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Abstract 

Dried distillers grain with solubles (DDGS), a co-product generated from the fuel 

ethanol industry, contain the same nutrients found in corn, except for starch, which has 

been fermented to ethanol and carbon dioxide. The U.S. Fuel ethanol industry has 

experienced a rapid increase in production in the past decades with 5 million metric tons 

produced in 2000 to 42.5 million metric tons produced in 2013 [1]. Currently, DDGS is 

primarily used as a feed ingredient for livestock and poultry [2], and it has been 

recognized as an excellent source of energy, amino acids, water-soluble vitamins and 

minerals for poultry, swine [3, 4].  

Considering its high concentration of nutrients, it may have a great potential value 

as an ingredient in human foods. Therefore we examined several potential human health 

benefits of DDGS. Specifically, the effect of feeding DDGS, as well as a corn bran 

fraction and DDGS soluble fraction, on liver cholesterol, total fat, oxidative stress and 

xanthophyll bioavailability in rats was examined. The results showed that diets 

containing DDGS and DDGS co-products decreased liver cholesterol, increased bile 

acids and total neutral sterol excretion, and promoted intestinal fermentation. However, 

there was no evidence that these products decreased oxidative stress. Due to lack of 

sensitivity in the methods used, we were unable to assess xanthophylls bioavailability.  
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Chapter 1: Literature Review 

Dried distillers grains with solubles (DDGS) 

Description 

Dried distillers grains with solubles (DDGS) is a co-product from fuel-ethanol 

industry. The official AAFCO （Association  of American Feed Control Officials） 

definition for DDGS is: “Distillers Dried Grains with Solubles is the product obtained 

after the removal of ethyl alcohol by distillation from yeast fermentation of a grain or a 

grain mixture by condensing and drying at least ¾ of the solids of the resultant whole 

stillage by methods employed in the grain distilling industry” [5]. DDG is the dried grain 

residue after fermentation, which contains primarily protein, lipid, unfermented fiber, and 

minerals. Dried distillers grains with solubles (DDGS) is the mixture of DDG with the 

concentrated thin stillage to 10-12 percent moisture. Corn is the most commonly used 

grain in ethanol production, however, some wheat and sorghum are also used [2]. The 

increase in the demand for ethanol as a fuel additive has resulted in a dramatic increase in 

the amount of the DDGS and corn co-products produced. The production of corn co-

products from dry-grind ethanol production was 34.4 million metric tons in 2013 [2].   
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Figure 2-1. Dried Distillers Grains Production and Usage [6] 
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DDGS Production  

Corn is the primary grain used in ethanol production because of its high content of 

fermentable starch compared to other feed stocks, as corn contains about 62% starch, 

3.8% corn oil, 8.0% protein and 11.2% fiber, and 15% moisture [2]. The corn kernel has 

three components: the endosperm, germ and bran (tip and pericarp). The endosperm is 

mainly composed of starch, whereas the germ (about 12% of the kernel) is high in oil, 

protein, ash and non-fermentable carbohydrates. The  bran portion is almost exclusively 

composed of dietary fiber, such as cellulose and hemicellulose [7].  
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Figure 2-2. Corn structure 

(Picture from http://pedagog.hubpages.com/hub/Why-Pop-corns-Pop# [8]) 
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Two methods can be used to ferment corn into ethanol: wet milling and dry 

grinding. Most ethanol plants in the United States are dry-grind facilities. In 2009, dry 

grind plants represented 79% of all facilities [9]. In dry grind processing, each bushel of 

corn (25.4 kg) produces about 11.8 liters of ethanol and 7.7 kg of DDGS and 7kg CO2 

[10]. 

In dry grind plants, the hammer mill is used in the first step to reduce the particle 

size of corn. The starch is then hydrolyzed into glucose by adding amylolytic enzymes, 

and metabolized to ethanol by adding yeast. After fermentation, ethanol is collected by 

distillation. The remaining liquid and solids after distillation of ethanol are called whole 

stillage. The coarse solids are separated from the liquid by centrifugation. The liquid, 

called thin stillage, goes through evaporation, resulting in condensed distiller’s solubles, 

which may be sold locally to cattle feeders or combined with the coarse solids fraction 

and dried to produce dried distiller’s grains with solubles. The coarse solids contain about 

35% dry matter and may be sold to local cattle feeders without drying, or dried to 

produce dried distiller’s grains, or mixed with condensed distiller’s solubles [1]. Figure 2-

3 shows a schematic of the process of producing the various co-products resulting from 

the fermentation of corn. 

To be mentioned, usually corn oil is separated out prior to fermentation, so as to 

increase the number and value of co-products from the dry grind ethanol process [11]. 

Meanwhile, the protein content of DDGS could be increased by removing the oil, making 

it a more valuable feed component [12]. Additionally, the high content of oil in DDGS 

limits its use in the diets of some animals, such as swine and cattle [13], so a modified 
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DDGS with lower fat and higher protein is desirable to meet the market need for DDGS 

in non-ruminant diets. Oil extracted from DDGS can be sold as a feedstock for biodiesel 

production, or as an edible oil for human food market  if produced in food grade 

environment [14].  
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Figure 2-3. Dry-grind ethanol production process and co-products [15] 
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Within the past several decades, the United States has experienced a rapid growth 

in corn ethanol production. Figure 2-4 shows U.S. annual production of ethanol from 

grains and its main co-products, distillers dried grains with soluble (DDGS), between 

1980 and 2010 [16]. In 2013, the United States ethanol industry produced 45.7 billion 

liters of distillers grains [2].  

 
Figure 2-4. DDGS and ethanol production from 1980 to 2010 [17] 
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Composition of DDGS  

DDGS has a similar nutritional profile to corn, except for the starch content. 

Belyea et al. [18] analyzed 235 DDGS samples from a fuel-ethanol plant in Minnesota 

and found that the average values (as % dry matter) for protein, oil, ash, crude fiber 

(mostly cellulose and hemicellulose), and ADF (acid detergent fiber) were 31.4, 12.0, 

4.6, 10.2,  and 16.8, respectively. They also reported the average content of residual 

starch to be 5.3%. Due to the different processing procedures, the compositional fractions 

in DDGS vary greatly, as shown in Table 2-1[19]. In 2008, Kim et al. [20] analyzed the 

DDGS components as:  dry matter 88.8%, crude protein 24.9%, total carbohydrate 59%, 

glycan 21.2% (cellulose 16%, starch 5.2%), xylan 8.2% and arabinan 5.3%.  

The main lipid component of corn is triacylglycerol, which is mostly stored in the 

germ. Minor lipids include phytosterols and tocopherols. The oil content of dried distiller 

grains with solubles really depend on if the oil extraction procedure is included in 

production [21, 22]. But linoleic acid is the major fatty acid (53.96%-56.53%), followed 

by oleic acid (25.2%-27.15%) and palmitic acid (13.25%-16.41%), with low levels of 

stearic (1.8%-2.34%) and linolenic (1.15%-1.40%) acid in corn oil [23]. Since fats can 

disrupt the rumen fermentation system, attention needs be paid when adding DDGS into 

ruminant  diets [24].  

Another valuable component in DDGS is xanthophylls, which are oxygenated 

carotenoids. However they can be lost under conditions of high heat, such as during 

drying of DDGS. Roberson [25] reported differences in xanthophyll content in two 

DDGS samples: one sample contained  around 30 ppm of xanthophyll, while another one 
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had only 3.5 ppm. The difference was speculated to be due to the drying procedure and 

conditions. The NRC (National Research Council) [26] reported xanthophyll content in 

corn DDGS as 10.62 mg/kg, whereas 34 mg/kg was reported by Sauvant and Tran [27]. 

Drying condition is the predominate reason affecting the xanthophyll content of DDGS 

dramatically, since xanthophylls are very sensitive to heat. 
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Table 2-1. Range of values for DDGS composition 

DDGS components Range of values (% by wt.)1 Kim et al. 2 (% by wt.) 

Dry matter  88-92 88 

Crude protein 25-30 24.9 

Total carbohydrate 55-60 59 

Crude fat 8-10 NA3 

Cellulose 14-18 16 

Phosphorus 0.59-0.95 NA3 

Crude fiber 6.0-7.0 NA3 

1. Data from studies of Belyea et al., Batal et al. and Robinson et al.  [18, 28, 29]. 
2. Data from studies of Kim et al. [20]. 

3.NA: Not available  
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Traditional usage of DDGS as animals feeds  

The high nutritional content and the lower price of DDGS compared to other feed 

ingredients makes it a very attractive partial replacement for some of the traditional 

ingredients used in animal feeds. Domesticated animals fed DDGS-containing diets 

include poultry, swine, and cattle, although DDGS is also fed to fish, sheep, dogs, and 

horses [15]. 

Numerous studies have examined the effect of incorporating DDGS into animal 

feeds on growth and performance. Whitney and Shurson [30] showed there was no 

difference in % carcass lean or muscle quality characteristics of pork carcasses in pigs fed 

increasing levels of DDGS up to 30%. Another study  indicated DDGS was successfully 

fed to laying hens at levels up to 10% without adverse effects on laying performance 

[31]. A similar study  showed there were no negative effects of corn DDGS addition on 

the hens’ feed consumption rate, egg production or interior egg quality, although egg 

weight decreased with increasing corn DDGS content up to 20% [32]. However, there 

may be circumstances when the dietary concentration of DDGS must be reduced. For 

example, one study indicated that 30% concentrations of DDGS fed to pigs early in the 

nursery phase might negatively affect growth performance [33].   
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Figure 2-5. DDGS usage as a feed for domesticated animals [6] 
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 DDGS as a food ingredient  

Several studies examined the use of DDG as a substitute for flour or an additive in 

baked products, such as biscuits, cookies and batters [34-36]. By adding DDGS, the fiber 

and protein content of the baked products can be increased. This low starch, high protein 

and high fiber grains could be used as an ideal food ingredient for consumers with 

medical conditions such as diabetes or Celiac’s disease [37]. Foods high in starch may 

increase blood glucose levels beyond the desirable range, but diets whole grain or high 

fiber may attenuate this increase, and are thus recommended to diabetes patients. As for 

people with celiac disease, when they eat gluten, their body mounts an immune response 

that attacks the small intestine, leading to damage on the villi and then nutrients cannot be 

absorbed properly into the body. Food made of DDGS would solve this problem because 

corn starch is gluten free. 

The studies showed that DDGS can be used as a flour substitute up to about 15%, 

or in some cases even 25%, without producing an objectionable appearance or texture 

[38]. A major problem is that DDGS has a distinct odor and taste which might negatively 

affect acceptability for human foods. Addition of DDGS generally results in darker-

colored finished food products. Bleaching and de-odoring of DDGS will be essential to 

its use in human foods to minimize the darker color development. Hydrogen peroxide, 

ethanol/ butanol extraction and lipoxygenases appear to be promising bleaching agents 

that should be pursued [39]. Additionally, the property of foods with added DDGS, such 

as expanding volume, moisture absorption, texture, and mouth-feel, would be altered as 

well [40].  
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Therefore, it appears that DDGS can be added into human foods at the level of 

15% to 25%, depending upon the composition of the DDGS itself, and upon the specific 

food product [41]. Also, the use of DDGS depends upon the other ingredients in the food 

matrix, which might react with DDGS components and thus produce specific texture or 

flavor [42]. 
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Dietary fiber 

There is no single accepted definition of dietary fiber, but commonly the term 

dietary fiber refers to plant carbohydrates that are neither digested nor absorbed in the 

stomach and small intestine in human beings. Dietary fiber can be categorized in several 

ways, such as on the basis of its sources, structure, properties, or its application. One 

common classification of dietary fiber is as either soluble or insoluble. Soluble fiber 

includes fructans, inulin, pectin, β-glucans, and glucomannans, while insoluble fiber 

includes cellulose, and some arabinoxylans. The Academy of Nutrition and Dietetics [43] 

has recommended a total dietary fiber intake of 20 g/ day to 35 g/day for adults. Interest 

in dietary fiber continues to grow, because many epidemiological studies have shown that 

conditions such as diabetes, atherosclerosis, breast cancer, hemorrhoids, and obesity are 

associated with a low intake of fiber in humans [44]. 

Many benefits of diets containing high levels of dietary fiber have been promoted. 

The intrinsic physical properties of dietary fiber could explain dietary fiber’s beneficial 

effects, such as bulking, gel formation, and viscosity change of gastric contents, 

modulation of gastric motor function, and fermentation [45]. For example, high fiber 

diets can provide lower caloric intake, and a decrease in body weight gain, because fiber-

rich foods usually have a low energy density [43]. In the stomach, some of soluble fibers 

absorb large quantities of water, which may increase stomach distention. This may trigger 

afferent vagal signals of fullness,  thereby contributing to satiety during meals and 

satiation in the post meal period [46]. Another well-known physiological effect of dietary 

fiber is its laxative effect. Both highly fermentable and poorly fermentable fibers increase 
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fecal mass in the colon. Poorly fermentable fibers such as cellulose produce a much 

larger fecal mass, which are usually more effective at producing laxation. 

Soluble dietary fiber 

The American Association of Cereal Chemists has defined soluble fiber as “the 

edible parts of plants or similar carbohydrates resistant to digestion and absorption in the 

human small intestine with complete or partial fermentation in the large intestine” [47]. 

Most soluble fibers form viscous solutions when mixed with water and are readily 

fermented by gut microflora. The viscous solutions may have several important 

physiological effects, such as slowing intestinal digestion, thereby reducing postprandial 

blood glucose concentrations, or delaying the emptying of stomach and prolonging the 

feeling of fullness, both of which could contribute to weight control. Slower stomach 

emptying may also decrease blood glucose levels and increase insulin sensitivity, which 

help control diabetes [48-50].  

Soluble fibers are also reported to decrease serum cholesterol concentration [51-

53]. Several mechanisms for the hypocholesterolemic effect include decreases in 

cholesterol absorption, large intestinal fermentation, and increased bile acid excretion 

[54-58]. The intestinal fermentation of dietary fiber may change gut microflora profile 

and increase beneficial gut microflora (57).   

Insoluble dietary fiber 

Insoluble fibers accelerate movement of food through the small intestine. They 

are considered as gut-healthy fiber because they have laxative and bulking effects, 
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helping to prevent constipation [59]. However, compared with soluble fiber, which has 

been consistently demonstrated to produce moderate but significant reductions in 

cholesterol in animals and humans, insoluble fibers do not share the cholesterol-lowing 

effect [60]. However, certain insoluble fibers can be metabolically fermented in the large 

intestine [61].  

Dietary fiber fermentation 

Certain types of indigestible carbohydrates, including certain dietary fibers, 

undergo fermentation in the colon by microbes. The cecum (in rats) and proximal colon 

(in humans) are the primary sites of colonic fermentation. Colonic fermentation yields 

both gases and short-chain fatty acids (SCFA), such as acetic, propionic and butyric 

acids, which lower the pH of the contents [62]. The total amount of SCFA in the 

proximal colon is present in the range of 70 to 140 mM, and decreases to 20 to 70 mM in 

the distal colon. Therefore, the pH is lowest in the proximal colon and increases distally 

[62, 63].  

The concentration of SCFA in the colon changes with the type of fiber and the 

location within the colon [64, 65]. Increases in SCFA decrease pH, which indirectly 

influences the composition of the colonic microflora. Short chain fatty acids facilitate the 

uptake of electrolytes and water [66] and also function to increase absorption of minerals, 

reduce ammonia absorption [67, 68], decrease solubility of bile acids, regulate glucose 

absorption, and influence immune functions [69-71]. 
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 Carotenoids 

Carotenoids are a group of natural lipophilic pigments synthesized by higher 

plants, some yeast, and fungi. Based on their chemical structure of the presence or 

absence of an oxygen atom in the molecule, carotenoids have two subclasses: if at least 

one oxygen is present, they are called xanthophylls; otherwise they are termed carotenes. 

The primary dietary carotenoids present in human plasma are lycopene, β-carotene, α-

carotene, β-cryptoxanthin, γ-carotene, phytofluene, phytoene, lutein, and zeaxanthin. 

Lutein and zeaxanthin are reported to be major pigments in the human retina [72].  

The corn kernel and corn oil are rich in carotenoids, especially lutein and 

zeaxanthin.  Corn DDGS is reported to contain 66 µg/g oil of carotenoids, mainly 

composed of β-carotene, lutein, zeaxanthin, and β-cryptoxanthin [73]. The carotenoid 

content in the DDG oil was 33 times higher than reported in an oil extracted from corn 

germ using hexane, 5.5 fold higher than in hexane extracted corn fiber oil, and 2.5-fold 

higher than found in hexane extracted ground corn [73].  

Lutein and zeaxanthin introduction 

Lutein and zeaxanthin belong to the xanthophyll family of carotenoids and are the 

two major carotenoids in corn. Because they are not converted in the human body into 

retinol, they do not have pro-vitamin A activity. The difference between lutein and 

zeaxanthin is in the ionone ring: lutein contains a β-ionone ring and a ε-ionone ring, 

whereas zeaxanthin has two β-ionone rings [72]. Their chemical structures are shown 

below. 
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Lutein 

Zeaxanthin 
 

Figure 2-6. Lutein and zeaxanthin chemical structure 



 

 21 

 

Lutein and zeaxanthin metabolism and bioavailability:  influencing factors 

In order to impart potential beneficial health effects, xanthophylls must be 

efficiently absorbed from food and carried to the target tissues. As discussed below, there 

are four major steps during the absorption of xanthophylls through the mucosal cells into 

the lymphatic system [74].  

First, xanthophylls must be released from their food matrix. In some types of food 

matrix, the cell walls in raw vegetables could inhibit the release of xanthophylls. But 

processing and heat treatment of food can disrupt the cell wall structure to help increase 

the release of carotenoids. The food processing steps include grinding, fermentation, and 

mild heating, which could increase xanthophylls release by weakening the cell wall of 

plant tissues, dissociating the protein-carotenoid complexes, and dissolving the 

crystalline carotenoid complexes [75].  

The second step of absorption is the transfer of xanthophylls to lipid micelles in 

the small intestines. The presence of dietary fat in the small intestine is required in this 

step to stimulate the gallbladder to release bile. Released xanthophylls then must be 

assimilated into the mixed lipid micelles in the lumen of the small intestine. Solubilized 

xanthophylls in the mixed micelle will be taken up by the intestinal epithelial cells [76].  

The third step is to be taken up by intestinal mucosal cells. It is reported that 

xanthophylls passively diffuse through the cell membrane and are released into the 

enterocyte [77]. However, recent studies have suggested that the carotenoid uptake is 

partly mediated by facilitated diffusion [78]. 
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The final step in xanthophylls absorption is the transport of them into the lymph 

system. In the Golgi apparatus of the enterocyte, xanthophylls are incorporated into 

chylomicrons. The chylomicrons are secreted into the lacteals, and are finally delivered to 

the systemic circulation. In the circulation, chylomicrons lose triglyceride content and 

shrink in size through the action of lipoprotein lipase on the endothelial lining, becoming 

chylomicron remnants. Eventually, the liver takes up the chylomicron remnants, which 

contain the absorbed xanthophylls. Xanthophylls either remain in the liver or are 

transported to the blood stream via secreted VLDL (very low density lipoprotein). 

Subsequently, xanthophylls (and other carotenoids) are taken up into tissues by the LDL 

(low density lipoprotein) receptor. Most lutein and zeaxanthin will specifically 

accumulate in the macula region of the eye [78]. 

The bioavailability of xanthophylls is thus influenced by several factors, including 

their chemical nature, as well as interaction of xanthophylls with other nutrients, and food 

processing [79]. The factors such as general malnutrition or intestinal parasites have  

been found to substantially reduce the efficiency of carotenoid absorption [79]. The 

bioavailability of lutein can also be reduced significantly when it is consumed with some 

forms of dietary fiber, including cellulose, wheat bran, guar and pectin [80, 81]. Dietary 

fat can positively influence the bioavailability of lutein [82]. This was illustrated in an 

experiment in which lutein, given as a diester supplement, showed a significant 

enhancement in absorption when given with a high dietary fat meal (the low fat meal 

contained 3 g fat, whereas the high fat meal contained 36 g of fat). Thus, fat was required 

for the sufficient solubilization of lutein diesters, as well as to stimulate secretion of 
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esterase and lipase from the pancreas to digest triglycerides, whicha are components of 

micelles. 

Lutein and metabolites 

Several proposed metabolites of lutein, whose structures are illustrated in Figure 

2-7, were previously shown to be present in human plasma and tissues such as liver and 

retina [83]. 3′-Hydroxy-ε, ε-carotene-3-one and lutein were the predominant carotenoids 

in the plasma, liver, kidney, and adipose, accompanied by ε, ε-carotene-3, 3′-dione. 3-

Hydroxy-β, ε-caroten-3′-one (3′-oxolutein) is the major metabolite of lutein in human 

plasma and the retina. 3′-Epilutein might be formed by a back reduction of 3′-oxolutein 

that was produced from lutein. Meso-zeaxanthin, which is detected in the retina only, 

might be formed by double bond migration from lutein [84, 85].  

 

Figure 2-7. Lutein and metabolites 
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Potential health benefits 

Lutein and zeaxanthin are reported to have biologically beneficial functions in 

decreasing cancer development, enhancing immune function and lymphocyte 

proliferation response [86], and protecting against age-related macular degeneration [87]. 

Total carotenoid intake is also associated with reduced risk of certain forms of 

cardiovascular disease, stroke, and cancer [88-90]. 

Several potential mechanisms have been reported to explain the protective effect 

of lutein against cardiovascular disease. Lipid peroxidation, a likely factor in the etiology 

of both retinal and cardiovascular disease, is inhibited by lutein and zeaxanthin (87). The 

presence of adhesion molecules on endothelial cell surfaces may lead to atherosclerosis 

pathogenesis. In-vitro research demonstrated that the incubation of lutein with cultured 

endothelial cells could effectively inhibit the expression of these adhesion molecules [91]. 

Other studies have found that lutein and zeaxanthin can inhibit thickening of the walls of 

carotid arteries and LDL-induced migration of monocytes into human artery cell walls 

[92]. Case-control studies measured atherosclerotic progression in asymptomatic men and 

women via carotid intima-media thickness (IMT) and have found a moderate inverse 

association between lutein and zeaxanthin serum levels and carotid IMT. In a three-year 

study, 231 asymptomatic age, sex, race, and field center-matched case subjects from the 

Atherosclerosis Risk in Communities (ARIC) study cohort demonstrated significantly 

lower serum lutein/zeaxanthin levels and an average IMT two times larger than matched 

control subjects [93]. Therefore, there is suggestive evidence that lutein and zeaxanthin 

may play a beneficial role in human health.  
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Age-related Macular Degeneration (AMD) 

Age-related macular degeneration (AMD) is the leading cause of irreversible 

blindness and visual impairment in older adults (>50 years) [94]. Age related macular 

degeneration typically results in a loss of vision in the center of the visual field as the 

area with the highest resolution. The damage to the retina makes it difficult or impossible 

to read or recognize faces, although enough peripheral vision remains to allow other 

activities of daily life.  

There are two forms of AMD: dry and wet. The dry form of AMD is 

characterized by debris called drusen which accumulates between the retina and the 

choroid, eventually causing the retina to detach. The dry form of advanced AMD results 

from atrophy of the retinal pigment epithelial layer below the retina. The wet form of 

AMD is more severe: blood vessels expandfrom the choroid behind the retina, and the 

retina can also become detached. The risk factors leading to AMD include aging, family 

history, hypertension, and exposure to sunlight. Elevated cholesterol may also increase 

the risk of AMD [95]. Currently, AMD can be treated by laser coagulation and 

medication, which act to stop and sometimes reverses the growth of blood vessels [96]. 

The two major components of the macular pigment of the retina are lutein and 

zeaxanthin. These carotenoids may mitigate light-induced damage by filtering potentially 

harmful short-wavelength light [97]. Studies have shown that a lower concentration of 

retinal carotenoids was associated with increased macular diseases compared to controls 

[98, 99]. Therefore, vitamin supplements with high doses of lutein and zeaxanthin have 
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been suggested by the National Eye Institute and others to slow the progression of dry 

macular degeneration [100-102]. 

Lutein and zeaxanthin intake  

Because of the potential role of lutein and zeaxanthin to improve human health, it 

is essential to boost the daily intake of lutein and zeaxanthin, which is currently low 

worldwide compared to what is considered optimal. The average daily intake of lutein in 

the United States is about 1.7 mg/day and in Europe it is about 2.2 mg/day [103]. Dietary 

sources are mainly from dark green vegetables such as spinach and kale, or from eggs. 

These values are below the level purported to reduce the risk of eye disease such as 

cataracts and AMD, since lutein supplementation at 10 mg/day and zeaxanthin 

supplementation at 2 mg/day are the amounts consumed that have been reported to 

decrease the risk of AMD [102]. However, xanthophylls amounts in these foods are not 

enough for our needs. Thus, the development of high-lutein staple foods would be an 

approach to increase lutein intakes.  



 

 27 

 

Table 2-2 Foods with lutein and zeaxanthin [102] 

Food Serving Lutein and 

zeaxanthin (mg) 

Kale (cooked) 1 cup 23.8 

Spinach (cooked) 1 cup 20.4 

Collards (cooked) 1 cup 14.6 

Corn (cooked) 1 cup 2.2 

Broccoli (cooked) 1 cup 1.6 

Eggs 2 (large) 0.3 
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Cholesterol 

Cholesterol is an essential structural sterol component of animal cell membranes 

that serves to maintain proper membrane permeability and fluidity. Cholesterol also 

serves as a precursor for the biosynthesis of steroid hormones, bile acids, and the 

cutaneous synthesis of vitamin D. Cholesterol metabolism is tightly regulated. The 

whole-body cholesterol amount is controlled by the balance of cholesterol input 

(cholesterol absorption and de novo synthesis) and cholesterol elimination [bile acid 

synthesis and cholesterol (neutral sterol) excretion].  

 

Figure 2-8. Cholesterol structure 
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Intracellular cholesterol regulation  

The cholesterol concentration present in a cell regulates the rate of cholesterol 

biosynthesis directly. Normal healthy adults synthesize approximately 1 g/day of 

cholesterol and consume approximately 0.3 g/day. However, if the intake from food is 

high, then the endogenous production of cholesterol decreases. The cellular supply of 

cholesterol is maintained at a steady rate by three distinct mechanisms: 1. Regulation of 

3-hydroxy-3-methylglutaryl-CoA reductase (HMGCoA-R) activity and levels; 2. 

Regulation of excess intracellular free cholesterol through esterification, by the activity of 

acyl-CoA cholesterol acyltransferase, ACAT; 3. Regulation of plasma cholesterol levels 

via LDL receptor-mediated uptake and HDL-mediated reverse transport [104, 105].  

The primary way to control the rate of cholesterol biosynthesis is the regulation of 

HMGCoA-R activity. The enzyme is controlled by four distinct mechanisms: feed-back 

inhibition, control of gene expression, rate of enzyme degradation, and 

phosphorylation-dephosphorylation. In the first three regulation mechanisms, cholesterol 

acts as a feed-back inhibitor of pre-existing HMG-R as well as inducing rapid 

degradation of the enzyme. The latter is the result of cholesterol-induced 

polyubiquitination of HMGCoA-R and its degradation in the proteasome. Further, when 

intracellular cholesterol is in excess, the amount of mRNA for HMGCoA-R is reduced as 

a result of decreased expression of the gene [106, 107]. 

There are two main mechanisms for cholesterol output [108]. One is through the 

synthesis of bile acids. As bile acids are synthesized from cholesterol in the liver and 

secreted into the bile, the greater excretion forces the liver to continuously synthesize 
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new bile acids from stored cholesterol, thereby lowering circulating cholesterol. 

Meanwhile, cholesterol itself is also secreted in the bile. Unabsorbed cholesterol, either 

from the diet or from the bile, enters the colon, where some cholesterol is metabolized by 

bacteria flora to coprostanol (the principal sterol found in the feces), cholestenol, 

cholestanone, and epicoprostanol prior to excretion. Cholesterol and these bacterial 

metabolites are known as fecal neutral sterols, and their excretion is estimated to range 

between 350 to 900 milligrams per day, with cholesterol accounting for approximately 

20% of the total [109]. The percentage of cholesterol converted to its bacterial 

metabolites has been shown to vary between populations [110]. In germfree rats, 

cholesterol is the only neutral sterol in the feces, demonstrating that the intestinal flora is 

responsible for the metabolism of cholesterol in the large intestine. The profile and 

metabolic activity of the microflora that metabolize cholesterol are influenced by dietary 

factors, including the type of diet and frequency of feeding [111]. 

Cholesterol absorption   

Cholesterol enters the intestinal tract from two sources, the diet and bile, as stated 

above. The intestinal mucosa also may contribute a small amount. Biliary cholesterol is 

entirely unesterified, but a portion of dietary cholesterol may be esterified with fatty 

acids. Any cholesterol ester entering the intestine is de-esterified rapidly by pancreatic 

cholesterol esterase. Before absorption, cholesterol must be solubilized by micelles 

containing conjugated bile acids and hydrolytic products of triglycerides and lecithin - 

fatty acids, monoglycerides, and lysolecithin. Unesterified cholesterol is solubilized in 

the hydrophobic center of micelles. Cholesterol absorption occurs by micelles facilitating 
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its transport across the unstirred layer of water adjacent to the surface of the luminal cell 

[112].  

Most dietary cholesterol is incorporated into chylomicrons as cholesterol esters in 

the intestinal mucosa. These lipoproteins contain mainly triglycerides that have been 

produced by the mucosa from newly absorbed fat. Chylomicrons are secreted into the 

lymph and eventually enter the systemic circulation. During interaction of chylomicrons 

with peripheral lipoprotein lipase, triglycerides are hydrolyzed to fatty acids and glycerol, 

producing a chylomicron remnant, but cholesterol remains within the remnant particle 

throughout lipolysis, until the chylomicron remnant is removed from the circulation by 

the liver. As cholesterol ester enters the liver within chylomicron remnants, its fatty acid 

apparently is released by an esterase. The resulting unesterified cholesterol can have four 

fates: re-esterified and stored as cholesterol ester; secreted into plasma with lipoproteins 

after re-esterification; converted into bile acids; or secreted into bile as cholesterol itself 

[113]. Factors influencing the efficiency of cholesterol absorption include: variation in 

cholesterol intake, the presence of plant sterols, the fiber content of the diet, transit time, 

and possibly the polyunsaturated to saturated fatty acid ratio of the diet [114, 115].  

Niemann Pick C1 like (NPC1L1) is a recently discovered polytopic 

transmembrane protein, which functions as a sterol transporter to mediate intestinal 

cholesterol absorption and counterbalances hepatobiliary cholesterol excretion. It is 

essential for intestinal cholesterol absorption and transportation [116]. In cultured cells, 

NPC1L1 protein cycles between intracellular compartments and the cell membrane in a 

cholesterol-dependent manner. When cholesterol is high in cells, NPC1L1 is localized 
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predominantly in the endocytic-recycling compartment (ERC). When cholesterol is low 

in cells, NPC1L1 moves to the plasma membrane, so as to regulate cholesterol absorption. 

NPC1L1 transmembrane domains contain up to 5 sterol-sensing domains (SSD). These 

SSD are conserved in several polytopic transmembrane proteins and function in 

cholesterol metabolism and regulation, including NPC1, HMG-CoA reductase, SCAP 

[sterol regulatory element–binding protein (SREBP) cleavage-activating protein], and the 

Hedgehog signaling protein Patched. The SSD may regulate NPC1L1’s intracellular 

itineraries by sensing membrane cholesterol content [117]. It has been suggested 

NPC1L1 may be transcriptionally regulated by cellular cholesterol content through 

SREBP-2, which is a membrane bound transcription factor that increases expression of 

cholesterol synthesis genes when cellular cholesterol content is low. It has been shown 

that variation in human NPC1L1 gene sequences contributes to reduced intestinal 

cholesterol absorption efficiencies and LDL-C levels [118].  

Cholesterol transport 

Lipids, including cholesterol, are transported by lipoproteins in the circulatory 

system. In addition to providing a means to solubilize cholesterol for transport through 

the blood, lipoproteins have cell-targeting signals that direct the lipids they carry to 

certain tissues. Chylomicrons, the least dense type of cholesterol transport particle, carry 

lipids from intestine to muscle and other tissues that need fatty acids. VLDL (very low 

density lipoprotein) particles are produced by the liver and export excess triacylglycerol 

and cholesterol that is not required by the liver for synthesis of bile acids. During 

transport in the bloodstream, lipoprotein lipase lining the blood vessels cleaves more 
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triacylglycerol from IDL molecules, which contain an even higher percentage of 

cholesterol. LDL (low density lipoprotein) particles are the major carriers of cholesterol 

in the blood. The shell of the LDL molecule contains just one molecule of apolipoprotein 

B100, which is recognized by the LDL receptor in peripheral tissues. HDL (high density 

lipoprotein) particles are thought to transport cholesterol back to the liver for excretion or 

utilization by other tissues after re-secretion in VLDL  [119]. 

Dietary influence on cholesterol levels   

The food one consumes not only influences cholesterol intake, but also can 

influence cholesterol synthesis. Dietary factors that influence human cholesterol synthesis 

include: energy restriction, meal frequency, dietary fat type (PUFAs increase synthesis), 

as well as cholesterol and phytosterol content [120].  

Fat intake would have a difference influence on blood cholesterol levels 

depending on the type of fat. Isocalorically replacing dietary carbohydrates with 

monounsaturated and polyunsaturated fats has been shown to lower serum LDL and total 

cholesterol levels and increase serum HDL cholesterol levels, while replacing 

carbohydrate with saturated fat was shown to increase HDL, LDL and total cholesterol 

levels. Trans fats have been shown to reduce levels of HDL cholesterol while increasing 

levels of LDL cholesterol [121, 122]. Therefore, many health authorities advocate 

reducing LDL cholesterol through changes in diet and other lifestyle modifications. The 

USDA recommends that those wishing to reduce their cholesterol through a change in 

diet should aim to consume less than 7% of their daily energy needs from saturated fat 

and consume fewer than 200 mg of cholesterol per day [123]. 
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Soluble fibers, such as β-glucans, have been shown to lower plasma LDL 

cholesterol [124-127].  The possible mechanisms for this effect is that increased viscosity 

in the small intestine can hinder the emulsion and interfere with the formation of small 

micelles, limiting the ability of the digestive tract to absorb all the cholesterol present 

[128, 129]. Insoluble fiber has not been found to have a significant cholesterol-lowering 

effect [130].  

Abnormally high cholesterol levels (hypercholesterolemia), usually a combination 

of higher concentrations of LDL particles and lower concentrations of functional HDL 

particles, are strongly associated with cardiovascular disease because these promote 

atheroma development in arteries (atherosclerosis). This disease process leads to 

myocardial infarction (heart attack), stroke, and peripheral vascular disease. Details are 

discussed in the section on cardiovascular disease below [131, 132].  
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Bile acids 

Bile acids are synthesized from cholesterol in the liver, which accounts for the 

majority of cholesterol breakdown in the body. Because of their ability to form micelles 

to solubilize and transport lipids in the aqueous environment of the intestinal lumen, bile 

acids play an essential role in lipid absorption. Approximately 95% of the bile acids are 

reabsorbed from the intestines, and the remainder is lost in the feces. The small fraction 

of bile acids which passes into the colon are largely converted into bacterial metabolites 

called secondary bile acids[133].  

Primary and secondary bile acid metabolism is shown in Fig. 2-9 below [133]. 

Primary bile acids are synthesized in the liver from cholesterol via a series of reactions 

which convert the 27-carbon cholesterol molecule to a 24-carbon bile acid molecule 

containing α-OH groups on positions 3 and 7, and full saturation of the steroid nucleus. 

The 7α-hydroxylation of cholesterol is the first committed and rate limiting step in the 

pathway of bile acid synthesis. This reaction is catalyzed by the microsomal enzyme 7α-

hydroxylase. The pathway of bile acid synthesis divides into two subpathways, one 

leading to cholic acid, the major primary bile acid family found in human bile, and 

another leading to chenodeoxycholic acid (CDCA). Once in the large intestine, bacteria 

further metabolize the majority of the primary bile acids to secondary bile acids through 

deconjugation and 7α-dehydroxylation of the bile acid molecule. Primary bile acids are 

more hydrophilic in nature, while secondary bile acids are more hydrophobic. Humans 

and hamsters have two primary bile acids, cholic acid (CA) and chenodeoxycholic acid 
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(CDCA), but several species have a third primary bile acid in addition to CA and CDCA. 

For example, the rat has α- and β-muricholic acids. Since bile acids are recycled through 

enterohepatic circulation, some biliary bile acids are secondary bile acids, which are 

formed from primary bile acids by bacteria enzymes in the colon. Deoxycholic acid 

(DCA) is derived from cholic acid and lithocholic acid (LCA) is formed from 

chenodeoxycholic acid [134].  
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Figure 2-9. Bile acid metabolism [135] 
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Regulation of bile acid synthesis  

Bile acids have the paradoxical role of contributing to both sides of the 

cholesterol input and output equation. They contribute to cholesterol input by promoting 

cholesterol absorption through incorporation of cholesterol into micelles in the small 

intestine. On the other hand, bile acids contribute to cholesterol output by being the major 

catabolic products of cholesterol metabolism and by inducing bile flow, which 

subsequently removes free cholesterol from the liver [134]. In addition to influencing 

cholesterol homeostasis, bile acids are involved in the solubilization and absorption of 

dietary fats and fat-soluble vitamins in the small intestine. Increasing dietary cholesterol 

increases synthesis of bile acids. So newly absorbed cholesterol could be transformed 

rapidly into bile acids. This mechanism may protect against the development of 

hypercholesterolemia [133].   

Bile acids regulate cholesterol 7α-hydroxylase (CYP7A), the rate limiting step in 

bile acid synthesis, at the transcriptional level. In addition to the feedback control of bile 

acids and the feed-forward control of cholesterol, several hormones regulate cholesterol 

7α-hydroxylase at the level of gene transcription [136]. Studies have shown that enzyme 

activity, mRNA levels and transcriptional activity of CYP7A all change in parallel in 

response to bile acid feeding or biliary diversion in vivo [137]. Primary bile acids are 

believed to be the mediators of negative feedback control on cholesterol 7α-hydroxylase. 

Also, two members of the nuclear hormone receptor family, LXRα and FXR, have been 

identified as the underlying mechanism for transcriptional regulation of the classic 
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feedforward and feedback pathways that control cholesterol and bile acid metabolism 

[138]. 

The effect of dietary cholesterol on cholesterol 7α-hydroxylase activity varies 

greatly depending on the species, and even within a species, which could contribute to the 

tremendous variation in plasma cholesterol concentrations observed both among different 

species and individuals of the same species. Dietary cholesterol has been found to 

increase transcription of cholesterol 7α-hydroxylase in the rat and mouse, but not in the 

hamster [139]. Plasma cholesterol levels in rats are virtually unaffected by large 

fluctuations in cholesterol intake or output. Rats have a 16 fold higher baseline 7α-

hydroxylase activity on a cholesterol-free diet compared to the hamster, whose plasma 

cholesterol is very responsive to dietary cholesterol [140]. When given increasing levels 

of dietary cholesterol, both cholesterol 7α-hydroxylase activity and expression were 

markedly increased in the rat, but were not induced in the hamster. Perhaps the rat is not 

as susceptible to elevated plasma cholesterol levels because dietary cholesterol stimulates 

7α-hydroxylase through feedforward activation to rapidly convert the extra cholesterol 

into bile acids, which does not seem to occur in the hamster. Humans fall somewhere in 

between these two extremes.  

Effect of dietary fiber on fecal bile acid excretion  

Dietary fiber has been shown to increase fecal bile acid excretion. It has been 

found that dietary wheat bran increased both total bile acid excretion and fecal weight 

without changes in fecal bile acid concentration [141]. The proportion of fecal 

hyodeoxycholic acid decreased with increasing dietary fiber, whereas that of lithocholic 
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and deoxycholic acids increased significantly with fiber intake. The concentration of 

fecal chenodeoxycholic acid did not change. Most studies have reported that diets high in 

any type of fiber lead to both an increase in the total excretion and a suppression in the 

bacterial degradation of bile acids, but the effect on fecal bile acid concentration appears 

to be less certain [142-145].  

Binding of bile acids and increasing fecal excretion has been hypothesized as a 

possible mechanism for lowering cholesterol by dietary fiber [146]. By binding bile acids, 

cereal fibers prevent reabsorption and stimulate plasma and liver cholesterol conversion 

to additional bile acids [147, 148]. One study showed there were significant higher bile 

acids binding with rice bran and wheat bran fiber than with corn bran and cellulose [149].  
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Cardiovascular disease  

Cardiovascular disease is any disease that affects the cardiovascular system, 

including cardiac disease, vascular diseases of the brain, and peripheral arterial disease. 

The causes of cardiovascular disease are diverse but atherosclerosis and/or hypertension 

are the most common reason [150]. Atherosclerosis is a specific form in which the artery 

wall thickens because of invasion and accumulation of white blood cells, containing both 

living active white blood cells and remnants of dead cells, as well as cholesterol and 

triglycerides, eventually calcium and other crystallized materials, within the outer-most 

and oldest plaque [151].   

Cardiovascular disease is the leading cause of death worldwide, though, since the 

1970s, cardiovascular mortality rates have declined in many high-income countries. At 

the same time, cardiovascular deaths and diseases have increased at a fast rate in low- and 

middle-income countries [152]. Although cardiovascular disease usually affects older 

adults, the antecedents of cardiovascular disease, notably atherosclerosis, begin in early 

life, making primary prevention efforts necessary from childhood. There is therefore 

increased emphasis on preventing atherosclerosis by modifying risk factors, such as 

healthy eating, exercise and avoidance of smoking tobacco. Dietary prevention 

recommendations includes a low-fat, high-fiber diet including whole grains and plenty of 

fresh fruit and vegetables [153] .  
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Coronary Heart Disease (CHD) 

Coronary heart disease, also known as atherosclerotic heart disease, is the most 

common type of heart disease. The disease is caused by plaque building up along the 

inner walls of the arteries of the heart, which narrows the arteries and reduces blood flow 

to the heart.  

Coronary heart disease continues to be the leading cause of death in the United 

States. Epidemiological, animal, and human studies have demonstrated that elevated 

levels of plasma cholesterol are an important risk factor for CHD [154, 155]. Individuals 

who have plasma cholesterol level greater than 240 mg/dL are at high risk for CHD, and 

a level less than 200 mg/dL is recommended. Many studies have shown that diet and 

lifestyle modification can reduce plasma cholesterol. Therefore, it is important to identify 

and encourage dietary practices that effectively lower cholesterol and are easy to 

incorporate into the diet [156, 157]. Research has shown oxidized low-density lipoprotein 

(LDL) to be a key factor in the initiation of atherosclerosis, one of the pathological 

processes involved in cardiovascular disease. Consequently, antioxidants, including 

carotenoids, have been investigated for the ability to scavenge free radicals and inhibit 

lipid peroxidation in cardiovascular and cerebrovascular disease [158].  

Oxidative stress 

Oxidative stress is a result of an imbalance between the production and disposal 

of reactive oxygen species (ROS) produced during metabolism. The ROS include free 

radicals, such as superoxide (·O2
-), hydroxyl (·OH), peroxyl (·RO), and hydroperoxyl 
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(·HRO2
-), as well as non-radical species such as hydrogen peroxide (H2O2) and 

hydrochlorous acid (HOCl). These species can cause oxidation of proteins, lipids, and 

DNA and can also inhibit enzymes in the electron transport chain, blocking 

mitochondrial respiration and therefore diminishing normal cellular functions. All of 

these effects can cause cell injury, and may lead to cell death [159]. In recent years, it has 

become clear that oxidation of LDL is involved in many processes of atherogenesis, 

including the formation of cholesterol-engorged cells called foam cells [160]. 

Accumulation of foam cells (the fatty streak) in the subendothelial space damages the 

overlying endothelium, which allows platelets to aggregate and release powerful 

mitogens that contribute to further development of the lesion [158]. Therefore, oxidative 

stress appears to increase the risk of developing atherosclerosis.  

Measurements of oxidative stress 

A universally accepted, comprehensive measure of oxidative stress does not exist 

because of the changing concentrations of oxidation compounds produced throughout the 

peroxidation process. Furthermore, the amount and rate of production of various 

peroxidation products may depend on the unique fatty acid profile of various dietary 

lipids. There are two categories for analytical tests used routinely to assay lipid 

peroxidation: indicative tests and predictive tests.  

Indicative tests measure products of peroxidation at a specific time to indicate the 

extent of peroxidation that has occurred. Examples of commonly utilized indicators 

include: peroxide value, conjugated dienes, thiobarbituric acid reactive substances, and 
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hexanal value. Alternatively, specific products of peroxidation such as HNE (4-

hydroxynonenol) can be measured.  

Generally, iodine value (IV) can indicate extent of peroxidation, as peroxidation 

causes the unsaturated fatty acid content to decline as PUFA are degraded. Additionally, 

the weight of lipid samples increases during peroxidation since oxygen incorporates into 

lipid hydroperoxides. However, these methods have limited usefulness in practical 

situations because they require compositional knowledge of the original (unperoxidized) 

lipid to ascertain the change made by peroxidation. Furthermore, these general 

measurements are not specific and require additional assays to identify specific products 

of peroxidation [161].  

The peroxide value (PV) quantifies the concentration of peroxides and 

hydroperoxides in a lipid using an iodometric procedure with titration of sodium 

thiosulfate. However, this method has been criticized for being too subjective because the 

end point is determined by the analyst. Consequently, high performance liquid 

chromatography, and infrared spectroscopy are used to be objective as possible. But in 

practice, the utility of PV is limited when assessing the extent of lipid peroxidation 

because peroxides are simultaneously created and degraded during peroxidation. A low 

PV can be misleading because it may represent minimal peroxidation or that extensive 

peroxidation has occurred but that peroxides have been degraded [162]. Therefore, the 

practical utility of PV is limited without knowledge of historical values for a lipid.  

The TBARS (thiobarbituric acid reactive substances) assay is used commonly to 

measure malondialdehyde (MDA), a secondary product of lipid peroxidation. In this 
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assay, one mole of MDA reacts with 2 moles of TBA under acidic conditions to form an 

adduct with a pink-red color and an absorption maximum at 530 to 532 nm. However, 2-

alkenals and 2, 4-alkedienals, and other products of peroxidation react with TBA, so this 

assay is not specific to MDA. Furthermore, inter-laboratory comparisons of TBARS 

concentration is challenging because several methodological variants are employed. Like 

other indicative measures, TBARS follows a bell-shaped curve of production followed by 

degradation. As a result, changes in TBARS concentration can lead to misinterpretation 

of low values without knowledge of historical values for the lipid [162].  

Predictive tests evaluate the ability of a lipid to withstand peroxidation when 

exposed to standardized, accelerated conditions to induce peroxidation. Routinely used 

predictive tests include the active oxygen method (AOM), oxygen radical absorbance 

capacity (ORAC), and ferric reducing antioxidant power (FRAP), which are used both in 

food systems and in vivo.
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Study Aim  

In summary, evidence from epidemiological and animal studies suggests that the 

components in DDGS, such as dietary fiber and xanthophylls, would have beneficial 

effects on health. However, currently no study has been conducted to test if DDGS could 

have these effects directly. Therefore, the aim of the following study was to examine the 

effects of DDGS and its co-products on cholesterol and bile acid metabolism, as well as 

xanthophylls bioavailability in rats.  
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Chapter 3: Materials and methods 

Experimental design 

A total of 40 male Wistar rats, 125-149 g body weight, were randomly divided 

into 4 groups, and housed individually in wire-bottom stainless steel cages. The 

temperature was controlled at 22º C with a 12 hour light-dark cycle. All experimental 

procedures were approved by the University of Minnesota Animal Care and Use 

Committee. 

Rats were fed the American Institute of Nutrition (AIN-93G) purified diet for 5 

days to adapt to the new living environment. The animals were fed either the AIN-93G 

(control) diet, DDGS diet, bran fraction diet, or DDGS-soluble fraction diet for 3 weeks. 

The diet composition is shown in Table 3-1. DDGS, bran fraction or DDGS soluble 

fraction were incorporated into their respective diets at a concentration of 20%. The 

macronutrient concentration was constant for all diets. Cornstarch was used to adjust total 

carbohydrate content, corn oil was used to adjust total fat, and cellulose was used to 

adjust total fiber. Animals were allowed free access to water and diets. 

 Body weight and food intake was measured each week.  Food intake was 

determined by subtracting amount of food offered from diet remaining in the food cups 

after 24 hours, and spillage. After 14 days feeding, feces were collected to determine 

fecal bile acid and neutral sterol excretion. Urine was collected after 24 hour fasting for 

measurement of thiobarbituric reactive substances (TBARS).  
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At the end of the feeding period, rats were anesthetized using isoflurane. Blood 

was collected by cardiac puncture into tubes containing EDTA (1 mg/mL) and 

centrifuged at 1200g for 15 min at 4° C. Plasma samples were collected and stored at  

-80°C until analysis. Epididymal fat pads, cecum with contents, and livers were excised, 

weighed, flash frozen and stored at -80° C until analysis. 
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Table 3-1. Composition of diets 

Diet Ingredient 
(g/kg) 

AIN 93G 
Control DDGS 

Bran 
Fraction 

DDGS-Soluble 
Fraction Dry 

Product  200 200 200 
Carbohydrate 
(50%) 500 500 500 500 

Corn Starch 300.48 264.48 259.5 215.3 
Dextrinized Corn 
Starch 115.2 115.2 115.2 115.2 

Sucrose 87.3 87.3 87.3 87.3 
Carbohydrate from 
product 0 36 41 85.2 

Protein (20%) 200 200 200 200 
Casein (>85% 
protein) 200 148.2 181.6 166.8 

Protein from 
product 0 51.8 18.44 33.2 

Fat (15%) 150 150 150 150 
Oil (Corn) 150 124.4 133.2 112.2 
Fat from product 0 25.58 16.84 37.82 
0.15% Cholesterol 1.5 1.5 1.5 1.5 
Total Fiber (9.5%) 95 95 95 95 
Cellulose 95 39 1.2 66.81 
Total fiber from 
product 0 56 93.8 28.19 

      
Mineral Mix (93G-
Mx) 35 35 35 35 

Vitamin Mix (93G-
Vx) 10 10 10 10 

L-Cystine 3 3 3 3 
Choline Bitartrate 2.5 2.5 2.5 2.5 
TBHQ 0.014 0.014 0.014 0.014 
Moisture 0 26.14 27.52 0 
Ash 0 8.36 5.58 21.2 

 Total 1000.0 1000.0 1000.0 1000.0 
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Analytical Methods 

Urinary TBARS 

To determine oxidative stress, thiobarbituric acid reactive substances (TBARS) 

were measured in the urine. Assay of TBARS largely measures malondialdehyde (MDA) 

generated from lipid hydroperoxides. Urine samples were mixed with 5% TCA and 

0.06M TBA solution and heated at 80° C for 90 minutes. After cooling, samples were 

centrifuged at 2000 rpm for 10 min, and absorbance of the supernatants measured at 535 

nm [163].   

Liver cholesterol 

Lipids were extracted from approximately 1 g of liver tissue with 20 volumes of 

chloroform: methanol (2:1) by the method of Fölch et al. [164]. Samples were dried 

under nitrogen and solubilized with Triton X-100/acetone. Concentrations of total and 

free cholesterol were determined spectrophotometrically by an enzymatic method, using 

cholesterol oxidase, cholesterol esterase and peroxidase [165]. Absorbance was measured 

at 500 nm. 

Bile acids assay 

Bile acids were extracted from 100 mg feces using ethanol and chloroform: 

methanol (2:1) and purified by solid phase extraction using C18 columns [166]. The 

eluates were collected and evaporated with nitrogen gas and stored in the freezer until 

ready to analyze.The bile acid extracts were assayed enzymatically by the method of 

[167] using 3α-hydroxysteroid dehydrogenase. Absorbance was monitored at 340 nm.  

http://en.wikipedia.org/wiki/Malondialdehyde
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Neutral sterol excretion 

Fecal lipids were extracted into chloroform:methanol (2:1, vol/vol) and 

saponified. Non-saponifiable sterols were extracted into hexane, purified by washing with 

KOH and water, and dried under nitrogen. Sterol were dissolved in pyridine and 

derivatized with Sylon BTZ. An aliquot (1µl) was injected onto a gas chromatograph 

equipped with a 12 m x 0.2 mm (i.d.) HP1 column and a flame-ionization detector. 

Hydrogen was used as a carrier gas at a pressure of 40 kPa. Sterols were calculated from 

the peak areas relative to the peak area of the internal standard, 5a-cholestane. 

Differences in detector response among the various compounds were corrected on the 

basis of the response factors calculated from a mixture of pure steroids with known molar 

composition.  

Xanthophylls extraction from diets  

An aliquot of each co-product-containing diet was mixed with 40% methanolic 

KOH solution at 56° C for 20 min. After cooling, samples were placed in the dark for 1 

hour. More hexane was added to the mixture and the upper layer was collected and dried 

under nitrogen, avoiding light. The dried extract was then dissolved in 1 mL mobile phase 

A [methanol, methyl- tert- butyl- ether (MTBE) and water, 60:33:7] for analysis by LC-

MS.  

Xanthophylls extraction from plasma and liver 

Liver samples were homogenized with 9 parts ice-cold isotonic saline using a 

homogenizer and used for extraction of lutein and its metabolites. In the case of liver, the 
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extracts were saponified separately with 2 mL of 10 mM KOH at 60° C for 45 min before 

extraction of lutein and its metabolites. These operations were done under dim yellow 

light to minimize isomerization and oxidation of carotenoids by light. 

Dichloromethane:methanol (2:1, v/v) was added to plasma samples to extract 

xanthophylls. More hexane was also added to mixture. The extract was pooled, 

evaporated to dryness using a stream of nitrogen and finally dissolve in mobile phase A 

for LC-MS [84].  

HPLC analysis of xanthophylls 

High performance liquid chromatography (HPLC) was employed initially to 

identify xanthophylls in the co-products and rat plasma and liver. Mobile phase A 

contained methanol, methyl-tert-butyl-ether (MTBE) and water in a ratio of 60:33:7 by 

volume and mobile phase B in a ratio of 8:90:2. A Bischoff C30 column was used for 

separation. UV detection was  at 455 nm [168]. 

The gradient used was 100% mobile phase A for 3 min, 15 min linear gradient to 

80% mobile phase A; 17 min linear gradient to 55% mobile phase B; 15 min linear 

gradient to 95% mobile phase B, 2 min gradient back to 100% mobile phase A. The flow 

rate was 0.8 mL/min.  

LC-MS analysis of xanthophylls 
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Xanthophylls were also analyzed by APCI-LC-MS at the Center for Mass 

Spectrometry and Proteomics on the St. Paul campus. UV detector wavelength was set at 

455 nm. The parameters of the APCI source were source heater temperature as 475° C, 

sheath gas flow rate (arb) was 80, and Aux gas flow rate (arb)  as 10, discharge currents 

as 5.00 µA, capillary temperature as 225° C, capillary voltage as 19 V, and tube lens 

offset as -25V. As for the ion optics, multiple 1 offset as – 4V, lens voltage as -24V, 

multiple 2 offset as -7.5 V, and multiple RF amplitude as 400V.  

Statistical analysis 

All results were analyzed by one-way analysis of variance using SAS 9.3 (SAS 

institute, Cary, NC).  Differences among means were inspected using Duncan’s multiple 

range test. A P-value less than 0.05 was considered statistically significant. 
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Chapter 4: Results  

Body weight, food intake, epididymal fat pads  

Initial body weights did not differ among the dietary treatment groups. Weekly 

body weight and food intake are shown in Table 4-1. At the end of 3 weeks of feeding, 

there were no significant differences in food intake or body weight. As a measure of 

adiposity, epididymal fat pads were weighed, and there were no significant differences in 

epididymal fat pad weights among the groups.  

Cecum pH and fecal weight 

Cecal pH is an indicator of fermentability of the diets. There were no significant 

differences in cecal pH among the groups. Cecum weight (with contents) in the bran 

fraction diet and the control diet group was significantly greater than in the soluble 

fraction and DDGS diet groups. Rats in the soluble fraction group had a significantly 

lower dry weight of feces than rats in the control group, but the DDGS diet group and 

bran fraction diet group did not differ significantly from either the soluble fraction or 

control group diets.  

Urinary thiobarbituric acid reactive substances (TBARS) 

Urinary 24 h TBARS was measured as a marker of whole body lipid peroxidation. 

There were no significant differences in daily urinary TBARS excretion among the 4 diet 

groups.  

Liver weight, liver cholesterol and fecal bile acids  
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Liver weight did not differ significantly among the diet groups. Liver cholesterol 

concentration, however, was reduced in all co-product diet groups compared to the 

control diet group.  The groups fed DDGS and the soluble fraction diets had the lowest 

liver cholesterol concentration, and did not differ from each other. The bran fraction diet 

was intermediate between the control diet and DDGS and soluble fraction diets. 

As bile acids are synthesized from cholesterol, an increase in bile acid excretion 

could be responsible for the reduction in liver cholesterol by diverting more cholesterol 

into bile acid synthesis to replace bile acids lost in the feces. The three co-product diet 

groups all had greater bile acid excretion compared to control group. The greatest 

excretion was in the bran fraction diet, followed by the DDGS and soluble fraction diets, 

which did not differ from each other. Fecal bile acid excretion correlated somewhat with 

the reduction in liver cholesterol concentration (r=-0.39, p=0.013), and thus may partly 

explain the reduction in liver cholesterol. However, given the modest correlation, there 

are likely additional mechanisms involved in the reduction in liver cholesterol by the co-

products diets.  

Fecal Neutral Sterols  

Fecal neutral sterols are cholesterol and its bacterial metabolites. Table 4-2 shows 

the daily fecal sterol excretion for each diet group. Coprostanol and cholesterol were the 

major neutral sterols present, with only relatively small amounts of dihydrocholesterol 

found. There was a significantly greater excretion of total neutral sterols excretion from 

the group fed the diet containing DDGS than the group fed with diet containing bran 

fraction.  The control diet group showed a significantly greater ratio of cholesterol to total 
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neutral sterols, followed by the DDGS and bran fraction diet groups, with the soluble 

fraction diet group showing the lowest ratio.  

In addition, total steroid excretion was calculated as the sum of total bile acids 

and total neutral sterol: results are shown in Table 4-3. Groups fed with DDGS and bran 

fraction diet groups showed significantly highest total steroid excretion, followed by 

soluble fraction diet group, and the control group had the lowest amount. This result is 

consistent with steroid balance between food intake cholesterol and steroid excretion. The 

control group had significantly highest steroid balance amount, which would lead to more 

cholesterol accumulation in liver. However, the negative average balance in bran fraction 

diet group would contribute to decreased liver cholesterol concentration theoretically.  

Xanthophylls in diets and tissues 

The xanthophyll concentration of the DDGS and other co-products used in the 

diets was determined by HPLC, and is shown in Table 4-4. A representative HPLC 

chromatogram of the standards is shown in Fig 4-4 and a chromatogram of the 

xanthophylls in DDGS is shown in Fig 4-5. Lutein was present in a greater concentration 

than zeaxanthin in all three co-products. The soluble fraction had the greatest 

concentration of xanthophylls, with DDGS only slightly less. The bran fraction had a 

relatively low concentration of xanthophylls. 

Measurement by HPLC of the xanthophyll concentration in plasma of rats was 

attempted. Lutein and zeaxanthin could be detected in the plasma of rats two hours after 

gavage with a concentrated extract of xanthophylls obtained from marigold flowers (Fig 

4-7). However, repeated attempts to detect xanthophylls by HPLC in the plasma of rats 
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two hours after a meal of a DDGS-containing diet were unsuccessful (Fig 4-6), which 

was apparently due to the much lower concentration of xanthophylls in the plasma. 

Next, LC-MS was employed as a more sensitive technique for measuring 

xanthophylls in animals fed co-product-containing diets. Initially, an LC-MS system 

using an electrospray ionization (ESI) source was utilized, based on literature reports 

indicating successful use of this type of source [169, 170]. However, detection of 

standards was never achieved, in spite of use of several different types of mobile phase 

dopants reported to improve ionization, and therefore detection, of xanthophylls [170]. 

Atmospheric pressure chemical ionization (APCI) is another method for ionizing 

compounds of interest for mass spectrometry that has been used successfully for 

quantitating xanthophylls [170, 171]. Using an LC-MS system equipped with an APCI 

source, the xanthophylls standards lutein and zeaxanthin were both successfully detected 

(Fig 4-9). In the positive APCI LC-MS mode, the most abundant molecules are m/z 569 

(lutein/zeaxanthin +H) and m/z 551 (lutein/ zeaxanthin +H-H2O). The retention time for 

lutein and zeaxanthin are 11.66 min and 13.88 min respectively. 

Using this APCI-LC-MS system, attempts were then made to detect xanthophylls 

in the plasma, liver, and feces of animals fed the co-product-containing diets. However, 

repeated attempts to do so were unsuccessful. 



 

 58 

Chapter 5: Discussion 

Currently, DDGS, generated from U.S ethanol industry, is primarily used as a 

feed for livestock and poultry [2]. However, DDGS has potential use as a human food 

ingredient, based on its excellent nutritional qualities. As corn is exceptionally rich in 

lutein, and products such as DDGS and the DDGS soluble fraction are promising 

ingredients in the development of high-lutein functional foods. Here we examined 

whether DDGS and related products may have human health benefits, based on its high 

concentration of xanthophylls, antioxidants, and dietary fiber. Positive findings of 

benefits related to human health would likely increase the value of these co-products to 

the ethanol industry.  

The corn bran fraction diet was studied as a fiber control group since it contains 

almost the same fiber contents as DDGS, but the method used to remove starch from 

these two products was different. A physical method was used to remove starch from 

corn bran, whereas an enzymatic method was used in DDGS, that is, enzymes expressed 

by yeast during fermentation.  

After 3 weeks consuming the diets, there were no significant differences in body 

weight, food intake or fat pad weights among the groups, indicating that the co-products 

were well tolerated by the animals when fed at 20% of the diet. These results are 

consistent with  the study conducted by Whitney and Shurson [172], who found that no 

difference in weight gain in pigs when fed diets containing 20% DDGS, compared to a 

control group.  
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Two indicators of intestinal fermentation were examined in this present study, 

cecal pH and cecal weight with content. With increased fermentation, cecal pH is reduced 

due to the increased production of short-chain fatty acids. Cecal pH showed no 

significant difference among the diet groups, suggesting a lack of an increase in 

fermentation by the co-products. However, cecal weight in the DDGS and soluble 

fraction diet groups was significantly greater than the control diet and bran fraction diet 

groups. Since it is well established that increases in fermentation increase cecal wall 

weight [173, 174], this result suggests that DDGS and soluble fraction co-products may 

increase intestinal fermentation. These two co-products contain as a fiber source 

arabinoxylans, which have been shown to be fermentable and lead to an accumulation of 

short-chain fatty acids [175]. In contrast, cellulose, which is highly resistant to 

fermentation, was the only fiber present in the control diet. Interestingly, the bran fraction 

diet, which contained virtually no added cellulose, did not increase cecal weight. Thus, 

the fiber present in this corn bran appears to be resistant to fermentation, consistent with 

previous studies in both humans [176] and rats [177]. Another, more indirect way to 

assess fermentation is by analyzing the profile of fecal neutral sterols. A change in the 

profile of neutral sterols towards a greater proportion of bacterial metabolites of 

cholesterol may also indicate changes in microfloral populations or greater microbial 

activity. In rats fed diets containing DDGS, bran fraction, or DDGS soluble fraction, 

more of the cholesterol in the feces was metabolized into coprostanol and 

dihydrocholesterol, compared to the control group. This is indirect evidence that all the 

co-products influenced the colonic microflora.  Determining how the microfloral 
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populations changed with consumption of the co-products may warrant further 

investigation.  

Urinary 24 h TBARS excretion was measured as a marker of whole body lipid 

peroxidation. A reduction in urinary TBARS is typically associated with a lessening of 

oxidative stress [162]. In this study, there were no significant differences in urinary 

TBARS excretion among the four diet groups. However, there were several aspects of the 

diets that could influence oxidation state in our study. On the one hand, DDGS from corn 

contains a relatively large amount of polyunsaturated fatty acids (PUFA), especially 

linoleic acid (18: 2), and some yeast components, which may increase oxidative stress 

[13]. On the other hand, DDGS is rich in antioxidants, such as ferulic acid and 

carotenoids [178, 179]. However, since the control diet was formulated with corn oil, all 

diets would have had similar amounts of PUFA, and thus this factor would seem to be 

equalized among the groups. 

Ferulic acid (FA) is a phenolic acid that present in corn in a high concentration. 

FA is an antioxidant which neutralizes free radicals such as superoxide, nitric oxide, and 

hydroxyl radical, all of which may cause oxidative damage to cell membranes and DNA 

[180]. However, FA is mostly bound to the cell wall in corn and has low bioavailability 

due to limited release by gut microbiota [181]. In the present study, the small amount of 

FA that was likely absorbed [182] is unlikely to have a meaningful effect on overall 

antioxidant status.  

Another antioxidant component is the xanthophylls, which may reduce the 

incidence of age-related macular degeneration (AMD), cancer, and coronary heart disease 
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[183, 184]. The mechanism of action is thought to be due to the ability of xanthophylls to 

act as an antioxidant or to filter harmful short-wave blue light in the macula [185]. Lutein 

may act as an antioxidant due to its centrally localized conjugated C=C double bonds, 

which can readily quench reactive oxygen species. Additionally, hydroxyl groups 

attached to each of the two terminal β-ionone rings make lutein more efficient at 

scavenging free radicals than other carotenoids. Our hypothesis was that the xanthophylls 

contributed by the co-product diets would lower oxidative stress due to their antioxidant 

activity. However, the reason for the failure to see a reduction in urinary TBARS may be 

that the xanthophylls were not well absorbed, since they could not be detected in plasma 

or tissues by our methods, as discussed below. Further, our animal model was a healthy 

rat without any treatment to increase their oxidative stress, which may have made it 

difficult to detect an antioxidant effect. Finally, whether xanthophylls are functioning as 

antioxidants in vivo is still uncertain [186-188] . Evidence suggesting a lack of 

antioxidant activity by xanthophylls was provided by Collins et al. [189], who treated 

volunteers with a variety of carotenoids, including lutein. Their results showed that 

carotenoids supplementation did not have a significant effect on endogenous oxidative 

damage.  

One more point to be considered is that TBARS of the diets were not measured in 

our study. This may be important, as suggested by a study in pigs in which there was 

21% greater value for dietary TBARS in the DDGS diet compared to the control diet. 

After feeding a diet containing 35% DDGS for 38 days, there were no differences in 

basal circulating indicators of oxidative stress between the DDGS and control groups, but 
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urinary TBARS were increased in pigs fed with DDGS [190]. It was suggested that the 

greater urinary TBARS excretion may have been due to the 21% greater TBARS in the 

DDGS diet compared to the control diet. The lack of greater urinary TBARS with co-

product feeding in our study may have been due to using co-products in which the lipids 

were not oxidized. And as we mentioned in introduction part, TBARS assay is a good 

indicator for oxidative stress, but it cannot comprehensively illustrate the oxidative stress, 

because changes in TBARS concentration can lead to misinterpretation of low values 

without knowledge of historical values for the lipid.  

Cholesterol homeostasis is maintained through the coordination of several input 

and output pathways. The cholesterol input pathways include de novo biosynthesis by 

liver and other tissues, including the small intestine, and the absorption of dietary 

cholesterol. The output pathways include secretion of free cholesterol into the bile and 

conversion of cholesterol to bile acids [191]. In this study, all rats had the same 

cholesterol intake since all four diets contained 0.15% cholesterol, and since there was no 

significant differences in their food intake, cholesterol intake would have been the same 

in all diet groups. 

All groups fed diets containing co-products had lower liver cholesterol 

concentration compared to the control group. Of the co-products, the groups fed the diets 

containing DDGS or DDGS soluble fraction showed the lowest liver cholesterol 

concentration. Further, the three co-product diet groups had greater bile acids excretion 

than the control group. Therefore, co-products did show a health benefit of lowering liver 

cholesterol, which likely involved increasing bile acid excretion.  
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What components of the co-products may have been responsible for causing the 

reduction in liver cholesterol is uncertain. Greater cholesterol output may have been 

caused by arabinoxylans [192]. Arabinoxylans, a soluble dietary fiber extracted from 

corn bran, could reduce the level of liver cholesterol. Consumption of water-soluble fiber 

and some insoluble fibers has been shown to decrease cholesterol levels [193]. Three 

major mechanisms have been suggested to explain the cholesterol-reducing effects of 

soluble dietary fiber: prevention of bile salt re-absorption from the small intestine, 

reduced glycemic response leading to lower insulin stimulation of hepatic cholesterol 

synthesis, and physiological effects of fermentation products of soluble dietary fiber, 

mainly propionate [194]. In vitro studies have shown that intake of some soluble dietary 

fiber results in  35-65% excess  bile acids excretion in the feces [195, 196], which might 

be due to  decreased bile salts reabsorption into the enterohepatic circulation. Viscous 

fiber could also reduce the rate of intestinal absorption of glucose with subsequent 

decrease in insulin production by the pancreas. The reduced insulin levels could lead to a 

decrease in cholesterol synthesis [197, 198]. However, the fiber present in the co-

products is unlikely to produce viscosity within the small intestinal lumen, and thus fiber 

viscosity seems unlikely to play a role in the cholesterol lowering in our study. In 

addition, dietary fiber causes an increase in short chain fatty acids (SCFA), especially 

propionate, which may indirectly cause a decrease in blood cholesterol via inhibition of 

hepatic cholesterol synthesis [199, 200].  

In our study, the group fed the DDGS diet showed lowest total liver cholesterol, 

but not the highest total bile acids excretion. Therefore, increased bile acid excretion may 
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not be sufficient to account for the observed cholesterol reduction. We thus considered 

another cholesterol output, fecal neutral sterol excretion. The DDGS diet group showed 

the greatest total fecal neutral sterol excretion, while the bran fraction diet group was the 

lowest. However, these differences were not statistically different. Lopez et al. reported 

that rats fed a diet containing about 8% arabinoxylans had significantly greater neutral 

sterol excretion, compared to the control group, but no difference in bile acid excretion 

[192], the opposite of our findings.  On the other hand, total steroid excretion, which is 

the sum of bile acids and neutral sterol, were greatest in the DDGS and bran fraction 

groups. Furthermore, all co-products diets had a much lower total steroid balance, which 

is the balance between cholesterol from food intake and total steroid excretion, compared 

to the control group. These results suggest that the reduction in liver cholesterol 

concentration by DDGS and the soluble fraction co-product may have been due to greater 

steroid excretion, at least in part.  

The DDGS soluble fraction diet contained the greatest amount of lutein and 

zeaxanthin, 2.11µg/g diet, while the DDGS diet contained the second greatest amount, at 

1.69 µg/g diet. However, no lutein or zeaxanthin was detected in plasma or liver of the 

rats, even using LC-MS. It appears that the level of these xanthophylls in plasma were 

too low to be detected, possibly due to metabolic transformations such as formation of 

conjugates by detoxification enzymes after the intestinal uptake [201]. Another reason for 

this result might be poor xanthophylls bioavailability from diets. According to the 

literature, lutein absorption requires the presence of dietary fat, which stimulates the 

release of emulsifying bile acids by the gallbladder [202]. Rats fed a low-fat diet fail to 
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absorb xanthophylls efficiently, whereas they do so when the diet contains 10% fat. 

However, this point seems to not explain our findings, since the diets we used contained 

15% fat. Another reason might be dietary fiber, especially insoluble fiber [203], which 

has been suggested to have a negative effect on carotenoid absorption by entrapping 

carotenoids. Xanthophylls might also have been metabolized. One study [85] showed that 

after 14 days of lutein ester supplementation, 3’-hydroxy-ε, ε-caroten-3-one ( with 

molecular weight 549, 567) and lutein (with molecular weight 551, 569) were the 

predominant carotenoids in plasma and tissues, accompanied by ε, ε-carotene-3, 3’-dione 

(with molecular weight 565). Lutein and its metabolites accumulated most in the liver, 

followed by plasma, adipose tissue and kidney. This result was consistent with studies in 

humans [204, 205]. Further, they acknowledged that lutein was the predominant 

carotenoid found in mice after dietary supplement in other studies [85, 206], while the 

detailed amounts of other detected metabolites were not shown. Nevertheless, neither 

lutein nor its metabolites were detected in our study by LC-MS.  
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In conclusion, the consumption of diets containing 20% DDGS or its co-product 

solubles fraction appeared to increase large intestinal fermentation, based on enlargement 

of the cecum and a change in the profile of neutral sterols towards a greater proportion of 

bacterial metabolites. These two diets also resulted in a lower liver cholesterol 

concentration, which may be explained in part by an increased bile acids excretion. 

However, no increase was found in fecal neutral sterol excretion. Whole body oxidative 

stress was not changed in any of the diet groups. This result might be due to both PUFA 

and antioxidants content in DDGS.  Unfortunately, xanthophylls were not detectable in 

plasma or tissues.  Based on the effect of lowering liver cholesterol, these co-products of 

bioethanol production warrant further examination as a food supplement providing health 

benefits for humans. 

Advantages and limitations of the study and future directions 

This study has many advantages, such as a study design using several control 

groups and a diet composition that was carefully balanced for macronutrients. The AIN-

93G purified rodent diet was used as control diet. Additionally, the corn bran fraction diet 

was used as the fiber control group, to compare the different effects of two different 

starch removal methods: a physical milling method for the bran fraction diet, and a  

chemical and enzymatic method for the DDGS diet. Further, this is the first study to 

examine the potential health benefits of DDGS in rats model to our knowledge. However,  

there are also some limitations. One limitation is that DDGS tested in our study only 

comes from one source. The composition of DDGS varies significantly, depending on the 

production practices, as discussed in the literature review. It is possible that the findings 
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may vary depending on where and how DDGS was produced. In addition, the 

concentration of DDGS in the diet was arbitrarily set as 20%, but a different 

concentration would possible make a difference.   Finally, as with all animal studies, to 

what degree the results can be extrapolated to human is uncertain.  

A future research direction should be to study xanthophyll accumulation in the 

retina, as studies show that the retina is one of the tissues where there is the greatest 

accumulation of xanthophylls. A second area of further research would be to determine 

bacterial metabolites of xanthophylls, which are currently unknown, in order to 

understand better the bioavailability of xanthophylls. Finally, further research is needed 

to study the mechanism by which DDGS lowers liver cholesterol. In particular, 

examining the effect of DDGS on endogenous cholesterol synthesis is warranted.  
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Table 4-1 Measures of body weight gain and tissue weight 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
All results were expressed as least squares means ± SEM, n=10 per group. Data were 
analyzed by ANOVA. Values within a row that do not share a common superscript are 
significantly different, p<0.05. 

Parameter Control DDGS Bran 
Fraction 

Soluble 
Fraction 

Body 
weight gain 

(g) 
152.4±7.0 148.6±7.3 144.9 ±7.0 138.0 ±9.4 

Epididymal 
fat pads (g) 3.2±0.3 3.2±0.2 3.2 ±0.2 2.8 ±0.2 

Cecum pH 6.5±0.1 6.6±0.1 6.6 ±0.0 6.6 ±0.1 

Cecum 
weight 
with 

content (g) 

2.5±0.1a 3.3±0.2b 2.6±0.1a 3.5±0.3b 

Fecal dry 
weight    
(g/3 d) 

7.1±1.2a 6.8±1.0ab 6.5±0.9ab 6.0±0.75b 

Urinary 
TBARS2 

(μg/24h) 
6.6±1.1 6.4±1.1 5.8 ±0.7 5.6±0.3 

Liver 
weight (g) 16.9±1.2 15.1 ±0.7 16.1±0.9 15.3 ±1.1 

Liver total 
cholesterol3 

(mg/g) 
13.2±0.9a 7.2±0.7b 9.8±1.0c 7.0 ±0.8b 

Bile acids3 

(mg/24h) 6.6±0.6a 23.9±1.6b 30.1±2.1c 17.3±0.6d 
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1. Means with the different letter are significantly different.  
2.

 Measured after 2 weeks of feeding of the diets. 
3. Measured after 3 weeks of feeding of the diets. 
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Table 4-2 Daily Fecal Neutral Sterol Excretion 

Neutral Sterols 
(μmol/24 hour) 

Diet group 

Control DDGS Bran Fraction Soluble 
Fraction 

Cholesterol 17.0±2.4a 13.8±1.4ab 11.1±1.3ab 9.1±1.8b 
Coprostanol 8.5±0.8 13.7±1.7 12.3±1.7 14.8±2.7 

Dihydrocholesterol 1.6±0.2 2.8±0.4 2.5±0.4 2.6±0.5 
Total 27.0±2.9ab 30.3±3.3a 25.9±3.3b 26.5±4.8ab 

Ratio of  
cholesterol to 
coprostanol+ 

dihydrocholesterol 1.8±0.8a 0.9±0.2b 0.8±0.2c 0.5±0.3d 

Ratio of  
cholesterol to total 

neutral sterols 
0.6±0.2a 0.5±0.1b 0.4±0.1b 0.3±0.1c 

 

All results were expressed as least squares means ± SEM, n=10 per group. Data were 
analyzed by ANOVA. Values within a row that do not share a common superscript are 
significantly different, p<0.05. 
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Table 4-3 Total steroid excretion 

Sterol 
excretion 

(μmol/ 
24 hour) 

Diet group 

Control DDGS Bran Fraction Soluble 
Fraction 

Total 
bile 

acids  

16.20±4.43 a 58.71±12.66b 73.65±15.91 c 42.44±4.43 d 

Total 
neutral 
sterols 

27.02±2.93ab 30.30±3.26a 25.88±3.26b 26.54±4.79ab 

Total 
steroid 

excretion 

43.23±9.83 a 89.00±17.11 b 99.512±22.44 

b 
69.98±17.35 c 

Total 
steroid 
balance 

40.16±8.94 a 3.53±17.00 

bcd 
-7.84±17.29 c 17.24±11.74 d 

All results were expressed as least squares means ± SEM, n=10 per group. Data were 
analyzed by ANOVA. Values within a row that do not share a common superscript are 
significantly different, p<0.05. 

Daily cholesterol intake= (3rd week 24 hr food intake*0.15%/386.65) - 24hr total steroid 
excretion 
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Table 4-4 Xanthophylls concentration of the bioethanol co-products 

 Lutein Zeaxanthin Total 

(μg/g) 

Control Diet 0.06 0 0.06 

DDGS Diet 1.15 0.54 1.69 

Bran Fraction Diet 0.27 0.14 0.41 

Soluble Fraction Diet 1.51 0.60 2.11 

 
All results were expressed as least squares means ± SEM, n=10 per group. Data were 
analyzed by ANOVA. Values within a row that do not share a common superscript are 
significantly different, p<0.05. 
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Figure 4-1 Urinary TBARS excretion over 24 hrs. 

All results were expressed as least squares means ± SEM, n=10 per group. Data were 
analyzed by ANOVA. Values within a row that do not share a common superscript are 
significantly ifferent, p<0.05.  
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Figure 4-2 Bile acids excretion over 24 hrs among diet groups 

All results were expressed as least squares means ± SEM, n=10 per group. Data were 
analyzed by ANOVA. Values within a row that do not share a common superscript are 
significantly different, p<0.05.  
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Liver Cholesterol Concentration
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Figure 4-3 Liver cholesterol concentration 

All results were expressed as least squares means ± SEM, n=10 per group. Data were 
analyzed by ANOVA. Values within a row that do not share a common superscript are 
significantly different, p<0.05.  
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Figure 4-4 Lutein and zeaxanthin standard by HPLC 

 
 

 
Figure 4-5 DDGS diet sample by HPLC 
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Figure 4-6 Rat plasma samples 2 hours after a meal of DDGS by HPLC 

 

 
Figure 4-7 Rat plasma sample 2 hours after gavage with marigold extract solution by 

HPLC 
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Figure 4-8 Marigold flower extraction solution in HPLC 
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Figure 4-9 Lutein and zeaxanthin standards by LC-MS 
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Appendix 1. Urinary Thiobarbituric Acid Reactive Substances (TBARS) Procedure  

Reference: Hye-Sung Lee et al., Lipids 27:124-128, 1992 

Reagents  

5% (w/v) Trichloroacetic acid (TCA) 5 g to 100 mL H2O. 

0.06 M Thiobarbituric acid (TBA). 0.8652 g 2-thiobarbituric acid to 100 mL H2O. 

Store stoppered reagents in cold room. Before use, warm TBA solution in water bath (as 

the bath heats up) to return all precipitate to solution, then cool to room temperature. 

MDA Standard: 

10-5 M  Malondialdehyde (MDA) 

Synthesis of MDA 

1. Weigh 164.2 mg (1 mmol) malondialdehyde tetramethylacetal into a 100 mL glass 

stoppered Erlenmeyer flask. 

2. Add 100 mL 0.01 N HCl, stopper immediately and wrap the top with Parafilm. 

3. Heat in 50 °C water bath for 1hr. 

4. Cool to room temperature in a dark place. 

5. Dilute with water to 10-5 M. 

MDA is very sensitive to light, store in the cold room in a flask wrapped in a foil. 

Approximate shelf life is one month. 

Procedure: 

1. Label test tubes (medium size, screw-top tubes). 
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2. Place 3 mL TCA and 1 mL TBA in each tube. 

3. Add MDA, H2O, and sample as shown in a table below. 

4. Cap tubes and vortex to mix. 

5. Place tubes in rack in 80 °C water bath for 90 min. 

6. Remove from bath and cool to room temp. 

7. Centrifuge 10 min at 2000 rpm. 

8. Read absorbance at 535 nm. 

  Tube 

     # 

 MDA Standard   Water 

μL 

   Urine 

μL     μL    μg 

    1        0          0    1000  

    2      50   0.036      950  

    3    100   0.072      900  

    4    200   0.144      800  

    5    400   0.288      600  

    6    600   0.432      400  

    7    800   0.576      200  

    8  1000   0.720          0  

 Sample        500     500 
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Appendix 2. Bile acid extraction and purification 

Reference:  Locket, PL & Gallaher, DD (1989) Lipids 24, 221-223. 

Solutions 

Ethanol, 80 % 

Chloroform/methanol: Store at room temperature. 

Procedure  

Extraction 

1. Weigh approximately 100 mg of tissue or feces into a screw cap tube (20 X 125 mm or 

similar size).  Record the exact weight. 

2. Add 2 mL of absolute ethanol to each tube 

3.  Sonicate the capped tubes in a bath sonicator for 30 min. 

4.  Place the tubes in a heating block and reflux at 100°C for 15 min. 

4.  Centrifuge the tubes at approx. 1,500 X g for 10 min.  Transfer the supernatants to 

screw capped tubes. 

5.  Suspend the pellets in 2 mL of 80% ethanol, reflux for 15 min in the heating block, 

and centrifuge as in step 4.  Again transfer the supernatants to the screw capped tubes. 

6.  Suspend the pellet again in 2 mL of chloroform/methanol, reflux for 15 min in the 

heating block, and centrifuge as in step 4.  Transfer the supernatants to the screw capped 

tubes. 

7. Suspend the pellet in 2 mL of chloroform/methanol, centrifuge as in step 4, and 

transfer the supernatants to the screw capped tubes. 
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8. Evaporate the pooled supernatants to dryness with nitrogen gas under low heat 

(<60°C).  Store dried samples capped in the freezer until ready for partial purification. 

Partial Purification 

1. Remove the rack, if present, from inside the solid phase extraction (SPE) column 

processor.  Insert the SPE columns into the column processor and turn on the water 

aspirator.  Adjust the vacuum to about 5-10 mm Hg with the screw located on the 

vacuum arm closest to the processor.  

2. Solvate (activate) the columns by adding 4 mL of MeOH to each column.  Follow with 

4 mL of distilled water (DW).  Do not allow the columns to dry out if possible between 

solutions.  Stop the flow through the columns by releasing the vacuum by opening the 

wingnut. 

3. To tubes containing the dried tissue or fecal extract, add 0.6 mL MeOH and vortex to 

solubilize the bile acids.  Next add 2.4 mL DW to each tube and vortex again. 

4. Pour the solution from above through a solvated column and apply vacuum. 

5. When the level of solution in the columns drops to the frit, add 3 mL of DW. 

6. When the level of DW in the columns drops to the frit, add 3 mL of hexane. 

7. When the level of hexane has dropped to the frit for all columns, release the vacuum 

with the wingnut and carefully remove the cover of the SPE column processor.  Insert the 

rack with labeled tubes in the correct position to collect the column eluents. 

8. Add 3 mL MeOH to each column and turn on the vacuum.  The flow of MeOH 

through the column should be about 2-3 mL/min.  The MeOH will elute the bile acids off 

the columns, which will then be collected in the tubes within the processor. 
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9. After the flow through the columns stops, release the vacuum, remove the tubes, and 

evaporate the solution to dryness with nitrogen gas at low heat.  Cover the tubes with 

Parafilm and store in the freezer until ready to analyze by HPLC. 
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Appendix 3. Liver lipid extraction and enzymatic cholesterol assay  

 1) Weigh out ~1.00 gram of liver tissue and transfer to homogenizing tube. 

 2) Add 10 mL chloroform:MeOH (2:1). 

 3) Homogenize for ~15-20 seconds. 

 4) Filter homogenate through a #1 Whatman filter paper into a glass screw top tube. 

 5) Rinse homogenizer with 15 mL chloroform:MeOH (2:1) and pick out any tissue 

trapped on probe. 

 6) Pour rinse through filter paper into tube. 

 7) Wash filter paper with an additional 5 mL chloroform:MeOH (2:1). 

 8) Add 6 mL 0.9% NaCl to filtrate.  This represents a volume of 0.2 times the volume of 

chloroform:MeOH used. 

 9) Vortex to mix aqueous and non-aqueous phases. 

10) Centrifuge for 1 minute at 750 RPM to separate phases.  Be careful about placement 

of tubes in the centrifuge – when rotor spins, long tubes may break as they tilt.  

Alternatively, let the tubes stand until phases separate. 

11) Remove aqueous upper phase with a transfer pipet and discard. 

12) Gently layer 3 mL of MeOH:H2O (1:1).  Rinse sides of tubes while adding the 

MeOH:H2O. 

13) Remove this upper phase with a transfer pipet and discard. 

14) Transfer the extracted lipid in chloroform:MeOH (2:1) and transfer rinse to lipid vial. 

15) Evaporate Chloroform under N2. (Gravimetric Step) 
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16) Reconstitute the fat with a set volume for all samples (10 mL) in Chloroform:MeOH 

(2:1). 
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Enzymatic cholesterol assay 

Reagents 

1) 50 mM Sodium Phosphate, Dibasic (MW = 141.96).  Make 1 L, pH 6.9 (7.1 g/L). 

2) Stock Phenol Reagent: 500 mL 

Dissolve 3.8 g Phenol crystals in 400 mL Phosphate Buffer.  Adjust volume to 500 mL 

with Phosphate Buffer.  Store at 4 °C (up to 1 month). 

3) Stock Mixed Reagent: 500 mL 

    Dissolve in 400 mL Phosphate Buffer: 

        0.203 g 4-aminoantipyrine 

        1.292 g Sodium Cholate 

        7.46 g Potassium Chloride 

        1.0 mL Triton X 

    Adjust volume to 500 mL with Phosphate Buffer.  Store at 4˚C (up to 1 month). 

4) Working Reagent: (shelf life: 3-4 days) 

                                         Amt(UI)/30 mL        Amt(UI)/100 mL        Amt(UI)/200 mL 

     Reagent                  (mL)   (mL)    (mL) 

     Stock Mixed Reagent 15   50   100  

     Stock Phenol   15   50   100 

     Cholesterol Oxidase (UI) 7.5   25    50 

     Cholesterol Esterase (UI) 7.5   25   50 

     Peroxidase (UI)             375   1250   2500 

    Store in ice bath until ready to use. 
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****NOTE**** For free cholesterol assay, omit Esterase 

A) Standard Curve: 

    Use 1 mg/mL concentration of cholesterol in Chloroform: MeOH (2:1).  Use 0, 5, 10, 

15, 20, and 25 μL concentrations (depends on cholesterol in sample). 

    Add 50 μL Triton X-100/Acetone to each tube, Vortex. 

    Dry under N2 gas.     (Triton Solution = 1.5 g Triton in 10 mL Acetone) 

B) Samples:  Total Cholesterol: 10 μL assayed 

              Free Cholesterol: 50 μL assayed 

    Add 50 μL Triton X-100/Acetone. 

    Dry solvent under N2 gas. 

C) Assay:  Add 100 μL H2O to each tube, Vortex. 

   Add 1 mL Working Reagent/sample, Vortex. 

    Incubate at 37 ºC for 10 min.  Cool to room temperature. 

    Read absorbance at 500 nm. 
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Appendix 4. Xanthophyll extraction from dried plant materials and mixed feeds 

(AOAC official method 970.64) 

Chemicals: 

1. Extractant: hexane, acetone, absolute alcohol, toluene (10, 7, 6, 7) 

2. Methanolic potassium hydroxide, 40%: dissolve 40 g KOH in methanol, cool, and 

dilute to 100 mL with methanol 

3. Sodium sulfate solution 10%: dissolve 10 g anhydrous Na2SO4 in 100 mL with 

H2O.  

Procedure:  

1. Sample preparation: 2 g corn meal or DDGS meal; 50 mg marigold meal into 100 

mL volumetric flask.  

2. Pipet 30 mL extractant into flask, stopper, and swirl 1 min. 

3. Hot saponification: pipet 2 mL 40% methanolic KOH into flask, swirl 1min, and 

place flask in 56°C water bath 20 min.  

4. Cool mixture, and let it stand in dark 1 hour, pipet 30 mL hexane into flask, swirl 

1 min, dilute to volume with 10% Sodium sulfate solution, and shake vigorously 1 

min.  

5. Let stand in dark 1 hour before chromatography. Upper phase is about 50 mL.  
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Appendix 5. Xanthophylls extraction from rat plasma, organs, and urine  

Lakshminarayana, R., et al., Enhanced lutein bioavailability by lyso-phosphatidylcholine 

in rats. Mol Cell Biochem, 2006. 281(1-2): p. 103-10 [207]  

Chemicals: 

Dichloromethane, methanol (2:1, v:v ) containing 2 mM tocopherol 

Hexane 

Dichloromethane 

Ice-cold isotonic saline 

10 M KOH 

Ice-cold acetone 

Plasma samples 

1. 0.8 mL of plasma 3 mL of dichloromethane, methanol (2:1, v:v ) containing 2 

mM tocopherol was added and mixed for 1 min using a vortex mixer 

2. 1.5 mL hexane was added, mixed and centrifuged at 1000 g for 5 min 

3. The resulting upper hexane/dichloromethane layer was collected. 

4. The extraction procedure was repeated twice with 1 mL of dichloromethane and 

1.5 mL of hexane.  

5. The extract was pooled, evaporated to dryness 

Liver, eye, and feed samples 
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1. These were homogenized separately with nine parts ice-cold isotonic saline using 

homogenizer and 0.8 mL of homogenate was used for lutein extraction following 

the procedure as described for the plasma 

2. The extracts were saponified separately with 2mL 10 M KOH at 60°C for 45 min. 

the reaction mixture was vortexes every 15 min during saponification with the 

addition of 2 mL of  ice cold deionized water before lutein extraction as described 

before 

Urine and fecal samples 

1. Urine and fecal samples from each rat were aliquot and taken for lutein 

analysis wither fresh or frozen at -70°C. 

2. Urine samples were filtered through No filter paper and fecal matter 2 g was 

homogenized with ice-cold acetone, diluted suitably and taken for lutein 

extraction as per the procedure adopted for plasma and tissues.  
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Appendix 6. SAS code 

data all_groups (label = 'All diet groups');  
 
 
Title2 'Effect of Corn Fermentation Co-Products on lipids and oxidative 
stress'; 
Input rat_number Diet_Group Initial_BW Week_1_BW Week_2_BW KillDay_BW 
Week1_FI Week2_FI Week3_FI KillDay_Liver_Weight 
KillDay_Epi_fatpad_Weight Cecum_weight 
CecumPH Urine_Vol TBARS_ug24hr Fecal_DryWeight 
Liver_total_chol_conc_true Liver_total_chol_true fecal_bile_acid  
   
 
; 
 
Label  
rat_number = 'Rat Number' 
Diet_Group= 'Diet Group' 
Initial_BW = 'Initial Body Weight (g)' 
Week_1_BW= 'Week 1 Body Weight (g)'  
Week_2_BW= 'Week 2 Body Weight (g)' 
KillDay_BW= 'Rat Body Weight At Kill Day (g)' 
Week1_FI= ' Food Intake Week 1 (g)'  
Week2_FI = 'Food Intake Week 2 (g)' 
Week3_FI = 'Food Intake Week 3 (g)' 
KillDay_Liver_Weight= 'Rat Liver Weight at Kill day (g)' 
KillDay_Epi_fatpad_Weight= 'Kill day Epididymal Fat Pad Weight(g)' 
Cecum_weight = ' Cecum Weight At Kill day (g)' 
CecumPH = ' Cecum pH level at Kill day' 
Urine_Vol = 'Urine Volume over 24h Period (ml)' 
TBARS_ug24hr = 'TBARS (ug/24hr)'  
Fecal_DryWeight = 'Dry Weight of 48h Fecal Collection (g)' 
Liver_total_chol_conc_true='Liver total cholesterol conc true (mg/g)'  
Liver_total_chol_true='Liver total cholesterol per liver (mg/liver)' 
fecal_bile_acid = 'Fecal bile acid (mg/24hr)' 
; 
 
output all_groups; 
 
 
Datalines; 
1 1 172 233.5 286.9 336 19.45 23.75 23.75 17.32 3.547
 2.2945 6.65 3.8 4.218 8.6426 11.8948 206.0184
 9.8277 
2 1 135.2 197.4 261 315 17.55 20.25 23.35 16.624 1.748
 2.6173 6.36 20.8 6.1984 8.2897 11.5741
 192.4074 7.0551 
3 1 175.5 232.3 294.1 337 19.25 21.5 22.4 21.672 2.427
 2.7597 6.74 9.9 7.8408 7.5073 16.3698
 354.7655 6.4524 
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4 1 150.5 198.1 249.7 312 17.8 19.65 22.4 17.361
 3.9384 2.4261 6.51 11.9 8.6156 8.2583
 8.5189 147.8973 9.3132 
5 1 184.5 237.8 298.4 369 18.95 23.9 23.05 24.59 4.2766
 2.6987 6.52 18.1 14.6972 8.4037 17.0908
 420.2638 4.7307 
6 1 171.2 228 270 301.6 21.6 18.35 18.3 14.913
 2.7851 2.2643 6.56 8.3 4.3658 5.8487
 17.054 254.3256 4.8921 
7 1 169 223.3 267 304.5 19.68 24.2 22.6 14.69 2.779
 2.4008 6.64 9.8 3.822 6.2148 13.8575 203.5666
 5.3097 
8 1 152.6 200 243 273 17.18 20.65 21.25 13.072
 2.7025 1.6909 6.75 12.5 4.5 5.6574 11.0013
 143.8093 4.8277 
9 1 170 220.2 264.2 299 20.16 20.15 17.65 13.31 2.6023
 3.1632 6.26 5.1 3.8046 5.8833 14.0759
 187.3501 6.7617 
10 1 180 237.9 293 337 22.5 21.7 20.2 15.29 4.9552
 2.9366 6.4 12.4 7.7624 6.2111 10.6652
 163.0709 7.0495 
11 2 155.2 209.9 271.5 324 21.3 23.7 25.6 15.022 2.573
 3.6274 6.81 18.9 9.261 7.7438 3.3613 50.4941
 24.0867 
12 2 181 239 295.6 335 23.85 23.95 24.3 17.457 2.781
 3.0729 6.42 17.6 8.8704 7.5012 8.6083
 150.2755 21.1361 
13 2 162.4 216 276.3 339 20.15 23.1 27.15 17.91 4.261 3.178
 6.89 15.8 10.8388 7.5386 7.1905 128.7827
 23.4623 
14 2 155.2 202.2 253.8 319 19.6 23.2 24.7 13.647 3.755
 2.9455 6.41 25.1 8.3332 7.0734 5.0847
 69.3915 17.6705 
15 2 160.7 204.6 237.4 275 17.55 17.55 20.95 12.889
 2.4526 3.0336 6.4 1.9 2.0596 5.0646
 5.7007 73.4765 17.2892 
16 2 167.2 226 273.6 311 18.55 22.45 22.5 15.568 4.166
 4.376 6.38 10.6 6.6144 5.9843 8.8294 137.4556
 24.7868 
17 2 157.7 200 235.4 268 16.35 20.05 19.63 11.284
 2.1296 2.5608 6.49 4.7 3.1208 5.8801
 9.3142 105.1017 23.5001 
18 2 177 232 273 309 22.25 23.7 26 14.715
 2.9433 3.4021 6.44 8 5.088 5.7684 10.8358
 159.4482 22.9034 
19 2 190.5 255.2 304.6 357 24.15 20.45 26.75 16.79 3.7785
 3.29 6.62 1.9 0.8892 7.1814 4.8818 81.9649
 32.85 
20 2 187.7 243.1 285.1 344 25.25 26.15 20.95 15.89 3.6192
 3.5057 6.65 22.2 3.108 8.2089 7.8449 124.6555
 32.1769 
21 3 160.5 213.2 279.5 305 20.2 25.2 24.3 14.402 3.65
 1.7089 6.49 8.4 6.636 8.3488 12.1428 174.8805
 39.3389 
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22 3 178.8 232 288 342 21 22.9 28 19.165 4.099
 3.1074 6.62 33.9 10.509 6.7813 6.0189
 115.3525 34.3836 
23 3 160 206 255.2 286 19.4 19.3 25.05 18.447 2.086
 2.7576 6.47 3.8 3.4352 6.1354 12.7819
 235.7873 29.4122 
24 3 160 220.3 280 344 21.8 23.45 25.15 21.298 3.653
 2.7382 6.76 9.2 6.5504 6.5617 13.4122
 285.6528 26.2007 
25 3 157.6 202.6 267.8 333 20.15 23.55 26.95 16.912
 2.5825 2.7282 6.43 6.6 4.356 7.1069 5.4501
 92.1725 33.6072 
26 3 175.5 262.5 266.7 303.3 19.5 17.65 20 15.05 3.6807
 2.8181 6.67 26.9 2.4748 7.0094 6.8113
 102.5105 35.0551 
27 3 173.2 223.8 266.8 305 16.95 19.75 23 14.139
 2.5517 2.256 6.65 9.9 6.435 6.7372 9.0232
 127.5787 30.0285 
28 3 160.2 222.2 265 294.2 21.6 20.25 22.75 15.08 3.9036
 2.6341 6.55 7.6 6.0952 5.9482 13.875
 209.2354 33.2982 
29 3 170.7 216.6 250 289 20.4 22.25 23.75 12.92 2.612
 2.3051 6.34 7.2 7.128 5.4685 8.5374 110.3036
 19.6834 
30 3 153.2 205.2 253.4 298 19.05 19.6 17.35 13.71 3.631
 2.6328 6.5 4.5 4.383 4.9887 10.2943 141.1342
 19.839 
31 4 151.2 199.1 247.6 287 19.2 20.7 21.85 15.949 2.084
 . 6.47 13.2 6.1512 5.3606 6.2776 100.1219
 16.4439 
32 4 167.2 223.2 288.7 355 18.85 26.7 26.9 20.719 3.396
 4.5282 6.29 24.8 4.3648 7.1998 6.0856
 126.0878 20.1484 
33 4 165.6 218 265.7 304 18.6 18.45 21 15.045 2.565
 3.5514 6.76 8.2 5.4776 5.2392 4.0845
 61.451 16.5192 
34 4 166.4 218.7 267.9 320 19.9 20.25 25.7 18.358
 2.7345 3.7853 6.61 9.8 5.1352 6.7196
 4.9804 91.4301 19.1537 
35 4 169.6 221.3 278 323 19.8 22.7 22.3 16.965 3.19
 2.8611 6.82 8.6 5.9168 6.1466 7.9453
 134.7921 17.0482 
36 4 177.9 245.5 294.6 339 21.85 25.25 21.15 17.2355
 3.4246 4.8746 6.46 5 5.28 6.4707 9.8354
 169.5182 19.8781 
37 4 149.7 182.2 212.8 233 13.95 15.35 17.05 10.35 2.145
 3.0268 6.44 15.2 7.144 5.0797 4.6729 48.3645
 17.1353 
38 4 180.6 230 269.2 283 20.2 21.75 23 8.82 2.3145
 1.364 7.22 19.8 4.7916 5.1623 12.8482 113.3209
 16.1542 
39 4 156.3 212 242.8 284 17.8 19.05 20.8 14.73 2.8533
 3.8358 6.01 4.3 6.0028 6.3534 6.6647
 98.1707 16.3819 
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40 4 174.1 229.4 273.6 311 21.9 22.8 22.5 14.85 3.663
 3.7085 6.67 7.5 5.85 6.434 7.3145 108.6207
 14.5146 
 
; 
 
proc sort data = all_groups; by Diet_Group; 
 
proc format;  
 value dietfmt 
  1='Control Diet' 
  2='DDGS Diet' 
  3='Bran fraction Diet' 
  4='Soluble fraction Diet' 
  ; 
  
proc print data= all_groups; by Diet_Group; format Diet_Group dietfmt.; 
proc means data=all_groups n mean stderr min max; by Diet_Group; format 
Diet_Group dietfmt.; 
var Initial_BW--fecal_bile_acid; 
run; 
proc glm data= all_groups; 
title 'One Way Analysis of Variance in all rats'; 
format Diet_Group dietfmt.; 
class Diet_Group; 
model Initial_BW--fecal_bile_acid=Diet_Group; 
Means Diet_Group / Duncan; 
run; 
proc corr data=all_groups; 
title 'Correlation of Fecal Bile Acids and Liver Cholesterol in all 
rats'; 
format Diet_Group dietfmt.; 
var Liver_total_chol_conc_true Liver_total_chol_true; 
with fecal_bile_acid; 
run; 
 
quit; 
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Appendix 7. SAS code for Neutral Sterols Analysis 

 
data all_groups (label = 'All diet groups')  
; 
Title1 'bioavailability of DDGS'; 
Input Rat_No Diet_Group Feces_weight_mg coprostenal_conc 
cholesterol_conc cholestanol_conc oneday_feces_weight_g  
coprostenal_in_24hours_feces cholestrol_in_24hours_feces 
cholestnol_in_24hours_feces coprostenal_feces_umol 
cholesterol_feces_umol cholestnol_feces_umol 
total_neutral_sterol_umol_day 
; 
 
Label  
Rat_No = 'Rat Number' 
Diet_Group= 'Diet Group' 
Feces_weight_mg='feces weight (mg)' 
coprostenal_conc='coprostenal conc (ug/mg)' 
cholesterol_conc=' cholesterol conc (ug/mg)' 
cholestanol_conc='cholestanol conc (ug/mg)' 
oneday_feces_weight_g= '24h feces weight (g)' 
coprostenal_in_24hours_feces='coprostenal in 24hours feces (mg)'  
cholestrol_in_24hours_feces='cholestrol in 24hours feces (mg)'  
cholestnol_in_24hours_feces='cholestnol in 24hours feces (mg)' 
coprostenal_feces_umol='coprostenal in 24hours feces (umol)' 
cholesterol_feces_umol='cholestrol in 24hours feces (umol)'  
cholestnol_feces_umol=' cholestnol in 24hours feces (umol)' 
total_neutral_sterol_umol_day='total neutral sterol (umol/day)' 
; 
 
 
 
 
 
 
Datalines; 
1 1 53.820 1.175 0.379 0.198 2.881 3.39 1.09 0.57 8.71
 2.83 1.47 13.01 
2 1 53.380 1.677 3.145 0.348 2.763 4.64 8.69 0.96 11.93
 22.47 2.48 36.88 
3 1 51.430 1.803 3.301 0.322 2.502 4.51 8.26 0.81 11.61
 21.37 2.08 35.05 
4 1 50.410 1.105 4.113 0.142 2.753 3.04 11.32 0.39 7.83
 29.28 1.01 38.11 
5 1 49.870 1.557 3.378 0.275 2.801 4.36 9.46 0.77 11.22
 24.47 1.99 37.69 
6 1 50.080 1.617 2.883 0.315 1.950 3.15 5.62 0.61 8.11
 14.54 1.58 24.23 
7 1 53.380 1.563 2.997 0.284 2.072 3.24 6.21 0.59 8.33
 16.06 1.52 25.91 
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8 1 48.910 1.150 2.608 0.218 1.886 2.17 4.92 0.41 5.58
 12.72 1.06 19.36 
9 1 47.870 1.161 2.112 0.259 1.961 2.28 4.14 0.51 5.86
 10.71 1.31 17.88 
10 1 48.750 1.050 2.896 0.187 2.070 2.17 6.00 0.39 5.59
 15.51 1.00 22.10 
11 2 51.340 3.862 3.322 0.719 2.581 9.97 8.58 1.86 25.65
 22.18 4.78 52.61 
12 2 51.520 1.879 2.637 0.561 2.500 4.70 6.59 1.40 12.09
 17.05 3.62 32.76 
13 2 52.770 2.065 2.200 0.521 2.513 5.19 5.53 1.31 13.35
 14.30 3.38 31.02 
14 2 51.000 1.917 2.526 0.420 2.358 4.52 5.96 0.99 11.63
 15.40 2.55 29.59 
15 2 52.380 2.638 3.014 0.493 1.688 4.45 5.09 0.83 11.46
 13.16 2.15 26.77 
16 2 50.850 2.943 2.090 0.556 1.995 5.87 4.17 1.11 15.10
 10.78 2.86 28.74 
17 2 50.850 0.887 1.120 0.164 1.960 1.74 2.19 0.32 4.48
 5.68 0.83 10.98 
18 2 54.640 2.576 2.622 0.403 1.923 4.95 5.04 0.78 12.74
 13.04 2.00 27.78 
19 2 49.630 2.050 1.812 0.379 2.394 4.91 4.34 0.91 12.63
 11.22 2.34 26.19 
20 2 54.630 2.574 2.083 0.520 2.736 7.04 5.70 1.42 18.12
 14.74 3.67 36.53 
21 3 49.470 2.858 1.832 0.565 2.783 7.95 5.10 1.57 20.46
 13.19 4.05 37.70 
22 3 52.070 2.827 2.877 0.624 2.260 6.39 6.50 1.41 16.44
 16.82 3.64 36.90 
23 3 50.310 3.305 2.362 0.578 2.045 6.76 4.83 1.18 17.39
 12.49 3.05 32.94 
24 3 53.420 2.883 2.564 0.708 2.187 6.30 5.61 1.55 16.22
 14.50 3.99 34.72 
25 3 51.300 2.650 2.613 0.516 2.369 6.28 6.19 1.22 16.15
 16.01 3.15 35.31 
26 3 54.070 1.191 0.928 0.250 2.336 2.78 2.17 0.58 7.16
 5.61 1.51 14.27 
27 3 47.980 1.143 1.344 0.187 2.246 2.57 3.02 0.42 6.61
 7.81 1.08 15.50 
28 3 49.750 1.719 1.533 0.378 1.983 3.41 3.04 0.75 8.77
 7.86 1.93 18.56 
29 3 53.600 1.515 1.981 0.291 1.823 2.76 3.61 0.53 7.11
 9.34 1.36 17.81 
30 3 49.390 1.561 1.615 0.338 1.663 2.60 2.69 0.56 6.68
 6.95 1.45 15.07 
31 4 52.070 4.836 2.661 0.945 1.787 8.64 4.76 1.69 22.23
 12.30 4.35 38.88 
32 4 54.220 4.578 3.195 0.910 2.400 10.99 7.67 2.18 28.27
 19.83 5.63 53.73 
33 4 51.230 3.146 3.054 0.631 1.746 5.49 5.33 1.10 14.14
 13.80 2.84 30.77 
34 4 53.120 2.633 1.431 0.452 2.240 5.90 3.20 1.01 15.17
 8.29 2.61 26.07 
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35 4 54.780 4.207 2.162 0.761 2.049 8.62 4.43 1.56 22.18
 11.46 4.02 37.66 
36 4 47.500 2.105 0.810 0.321 2.157 4.54 1.75 0.69 11.68
 4.52 1.78 17.98 
37 4 48.910 0.662 0.251 0.088 1.693 1.12 0.42 0.15 2.89
 1.10 0.38 4.37 
38 4 48.450 4.700 1.974 0.706 1.721 8.09 3.40 1.22 20.81
 8.79 3.13 32.73 
39 4 51.830 0.765 0.257 0.098 2.118 1.62 0.54 0.21 4.17
 1.41 0.54 6.12 
40 4 54.000 1.187 1.708 0.201 2.145 2.55 3.66 0.43 6.55
 9.47 1.11 17.14 
 
 
; 
 
proc sort data = all_groups; by Diet_Group; 
 
proc format;  
 value dietfmt 
  1='control diet' 
  2='DDGS diet' 
  3='bran fraction diet' 
  4='soluble fraction diet' 
  ; 
  
 
proc print data= all_groups; by Diet_Group; format Diet_Group dietfmt.; 
 
proc means data=all_groups n mean stderr min max; by Diet_Group; format 
Diet_Group dietfmt.; 
 
proc glm data= all_groups; 
title 'One Way Analysis of Variance in all rats'; 
format Diet_Group dietfmt.; 
class Diet_Group; 
model Feces_weight_mg--total_neutral_sterol_umol_day =Diet_Group;; 
Means Diet_Group / Duncan; 
LSMeans Diet_Group / STDERR pdiff; 
run; 
quit; 
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