-0.015 0.008 0.058
-0.305 0.105 0.004
2.854 0.225 0.000
-0.0002 0.000 0.012

0.363 0.044 0.000
0.249 0.081 0.002
0.248 0.023 0.000
0.087 0.016 0.000
1.222 0.276 0.000
0.005 0.001 0.000
0.453 0.132 0.001
0.966 0.110 0.000
0.066 0.025 0.009
-0.015 0.008 0.058
-0.305 0.105 0.004
2.854 0.225 0.000
-0.0002 0.000 0.012

5.30%
1.38%
3.44%
2.94%
7.98%
2.80%

36.4%
61.0%
1.39%

-0.25%
-3.53%

R-Squared*
AIC

0.4851
2155.87

0.5000
2149.25

0.4970
2153.58

0.5030
2143.86

Variables
Weather as Variables
No Spatial Effect α=1 α=1.2 α=0.8 Elasticity
Coef. Std. Err. P>z Coef. Std. Err. P>z Coef. Std. Err. P>z Coef. Std. Err. P>z

400m Employment (1000)
400m Presence of Schools
800m Metro Stations
150m Bus Stops
800m Land Mix
50m Mean Income (1000s)
Presence of a Bicycle Lane
Presence of a Cycle Track
800m Length of Bicycle Facilities
Average Street Length
Presence of Parking Entrance
Temperature 
Humidity
Presence of Precipitation
Constant
Rho

0.374 0.044 0.000
0.229 0.082 0.005
0.258 0.023 0.000
0.079 0.016 0.000
1.313 0.279 0.000
0.005 0.001 0.000
0.448 0.136 0.001
0.991 0.111 0.000
0.068 0.025 0.007
-0.015 0.008 0.058
-0.316 0.106 0.003
0.002 0.006 0.676
-0.009 0.002 0.000
-0.323 0.096 0.001
2.925 0.286 0.000

0.362 0.044 0.000
0.228 0.080 0.005
0.250 0.023 0.000
0.079 0.016 0.000
1.287 0.276 0.000
0.004 0.001 0.000
0.448 0.134 0.001
0.967 0.110 0.000
0.064 0.025 0.011
-0.015 0.008 0.063
-0.319 0.105 0.002
0.002 0.006 0.748
-0.009 0.002 0.000
-0.305 0.095 0.001
3.202 0.307 0.000
-0.0003 0.000 0.021

0.366 0.044 0.000
0.229 0.081 0.004
0.253 0.023 0.000
0.079 0.016 0.000
1.296 0.276 0.000
0.005 0.001 0.000
0.449 0.134 0.001
0.977 0.110 0.000
0.065 0.025 0.009
-0.015 0.008 0.060
-0.319 0.105 0.002
0.002 0.006 0.714
-0.009 0.002 0.000
-0.311 0.095 0.001
3.074 0.299 0.000
-0.0002 0.000 0.124

0.357 0.044 0.000
0.225 0.080 0.005
0.247 0.023 0.000
0.078 0.016 0.000
1.277 0.275 0.000
0.004 0.001 0.000
0.446 0.133 0.001
0.955 0.109 0.000
0.062 0.025 0.013
-0.015 0.008 0.067
-0.318 0.104 0.002
0.001 0.006 0.793
-0.008 0.002 0.000
-0.299 0.095 0.002
3.403 0.322 0.000
-0.0004 0.000 0.002

5.35%
1.28%
3.51%
2.69%
8.43%
2.57%

36.0%
61.5%
1.38%

-0.24%
-3.75%
0.21%

-5.39%
-3.49%

R-Squared*
AIC

0.5174
2150.19

0.5210
2148.92

0.5190
2151.82

0.5230
2144.81

* Elasticities are expressed in terms of a 10 percent change in the independent variable or a 0 to 1 change in the case of a dummy variable. **Squared correlation for spatial models.
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5 Conclusion

Knowledge of bicycle activity in critical locations, such as 
through intersections, serves many purposes and uses by en-
gineers, city planners, and designers as well as public health 
professionals. Bicycle volumes can be used: i) by transportation 
agencies and governments to guide the design and location of 
new bicycle facilities, ii) in safety analysis to provide complete 
risk exposure measures, and iii) to evaluate the impact of new 
developments or built-environment changes and prioritize 
available resources. More uses are likely to be developed as 
transportation agencies and governments continue to empha-
size the importance of active transportation in any sustainable 
transportation system.  

This study has identified and quantified the effects of built 
environment and road and transit network characteristics as 
well as bicycle facilities on bicycle activity through signalized 
intersections. 

A methodology to normalize manual counts and take into 
account spatial autocorrelation is introduced. The main con-
clusions drawn from this study are:

1. The models accounting for spatial autocorrelation have 
been shown to provide slightly better results than when 
spatial effects are neglected. Spatial correlation, however, 
has a small effect on the parameter estimates, which are 
very similar across models. 

2. The explanatory power of the developed models is in the 
range of those found in the literature. In all cases, the 
R-squared value is between 0.48 and 0.52. This means 
that although the quality of the model is acceptable, the 
prediction capability still needs to be improved. This 
can be done by increasing the sample size and adding 
other variables (geometry, topography, and presence of 
bike-sharing stations). Compared to pedestrian activity 
models, it seems that bicycle activity is more difficult to 
predict.   

3. As land mix increases so does bicycle activity. A 10 per-
cent increase in land mix is expected to cause around 
an 8 percent increase in bicycle activity. Intersections 
located in diverse areas with residential, commercial, 
governmental, and industrial zones as well as parks and 
recreational areas have higher cyclist volumes than inter-
sections without.

4. Intersections with bicycle facilities such as bicycle lanes 
and cycle tracks have over 36 percent and 61 percent 
more cyclists, respectively, than intersections without 
these facilities. These results highlight the importance of 
paying particular attention to bicycle activity when in-

stalling bicycle facilities or making changes to the built 
environment. Intersections should be redesigned with 
the appropriate interventions to handle the increase in 
bicycle activity. For instance, additional space and traffic 
controls may be necessary (e.g., bicycle boxes, exclusive 
bicycle phase, etc.). An increase in the number of cyclists 
without appropriate interventions and without any re-
duction in motor vehicle traffic flows can cause an in-
crease in the number of cyclist injuries. This highlights 
the importance of bicycle facility location and the need 
for traffic calming measures when installing bicycle facili-
ties.

As part of the future work, the location and proximity 
of Bixi stations (Montreal’s public bike system) in relation to 
Montreal’s intersections will be added as a factor to predict bi-
cycle flows through intersections. Another factor to consider 
is the elevation and slope of the intersection and its surround-
ing area; steep inclines may discourage cyclists from choosing 
a certain route. Also, a larger sample of intersections will be 
used—additional data collection will be undertaken. Finally, 
larger buffer dimensions could be used to account for greater 
travel distances achieved by cyclists in comparison to pedestri-
ans. To measure the effect of bicycle facilities on bicycle activity, 
before-and-after observational studies will be used to quantify 
the volume changes.   
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