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Abstract

In this thesis, we propose automated algorithmic error resilience based on outlier de-

tection. Our approach employs metric functions that normally produce metric values

according to a designed distribution or behavior and produce outlier values (i.e., values

that do not conform to the designed distribution or behavior) when computations are af-

fected by errors. Thus, for our robust algorithms, error detection becomes equivalent to

outlier detection. Our error resilient algorithms use outlier detection not only to detect

errors, but also to aid in reducing the amount of redundancy required to produce cor-

rect results when errors are detected. Our error-resilient algorithms incur significantly

lower overhead than traditional hardware and software error resilience techniques. Also,

compared to previous approaches to application-based error resilience, our approaches

parameterize the robustification process, making it easy to automatically transform

large classes of applications into robust applications with the use of parser-based tools

and minimal programmer effort. We demonstrate the use of automated error resilience

based on outlier detection for two important classes of applications, namely, structured

grid and dynamic programming problems, leveraging the flexibility of algorithmic error

resilience to achieve improved application robustness and lower overhead compared to

previous error resilience approaches.
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Chapter 1

Introduction

As technology scaling continues, variability increases with every process generation,

leading to significant reliability challenges for current and future computing systems.

These reliability challenges are compounded by the ever-increasing device counts in

modern processors and processor counts in high-performance computing systems. While

many hardware and software-based error resilience schemes have been proposed in the

past, their heavy reliance on redundancy, worst case design, and conservative correct-

ness guarantees becomes increasingly impractical, given the extreme energy and per-

formance constraints targeted by current- and future-generation systems. Compared to

more conventional approaches to error resilience, algorithmic error resilience, wherein an

algorithm is replaced by a robust version of the same algorithm, offers the potential for

greater flexibility, reduced overheads, and application- and algorithm-aware approaches

to error resilience.

1.1 Related work

Previous work on algorithmic error resilience has demonstrated opportunities for al-

gorithmic error tolerance. Application robustification [1] proposes to transform appli-

cations into numerical optimization problems that can be solved with stochastic opti-

mization techniques. Since these optimization techniques converge to the correct result

even when computations are noisy, robustified applications are naturally error tolerant.

As static and dynamic non-determinism become more common and more prominent in

1
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current and future technologies, application robustification may be a useful means of

achieving acceptable results on hardware that is necessarily stochastic by nature [2, 1].

Algorithmic error resilience has also been demonstrated in the context of specific ap-

plication classes. Huang and Abraham [2] propose algorithm-based fault tolerance for

dense linear algebra, while Sloan et al. [3] propose algorithmic techniques that reduce

the overhead of fault detection for sparse linear algebra, based on the well-structured

(e.g. diagonal, banded diagonal, etc.) nature of many sparse problems.

In [4], algorithm-based error localization and recomputation has been proposed as an

alternative to a checkpoint and rollback scheme. The localization and recomputation

approach is shown to be effective for iterative linear solvers for parallel experiments

involving multi-node processors. The work in [4] also shows the viability of scaling

algorithmic error resilience techniques for parallel systems.

While the application-based error resilience approaches proposed in previous work

show significant promise, they also have several limitations. First, the proposed tech-

niques are only applicable for select applications and the transformations are applied

uniquely on an application-by-application basis. Also, it is unclear how to perform

robustification for a given application using the previously-proposed techniques, and

furthermore, it is uncertain which applications can be robustified by the techniuqes.

The techniuqes also must be applied manually by a programmer who is an expert in

application-based error resilience, making the implementation and adoption of robust

applications a difficult process.

In contrast to previously-proposed approaches for application robustification, the

automated algorithmic error resilience techniques we propose in this thesis are generally

applicable to large classes of applications and are designed in a parameterized fashion

such that any application that fits into a covered application class can be robustified

by our error-resilient algorithms. In addition to being more general, our error resilience

approaches are easier to apply to programs, due to their parameterized nature, and can

be applied automatically with minimal programmer effort and expertise. We provide a

parser-based tool that enhances the error resilience of application automatically. To the

best of our knowledge, this is the first work to provide an algorithmic error resilience

framework that is both general and automated.
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1.2 Outlier detection for error resilience

In this work, we propose algorithmic error resilience techniques based on outlier de-

tection. An outlier is an observation (or subset of observations) in a data set that is

inconsistent with the remainder of the data in the set [5]. Our error resilience approach

derives from characterizing applications in different classes to identify algorithmic in-

variants that can be used to validate the computations. The algorithmic invariants

are used to design metric functions that produce metric values according to a designed

distribution or behavioral pattern. The metric functions are also designed to produce

outliers when the underlying algorithm is affected by errors. Hence, for a well-designed

metric function, error detection is akin to outlier detection, and statistically rigorous

techniques for outlier detection can be used to detect the occurrence of errors in an

algorithm. Outlier detection can also be employed to aid in localization and correction

of errors that have been detected.

1.3 Automatic Program Transformation

While algorithmic error resilience may prove to be an efficient means of tolerating non-

determinism in computing systems, one drawback of previous approaches for application

“robustification” is that they have been applied manually to applications on a case-by-

case basis. Consequently, previous approaches require significant expertise in applica-

tion robustification as well as substantial manual effort. Even so, it is non-trivial to

determine which applications can be robustified using previous approaches and how to

perform the robustification for a given application. To facilitate the process of robustifi-

cation for application developers and ease the adoption of robust algorithms, we propose

automated techniques for algorithmic error resilience that transform an application into

a robust version of the same application with minimal programmer effort.

In our automated approach to algorithmic error resilience, necessary application

information is specified through the use of preprocessor directives that can be easily

inserted by a programmer. We provide a parser that extracts the relevant information

and performs a sort of source-to-source translation on the original application to pro-

duce a robust version of the application. We demonstrate automated robust program

transformations for structured grid and dynamic programming problems. Note that
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while previous approaches for application robustification were applied on a case-by-case

basis to individual application. The algorithmic error resilience approaches we describe

work for large, general classes of applications (e.g., Berkeley dwarfs [6]) that contain

many individual applications.

1.4 Contributions

• We introduce novel approaches for algorithmic error resilience based on outlier

detection.

• We demonstrate how application robustification can be automated for large classes

of applications and provide a parser-based tool that performs application robus-

tification.

• We apply outlier detection-based algorithmic error resilience to two important

classes of applications (structured grids and dynamic programming) and demon-

strate equivalent error resilience at significantly lower overhead compared to con-

ventional software and hardware error resilience techniques. To the best of our

knowledge, no previous works have demonstrated error resilient algorithms for

these classes of applications.

– For structured grids, we show 2×−3× improvement in output quality com-

pared to the original algorithm with only 22% overhead on average for non-

iterative structured grid problems.

– Average overhead is as low as 4.5% for error resilient iterative structured grid

algorithms that tolerate error rates up to 10E3 and achieve the same output

quality as their error-free counterparts.

– For monadic dynamic programming problems, our error resilience techniques

improve output quality by up to 40%, on average, compared to the original

algorithm. Overhead is less than 59% on average – an improvement of at

least 3.3× compared to existing redundancy-based techniques that achieve

the same output quality.

The rest of this thesis is organized as follows.
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• In Chapter 2, we describe outlier detection as an algorithmic error resilience tech-

nique and provide guidelines for how and when outlier detection-based algorithmic

error resilience can be used.

• In Chapter 3, we describe the structured grid class of applications and how to

apply outlier detection-based algorithmic error resilience to robustify applications

in this class.

• In Chapter 4, we describe the dynamic programming class of applications and how

to apply outlier detection-based algorithmic error resilience to robustify a subset

of dynamic programming applications.

• In Chapter 5, we describe the motivation and guidelines to follow for automatic

program transformation. We also describe the specific application of automatic

program transformation to structured grid and dynamic programming classes of

applications.

• In Chapter 6, we describe the methodology, benchmarks, and metrics used to

evaluate outlier detection-based algorithmic error resilience of structured grid and

dynamic programming applications.

• In Chapter 7, we describe the results obtained for the benchmarks described in

Chapter 6.

• In Chapter 8, we present conclusions from this research and suggest future research

directions.

• In Appendix A, we provide a programmer’s guide for using the automatic program

transformation tool to provide error resilience for structured grid and dynamic

programming applications.



Chapter 2

Outlier Detection

2.1 Outlier detection

An outlier is an observation (or subset of observations) that deviates markedly from the

rest of the data in its sample set. Outliers naturally arise in sample sets due to changes

in system behavior, fraudulent behavior, errors, or simply through natural but unusual

deviations in populations. Outlier detection can identify system faults, fraud, etc. before

they escalate with potentially catastrophic consequences [5]. A familiar example of

outlier detection is the three sigma rule, based on the principle that 99% of a normal

distribution’s data fall within three standard deviations from the mean [7]. To detect

outliers accurately and efficiently, a designer should select an outlier detection scheme

that is suitable for the sampled data set in terms of the correct distribution model,

the correct attribute types, scalability and speed of the approach, any incremental

capabilities to allow exemplars to be updated dynamically, and model accuracy. Outlier

detection is frequently performed by using statistical, neural, and machine learning

techniques [5].

Our error resilience approach derives from characterizing applications in different

classes to identify algorithmic invariants that can be used to validate the computations.

The algorithmic invariants are used to design metric functions that produce metric val-

ues according to a designed distribution or behavioral pattern. The metric functions are

also designed to produce outliers when the underlying algorithm is affected by errors.

As an example we can consider structured grid applications, where partial differential

6
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Figure 2.1: Change of an algorithmic invariant: Solving of Poisson equations, a struc-
tured grid problem. The monotonically decreasing behavior of the L2 norm error metric
function as the grid is updated can be exploited to perform outlier detection.

equations(PDE) are solved using techniques such as, Finite difference method. Algo-

rithmic invariant metrics like L2 norm error are used to perform outlier detection. In

applications governed by Laplacian equations, the metric, L2 norm, normally is expected

to monotonically decrease. This behaviour of monotonic decrease in L2 norm would be

in violation when application is affected by errors, which can be used to detect errors.

In Figures 2.2 - 2.5 we illustrate the behavior of an L2 norm error metric for several

different types of structured grid applications governed by PDEs. Results are shown

for a grid size of 192 x 192. Depending on the underlying modeling characteristics of

the application, the expected behavior of the metric is different. Below, we describe

examples of metrics and how they are used to perform outlier detection:

• The L2 norm error for applications based on elliptic PDEs, such as Poisson (Figure

2.1) and Laplacian (Figure 2.2) equations, decreases monotonically as the grid is

updated. Deviation from this characteristic behavior is used to detect outliers (

details in Section 3.2.2). The L2 norm error for parabolic PDEs, such as those

used in heat dissipation problems (Figure 2.3), also decreases monotonically as

the grid is updated.

• The L2 norm error for hyperbolic PDEs, such as those used in wave propagation
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Figure 2.2: Change of an algorithmic invariant:Solving of Laplacian equations, a struc-
tured grid problem. The L2 norm error metric function decreases monotonically.

problems, does not behave monotonically. However, it does oscillate (from mono-

tonically increasing to monotonically decreasing) at a deterministic frequency, as

shown in Figure 2.4, the overriding behavior is monotonically decreasing, with

oscillations conned to a small envelope. In such cases, we can refine the tolerance

of our outlier detection threshold to account for the oscillation envelope. Figure

2.5, indicates a different case of wave propagation problems where there may be no

overriding behavior. However, we can potentially use the frequency distribution of

L2 norm error as a metric function to detect outliers in such cases. Alternatively,

the metric function may account for the frequency at which the metric oscillates

between monotonically increasing and monotonically decreasing (half) periods.

Hence, for a well-designed metric function, error detection is akin to outlier detection,

and statistically rigorous techniques for outlier detection can be used to detect the

occurrence of errors in an algorithm [5]. . Outlier detection can also be employed to

aid in localization and correction of errors that have been detected.
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Figure 2.3: Change of an algorithmic invariant: Heat dissipation equations, a structured
grid problem. The L2 norm error metric function decreases monotonically.

2.2 General Guidelines

Section 2.1 introduces the motivation for outlier detection and how to apply it in ap-

plications. Outlier detection is a generic technique, which is applicable to different

types of application. This section provides the guidelines that can be used to design

a robust algorithm using outlier detection. The guidelines provided are developed by

applying outlier detection to different types of applications, which are discussed in detail

in subsequent chapters. However the provided guidelines are just indicative of existing

knowledge and is not an exhaustive guideline. Future work in this area should be able

to build up on the existing work.

The following guidelines can be used for deciding how and when outlier detection

can be applied:

• A metric to follow a particular direction at a given rate. e.g.: Application such as

solving for PDE using FDM have characteristic behavior such that the L2 norm

would vary, depending on the problem. dimensions. Hence the rate of change of

metric (L2 norm) can be used to detect errors.

• A metric to have certain bounds. e.g.: Applications such as Image processing (fil-

tering, compression) involves intelligent manipulation of pixels, which are bound
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Figure 2.4: Change of an algorithmic invariant: Wave propogation equations, with
no time-dependent source at the boundary, a structured grid problem. The L2 norm
error metric function oscillates within a small envelope, but the overriding behavior is
monotonically decreasing.

to take values in a given range.

• Applications with logical and arithmetic operations can use outlier detection, if

logical operations are going to influence a local region in the application and not

the entire solution. Eg: Monadic Dynamic Programming problems (explained

in Ch 4) have logical operation influencing a local region in the solution. For

example, the result of a choice (i,j) in Longest Common Subsequence problem

would influence (i,j+1), (i+1,j) and (i+1,j+1) . Hence with the use of outlier

detection and redundancy, if error at a point (i,j) occurs, the influence of that

problem would be in the local region of the application and the damage ( if any)

can be undone with minimal effort.



11

Figure 2.5: Change of an algorithmic invariant: Wave propogation equations, with
time-dependent source at the boundary, a structured grid problem. The L2 norm error
metric oscillates at a deterministic frequency.



Chapter 3

Outlier Detection in Structured

Grids

3.1 Introduction

Structured grid problems represent an important class of algorithmic methods that

are prevalent in scientific and engineering problems [6] . They are characterized by a

distinct pattern of communication and computation, in which data are represented as a

multidimensional grid with regular relationships between grid points, and computation

consists of making updates to the grid. During updates, each data point in the grid is

influenced by a neighborhood of surrounding data points. Structured grid applications

can be classiffied into two categories – iterative and non-iterative – based on the nature

of updates to the grid. Below, we describe this dichotomy of structured grid problems.

3.1.1 Non-iterative Structured Grid Applications

In non-iterative structured grid applications each data point in the grid is updated

only once. Grid updates are performed using a kernel or characteristic function that

describes how each point is influenced by its neighbors in the grid. A common form

of computation in non-iterative structured grid applications is convolution, in which a

kernel is applied at each grid point to overlap the neighborhood of interest around the

grid point. Kernel coefficients weight the influence of each neighboring point on the

12



13

update to the current grid point, and a scalar product is computed between a kernel

function and the neighborhood around a point to obtain the output for a location in the

grid. For example, the grid in a non-iterative structured grid problem might represent

image or video data, and the kernel might represent some transformation or classiffier

applied to the grid, such as sharpening, blurring, or feature detection.

We identify and exploit two important characteristics of non-iterative structured

grid problems in our outlier-based error resilience approaches,

Significant data reuse: Since each grid point is influenced by its neighbors,

the neighborhood influencing a grid point overlaps with the neighborhoods influenc-

ing neighboring grid points. For example, consider a m x n rectangular kernel. The

neighborhoods of two adjacent points share either (m - 1) x n or m x (n - 1) common

grid locations. Thus, many common data points are used when updating neighboring

grid points.

Constant kernel / characteristic function: The coefficients of the kernel or

characteristic function are constant and are used in the computation at every grid point.

Often, kernel values are also distributed symmetrically or according to a deterministic

pattern. We will explain in Section 3.2.1 how we exploit these two characteristics of

non iterative structured grid applications to implement error resilient structured grid

algorithms.

3.1.2 Iterative Structured Grid Applications

Iterative structured grid applications are those that make repeated updates to the grid

over a number of iterations. The data points in the grid can represents physical quanti-

ties, function coefficients, or values over a surface or volume. Computations frequently

take the form of a numerical optimization that iterates over the data points, updating

the solution of a system of differential equations until convergence is reached. Further

classiffication of iterative structured grid applications is possible, based on whether the

problem is time-dependent or time-independent.

Time-independent applications describe physical phenomena that have no depen-

dence on time. The phenomena modeled by these problems are represented by systems

of equations. For example, the Laplacian equation can be used to describe a physical

quantity over a spatial region, such as the relationship between electric potential and
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charge density in a conductor. In this case, the partial differential equations (PDEs)

describing a phenomenon are classiffied as elliptic PDEs [8]. Obtaining a solution to

the PDEs provides a measurement of the physical quantity in the region of interest.

To solve a representative system of PDEs for a particular application, the structured

grid that represents the region of interest is first initialized with a probable solution. The

initial solution is iteratively updated, according to the finite difference method (FDM) to

advance the region of interest toward convergence. The grid is said to converge if the L2

norm error between successive iterations is zero or negligible. As the grid approaches

convergence, the L2 norm continues to decrease monotonically. As we will show in

Section 3.2.2, we can create a metric function based on the expected behavior of L2

norm for iterative structured grid problems for the purpose of outlier detection. Since

the L2 norm is already computed by the original (non-error-resilient) algorithm, the

overhead required to implement outlier detection-based error resilience in this manner

can be kept low.

Equation3.1 shows the calculation of L2 norm error between two vectors x and y.

The same relation can be applied to points in a grid to quantify the difference between

grid values in successive iterations.

√

(x1 − y1)2 + (x2 − y2)2 + .... + (xn − yn) (3.1)

Time-dependent PDEs are classiffied as either hyperbolic or parabolic PDEs and like

time-independent PDEs, are solved by initializing the grid with a probable solution and

applying FDM. Unlike time-independent problems however, an appropriate number of

grid updates for these problems can be decided without measuring a metric that tracks

convergence (e.g., L2 norm error). Nevertheless, for problems in which the boundaries

of the grid do not have active time dependent sources (e.g., an active voltage source

in a wave propagation problem), the grid updates are only influenced by the initial

state of the grid, and the result is expected to converge to some steady state. For such

time-dependent problems, the L2 norm error is also expected to decrease monotonically

and as such can be used to design a metric function with predictable behavior for the

purpose of outlier detection. For problems involving active sources, predictable behavior

of metric functions like L2 norm cannot be assumed, and a different approach is needed

to provide error resilience. Error-resilient algorithms for time-dependent structured grid
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for(i = 0, i < 2m)

quotient = (int) kernel[0][i] / kernel[0][i + 1]
maxremainder = 0
for(j = 0, j < (2n + 1))

remainder = (((int)kernel[j][i]/kernel[j][i + 1])
−quotient)

if(remainder > maxremainder)

maxremainder = remainder
maxbound[i] = quotient + maxremainder

minbound[i] = quotient − maxremainder

Figure 3.1: The values computed for one column can be bounded by the values computed
for another.

problems with active sources are a subject of ongoing work. Hyperbolic PDEs exhibit

metric function behavior that oscillates at a well-defined and predictable frequency, but

does not necessarily converge to any particular steady state value. We propose to define

alternative metric functions for such problems in terms of the well-defined frequency

domain components of other metric functions. I.e., since the frequency components

follow an expected distribution, any observed spectral analysis that does not fit the

expected distribution can be classiffied as an outlier. We expect this technique to work

much the same as the metric-based approaches described above, with the addition of a

frequency domain transform (e.g., FFT).

3.2 Error resilience algorithms

3.2.1 Non-iterative Structured Grid Applications

Non iterative applications can be represented as some form of convolution operation

over the grid.

Convolution[i][j] =
2n
∑

k=0

2m
∑

l=0

Kernel[k][l] ∗ Grid[i − n + k][j − m + l] (3.2)

As described in Section 3.1.1, we observe characteristics of non-iterative structured

grid applications that can be exploited to develop outlier-based error detection, and

subsequently, error correction schemes. Given the large amount of data reuse between

computations for neighboring grid points (both in the kernel and the grid), the range

of possible values for a neighboring computation can be constrained in terms of the
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computed value for the current grid point. These constraints can be used to perform

outlier detection. I.e., an error may cause a neighboring computation to be classiffied

as an outlier, according to the expected range of values it might assume. We have

developed an error resilience approach wherein a column (row) of a kernel is written as

a linear combination of another column (row). From this formulation, we can place a

range on possible values computed in a column (row) based on the value computed in

another column (row) and identify outliers based on their location in (or outside of) the

expected value distribution. The process of formulating a column in terms of another

column is described in Figure 3.2.1.

krnl = 1/159



















2 4 5 4 2

4 9 12 9 4

5 12 15 12 5

4 9 12 9 4

2 4 5 4 2



















(3.3)

krnl[][3]T =
[

4 9 12 9 4
]

krnl[][2]T =
[

5 12 15 12 5
]

krnl[][2] = krnl[][3] +



















(0.25 ∗ krnl[0][3])

(0.33 ∗ krnl[1][3])

(0.25 ∗ krnl[2][3])

(0.33 ∗ krnl[3][3])

(0.25 ∗ krnl[4][3])



















min(abs(grid[][k] · krnl[][2])) = abs(0.66 ∗ grid[][k] · krnl[][3])

max(abs(grid[][k] · krnl[][2])) = abs(1.33 ∗ grid[][k] · krnl[][3])

Equation 3.3 provides an example for Canny edge detection [9] that demonstrates

how to derive an expected range of values for the dot product involving column k of the

grid and column j of the kernel, based on the computation for a neighboring column.

In a horizontal sweep of the grid, the dot product involving column k of the grid and

column j + 1 of the kernel is computed before the dot product involving column k and
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column j. Thus, we represent column j as a linear combination of column j + 1. If the

maximum coefficient in the linear combination function relating columns j and j + 1 is

Cmax, we can bound the range of values for j by ±Cmax times the result for j + 1.

The bounds, which are used in outlier detection, are tighter when all coefficients in the

same column (or row) of a kernel are of the same order of magnitude. Absolute value

is used in Equation 3 to accommodate both positive and negative numbers. The range

can be cut in half if all grid or kernel values are positive (or negative), as may be the

case in several structured grid problems. For example, the values in a grid representing

a grayscale image must fall within the range [0,255].

3.2.2 Iterative applications

To create error-resilient algorithms for iterative structured grid applications, we rely on

metric functions that are calculated during grid updates. We design metric functions

with an expected behavior or output distributions, based on application invariants. For

example, in solving Poisson or Laplacian equations we can define a metric function

based on the L2 norm (that is already computed by the applications) that is expected

to always increase or decrease at a certain rate α as the grid is updated. The metric is

compared between successive grid updates to check whether the rate of change of the

metric conforms to the expected distribution. A relaxation factor τ is used to distinguish

the threshold between acceptable metric values and outliers. Observed metric values

outside the range of α ± τ are classified as outliers. Observation of an outlier indicates

that the update at one or more grid points is faulty. When an outlier is observed, the

site of the fault should be localized to allow recovery.

The relaxation factor also captures the tradeoff between computation accuracy and

overhead computations for error checking. A larger value of τ results in more false

negative errors (since more error are deemed too insignificant to be detected as outliers)

and thus, less accuracy but also less overhead, since some small errors are ignored.

For many of the applications we study, small errors can be tolerated (e.g., perhaps

resulting in more iterations to convergence), while larger errors cannot (e.g., preventing

convergence).

In order to reduce the overhead of error detection, localization, and recovery, we

decompose the grid into three levels- level-1 (L1) blocks (coarsest), level-2 (L2) blocks,
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Figure 3.2: The grid is decomposed into multiple levels to reduce the overhead for error
detection, localization, and recovery.

and tiles (finest), as shown in Figure 3.2. The metric function for the grid at a given

iteration i is calculated across all grid points, and the metric value of a tile is the sum

of metric values at each point within the tile. Likewise, the metric value for L2 (L1)

blocks is the sum of metric values for each tile (L2 block) within the L2 (L1) block. The

metric value for the entire grid is the sum of metric values of the L1 blocks.

To reduce the overhead of outlier detection, we do not perform checks for every

location in the grid. Instead, initial comparisons for outlier detection take place at the

coarsest granularity of the grid (L1). Metric values are compared to the metric values

from the previous iteration to detect outliers, localize them at the current level, and

trace them to the finest level of the grid (tile) for correction. Grid decomposition also

reduces the overhead of localization and recovery, since only a subset of tiles need to

be checked and recovered when an outlier is detected. After localizing an outlier to a

tile, the tile is re-computed and re-checked up to two additional times in case an error

occurs during recovery. If an outlier is still detected after two rollbacks, the relaxation

factor is increased and the metric is compared against the value in iteration i−2 rather

than the value in i − 1. This allows forward progress in case a slightly erroneous value

was accepted in i− 1, resulting in false positive detections in iteration i. The algorithm

used for fault detection, localization, and recovery is shown in Figure 3.3. For simplicity

of exposition, Figure 3.3 assumes a metric value that is expected to decrease after each

grid update.
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The procedure described in Figure 3.3 is generalized to provide error resilience

against many different types of faults (see chapter 6); however, the procedure can be op-

timized to reduce overhead in certain scenarios when the fault model is known. Certain

fault distributions, such as bimodal faults, can result in two faults of nearly equal and

opposite magnitudes masking in a coarse level metric (e.g., L1 block). Additional fine-

grain checks are necessary in the general case to ensure that such faults are detected.

However, if knowledge of the fault model precludes the possibility of fault masking, the

steps represented by dotted blocks in Figure 3.3 can be forgone, significantly reducing

the overhead of error resilience (see chapter 7 ).
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Figure 3.3: Flowchart describing error detection, localization, and recovery for iterative
structured grid applications. Steps denoted with dotted lines can be eliminated in
certain cases when the fault model is known.



Chapter 4

Outlier Detection in Dynamic

Programming Problems

4.1 Introduction

Dynamic programming (DP) is a technique for solving a wide variety of discrete opti-

mization problems such as scheduling, string editing, packaging, and inventory manage-

ment [10]. Dynamic programming, like the divide-and-conquer method, solves problems

by combining the solutions to subproblems. Divide-and-conquer algorithms partition

the problem into disjoint subproblems, solve the subproblems recursively, and then com-

bine their solutions to solve the original problem. In contrast, dynamic programming ap-

plies when the subproblems overlap, that is, when subproblems share sub-subproblems.

In this context, a divide-and-conquer algorithm does more work than necessary, repeat-

edly solving the common sub-subproblems [10]. A dynamic programming algorithm

solves each sub-subproblem just once and then saves its answer in a table, thereby

avoiding the work of recomputing the answer every time it solves each sub-subproblem.

Thus, “programming” in this context refers to a tabular method, not to writing com-

puter code [10].

Typically dynamic programming is applied to optimization problems. Such problems

can have many possible solutions. Each solution has a value, and we wish to find a

solution with the optimal (typically minimum or maximum) value. When developing a

dynamic programming algorithm, the following sequence of four steps is followed.
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• Characterize the structure of an optimal solution.

• Recursively define the value of an optimal solution.

• Compute the value of an optimal solution, typically in a bottom-up fashion.

• Construct an optimal solution from computed information.

Example: The longest common subsequence (LCS) problem is stated as follows.

Given two sequences X and Y, we say that a sequence Z is a common subsequence of

X and Y if Z is a subsequence of both X and Y. The LCS problem determines the

longest of the common subsequences. A DP problem exhibits optimal substructure if

optimal solutions to a problem incorporate optimal solutions to related subproblems.

The optimal substructure in the LCS problem is described in Equation 4.1.

ci, j =



















0 if i = 0 or j = 0

c[i − 1, j − 1] + 1 if i, j > 0 and Xi = Yj

max(c[i − 1, j], c[i, j − 1]) if i, j > 0 and Xi 6= Yj

(4.1)

In Equation 4.1, c[i,j] is the value of choice (i,j) and is represented using recursive

terms – c[i-1,j], c[i,j-1], c[i-1,j-1]. Once the values of all the choices have been evaluated,

if needed, an optimal solution is constructed from the table stored in array c[,].

Dynamic Programming problems are classified based on the nature of the problem

at hand as either monadic or polyadic [11]. Problems containing a single recursive term

are called monadic problems and those with multiple recursive terms are called polyadic

problems. LCS is an example of a monadic problem, since for a choice (i,j) only one of

the recursive terms is used. Floyd’s all-pairs shortest path problem is an example of a

polyadic problem, with recursive solution shown in Equation 4.2.

dk
i,j =







ci,j if k = 0

min(dk−1

i,j , (dk−1

i,k , dk−1

k,j )) if 0 ≥ k ≥ (n − 1)
(4.2)

In Equation 4.2, dk
i,j is the shortest path from node i to j using k nodes and ci,j is the

weight of the edge between nodes i and j. Floyd’s shortest path problem is an example

of a polyadic problem because the solution dk
i,j requires both dk−1

i,k and dk−1

k,j . However,
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for monadic DP problems such as the LCS problem, the solution c[i, j] requires only

one of the c[i − 1, j], c[i, j − 1], c[i − 1, j − 1] terms.

A DP problem can also be classified based on the number of preceding levels of

recursion required to solve the problem. DP problems that depend on one preceding

level are called serial problems and those that depend on more than one preceding level

are called non-serial problems. Floyd’s shortest path problem is an example of a serial

DP problem, since a given solution in level k requires solutions from level k − 1. The

LCS problem is an example of a non-serial DP problem, since solving for level k requires

solutions from levels k and k − 1.

4.2 Impact of error on Dynamic Programming Problem

Dynamic programming problems are solved in two stages. In stage 1, all the choices

are evaluated and the value or benefit of each choice (which represents usefulness to the

current problem) is stored in a matrix or grid. In stage 2, the matrix is traversed to

determine which of the choices makes up the solution of the problem. In both stages

1 and 2, dynamic programming problems use both logical and arithmetic operations to

evaluate the values in the matrix. For robust evaluation of DP problems, both arith-

metic and logical operations should be evaluated correctly in order to ensure that all

dependent subproblems are evaluated robustly. Incorrect evaluation for a subproblem

can result in propagation of faults to subsequent subproblems that depend on the cur-

rent subproblem. Outlier detection-based algorithmic error resilience for DP problems

introduces the following measures to achieve error resilience.

• Outlier detection intervals: In stage 1, while evaluating the options, both

logical and arithmetic operations are used and could be susceptible to errors. For

a given DP problem, when a set of choices is considered, say set A, the set of

choices that set A depends on, say set B, can be known a priori. Also, for a DP

problem, the increase in value between a choice in set A and set B is bounded,

and the bound can be determined statically. Since the values of choices in set B

will be computed before set A, and the increase in value for each choice in set A

is bounded, it is possible to estimate the range of possible values that the set A

choices can take. Thus, we can perform outlier detection based on the expected
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distribution of choice values to check for erroneous arithmetic results. We ensure

the correctness of logical operations in subsequent steps.

• Redundancy during tracing : In stage 2, the benefit of each choice has already

been computed, and the arithmetic operations used to calculate the benefit have

been checked with outlier detection. To ensure correctness of logical operations,

redundancy is introduced for only those choices that are considered to be part of

the solution. Since only a few choices and their dependent choices are likely to

be part of the solution, only such choices are re-evaluated for logical correctness.

Each problem uses certain tracing conditions to pick a choice (i,j) to be part of the

solution. These tracing conditions are related to conditions used during the initial

solving phase when a choice (i,j) is evaluated. Specifically, if a certain solving

condition is true when evaluating choice (i,j), then a particular tracing condition

should be true when the same choice (i,j) is considered during tracing. As such,

the evaluation of a tracing condition k can be used to confirm correct evaluation

of the solving condition l that should be true given that the tracing condition k is

true. By re-evaluating only those choices that are likely to be part of the solution

or influence the choices that are part of the solution, rather than using redundancy

for all evaluations, we significantly reduce the overhead of ensuring correctness for

logical operations. If a particular choice is found to be erroneous during tracing,

then a subset of its neighbors might also be affected by the error, necessitating

correction. Error correction is handled in the Rollback step, described next.

• Rollback : If the logical operations at a particular choice (i,j) were erroneous,

choices that depend on the erroneous choice should be re-evaluated to check

whether they have been influenced by the error. If so, their values are recal-

culated. This procedure is repeated until the choices that depend on choice (i,j)

are error-free. Once this is done, the tracing is rolled back and resumed at a

choice that was not affected by the error at (i,j) or any other choices that depend

on choice (i,j).

The three functionalities described above are used to provide error resilience for

monadic DP problems. The robust algorithm provided in Section 4.3 is applicable only

for monadic DP problems. A choice (i,j) in a monadic DP problem depends on a few
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choices (known apriori) and also influences an equal number of choices. For example,

in the LCS problem a choice (i,j) depends on only three other choices (i-1,j-1), (i-1,j),

and (i,j-1) and can influence only three other choices (i+1,j+1), (i+1,j), (i,j+1). Since

a choice (i,j) can only affect a few choices and the dependence relationships are known,

implementing rollback is straighforward. In a polyadic problem, a choice (i,j) may be

influenced by many choices (not known a priori) and may also influence many choices.

Thus, if a logical error occurs at (i,j), then testing all other choices that could depend

on (i,j) may require an exhaustive procedure, and a more conventional error resilience

approach like TMR may potentially be more efficient.

4.3 Robust Dynamic Programming Algorithm Based on

Outlier Detection

Implementation details for the functionalities described in Section 4.2 are described

below.

• Outlier detection intervals: Our outlier detection implementation for DP prob-

lems uses intervals to bound the expected values of choices and checks for outliers

according to the expected value distribution. Outlier detection intervals are de-

fined by unrolling the innermost loop of a program where the benefit of a choice is

evaluated, such that the unrolled loop iterations constitute the outlier detection

interval. A natural tradeoff exists between the amount of overhead required to

perform outlier detection (higher for a shorter interval) and the overhead of re-

covering from an error if an outlier is detected (higher for a longer interval). We

choose the interval length based on the problem size to minimize interval length

while ensuring a minimum bound on the number of intervals for a given problem

size, observing that a shorter interval usually results in lower overhead, since the

overhead of recovery for a longer interval outweighs the overhead of performing

outlier detection for a shorter interval.

The maximum and minimum bounds for choices in a given interval are computed

robustly using TMR and compared against the values of choices computed during

the interval to check for outliers. In the event of an outlier detection, first, the
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choices in the interval are recomputed. If the outlier persists after recomputation,

computation is rolled back to the interval containing the first choice that influences

the outlier choice. At the close of an interval, the values computed during the

interval are assumed to be error-free and safe for use in the computations of

future intervals.

Figure 4.1 provides implementation details for outlier detection intervals. In the

flowchart, dim1 and dim2 represent the size of the grid in dimension − 1 and

dimension−2, respectively. The array max bound stores the maximum values for

the intervals. To calculate the maximum bound for an interval l (max bound[l]),

f1(l) and f2(l) are application-dependent functions used to calculate the indices

of choices that are considered in the maximum bound calculation. In each interval,

process(i, j) represents the function used to calculate the benefit of choice (i, j)

and max value holds the maximum value computed within the interval. At the

end of the interval, max value is compared against max bound[l] and if it is greater

than max bound[l], an outlier is detected and the interval is recalculated. If the

outlier persists after recalculation, it is likely that the error is in one of the choices

that influences the current interval l, and benefit calculation is rolled back to a

previous index in dimension − 1.

• Redundancy while tracing :

– Redundancy is used to check the correctness of logical operations. The trac-

ing conditions are computed using TMR to ensure the logical correctness of

solving conditions. If a tracing condition k is true and the corresponding

solving condition l is false, or vice-versa, an error is detected and will be

handled by the Rollback step.

Figure 4.2 describes our approach for providing robustness during tracing. The

functions s cond m(i, j) and t cond k(i, j) represent the mth and kth conditions

for solving and tracing. The tracing conditions are computed using TMR and

only one of them will be true. Thus, if the corresponding solving condition is

false, then the logical operation at (i, j) is determined to be incorrect and the

Rollback routine will be called.
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• Rollback :

– To check whether a logical error at location (i,j) affects any other dependent

choices, each of the dependent choices is re-evaluated and, if necessary, cor-

rected. Since solving conditions are known, the dependent choices of (i,j) can

be determined.

– Upon recomputing / correcting the choices affected by an error at choice

(i,j), tracing is rolled back to a point that is guaranteed to be unaffected by

the error at (i,j). While tracing, the subset of the choices that are chosen

to be part of the solution is maintained as a list and a choice (m,n) that

is unaffected by an error at (i,j) can be identified by tracing through the

choices, starting at (i,j), to determine the first choice that does not propagate

the value of choice (i,j). All choices that are chosen to be part of the optimal

solution between choice (i,j) and choice (m,n) may be affected by the logical

error at choice (i,j) and hence, they are discarded.

Figure 4.3 describes implementation details for rollback. The indices that need

to be checked are stored in queue check and functions f0(i, j), f1(i, j), . . .

fn(i, j) calculate the indices that will be influenced by choice (i, j) if solving

conditions s cond 0(), s cond 1(), . . . s cond n() are true. Hence, we check

whether each index is influenced by choice (i, j) and if so, the benefit for that

choice is recalculated and the choice is inserted in the queue check. This process

is repeated until the queue check is empty.
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Figure 4.1: This flowchart describes the functionality implemented in the Outlier de-
tection intervals stage of the robust algorithm. The functions f1(l) and f2(l) represent
a generic form of choices that are involved in calculating the maximum bound for an
interval l. The routine process(i,j) represents calculation of benefit for choice (i,j).
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Figure 4.2: This flowchart describes the functionality implemented in the Redundancy
while tracing stage of the robust algorithm. The terms s cond and t cond represent
solving and tracing conditions, respectively. The flowchart represents the redundancy for
a generic problem having n conditions. The routine change(i, j) represents manipulation
of indices i and j while tracing.
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Figure 4.3: This flowchart describes the functionality implemented in the Rollback
stage of the robust algorithm. The term s cond represents solving conditions and the
generic problem has n conditions to re-evaluate. The functions f0, f1, .. fn are used
to calculate the indices involved in conditions s cond 0, s cond 1, ... s cond n. The
functions insert, remove, and empty operate on the queue that maintains the list of
choices to re-evaluate.



Chapter 5

Automatic Program

Transformation

5.1 Motivation

Previous approaches for application robustification [1] consist of reformulating applica-

tions as stochastic optimization problems. An application must first be expressed as

a constrained optimization problem, manually transformed to an unconstrained exact

penalty form, and then solved using stochastic gradient descent and conjugate gradient

algorithms. Transforming an application into a stochastic optimization problem is non-

trivial, and must be performed for each application individually. The transformation

involves the following steps.

• The application must be reformulated into a stochastic optimization problem.

Only certain types of applications are amenable to being transformed into stochas-

tic optimization problems, and even the process of identifying such applications is

performed manually on a case-by-case basis.

• Manual robustification requires intimate knowledge of algorithms such as stochas-

tic gradient descent or conjugate gradient, as well as the application being trans-

formed.

• Each application is transformed manually and individually, and the approach for

transforming an application is different for each application.
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Manual robustification of applications requires significant effort from the program-

mer. For application robustification to be easily adoptable, however, minimal program-

mer effort and expertise should be required. One approach to ease the burden on the

programmer is to provide automatic program transformation tools that can perform

robust transformations for large classes of applications. Another approach to ease the

adoption of application robustification is to provide techniques that require relatively

unobtrusive changes to the application, rather than a paradigm shift in the coding of

the application.

In the spirit of approaches mentioned above, we have designed the error resilience

technique, outlier detection, to be based on algorithmic invariants. The algorithmic

invariants are used to construct metric functions that are used to monitor for outliers

during the course of application execution. The algorithmic invariants are application-

specific and are the necessary inputs for application robustification. The algorithmic

invariants and the application information can be obtained as preprocessor directives

to parsers to automatically implement error resilience for an application. This infras-

tructure eases the programmer’s effort in adopting error resilience. The implementation

of automatic program transformation for structured grids and dynamic programming is

explained in the following sections.

5.2 Structured Grids

Our automated algorithmic error resilience tool requires the following information to be

marked with preprocessor directives in structured grid applications.

• Size – size of the grid in each dimension. This information is required to determine

how to decompose the grid to aid in error localization.

• Current and Previous array – the array which is used as input and output in

updating in every iteration. This information is needed to calculate the change in

the grid in each dimension.

• Start and end of the region where loop construct is present.

This information is required to calculate a metric value (such as L2 norm) for the grid,

the grid is decomposed as suggested in the proposed algorithm. A routine call is inserted



33

into the code, which uses the marked parameters to determine how to decompose the

grid and perform error detection and correction.

Necessary preprocessor directives for structured grid application and their syntax

are explained in Appendix Section A.1.

5.3 Dynamic Programming

To achieve the functionalities mentioned in Sections 4.2 and 4.3, the following work

should be done.

• Outlier detection intervals: Mark the region in which the benefit matrix is

being filled, i.e., the region in which solving conditions that determine the benefit

of a choice are specified. Within this region, mark the conditions that will be

evaluated to update the value of a choice (i,j). Marking these locations and con-

ditions provides information necessary to unroll the solving loop, insert logic for

calculating the maximum bound on benefit values in an interval, and recalculate

benefit values in the interval if necessary.

• Redundancy while tracing: Specify the tracing conditions and their correspon-

dence to the solving conditions. Tracing conditions are evaluated robustly (using

TMR) and are also used to check the logical correctness of solving conditions.

• Rollback: Mark the code in which a choice is chosen to be part of the solution

during tracing. This facilitates the maintainance of a list that is used to form

the problem solution and that also aids in rolling back, if necessary. When an

erroneous choice (i,j) is detected, rollback is performed by, (a) determining the

choices that are affected by choice (i,j) and recalculating their benefits, and (b)

determining a choice (m,n) that is unaffected by the error at choice (i,j) and

discarding the choices chosen after (m,n) and resuming tracing from (m,n).

Necessary preprocessor directives for dynamic programming application and their

syntax are explained in Appendix Section A.2.



Chapter 6

Methodology

6.1 Fault Model

Our evaluation focuses on transient faults that affect the outputs of numerical computa-

tions. Other manifestations of transient faults, such as memory corruption, deviations

of control flow, or memory access errors are assumed to be accounted for using sim-

ple low-overhead techniques, unless they manifest as numerical data errors that the

proposed techniques cover. This is a widely used fault model [12, 13, 14, 3].

The methodology for injecting errors has been adopted from previous work [3]. When

a fault occurs, it is modeled by drawing a value from one of the fault distributions below

and adding it to the target operation. These distributions are selected to model the

arithmetic effects of circuit-level faults at a high level, making it possible to parametrize

them to represent multiple low-level fault models.

Symmetric Faults: The following distributions model faults that affect the outputs

of circuits and that have equal probability of being positive or negative.

• Bimodal: Distribution with two Gaussian modes centered at ±1E5, each with

variance 1E2.

• Bimodal: Distribution with two Gaussian modes centered at ±1E10, each with

variance 1E5.

• Unimodal: Gaussian distribution with mean 0 and variance 100.
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Memory Faults:

• Bitflip: An exponential distribution represents a single bit flip in the binary

representation of a number.

Non-Symmetric Faults:

• Unsymmetric: Gaussian distribution centered at 1E5 and with variance 100:

represents a one sided error distribution(e.g. unsigned representation).

• Trimodal: Mixture of Bimodal and Unimodal models, each sampled half the

time: models timing errors in functional circuit units, which are biased toward

most and least significant digits.

6.1.1 Fault Injection

Fault injection has been performed using two different techniques.

Binary instrumentation: Fault injection based on binary instrumentation is per-

formed by instrumenting faults, at the requested rate, in the binary of the application.

This type of fault injection is used for applications with primarily floating point opera-

tions. Binary instrumentation provides an opportunity to instrument a fault at the most

native level of instruction execution. The fault injection was done through the binary

instrumentation tool Pin. According to the error rate requested, few of the floating

point instructions are chosen, the register contents of the processor is read and one of

the operand’s register value will be changed according to the fault model sepcified in

Section 6.1

Overloaded operators: Fault injection based on overloaded operators is performed

at the application level. Data related to the application are declared to belong to a

special class, and the operations (basic mathematical operators) involving the data are

injected with faults, using the data distributions described above. This type of fault

injection is done for applications that primarily involve integer operations. The main

reason for injecting faults at the application level is to more easily restrict fault injection

to certain critical operations in the code.
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6.2 Benchmarks

6.2.1 Structured Grids

Non-iterative Applications

Non-iterative structured grid applications in our test set include Gaussian image blur-

ring [15] and Canny edge detection. Three types of images were used.

Image-1 : Synthetic image with Gaussian-distributed data centered at 0 with variance

1, but data points are scaled from [0,1] to the range [0,255].

Image-2 : Synthetic image with Gaussian-distributed data centered at 0 with variance

1.

Real world example images: We use a collection of sample images of size 32x32,

64x64, 128x128, and 256x256.

Output quality is represented in terms of the average deviation between the com-

puted (Xi) and pristine (X ′

i)pixel values: (1/N)
∑N

i=1
|Xi − X ′

i|/Xi. The overhead in

terms of extra operations performed for both iterative and non-iterative applications is

defined as

OFLOPs = FLOPserror injected run/FLOPspristine run (6.1)

where FLOPs is the number of floating point operations.

Iterative Applications

Iterative applications in our test set include the following time-independent † and time-

dependent ‡ structured grid problems.

• Poisson equation†, solved using Jacobi method

• Laplacian equation†, solved using explicit finite difference method

• Heat dissipation‡, solved using explicit finite difference method

Iterative applications in this classification may use grids with sizes on the order

of 10e6 or greater and are often implemented for distributed systems, where the grid

is distributed between multiple processing nodes. Since we tested our approach on a



37

single processor system, we used grid sizes that can fit in a single processor’s memory,

equivalent to a chunk that would be distributed to a node in a distributed system. We

show the error resilience afforded by our techniques by quantifying, for the fault models

in Section 6.1 , the error rate that can be tolerated by our error-resilient structured grid

algorithms. All the applications have been run for 1000 iterations and the value of the

output quality metric at the end of 1000 iterations is compared between the pristine,

error injection, and error injection + error resilience runs. Since errors may increase

the number of iterations required to reach convergence, we also count the number of

iterations Niter differ required for a non-pristine run to achieve the same output quality

(accuracy) as in the pristine run. Iteration overhead

Oiter = OFLOPs ∗ (Niter pristine/(Niter pristine − Niter differ)) (6.2)

6.2.2 Dynamic Programming

Dynamic Programming (DP) problems in our test set include the following problems.

• Longest Common Subsequence problem.

• 0/1 Knapsack problem.

Both problems belong are monadic DP problems. The problem sizes considered are

represented as tuples (m,n), where the total number of options to be considered is m x n.

Different problem sizes considered are (50,50), (500,500), (1000,1000) and (2500,2500).

The overhead of using the robust scheme is expressed in Equation 6.3.

Oint =
Integer operations error injected

Integer operations pristine run
(6.3)

The overloaded operators used for error injection are also added to the total instruc-

tion count during execution. Thus, for fairness in comparison, the pristine application

is implemented using the overloaded class for error injection with similar error injection

rate but without actually injecting any errors. As such, the overhead observed for a

robust application is due to the use of algorithmic error resilience.

Qualtiy of results: For all benchmarks, we define quality metrics to compare the

results obtained by the robust application to the results obtained by the pristine (no
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errors injected) version of the application.

• Knapsack: Inject Result (Inject result): Final value of the result for the pristine

application with and without error injection.

• LCS:

– Inject Result (IR): Length of the common subsequence computed by the

original application when errors are injected.

– Inject LCS Result (ILR): Length of the common subsequence between the

results of the original application with and without error injection.



Chapter 7

Results

7.1 Structured Grids

7.1.1 Noniterative applications

Tables 7.1 and 7.2 demonstrate the output quality, error resilience, and performance of

our error resilient algorithms for image blurring and edge detection. We show detailed

evaluations for bitflip and unimodal faults, since error magnitude may be comparable to

signal magnitude, making outlier detection more challenging. Compared to the pristine

run, average overhead is 22.75% and average deviation is 0.0019064. Compared to

the error injected run, output quality is improved by 2× on average. For bimodal,

trimodal, and unsymmetric faults, error magnitudes are of the order ±10E5 or ±10E6

and produce large outliers that are easily detected by our techniques.

Table 7.1: Average deviation for non-iterative applications for different grid dimensions
(GD × GD), test images (Img), and fault models (Unimodal=3, Bitflip=4).

GD Img Canny (3) Canny (4) Gauss (3) Gauss (4)

64 1 0.001990 0.001692 0.001701 0.001794

64 2 0.001962 0.001962 0.001829 0.001648

128 1 0.002215 0.001688 0.002083 0.001638

128 2 0.002139 0.002139 0.002118 0.002109
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Table 7.2: Comparison of output quality (average deviation (AD)) and overhead
(OFLOPs) with respect to pristine run for Canny edge detection with and without error
resilience for different grid sizes; Unimodal fault model, fault rate=1E-2.

Metric Error Resilience? 64x64 128x128 256x256

AD
No 0.00468 0.00461 0.00451
Yes 0.00199 0.00221 0.00206

OFLOPs
No 1.245 1.350 1.345
Yes 1.187 1.191 1.303

Table 7.3: We compare overhead (Oiter) for several different grid decompositions and
fault rates. Results are shown for Poisson equation solver with bitflip fault model.

(Grid-size,#L1,#L2,L2-Size) Fault Rate Oiter

(320x320,1,25,64x64) 1E − 3 1.83787

(384x384,1,36,64x64) 1E − 3 2.00794

(384x384,1,16,96x96) 1E − 3 1.53335

(480x480,1,25,96x96) 1E − 3 1.96161

(576x576,3,9,64x64) 1E − 3 1.48059

(576x576,3,9,64x64) 1E − 4 1.24327

(576x576,2,9,96x96) 1E − 4 1.23814

(768x768,4,9,64x64) 1E − 4 1.27950

(768x768,3,9,96x96) 1E − 4 1.27810

7.1.2 Iterative Applications

The parameters of the grid decomposition orchestrate a tradeoff between accuracy and

overhead for outlier detection, localization, and recovery. Table 7.3 compares overhead

and error resilience for several grid decompositions. We find that a smaller L2 block size

results in lower overhead, due to reduced error recovery overhead. Figure 7.1 compares

overhead (Oiter) for different applications with various L2 block sizes. As described in

Section 3.2.2, knowledge of the fault model can enable use of a lower-overhead error

resilience approach in some cases. On average, overhead is reduced by 21% for the fault

model-aware error resilience approach.

Figure 7.2 shows the fault rate that can be tolerated by our error-resilient heat

dissipation algorithm for different fault models, as well as the overhead introduced in
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each case. Overhead is higher than for other iterative applications because the L2 norm

error is not used by the original algorithm but must be computed by the error-resilient

algorithm. Even so, overhead of our error-resilient algorithm is significantly less than

that of traditional hardware and software error resilience schemes.

]

Figure 7.1: Overhead for different applications with different L2 block sizes, #L1 = 1,
#L2 = 1 tile-dim=4, bitflip fault-model, fault-rate=1E-3.

Figure 7.3 compares the L2 norm error metric for Poisson equation solving between

the pristine run (top blue), the error-injected run with the original algorithm (bottom

blue), and the error-injected run with our error tolerant algorithm (top green). Our

error-resilient algorithm detects outliers, tolerates errors, and achieves a similar con-

vergence rate as in the pristine run. Without our error resilience techniques, however,

the algorithm is unable to achieve convergence, and error magnitude blows up as the

grid is updated. Figure 7.4 shows the fault rate that can be tolerated by our error-

resilient Laplacian solver for different fault models, as well as the overhead introduced

in each case. Overhead of our error resilient algorithm is significantly less than that of

traditional hardware and software error resilience schemes.
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Figure 7.2: This figure shows the fault rate tolerated and overhead introduced by our
error resilient heat dissipation algorithm for different fault models on a 192 × 192 grid.

7.2 Dynamic Programming

Tables 7.4 and 7.5 present the overhead and the quality metrics, respectively, for LCS

and Knapsack problems. For the Knapsack problem, we present average results over 10

iterations for different problem sizes ((50,50), (500,500), (1000,1000), (2500,2500)). The

average overhead across different fault models is 59%. Overhead is relatively high for

the unsymmetric fault model compared to others. A reason for this is that the faults

injected in the unsymmetric fault model are of the order 10E4 to 10E5, where as in

bimodal and trimodal the magnitude is ±10E4 to ±10E5. Since the injected faults

in other fault models can be either positive or negative, faults can cancel each other,

resulting in fewer error detections and corrections. Consequently, the overhead for fault

models such as bimodal and trimodal is relatively lower compared to the unsymmetric

fault model. In the unimodal fault model, the faults injected are of the order ±10E2,

which is of similar order to the numbers used in the application, and in some instances,

the faults do not result in outlier detection or cause any adverse effects. The bitflip fault

randomly flips one of the bits and hence the fault injected could be of any order. Hence
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the faults injected are similar to that of Unsymmetric fault model and the overhead is

similar to that of Unsymmetric fault model.

The quality metric Pristine inject result – the value of the knapsack provided by

the original application when errors are injected – is 15.6% inferior, on average, to the

value of the knapsack provided by the pristine application unaffected by errors. The

robust application provides an optimal value equal to that of the pristine application.

For the LCS problem, we present average results over 10 iterations for different prob-

lem sizes ((50,50), (500,500), (1000,1000), (2500,2500)). The average overhead across

different fault models is 46% (excluding the case of (50,50)) and similar behavior as

observed for the Knapsack problem is also observed for LCS under various fault models.

The quality metrics indicate that, on average, the length of the common subsequence

provided by the original application with error injection (IL) is 26.3% inferior (shorter

subsequence) to the solution obtained by the pristine application. The length of com-

mon subsequence between the results provided by the original application with and

without error injection (ILR) is 40.4% shorter than the longest common subsequence

provided by the pristine application. The robust application produces the same results

as the pristine application. As problem size increases, performance degrades for the

original application with error injection, emphasizing the need for error resilience.
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Table 7.4: These results compare overhead (Oint) for several different grid sizes and
fault rates for the Knapsack problem.

Fault model Grid-size Fault Rate Oint Pristine result Pristine inject result

Unsymmetric (50x50) 1E − 3 1.44 1371 1090

(500x500) 1E − 3 1.80 15538 12320

(1000x1000) 1E − 3 1.719 31104 25742

(2500x2500) 1E − 4 1.765 77636 65253

Bimodal (50x50) 1E − 3 1.43 1371 1157

(500x500) 1E − 3 1.68 15538 13182

(1000x1000) 1E − 3 1.57 31104 25818

(2500x2500) 1E − 4 1.58 77636 66034

Trimodal (50x50) 1E − 3 1.43 1371 1307

(500x500) 1E − 3 1.60 15538 13627

(1000x1000) 1E − 3 1.57 31104 26055

(2500x2500) 1E − 4 1.57 77636 68336

Unimodal (50x50) 1E − 3 1.42 1371 1371

(500x500) 1E − 3 1.58 15538 15493

(1000x1000) 1E − 3 1.56 31104 30984

(2500x2500) 1E − 4 1.56 77636 77283

Bitflip (50x50) 1E − 3 1.23 1371 1123

(50x50) 1E − 3 1.71 15338 11854

(50x50) 1E − 4 1.57 31104 23814

(50x50) 1E − 4 1.59 77636 40042
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Table 7.5: These results compare overhead (Oint) for several different grid sizes and
fault rates for the LCS problem.

Fault model Grid-size Fault Rate Oint Pristine result IL ILR

Unsymmetric (50x50) 1E − 3 1.26 22 21 22

(500x500) 1E − 3 1.49 222 156 175

(1000x1000) 1E − 4 1.49 436 216 305

(2500x2500) 1E − 4 1.44 1081 490 710

Bimodal (50x50) 1E − 3 1.26 22 21 22

(500x500) 1E − 3 1.49 222 148 162

(1000x1000) 1E − 4 1.45 436 223 417

(2500x2500) 1E − 4 1.44 1081 702 474

Trimodal (50x50) 1E − 3 1.26 22 22 22

(500x500) 1E − 3 1.48 222 155 175

(1000x1000) 1E − 4 1.45 436 226 320

(2500x2500) 1E − 4 1.44 1081 469 694

Unimodal (50x50) 1E − 3 1.26 22 22 22

(500x500) 1E − 3 1.48 222 216 220

(1000x1000) 1E − 4 1.44 436 317 400

(2500x2500) 1E − 4 1.44 1081 587 899

Bitflip (50x50) 1E − 3 1.21 22 22 22

(50x50) 1E − 3 149 222 139 154

(50x50) 1E − 4 1.45 436 187 267

(50x50) 1E − 4 1.49 1081 432 633
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Figure 7.3: These figures show the behavior of the L2 norm error metric for Poisson
equation solver on a 192×192 grid with bitflip errors injected at a rate of 1E−3. Top:
Our error-resilient algorithm detects outliers and achieves convergence at a similar rate
as in the pristine run. Bottom: The original algorithm is unable to tolerate errors, and
convergence is not achieved.
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Figure 7.4: This figure shows the fault rate tolerated and overhead introduced by our
error resilient Laplacian solver for different fault models on a 192 × 192 grid.



Chapter 8

Conclusion and Future Work

Future high-performance and energy-efficient computing system will be prone to errors

and severely energy constrained. Error resilience may be required to ensure that ap-

plications can use these systems productively. In this thesis, we propose automated

algorithmic error resilience based on outlier detection. Our approach employs metric

functions that exploit the characteristic behavior of algorithms – normally producing

metric values according to a designed distribution or behavior and producing outlier

values (i.e., values that do not conform to the designed distribution or behavior) when

computations are affected by errors, causing uncharacteristic behavior. Thus, for a

robust algorithm that employs such an approach, error detection becomes equivalent

to outlier detection. Compared to previous approaches to application-based error re-

silience, our approaches parameterize the robustification process, facilitating the auto-

matic transformation of large classes of applications into robust applications with the

use of parser-based tools and minimal programmer effort. We demonstrate automated

algorithmic error resilience for two important classes of application – structured grids

and dynamic programming problems. Our error-resilient algorithms have signficantly

lower overhead than traditional hardware and software error resilience techniques.

• For structured grid problems, we show 2 × −3× improvement in output quality

compared to the original algorithm with only 22% overhead, on average, for non-

iterative structured grid problems.

• Average overhead (across fault models) is 4.5% to 15% for error-resilient iterative
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structured grid algorithms that tolerate error rates up to 10E3 and achieve the

same output quality as their error-free counterparts.

• For monadic dynamic programming problems, our error resilience techniques im-

prove output quality by up to 40%, on average, compared to the original algorithm.

Overhead is less than 59% on average – an improvement of at least 3.3× compared

to existing redundancy-based techniques that achieve the same output quality.

8.1 Outlier Detection

We have demonstrated the application of outlier detection-based algorithmic error re-

silience for two different classes of applications that involve a combination of arithmetic

and logical operations. However, the guidelines for using outlier detection, provided in

Chapter 2, are not exhaustive. Additional classes of applications should be surveyed to

determine the feasibility of using outlier detection-based algorithmic error resilience to

provide a more comprehensive guide for leveraging outlier detection-based approaches

for error resilience.

One potential direction in which outlier detection can be applied to new classes of

applications is to use dynamic invariant detection tools, that provide invariants for a

program based on dynamic analysis. An invariant is a property that holds at a certain

point or points in a program; examples include constant variables (x = a), non-zero

(x 6= 0), value range (a ≤ x ≤ b), linear relationships (y = ax + b), ordering (x ≤ y),

and sortedness (x is sorted) [16]. Dynamic invariant detection runs a program, observes

the values that the program computes, and then reports properties that were true over

the observed executions [16]. Hence, dynamic invariant detection tools can be used to

determine algorithmic invariants for an application that could potentially be converted

into metric functions and exploited for outlier detection-based error resilience.

Dynamic invariant detection tools must profile an application through multiple runs

in order to infer invariants. This process can be time consuming. The techniques we

propose for structured grids and dynamic programming are based on static analysis

of invariants and do not require profiling to determine invariants. Static invariant

detection is also more reliable than dynamic invariant detection, since static analysis is

based on program characteristics and not necessarily on the dynamic execution behavior,



50

which can be different for different input cases. Invariants determined through Dynamic

invariant detection will hold for the set of profiled inputs but may not be generally

applicable. Thus, before relying on dynamic invariant detection, these requirements

and concerns should be evaluated.

8.1.1 Learning from Outlier Detection

Through our study of outlier detection-based algorithmic error resilience, we have iden-

tified the following approaches as being particularly amenable to efficient algorithmic

error resilience.

• Using native features of an algorithm or application enables efficient exploration of

application knowledge that can result in low-overhead routines for robustificaiton.

Using a generic technique that is not application-aware can pose drawbacks such as

higher overhead, limited applicability, and difficulty in automation. For example,

time-independent structured grid problems like solving of Poisson and Laplacian

equations need to calculate the L2 norm between grid updates. An error resilience

scheme that uses this native feature to achieve robustifcation has less overhead

than a more generic approach. Similarly, in monadic dynamic programming prob-

lems the benefit of all the choices are available in table form. Applying redundancy

to ensure logical correctness only while tracing the solution path of the matrix /

grid, as opposed to using redundancy while calculating benefit of each choice can

enable significant reduction of overhead. It is possible to selectively apply redun-

dancy because ensuring logical correctness of choices made only along the optimal

solution path (during tracing) will ensure that an optimal solution can be found.

• Using native features of applications also enables robust methods for extracting

necessary information from the application, which can be done by a compiler.

For example, in our robust structured grid and dynamic programming problems,

to incorporate robust algorithms, the programmer only needs to highlight a few

features of the application (using preprocessor directives), rather than manually

creating an entirely new application with a new algorithmic structure. This eases

the adoption of error resilient applications by minimizing programmer effort and

required expertise.
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While outlier detection-based approaches have been shown to be effective for multiple

application classes, they may not be applicable for all classes of applications. Future

work should draw draw on the highlighted features of outlier detection to develop new

algorithmic error resilience strategies that will provide robustness for a wide range of

application classes.

8.1.2 Extending Outlier Detection

8.2 Automatic Program Transformation

While algorithmic error resilience may prove to be an efficient means of tolerating non-

determinism in computing systems, one drawback of previous approaches for applica-

tion “robustification” is that they have been applied manually to applications on a

case-by-case basis. Consequently, previous approaches require significant expertise in

application robustification as well as substantial manual effort. Even so, it is non-trivial

to determine which applications can be robustified using previous approaches and how

to perform the robustification for a given application. To facilitate the process of ro-

bustification for application developers and ease the adoption of robust algorithms, we

propose automated techniques for application robustification that transform an applica-

tion into a robust version of the same application with minimal programmer effort. We

have demonstrated how outlier detection is amenable to automatic program transfor-

mation by providing automatic program transformation tools for structured grids and

monadic dynamic programming problems. Hence through this work we wish to high-

light the need for consideration of automatic program robustification, while designing

novel techniques. For the same, other potential directions to consider include:

• Providing robust libraries similar to the Standard Template Library of C++. This

would provide a convenient method to incorporate robust algorithms and data

structures in applications. An advantage of providing robust library is, it can be

incorporated using compiler flags to use robust version of STL for the application.

• Transforming existing techniques for robustification to a general format which

can be handled by compilers, using a combination of parsers and pre-processor

directives.
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Appendix A

Programmers’ Guide

In this appendix we provide details on all the required preprocessor directives and any

other requirement for adopting the automatic program transformation based on outlier

detection. The Sections A.1 and A.2 have details for both structured grids and dynamic

programming respectively.

A.1 Structured Grids

The iterative applications for structured grid applications can utilize outlier detection-

based algorithmic error resilience using the following infrastructure. All the preprocessor

directives start with the term #pragma struct grid. The required preprocessor directives

are as follows:

• #pragma struct grid size m, n

This directive provides the size of the grid used in an application. This informa-

tion is required to determine how to decompose the grid, to aid in error localiza-

tion. Currently, only two-dimensional grids are supported, though extending the

methodology to higher-dimension grids is trivial.

• #pragma struct grid dependency length k

This directive determines the stencil length – the number of elements in each

dimension required to update a point i.e, to update a point (i,j) the points (i ±

1,j),(i ± 2,j),.. (i ± k,j) and (i,j ± 1), (i,j ± 2),..(i,j ± k) will be required. The

54
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grid is assumed to be zero padded along the boundary in each dimension for this

length. I.e, if the dimensions of the padded grid are (m,n) and dependency length

is 1 then the row 0, row m-1, column 0, and column n-1 are expected to be filled

with zeros. Likewise, if the unpadded grid dimensions are (m,n), then row 0, row

m+1, column 0, and column n+1 in the padded grid are filled with zeros.

• #pragma struct grid curr array my curr array

This directive indicates the array that stores the grid computed in the current

iteration of grid update.

• #pragma struct grid prev array my previous array

This directive indicates the array that stores the grid computed during the previ-

ous iteration of grid update.

• #pragma struct grid data layout n

This directive indicates the dimensionality of the grid arrays – n = 1 for one-

dimensional data layout and n = 2 for two-dimensional data layout.

• #pragma struct grid insert here

This directive indicates the location where the method that implements outlier

detection-based error resilience will be placed. This pragma should be placed at

the end of the outermost loop that specifies the number of grid update iterations

that will be performed. This method is called after every iteration to check for

outliers (as per the robust algorithm) and if needed corrects any detected errors.

The following program example demonstrates the use of preprocessor directives to

mark the key variables that will be used in the automatic robustification of the code.

Example : The code which uses our automatic program transformaiton tool for

structured grids will look like in Figure A.1 and the transformed output of the tool is

as shown in Figure A.2
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for (int t = 0; t < num_times; t++)

{
if(t%2)

{
heat_mat1=A;

heat_mat2=B;

}
else

{
heat_mat1=B;

heat_mat2=A;

}
#pragma struct_grid size m,n

#pragma struct_grid curr_array heat_mat1

#pragma struct_grid prev_array heat_mat2

#pragma struct_grid data_layout 1

for (int row_idx = dependency_length ; row_idx < (num_rows - dependency_length); row_idx++)

{
for (int col_idx = dependency_length ; col_idx < (num_cols-dependency_length); col_idx++)

{
int index= row_idx*num_cols + col_idx;

heat_mat1[index] = 0.125 * ( heat_mat2[index+num_cols] - 2.0 * (heat_mat2[index]

+ heat_mat2[index-num_cols] ) + 0.125 * (heat_mat2[index+1] - 2.0 * heat_mat2[index]

+ heat_mat2[index-1]) + heat_mat2[index];

}
}
#pragma struct_grid insert_here

}

Figure A.1: The pristine code for a typical iterative structured grids application, with
necessary preprocessr directives for the automatic program transformation tool.
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for (int t = 0; t < num_times; t++)

{
if(t%2)

{
heat_mat1=A;

heat_mat2=B;

}
else

{
heat_mat1=B;

heat_mat2=A;

}
for (int row_idx = dependency_length ; row_idx < (num_rows - dependency_length)

; row_idx++)

{
for (int col_idx = dependency_length ; col_idx < (num_cols-dependency_length)

; col_idx++)

{
int index= row_idx*num_cols + col_idx;

heat_mat1[index] = 0.125 * ( heat_mat2[index+num_cols] - 2.0 * (heat_mat2[index]

+ heat_mat2[index-num_cols] ) + 0.125 * (heat_mat2[index+1] - 2.0 * heat_mat2[index]

+ heat_mat2[index-1]) + heat_mat2[index];

}
}
grid_analyze_per_quadrant(heat_mat1, heat_mat2, m,n);

// This method will take care of error detection and correction.

}

Figure A.2: The robust code with necessary changes as per the robustification based on
outlier detection for structured grids application.
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A.2 Dynamic Programming

In this section we describe the automated robustification based on outlier detection

for monadic dynamic programming applications. The framework to adopt automated

robustification is presented below. All the preprocessor directives start with the term

#pragma dynamic prog. The required preprocessor directives are as follows:

• The following directives should appear before specifying any directive involving

either solve or trace parameters.

– #pragma dynamic prog mat dimensions n1 i,j

This directive indicates the number of indices and the variable names for the

the indices, respectively.

– #pragma dynamic prog mat size size1,size2

This directive provides the size of the grid. Currently, only two-dimensional

grids are supported.

– #pragma dynamic prog mat array lengths

This directive indicates the grid variable.

– #pragma dynamic prog mat declaration int∗ grid

This directive indicates the grid variable declaration. This information is

required for the rollback method.

• #pragma dynamic prog solve num conditions n

This directive indicates the number of conditions that are involved in evaluating

the benefit of a choice. All comparisons should be included in this count (both

if and else conditions). Also, all conditions should be written in if-else form.

For example, the benefit assignment statement b = max(a, b); can be written as

if(a > b)a; elseb;. We intend to provide macros for common functions (max,

min, conditionals, etc.) that are compatible with our automated error resilience

framework.

• #pragma dynamic prog solve cond k

This directive indicates that the following line of code contains condition number

k related to evaluating the benefit of a choice. If k > n the following condition will
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not be processed by the parser. n directives of this form are expected, indicating

the n conditions, as specified. Failure to provide the necessary n conditions will

result in a parsing error.

• #pragma dynamic prog inner loop solve open

This directive indicates that the inner loop of the code that calculates the benefit

will start on the next line of code.

• #pragma dynamic prog inner loop solve close

This directive indicates that the inner loop of the code that calculates the benefits

will end on the next line of code.

• #pragma dynamic prog trace num conditions m

This directive indicates the number of conditions that are involved in tracing the

grid to determine the optimal solution. All comparisons should be included in this

count (both if and else conditions). As described above, all conditions should be

written in if-else form. Normally m = n.

• #pragma dynamic prog trace cond l solve cond k

This directive indicates that the next line of code contains condition number l

related to tracing the grid and also indicates which solve condition should be true

for this trace condition l to be true. If l > m the following condition will not be

processed by the parser. m directives of this form are expected, indicating the m

conditions, as specified. Failure to provide the necessary m conditions will result

in a parsing error.

• #pragma dynamic prog inner loop trace open

This directive indicates that the inner loop of the code responsible for tracing the

grid starts on the next line of code.

• #pragma dynamic prog inner loop trace close

This directive indicates that the inner loop of the code responsible for tracing the

grid ends on the next line of code.

• #pragma dynamic prog trace accept choice

This directive indicates the code that selects a choice (i, j) as part of the optimal
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solution. This directive should be specified immediately before the piece of code

where the choice is accepted as part of the optimal solution. See the code below

for an example of locating this region of code.

Example : The code which uses our automatic program transformaiton tool for

dynamic programming will look like in Figure A.3 and the transformed output of the

tool is as shown in Figure A.4 and A.5
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#pragma dynamic_prog mat dimensions 2 i,j

#pragma dynamic_prog mat size 500, 500

#pragma dynamic_prog mat array lengths

#pragma dynamic_prog solve num_conditions 3

for (i=0,i < lena;i++)

{
x=a[i];

#pragma dynamic_prog inner_loop_solve open

for (j=0; j < lenb ;y++ )

{
y=b[j];

#pragma dynamic_prog solve cond 1

if (a[i] == b[j])

lengths[i+1][j+1] = lengths[i][j] + 1;

#pragma dynamic_prog solve cond 2

else if ( lengths[i+1][j] > lengths[i][j+1])

lengths[i+1][j+1] = lengths[i+1][j] ;

#pragma dynamic_prog solve cond 3

else

lengths[i+1][j+1] = lengths[i][j+1];

}
#pragma dynamic_prog inner_loop_solve close

}
#pragma dynamic_prog solve num_conditions 3

#pragma dynamic_prog solve cond 4

result = bufr+bufrlen;

% *result--=’0’;

i = lena-1; j = lenb-1;

#pragma dynamic_prog trace num_conditions 3

while ( (i>0) & (j>0) )

{
#pragma dynamic_prog trace cond 1 solve cond 2

if (lengths[i][j] == lengths[i-1][j])

i -= 1;

#pragma dynamic_prog trace cond 2 solve cond 3

else if (lengths[i][j] == lengths[i][j-1])

j-= 1;

#pragma dynamic_prog trace cond 3 solve cond 1

else

*--result = a[i-1];

#pragma dynamic_prog accept_trace_choice

i-=1; j-=1;

}

Figure A.3: The pristine code for a typical mondaic dynamic programming applicaiton,
with necessary preprocessr directives for the automatic program transformation tool.
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#include "robust_dynamic_prog.h"

int curr_checkpoint_limit;

curr_checkpoint_limit=checkpoint_length;

int checkpoint_length_plus1=checkpoint_length+1;

int yet_to_rollback_prev_item=1;

for (i=0,i < lena;i++)

{
x=a[i];

for( int checkpoint_zone=0; checkpoint_zone < (num_checkpoints) ; checkpoint_zone++ )

{
int j=checkpoint_zone * checkpoint_length;

int checkpoint_limit= j + checkpoint_length;

if( lenb_minus1< checkpoint_length )

checkpoint_length=lenb_minus1;

curr_checkpoint_limit=curr_item_1_checkpoints[checkpoint_zone]+1;

int max_in_zone;

max_in_zone=0;

for (;j<checkpoint_limit;j++ )

{
y=b[j];

if (a[i] == b[j])

lengths[i+1][j+1] = lengths[i][j] + 1;

else if ( lengths[i+1][j] > lengths[i][j+1])

lengths[i+1][j+1] = lengths[i+1][j] ;

else

lengths[i+1][j+1] = lengths[i][j+1];

}

if( max_in_zone > curr_checkpoint_limit )

{
if( yet_to_rollback_prev_item ==1 )

{
yet_to_rollback_prev_item=0;

checkpoint_zone--;

}
else

{
yet_to_rollback_prev_item=1;

checkpoint_zone--;

i--;

}
}

}
}

Figure A.4: The transformed code with necessary code changes to adopt outlier detec-
tion intervals.
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result = bufr+bufrlen;

i = lena-1; j = lenb-1;

bool t1= tmr_char_comparison(a[i],b[j]);

bool t2= tmr_greater(lengths[i+1][j],lengths[i][j+1]);

while ( (i>0) & (j>0) )

{

if ( (lengths[i][j] == lengths[i-1][j]) && (~t1) && (t2) )

i -= 1;

else if (lengths[i][j] == lengths[i][j-1] && (~t1) && (~t2) )

j-= 1;

else if( (t2) && (~t1) )

{
*--result = a[i-1];

i-=1; j-=1;// Following variables are defined in the header "robust_dynamic_prog.h"

top_of_stack=(top_of_stack+1)%(size_stack);

end_of_stack=((top_of_stack+1)%size_stack);

accepted_tuple_chars[top_of_stack].my_tuple.i=i;

accepted_tuple_chars[top_of_stack].my_tuple.j=j;

}
else

{
xy_tuple fixing_end_tuple=rollback(i,j,accepted_i,accepted_j,lengths[i][j],a,b,error_percent);

if( !( (fixing_end_tuple.i==0) && (fixing_end_tuple.j==0) && ( top_of_stack <0) ) )

{
rollback_tuple_pos rolling_back;//=search_stack(fixing_end_tuple,result_pos);

last_considered_i=i;last_considered_j=j;

if( (rolling_back.my_tuple.i) && (rolling_back.my_tuple.j) )

{
i=rolling_back.my_tuple.i-1;

j=rolling_back.my_tuple.j-1;

result_pos-=rolling_back.result_position_adjust;

}
else

{
i=lena-1;

j=lenb-1;

result_pos=0;

}

ij_considered=0;

}
else

{
i=lena-1;

j=lenb-1;

result_pos=0;

}
}

}

Figure A.5: The transformed code with necessary code changes for Redundancy while
tracing and Rollback steps.


