

INFN Istituto Nazionale di Fisica Nucleare

LSPE

the Large-Scale Polarization Explorer

Paolo de Bernardis, Università La Sapienza, Roma, Italy for the LSPE collaboration

Minneapolis 16/Jan/2015, CMBPOL 2015 workshop

Peter	Ade	University of Cardiff
iiorgio	Amico	Dip. Fisica Sapienza & INFN Roma1
Alessandro	Baldini	INFN Pisa
^o aola	Battaglia	Dip. Fisica Università di Milano
lia Stefano	Battistelli	Dip. Fisica Sapienza & INFN Roma1
lessandro	Baù	Dip. Fisica Università di Milano Bicocca
/larco	Bersanelli	Dip. Fisica Università di Milano
/lichele	Biasotti	Dip. Fisica Uni. Genova & INFN Genova
Andrea	Boscaleri	IFAC - CNR Firenze
Carlo	Bernnorad	INEN Pisa
rancesco	Cavaliere	Din Fisica Università di Milano
/alentina	Ceriale	Dip. Fisica I Ini. Genova & INEN Genova
ugenio	Forcia	Din Fisica Tor Vergata & INEN Borna?
Gabriele	Coppi	Dip. Fisica Sacienza & INEN Borca1
lessandro	Coppolecchia	Dip. Fisica Sapienza & INEN Borna1
laria	Copporecchira	Dip. Fisica Japienza & INEN Genous
vario	Corsinii Cousiasei	Dip. Fisica Chil. Centova & INFN Centova
vrigero	Cruciani	INACE DATE Data and INFIN FORMAT
Taricesco		Dia Fisia Casima & NEN Dessa
Antonello		Dip. Fisica Sapienza & INFIN Homai
aluseppe	D Alessandro	Dip. Fisica Sapienza & INFIN Romai
'aolo	de Bernardis	Dip. Fisica Sapienza & INEN Homa1
/latteo	De Gerone	Dip. Fisica Uni, Genova & INEN Genova
/larco	De Petris	Dip. Fisica Sapienza & INFN Roma1
rancesco	Del Torto	Dip. Fisica Università di Milano
/iviana	Fafone	Dip. Fisica Tor Vergata & INFN Roma2
.orenzo	Fiorineschi	Dip. Ing. Ind. Uni. Firenze
lavio	Fontanelli	Dip. Fisica Uni. Genova & INFN Genova
Christian	Franceschet	Dip. Fisica Università di Milano
.uca	Galli	INFN Pisa
lavio	Gatti	Dip. Fisica Uni. Genova & INFN Genova
/lassimo	Gervasi	Dip. Fisica Università di Milano Bicocca
Anna	Gregorio	Department of Physics - University of Trieste
)aniele	Grosso	Dip. Fisica Uni. Genova & INFN Genova
Riccardo	Gualtieri	Dip. Fisica Sapienza & INFN Roma1
/ictor	Haynes	University of Manchester
/arco	Incagli	INFN Pisa
licoletta	Krachmalnicoff	Dip. Fisica Università di Milano
.uca	Lamagna	Dip. Fisica Sapienza & INFN Roma1
Bruno	Maffei	University of Manchester
)avide	Maino	Din Eisica Università di Milano
ommaso	Marchetti	Din, Fisica Sanienza & INEN Borna1
Silvia	Masi	Dip. Fisica Sapienza & INEN Borna1
niello	Mennella	Dip. Fisica I biversità di Milano
Siapluca	Morgante	INAE - LASE Bologoa
adarico	Nəfi	Din Fisica Sanjanza & INEN Borna1
fing Wah	Na	University of Manahaster
ning wan	Ng Pagapa	Din Fisio Secienze & INEN Percet
lassandas	Pagario Deialla	Dip. Fisica Sapieriza & INEN Pomat
undrea	n urena Passarini	Dip. Fisica Dapienza & INFIN DUITAT Dip. Fisica Università di Milana Disessa
Andrea Deses	Passerini	DID. FISICA Universita di Milano Bicocca
usudi	Discontini	Die Eisies Speisers & INEX Darrah
rancesco	macentini Dissistitus	Dip. Hisida Bapienza & INHN Homai University of Marshanter
uulo	FICCIFIIIO Diagram	University of Manchester
alampaolo	misano Diacionali	University of Lardiff
bara	Hicciardi	INAR - IASE Bologna Die Jase land Lleis Finner
'aolo	Hissone	Dip. Ing. Ind. Uni. Firenze
Alessio	Hocchi	Dip. Hisica Tor Vergata & INEN Homa2
iiovanni	Romeo	INGV - Roma
/laria	Salatino	Dip. Fisica Sapienza & INFN Roma1
/laura	Sandri	INAF - IASF Bologna
Alessandro	Schillaci	Dip. Fisica Sapienza & INFN Roma1
aiovanni	Signorelli	INFN Pisa
ranco	Spinella	INFN Pisa
.uca	Stringhetti	INAF - IASF Bologna
Andrea	Tartari	Dip. Fisica Università di Milano Bicocca
Riccardo	Tascone	IEIIT - CNR - Torino
.uca	Terenzi	INAF - IASF Bologna
/laurizio	Tomasi	Dip. Fisica Università di Milano
lisabetta	Tommasi	Italian Space Agency
Carole	Tucker	University of Cardiff
abrizio	Villa	INAF - IASF Bologna
iuseppe	Virone	IEIIT - CNR - Torino
Indrea	Zacchei	INAF Osservatorio Trieste
/lario	Zannoni	Dip. Fisica Università di Milano Bicocca

Scientific Target : B-modes

- Red line : contribution from each multipole to the total mean square fluctuation of the tensor component of CMB polarization (B-modes, r = 1).
- Thin blue line : the cumulative of the B-modes, i.e. the variance measured by an experiment sensitive from multipole 2 to a given multipole *l*.
- The top blue thick line : the beam function B_{ℓ}^2 for an experiment with a 1.5° FWHM Gaussian beam.
- Despite of the coarse angular resolution such an experiment collects most of the polarization signal from B-modes.

main target : reionization peak

the reionization peak is difficult

- Large angular scales: wide sky coverage required.
- Foreground contamination is high. From *Planck intermediate results XXX: The angular power spectrum of polarized dust emission at intermediate and high Galactic latitude*
 - Dust B-modes in the best 30% of sky at 350 GHz:

 $D_\ell = \ell(\ell+1)C_\ell/2\pi$

$$D_{\ell} = 14\mu K^2 (\ell/80)^{-0.42}$$

Extrapolating to 150 GHz (factor 0.04²)

 $D_{\ell} = 2.2 \cdot 10^{-2} \mu K^2 (\ell/80)^{-0.42}$

Experiment Strategy

- Large sky coverage and wide frequency coverage call for a space mission. See e.g. COrE+ (just submitted !).
- On a shorter time-scale, experimentation is required to qualify specific instrumentation (optical systems, polarization modulators, detectors ...) and methods (sky scan, mapping procedures, polarized foregrounds separation ...) and possibly to get detections !
- A balloon-borne instrument can
 - avoid atmosperic noise and loading
 - exploit a wide frequency coverage
 - access a large fraction of the sky *during night-time*
 - offer a stable environment during night-time
 - reject ground spillover using very large ground-shields

LSPE in a nutshell

- The Large-Scale Polarization Explorer is :
 - an instrument to measure the polarization of the Cosmic Microwave Background at large angular scales
 - using a spinning stratospheric balloon payload to avoid atmospheric noise
 - flying long-duration, in the polar night
 - using a *polarization modulator* to achieve high stability
- Frequency coverage: 40 250 GHz (5 channels, 2 instruments: STRIP & SWIPE)
- Angular resolution: 1.3° FWHM
- Sky coverage: 20-25% of the sky per flight
- Combined sensitivity: 10 µK arcmin per flight
- Current collaboration: Sapienza, UNIMI, UNIMIB, IASFBO-INAF, IFAC-CNR, Uni.Cardiff, Uni.Manchester. INFN-GE, INFN-PI, INFN-RM1, INFN-RM2
- See astro-ph/1208.0298, 1208.0281, 1208.0164 and forthcoming updates

The STRIP Instrument

 STRIP is the STRatospheric Italian Polarimeter, aimed at accurate measurements of the low-frequency (44 and 90 GHz) polarized emission, dominated by Galactic synchrotron.

 Its sensitivity at 44 GHz in a single flight is twice better than the final sensitivity of the Planck LFI survey.

• The correlation radiometers are contained in a large cryostat and cooled at 20K by evaporating ⁴He.

The STRIP Instrument

The beam is defined by a 600 mm aperture side-fed crossed-Dragone telescope, selected for best polarization purity

- Challenging for spillover, stray-light and obscuration
- Modular Primary and secondary mirrors to reduce fabrication costs
- Lightened structure to reduce weight

The STRIP Instrument

 In the focal plane, an array of 44 GHz platelet feedhorns (already manufactured) feeds high performance OMTs and LNAs derived from the QUIET exp.

• The measured response of the corrugated feedhorns confirms the expected performance down to -55 dB

The SWIPE Instrument

- SWIPE is the Short Wavelength Instrument for the Polarization Explorer
- It is a Stokes Polarimeter, based on a simple 50 cm aperture refractive telescope, a cold HWP polarization modulator, a beamsplitting polarizer, and two large focal planes, filled with multimode bolometers at 140, 220, 240 GHz.
- Everything is cooled by a large L⁴He cryostat and a ³He refrigerator, for operation of the bolometers at 0.3K

A cryogenic Stokes polarimeter

SWIPE – polarization modulator

- Is a cold (2K), large (50 cm useful dia.), wide band metamaterials HWP, placed immediately behind the window and thermal filters stack.
- HWP characteristics for the ordinary and extraordinary rays are well matched: $(T_o-T_e)/T_o < 0.001, X_{pol} < 0.01, over the 100-300 GHz band.$
- Its orientation is stepped by 11.25° or 22.5° every few scans.

The cryogenic HWP rotator made for the PILOT experiment. The LSPE one will be based on the same design, and scaled up in dimensions (see Salatino et al. A&A 528 A138 2011)

Thermalization of large filters

▲ 3.57

incoming flux heats the HWP up to 3.57K t = 0 s

This results in a background on the detectors of 0.5, 0.12, 0.12 pW @ 140, 220, 240 GHz : negligible.

M.Salatino

SWIPE – optical system

- Single lens UHMWPE @4K, AR coating, D=480, f=800
- Two curved focal planes populated with multimode bolometric detectors, resulting in 1.2°FWHM beams

LSPE - Photolithographic polariser - Period: $20\mu m$, Diameter: 42 cm

LSPE - Mesh Filters - Focal plane band defining Low Pass Edges

LSPE - Mesh Filters - Focal plane band defining Low Pass Edges

SWIPE – multimode feedhorns

- 20 mm aperture
- High efficiency coupling structure, easy to machine
- Nice top-hat beams
- 10, 21, 23 λ^2 modes @ 140, 220, 240 GHz

SWIPE - multimode absorbers & TES

 The absorbers are large Si₃N₄ spider-webs (8 mm diameter, multimode)

- Sensors are Ti-Au TES
- Photon noise limited
- τ = 2 ms

Cryogenic design of LSPE-SWIPE focal planes

165 Al horns = 3.6 kg Al mounting plate = 1.6 kg

Screws, filters, connectors, cables = 1 kg

Total suspended mass = 6.3 kg For 1 focal plane

plate

SWIPE - cryostat

mass = 460 kgHe volume = $0.9 \times 290 \text{ lt}$ Hold time = $19 \dots 23 \text{ days}$

S. Masi, A. Schillaci

A.

Observations and Calibration Plan

- Scanning strategy: payload spin in azimuth, at 3 rpm (18°/s)
- Coverage of the same sky area by the two instruments
- Elevation changes once a day, at the same time for both instruments
- Specific calibration observations of
 - Jupiter (to map the main beam, see figure below, samples = white dots)

- the Crab nebula and the Moon Limb (to calibrate the main axis of the polarimeters)
- the Moon can be used to map sidelobes

LSPE coverage for different sets of elevation changes. The first column reports the boresight elevation range in degrees for the two instruments. Second column, the full coverage. Third column, the coverage after masking the galaxy with the WMAP polarization mask.

Elevation	Coverage	Unmasked	
SWIPE [30-40]	31%	23%	
SWIPE [40-50]	27%	20%	
SWIPE 35	24%	19%	
SWIPE 45	22%	18%	
SWIPE [30-50]	35%	26%	
STRIP 45	27%	20%	
STRIP 30	33%	24%	

STRIP

SWIPE

Source	Culmination (deg)	S/N per sample at 44 GHz	S/N per sample at 90 GHz	S/N per sample at 145 GHz	S/N per sample at 245 GHz
Moon	30	37500	200000	700000	2000000
Crab	34	20	18	23	28
Mars	0	0.30	1.6	5.6	18
Jupiter	27	15	80	275	850
Saturn	-6	1.4	7	24	70
Uranus	16	0.05	0.24	0.8	2.5

Sources culmination angle, and expected S/N per sample. Sampling rate is set at 60 Hz. We assume full Moon, as it is when it is observable by LSPE. The Crab flux is based on the free-free spectrum reported in Macías-Pérez, et al. Ap. J., 711, 417 (2010)

Performance Forecast

 The presence of the HWP allows to fully exploit the sensitivity of LSPE-SWIPE.

 Realistic simulations to assess systematic effects (mainly beam asymmetries) which become irrelevant if the HWP is used.

 The final sensitivity target for *r* is around 0.02

Mission

- The experiment is flown as a stratospheric balloon payload during the polar night, in a long duration flight launched from Longyearbyen (Svalbard). In this way it can access most of the northern sky in a single flight,
 - without contamination from the sun in the sidelobes
 - within a very stable (cold!) environment
 - Accumulating more than 14 days of integration at float (38 km altitude).
- Flight scheduled by ASI for end of 2016

Bottom: Ground path of a small pathfinder test flight performed in January 2011, in the middle of the polar night. The eastward trajectory is evident.. **Top:** Launch of a heavy-lift balloon from the Longyearbyen airport (Svalbard Islands, latitude 78°N).

See Peterzen, S., Masi, S., et al., "Long Duration Balloon flights development", Mem. S. A. It., 79, 792-798 (2008) for further information on balloon flights from the Svalbard.

sample flight profile

Night Time Long Duration Stratospheric Balloon Flights

1° LDB launched on Jan. 9°, 2011 From CNR Dirigibile Italia base With support from ISTAR, AWIPEV Ny Alesund, Svalbard Islands 5 days at 32 Km, Eastward path Payload prepared by La Sapienza

References

- The LSPE collaboration: "The Large-Scale Polarization Explorer (LSPE)" Proc. SPIE 8446, Ground-based and Airborne Instrumentation for Astronomy IV, 84467A (2012); doi: 10.1117/12.926095; astro-ph/1208.0281
- P. de Bernardis, et al. "SWIPE: a bolometric polarimeter for the Large-Scale Polarization Explorer" Proc. SPIE 8452, Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VI, 84523F (October 5, 2012); doi: 10.1117/12.926569; astro-ph/1208.0282 (2012).
- M. Bersanelli, et al. "A coherent polarimeter array for the Large Scale Polarization Explorer balloon experiment" Proc. SPIE 8452, Proc. SPIE 8446, Ground-based and Airborne Instrumentation for Astronomy IV, 84467C (24 September 2012); doi: 10.1117/12.925688; astro-ph/1208.0164 (2012).
- P. de Bernardis, S. Masi, for the OLIMPO and LSPE teams, "Precision CMB measurements with long-duration stratospheric balloons: activities in the Arctic", In Astrophysics from Antarctica IAU Symposium 288, Proceedings of the Internatonal Astronomical Union, 8, 208-213 (2013) M. G. Burton, X. Cui & N. F. H. Tothill, eds., Cambridge. doi: 10.1017/S1743921312016894
- Peterzen, S., Masi, S., et al., "Long Duration Balloon flights development", Mem. S. A. It., 79, 792-798 (2008)
- F. Nati, A. Benoit, P. de Bernardis, A. Iacoangeli, S. Masi, D. Yvon, A fast and reliable star sensor for spinning balloon payloads, Review of Scientific Instruments, 74, 4169-4175, (2003)