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Abstract 

In this thesis, techniques are described for the measurement of individual 

mitochondrial isoelectric point (pI) using capillary isoelectric focusing (cIEF) with laser-

induced fluorescence detection, simulation of the contribution of mitochondrial surface 

compositions to pI, and determination of individual mitochondrial membrane potential 

and electrophoretic mobility using capillary electrophoresis with laser-induced 

fluorescence detection (CE-LIF). These techniques provide insight into mitochondrial 

heterogeneity, which could increase fundamental understanding of the role played by 

mitochondria in aging. 

A method was developed to determine the pIs of individual mitochondria by 

cIEF. This method provides reproducible distributions and accurate determination of 

individual mitochondrial pI by the use of internal standards, and was able to detect 

changes in mitochondrial pI distributions caused by changes to the mitochondrial surface 

by treatment with trypsin. Application of this method demonstrated the heterogeneity of 

mitochondrial pI, which reflects the heterogeneity of mitochondrial surface compositions. 

To model the effect of surface composition on mitochondrial pI heterogeneity, a 

method was developed to predict mitochondrial pI values using simulated surface 

compositions consisting of different percentages of amino acids and phospholipids found 

in the mitochondrial outer membrane. This method was validated by predicting the pI 

values of known mitochondrial outer membrane proteins then extended to isolated 

mitochondria and used to model a pI distribution determined experimentally by cIEF. 

Significant changes in the percentages of some amino acids and phospholipids were 
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predicted for observed pI differences between individual mitochondria. This model 

provides insight into the heterogeneity of mitochondrial pI and contribution of surface 

compositions. 

Distributions of individual mitochondrial membrane potential and electrophoretic 

mobility were measured using CE-LIF. Mitochondria from cultured cells and mouse 

muscle and liver tissue were labeled with JC-1, a ratiometric dye which indicates 

membrane potential. Analysis of specific regions of interest defined by performing CE-

LIF of depolarized samples makes this method capable of analyzing mitochondrial 

membrane potential even in preparations where depolarized mitochondria may be present 

due to biological variation or experimental factors that result in damage to mitochondria 

or may be insufficient to keep all mitochondria polarized. This analysis revealed 

additional differences between samples and an effect of membrane potential on 

electrophoretic mobility. This method allows for the characterization of mitochondrial 

heterogeneity in membrane potential and surface properties. 

In the future, these methods can be applied to biological models of aging to 

elucidate the role that mitochondrial heterogeneity plays in age-related dysfunction and 

disease. 
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Introduction 
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The World Health Organization reports that the global population of aging 

individuals is increasing dramatically: worldwide, the number of people 65 years of age 

and older is projected to increase from 524 million in 2010 to 1.5 billion in 2050.
1
 This is 

an increase not only in number but also in percentage, from 8% in 2010 to 16% of the 

world’s projected population in 2050. Clearly, the study of aging and age-related diseases 

such as cancer, diabetes, Alzheimer’s, and heart disease is vital to ensuring the health and 

prosperity of our aging population. 

Mitochondria, the energy-producing organelles of eukaryotic cells, represent a 

widely studied topic in the field of aging research. A central theory of aging states that 

damage to cellular components by reactive oxygen species (ROS) produced as a by-

product of mitochondrial respiration accumulates with age, and that this cellular damage 

is the origin of the physiological changes in aging.
2,3

 Although there is debate about 

whether ROS production by mitochondria is actually the cause of aging,
4
 it is clear that 

mitochondria and the quality control mechanisms responsible for maintaining their 

normal function play a pivotal role in aging and age-related diseases.
5-7

 Further study of 

mitochondria is necessary to increase our understanding of this role, which could 

ultimately lead to treatments for age-related disorders and diseases. 

A major challenge in the characterization of mitochondria in any biological 

system is the highly heterogeneous nature of these organelles. Mitochondrial properties 

that are heterogeneous include morphology (size and shape), energy production 

(oxidative phosphorylation), ROS generation, membrane potential, phospholipid 
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composition, and protein expression.
8
 This heterogeneity reflects differences in function 

of mitochondria depending on energy demand (e.g. morphological changes
9
) or 

subcellular locations (e.g. intermyofibrillar vs. subsarcolemmal mitochondria
10

), and 

could also reflect the presence of damaged or dysfunctional subpopulations of 

mitochondria.
11

 

In aging, one potential source of heterogeneity is mitochondrial regulation and 

turnover. Mitochondrial function is regulated by the fusion/fission process and 

dysfunctional mitochondria are eliminated through turnover by mitophagy.
12

 As 

organisms age, mitochondrial removal by mitophagy becomes less effective and 

mitochondrial dysfunction increases.
13

 In aging tissue, giant mitochondria have been 

observed,
14-16

 which may represent a heterogeneous dysfunctional subpopulation that 

contributes to cellular damage in aging.
17,18

 A manifestation of heterogeneity in giant 

mitochondria is their reduced mitochondrial membrane potential. Mitochondrial 

membrane potential is highly heterogeneous, depending on subcellular location,
19,20

 

functional status and morphology,
18,20,21

 and damage to mitochondria,
22

 and plays an 

important role in mitochondrial maintenance by the fusion/fission process
23

 and turnover 

by mitophagy. 

Targeting of mitochondria for elimination by mitophagy results in modifications 

to the surface of mitochondria and may represent another source of mitochondrial 

heterogeneity in surface properties. Upon loss of membrane potential, the protein PINK1 

accumulates on the surface of mitochondria and recruits Parkin, which modifies 
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mitochondrial proteins by ubiquitination.
24

 This results in extraction and degradation of 

some mitochondrial proteins (e.g. MFN1 and MFN2), although this is not required for 

mitophagy and the complete mechanism for mitophagy targeting is not understood.
25

 

Better methods for the characterization of individual mitochondrial membrane 

potential, mitochondrial surface properties, and separations of mitochondrial 

subpopulations would allow for further elucidation of the role of mitochondrial 

heterogeneity in the aging process. This thesis describes the development of new 

analytical techniques for the separation and analysis of individual mitochondria, which 

are applicable to the characterization of mitochondrial heterogeneity. 

Chapter 2 covers background related to mitochondrial analysis and introduces the 

techniques used in this work. One mitochondrial surface property that is heterogeneous is 

isoelectric point (pI), which reflects differences in the protein and phospholipid 

composition of the mitochondrial outer membrane. 

Chapter 3 describes development of a method for determination of individual 

mitochondrial pIs by capillary isoelectric focusing (cIEF). This method was used to 

demonstrate that mitochondria from cultured cells exhibit distributions of pI, which were 

calculated accurately by the inclusion of pI markers as internal standards. The method 

could detect changes in the mitochondrial pI distribution upon modification of the 

mitochondrial surface with trypsin, suggesting that other mitochondrial surface 

modifications relevant to mitochondrial heterogeneity and aging could be detected using 

this technique. 
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Chapter 4 describes predictions of mitochondrial pI by simulations of surface 

compositions. This method describes the contribution of amino acids and phospholipids 

in the mitochondrial outer membrane to the pI heterogeneity observed in cIEF. This 

method can be used to make predictions about changes to mitochondrial pI which might 

result from modifications to the mitochondrial surface relevant to mitochondrial targeting 

for mitophagy. 

Chapter 5 describes a method to measure individual mitochondrial membrane 

potential by capillary electrophoresis with laser induced fluorescence detection (CE-LIF). 

This method was used to determine distributions of mitochondrial membrane potential 

and electrophoretic mobility, and is applicable to mitochondria isolated from cultured 

cells and mouse muscle and liver tissue even in samples where depolarized mitochondria 

are present. The ability to determine individual mitochondrial isoelectric points and 

electrophoretic mobility is an important tool in characterization of mitochondrial 

heterogeneity. 

Chapter 6 summarizes the conclusions and significance of this work: in short, we 

have developed tools to characterize mitochondrial heterogeneity including a method to 

measure distributions of mitochondrial pI, a model that describes the contribution of the 

outer membrane composition to pI, and a method to measure distributions of individual 

mitochondrial membrane potential and electrophoretic mobility. These tools could be 

valuable in understanding mitochondrial heterogeneity in aging. 
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Chapter 7 describes possible future improvements to the cIEF method described 

in Chapter 3 to improve its analytical capabilities of accurately measuring the pIs of 

individual organelles. The model of mitochondrial pI from Chapter 4 could be used to 

predict changes in mitochondrial pI arising from modifications to the mitochondrial 

surface involved in targeting for mitophagy or from changes in membrane potential; these 

applications are discussed in Chapter 7. This chapter also describes future experiments to 

develop a new method for individual mitochondrial isolation by cytoskeletal disruption 

and electroporation, which is needed for characterization of giant mitochondria in aging 

models using the methods described in Chapters 3 and 5. 

Overall, the work described in this thesis represents a contribution of new 

methods to study mitochondrial heterogeneity, which could increase our fundamental 

understanding of these organelles. Elucidation of the role of mitochondrial dysfunction 

and heterogeneity in aging could eventually lead to new treatments for age-related 

disorders and disease. 
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Background 
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2.1. Mitochondrial Properties and Heterogeneity in Aging 

Mitochondria are double membrane-bound organelles involved in energy 

production, metabolism, and many important cellular processes such as apoptosis.
26

 See 

Figure 2-1 for a basic description of mitochondrial structure. Mitochondria are 

heterogeneous, with variations in properties among different tissue types, subcellular 

locations, functional statuses, and diseases.
8
 These properties include morphology (size 

and shape), energy production (oxidative phosphorylation), reactive oxygen species 

(ROS) generation, membrane potential, phospholipid composition, and protein 

expression. Differences in these properties affect their maintenance and regulation in the 

cell by the fusion/fission process
12

 and turnover by mitophagy, the mitochondrial-specific 

form of autophagy.
11,12

 These processes work together to eliminate damaged 

mitochondria and regulate cellular energy production.
9,27

 

Mitochondrial dysfunction and disruption in their normal regulation and turnover 

in the cell is a major factor in aging.
7
 Mitochondria in aging tissue are less efficient at 

producing ATP.
28

 As cells age, increased damage from ROS accumulates and some 

dysfunctional mitochondria are excluded from the fusion and fission process, in which 

mitochondria fuse and divide to regulate their function and distribute damage. Moreover, 

mitophagy, the process responsible for elimination of dysfunctional mitochondria, 

becomes less effective at removing them from the cell.
13

 One mitochondrial property that 

becomes more heterogeneous with age is size; so-called giant mitochondria are thought to 

represent a dysfunctional subpopulation that is not effectively eliminated from the cell. 
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Figure 2-1. Mitochondrial structure. Mitochondria generate ATP via oxidative 

phosphorylation. This process is driven by the mitochondrial membrane potential 

(ΔΨm) established across the inner mitochondrial membrane by the enzymes of the 

electron transport chain, which pump protons from the matrix to the 

intermembrane space. Free radical intermediates of coenzyme Q reduce oxygen to 

superoxide, a major form of ROS in the cell. The mitochondrial outer membrane 

contains proteins and phospholipids which give rise to its electrophoretic properties. 

Figure adapted from Brownlee.
29
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Enlarged mitochondria have been observed in aging tissue
14-16,30

 and senescent 

cells.
17

 In a cell model of aging with impaired autophagy, heterogeneity in mitochondrial 

size including giant mitochondria over 1 µm in diameter, decreases in membrane 

potential, and expression of proteins involved in fusion and fission was observed.
18

 

Targeting for elimination of these organelles by mitophagy may be compromised. In this 

process, loss of mitochondrial membrane potential causes accumulation of the protein 

PINK1 on the surface of mitochondria. This protein recruits Parkin, which ubiquitinates 

mitochondrial proteins.
24,31

 This modification causes some proteins to be extracted and 

degraded,
32

 and targets mitochondria to autophagosomes for degradation by mitophagy.
25

 

These modifications to the mitochondrial surface are manifestations of mitochondrial 

heterogeneity which is expected to increase in aging. The methods described in Chapters 

3 and 5 of this work could be used to characterize these changes in mitochondrial surface 

properties, which may lead to separations of subpopulations of mitochondria which are 

important in the aging process. 

Mitochondrial membrane potential is involved in energy production, signaling of 

mitochondrial regulation by the fusion/fission process, and turnover by mitophagy,
23,33-35

 

and apoptosis.
36

 Mitochondrial membrane potential is an electrochemical gradient used to 

drive ATP production. It is established by transport of protons across the mitochondrial 

inner membrane by the enzymes of the electron transport chain (see Figure 2-1 above), 

which creates a pH gradient and an electrical potential. Mitochondria are considered 

polarized when this potential difference is present; depolarization occurs when the 
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potential is dissipated. While some ROS is normally produced in mitochondrial 

respiration, increases in membrane potential result in increased levels of ROS which 

cause damage to the cell and are a factor in many mitochondrial related diseases 

including cancer, diabetes, and Alzheimer’s.
37

 Mitochondrial membrane potential is 

heterogeneous, depending on energy demand, subcellular location, morphology, and 

functional status. Membrane potential is influenced by changes in local calcium 

concentration, and may be controlled by cellular mechanisms to limit production of ROS 

in certain regions (e.g. near the nucleus).
19

 Chapter 5 of this work describes a method to 

measure distributions of individual mitochondrial membrane potential, which may 

become an important tool for characterization of mitochondrial heterogeneity in aging. 

Mitochondrial morphology is another property that becomes more heterogeneous 

with age. Depending on cellular energy demand or damage to mitochondria, they may be 

in a fragmented, spherical morphology, more tubular, or part of a reticulated network of 

interconnected organelles.
38

 Morphology is regulated by the fusion/fission process and by 

mitochondrial attachments to the cytoskeletal network in the cell.
39

 This interaction helps 

regulate mitochondrial function and provides a mechanism for movement of 

mitochondria around the cell. When mitochondria are isolated from the cell for analysis, 

they retain cytoskeleton on their surface which has an effect on their electrophoretic 

properties.
40

 This represents an issue for analysis of mitochondrial surface properties by 

the methods described in Chapters 3 and 5. The future work described in Chapter 7 
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discusses a method for the isolation of mitochondria from the cell by disruption of 

cytoskeleton which could improve analysis of their surface properties. 

Although much is understood about mitochondrial properties and their role in 

aging and disease, new methods are needed to further unravel the complexity of 

mitochondrial heterogeneity. The connections between mitochondrial size, turnover, and 

dysfunction are not fully understood, and techniques to study these properties will 

advance understanding of their role in aging and disease. The methods described in this 

work could be applied to help elucidate the role of mitochondrial heterogeneity in aging. 

2.2. Techniques for Mitochondrial Analysis 

2.2.1. Imaging 

Characterization of heterogeneity in mitochondrial morphology that may be 

important in aging can be accomplished using imaging techniques. Fluorescence 

microscopy is widely used to observe mitochondrial morphology and measure their 

properties. Depending on the choice of labeling strategy, specific proteins, DNA, 

properties such as membrane potential, specific ROS, redox state, or dynamic processes 

such as fusion and fission may be observed.
41

 This technique is versatile; it enables the 

observation of mitochondria in fixed or living cells or isolated and adsorbed to slides.
42

 A 

recent publication described monitoring the NADH levels in individual mitochondria 

arrayed in a device containing nanoscale wells.
43

 Mitochondria may be labeled with 

small-molecule probes which are sequestered in the mitochondria. These probes may be 

taken up in response to mitochondrial membrane potential (JC-1), may be fixable 
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(MitoTracker probes
44

), may label a mitochondrial-specific phospholipid, cardiolipin (10-

N nonyl-acridine orange
45

), or may be designed to respond to levels of reactive oxygen 

species (e.g. MitoSOX Red
46

). Immunolabeling is a widely used strategy for specifically 

labeling mitochondrial proteins. Cells grown in culture can be transfected to produce 

stable fluorescent proteins which can be targeted to mitochondria.
47

 See the recent review 

by Satori et al. for an extensive list of mitochondrial probes.
48

 

New advances in super-resolution fluorescence microscopy promise to reveal new 

detail in mitochondrial heterogeneity.
49

 This family of techniques uses specialized optics 

for excitation or novel photoswitchable fluorophores that overcome the diffraction limit 

of ~250 nm and allow for visualization of features with resolution in the 20 – 50 nm 

range. One limitation of imaging as a tool to characterize mitochondrial heterogeneity is 

its throughput – characterizing large numbers of mitochondria is labor intensive. In this 

work, imaging is used as a complementary technique to the method developed in Chapter 

5, and will be important to observe the mitochondria isolated from cells by the new 

method proposed as future work in Chapter 7. 

2.2.2. Membrane Potential 

Mitochondrial membrane potential may be measured quantitatively by using a 

triphenylphosphonium (TPP
+
) ion-selective electrode.

50
 In this technique, uptake of TPP

+
 

into the mitochondrial matrix from a solution with known concentration is measured with 

the electrode. Distribution of this cation into the matrix is described by the Nernst 

equation, and mitochondrial membrane potential may be calculated directly if the 
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mitochondrial matrix volume is known (this is estimated by measuring the total protein 

content of the isolated mitochondria). A disadvantage of this technique is that it requires 

a relatively large amount of mitochondria (~0.5 mg), which can prevent its use with 

samples which are cost-prohibitive to prepare in large amounts (for example, 

mitochondria from cell culture in which expensive reagents are used for transfections). 

Recent advances in integrating a TPP
+
 microelectrode into microfluidic device provide 

improvements to the sensitivity of this technique and make it amenable to smaller 

amounts of sample.
51,52

 

Measurement of mitochondrial membrane potential in imaging, bulk fluorescence 

techniques, and flow cytometry may be accomplished by the use of fluorescent probes.
53

 

These probes are cationic, which drives uptake into the mitochondrial matrix in a 

membrane potential dependent manner according to the Nernst equation.
54

 Quantitation 

of membrane potential using probes such as rhodamine 123 or tetramethylrosamine 

involves measuring their fluorescence intensity inside mitochondria and comparing to the 

fluorescence intensity of a depolarized control sample. Protonophores such as carbonyl 

cyanide 3-chlorophenylhydrazone (CCCP) or carbonyl cyanide 4-

(trifluoromethoxy)phenylhydrazone (FCCP) or ionophores such as valinomycin are used 

to depolarize mitochondria, as they facilitate free transport of ions across the 

mitochondrial inner membrane (see Figure 2-1), which dissipates the membrane 

potential. The disadvantage of using probes such as rhodamine 123 or 

tetramethylrosamine is that their observed fluorescence intensity is influenced by 
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mitochondrial size as well as membrane potential, so membrane potential is 

overestimated in larger mitochondria.
55

 While this is not an issue in microscopy because 

the fluorescence intensity can be normalized by the size of the organelle, this would be an 

issue in a technique where size is not measured, such as capillary electrophoresis (as in 

the method described in Chapter 5 of this work). To prevent this issue, a ratiometric dye 

can be used. 

2.2.3. JC-1 

Ratiometric dyes undergo a spectral shift or transformation upon their uptake into 

mitochondria which can be measured and used to normalize their response across 

different dye concentrations or mitochondrial sizes.
55

 One such dye is JC-1, which is 

commonly used to measure mitochondrial membrane potential.
53,56

 At low concentrations 

(less than approximately 100 nM), JC-1 exists as a monomer and exhibits green 

fluorescence (the broad peak centered at 540 nm in the spectrum shown in Figure 2-2).
 38

 

At higher concentrations, this dye forms J-aggregates which causes a red-shift of the 

fluorescence emission (narrow peak centered at 590 nm). Since JC-1 is cationic (structure 

shown below in Figure 2-2), mitochondrial membrane potential drives its uptake into the 

matrix. Polarized mitochondria with higher (more negative) membrane potential will 

accumulate JC-1 at a higher concentration than depolarized mitochondria. If a proper 

labeling concentration is chosen (i.e. low enough that minimal aggregation occurs outside 

mitochondria), polarized mitochondria will exhibit more red fluorescence from the JC-1 

aggregates as well as green fluorescence from the monomer form of the dye, whereas 
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depolarized mitochondria will exhibit primarily green fluorescence. Measurement of 

red/green fluorescence is then used as an indicator of membrane potential. JC-1 is widely 

used as an indicator of mitochondrial membrane potential in fluorescence microscopy
19,41

 

and flow cytometry.
57,58

 Applications have also been reported demonstrating its use in a 

microfluidic free-flow isoelectric focusing separation of isolated mitochondria
59

 and in a 

device for immobilization of individual mitochondria in nanochannels.
42

 In Chapter 5, a 

method is described for characterization of individual mitochondrial membrane potential 

using JC-1 as a probe in capillary electrophoresis with laser-induced fluorescence 

detection (CE-LIF). 

  

Figure 2-2. Fluorescence emission spectrum and structure of JC-1. Fluorescence 

from monomer (broad peak at ~540 nm) and J-aggregate (narrow peak at 590 nm) 

forms of the dye. Excitation: 488 nm. This dye is used as an indicator of 

mitochondrial membrane potential in the method described in Chapter 5 of this 

work. 
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2.3. Analytical Separations of Biological Particles 

2.3.1. Methods for Mitochondrial Isolation 

Analysis of mitochondria by analytical techniques usually includes some method 

for isolation of the mitochondria from cells or tissue. Mitochondria are typically isolated 

by mechanical homogenization and differential centrifugation.
60

 In this technique, 

shearing forces that tear apart the cell membrane are created by driving a tight-fitting 

pestle up and down through a suspension of cells or tissue pieces in a glass cylinder. The 

pestle may be rotated by a motor during this process, and is typically driven up and down 

by hand. Differential centrifugation is then used to prepare a fraction enriched in 

mitochondria and other organelles of similar size and density: nuclei and intact cells are 

first pelleted at low speeds (e.g. 600 g), then mitochondria in the supernatant are pelleted 

at higher speeds (e.g. 10000 g). The supernatant, containing soluble proteins, smaller 

organelles, and fragments of organelles, is removed and mitochondria are resuspended in 

a buffer. Nitrogen cavitation (combined with centrifugation) is another technique capable 

of producing fractions of isolated mitochondria. This technique relies on pressurization of 

cells to around 1500 PSI, followed by rapid decompression, to create bubbles which 

disrupt the cell membrane.
61

 While these techniques are capable of producing isolated 

fractions of mitochondria suitable for analysis, the choice of technique and how it is 

applied (e.g. the number or force of strokes in mechanical homogenization or the number 

of rounds of cavitation) has an effect on the electrophoretic properties of the 

mitochondria.
62

 Additionally, mechanical homogenization disrupts mitochondrial 
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structure and has an effect on mitochondrial function; this technique caused changes in 

respiration, hydrogen peroxide generation, and the sensitivity of the permeability pore 

transition to calcium (a measure of apoptosis) when compared to mitochondria which 

were studied in permeabilized muscle fibers (i.e. not subjected to an isolation 

technique).
63,64

 Since these conventional techniques may damage delicate subpopulations 

of mitochondria or change their electrophoretic properties, alternative methods for 

mitochondrial isolation are needed for better characterization of mitochondrial 

heterogeneity. Future experiments to develop an alternative method for mitochondrial 

isolation are discussed in Chapter 7 of this thesis. 

2.3.2. Continuous and Flow-based Techniques 

To evaluate mitochondrial heterogeneity in samples of isolated mitochondria, it is 

necessary to characterize a large number of organelles, which is not a strength of imaging 

techniques. Techniques including flow cytometry, field-flow fractionation, and free-flow 

electrophoresis are based on continuous flow of the particles in suspension through the 

instrument, which makes these methods capable of measuring large numbers of 

organelles. Flow cytometry is not a separation technique, but allows for the fast and high-

throughput analysis of cells or organelles. A sheath-flow cuvette-based fluorescence 

detector is used to achieve high sensitivity, and scattering data is often collected for 

information on particle size or internal complexity
65

. Flow cytometry has been used to 

characterize mitochondrial subpopulations with differences in mitochondrial membrane 

potential, resistance to depolarization by FCCP, cardiolipin levels, and response to 
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calcium-induced swelling.
66

 Fluorescence-activated cell sorting (FACS) instruments are 

capable of sorting biological particles, commonly used for sorting cells which express a 

desired fluorescent protein.
67

 This technique is applicable to organelles using 

commercially available instruments. A recent report detailed a new device for sorting 

organelle subpopulations that achieved single-molecule sensitivity and demonstrated 

sorting of synaptic vesicles isolated from rat brains.
68

 

Field-flow fractionation (FFF) is a specialized family of techniques for separation 

of particles. This technique separates analytes based on differences in their size and 

density
69

 and has been used to fractionate different sizes of mitochondria
70,71

 and to sort 

populations of whole cells.
72

 In FFF, a buffer stream flows through a separation chamber. 

A field is applied perpendicular to the flow of buffer which deflects analytes into 

different lamina of the buffer stream, which possess different flow rates through the 

separation chamber. The separation is not achieved by the type of field applied or the 

interactions of analytes with that field, but rather by the distribution of analytes into the 

flow lamina of the buffer stream and their migration time through the separation 

chamber. The applied field may therefore be any type of field that causes deflection of 

the analytes: a thermal gradient, an electric field, or a crossflow of buffer. 

Free-flow electrophoresis (FFE) is a method in which buffer flows continuously 

in a thin stream between two plates and an electric field is applied to the separation 

chamber perpendicular to buffer flow.
73

 Analytes are introduced into the separation 

chamber and deflected in the electric field according to their electrophoretic mobility. An 
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advantage of FFE is that fractions containing separated components can be continuously 

collected. Free-flow isoelectric focusing (FFIEF) is a mode of free-flow electrophoresis. 

In FFIEF, a pH gradient is established across the separation chamber and analytes are 

deflected in the electric field, focus at their pI, and can be collected in separate fractions 

at the end of the separation chamber.
74

 FFE techniques have been used to analyze 

mitochondria. For example, two populations of intact yeast mitochondria exhibiting 

different surface and structural characteristics were separated by FFE.
75

 This technique 

has also been used to separate intact mitochondria from mitochondrial inner membrane 

fragments.
76

 This technique has been adapted to the microfluidic format, which improves 

sensitivity, speed, and decreases consumption of reagents.
77

 Micro-FFE has been used to 

analyze isolated mitochondria in both FFE mode
78

 and FFIEF mode.
59

 In the future, the 

methods described in this work could be used as a basis for designing preparative 

separations of subpopulations of organelles using FFE or FFIEF. 

2.3.3. Capillary Electrophoresis and Capillary Isoelectric Focusing 

Capillary electrophoresis (CE) is a separation technique in which analytes migrate 

through a fused-silica capillary in the presence of an electric field. Analytes are separated 

based on differences in their electrophoretic mobility, a property which depends on their 

surface charge density. In organelles, electrophoretic mobility depends on the 

deformability and relaxation of the organelle in the electric field, a capacitive effect on 

the phospholipid bilayer of the membrane, a redistribution of charged lipid molecules by 

the imposed electric field, multipole moments, and the ion polarization effect.
79-82

 



 

 

 21 

 

Advantages of this technique include fast analysis times, minimal sample consumption, 

and high resolution. Capillary isoelectric focusing (cIEF) is a related technique in which 

analytes are separated based on their isoelectric point (pI). In cIEF, a pH gradient is 

established inside the capillary.
83

 Analytes acquire charge based on the identity of their 

acidic and basic functional groups and migrate in the applied electric field. As they move 

through the pH gradient, their acidic or basic functional groups are protonated or 

deprotonated. They eventually migrate to the point in the pH gradient at which their net 

charge is zero and the pH is equal to their pI. Advantages of cIEF include the ability to 

achieve high resolution and fast analysis times using minimal amounts of sample 

compared to other isoelectric focusing methods. CE and cIEF have been used to analyze 

cells, viruses, and organelles.
84,85

 These techniques are capable of achieving high-

resolution separations of these analytes based on their surface properties. 

Many methods for characterization of mitochondrial heterogeneity by CE have 

been reported. Mitochondrial electrophoretic mobility distributions have been measured 

by CE.
86

 The existence of distributions demonstrates the heterogeneity of the surfaces of 

these organelles. The cardiolipin content of individual mitochondria has been determined 

by labeling with 10-N nonyl-acridine orange.
87

 Mitochondria have been isolated from 

single cells and separated using CE.
88

 These organelles can be sampled directly from 

tissue cross sections and analyzed using this technique.
89

 Their DNA content has been 

quantified.
90

 Binding of individual mitochondria to cytoskeleton has been quantified.
40

 

The contents of a single mitochondrion have been analyzed by microchip-CE.
91

 New 
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applications for measuring mitochondrial pI by cIEF and membrane potential by CE are 

discussed in Chapters 3 and 5 of this work. The method described in Chapter 3 is capable 

of reproducibly measuring distributions of individual mitochondrial pI and detecting 

changes to the mitochondrial surface. The method described in Chapter 5 reproducibly 

measured distributions of individual mitochondrial membrane potential and 

electrophoretic mobility. 

2.4. Analytical Aspects of CE and cIEF 

2.4.1. Instrumentation 

Basic instrumentation for performing CE consists of a fused-silica capillary, high 

voltage power supply, and detector. Capillaries used are typically 30 to 50 cm in length 

with inner diameters on the order of tens of micrometers, but extremely short or long 

capillaries have been used for specialized applications, ranging from a few centimeters
92

 

to 10 meters.
93

 Analysis times are typically around 5 to 15 minutes, although separations 

lasting tens of microseconds
94

 to tens of hours
95

 have been reported. The narrow inner 

diameter of capillaries allows for efficient heat dissipation, which prevents zone 

broadening from Joule heating caused by the high electric field strengths used (typically 

hundreds of volts per centimeter). 

Although injections can be performed electrokinetically with no additional 

instrumentation, most capillary electrophoresis instruments have some mechanism for 

performing hydrodynamic injections, either by application of pressure or vacuum to the 

capillary inlet or outlet (see Figure 2-3 below for a schematic of the instrument used in 
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this work). This injection method does not discriminate based on the electrophoretic 

mobility of the analyte, a problem suffered by electrokinetic injection which uses 

electroosmotic flow (EOF) to introduce sample to the capillary. Commercial CE 

instruments typically offer automation and the ability to perform fraction collection. 

Multi-capillary instruments can increase sample throughput by running multiple 

separations in parallel.
96

 If higher throughput is desired in future applications (e.g. for 

analysis of larger sample sizes to examine differences between two biological groups), 

the methods described in Chapters 3 and 5 could be adapted to a multi-capillary format. 

Many detection methods have been adapted to CE instruments. Detection may be 

performed on-column or post-column, depending on the technique. A specialized mode 

of on-column detection is whole-column imaging, which allows for the separation to be 

monitored as it progresses.
97

 UV/visible absorbance detectors are commonly used 

because they do not require sample derivatization, but their sensitivity is limited. 

Electrochemical detectors excel in some applications (e.g. amperometric detectors are 

highly selective and sensitive if analytes are electroactive, conductivity detectors are 

universal but have limited sensitivity).
98

 Fluorescence detectors offer excellent 

sensitivity; yoctomole detection levels have been achieved with laser-induced 

fluorescence systems utilizing a sheath-flow cuvette.
99

 However, the tradeoff is that 

fluorescence detection requires samples to be labeled, which increases sample 

preparation time. Mass spectrometry as a detection method for CE offers the advantage of 

analyte identification and has recently been applied to analytes ranging from small 
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molecules to whole cells.
100

 For detection of organelles, fluorescence detection is used 

due to its excellent sensitivity and the wide availability of organelle-specific probes (see 

the recent review by Satori et al. for an extensive list).
48

 

A lab-built CE instrument (shown schematically in Figure 2-3 below) was used 

for the experiments described in Chapters 3 and 5. This instrument has been described 

previously and features dual channel laser-induced fluorescence detection.
101

 For the 

cIEF experiments described in Chapter 3, the instrument was adapted to perform 

isoelectric focusing with on-column detection. A sample carousel used to switch between 

catholyte and chemical mobilization solutions for cIEF was added beneath the sheath-

flow cuvette (not shown). The capillary was extended down through the sheath flow 

cuvette into an outlet vial held by the sample carousel, and an electrode was added that 

also extended down into the vial. Post-column detection with a sheath-flow cuvette was 

used for the CE experiments described in Chapter 5, and an additional laser (HeNe, 543.5 

nm) was added for dual-laser excitation and dual-channel fluorescence detection of JC-1. 

2.4.2. Capillary Coatings 

Capillary coatings are commonly used in CE and cIEF to prevent analyte 

interactions with the capillary surface or to suppress or change the direction of EOF. 

Capillary coatings are particularly important in cIEF because suppression of EOF is 

required to maintain a stable pH gradient. Coatings which are covalently bonded to the 

fused silica surface can be used, which are advantageous because they are stable over 

many runs.   
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Figure 2-3. Lab-built instrument for CE-LIF and cIEF. (A) Instrument setup used 

in the method described in Chapter 5. This instrument features dual-laser excitation 

(HeNe, 543.5 and Ar
+
, 488 nm), dual-channel fluorescence detection using 

photomultiplier tubes (PMT), and post-column detection using a sheath-flow 

cuvette. (B) Detail of sheath-flow system. During separation, buffer flows through 

the cuvette due to a small height difference between the sheath-flow buffer reservoir 

and the sheath-flow waste (Δh1 ≈ 5 cm). For hydrodynamic injections, a larger 

height difference (Δh2 = 110 cm) is created by opening the electronically-controlled 

injection valve. See Chapters 3 and 5 for a complete description of this instrument. 

 

  



 

 

 26 

 

One such coating that has been used in mitochondrial CE separations is the polymer 

poly(acryloylaminopropanol), which is applied by attaching a bi-functional reagent to the 

surface of the capillary via a Grignard reaction.
102

 However, covalent coatings can be 

time consuming and difficult to apply, and may not stand up to harsh rinses required to 

remove buildup of biological materials over time. An alternative to covalent coatings are 

dynamic coatings, in which a buffer additive is used to coat the capillary surface.
103

 This 

additive may be a cationic molecule which associates with the capillary surface through 

electrostatic interactions, a neutral polymer which adsorbs to the surface through van der 

Waals interactions, or a surfactant which forms monolayers on the surface. A dynamic 

poly(vinyl alcohol) (PVA) coating has been successfully used to reduce sample 

adsorption in mitochondrial CE separations.
104

 Some disadvantages of dynamic coatings 

are that the capillary must be equilibrated with the buffer containing the additive before 

use and after rinsing steps, and that the solution viscosity is increased, which changes the 

apparent electrophoretic mobility of analytes. A middle ground between covalent 

coatings and dynamic coatings are permanently adsorbed non-covalent coatings, which 

are applied by “baking” a neutral hydrophilic polymer to the capillary surface.
105

 

Application of these coatings is straightforward and no buffer additive is needed. The CE 

experiments described in Chapter 5 utilized a permanently adsorbed PVA coating. The 

cIEF experiments described in Chapter 3 in this work were performed using a 

permanently adsorbed hydroxypropyl cellulose (HPC) coating, which was more effective 

at reducing the EOF than the PVA coating. 
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2.4.3. Buffers and Focusing Solutions 

Selection of the separation buffer is important in CE, and the appropriate buffer 

depends on the separation mode and analyte. Several buffer characteristics are considered 

for performing mitochondrial CE. The buffer must be at physiological pH (7.4) to prevent 

the organelles from being degraded under basic or acidic conditions and the solution must 

be osmotically balanced (e.g. around 300 mosM) to prevent swelling or shrinking of the 

organelles. Salts (e.g. sodium chloride) are typically used to adjust osmolarity in buffers 

for cells organelles, but the high ionic strength makes them incompatible with CE, which 

requires a non-ionic additive to the buffer. In the CE experiments described in Chapter 5 

in this work, sucrose is used to adjust the osmolarity of the solution and a HEPES buffer 

is used to control the pH. 

Different solutions are required to perform cIEF. Before focusing, the capillary is 

filled with a solution containing the analytes and a mixture of zwitterionic compounds 

(called carrier ampholytes), with an acid at the anode (called the anolyte) and a base at 

the cathode (called the catholyte). When the electric field is applied (see Figure 2-4 

below), a pH gradient forms as carrier ampholytes migrate to their pI and buffer the local 

pH. The gradient is stabilized by an influx of hydronium ions from the anolyte and 

hydroxide ions from the catholyte. Carrier ampholytes are generally a mixture of 

oligoamines with varying degrees of substitution by acidic functionalities, this mixture of 

compounds has a range of pIs depending on the pKas of the functional groups in each 

carrier ampholyte compound.
106

 Carrier ampholytes are available commercially in narrow 
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or wide pH ranges. Mixing carrier ampholytes from different suppliers or mixing a 

narrow pH range solution with a wide pH range solution can improve resolution in 

cIEF.
106

 More carrier ampholytes possessing distinct pIs will provide increased 

separation between analytes with similar pIs. 

 

Figure 2-4. Isoelectric focusing. (A) Focusing step. The electric field is applied, the 

pH gradient forms, and analytes migrate toward their pI. Anolyte: H3PO4. 

Catholyte: NaOH. (B) Focusing complete. Analytes are focused at their pI. (C) 

Mobilization step. Catholyte is replaced with chemical mobilizer, acetic acid, and 

the pH gradient containing focused analytes migrates out of the capillary. (D) 

Possible structure of a compound found in a preparation of carrier ampholytes. 
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After focusing is complete in cIEF, the pH gradient must be mobilized past the 

detector (in instruments with a single-point detector; whole-column imaging 

instruments
97

 do not require this step). Two main strategies for mobilization exist; 

hydrodynamic mobilization and chemical mobilization.
83

 A third strategy called one-step 

cIEF, in which EOF drives the pH gradient toward the detector as focusing occurs, 

requires a dynamically coated capillary to achieve partial reduction of EOF and cannot 

achieve the resolution of the other methods.
107

 In hydrodynamic mobilization, the pH 

gradient is forced out of the capillary by application of pressure to the inlet or vacuum to 

the outlet or by siphoning. Hydrodynamic mobilization can result in band broadening 

under conditions of laminar or turbulent flow. In chemical mobilization, the catholyte is 

replaced with an acid, the anolyte is replaced with a base, or a salt is added to either 

solution, and the electric field is reapplied.
83

 Migration of ions into the capillary displaces 

the ampholytes and focused analytes toward the mobilization solution in an 

isotachophoretic process.
108

 

In the cIEF experiments described in Chapter 3 of this work, a wide pH-range 

solution of carrier ampholytes was mixed with a narrow pH-range solution to achieve 

higher resolution in the pH range where mitochondria are focused. Sucrose was used to 

adjust the osmolarity of the solution to make it compatible with analysis of intact 

mitochondria. Chemical mobilization was used to avoid the possible loss of resolution 

caused by hydrodynamic mobilization. This method enabled the reproducible detection of 

distributions of individual mitochondrial isoelectric point. Changes to the mitochondrial 
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surface upon treatment with trypsin were also detected, demonstrating the ability to 

detect changes in mitochondrial surface composition. 

2.4.4. Internal Standards 

In CE experiments, internal standards are often used as EOF markers and to 

measure the limit of detection of the technique (by measuring the peak height or area). 

Monitoring the migration of a neutral marker (e.g. acetone, benzene, mesityl oxide)
109

 is 

a straightforward way to measure the mobility of the EOF, but is more prone to error 

under conditions of reduced EOF or if the marker interacts with the capillary surface. A 

charged marker allows for measurement of EOF as long as the mobility of the marker is 

known in advance. In this work, fluorescein is used as an internal standard to measure the 

EOF, correct apparent mobilities of mitochondrial events, and monitor the detector 

alignment.
40

 

In cIEF experiments, inclusion of several pI marker internal standards is crucial 

for monitoring the pH gradient, assigning pIs to analytes, and measuring the resolving 

power of the method. Baseline peak widths in time units of internal standards are used to 

determine the resolving power (ΔpI) using Equation 2-1 below.  

         
             

 
  

         

       
  

(Equation 2-1) 

Better resolving power (smaller ΔpI) results in better separation between analytes with 

similar pI; cIEF methods are capable of achieving resolving power better than 0.01 pH 

units.
110
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Multiple markers must be used because the pH gradient is nonlinear.
111

 There are 

several causes of pH gradient nonlinearity. First, commercial preparations of carrier 

ampholytes do not contain compounds with a uniform distribution of pIs across the 

claimed pH range, generally containing more acidic ampholytes than basic ampholytes.
106

 

Mixing narrow pH range solutions of carrier ampholytes with broad range solutions also 

causes nonlinearity. Since EOF increases with increasing pH, compression of the pH 

gradient occurs in the basic region. Therefore, the most reliable determination of pI in a 

certain region should be made only with a linear fit between the two pI markers flanking 

that region. 

In cIEF with UV-visible absorbance detection, proteins with known pI are 

commonly used as internal standards.
112

 For instruments with fluorescence detection, the 

proteins must be derivatized, which may change their pI. For example, labeling of a 

protein’s primary amines with fluorescein isothiocyanate replaces a positive charge with 

a negative charge.
113

 Incomplete labeling of a protein may also produce products with a 

range of pIs. Dyes which preserve the native charge state such as Chromeo P540 have 

been designed to address this problem.
114

 Besides the need to label them for fluorescence 

detection, other limitations of using proteins as internal standards include the fact that 

different isoforms may possess different pIs and that conformational changes such as 

denaturing can expose internal residues which affect pI. Synthetic peptides have also 

been used as pI markers, although these also require a labeling step for fluorescence 

detection.
111

 Small molecule pI markers based on derivatization of fluorescein with 
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mono-N alkylated piperazines have been synthesized and used in cIEF.
115

 These markers 

do not have the limitations associated with using proteins or peptides as pI markers and 

are stable and water-soluble. A set of four of these pI markers are used as internal 

standards in the cIEF experiments described in Chapter 3 in this work to accurately 

determine mitochondrial isoelectric points. 

2.5. Modeling Isoelectric Point 

2.5.1. Proteins and Particles 

Measurement of the pI of proteins, synthetic nanoparticles, and biological 

particles is useful in their characterization for predicting separation conditions, 

confirming the identity of an unknown, evaluating the synthesis of a batch of 

nanoparticles, or detecting different species of bacteria or strains of viruses.
84,116,117

 

Prediction methods have been devised to understand better the relationship between 

structure and pI. Prediction of protein pI from primary amino acid sequences is a well-

established and widely used technique which aids in identification of unknown 

proteins.
118,119

 Briefly, the pKas of all acidic or basic functional groups in the protein 

determine the net charge at a given pH. The pI of a given protein can be found by 

numerically solving an expression that relates the net charge at a given pH to the number 

and identity of all acidic and basic functional groups. This is represented in general form 

by Equation 2-2 below, where nx is the number of each functional group x of a given pKa 

in the composition of interest and αx(pH) represents the respective electrical net charge 
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taking into account pH-dependent dissociation of the functional group. This process is 

described in detail in Chapter 4 and Appendix B of this work. 

                

(Equation 2-2) 

Prediction of the pI of nanoparticles coated with mixtures of two different proteins has 

been reported using this strategy.
120

 Chapter 4 of this work describes prediction of pIs of 

a more complex system, the mitochondrial outer membrane. This method represents a 

valuable new tool to model the heterogeneity of mitochondrial pI and can be used to 

predict changes in pI upon changes to surface composition. 

2.5.2. Origin of Mitochondrial Isoelectric Point 

Mitochondrial pI depends on the chemical composition of the mitochondrial outer 

membrane. The number and identity of ionizable functional groups of the cytosolic 

domains of phospholipids and proteins in the outer membrane influences the surface 

charge at a given pH. Mitochondrial outer membrane phospholipids have been 

determined experimentally.
121-125

 Many mitochondrial outer membrane proteins have 

been identified (available in the UniProt
126

 and Mitominer
127

 databases), but quantitation 

of the complete outer mitochondrial membrane proteome has not yet been achieved. 

Damage to proteins and phospholipids and post-translational modifications to 

proteins in the mitochondrial outer membrane will also influence mitochondrial pI. For 

example, phosphorylation of serine or threonine is a common post-translational 

modification that would add negative charge to the outer mitochondrial surface; this 
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modification would change the pI. Ubiquitination of outer membrane proteins is a critical 

signaling step in the elimination of mitochondria by the mitophagy pathway,
128

 addition 

of ubiquitin to lysine residues would modify mitochondrial pI. Damage to mitochondrial 

proteins, such as carbonylation of lysine, arginine, and histidine residues,
129

 would also 

result in changes to pI. 

Mitochondrial pI has been determined previously in different models. 

Mitochondria from rat kidney and liver had average pIs of 3.9 and 4.4; this was 

determined by observing their migration across a microscope slide in buffers of varying 

pH.
130

 Another similar study reported pIs of 4.65 to 4.75 for mitochondria isolated from 

rat liver.
131

 A method known as cross-partitioning was used to determine average pIs of 

mitochondria from rat liver (5.2-5.4),
132

 bovine heart (5.6),
133

 and rat brain (4.5).
134

 These 

methods all report an average value of mitochondrial pI. In the work described in Chapter 

3, distributions of individual mitochondrial pI are determined, and Chapter 4 describes 

efforts to model the relationship between mitochondrial pI and surface composition. 

These methods provide valuable tools to measure mitochondrial heterogeneity in surface 

composition, and to understand and predict the modifications to the mitochondrial surface 

that may cause this heterogeneity. Increased insight into these mitochondrial properties 

could help to elucidate their role in the aging process and in age-related disease. 
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Chapter 3.  

 

Capillary Isoelectric Focusing of Individual Mitochondria 

Reprinted (adapted) with permission from Wolken, G. G., Kostal, V., Arriaga, E.A., 

“Capillary Isoelectric Focusing of Individual Mitochondria.” Anal. Chem. 2011, 83, 612-

618. Copyright 2011 American Chemical Society. 

 

 

All data collection and analysis was performed by G. Wolken. Dr. V. Kostal advised on 

experimental design and method development. We thank Karel Slais (Institute of 

Analytical Chemistry of the ASCR, Brno, Czech Republic) for the kind gift of the pI 

markers. 
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Mitochondria are highly heterogeneous organelles that likely have unique 

isoelectric points (pI), which are related to their surface compositions and could be 

exploited in their purification and isolation. Previous methods to determine pI of 

mitochondria report an average pI. This article is the first report of the determination of 

the isoelectric points of individual mitochondria by capillary isoelectric focusing (cIEF). 

In this method, individual mitochondria enriched by differential centrifugation from 

cultured rat myoblast cells are labeled with the mitochondrial-specific probe 10-N-nonyl 

acridine orange (NAO). The mitochondria are then injected into a fused-silica capillary in 

a solution of carrier ampholytes at physiological pH and osmolarity, where they are 

focused then chemically mobilized and detected by laser-induced fluorescence (LIF). 

Fluorescein-derived pI markers are used as internal standards to assign a pI value to each 

individually detected mitochondrial event, and a mitochondrial pI distribution is 

determined. This method provides reproducible distributions of individual mitochondrial 

pI, accurate determination of the pI of individual mitochondria by the use of internal 

standards, and resolution of 0.03 pH units between individual mitochondria. This method 

could also be applied to investigate or design separations of organelle subtypes (e.g. 

subsarcolemmal and intermyofibrillar skeletal muscle mitochondria) and to determine the 

pIs of other biological or non-biological particles. 

3.1. Introduction 

Mitochondria are heterogeneous organelles responsible for energy production and 

for cellular signaling pathways such as apoptosis.
26

 Mitochondrial dysfunction is 
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associated with diseases such as cancer and Parkinson’s, and these organelles are thought 

to be involved in the aging process.
135

 It is still unclear how important functional 

differences may arise from mitochondrial heterogeneity.
8
 Due to this fact, methods that 

can distinguish between individual mitochondria are desirable. In particular, methods that 

underscore heterogeneity at the surface of mitochondria are desirable because it is the 

surface of these organelles that ultimately may regulate their participation in biological 

processes; for example, proteins such as the mitofusins are involved in regulating 

mitochondrial fusion and fission.
136

 

Capillary electrophoresis (CE) is a technique useful for characterization of 

mitochondrial heterogeneity.
86

 This technique has been used to analyze individual 

organelles and other biological particles.
85

 In this method, organelles or particles are 

separated in an electric field based on differences in electrophoretic mobility. Individual 

mitochondria possess different electrophoretic mobilities due to differences in their 

morphology and outer membrane composition. However, some mitochondria may not 

exhibit differences in electrophoretic mobility but may still exhibit important functional 

differences stemming from variation in abundance of outer membrane proteins. 

Alternatively, isoelectric point (pI) is a property that may allow for characterization and 

separation of these mitochondria. There are no reports of determination of the pI of 

individual organelles. 

Previous reports of mitochondrial pI vary depending on the source and method 

used to determine pI. Mitochondria from rat kidney and liver were found to have pIs of 
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3.9 and 4.4 by observing their migration time across a microscope slide in buffers of 

different pH.
130

 Cross-partitioning revealed that rat liver,
132

 bovine heart
133

 and rat 

brain
134

 mitochondria have pIs of 5.2 - 5.4, 5.6 and 4.5, respectively. The resolving power 

of this method is not well defined and the isoelectric point determination depends on the 

partitioning of the sample between phases of different electrostatic potential, requires 

multiple measurements at different pH, and consumes mL sample volumes. Microfluidic 

devices designed for free-flow isoelectric focusing have been used to determine that the 

pI of mitochondria from several cell lines lies between pI 4 and 5.
59

 The resolving power 

of these devices is typically on the order of 0.2 pH units or higher, and they use sample 

amounts larger than those used for cIEF.
137

 Clearly, while methods such as free-flow 

isoelectric focusing are ideal for sample enrichment on a preparative scale, they have 

inherent limitations in resolving power and detection sensitivity that make them 

unsuitable for investigation of small differences in mitochondrial pI and detection of 

individual mitochondria. 

Capillary isoelectric focusing (cIEF) has been widely applied to the separation of 

proteins and is suitable for the analysis of biological particles such as microorganisms, 

viruses, and cells.
138, 139

 This technique has exceptional resolving power (e.g., ΔpI ~ 0.01 

pH units) and requires only µL-scale volumes of sample. In the method described here, 

mitochondria are isolated from the cell and labeled with the cardiolipin-specific probe 10-

N-nonyl acridine orange (NAO). The mitochondria are then suspended in a solution 

containing carrier ampholytes, pI marker internal standards,
115

 and sucrose to maintain 
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physiological osmolarity. The carrier ampholytes are photobleached using a light-

emitting diode to decrease their characteristic fluorescent background.
114

 A fused-silica 

capillary coated with the neutral polymer hydroxypropyl cellulose
105

 (HPC) to suppress 

electroosmotic flow is then filled with the mitochondrial suspension. The inlet and outlet 

are placed in anolyte and catholyte, respectively, and the mitochondria are then focused 

in the pH gradient formed by application of an electric field, and mobilized past an on-

column detection point by replacing the catholyte with an acid.
83

 Mitochondria are 

detected as narrow spikes, and pI markers are detected as broad peaks. To demonstrate 

the sensitivity of this technique to changes in the composition of the mitochondrial 

surface, the mitochondria are treated with the protease trypsin. This treatment cleaves 

cytosolic domains of mitochondrial membrane proteins and other proteins associated with 

the outer surface of mitochondria, altering the pI. Changes in pI as low as 0.03 pH units 

are clearly detected by the proposed methodology. 

3.2. Experimental Section 

3.2.1. Reagents and Materials 

House deionized water was further purified with a Synergy purification system 

(Millipore, Billerica, MA) and was used in preparation of all buffers and solutions. 

Sodium hydroxide (NaOH), potassium hydroxide (KOH), phosphoric acid (H3PO4), 4-(2-

Hydroxyethyl)piperazine-1-ethanesulfonic acid (HEPES), hydroxypropyl cellulose (HPC, 

average Mw = 100,000), tris(hydroxymethyl)aminomethane (tris), methanol, DMSO, and 

gentamicin were from Sigma-Aldrich (St. Louis, MO). Ethylene glycol-bis(2-
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aminoethylether)-N,N,N′,N′-tetraacetic acid (EGTA) was from Amresco (Solon, OH). 

Acetic acid was from BDH Aristar (VWR, West Chester, PA). Sucrose was from Roche 

(Indianapolis, IN). D-mannitol was from Riedel de-Haën (Seelze, Germany). Fluorescein 

and 10-N-nonyl acridine orange (NAO) were from Molecular Probes (Invitrogen, 

Carlsbad, CA). Biolyte 3-10 and 4-6 carrier ampholytes (40% solutions) and phosphate 

buffered saline (PBS, 10×) were from Bio-Rad (Hercules, CA). Dulbecco’s modified 

Eagle medium (DMEM), fetal bovine serum (FBS), and 0.5% trypsin (10×, 5 g/L trypsin, 

2 g/L EDTA·4Na, 8.5 g/L NaCl) were from Gibco (Invitrogen, Carlsbad, CA). Trypan 

blue stain (0.4%) was from Bio-Whittaker (Walkersville, MD). The Pierce BCA protein 

assay kit was used for protein quantitation (Thermo, Rockford, IL). Sequencing grade 

modified trypsin was from Promega (Madison, WI), and was reconstituted according to 

the manufacturer’s instructions. Fused-silica capillary tubing (50 µm I.D., 150 µm O.D., 

12 µm polyimide coating) was from Polymicro (Phoenix, AZ). Fluorescent pI markers 

were a kind gift from Karel Slais, Academy of Sciences of the Czech Republic. 

3.2.2. Buffers and Solutions 

Mitochondrial isolation buffer contained 210 mM mannitol, 70 mM sucrose, 10 

mM HEPES, and 5.0 mM EDTA, adjusted to pH 7.4 with 1 M KOH. The HEPES buffer 

contained 10 mM HEPES, adjusted to pH 7.4 with KOH. Digestion buffer contained 10 

mM tris-HCl, 250 mM sucrose, and 0.1 mM EGTA, adjusted to pH 7.4 with KOH. All 

buffers were filtered to 0.2 µm before use. A stock solution of 5.2 mM NAO was 

prepared in DMSO and diluted with mitochondrial isolation buffer before use. A stock 
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solution of 2.25 mM fluorescein was prepared in methanol and diluted with HEPES 

buffer before use. Focusing solution contained 230 mM sucrose, 1% (w/v) Biolyte 3-10 

carrier ampholytes, 1% (w/v) Biolyte 4-6 carrier ampholytes, and the four internal 

standard fluorescent pI markers at a concentration of 0.02 ng/mL each. The carrier 

ampholytes were first photobleached overnight with a 120 mW LED with λmax at 472 

nm.
114

 Anolyte, catholyte, and chemical mobilizer solutions for cIEF were, respectively, 

100 mM H3PO4, 20 mM NaOH, and 350 mM acetic acid. 

3.2.3. Cell Culture 

Adherent L6 rat myoblast cells (ATCC, Manassas, VA) were cultured in vented 

75 cm
2
 flasks at 37° C and 5% CO2 in DMEM supplemented with 10% FBS and 0.01 

mg/mL gentamicin. Cells were split every 2-4 days after reaching 90% confluence by 

rinsing with 1× PBS, releasing with 0.5% trypsin in PBS, and seeding back into the flask 

with fresh DMEM at a 1:40 splitting ratio. 

3.2.4. Mitochondrial Preparation 

Mitochondria were prepared using mechanical homogenization and differential 

centrifugation procedures.
78

 Cells were harvested with 0.5% trypsin in PBS and the cell 

suspension was added to an equal volume of DMEM. All subsequent procedures were 

performed on ice or at 4° C unless otherwise noted. Cells were washed three times with 

mitochondrial isolation buffer and resuspended at an approximate concentration of 5.6 × 

10
6
 cells/mL. The cells were disrupted using a glass Potter-Elvehjem homogenizer 

(Kontes, Vineland NJ) using a 0.06 mm clearance pestle. To measure cell density and 
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homogenization efficiency, aliquots of cells were stained with trypan blue dye before and 

after homogenization and counted with a Fuchs-Rosenthal counting chamber (Hausser 

Scientific, Horsham, PA). Cell breakage above 90% was achieved by applying a 

sufficient number of strokes with the homogenizer and counting the remaining 

undisrupted cells. After homogenization, intact cells, nuclei, and cellular debris were 

eliminated from the preparation by centrifuging at 600 g for 10 minutes. Mitochondria in 

the supernatant were pelleted by centrifuging at 10,000 g for 10 minutes and resuspended 

in mitochondrial isolation buffer. Mitochondria were labeled by incubating with 5 µM 

NAO for 10 minutes in the dark. The mitochondria were then pelleted by centrifuging at 

10,000 g for 10 minutes and resuspended in mitochondrial isolation buffer. This step was 

performed two additional times to wash the mitochondria. Mitochondria were then kept 

on ice until analysis by cIEF. Immediately prior to analysis, aliquots of this mitochondrial 

suspension were diluted 1:5 with mitochondrial isolation buffer. 

3.2.5. Trypsin Treatment 

The procedure for trypsin treatment of mitochondria was reported by Forner et 

al.
140

 The above preparation procedure was followed until the step before NAO labeling. 

At this point, mitochondria were instead resuspended in digestion buffer and split into 

two aliquots. Total protein in the mitochondrial suspensions was determined by the BCA 

assay. Sequencing grade modified trypsin was reconstituted in the provided solution (1 M 

acetic acid), heated at 30° C for 30 minutes, and then added to one mitochondrial sample 

in a 50:1 protein: trypsin ratio. Mitochondrial suspensions were then gently mixed 
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overnight on a rotational gel shaker at 4° C. After this overnight digestion, mitochondria 

were labeled by NAO and washed with mitochondrial isolation buffer according to the 

above procedure, then analyzed by cIEF according to the procedure below. 

3.2.6. Instrument Description 

A homebuilt capillary electrophoresis instrument which has been described 

previously
141

 has been adapted to cIEF for this work. A sample carousel was added to the 

outlet of the capillary for delivery of catholyte and chemical mobilizer. The 488 nm light 

from a 15 mW Ar
+
 laser (Melles-Griot, Carlsbad CA) was focused onto the detection 

window of the capillary. Light was collected at 90° to the laser by a 40×, 0.55 NA 

objective (New Focus, San Jose, CA). Scattered laser light was eliminated with a 488RU 

scattering filter (Semrock, Rochester, NY), and fluorescence was passed through a 

pinhole and a 535 ±17.5 nm band-pass filter (Omega Optical, Brattleboro, VT) onto a 

photomultiplier tube (R1477, Hamamatsu, Bridgewater, NJ) biased at 1000 V. 

3.2.7. Capillary Preparation 

Fused-silica capillaries were coated with HPC by a method adapted from Shen et 

al.
105

 Briefly, three capillaries were rinsed with methanol, 1.0 M NaOH, 0.1 M NaOH, 

and H2O for 10 minutes each by flushing under 10 psi nitrogen pressure. The capillaries 

were purged and flushed with a 5% (w/v) HPC solution for 1 hour. The solution was then 

purged from the capillaries. After purging, the capillaries were heated between two 

resistant plates with temperature controlled by a variable-voltage power source from 60 

to 140 °C in ~15 minutes, and then holding at 140 °C for 30 minutes. The HPC flush, N2 
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purge, and heating steps were repeated once for a more robust coating. Capillaries were 

stored dry until use. Before use, the inlet and outlet were trimmed and the polyimide 

coating was burned off at the detection window to produce capillaries with total length 

38.9 cm and effective length 35.7 cm. 

The HPC-coated capillary was first installed in the instrument and aligned by 

flushing a 1 × 10
-9

 M solution of fluorescein in HEPES buffer by application of pressure 

to the inlet. The limit of detection and electroosmotic flow were then determined by 

measuring the peak height and electrophoretic mobility of an electrokinetically-injected 

sample of 1 × 10
-10

 M fluorescein in HEPES buffer. The limit of detection was 

determined to be 29 ± 4 zeptomoles (average ± std. dev.; n = 3). The electroosmotic flow 

was calculated as the difference between fluorescein’s apparent electrophoretic mobility 

and net electrophoretic mobility of -3.0 ± 0.1 × 10
-4

 cm
2
·V

-1
·s

-1
 at pH 7.4.

78
 The EOF was 

determined to be 4.26 ± 0.07 × 10
-5

 cm
2
·V

-1
·s

-1
 (n = 3). This reduction from the value of 

5.1 ± 0.1 × 10
-4

 cm
2
·V

-1
·s

-1
 (n = 15) for uncoated fused silica indicated an effective 

suppression of EOF by the capillary coating. 

3.2.8. cIEF Procedure 

To perform the cIEF procedure, the capillary was rinsed first with methanol for 15 

minutes, water for 5 minutes, then a solution mixture of 230 mM sucrose, 1% Biolyte 3-

10, and 1% Biolyte 4-6 for 10 minutes. A mitochondrial suspension to be analyzed by 

cIEF was first mixed gently with a pipettor, and then a 2 µL aliquot of this suspension 

was added to 50 µL of focusing solution and mixed. The sample was introduced to the 
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capillary by application of 20 kPa to the inlet end. The PMT signal was monitored during 

injection to ensure complete filling of the capillary (a total volume of 760 nL). After 

injection, the outlet of the capillary was rinsed once in a 0.5 mL vial of catholyte, and 

then switched to the running vial of catholyte. The inlet was rinsed once in a vial of 

anolyte, and then switched to the running vial of anolyte. An electric field of 400 V/cm 

was applied, and the PMT and current signals were monitored during focusing. After the 

current decreased and reached a plateau indicating completion of focusing (for the 

experiment shown in Figure 3-1, the current changed from -44 µA to -7 µA in 931 

seconds), the outlet of the capillary was switched to a chemical mobilization solution of 

350 mM acetic acid and the electric field was re-applied. Focused zones were then 

mobilized past the detector (cathodic mobilization). Between runs, the capillary was 

rinsed with methanol, water, and the sucrose-Biolyte solution. After the analysis, the 

capillary was flushed with methanol and water, then purged with air and stored dry. 

3.2.9. Data Analysis 

Data from the PMT was acquired at 100 Hz, digitized by an I/O data acquisition 

card (PCIMIO-16E-50) operated by Labview 5.1 software (National Instruments, Austin, 

TX), and stored as a binary file. Data was analyzed in Igor Pro software (Wavemetrics, 

Lake Oswego, OR) by a procedure written in-house which has been described previously, 

PeakPicks.
101

 Briefly, electropherograms were median filtered to separate narrow spikes 

(peaks with baseline widths smaller than 50 data points, or 0.50 s) from broad peaks (pI 

markers and fluorescent species in the carrier ampholytes), as shown in Figure 3-2.  
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Figure 3-1. pH gradient determination using internal standards. (A) Signal from 

fluorescent pI markers after median filtering to remove narrow spikes. Separation 

conditions: 1% Biolyte 3-10, 1% Biolyte 4-6, 230 mM sucrose, 0.02 ng/mL of each 

fluorescent pI marker. The anolyte, catholyte, and chemical mobilizer were 100 mM 

H3PO4, 20 mM NaOH, and 350 mM acetic acid. The electric field applied during 

focusing and mobilization was 400 V/cm. Detection was at 535 ± 17.5 nm, data 

acquisition was at 100 Hz, 1000 V was applied to the PMT. (B) pH gradient, as 

determined by mobilization times of the four pI markers. 
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Figure 3-2. Signal processing to select mitochondrial events. (B) Signal during 

mobilization step of focused mitochondria and pI marker internal standards. 

Narrow spikes represent individual mitochondrial events; broad peaks represent pI 

markers or fluorescent species from the carrier ampholytes. The pI markers are 

indicated with an asterisk (*). (A) Mitochondrial events selected after application of 

median filter and clipping of the lower signal. There are 360 mitochondrial events 

detected. The inset at the right is an expanded view of a crowded section of the 

electropherogram showing the resolution between individual spikes. 

For example, the spikes selected in one experiment had baseline widths of 0.05 ± 0.01 

seconds (avg. ± std. dev, n = 405) and the pI marker peaks had baseline widths of 25 ± 9 

seconds (avg. ± std. dev, n = 4). The mobilization times of the pI markers were used to 

define the pH gradient, and the peak widths were used to determine the resolving power 

of the method. Mitochondrial events were then selected over noise by selecting any 

spikes with signal intensity above a threshold of five standard deviations over the 

background signal. A mitochondrial event is defined as an individual, intact 

mitochondrion, a mitochondrial fragment, an aggregate of multiple mitochondria, or a 

false positive (another organelle or particle exhibiting green fluorescence or a random 

deviation of the background above the threshold). The threshold limits the number of 

false positives detected to less than 5% of the total number of detected mitochondrial 
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events (determined by analysis of both an unlabeled and NAO-labeled mitochondrial 

preparation, see Appendix A, Figure A-1 for details). Each mitochondrial event was then 

assigned an individual pI based on its mobilization time. 

3.2.10. Peak Overlap 

An issue in analysis of particles by capillary electrophoresis is whether peak 

crowding is a problem; i.e. whether observed peaks represent individual or multiple co-

migrating components. Statistical overlap theory has been applied to this problem to 

determine a threshold for peak saturation, below which the number of observed peaks is a 

good estimate for the number of actual peaks, and so the effect of peak overlap on the 

observed distribution is minimal.
142

 We have applied this statistical test to each 

mitochondrial cIEF experiment and have found that peak overlap is not a significant 

problem (see Appendix A, Section A.2. for details). 

3.3. Results and Discussion 

3.3.1. Photobleaching of Carrier Ampholytes 

Commercial preparations of carrier ampholytes are known to contain fluorescent 

species.
143

 This increases the background in cIEF with laser induced fluorescence 

detection, so it is necessary to photobleach the carrier ampholytes to reduce this 

background. Ramsay et al. demonstrated an elegant and simple method for reducing the 

background from the carrier ampholytes by photobleaching them with light emitting 

diodes with λmax matching that of the laser used for excitation.
114

 We employed this 

method using a blue LED with λmax at 472 nm to photobleach a 1:1 mixture of 40% 
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Biolyte 3-10 and 40% Biolyte 4-6 overnight. After photobleaching, the reduction in 

background fluorescence from the carrier ampholytes was measured by focusing and 

mobilizing a solution with 2% Biolyte 3-10, 2% Biolyte 4-6, and 220 mM sucrose. The 

average signal from the untreated carrier ampholytes was 3.6 ± 1.8 V, as compared to 1.1 

± 0.4 V for the photobleached carrier ampholytes (see Appendix A, Figure A-2 for 

details). This reduction in background signal results in an increase in sensitivity 

necessary to detect individual mitochondria. 

3.3.2. pH Gradient and pI Determination 

After the signal from the PMT is median-filtered to separate narrow spikes from 

broader peaks, the mobilization times (tm) of the four pI markers are used to determine 

equations relating tm to pI. Since the shape of the pH gradient is dependent on the EOF, 

which is in turn dependent on the integrity of the capillary coating (we observed an 

increase in the EOF from 4.26 ± 0.07 × 10
-5

 cm
2
·V

-1
·s

-1
 directly after coating to 5.78 ± 

0.04 × 10
-5

 cm
2
·V

-1
·s

-1
 after five days and 14 cIEF runs), these internal standards are 

necessary to compare pI data from run to run. For example, the equations for the pH 

gradient for the experiment shown in Figure 3-1 are given below. 

                       (Equation 3-1A) 

                       (Equation 3-1B) 

                       (Equation 3-1C) 

Each mitochondrial event is assigned a pI using the appropriate equation for its 

mobilization time. Events which are mobilized past the detection point before the pI 5.5 
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marker are assigned a pI using the first equation, events which are detected between the 

pI 5.5 and 4.7 markers are assigned a pI using the second equation, and events detected 

after the 4.7 marker are assigned a pI using the third equation. We used this method, 

rather than using a single fit to describe the pH gradient, for two reasons. First, the pH 

gradients produced in cIEF with commercial preparations of carrier ampholytes are not 

linear.
111

 The causes of nonlinearity include compression of the pH gradient in the basic 

region by residual EOF, the presence of fewer basic than acidic carrier ampholytes in 

commercial preparations, and local effects on the gradient by the analytes themselves.
144

 

Second, the gradient should not be linear across the entire pH range because we used a 

mixture of narrow (4-6) and wide-range (3-10) carrier ampholytes. Therefore, the most 

reliable determination of pI in a certain region should be made only with a linear fit 

between the two pI markers flanking that region.  

For three replicate analyses of isolated mitochondria, the mean pI was determined 

to be 5.9 ± 0.6 and the median pI was 6.0 (see Table 3-1). These values are slightly 

higher than previous reports of mitochondrial pI mentioned in the introduction, which 

range from 3.9 to 5.6. These differences could be accounted for by: (i) the different 

mitochondrial sources, (ii) variations in sample preparation and purification, and (iii) 

technique biases. Mitochondria in previous determinations were obtained from rat liver, 

kidney, and brain, bovine heart, and several types of cell cultures, including HT-29 cells, 

HeLa cells, and NR6wt murine fibroblasts.
59,130,132-134

 Different disruption procedures 

could cause variations in their outer surface characteristics such as those resulting from 
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different levels of cytoskeletal components that were not removed during the isolation 

procedure.
62

 Lastly, some of the previous methods give an indirect measurement of pI 

(i.e. cross partitioning or observation of electrophoretic mobility at different pH), and did 

not include pI standards. 

Table 3-1. Mitochondrial pI statistics from three consecutive cIEF runs. 

 Run number 

 1 2 3 pooled 

number of mitochondrial events 451 360 405 1216 

median pI 6.0 6.0 6.0 6.0 

mean pI 5.9 5.9 5.9 5.9 

standard deviation 0.6 0.5 0.6 0.6 

minimum pI 3.9 4.1 3.9 3.9 

maximum pI 6.9 6.8 6.8 6.9 

 

3.3.3. Resolving Power and Accuracy 

It is informative to determine the resolving power of the method (the minimum 

difference in pI analytes must possess to be separated). The peak standard deviations   of 

two adjacent pI markers, measured in time units, can be used to determine the resolving 

power in pI units using the following equation. 

          
             

 
  

         

       
  (Equation 3-2) 

For the experiment shown in Figure 3-1, an average resolving power of 0.03 pH 

units is calculated. This is comparable to previous reports of resolving power in cIEF. 
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However, the true resolving power of the method for mitochondria should be better than 

0.03. Individual mitochondrial events are detected not as broad peaks consisting of a 

distribution of an analyte focused at its pI, but as narrow spikes with width defined by 

their migration time through the laser beam. 

The accuracy of the pI determination is limited by the accuracy to which the true 

pIs of the standards are known. Since pI is temperature-dependent and the pIs of the 

standards are reported to one decimal place, we report mitochondrial pIs with an accuracy 

of ±0.1 pH units. A full propagation of error on the formula used to calculate individual 

pI from the internal standards supports this conclusion (see Appendix A, section A.4. for 

details). 

3.3.4. Reproducibility of the Mitochondrial pI Distribution 

Reproducibility of this technique was assessed by performing three consecutive 

analyses of the same mitochondrial sample. While the data can be represented 

statistically as in Table 3-1 or graphically as in Figure 3-3, the quantile-quantile plot (q-q 

plot) can be used to demonstrate the reproducibility of the distributions more clearly. This 

plot is produced by graphing the 5
th

 through 95
th

 percentiles of each individual run 

against the average percentiles of the three runs, and has been used previously to compare 

mitochondrial migration time distributions in capillary electrophoresis.
145

 The 

mitochondrial pI distributions are considered to be qualitatively similar since the majority 

of the data falls very close to the line. Visual inspection of the q-q plot in Figure 3-4 
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indicates that the distributions are more reproducible above pI 5.5. Additionally, the sum 

of squares of the residuals (ssres) can be used as a metric for reproducibility: 

                     
 
                 (Equation 3-3) 

For the three consecutive runs, the ssres are 0.015, 0.150, and 0.145 respectively 

for runs 1, 2, and 3. We will therefore consider distributions to be different if their q-q 

plot produces a sum of squares of residuals larger than 0.150. 

 

 

Figure 3-3. Mitochondrial pI distributions from three consecutive cIEF runs. (A) 

Individual distributions from each run. The total number of mitochondrial events 

detected is 451, 360, and 405 for 1, 2, and 3. Each plot is normalized to the total 

number of mitochondrial events from that run. (B) Mitochondrial pI distribution, 

pooled from the three consecutive cIEF runs. Error bars for each bin represent plus 

or minus one standard deviation between the three runs. The total number of 

mitochondrial events detected is 1216. 
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Figure 3-4. Q-Q plot to assess reproducibility of three consecutive cIEF runs. The 

percentiles from each run (y-axis) are plotted against the percentiles of the pooled 

data (x-axis). This plot is a qualitative indication that the distributions are very 

reproducible above pI 5.5. The sums of squares of the residuals are 0.015, 0.150, and 

0.145 respectively for runs 1, 2, and 3. 

 

3.3.5. Variation of Mitochondrial pI 

Biological variation and variations in sample preparation are expected to affect 

mitochondrial pI distributions determined with this technique. First, natural biological 

variation between cells and individual mitochondria could be responsible for differences 

in pI – mitochondria from cells at different passage numbers (different age), and different 

stages in the cell cycle may exhibit different surface characteristics. Within the cell, 

mitochondria are a dynamic network of organelles which undergo morphological changes 

during fusion and fission and with changes in cellular energy status.
146

 Different proteins 

localized to the surface of mitochondria at different stages of the cell cycle or differences 

in mitochondrial morphology could affect mitochondrial pI. Secondly, differences in 

sample preparation could cause variation in pI. Harsher homogenization of the cells or 
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variation in pipetting during resuspension of the mitochondrial pellets could affect 

mitochondrial surface characteristics. It has been previously shown that variations in 

sample preparation and storage conditions affect mitochondrial electrophoretic 

mobility.
62

 In fact, there is a difference in the pI distributions of freshly-isolated 

mitochondria described in Table 3-1 and untreated mitochondria stored overnight 

described in Table 3-2. We attribute this difference to variations in sample preparation 

and the different storage conditions. The experiment described in Table 3-1 was 

performed with freshly-isolated mitochondria, and the experiment described in Table 3-2 

used mitochondria that were stored overnight at 4° C in a different buffer. However, these 

sources of variation should not affect the utility of the technique to determine 

mitochondrial pI distributions as long as proper controls are used. 

Table 3-2. Effect of overnight trypsin treatment.
*
 

 untreated trypsin-treated 

number of mitochondrial events 461 432 

median pI 5.8 5.7 

mean pI 
**

 5.7 5.6 

standard deviation 0.7 0.6 

minimum pI 3.9 3.9 

maximum pI 6.8 6.8 

* Data is pooled from two cIEF runs of each sample. 

** The difference in the means is statistically significant, p = 0.0181. 
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3.3.6. Effect of Trypsin Treatment 

Trypsin is a protease that digests proteins by hydrolytic cleavage of the peptide 

backbone at the C-terminus of lysine and arginine residues.
147

 Treatment of a 

mitochondrial preparation with trypsin should cleave proteins associated with the 

mitochondrial outer membrane, the cytosolic domains of mitochondrial outer membrane 

proteins, and cytoskeletal proteins attached to mitochondria.
39,140

 We analyzed untreated 

and trypsin-treated mitochondria by cIEF (two replicate analyses of each sample) and 

found the mitochondrial pI distribution to be shifted. Examining the q-q plots in Figure 3-

5 reveals that there is a greater difference between the pI distributions of untreated and 

trypsin-treated mitochondria than there is between replicate analyses of either sample. 

When comparing the pooled data from the two cIEF runs of trypsin-treated mitochondria 

to the pooled data from the untreated mitochondria (Table 3-2), the ssres is 0.335 (Figure 

3-5 A). This value is larger than the ssres of 0.143 for the comparison of two replicate runs 

of trypsin-treated mitochondria (Figure 3-5 B) and 0.081 for the comparison of two 

replicate runs of untreated mitochondria (Figure 3-5 C). The ssres of 0.143 and 0.081 are 

also comparable to those calculated for replicate runs of the same sample in the above 

section. The median pI of the trypsin-treated mitochondria (5.7) was 0.1 pH units lower 

than that of the untreated mitochondria. This pI difference could not have been detected 

with other techniques with resolving power higher than 0.1. The mean pI was also lower 

(see Table 3-2). The means were statistically different, p = 0.0181. More information 

about the pI distribution can be gained from examining the q-q plot; the plot in Figure 3-5 
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A indicates that the trypsin-treated pI distribution is shifted to lower pI but approximately 

the same shape as the untreated distribution. From this we can conclude that trypsin 

treatment decreases the net charge on the surface of mitochondria, by cleavage of 

mitochondrial and mitochondrial-associated proteins and cytoskeletal components. 

 

Figure 3-5. Q-Q plots showing the effect of trypsin treatment on the pI of 

mitochondria. The sums of squares of the residuals are 0.335, 0.143, and 0.081 

respectively for A, B, and C, indicating that trypsin treatment changes the 

mitochondrial pI distribution. The majority of points in A fall below the line, 

indicating that the trypsin-treated pI distribution is shifted to lower pI. 

 

3.4. Conclusions 

We have presented a method for the determination of the pI of individual 

mitochondria by cIEF with laser-induced fluorescence detection. The use of fluorescent 

internal standards provides an accurate determination of mitochondrial pI. The ability to 

determine the pIs of individual mitochondria is an important tool for characterizing 

mitochondrial heterogeneity and detecting changes to the composition of the surface of 

mitochondria. The fact that mitochondria exhibit a pI distribution reveals that they are a 

heterogeneous population with different surface characteristics; e.g. mitochondria with a 

lower pI may express a higher abundance of a protein with a low pI. This method is 
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sensitive to changes in the mitochondrial pI distribution upon treatment with trypsin, 

which modifies the proteins associated with the surface of the mitochondria. This method 

could also be used to determine the pI of other biological or synthetic particles, provided 

an appropriate fluorescent labeling strategy exists. One limitation of the method is the 

definition of the pH gradient above the pI 6.5 marker – it has been established that 

commercial preparations of carrier ampholytes are limited in the basic regions, and EOF 

distorts the pH gradient more at higher pH. This issue could be improved by using 

different ranges of carrier ampholytes or an improved capillary coating to better suppress 

EOF.
148

 Additionally, there is a need for fluorescent pI standards with higher pI for more 

accurate definition of the pH gradient in the basic regions. The speed and throughput of 

cIEF is also not ideal. Multicapillary
149

 and microfluidic
150

 IEF devices are promising in 

adapting this technique to a preparative format to collect isolated fractions separated by 

pI. Further developments of isoelectric focusing techniques may also have an impact on 

the characterization and purification of synthetic nanoparticles that exhibit differences in 

ζ-potential.
116
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Chapter 4.  

 

Predicting Isoelectric Points of Non-functional Mitochondria 

from Monte Carlo Simulations of Surface Compositions 

Reprinted (adapted) with permission from Wolken, G. G., Fossen, B.J., Noh, A., Arriaga, 

E.A., “Predicting Isoelectric Points of Non-functional Mitochondria from Monte Carlo 

Simulations of Surface Compositions.” Langmuir 2013, 29, 2700-2707. Copyright 2013 

American Chemical Society. 

 

 

Code for the simulations was written and executed by B. Fossen and A. Noh. All 

additional data collection and analysis was performed by G. Wolken. This work was 

carried out in part using computing resources at the University of Minnesota 

Supercomputing Institute. 
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Mitochondria are heterogeneous organelles involved in energy production, 

metabolism, and cellular signaling that oftentimes are isolated from cells for chemical 

characterization (e.g. proteomic analysis). The chemical composition of the 

mitochondrial outer membrane is one of the factors defining mitochondrial isoelectric 

point (pI), which is a property useful for the analysis and characterization of isolated 

mitochondria. We previously used capillary isoelectric focusing (cIEF) with laser-

induced fluorescence detection to determine the experimental pI of individual 

mitochondria after their isolation under depolarizing conditions. This technique revealed 

that, when kept non-functional, mitochondrial pI is heterogeneous as displayed by the 

observed distributions of pI. To model the effect of surface composition on pI 

heterogeneity of these mitochondria, we devised a method to predict mitochondrial pIs 

using simulated surface compositions. The method was initially validated by predicting 

the pIs of known mitochondrial outer membrane proteins and then extended to isolated 

mitochondria, in which both ionizable amino acids and phospholipids contribute to 

mitochondrial pI. After using a Monte Carlo method to generate a library of over two 

million possible mitochondrial surface compositions, sufficient compositions to match 

the frequency of occurrence of experimental mitochondrial pIs were randomly selected. 

This comparison allows for association of a given individual mitochondrial pI with 

thousands of randomly chosen compositions. The method predicts significant changes in 

the percentages of some amino acids and phospholipids for observed pI differences 
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between individual mitochondria, which is an important advancement toward explaining 

the observed heterogeneity of mitochondrial pI. 

4.1. Introduction 

The pI of a synthetic or biological particle refers to those conditions that lead to a 

net surface charge of zero under which the particle does not experience an electrical force 

in the presence of an electric field. For biological particles such as mitochondria, the 

surface charge depends on the ionizable functional groups of the molecules on the surface 

and their transmembrane potential, which arises from an electrochemical gradient across 

the membrane established to drive metabolic processes within the cell. 
151,152

 

Measurement of the pI of synthetic nanoparticles
116

 or non-functional biological 

particles
84,117

 such as viruses allows for their analytical separation. Calculation of an 

analyte’s pI is useful to optimize separation conditions in electrophoresis and to help 

identify unknowns in isoelectric focusing, a technique in which analytes are separated 

based on their pI. Prediction of protein pI from amino acid sequences is a well-

established technique,
118

 and the pI of particles can be predicted based on their surface 

properties. This has been done with simple particles (e.g. nanoparticles coated with 

mixtures of two different proteins),
120

 but has not been attempted with more complex 

biological particles with a heterogeneous surface composition. Isoelectric focusing 

techniques such as gel electrophoresis with immobilized pH gradients and cIEF are 

powerful separations methods capable of high resolution and excellent peak capacity.
153

 

While these techniques are typically used to separate proteins, they are adaptable to 
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biological particles; we introduced the use of cIEF to separate individual non-functional 

mitochondria by pI.
154

 We determined that mitochondria from a cultured cell line possess 

a range of pIs, a reflection of the biological heterogeneity of their surface compositions. 

Here we report a simulation of the mitochondrial outer membrane to investigate 

heterogeneity in surface composition and model an experimentally determined pI 

distribution of non-functional mitochondria. Monte Carlo methods are used to generate 

compositions composed of percentages of phospholipids and amino acids; a pI is then 

calculated for each composition. We used the model to produce a distribution of surface 

compositions matching an experimentally determined mitochondrial pI distribution. This 

model allowed us to examine differences in possible surface compositions with a given pI 

and to compare compositions with different pIs, which are essential to assess variations in 

individual mitochondrial pI measurements and to monitor changes in their surface 

compositions. Along with future experimental work to measure the pIs of functional 

mitochondria, this model could be used as a basis to describe the dependence of 

mitochondrial pI on transmembrane potential. 

4.2. Model and Simulations 

4.2.1. Overview of Model 

This model is made up of a library of theoretical mitochondrial surface 

compositions with pI from 4 to 9. Each composition can be thought of as a membrane 

surface made up of different percentages of seven ionizable amino acids and five 

phospholipids (see Table 4-1). These compositions are generated by randomly selecting 
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numbers of each amino acid and phospholipid within constraints defined by a set of 

initial conditions based on literature and theoretical values. The pI of each composition is 

determined by finding the pH at which the net charge of the composition is zero. 

4.2.2. Initial Conditions of Model 

The initial conditions of the model are defined by different percentages of amino 

acids and phospholipids contributing to mitochondrial pI. The complete proteome of the 

outer mitochondrial membrane is unknown, so instead of using the relatively limited set 

of known outer membrane proteins, we determined initial conditions for the amino acid 

component of the model by defining an “average protein” using information on all known 

protein sequences contained in the UniProt Knowledgebase protein database (accessed 

Dec. 18, 2009).
126

 It is anticipated that the potential bias is minimal because the 

composition of the “average protein” is very similar to that of the average composition of 

the set of known mitochondrial outer membrane proteins (see Table B-2 in Appendix B). 

We determined that the “average protein” has 351 amino acids, a molecular 

weight of 45283 Da, and a ratio of 0.04528 mg protein/nmol protein. Assuming ionizable 

amino acids that contribute to pI are located only in hydrophilic domains of the protein 

on the inside and outside of the mitochondrial outer membrane, and that the inner and 

outer domains are of equal size, we calculate that each “average protein” has 53 ionizable 

amino acids on the outer surface of the membrane.  

We have included five phospholipids that contribute to mitochondrial pI (see 

Table 4-1). Our choices were based on previous experimental determinations of 
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phospholipids in mitochondrial outer membranes.
121-125

 Based on these determinations, 

we calculated a ratio of 52.76 mol phospholipid per mol protein in our model. Combining 

this ratio with our assumptions about the “average protein,” we calculate a ratio of 1.0 

mol phospholipid per mol ionizable amino acid for the outer membrane surface. These 

initial conditions (shown in Table 4-1) are then used by the simulation to generate a 

library of compositions. See Appendix B for a complete description of how the initial 

conditions were determined. 

4.2.3. Hierarchy of Simulation 

In this simulation, two programs work together to generate a library of 

compositions and a match to experimental data. A flowchart of the general scheme of the 

simulation is shown in Figure 4-1. The two programs, one to generate the mitochondrial 

library and one to match the experimental data (boxes with solid red outlines in the 

flowchart in Figure 4-1), were written in Matlab (MathWorks, Natick MA, USA) and are 

available upon request. Input and output data (boxes with blue dashed outlines or green 

background in the flowchart in Figure 4-1) was saved as Microsoft Excel or text files. 

The first program uses a set of initial conditions (Table 4-1) to generate a library of 

approximately 2 million possible compositions using a Monte Carlo approach. Each 

composition had 10000 relevant molecules including both amino acids and 

phospholipids. Compositions were randomly generated with restrictions that the numbers 

of each amino acid and phospholipid must represent a composition within 50% and 20%, 

respectively, of the initial composition (whole number values of amino acids   
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Table 4-1. Initial conditions. 

Amino acids and phospholipids  

Ionizable 

functional 

group(s) 

pKa  

Initial 

composition 

(mol %)  

aspartic acid (asp)  carboxy 4.05  9.06  

glutamic acid (glu)  carboxy 4.45  11.26  

cysteine (cys)  sulfhydryl 9.00  2.26  

tyrosine (tyr)  phenol 10.00  4.84  

histidine (his)  imidazole 5.98  3.78  

lysine (lys)  amine 10.00  9.75  

arginine (arg)  guanidino 12.00  9.21  

phosphatidylcholine (PC)  

phosphate, 

quaternary 

ammonium 

cation 

0.8, n/a 23.72  

phosphatidylethanolamine (PE)  
phosphate, 

amine 
0.5, 9.6  18.91  

phosphatidylinositol (PI)  phosphate 1.0  2.94  

phosphatidylserine (PS)  
phosphate, 

carboxy, amine 
2.3, 3.6, 9.8  0.39  

cardiolipin (CL)  
phosphate, 

phosphate 
2.8, 8.5  3.89  

Total   100% 

pKas for amino acids were taken according to Bjellqvist et al.
119

 pKa1 for PC, PE, and 

PS was determined by Moncelli et al.
155

 pKa2 for PE and pKa2, pKa3 for PS were 

determined by Tsui et al.
156

 pKas for CL were determined by Kates et al. (the authors 

determined pKa2 for CL to be between 7.5 and 9.5, we use an estimate of 8.5).
157

 The pKa 

for PI was estimated to be 1.0 based on the pKas of the other phosphate groups.  
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and phospholipids were used in the simulation then converted to percentages for further 

analysis; we present all data as percentages). These restrictions were selected to achieve a 

balance between generating a wider variety of compositions and running the program in a 

reasonable amount of time (i.e. several hours instead of several days). Less variation in 

the phospholipid composition was allowed because these molecules are thought to be less 

variable and have been experimentally determined in the mitochondrial outer 

membrane,
121-125

 while the amino acid composition of the mitochondrial outer membrane 

is likely more variable as it depends on heterogeneity of the mitochondrial surface 

proteome. Next, the pI of each randomly-generated composition is found using the 

expression for pI derived below. 

4.2.4. Expression for pI 

To find the pI of each composition, we derived an expression similar to the 

expression derived by Rezwan et al. to calculate net charge as a function of pH.
120

 This 

expression is in the general form 

 (Equation 4-1) 

where nx is the number of each amino acid or phospholipid x in the composition of 

interest and αx(pH) represents the respective electrical net charge taking into account pH-

dependent dissociation of specific functional group of x. The expression and its 

derivation including relevant amino acids and phospholipids are shown in Appendix B 

(Equation B-1 through B-6). Equation B-6 is solved numerically by varying the pH 

between 3 and 11, and accepts a solution if |Z(pH)| < 0.1. This value was chosen to 
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Figure 4-1. Flowchart of programs to generate mitochondrial library and match 

experimental data. 

 

achieve a balance between accuracy and computation time, and results in calculation of 

pI values < 0.01 pH units of the “true” pI value for a given composition. For example, 

using the initial composition shown in Table 4-1, a |Z(pH)| < 0.1 corresponds to pH 

values ranging between 4.78596 and 4.78617, (i.e., 0.00021 pH units). The program may 

be run as long as necessary to generate a library of sufficient size; to generate a library of 

~2 million pIs with their corresponding compositions, the program was run for 1.5 hours 

on four 3.0 GHz dual-core processors. The library is available upon request. 

4.2.5. Comparison to Experimental Data 

After the library was generated, a subset of simulated compositions was selected 

to match an experimentally determined mitochondrial pI distribution. This experimental 
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data was obtained by cIEF as previously described from a mitochondrial sample 

consisting of intact mitochondria isolated by differential centrifugation from cultured rat 

myoblast cells.
154

 To select compositions matching the experimental data, the 

experimental pIs of individual mitochondria were represented as a histogram distribution. 

The bins of this distribution guided a Monte Carlo-based selection of ~ 2000 

compositions from the library so that the pI distribution of selected compositions matched 

the experimental pI distribution. In total, about two thousand compositions were selected 

from the library with the frequency of selections of compositions in each bin 

corresponding to the experimental data. 

4.3. Results and Discussion 

4.3.1. Validation of Simulation 

To validate the method, we compared collections of simulated compositions of a 

given pI to the amino acid compositions of known mitochondrial outer membrane 

proteins with the same pI. Comparison of the average composition of the collection of 

simulated compositions with the true composition of the test protein determined the 

suitability of the method to predict protein compositions. 

We selected 73 known mitochondrial outer membrane proteins from Rattus 

norvegicus as the test proteins. See Appendix B (Table B-4) for the complete list of 

proteins and their pIs. We calculated a pI for each protein using the amino acid sequences 

and Equation B-6 in Appendix B (modified to exclude phospholipids). Then, we 

modified the program to generate compositions with amino acids only. As the program 
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generated compositions, only those compositions with pI within 0.02 pH units from the 

calculated pIs of the mitochondrial outer membrane proteins were kept (we selected this 

range to approximate the resolving power of a typical cIEF experiment). This approach 

differs from the approach used for the generation of the mitochondrial library (i.e. instead 

of generating a set of compositions with a wide range of pIs, only compositions with pIs 

matching the proteins were generated). We used the program to generate more than 5,000 

and up to 150,000 compositions for each of 69 mitochondrial outer membrane proteins, 

the remaining four proteins had pIs that were too high (pI 9.64 and above) for 

compositions to be generated. We then compared the average percent of each amino acid 

in the generated compositions to the actual percent of that amino acid in the known 

protein (for plots of these comparisons, see Figure B-1 in Appendix B). As expected, the 

percentages of the acidic (asp, glu) and basic (lys, arg) amino acids depend more strongly 

on pI than the percentages of the other amino acids. This comparison to known sequences 

is demonstrated in Figure 4-2, in which the average difference in percent composition 

from the known amino acid composition of each sequence is plotted against the pI of the 

known sequence. In these plots, many of the data points fall within one standard 

deviation of zero, and the majority of compositions differ by less than 10% for each 

amino acid. Smaller proteins may lack a certain type of amino acid completely or have 

pIs outside the range which the model can produce (since the initial conditions and 

restrictions of the model dictate a minimum percentage of the acidic and basic amino 

acids). For instance, the protein connexin 43 (Q6Q6S2, IPI00231746) was identified as 
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an outer mitochondrial membrane protein with calculated pI of 9.52. This protein has a 

sequence of only 29 amino acids, six of which are ionizable amino acids. While the 

simulation could generate compositions with a pI of 9.52, these compositions were not a 

good match for the six ionizable amino acids found in connexin 43. Despite limitations 

with small proteins, the model is overall adequate to predict amino acid compositions of 

known mitochondrial proteins with ~ 10% precision. 

 

Figure 4-2. Comparison of predicted compositions to known compositions of 

mitochondrial outer membrane proteins. Deviation in average amino acid 

percentage in the predicted compositions (with similar pI of ± 0.02) from the actual 

composition of known mitochondrial outer membrane proteins plotted against pI. 

Error bars are plus/minus one standard deviation of the average difference from the 

known composition. 

4.3.2. Distribution of Amino Acids and Phospholipids in the Library of 

Compositions 

The ideal library must include compositions representing the abundance of all 

ionizable groups at each pI. By examining approximately two million randomly 
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generated compositions of the library through scatterplots of the percent of each amino 

acid or phospholipid versus pI, it became apparent that all the generated compositions 

had pIs between 4 and 9, but were not uniformly distributed (Figure 4-3). Areas which 

appear darker in the plots contain more data points, representing more individual 

compositions with similar pIs. There were significantly more compositions with pI from 

4 to 6 than from 6 to 9. This lack of uniformity depends on the initial percentage, pKa, 

and restrictions on the allowable range of each amino acid or phospholipid. We arbitrarily 

restricted the variation in composition of each phospholipid and amino acid to 20% and 

50%, respectively, as this reduced the computational time while maintaining 

compositions that are likely within the expected deviations of the typical compositions 

dictated by the “average protein” composition. Allowing for more variation would 

increase the ranges of individual amino acids and phospholipids in the compositions, and 

slightly increase the range of generated pIs, but the general trends would likely remain 

the same. Predictably, compositions with higher pIs tend to have higher percentages of 

basic amino acids such as lys and arg, and compositions with lower pIs tend to have 

higher percentages of acidic amino acids such as glu and asp. Importantly, the arbitrarily 

set ranges for phospholipids and amino acids did not exclude less probable compositions 

(e.g. a composition with pI of 9 but a relatively low percentage of one basic amino acid 

such as lys, these compositions are located in areas of the plots which appear lighter) 

from the library. Generally, compositions with a low pI had a broader range of each 

amino acid or phospholipid than compositions with a high pI. 
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Figure 4-3. Trends in percentages of each amino acid or phospholipid vs. pI for all 

compositions in the library. 

 

4.3.3. Comparison to an Experimental pI Distribution 

To model an experimental pI distribution, we sampled the library to collect 

compositions associated with experimental pIs. We sampled a relatively small number of 

compositions (~ 2000 out of 2 million) to mirror a cIEF experiment in which a similar 

number of individual mitochondria are analyzed. Mitochondrial pI distributions, like 

many experimental results obtained from biological sources, are non-normal distributions 

and are therefore best evaluated by non-parametric statistical methods which preserve the 
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shape of the distribution. The experimental and predicted mitochondrial pI distributions 

are shown in Figure 4-4. The experimental distribution represents 121 individual 

mitochondria with pI from 4.66 to 6.83, and the predicted distribution represents 1998 

compositions. The number of bins used to represent the distributions was selected based 

on the total number of individual mitochondria in the experimental data using a statistics 

formula which recommends a minimum bin number for representing nonparametric 

data.
158

 While the experimental distribution in Figure 4-4A appears to be non-normal, we 

are able to match this distribution by selecting compositions from the library in a bin-by-

bin fashion. 

A quantile-quantile (Q-Q) plot is a graphical method to compare two non-normal 

distributions. Percentiles in increments of 5% from the 5
th

 to 95
th

 percentiles of each pI 

distribution were calculated, and then the percentiles from the predicted mitochondrial pI 

distribution were plotted against the percentiles from the experimental mitochondrial pI 

distribution (Figure 4-4B). Points in a Q-Q plot of identical distributions would all fall on 

a 45° line drawn from the origin; deviations from the line indicate differences in the 

distributions. We can also compare these distributions by calculating the sum of squares 

of the residuals (ssres) of the quantiles in the Q-Q plot. For the Q-Q plot shown in Figure 

4-4B, ssres = 0.121. We find that our predicted distribution is as similar to the 

experimental distribution as replicate experimental cIEF measurements of the same 

mitochondrial sample (ssres = 0.150).
154

 Therefore, the collection of simulated 
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compositions selected to match the experimental data is an appropriate model for 

comparison. 

 

Figure 4-4. (A) Experimental and predicted mitochondrial isoelectric point 

distributions. (B) Q-Q plot comparison of predicted to experimental mitochondrial 

pI distributions. 
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4.3.4. Comparison of Compositions with Different pI 

To demonstrate the utility of our method in describing the differences in sets of 

compositions for a given pI, we selected several pIs from different bins of the histogram 

in Figure 4-4A to compare. As a starting point, we selected a pI from the bin with the 

highest frequency of compositions (6.77), and compared it to a pI with the smallest 

difference typically resolvable by cIEF (6.75), a pI from the adjacent bin (6.41), and a pI 

from a distant bin (4.93). The average and standard deviation of the percentage of each 

amino acid or phospholipid in all compositions from the library within 0.01 pH units of 

each pI were then calculated (see Appendix B, Table B-5). The average difference in 

each amino acid or phospholipid from the composition with pI 6.77 is shown in Figure 4-

5 (also see Appendix B, Table B-6). The largest differences in the compositions are in the 

acidic and basic amino acids between the compositions with the greatest difference in pI. 

However, significant differences are detected in some amino acids and phospholipids 

even between the two closest pIs (e.g. in glu or his). Since some differences are more 

pronounced than others, we distinguish between differences which are significant at the 

95% confidence level (p < 0.05) and differences which are significant with greater than 

99.9% confidence (p < 0.001). This method of comparison could be modified depending 

on the goal of the analysis; for instance, it might be useful to combine acidic amino acids 

such as asp and glu and basic amino acids such as lys and arg when comparing 

collections of compositions with larger differences in pI (i.e. 6.77 compared to 4.93) 

since these amino acids show similar trends. However, the differences in these amino 
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acids do not follow the same trends when comparing compositions with pI values which 

are closer together (i.e. 6.77 compared to 6.75 or 6.41). This type of analysis could also 

be used to determine amino acids or phospholipids that have a greater effect on pI over 

larger pI ranges (e.g. comparing compositions with pI 7.00 ± 1.00 to compositions with 

pI 6.00 ± 1.00). Overall, these results demonstrate the ability of the model to describe 

differences in composition between collections of individual compositions with different 

pI. 

 

Figure 4-5. Comparison of compositions with pI 6.77 ± 0.01 to compositions with 

other pIs. Statistical significance was determined using t-tests (two-tailed, equal 

variance), * indicates p < 0.05; ** indicates p < 0.001. 
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4.3.5. Potential Applications of Model 

This model provides a simulation of the mitochondrial outer membrane and the 

dependence of mitochondrial pI on the amino acid and phospholipid composition of the 

membrane, and allows an experimental pI distribution to be modeled. We can envision 

many potential applications and future refinements for this model. Post-translational 

modifications, damage to proteins or phospholipids, and changes in the relative amounts 

of specific proteins or phospholipids in the outer mitochondrial membrane are all 

biologically relevant processes which could be simulated with this model. The model 

could also be applied to other synthetic or biological particles.  

Post-translational modifications to proteins in the mitochondrial outer membrane 

could result in a change in pI of the protein or mitochondrial composition. For example, 

phosphorylation of serine or threonine is a common post-translational modification 

involved in many protein signaling cascades that results in an addition of two negative 

charges to a protein; this modification would lower the pI of a mitochondrion. Future 

refinements in the model could be made to predict the effects of different extents of 

phosphorylation at specific sites. The effects of other post-translational modifications 

important in mitochondrial signaling such as ubiquitination could be predicted. 

Ubiquitination of outer mitochondrial membrane proteins is an important step in targeting 

damaged mitochondria for elimination by the cellular process of mitophagy.
128

 This 

process is known to be affected in several disease states and changes in mitophagy are 

thought to be associated with aging.
13

 Ubiquitination involves the addition of one or more 
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ubiquitin proteins to the side chain of lys, resulting in an increase in the number of 

ionizable amino acids but a net decrease in pI (ubiquitin has a pI of 6.56). Different pIs 

associated with ubiquitinylated compositions could be simulated, and this information 

could be used to design new experiments to analyze mitochondria marked for degradation 

by mitophagy. 

This model could be extended to predict the effects of damage to proteins and 

phospholipids on mitochondrial pI. For instance, protein damage in the form of 

carbonylation of lys, arg, and his would result in changes to protein pI.
129

 Protein 

carbonylation is thought to be caused by increased mitochondrial production of reactive 

oxygen species, and is associated with cancer, neurodegenerative disease, and other age-

related diseases.
159

 Our model could be used to produce compositions associated with 

mitochondrial outer membranes containing different degrees of carbonylated proteins.  

This model could be used to predict the effect of over- or under-expression of 

proteins relative to phospholipids in the outer mitochondrial membrane. For example, we 

generated a new composition with a 10% reduction in its total protein percentage by 

reducing each amino acid by 10% of its initial value from the average composition for pI 

6.77 and keeping the phospholipid percentages constant (see Table B-7 in Appendix B). 

The pI of this new composition is 6.30, a relatively large decrease of 0.47. A further 

extension of this idea is to predict the effect of underexpression of a known protein on the 

pI of a given composition. For example, the protein Fis1, with a pI of 8.88, is involved in 

mitochondrial fission, a process that affects mitochondrial morphology
160

 and regulates 
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degradation of damaged mitochondria in the cell.
11

 Mitochondria lacking the normal 

amount of this protein could be excluded from the turnover process and become 

dysfunctional. Assuming that Fis1 represents 1% of the total mitochondrial outer 

membrane proteins, we generated a new composition representing a 50% decrease of 

Fis1 from the average composition for pI 6.77 (see Table B-7 in Appendix B). This was 

done by reducing the percentage of each amino acid in the pI 6.77 composition by an 

amount proportional to the amount in which they are found in Fis1 (while keeping the 

percentages of phospholipids constant). The pI of this new composition is 6.73, a 

decrease of 0.04. While small, this pI difference could be resolved by cIEF. Using this 

approach, shifts in a mitochondrial pI distribution due to protein expression changes 

could be determined and used to design experiments or optimize separation conditions. 

Likewise, changes in pI due to changes in the phospholipid composition of the 

mitochondrial outer membrane could be predicted with this model. Since mitochondrial 

phospholipid composition directly affects many mitochondrial processes,
161

 changes in 

phospholipid composition could represent biologically important processes or differences 

in mitochondrial function. For instance, translocation of oxidized cardiolipin to the outer 

mitochondrial membrane has been suggested to be involved in apoptosis.
162

 The effect on 

pI of the increase in cardiolipin in the outer membrane could be predicted and used to 

design an experiment to study this process.  

This method could also be adapted to other biological or synthetic particles such 

as cells, other organelles, or nanoparticles by changing the initial conditions involved in 
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the prediction. For instance, identification of microorganisms by cIEF is a promising 

technique for sensitive and selective characterization of different bacterial strains;
163

 our 

method could be used to predict their surface compositions or to predict changes in their 

pIs upon modifications known to occur to their surface. 

Our model could also be the basis to develop models for functional mitochondria 

that take into account their transmembrane potential, a factor that contributes to charge 

accumulation at the surface of biological membranes.
151,152

 Experimental conditions 

conducive to support functional mitochondria during isoelectric focusing could make it 

possible to investigate individual mitochondrial membrane potentials by cIEF. This will 

make it possible to incorporate previous models of the dependence of electrophoretic 

mobility on membrane potential
164-166

 and transmembrane pH gradients
80,82,167

 into 

predictions of pI of individual functional mitochondria. This additional experimental 

work, combined with future refinements to our model, could shed light on such 

unknowns as the dependence of mitochondrial pI on the surface charge of the 

mitochondrial inner membrane and the effects of the isoelectric focusing technique itself 

on mitochondrial membrane potential. 

4.4. Conclusions 

We use a Monte Carlo method to produce individual compositions of the 

mitochondrial outer membrane with different percentages of amino acids and 

phospholipids to model the heterogeneity of mitochondrial pI. This method is able to 

match an experimentally-determined mitochondrial pI distribution and make predictions 



 

 

 81 

 

about the individual compositions associated with experimental pIs. We validated the 

method by predicting the amino acid compositions of known mitochondrial outer 

membrane proteins. The model can be used to predict changes in pI upon changes to 

surface composition and enables many future potential applications.  
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Chapter 5.  

 

Measurement of Individual Mitochondrial Membrane 

Potential by Capillary Electrophoresis 

 
Reprinted (adapted) with permission from Wolken, G. G.; Arriaga, E.A. “Measurement 

of Individual Mitochondrial Membrane Potential by Capillary Electrophoresis.” Anal. 

Chem. 2013, In preparation. Unpublished Work Copyright (2013) American Chemical 

Society. 

 

All data collection and analysis was performed by G. Wolken. Professor L. Thompson 

and her research group, primarily T. Graber, handled animal protocols and procedures. 
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Mitochondrial membrane potential is a highly heterogeneous component in 

cellular energy production which varies depending on energy demand, subcellular 

location, morphology, and functional status and is commonly used as an indicator of 

mitochondrial health or dysfunction. Since mitochondrial membrane potential is 

heterogeneous, methods for characterization of individual mitochondrial membrane 

potential and its relationship to other mitochondrial properties (e.g. surface properties 

such as electrophoretic mobility which relate to morphology and surface composition) are 

needed. Here we report on a method for the determination of individual mitochondrial 

membrane potential by capillary electrophoresis with laser-induced fluorescence 

detection (CE-LIF). Mitochondria were isolated from cultured cells, mouse muscle or 

liver, polarized, labeled with JC-1 (a ratiometric fluorescent probe which responds to 

changes in membrane potential), and separated with CE-LIF. Distributions of individual 

mitochondrial membrane potential and electrophoretic mobility were observed; these 

distributions were reproducible. Analysis of specific polarized and depolarized regions of 

interest allowed for the examination of membrane potential and comparison of 

electrophoretic mobility distributions even in preparations containing depolarized 

mitochondria. Through comparison of these regions of interest, dependence of 

electrophoretic mobility on membrane potential was observed, with higher membrane 

potential generally resulting in less negative electrophoretic mobility. This method could 

also be applied to further investigate the relationship between membrane potential and 

electrophoretic mobility and to characterize mitochondria from biological systems where 
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membrane potential heterogeneity is of interest such as cell or animal models of aging 

where increased heterogeneity may represent the presence of dysfunctional mitochondrial 

subpopulations. 

5.1. Introduction 

The mitochondrial membrane potential is an important property of mitochondria 

which is commonly used as an indication of function or dysfunction. Membrane potential 

arises from establishment of a proton gradient across the mitochondrial inner membrane 

by the enzymes of the electron transport chain, this proton gradient drives ATP 

production through oxidative phosphorylation. Changes in mitochondrial membrane 

potential result in changes in energy homeostasis and free radical production, and 

dysfunction in membrane potential is considered a factor in many mitochondrial-related 

diseases including cancer, diabetes, and Alzheimer’s.
37

 Moreover, changes in 

mitochondrial membrane potential affect turnover and regulation of dysfunctional 

mitochondria in the cell through fusion/fission
11

 and targeting for elimination by 

mitophagy.
35

 

Mitochondrial membrane potential within the cell is heterogeneous and varies 

depending on subcellular location, morphology, participation in the fusion/fission 

process, damage to mitochondria, and differences in mitochondrial structure. 

Additionally, sample preparation can affect the observed membrane potential.  Different 

subcellular locations have different energy demands and mitochondrial membrane 

potential changes in response to these differences. In cultured astrocytes, mitochondria 
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near nuclei or the endoplasmic reticulum had lower and more uniform membrane 

potential than mitochondria in peripheral regions which had higher and more variable 

membrane potential.
19

 This heterogeneity could also be due to the response of 

mitochondria to changes in local calcium concentration or cellular mechanisms to limit 

production of reactive oxygen species. Mitochondria in skeletal muscle fibers are 

classified as intermyofibrillar or subsarcolemmal based on their subcellular location. 

These subpopulations have different membrane potentials: subsarcolemmal mitochondria 

were previously reported to have higher membrane potential than intermyofibrillar 

mitochondria.
20

 Upon depolarization, mitochondria undergo morphological changes, 

becoming more fragmented.
9
 Mitochondrial morphology is controlled by the 

fusion/fission process; cells lacking the fusion proteins MFN1 and MFN2 had 

dysfunctional mitochondria and heterogeneity in membrane potential.
23

 In a cell model of 

aging with impaired autophagy, subpopulations of mitochondria which did not exhibit 

noticeable fusion or fission, had larger and more varied sizes, and expressed lower levels 

of the fusion protein OPA1 had lower membrane potential.
168

 Damaged mitochondria are 

eliminated from the cell by the process of mitophagy (mitochondrial-specific autophagy). 

In this process, damaged mitochondria with decreased membrane potential are marked 

for elimination through ubiquitination by the proteins PINK1 and Parkin, which 

accumulate at their surface.
24

 It was demonstrated that only subpopulations of 

mitochondria with decreased membrane potential and not polarized, healthy mitochondria 

are marked for degradation through this mechanism.
22

 In isolated mitochondria, 
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resistance to depolarization by carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone 

(FCCP) was observed in subpopulations of mitochondria with higher cardiolipin levels 

and higher membrane potential.
66

 Adding another layer of complexity, the process of 

preparing samples of isolated mitochondria itself causes damage to mitochondria which 

may result in depolarization and additional apparent heterogeneity in membrane 

potential.
64

 

Due to the heterogeneous nature of mitochondrial membrane potential, methods 

which can measure individual mitochondrial membrane potential are valuable for 

characterization of this heterogeneity and identification of subpopulations. While 

methods such as the measurement of TPP
+
 uptake into mitochondria using an ion-

selective electrode are able to give quantitative measurements of membrane potential in 

isolated mitochondria, they report only an average value.
50

 Fluorescent dyes are 

commonly used in imaging, bulk fluorescence measurements, and flow cytometry to 

indicate mitochondrial membrane potential.
53

 These dyes are cationic, which drives their 

uptake into mitochondria in a membrane potential-dependent manner according to the 

Nernst equation.
54

 Some dyes are ratiometric, undergoing a spectral shift or 

transformation upon their uptake into mitochondria which can be measured and used to 

normalize their response across different dye concentrations or mitochondrial sizes.
55

 JC-

1 is one such ratiometric dye commonly used to measure mitochondrial membrane 

potential.
53,56

 At low concentrations (less than approximately 100 nM), JC-1 exists 

primarily as a monomer and exhibits green fluorescence.
169

 At higher concentrations, JC-
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1 forms aggregates which exhibit red fluorescence. Mitochondrial membrane potential 

drives JC-1 uptake into mitochondria; polarized mitochondria with higher (more 

negative) membrane potential will accumulate JC-1 at a higher concentration than 

depolarized mitochondria. If a proper labeling concentration is chosen (i.e. low enough 

that minimal aggregation occurs outside mitochondria), these polarized mitochondria will 

therefore exhibit more red fluorescence from the JC-1 aggregates as well as green 

fluorescence from the monomeric form of the dye, whereas depolarized mitochondria 

will exhibit less red and primarily green fluorescence. Measurement of red/green 

fluorescence is then used as an indicator of membrane potential. 

Capillary electrophoresis with laser-induced fluorescence detection (CE-LIF) is a 

separation technique which has been used for the characterization of mitochondrial 

heterogeneity. 
86

 Briefly, isolated mitochondria are labeled with a fluorescent probe or 

through expression of a fluorescent protein, introduced to a fused silica capillary in an 

aqueous buffer at physiological pH and osmolarity, and exposed to an electric field which 

causes them to migrate through the capillary. Fluorescence intensity and migration times 

of individual mitochondrial events are recorded, which reflect their content of the 

fluorescent probe and electrophoretic mobility, respectively. Depending on the selection 

of the fluorescent probe and interpretation of the observed electrophoretic mobility 

distributions, various mitochondrial properties such as DNA content,
170

 cardiolipin 

levels,
87,171

 the presence of a specific protein,
40

 or the quality of a mitochondrial 
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preparation
62

 may be assessed. The electrophoretic mobility of mitochondria depends on 

their surface charge density, which is reflective of their surface compositions. 

Previous work has shown that the electrophoretic mobility of mitochondria also 

depends on membrane potential.
164,166,172

 While this may be caused directly by changes in 

net charge at the mitochondrial surface due to depolarization,
166

 modifications to their 

surface as a result of damage by increased production of reactive oxygen species (caused 

by an increase in membrane potential) or through increased ubiquitination through the 

PINK1/Parkin pathway (initiated by a decrease in membrane potential) could also affect 

their electrophoretic mobility. CE-LIF is capable of separating mitochondria based on 

differences in electrophoretic mobility, making it possible to study the relationship 

between mitochondrial surface compositions and membrane potential.  

In this chapter, we introduce a method to measure mitochondrial membrane 

potential by CE-LIF. Mitochondria are isolated from cultured murine cells, liver, or 

muscle tissue, energized with succinate in the presence of rotenone (a complex I 

inhibitor), then labeled with JC-1. Valinomycin, a potassium ionophore which allows for 

free transport of potassium across the mitochondrial inner membrane, is used to 

depolarize mitochondria as a control.
173

 Labeled mitochondria are then separated by CE 

and detected by a dual-laser excitation/dual-channel emission fluorescence detector. 

Measurement of red and green fluorescence from JC-1 allows for ratiometric 

measurement of individual mitochondrial membrane potential. Measurement of the 

electrophoretic mobility of individual mitochondria provides information about 
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mitochondrial surface charge density, which reflects the composition of the 

mitochondrial surface. Simultaneous measurement of membrane potential and corrected 

electrophoretic mobility allows for the investigation of the relationship between these 

properties. Through comparison of polarized and depolarized regions of interest, 

dependence of electrophoretic mobility on membrane potential was observed, with higher 

membrane potential generally resulting in less negative electrophoretic mobility. Since 

individual mitochondrial properties are characterized, this method is useful for 

investigating mitochondrial heterogeneity and assessment of membrane potential even if 

many mitochondria are damaged and depolarized during the preparation and separation. 

5.2. Experimental 

5.2.1. Reagents and Materials 

Deionized water was purified using a Synergy filtration system (Millipore, 

Billerica, MA) and was used in preparation of all buffers and solutions. Sucrose, 4-(2-

hydroxyethyl)piperazine-1-ethanesulfonic acid (HEPES), potassium hydroxide (KOH), 

sodium hydroxide (NaOH), 5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethyl-imidacarbocyanine 

iodide (JC-1), valinomycin, methanol, succinic acid, EGTA, potassium chloride (KCl), 

magnesium chloride (MgCl2), tetraphenylphosphonium chloride (TPP
+
), and polyvinyl 

alcohol (PVA, 99+% hydrolyzed, 89-98 kDa) were from Sigma-Aldrich (Saint Louis, 

MO). D-mannitol was from Riedel de-Haën (Seelze, Germany). 3-(N-

morpholino)propanesulfonic acid (MOPS) was from Acros (Geel, Belgium). Fluorescein 

was from Molecular Probes (Eugene, OR). EDTA was from Avocado (Heysham, 
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Lancashire, UK). Tris was from Fisher (Fair Lawn, NJ). Rotenone was from ICN 

Biomedicals (Aurora, OH). 5-TAMRA was from AnaSpec (Fremont, CA). Bovine serum 

albumin (BSA) was from Roche (Indianapolis, IN). Hydrochloric acid (HCl) and dibasic 

potassium phosphate (K2HPO4) was from Mallinckrodt (Saint Louis, MO). Phosphate-

buffered saline (PBS, 10×) was from Bio-Rad (Hercules, CA). Dulbecco’s modified 

Eagle medium (DMEM), fetal bovine serum (FBS), and 0.5% trypsin (10×, 5 g/L trypsin, 

2 g/L EDTA· 4Na, 8.5 g/L NaCl) were from Gibco (Invitrogen, Carlsbad, CA). Trypan 

blue stain (0.4%) was from Bio-Whittaker (Walkersville, MD). Fused-silica capillary 

tubing (50 μm i.d., 150 μm o.d.) was from Polymicro (Phoenix, AZ). The TPP
+
 ion-

selective electrode and Dri-Ref Ag/AgCl reference electrode were purchased from World 

Precision Instruments (Sarasota, FL). 

5.2.2. Buffers and Solutions 

Mitochondrial isolation buffer for cultured cells (buffer M) consisted of 210 mM 

mannitol, 70 mM sucrose, 10 mM HEPES, and 5.0 mM EDTA, adjusted to pH 7.4 with 

KOH. Mitochondrial isolation buffer for mouse liver tissue (buffer L) consisted of 10 

mM tris, 10 mM MOPS, 1.0 mM EGTA, and 200 mM sucrose, adjusted to pH 7.4 with 

KOH. Mitochondrial isolation buffers 1 and 2 for mouse muscle tissue (buffers T1 and 

T2) consisted of 67 mM sucrose, 50 mM tris, 50 mM KCl, 10 mM EDTA, and 0.2% BSA 

and 250 mM sucrose, 10 mM tris, and 3.0 mM EGTA, adjusted to pH 7.4 with KOH. 

Respiration buffer (buffer R) consisted of 125 mM KCl, 10 mM HEPES, 5 mM MgCl2, 

and 2 mM K2HPO4, adjusted to pH 7.4 with KOH. Sucrose-HEPES (buffer SH) buffer 
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consisted of 250 mM sucrose and 10 mM HEPES, adjusted to pH 7.4 with KOH, and was 

filtered to 0.2 µm before use. JC-1, fluorescein, and valinomycin were dissolved in 

methanol, aliquotted, dried in a vacuum evaporator (LabConco, Kansas City, MO), and 

stored at -20 °C. Stock solutions were prepared from a new aliquot for each experiment; 

JC-1 and valinomycin were reconstituted and diluted in DMSO and fluorescein was 

reconstituted in methanol and diluted with SH buffer. JC-1 stock solutions were sonicated 

for 60 minutes before further dilution. A stock succinate solution was prepared by 

titrating succinic acid to pH 7.4 with KOH in the presence of 10 mM HEPES. The 

succinate solution was filtered to 0.2 µm and stored at 4 °C. A stock rotenone solution 

was prepared in DMSO and stored at -20 °C. All buffers used for polarized mitochondria 

(buffers R and SH) contained 2.5 mM succinate and 2 µM rotenone with 2% DMSO, all 

buffers for depolarized mitochondria contained 2.5 mM succinate, 2 µM rotenone, and 2 

µM valinomycin with 2% DMSO. The succinate concentration of 2.5 mM was chosen to 

limit Joule heating in the CE-LIF experiments; no detectable Joule heating was observed 

with this concentration of succinate in buffer SH while higher concentrations resulted in 

Joule heating. A standard solution of 10 mM TPP
+
 was prepared in water and diluted 

with buffer R containing 2.5 mM succinate and 2% DMSO (and 2 µM valinomycin for 

analysis of depolarized mitochondria). 

To reduce the fluorescence background for CE-LIF, SH buffer was photobleached 

using a lab-built device containing 120 blue light-emitting diodes (LEDs, Super Bright 

LEDs, Saint Louis, MO) (467 nm, 4.2 × 10
5
 mcd intensity) for at least 24 hours before 
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use (see Figure C-1 in Appendix C). This strategy has been used to reduce the 

fluorescence background in capillary isoelectric focusing with LIF detection and in single 

molecule fluorescence experiments.
114,174

 

5.2.3. Cell Culture 

Adherent C2C12 mouse myoblast and L6 rat myoblast cells (ATCC, Manassas, 

VA) were cultured in vented 75 cm
2
 flasks at 37 °C with 5% CO2 in DMEM 

supplemented with 10% FBS. Cells were split after reaching 90% confluence by rinsing 

with PBS, releasing with 0.25% trypsin in PBS, and seeding back into the flask with fresh 

DMEM at splitting ratios between 1:20 and 1:40. L6 rat myoblast cells were used for 

initial experiments, and C2C12 mouse myoblast cells were used in later experiments for a 

more direct comparison to mouse tissue. 

5.2.4. Fluorescence Microscopy 

L6 Cells were seeded onto Lab-Tek chambered cover glass slides (ThermoFisher 

Scientific, Waltham, MA) overnight. Cells were labeled by adding 500 nM JC-1 to the 

media, 2 µM valinomycin was used as a control for depolarized mitochondria. After 30 

minutes, the media was replaced with PBS and confocal fluorescence images were 

acquired using an Olympus IX-81 inverted fluorescence microscope (Melville, NY) 

equipped with a DS-IX100 disk spinning unit. A C9100-01 EM CCD camera 

(Hamamatsu, Bridgewater, NJ) was used to acquire images. Images were acquired in the 

red channel with a 2.0 s exposure time, a gain of 100, λex = 545 ± 10 nm, λem = 597.5 ± 

27.5 nm, and a 565 nm dichroic, (Olympus M-RFPHQ filter cube) and in the green 
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channel with a 10.0 s exposure time, a gain of 100, λex = 470 ± 10 nm, λem = 517.5 ± 22.5 

nm, and a 485 nm dichroic (Olympus U-MGFPHQ filter cube). Simple PCI software 

(Hamamatsu) was used to adjust contrast and apply a median smooth function to the 

images. See Figure C-2 in Appendix C for the unmodified images. 

5.2.5. Mitochondrial Preparation and JC-1 Labeling 

Mitochondria from cell culture were isolated by differential centrifugation and 

mechanical homogenization.
78

 Cells were lifted with 0.25% trypsin in PBS and added to 

an equal volume of DMEM. All subsequent procedures were performed on ice or at 4 °C 

unless otherwise noted. Cells were washed three times with ice-cold buffer M and 

resuspended in 2 mL buffer M. Cells were counted with a Fuchs-Rosenthal counting 

chamber (Hausser Scientific, Horsham, PA) after staining with trypan blue. A typical cell 

concentration was 1 × 10
6
 cells/mL. Cells were disrupted in a 2 mL Kontes glass dounce 

tissue grinder (Kimble Chase, Vineland, NJ) by applying strokes with loose (0.12 mm) 

and narrow (0.06 mm) glass pestles by hand until cell breakage from 80-100% was 

achieved, as monitored by trypan blue staining. After disruption, intact cells, nuclei, and 

other cellular debris were eliminated from the preparation by centrifugation at 600g for 

10 min. Mitochondria in the supernatant were pelleted by centrifugation at 10000g for 10 

min. Mitochondria were resuspended in buffer M and kept on ice. Protein content in the 

mitochondrial fraction was quantified using the Pierce BCA protein assay kit according 

to the manufacturer’s instructions (Thermo, Rockford, IL). Typical mitochondrial protein 

concentration from this preparation was 1.60 ± 0.09 mg/mL. 
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Mitochondria were isolated from mouse liver and muscle tissue using a published 

protocol.
60

 C57BL6 mice were housed in a central specific pathogen free facility and 

were treated in an optimally ethical and humane fashion using protocols approved by the 

Institutional Animal Care and Use Committee for all procedures. Briefly, a female mouse 

was anesthetized on the day of the experiment and the liver and hamstring muscle were 

excised. The liver was immersed in ice-cold buffer L and the muscle was immersed in 

ice-cold PBS containing 10 mM EDTA. All subsequent procedures were performed on 

ice or at 4 °C unless otherwise noted. For preparation of liver mitochondria, the liver was 

rinsed with buffer L and minced into small pieces. The pieces were rinsed and transferred 

to a glass 15 mL Potter-Elvehjem homogenizer (Wheaton, Millville, NJ). The liver was 

homogenized with 3-5 strokes of a motor-driven Teflon pestle operated at 1600 rpm 

(Wheaton). The homogenate was centrifuged at 600g for 10 min to remove nuclei, intact 

cells, and other debris. The supernatant was centrifuged at 7000g for 10 min, then the 

pellet was washed once with buffer L and centrifuged at 7000g for 10 min. The liver 

mitochondria were resuspended in a minimal amount of buffer L and kept on ice. For 

preparation of muscle mitochondria, the muscle was minced into small pieces which were 

then washed with PBS containing 10 mM EDTA. The minced muscle pieces were 

incubated with 0.05% trypsin in PBS with 10 mM EDTA for 30 min. The pieces were 

transferred to buffer T1 and homogenized with 10-15 strokes of a motor-driven Teflon 

pestle operated at 1600 rpm The homogenate was centrifuged at 700g for 10 min to 

remove nuclei, intact cells, and other debris. The supernatant was centrifuged at 8000g 
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for 10 min, then the pellet was washed once with buffer T2 and centrifuged at 8000g for 

10 min. The muscle mitochondria were resuspended in a minimal amount of buffer T2 

and kept on ice. Protein content in each mitochondrial fraction was quantified using the 

Pierce BCA protein assay kit. Protein concentration from this preparation was 23 ± 5 

mg/mL for liver mitochondria and 3.2 ± 0.6 mg/mL for muscle mitochondria. 

Directly before CE-LIF measurements, aliquots from each isolated mitochondrial 

fraction (from cells or tissue) were centrifuged and resuspended in buffer R containing 

2.5 mM succinate, 2 µM rotenone, 2% DMSO, and 2 µM valinomycin (for depolarized 

controls). The mitochondria were incubated in the dark for 10 min at 37 °C with 300 rpm 

mixing in an Eppendorf Thermomixer (Hamburg, Germany). JC-1 was then added to a 

final concentration of 1 µM, and the samples were incubated for an additional 10 min at 

37 °C. Mitochondria were then kept at room temperature in the dark and analyzed by CE-

LIF or in the plate reader. For subsequent CE-LIF runs, new aliquots from the original 

mitochondrial fraction were centrifuged, resuspended in buffer R with succinate, 

rotenone, and valinomycin (for depolarized controls), and labeled with JC-1 directly 

before analysis. This procedure prevents loss of JC-1 over time due to consumption of 

substrate or mitochondrial degradation resulting in loss of membrane potential (see 

Figure C-3 in Appendix C).
53

 

5.2.6. Bulk Measurement 

Bulk red and green fluorescence from mitochondrial samples labeled with JC-1 

was measured with a BioTek Synergy 2 well plate reader (Winooski, VT) in 96-well 
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plates (Nunc, Roskilde, Denmark). Red (λex = 530 ± 12.5 nm, λem = 590 ± 17.5 nm) and 

green (λex = 485 ± 10 nm, λem = 528 ± 10 nm) fluorescence was acquired using auto 

sensitivity mode, and red/green ratios were calculated to indicate mitochondrial 

membrane potential. Controls (buffer R and buffer R containing JC-1 at the same 

concentration used for labeling mitochondria) were included (see Figure C-4 in Appendix 

C). 

5.2.7. Membrane Potential Measurement with TPP
+
 Ion-Selective Electrode 

Measurement of the average membrane potential of isolated mitochondria was 

performed by a method which has been described previously.
50

 Briefly, mitochondria 

were isolated from L6 rat myoblasts, then polarized and depolarized fractions were 

prepared as described above without JC-1 labeling. Total mitochondrial protein content 

was measured using the BCA assay as described above and TPP
+
 uptake was measured 

by an ion-selective electrode. The response of the electrode to TPP
+
 was calibrated by 7 

µL additions of 0.1 mM TPP
+
 to 700 µL of buffer R with 2.5 mM succinate and 2% 

DMSO (also containing 2 µM valinomycin for analysis of depolarized mitochondria) 

with stirring. Directly after addition of TPP
+
 to a final concentration of 3.85 µM, 75 µL 

mitochondrial suspensions containing 0.30 mg (polarized sample) and 0.32 mg 

(depolarized sample) of total mitochondrial protein in the above buffer were added. 

Electrode response was recorded using an Orion 420 A+ pH meter (Thermo) and 

collected using a program written in LabView (National Instruments, Austin, TX). 

Membrane potential was calculated according to the previously described method.
50
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5.2.8. Instrument Description 

A home-built capillary electrophoresis instrument which has been described 

previously
141

 has been adapted for this work. For more efficient excitation of JC-1, a 5 

mW HeNe laser (Melles-Griot, Carlsbad CA) was added to the instrument. The 543.5 nm 

light from this laser was combined with the 488 nm light from a 12 mW Ar
+
 laser 

(Melles-Griot, Carlsbad, CA) using a 503 nm dichroic beam combiner (Semrock LM01-

503-25, Rochester, NY) and was focused through the sheath-flow cuvette for post-

capillary detection. Light was collected at 90° to the lasers by a 40×, 0.55 NA objective 

(New Focus, San Jose, CA). Scattered laser light was eliminated with a 488/543 nm dual 

notch filter (NF01-488/543-25, Semrock). Fluorescence was passed through a pinhole, 

split into red and green channels using a 540 nm longpass dichroic mirror (XF2013, 

Omega Optical, Brattleboro, VT), and passed through a 593 ± 20 nm (red channel) or 520 

± 17.5 nm (green channel) band-pass filter (BrightLine Fluorescence Emitter, Semrock) 

onto photomultiplier tubes (PMT, R1477, Hamamatsu) biased at 1000 V. 

5.2.9. Capillary Preparation 

Fused-silica capillaries were permanently coated with adsorbed PVA by a method 

adapted from Shen et al.
105

 PVA coatings reduce mitochondrial adsorption to the 

capillary surface.
104

 Briefly, three capillaries were rinsed with methanol, 1.0 M NaOH, 

and water for 10 min each by flushing under 10 psi nitrogen pressure. The capillaries 

were purged and flushed with a 5% (w/v) PVA solution for 1 h. The PVA solution was 

heated to 80 °C prior to flushing through the capillaries. The solution was then purged 
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from the capillaries. After purging, the capillaries were heated between two aluminum 

plates with heating tape applied to one side; temperature was controlled by a variable-

voltage power source at 140 °C for 1 h. The PVA flush, N2 purge, and heating steps were 

repeated once with the capillaries in the opposite orientation for a more robust coating. 

Capillaries were stored dry until use. Before use, the inlet and outlet were trimmed and 

the polyimide coating was burned off at the tips to produce capillaries with a total length 

of ~40 cm. 

The PVA-coated capillary was installed in the instrument and initially aligned by 

flushing a solution of 5 × 10
-9

 M fluorescein and 5 × 10
-8

 M 5-TAMRA in SH buffer by 

application of pressure to the inlet. These two fluorophores were selected as they are 

compatible with the dual-laser excitation/dual channel fluorescence emission detection 

system (fluorescein is excited by the 488 nm laser and detected in the green channel, 5-

TAMRA is excited by the 543.5 nm laser and detected in the red channel). 

For fine alignment of the capillary, a solution of 2.5 µm Alignflow flow 

cytometry beads for 488 nm excitation (Invitrogen) in SH buffer was continuously 

injected by application of an electric field of -400 V/cm with the PMTs biased at 300V. 

Alignment was considered acceptable when the relative standard deviation of the average 

fluorescence intensity from each bead event in the red channel was less than 20% (see 

Figure C-5 in Appendix C). 

5.2.10. CE Procedure 
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After the capillary was aligned, it was rinsed with SH buffer containing 2.5 mM 

succinate, 2 µM rotenone, and 2% DMSO directly before CE-LIF runs of polarized 

samples, and the same buffer with 2 µM valinomycin before runs of depolarized samples. 

A mitochondrial suspension to be analyzed by CE-LIF was diluted with this buffer and 

fluorescein was added to a final concentration of 5 × 10
-10

 M. Fluorescein was used as an 

internal standard to calculate the limit of detection and electroosmotic flow (EOF). 

Typical mitochondrial protein content of injected samples, as determined by the BCA 

protein assay (above), was 1.5 ng for liver mitochondria, 1.0 ng for muscle mitochondria, 

and 0.25 ng for mitochondria from cultured cells, although it was necessary to use trial 

and error to find a dilution factor that resulted in an acceptable number of mitochondrial 

events (see Data Analysis section below on peak overlap). Samples were injected 

hydrodynamically by siphoning; an electronically actuated valve (Parker Hannifin, 

Cleveland, OH) was used to increase the height difference between the inlet of the 

capillary and the sheath flow waste to 110 cm for 2.7 seconds. After injection, the inlet of 

the capillary was rinsed twice in SH buffer and switched to the vial of running buffer (as 

above, SH buffer containing succinate, rotenone, DMSO, and valinomycin if sample was 

depolarized). An electric field of -400 V/cm was applied for 15 min for the CE 

separation. Between runs, the capillary was rinsed with DMSO for 5 min and fresh 

running buffer for 5 min The peak height and migration time of fluorescein were used to 

calculate the limit of detection and EOF. For a typical experiment, the limit of detection 

(S/N = 3) was 26 ± 1 zmol and the EOF was 9.4 ± 0.1 × 10
-5

 cm
2
 V

-1
 s

-1
 (n = 7). This 
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reduction in EOF from a previously reported value for uncoated fused silica of 5.1 ± 0.1 

× 10
-4

 cm
2
 V

-1
 s

-1
 indicates a successful PVA coating.

154
 

5.2.11. Data Analysis 

Data from the PMTs was acquired at 200 Hz, digitized by an I/O data acquisition 

card (PCIMIO-16E-50) operated by Labview 5.1 software (National Instruments), and 

stored as a binary file. Data were analyzed in Igor Pro software (Wavemetrics, Lake 

Oswego, OR) by a procedure written in-house which has been described previously, 

PeakPicks.
101

 Briefly, electropherograms were median filtered to separate narrow spikes 

(peaks with baseline widths smaller than 200 data points or 1.0 s) from broad peaks 

(fluorescein). Spikes with signal intensity above a threshold of 5 standard deviations over 

the background signal were assigned to mitochondrial events. Coincident events (events 

with maxima in both red and green channels at the same migration time, with a tolerance 

of 0.01 s) were then selected. The electrophoretic mobility and corrected electrophoretic 

mobility (electrophoretic mobility minus the mobility of the EOF) was calculated for 

each mitochondrial event based on its migration time. 

In addition to mitochondrial events, some of these events may correspond to false 

positives. A particular concern is the detection of free JC-1 aggregates. Although free JC-

1 should migrate in the opposite direction of the detector due to its positive charge (so no 

free JC-1 aggregates should be detected), a blank injection was performed to measure the 

false positive rate. A 200 nM solution of JC-1 was injected and the number of detected 

coincident events was compared to the average number of events detected in four 
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injections of mitochondria from liver tissue (see Figure C-6 in Appendix C). This 

concentration of JC-1 was chosen to match the concentration that is present in the 

mitochondrial samples after dilution with buffer SH for injection. The number of false 

positives detected was calculated as less than 5% of the total number of detected 

coincident mitochondrial events. 

An issue in individual organelle analysis by CE is whether peak overlap is a 

problem, i.e., whether most observed peaks represent individual or multiple comigrating 

components. Statistical overlap theory has been applied to this problem to determine a 

threshold for peak saturation, below which the number of observed events is a good 

estimate for the number of actual events, and so the effect of peak overlap on the 

observed distribution is minimal.
142,175

 This statistical test has been applied to each 

mitochondrial CE-LIF run and it has been determined that peak overlap is not a 

significant problem (see Table C-1 in Appendix C). 

Polarized and depolarized regions of interest (ROIs) were defined in each CE-LIF 

experiment. A similar graphical approach has been used previously to define groups of 

polystyrene microspheres with distinct fluorescence and scattering properties analyzed by 

CE-LIF.
176

 First, red vs. green fluorescence intensities of each coincident event were 

plotted for polarized and depolarized samples of each type (cells, muscle, and liver). A 

line drawn from the origin was used to divide the data into polarized and depolarized 

ROIs (i.e. with the polarized ROI located above the line and the depolarized ROI below 

it). To verify that a linear definition of ROIs is valid, various least-squares fits (e.g. 
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linear, polynomial, exponential) were performed on the data; the non-linear fits were not 

significantly better than the linear fit (see Table C-2 in Appendix C). The slope of the line 

was then varied to maximize the difference between the percentage of events from 

polarized and depolarized samples falling in the polarized ROI (see Figure C-10 in 

Appendix C). Results of this ROI analysis are shown in Table C-3 in Appendix C and 

discussed in section 5.3.3. 

5.3. Results and Discussion 

5.3.1. Validation of JC-1 as Membrane Potential Indicator 

JC-1 is commonly used as an indicator of mitochondrial membrane potential in 

intact cells and isolated mitochondria.
56,169,177

 We confirmed that this dye responds to 

changes in mitochondrial membrane potential in L6 rat myoblasts by observation of 

polarized cells and depolarized cells (2 µM valinomycin) with confocal fluorescence 

microscopy (see Figure 5-1 A-D). Indeed, polarized cells exhibit intense red fluorescence 

from JC-1 aggregates, and depolarized cells exhibit very weak red fluorescence and more 

intense green fluorescence from JC-1 monomers. While imaging is a useful technique for 

observing mitochondrial membrane potential heterogeneity and provides the advantage of 

observations of mitochondrial morphology,
19

 this technique is not suitable for 

measurement of mitochondrial electrophoretic mobility, which can provide additional 

information about subpopulations of mitochondria with different surface properties. 

Additionally, without automation of image collection and data analysis, characterization 

of large numbers of mitochondria is time-consuming. 



 

 

 103 

 

JC-1 fluorescence in polarized and depolarized mitochondria isolated from 

cultured L6 rat myoblasts, C2C12 mouse myoblasts, and mouse liver and muscle tissue 

was observed in bulk using a well plate reader. Similar results were obtained in isolated 

mitochondria from all sources (i.e. polarized mitochondria exhibit more intense red 

fluorescence and higher red/green ratios, see Figure 5-1 E). This technique has the 

advantage of simplicity and is therefore useful as a general assessment of the 

mitochondrial membrane potential of a preparation of cells or isolated mitochondria, but 

reports only an average value of relative membrane potential and is not suitable for 

analysis of heterogeneity or subpopulations. 

Membrane potential of isolated mitochondria from cultured L6 rat myoblasts was 

calculated by measuring uptake of TPP
+
 by polarized (Figure 5-1 F) and depolarized 

(Figure 5-1 G) samples using an ion-selective electrode. Membrane potential was 

calculated as -125 mV and -80 mV for polarized and depolarized samples, respectively. 

These values are comparable to values previously determined by this technique: 

mitochondria isolated from rat liver and energized with succinate were reported to have a 

membrane potential of -172 mV, which dropped to around -110 mV (value estimated 

from the data shown in this report) upon depolarization with FCCP.
50

 While a clear 

advantage of this technique is the ability to calculate actual values of membrane potential, 

it is not suitable for analysis of individual mitochondria or subpopulations and reports an 

average value.  
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Figure 5-1. Validation of JC-1 as ratiometric probe for membrane potential. A-D) 

Confocal fluorescence microscopy images of polarized (A and B) and depolarized (C 

and D) L6 rat myoblast cells labeled with 500 nM JC-1 for 30 minutes. Polarized 

cells exhibit intense red fluorescence (A) from JC-1 aggregates and less intense 

green fluorescence (B); depolarized cells (2 µM valinomycin) exhibit very little red 

fluorescence (C) and more intense green fluorescence (D) from JC-1 monomers. 

Contrast is adjusted and median smooth function used. Scale bars are 10 µm. Red 

channel (A and C): 2.0 s exposure time, gain of 100, λex = 545 ± 10 nm, λem = 597.5 ± 

27.5 nm, 565 nm dichroic, Olympus M-RFPHQ filter cube; green channel (B and 

D): 10.0 s exposure time, gain of 100, λex = 470 ± 10 nm, λem = 517.5 ± 22.5 nm, 485 

nm dichroic, Olympus U-MGFPHQ filter cube. E) Bulk measurement of normalized 

red (λex = 530 ± 12.5 nm, λem = 590 ± 17.5 nm) and green (λex = 485 ± 10 nm, λem = 

528 ± 10 nm) fluorescence from isolated mitochondria (L6 rat myoblasts) labeled 

with 100 nM JC-1. Depolarized (2 µM valinomycin) mitochondria show a reduced 

red/green ratio when compared to polarized mitochondria. Error bars represent the 

standard deviation of measurements from three different wells containing the same 
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(continued from previous page) sample. F-G) Measurement of membrane potential 

by TPP
+
 ion-selective electrode in polarized (F) and depolarized (G, 2 µM 

valinomycin) mitochondria isolated from L6 rat myoblasts. The * symbols represent 

additions of 7 µL of 0.1 mM TPP
+
 to 700 µL of buffer R with 2.5 mM succinate and 

2% DMSO, # and $ represent additions of 75 µL suspensions of polarized and 

depolarized mitochondria in the same buffer, respectively. Total mitochondrial 

protein added was 0.30 (polarized sample) and 0.32 mg (depolarized sample). 

Membrane potential was calculated as -125 mV and -80 mV for polarized and 

depolarized samples, respectively. 

 

 

 

Figure 5-2. CE-LIF trace of JC-1 labeled mitochondria from muscle tissue. A) 

Electropherograms, bottom and top traces show JC-1 fluorescence in red (593 ± 20 

nm) and green (520 ± 17.5 nm) channels, respectively. Y-offset is +5 for green 

channel. B) Fluorescein peak in green channel after median filtering to separate 

spikes from wide peaks. C) Mitochondrial event in red and green channels. Y-offset 

is +5 for green channel. Samples were hydrodynamically injected by creating a 

height difference of 110 cm between inlet and outlet for 2.7 s. Separations were 

performed in a 50 μm i.d. fused silica capillary coated with PVA at -400 V/cm in 

buffer SH with 2.5 mM succinate, 2 µM rotenone, and 2% DMSO; 2 µM 

valinomycin was added for CE-LIF runs of depolarized mitochondria.  
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Individual mitochondrial events were detected in CE-LIF separations (see Figure 

5-2). Red and green fluorescence from mitochondria labeled with JC-1 was observed 

using this technique, similar to the results obtained in microscopy and bulk fluorescence 

methods. This technique allows for the observation of distributions of red/green ratios 

and corrected electrophoretic mobilities of individual mitochondria. 

5.3.2. Reproducibility 

The reproducibility of this technique was evaluated by performing three replicate 

injections of polarized mitochondria and three replicate injections of depolarized 

mitochondria isolated from C2C12 mouse myoblasts. In all CE-LIF runs, distributions of 

red/green ratio and corrected electrophoretic mobility were observed. Data from 

individual runs (see Figure C-7 in Appendix C) are combined to show overall 

distributions of red/green ratio (Figure 5-3 A) and corrected electrophoretic mobility 

(Figure 5-3 C). Individual and combined distributions from depolarized runs are shown in 

Figures C-8 and C-9 in Appendix C. 

Overall, the distributions of red/green ratios and corrected electrophoretic 

mobility were reproducible. This is demonstrated by comparisons using quantile-quantile 

(Q-Q) plots, which have been used to compare mitochondrial migration time distributions 

in CE.
145

 In this approach, the 5
th

 through 95
th

 percentiles of two data sets are plotted 

against one another; identical distributions would produce plots with points that fall on a 

line defined by y = x. Q-Q plots can be used to evaluate reproducibility by plotting data 

from an individual run against the data from all runs combined. The normalized sum of 
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squares of residuals (ssres) can be determined for a more quantitative comparison of the 

distributions shown in a Q-Q plot. This value is calculated according to the following 

equation, where the median is taken from the data plotted on the x-axis of the Q-Q plot 

and the ssres is calculated as reported previously.
154

 

                   
      

      
      (Equation 5-1) 

The normalized ssres is similar to the relative standard deviation of a data set, and larger 

values indicate less similar distributions. Values for ssres and normalized ssres are 

provided for all Q-Q plots (see Table C-4 in Appendix C). Distributions of red/green ratio 

(Figure 5-3 A) and corrected electrophoretic mobility (Figure 5-3 C) were consistent 

from run to run; the Q-Q plots show data points from individual runs falling close to the 

line. There is much more run-to-run variation in the 90-95
th

 percentiles of the red/green 

ratios (normalized ssres = 352%, 221%, and 370% for runs 1, 2, and 3, respectively, inset 

in Q-Q plot in Figure 5-3 B), but the 5-85
th

 percentiles are reproducible (normalized ssres 

= 26%, 18%, and 13% for runs 1, 2, and 3, respectively). For the 5-85
th

 percentiles, the 

normalized ssres is very low compared to the value for the 90-95
th

 percentiles. This result 

represents the presence of a small number of events with very high red/green ratios and 

wider variation in these ratios. Distributions of corrected electrophoretic mobility are 

reproducible, with normalized ssres = 7%, 7%, and 5% for runs 1, 2, and 3, respectively. 

For ROIs from individual runs of polarized and depolarized samples, distributions of 

red/green ratio and corrected electrophoretic mobility were almost as reproducible, with 

slightly more scatter away from the line (see Figure C-12 in Appendix C), this likely 
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represents an effect of the smaller number of events in ROIs as compared to the overall 

data. 

 

Figure 5-3. Reproducibility in multiple CE-LIF runs of polarized mitochondria 

isolated from C2C12 cells. A) Distribution of red/green ratios from three combined 

replicate runs, n = 950 detected events. B) Q-Q plot of red/green ratios from 

individual runs vs. combined data. This plot is a qualitative indication that the 

distributions of red/green ratios are reproducible (i.e. data points closely follow the y 

= x line shown on the plot). There is much more run-to-run variation in the 90-95
th

 

percentiles (inset in Q-Q plot in B, normalized ssres = 352%, 221%, and 370% for 

runs 1, 2, and 3, respectively), but the 5-85
th

 percentiles are reproducible 

(normalized ssres = 26%, 18%, and 13% for runs 1, 2, and 3, respectively). C) 

Distribution of corrected electrophoretic mobility from the three combined runs. D) 

Q-Q plot of corrected mobility from individual runs vs. combined data. This plot is 

a qualitative indication that the distributions of corrected mobility are reproducible 

(i.e. data points closely follow the y = x line shown on the plot, normalized ssres = 7%, 

7%, and 5% for runs 1, 2, and 3, respectively). CE-LIF conditions as described in 

Figure 5-2.  
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5.3.3. Region of Interest (ROI) Analysis 

When considering average values or overall distributions, differences in red and 

green fluorescence between polarized and depolarized samples were not as apparent in 

CE-LIF data as in bulk techniques. Several explanations are possible for this observation, 

including the presence of depolarized mitochondria in the polarized sample, 

overestimation of the membrane potential by the bulk fluorescence technique, and 

emission from monomers in depolarized mitochondria detected in the red fluorescence 

channel. 

Depolarized mitochondria are expected in the mitochondrial preparations as a 

result of several experimental factors such as damage during mechanical homogenization 

or loss of membrane potential over time in isolated mitochondria. Harsh sample 

preparation methods (e.g. mechanical homogenization of cells and tissue
64

 or mixing 

isolated mitochondria at 300 rpm during JC-1 labeling) could cause disruption and 

depolarization of some mitochondria, a change which may not be detected in bulk 

techniques. Isolated mitochondria lose membrane potential over time (see Figure C-3 in 

Appendix C), increasing the number of depolarized mitochondria in the polarized sample. 

All of these factors lead to the presence of depolarized mitochondria in samples typically 

used to assess polarization states. Additionally, there may be polarized mitochondria 

present in the depolarized sample: some mitochondria may be resistant to depolarization 

by valinomycin. Approximately 5% of a preparation of isolated mitochondria from rabbit 

kidney analyzed by flow cytometry were resistant to depolarization by FCCP.
66

 The 
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authors of this study hypothesized that this resistance to depolarization could be due to 

higher amounts of cardiolipin in the inner membrane which acts as an “insulator” against 

depolarization. While FCCP is a protonophore, it is feasible that differences in membrane 

structure could also affect potassium transport by valinomycin through the inner 

membrane, leading to different degrees of resistance to depolarization. 

Bulk fluorescence techniques are insensitive to the presence of depolarized 

mitochondria in samples containing polarized mitochondria. In the bulk fluorescence 

technique, it is not possible to estimate the fraction of mitochondria which are 

depolarized since the signal indicating polarization (e.g. red fluorescence) is from 

polarized mitochondria and is not necessarily influenced by the presence of depolarized 

mitochondria in the sample. For example, a sample containing equal amounts of both 

polarized and depolarized mitochondria would exhibit the same bulk red/green ratio as a 

sample with the same volume containing the same amount of polarized mitochondria but 

no depolarized mitochondria (assuming that the depolarized mitochondria do not 

accumulate any JC-1). Therefore, bias exists in this technique toward overestimation of 

the fraction of polarized mitochondria. 

The detection scheme used in CE-LIF may overestimate the membrane potential 

of depolarized mitochondria. The 488 nm laser used excites the JC-1 monomers with 

high efficiency, and fluorescence from depolarized mitochondria containing only 

monomers is likely also detected in the red channel. This was observed in a flow 

cytometry experiment using cultured cells; cells depolarized with valinomycin and 
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excited at 488 nm exhibited significant fluorescence detected in the 585/42 nm channel of 

a flow cytometer; in fact, 30% compensation (subtraction of 30% of the fluorescence 

signal in the green channel from the signal in the red channel) was needed to separate this 

population of cells from polarized cells.
58

 

The advantages of CE-LIF over bulk techniques are that hundreds of individual 

mitochondria are analyzed in a single 15-minute run and electrophoretic mobility data is 

collected. This allows for determination of individual mitochondrial membrane potential 

and investigation of mitochondrial heterogeneity. Most importantly, detection of 

individual mitochondria makes it possible to investigate mitochondrial membrane 

potential heterogeneity in CE-LIF runs containing both polarized and depolarized 

mitochondria; we accomplish this by definition of polarized and depolarized ROIs. 

Polarized and depolarized ROIs were defined using the mitochondrial events from 

CE-LIF runs of polarized and depolarized (treated with valinomycin) samples and plots 

of red vs. green fluorescence for individual events (see Figure 5-4). The slope of a line 

defining the polarized and depolarized ROIs was varied to maximize the difference in the 

percentage of events in the polarized ROI between polarized and depolarized samples. 

This slope was found to be 0.96 for mitochondria from cells, 1.48 for mitochondria from 

muscle, and 1.47 for mitochondria from liver (see Figure C-10 and Table C-3 in 

Appendix C). Since the optimal ROIs for data from both muscle and liver were similar, 

an intermediate value of 1.475 was used to define the ROIs in both of these sample types 

to allow for direct comparison. Polarized ROIs contained 53% of the total events in 
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polarized samples from cells (a difference of 8% over the percentage of events from the 

depolarized samples in this ROI), 49% of the total events in polarized samples from 

muscle (a difference of 38%), and 18% of the total events in polarized samples from liver 

(a difference of 8%). A result that validates this approach is that the median red/green 

ratios in the depolarized ROI are similar in data from both polarized and depolarized 

samples (see Figure 5-5). As shown in Figure 5-4 B, mitochondrial events from polarized 

runs fall within both the polarized and depolarized ROIs. This approach allows for the 

comparison of subpopulations of polarized and depolarized mitochondria within a single 

sample. 

 

 
Figure 5-4. Definition of ROIs in CE-LIF. A) Mitochondrial events from 

depolarized muscle sample with depolarized ROI shown. B) Mitochondrial events 

from polarized muscle sample with depolarized ROI shown. CE-LIF conditions as 

in Figure 5-2. Plots are shown using a logarithmic scale. Plots with a linear scale are 

shown in Figure C-11 in Appendix C. 
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5.3.4. Comparison to Bulk Measurement 

Average values from distributions of red/green ratios of individual mitochondrial 

events may be compared to results from measurements of bulk JC-1 fluorescence. In 

Figure 5-5, overall average red/green ratios and average red/green ratios from polarized 

and depolarized ROIs from CE-LIF analysis of individual mitochondria from liver and 

muscle tissue are compared to red/green ratios from bulk fluorescence measurements. 

Red/green ratios are generally higher in polarized samples in all groups, although the 

differences are not as pronounced when examining overall average values from CE-LIF 

data, indicating the presence of depolarized mitochondria in these polarized samples; 

analysis of ROIs is needed. Mitochondria from muscle generally have higher membrane 

potentials than mitochondria from liver in the CE-LIF runs, although this trend is 

reversed in bulk fluorescence measurements. Generally, liver mitochondria have higher 

membrane potential than muscle mitochondria under similar conditions (availability of 

substrate and respiratory rate).
178

 In this experiment, muscle mitochondria were analyzed 

by CE-LIF before liver mitochondria, so liver mitochondria may have degraded and 

suffered losses in membrane potential by the time they were analyzed. Indeed, the first 

sample of liver mitochondria was analyzed 90 min after the first sample of muscle 

mitochondria and approximately 3 hours after the procedure for mitochondrial isolation 

was performed, the results in Figure C-3 in Appendix C indicate that some depolarization 

occurs over this time frame. In one sample of isolated mitochondria labeled with JC-1, 

red/green ratio decreased to 32% of its initial value over 256 min. Since isolated 
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mitochondrial samples were kept on ice before being labeled with JC-1 and aliquots were 

labeled directly before CE-LIF analysis (see Figure 5-3 in Appendix C), a more relevant 

comparison is that of the red/green ratio measured in the initial aliquot at t = 36 min after 

mitochondrial isolation to the aliquot kept on ice then labeled and measured 200 min after 

isolation. This sample has a red/green ratio of 79% of the first sample. Therefore, we can 

assign around 20% of the observed depolarization to an effect of time. 

 
Figure 5-5. Comparison of red/green ratios from bulk measurements to median 

values and ROIs from CE-LIF. Mitochondria isolated from mouse liver (A) and 

muscle (B) tissue. All bulk measurements normalized to the highest red/green ratio 

among bulk measurements; all CE-LIF median values are normalized to the highest 

median value among CE-LIF groups (median, depolarized ROI, and polarized ROI 

in each sample). Bulk fluorescence measurements collected as in Figure 5-1 E, CE-

LIF conditions as in Figure 5-2. 
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5.3.5. Comparison of ROIs and Dependence of Electrophoretic Mobility on 

Membrane Potential 

The Q-Q plots of red/green ratio illustrate little difference in the overall 

distributions between polarized and depolarized samples (Figure 5-6 A and C), but a clear 

difference in the distributions between polarized and depolarized ROIs from polarized 

and depolarized samples (Figure 5-6 B and D), illustrating the utility of using ROIs to 

examine differences between these samples. Likewise, there is only a slight difference in 

the overall distributions of corrected electrophoretic mobility between polarized and 

depolarized samples (Figure 5-7 A and C), with the polarized sample distribution slightly 

less negative than the depolarized sample distribution. However, the difference in 

corrected electrophoretic mobility distributions between polarized and depolarized ROIs 

from polarized and depolarized samples is more pronounced (Figure 5-7 B and D). This 

result indicates an effect of membrane potential on electrophoretic mobility, with higher 

membrane potential generally resulting in less negative mobility. Indeed, relationships 

between membrane potential and electrophoretic mobility have been observed in 

mitochondria.
164,166,172

 In these studies, polarization was reported to increase 

mitochondrial surface charge density (resulting in more negative electrophoretic 

mobility), which is contradicted by the results obtained here. However, the results 

obtained in previous studies used a different method to observe mitochondrial mobility. 

Mitochondrial migration was observed directly in a flat quartz electrophoresis chamber at 

the stationary layer (i.e. a distance from the surface under conditions of net zero EOF). If 
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the location of the stationary layer was estimated inaccurately, EOF would have an effect 

on the observed apparent mobility of mitochondria. In our work, mobilities were 

corrected for EOF based on the migration time of fluorescein, and EOF was reduced by 

the PVA capillary coating. Additionally, we used valinomycin to depolarize 

mitochondria, and the comparisons made in the previous studies were between 

mitochondria before and after addition of succinate in the presence of rotenone
166

 and the 

inhibitors FCCP, antimycin A, and potassium cyanide, which may have a different effect 

on the surface charge density of mitochondria.
164

 Differences in the ionic strength of the 

buffers used is also likely to influence the results – the electrophoretic mobilities of 

liposomes with pH gradients across their membranes were found to depend on ionic 

strength of the medium, with a complete change in the elution order of different 

liposomes caused by a change in ionic strength from 9 mM to 45 mM.
80

 Further 

investigation is needed into the relationship between membrane potential and 

electrophoretic mobility.  
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Figure 5-6. Comparison of red/green ratio distributions between polarized and 

depolarized samples and ROIs using mitochondria isolated from C2C12 cells. A) 

Histograms of polarized and depolarized samples. Polarized: n = 950 events, 3 runs. 

Depolarized: n = 906 events, 3 runs. B) Histograms of polarized ROIs from 

polarized samples and depolarized ROIs from depolarized samples. Polarized ROI: 

n = 501 events, 3 runs. Depolarized ROI: n = 503 events, 3 runs. C) Q-Q plot of 

depolarized vs. polarized samples. Differences between the overall distributions are 

not pronounced (i.e. data points do not deviate much from the y = x line shown on 

the plot, normalized ssres = 24% for the 5-85
th

 percentiles). There is much more 

variation in the 90-95
th

 percentiles (inset in Q-Q plot in C, normalized ssres = 208%). 

D) Q-Q plot of depolarized ROI from depolarized samples vs. polarized ROI from 

polarized samples. The large deviation of the data from the y = x line confirms the 

difference in red/green ratio used to define these ROIs and demonstrates the 

difference between the two distributions of red/green ratio (normalized ssres = 304% 

for the 5-85
th

 percentiles and 1412% for the 90-95
th

 percentiles). CE-LIF conditions 

as in Figure 5-2.  
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Figure 5-7. Comparison of corrected electrophoretic mobility distributions between 

polarized and depolarized samples and ROIs using mitochondria isolated from 

C2C12 cells. A) Histograms of polarized and depolarized samples. B) Histograms of 

polarized ROIs from polarized samples vs. depolarized ROIs from depolarized 

samples. C) Q-Q plot of depolarized samples vs. polarized samples. Differences 

between the overall distributions are not pronounced (i.e. data points closely follow 

the y = x line shown on the plot, normalized ssres = 6%). D) Q-Q plot of depolarized 

ROI from depolarized samples vs. polarized ROI from polarized samples. Deviation 

from the y = x line demonstrates the differences in some, but not all, percentiles in 

these distributions (normalized ssres = 37%). CE-LIF conditions as in Figure 5-2.  
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5.3.6. Comparison of Liver and Muscle Tissue Mitochondria 

The distributions of red/green ratio and corrected electrophoretic mobility from 

polarized and depolarized mitochondria isolated from mouse muscle and liver tissue are 

shown in Figure 5-8. In mitochondria from muscle, differences in the red/green ratio 

distributions between polarized and depolarized samples were apparent even in the 

overall data, and were more pronounced in the ROI comparison (Figure 5-8 A). 

Differences in the distributions of red/green ratio from liver mitochondria were less 

pronounced between polarized and depolarized mitochondria when considering the 

overall distributions, this observation illustrates the value of measuring individual 

mitochondrial membrane potential and defining ROIs. As discussed previously, this 

result could reflect mitochondrial degradation due to the sample preparation procedure or 

loss of membrane potential over time, as these samples were analyzed after the muscle 

samples. This result supports the utility of defining a polarized ROI: as more 

mitochondria lose membrane potential over time, mitochondria remaining in the 

polarized ROI may still be used for comparison to depolarized mitochondria. Differences 

in distributions of corrected electrophoretic mobility are similar to those observed in the 

experiments with mitochondria isolated from cells. The polarized ROIs from liver and 

muscle tissue mitochondria exhibit mobility distribution that are shifted toward less 

negative mobilities when compared to the distributions from the depolarized ROIs 

(Figure 5-8 B and D). The Q-Q plot allows for comparisons of subtle differences between 

these distributions. For example, while the mobility distributions for polarized ROIs from  
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Figure 5-8. CE-LIF of muscle and liver tissue mitochondria. Histograms and Q-Q 

plots of red/green ratio (A and C) and corrected electrophoretic mobility (B and D). 

Comparisons are made between polarized and depolarized samples (all events) and 

between events in polarized ROIs from polarized samples and events in depolarized 

ROIs from depolarized samples. See Table C-3 for number of events and Table C-4 

for normalized ssres from Q-Q plots (in Appendix C). Position of y = x line in C 

results from different ranges used for x and y axes. CE-LIF conditions as in Figure 

5-2.  
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both muscle and liver tissue are shifted toward less negative values, the difference in the 

distributions between polarized and depolarized ROIs from liver is more uniform (i.e. 

points for most percentiles are evenly spaced and fall away from the y = x line). This 

reflects the broader shape of the distributions of corrected mobility from liver 

mitochondria compared to muscle, which could reflect more heterogeneity in the surface 

composition of these mitochondria. 

5.4. Conclusions 

This chapter describes a method to measure membrane potential distributions in 

mitochondria using the ratiometric dye JC-1. An important advantage of this method over 

bulk measurements of membrane potential is the ability to characterize mitochondrial 

heterogeneity. Mitochondrial membrane potential is heterogeneous depending on 

subcellular location,
19,20

 functional status and morphology,
20,21,168

 and oxidative damage 

to mitochondria,
22

 and plays an important role in mitochondrial maintenance by the 

fusion/fission process
23

 and turnover by mitophagy.
24

 Flow cytometry and microscopy 

are suitable techniques for evaluation of membrane potential heterogeneity, and similar 

results have been obtained to the results obtained in this work (i.e. flow cytometry
66

 and 

microscopy
19

 have been used to observe broad distributions of membrane potential and 

changes upon depolarization). However, CE-LIF provides the additional advantage of a 

separation based on mitochondrial electrophoretic mobility, which has the potential for 

characterization of subpopulations of mitochondria with different surface properties. 
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The method is applicable to mitochondria isolated from cultured cells and from 

muscle and liver tissue. Application of the method to these different samples revealed 

heterogeneity in mitochondrial membrane potential and electrophoretic mobility. 

Analysis of ROIs revealed additional differences between samples, and an effect of 

membrane potential on electrophoretic mobility.
164,166,172

 The analysis of ROIs makes it 

possible to analyze polarized mitochondria in samples where depolarized mitochondria 

are present due to experimental factors that result in damage to mitochondria or loss of 

membrane potential in the time elapsed between preparation and analysis. 

This work enables future studies of the relationship between mitochondrial 

membrane potential and electrophoretic mobility. Additional investigation of this 

relationship would aid in interpretation of data from CE-LIF experiments: the relative 

contributions of membrane potential and mitochondrial surface composition to mobility 

is unknown. For example, the effects of different inhibitors of mitochondrial respiration 

or depolarizing agents could be investigated and compared to the effects of treatments to 

the mitochondrial surface (e.g. trypsin to cleave cytoskeletal proteins).
40

 Different modes 

of separation could also be used; for example, this labeling scheme could be used with 

capillary isoelectric focusing to determine relationships between mitochondrial isoelectric 

point and membrane potential. This technique allows for measurement of a different 

mitochondrial surface property which may be useful in assessing changes to the surface 

relevant to membrane potential (e.g. ubiquitination by PINK1/Parkin as a signal for 

elimination by mitophagy). Since the sample requirement is small and the method allows 
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for analysis of membrane potential even if some mitochondria are disrupted during 

sample preparation, this method could even be applied to other cell or animal models or 

even human tissue samples to study mitochondrial heterogeneity. 
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Chapter 6.  

 

Conclusions 
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This main outcomes of the work described in this thesis include development of a 

method to measure individual pIs in isolated mitochondria by cIEF with laser-induced 

fluorescence detection, simulation of the contribution of mitochondrial surface 

compositions to pI and prediction of pI changes with changes in surface composition, and 

development of a method to measure individual mitochondrial membrane potential by 

CE-LIF. 

In Chapter 3, we report a method for separation of mitochondria isolated from L6 

rat myoblasts by cIEF with laser-induced fluorescence detection. This method revealed a 

distribution of individual mitochondrial pI, which were determined accurately through 

the use of fluorescent pI markers as internal standards. This method is reproducible and 

sensitive to changes in the mitochondrial pI distribution upon treatment with trypsin, 

which modifies proteins associated with the surface of the mitochondria. The ability to 

determine the pIs of individual mitochondria is an important tool for characterizing 

mitochondrial heterogeneity and detecting changes to the composition of the surface of 

mitochondria. One limitation of the method is the definition of the pH gradient above the 

pI 6.5 marker; improvements to the method to address this limitation are described in 

Chapter 7. 

In Chapter 4, we describe a method to predict individual mitochondrial pI values 

using simulated surface compositions. These compositions consist of different 

percentages of amino acids and phospholipids found in the mitochondrial outer 

membrane. This method is able to match pI distributions of isolated mitochondria 
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determined by cIEF and make predictions about the individual compositions associated 

with experimental pI values. We validated the method by predicting the amino acid 

compositions of known mitochondrial outer membrane proteins. This method is a 

valuable tool to model the heterogeneity of mitochondrial pI and can be used to predict 

changes in pI upon changes to surface composition. In Chapter 7, we discuss possible 

future use of this model to predict changes in mitochondrial pI arising from modifications 

to the mitochondrial surface expected in targeting for mitophagy or upon depolarization. 

Chapter 5 describes a method to measure individual mitochondrial membrane 

potential using CE-LIF. Mitochondria from cultured cells and mouse muscle and liver 

tissue were isolated, labeled with the ratiometric dye JC-1, and separated by CE-LIF 

which revealed heterogeneity in mitochondrial membrane potential and electrophoretic 

mobility distributions. Analysis of specific regions of interest defined using depolarized 

samples makes it possible to analyze polarized mitochondria in samples where 

depolarized mitochondria may be present due to biological variation or experimental 

factors that result in damage to mitochondria. This analysis revealed additional 

differences between samples, and an effect of membrane potential on electrophoretic 

mobility. An important advantage of this method is the ability to measure individual 

mitochondrial membrane potential and electrophoretic mobility, which allows for 

characterization of subpopulations of mitochondria with different surface properties. In 

Chapter 7, we discuss possible future adaptation of the labeling method described in 
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Chapter 5 to cIEF, which would allow for investigation of the relationships between 

mitochondrial pI and membrane potential. 

Overall, the work described in this thesis represents development of new methods 

to study mitochondrial heterogeneity in terms of isoelectric point, surface composition, 

and membrane potential. Application of these methods to biological models could reveal 

subpopulations of mitochondria within heterogeneous populations that make critical 

contributions to aging and disease. Identification of the role played by these 

subpopulations would increase our fundamental understanding of these organelles and 

their contribution to aging. Insights gained through elucidation of the role of 

mitochondrial dysfunction and heterogeneity in aging could eventually lead to new 

treatments for age-related disorders and disease. 
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Chapter 7.  

 

Future Work 

Dr. V. Kostal cultured cells for the preliminary experiment described in Figure 7-3, and 

collected and analyzed the data presented in Figures 7-5 and 7-6. S. Rose collected and 

analyzed the data presented in the preliminary experiment shown in Figure 7-7. All other 

data collection and analysis for preliminary experiments was performed by G. Wolken. 
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In this chapter, we describe future improvements to the methods described in this 

thesis and applications of those methods to biological models of aging. Future 

improvements to the cIEF method described in Chapter 3 are discussed that will improve 

its analytical capabilities of accurately measuring the pIs of individual organelles, 

separating mitochondria in different pI ranges, and determining membrane potential. 

Applications of the model of mitochondrial pI described in Chapter 4 to understand better 

the implications of mitochondrial heterogeneity observed by cIEF are discussed. This 

chapter also describes future experiments necessary to develop a new technique for 

individual mitochondrial isolation by cytoskeletal disruption and electroporation which is 

necessary for characterization of giant mitochondria in a cell model of aging by the 

methods described in this thesis. 

7.1. Improvements to cIEF Method 

The application of the cIEF method described in Chapter 3 to biological models 

of aging may present new analytical challenges. Subpopulations of mitochondria in these 

models may be difficult to detect due to small size or low fluorophore content, which 

would require improvements in the limit of detection of the technique. Additionally, 

mitochondria from different biological systems (e.g. different tissues) may have pIs that 

fall outside the range of the cell model studied in Chapter 3. Adequate separation and 

accurate measurement of the pIs of these organelles would require changes in the pI 

markers and compounds used for focusing and mobilization. This section describes 

several techniques which may be implemented to improve the cIEF method discussed in 
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Chapter 3. These modifications would improve the limit of detection of the technique and 

provide better separation and accurate measurement of a wider range of pIs. 

7.1.1. Post-Column Detection 

One limitation of the cIEF method described in Chapter 3 is the achieved limit of 

detection. Low detection limits are important in individual organelle analysis due to the 

small relative intensity of the signals above the background; if detection limits are too 

high, smaller organelles or those that do not contain enough of the fluorescent probe used 

may be missed. To perform the cIEF experiments described in Chapter 3 of this work, the 

instrument was modified to perform on-column detection, which resulted in a higher limit 

of detection than previously achieved using the same instrumentation. A limit of 

detection of 29 ± 4 zmol was reported for fluorescein (see Chapter 3), higher than the 

result of 4 zmol achieved using post-column detection for CE-LIF.
40

 This modification 

was originally performed for addition of a sample carousel at the outlet end of the 

capillary to allow for switching between the catholyte and chemical mobilization 

solutions after focusing was complete. This configuration also prevented contact between 

the strong base (NaOH) used as the catholyte solution and the quartz sheath flow cuvette 

of the instrument, since strong bases attack glass. 

Adapting the instrument to perform cIEF using the sheath-flow cuvette provides 

the advantages of post-column detection. First, an increase in sensitivity is expected since 

refraction of the excitation and emission light at interfaces is minimized. Excitation light 

and fluorescence emission from the sample must travel through the capillary walls to 
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perform on-column detection; this is a problem because the capillary is cylindrical and 

light will refract at the glass-solution interfaces where curvature is present. With post-

column detection, these interfaces are eliminated; minimal refraction should occur since 

the walls of the sheath-flow cuvette are perpendicular to the excitation and emission light 

paths. Additionally, post-column detection provides more control over the alignment for 

better detection of particles. The sheath-flow velocity can be adjusted to focus the sample 

stream exiting the capillary, and the capillary tip can be moved up or down so that a more 

narrow section of this stream is in front of the detector, improving the relative standard 

deviation of the signal detected from particles (e.g. see Figure C-5 in Appendix C). 

Capillary isoelectric focusing has been performed using post-column detection on a 

similar instrument.
114,179

 

Figure 7-1 below shows a separation of pI markers after modification of the 

instrument to perform post-column detection. A valve was added to the sheath flow 

tubing between the sheath-flow buffer reservoir and the cuvette (see Figure 2-3 in 

Chapter 2) to select between two wash bottles containing catholyte (20 mM NaOH) and 

chemical mobilizer (350 mM acetic acid). Initially, catholyte is flowing through the 

cuvette; when focusing is complete, the valve is switched to the chemical mobilizer. This 

separation shows an average resolving power of ΔpI = 0.01, better than the previous 

result of 0.03 with on-column detection described in Chapter 3. These results are from 

different experiments, so differences in the coatings of the capillaries used or in the 

ampholytes are more likely to have caused the difference in resolving power. While the 
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apparent gain in resolving power is probably not caused by the use of post-column 

detection, this result demonstrates that the resolving power is not negatively impacted. 

 

Figure 7-1. cIEF with post-column detection. Anolyte: 100 mM H3PO4;catholyte: 20 

mM NaOH; chemical mobilizer: 350 mM acetic acid. Focusing: 400 V/cm for 23 

minutes. Detection: 520 ± 17.5 nm. Ampholytes: 1% Biolyte 3-10, 1% Biolyte 4-6, 

1% Pharmalyte 5-8 (GE Healthcare, Pittsburgh, PA). All other conditions as 

described in Figure 3-1, Chapter 3. 

One issue involved with performing post-column detection is exposure of the 

quartz sheath-flow cuvette to a strong base, which will cause damage over time. To 

prevent this issue, another anolyte/catholyte combination (glutamic acid/lysine) should be 

used. This anolyte/catholyte has been reported to provide no difference in performance in 

terms of resolution between proteins in a test mixture when used with a coated 

capillary.
180

 The results shown below in Figure 7-2 demonstrate the use of glutamic acid 

and lysine as an alternative anolyte and catholyte. Compared to the classical 

anolyte/catholyte pair of H3PO4/NaOH, there is no significant difference in resolving 

power. This combination should be used in future cIEF experiments with post-column 

detection to prevent damage to the sheath-flow cuvette. 
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Figure 7-2. Comparison of lysine/glutamic acid to H3PO4/NaOH as anolyte/catholyte 

in cIEF. (A) Two replicate separations of pI markers using 50 mM glutamic acid/50 

mM lysine (Sigma-Aldrich, Saint Louis, MO) as anolyte/catholyte, average resolving 

power ΔpI = 0.04 ± 0.02. (B) Two replicate separations using 100 mM H3PO4 and 20 

mM NaOH (Sigma-Aldrich) as anolyte/catholyte. Average resolving power ΔpI = 

0.04 ± 0.01. Top traces in A and B have y-offset = 10. Focusing: 400 V/cm for 23 

minutes. Ampholytes: 1% Biolyte 3-10, 1% Biolyte 4-6, 1% Pharmalyte 5-8. 

Chemical mobilizer: 10 mM glutamic acid. Detection: 535 ± 17.5 nm. All other 

conditions as described in Figure 3-1, Chapter 3. 

7.1.2. Ampholytes 

In the work described in Chapter 3, Biolyte 3-10 was mixed with Biolyte 4-6 to 

improve resolution between pH 4 and 6 because previous reports of mitochondrial pI 

were between 3.9 and 6.
130-134

 The work described in Chapter 3 revealed that 

mitochondrial pIs were distributed between 3.9 to 6.9 (see Chapter 3, Table 3-1) 

Blending different pH ranges of ampholytes or solutions of the same pH range from 

different suppliers can improve resolution in cIEF.
106

 Increases in resolution in terms of 

resolving power cannot be predicted since carrier ampholytes are complex mixtures of 

many compounds of unknown structure. However, the separation of two compounds with 
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very similar pIs can be improved since the chances that an ampholytes with intermediate 

pI will be present (a prerequisite for separation in cIEF) are increased. Likewise, use of a 

narrow pH-range mixture of ampholytes can improve resolution in a specific pH range of 

interest by increasing the number of ampholytes in that range. In Figures 7-1 and 7-2 

shown above, Pharmalyte 5-8 was added to the two pH ranges of Biolyte, this should 

improve resolution across the entire pH range where mitochondria were focused. The 

results in Figure 7-1 suggest an improvement in resolving power (average ΔpI = 0.01), 

but the results in Figure 7-2 did not improve over the resolving power reported in Chapter 

3 (ΔpI = 0.04 in Figure 7-2, 0.03 reported in Chapter 3). An additional experiment is 

needed since these results were obtained on different days using different capillaries, so 

the capillary coating could have affected the resolving power. 

In one of the reports mentioned in the previous paragraph, mitochondria isolated 

from rat kidney had an average pI of 3.9.
130

 Since mitochondrial pI is heterogeneous, this 

suggests that some mitochondria in this preparation had pIs significantly lower than 3.9, 

implying a significant contribution from molecules in the outer membrane with low pKas 

such as glu, asp, PI, or PS (see Table 4-1 in Chapter 4). Future analysis using cIEF of 

mitochondria from different biological sources, other organelles, or other particles may 

therefore require improvements to focusing performance at the ends of the pH gradient 

(i.e. 3 and 10 in the current system). One method to accomplish this is the inclusion of so-

called sacrificial ampholytes.
181

 In this technique, additional compounds with high and 

low pI are added to the ampholytes. Iminodiacetic acid and arginine have been used,
181
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but any combination of zwitterionic compounds with pIs higher and lower than the range 

of the ampholytes could be used. During focusing, there is loss of high- and low-pI 

ampholytes and sample components due to an isotachophoretic process at either end of 

the capillary. If appropriate sacrificial ampholytes are chosen (i.e. one with higher pI and 

one with lower pI than the pH range of the ampholytes used), these compounds focus at 

either end of the capillary. During focusing, these sacrificial ampholytes will gradually 

migrate out of either end of the capillary instead of the ampholytes and sample 

components near the ends of the pH gradient, and the full range of the pH gradient is 

better preserved. 

7.1.2. pI Markers 

In the cIEF method described in Chapter 3, the internal standards used had a 

minimum pI of 4.0 and a maximum pI of 6.5. However, individual mitochondria were 

detected with pIs from 3.9 to 6.9 (see Table 3-1 in Chapter 3), therefore some reported 

pIs were extrapolated. Since the pH gradient in cIEF is known to be non-linear,
111

 

assigning pI values to analytes via extrapolation is problematic. If better accuracy is 

needed in determination of the pIs of analytes outside the range of the markers used in the 

current method, additional pI markers could be added. As discussed in Chapter 2, any 

combination of small molecule pI markers,
115

 fluorescent peptides,
111

 or proteins labeled 

with Chromeo dyes
114

 could be used. See the recent review by Righetti for a table of 17 

commercially available proteins and tryptic peptides produced by a digest of cytochrome 

C that could be used as markers with pI ranging from 3.67 to 10.65.
112
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7.2. Application of cIEF to Aging Models 

7.2.1. Application to Cell Model 

In a cell model of aging with impaired autophagy, heterogeneity in mitochondrial 

size, membrane potential, and expression of proteins involved in fusion and fission was 

observed.
18

 In this work, a pharmacological inhibitor, 3-methyl adenine, was used to 

block autophagy through inhibition of class III phosphatidylinositol 3-kinases. The 

formation of giant mitochondria with diameters larger than 1 µm was observed. These 

giant mitochondria expressed lower levels of a fusion protein, Opa1, and had 

significantly lower membrane potentials when compared to smaller mitochondria. They 

were observed to be excluded from the fusion process and did not exchange their contents 

with normal mitochondria. These differences suggest giant mitochondria represent a 

separate subpopulation of dysfunctional mitochondria. Although they have been studied 

using existing methods, the mechanism of formation of giant mitochondria, the causes of 

their accumulation in aging cells, and the extent of their damage and dysfunction are not 

completely understood – these organelles are difficult to study since they coexist with 

normal mitochondria in the cell and have not been isolated. The cIEF method described 

in Chapter 3 can be applied to cell models of aging containing giant mitochondria to 

determine whether there are differences in the mitochondrial pI distributions when 

compared to normal cells. If differences are determined, they could be used as a basis for 

separation of giant mitochondria from normal mitochondria and further characterization 

of their properties. 
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Since giant mitochondria have lower mitochondrial membrane potential, they 

could be targeted for elimination by mitophagy but not removed by this process, possibly 

because of hindrance in transport to the autophagosome due to their large size.
25

 Upon 

loss of membrane potential, the protein PINK1 accumulates on the surface of 

mitochondria and recruits Parkin, which modifies mitochondrial proteins by 

ubiquitination.
24

 This results in extraction and degradation of some mitochondrial 

proteins (e.g. MFN1 and MFN2), although this is not required for mitophagy and the 

complete mechanism for mitophagy targeting is not understood.
25

 Accumulation of 

PINK1 and Parkin at the mitochondrial surface, ubiquitination, and degradation of 

surface proteins are all modifications that could result in changes to mitochondrial 

surface charge that would modify mitochondrial pI. Oxidative damage to mitochondrial 

proteins by increased levels of reactive oxygen species in aging cells, such as 

carbonylation of lysine, arginine, and histidine residues,
129

 could also result in changes to 

pI by changing the net charge of these amino acid residues. Due to all these possible 

modifications, giant mitochondria are hypothesized to have different surface properties 

from normal mitochondria which would result in differences in pI which may be detected 

by cIEF.  

The experiments described and proposed below use inhibition of ATG7 via 

siRNA as the preferred cell model of aging. Previous studies used 3MA to inhibit 

autophagy and form giant mitochondria in cell models.
17,18

 3MA inhibits formation of the 

isolation membrane, a step near the beginning of the autophagy pathway involved in 
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initial formation of the autophagosome.
182

 As a result, 3MA can cause toxicity through its 

effects on other cellular pathways. A gene called autophagy-related gene 7 (ATG7) codes 

for a protein (also referred to as ATG7) involved in the vesicle elongation process, a step 

further downstream in the autophagy pathway.
182

 Inhibition of this gene via transfection 

with silencing RNA (siRNA) has advantages over use of 3MA as an aging model, 

including less toxicity and less drastic impairment of autophagy (since this process still 

occurs in aging cells). Additionally, this model is being used in ongoing quantitative 

proteomics studies in the Arriaga lab.  

The preliminary results in Figure 7-3 below show the pI distributions determined 

with cIEF of mitochondria from L6 cells treated with siRNA against ATG7 compared to 

mitochondria from control cells. The Q-Q plot suggests a difference in the pI 

distributions between these two groups, with the siRNA-treated cells displaying more 

mitochondrial events with lower pIs. However, the number of events detected is likely 

too small to draw conclusions about real differences in the pI distributions between these 

two groups, and the two individual runs of each sample were not reproducible (data not 

shown), so the variation in the Q-Q plot cannot be assigned to a difference between the 

siRNA ATG7 and control groups. Moreover, these mitochondria were isolated by 

mechanical homogenization. This is a harsh technique which may not preserve the 

structure of giant mitochondria (see section 7.3.1 below). These experiments should be 

repeated with the disruption technique to be developed in future work described in 

section 7.3 below, which is expected to be compatible with release of giant mitochondria. 
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Figure 7-3. pI distributions determined by cIEF of mitochondria from siRNA 

ATG7-treated cells vs. control cells. L6 rat myoblasts were transfected with siRNA 

for ATG7 (40 nM siRNA for 24 hours with siRNA sequence: 

CCUGGUCAUCCAUUCUGCAGAAUAA) delivered with Lipofectamine 2000 

(Invitrogen, Grand Island, NY) for 24 hours. Transfected and untreated (control) 

cells were harvested and mitochondria isolated by mechanical homogenization using 

a 2 mL glass dounce homogenizer with glass pestle with 0.06 mm clearance (Kontes, 

Vineland, NJ), labeled with 5 µM 10-N-nonyl acridine orange (NAO, Molecular 

Probes, Eugene, OR), and analyzed by cIEF. Focusing: 400 V/cm for 20 min. 

Mobilization: 500 V/cm. All other experimental details as described in Figure 3-1 in 

Chapter 3. Two cIEF runs were performed using each sample and combined. siRNA 

ATG7 cells: n = 205; control cells: n = 154. In this experiment, siRNA ATG7 cells 

were cultured and transfected by Dr. Vratislav Kostal. 

One limitation in the application of the cIEF method to investigate mitochondrial 

heterogeneity in aging models is the dye used for labeling mitochondria. While NAO is 

specific to mitochondria, it does not indicate mitochondrial intactness or membrane 

potential, which may influence surface properties. Additionally, using NAO for labeling 

is not sufficient for detection of giant mitochondria in this technique as aggregates of 

normal mitochondria may be mistaken for giant mitochondria (e.g. both should display 
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intense NAO fluorescence). An additional improvement of this method would be to use 

JC-1 instead of NAO for labeling mitochondria. This would allow for studies relating 

membrane potential to pI, and could aid in identification of giant mitochondria in this 

technique as these organelles are hypothesized to have lower mitochondrial membrane 

potential than normal mitochondria.
18

 The preliminary results shown below in Figure 7-4 

demonstrate the feasibility of using this dye for cIEF. These results show detection of JC-

1 labeled mitochondria from L6 cells in red and green fluorescence channels. 

 

Figure 7-4. cIEF of JC-1 labeled mitochondria. Mitochondria from L6 cells were 

isolated using mechanical homogenization and labeled with 1 µM JC-1 for 5 min in 

buffer R with 2.5 mM succinate (see Chapter 5 for buffer R composition). They 

were then analyzed by cIEF as described in Figure 3-1 in Chapter 3. Red 

fluorescence channel: bottom trace, 593 ± 20 nm. Green fluorescence channel: top 

trace, 535 ± 17.5 nm, y-offset = 5. Single-laser excitation at 488 nm. Focusing: 400 

V/cm for 21 min. Mobilization: 400 V/cm. n = 81 coincident mitochondrial events; 

101 events in red channel and 243 events in green channel. 

Several improvements may be needed to adapt the cIEF method to use of JC-1 as 

a dye for labeling mitochondria. For instance, the experiment shown in Figure 7-4 was 

performed using a single excitation wavelength and not the dual-laser excitation scheme 
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described in Chapter 5, this improved detection scheme should be used in the future. 

Also, no substrate was present in the focusing solution, so mitochondria may lose their 

membrane potential during focusing. Additional experiments are needed to investigate 

the behavior of JC-1 labeled mitochondria during focusing. For example, red/green ratio 

distributions obtained in cIEF could be compared to results from the CE method 

described in Chapter 5 to determine whether polarized mitochondria are detected in cIEF. 

If only depolarized mitochondria are detected, improvements to prevent the loss of 

membrane potential during focusing would be necessary. It would be detrimental to the 

separation to include a substrate such as succinate, as the only way to ensure its presence 

throughout the entire pH range during focusing and mobilization would be to add it to the 

catholyte solution, where it would migrate through the capillary toward the anode and act 

as a chemical mobilizer. One way to address this issue could be to perform the procedure 

in shorter separation capillaries to minimize the separation time and prevent loss of 

mitochondrial membrane potential. If JC-1 retention is found to be a problem, other dyes 

for mitochondrial membrane potential which may be retained longer in depolarized 

mitochondria could be investigated as alternatives. 

In the long term, development of a method to measure individual mitochondrial 

membrane potential and isoelectric point distributions could shed light on the relationship 

between these properties. As discussed in the Potential Applications section of Chapter 4, 

the effect of membrane potential on pI is unknown. Experimental data relating membrane 

potential to pI could allow for the estimation of the relative contributions of the amino 
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acid and phospholipid composition of the mitochondrial outer membrane and 

mitochondrial membrane potential to mitochondrial surface charge. The model of 

mitochondrial surface composition described in this chapter could be expanded to include 

a term for membrane potential, which could be used to make predictions about pI 

changes that might occur with changes to membrane potential and surface composition 

relevant to aging (e.g. depolarization of mitochondria and ubiquitination of mitochondrial 

proteins). These predictions could be used to help design methods for better separation of 

mitochondrial subpopulations. 

7.2.2. Mouse Models of Aging 

While cell models of aging are useful, characterizing mitochondrial heterogeneity 

and dysfunction in animal models are important for increased understanding of human 

aging. The cIEF method described in Chapter 3 could also be applied to mouse models of 

aging. This method can be used as a tool to characterize heterogeneity in a surface 

property of mitochondria that relates to their oxidative damage, protein and phospholipid 

composition, and modification by mitophagy targeting and could possibly be used to 

separate subpopulations of mitochondria in aging tissue for further characterization of 

their properties. Mitochondria could be isolated from muscle tissue of young and old 

mice using a standard technique for mitochondrial isolation of disruption by mechanical 

homogenization and differential centrifugation (also used in the work described in 

Chapter 5).
60

 These mitochondria could then be labeled with NAO or JC-1 according to 

the methods described in Chapter 3 or in this chapter and analyzed by cIEF to determine 
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whether differences in pI or membrane potential distributions are present between age 

groups. It is anticipated that differences are present, since differences in electrophoretic 

mobility distributions have been observed using CE-LIF between different age groups 

and by muscle fiber type.
183

 Based on these observed differences, it is likely that pI will 

be less acidic (since electrophoretic mobility was less negative) and that more 

heterogeneity will be observed in aging tissue. Mitochondrial membrane potential is also 

expected to decrease, but could also be more heterogeneous as damaged mitochondria 

accumulate in aging tissue and other mitochondria must compensate for their reduced 

energy output. 

Additionally, this method could be applied to different subpopulations of 

mitochondria isolated from tissue. In muscle, mitochondria are classified as 

subsarcolemmal (beneath sarcolemma) or intermyofibrillar (between myofibrils) based 

on their location in the muscle fiber. Differences in fatty acid metabolism,
184

 insulin 

resistance,
185

 protein expression,
10

 apoptosis signaling,
20

 and oxidative damage in the 

form of carbonylation
186

 have been observed between these two subpopulations. 

Additionally, age-related mitochondrial changes are different between these 

subpopulations.
187

 These subpopulations could be isolated from tissue using a published 

protocol
10

 and subjected separately to cIEF analysis to determine differences in pI 

distributions. The model of mitochondrial surface compositions described in Chapter 4 

could be used to interpret differences in these populations. Characterization of the 
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heterogeneity of surface compositions of these populations could shed light on variations 

in damage to their surface, protein expression, and targeting for mitophagy.  

7.3. Mitochondrial Isolation by Cytoskeleton Disruption and 

Electroporation 

7.3.1. Limitations of Current Methods for Mitochondrial Isolation 

Current methods for mitochondrial isolation from cells or tissue have limitations 

which are detrimental to their use in the characterization of delicate mitochondrial 

subpopulations such as giant mitochondria. While techniques such as mechanical 

homogenization
60

 or nitrogen cavitation
61

 are capable of producing isolated fractions of 

mitochondria suitable for analysis by CE or cIEF, the choice of technique and how it is 

applied (e.g. the number or force of strokes in mechanical homogenization or the number 

of rounds of cavitation) has an effect on the electrophoretic properties of the 

mitochondria.
62

 Moreover, mechanical homogenization disrupts mitochondrial structure 

and has an effect on mitochondrial function. This technique caused changes in 

respiration, hydrogen peroxide generation, and the sensitivity of the permeability pore 

transition to calcium (a measure of apoptosis) when compared to mitochondria which 

were studied in permeabilized muscle fibers (i.e. not subjected to an isolation 

technique).
63,64

 The authors of these studies hypothesize that mitochondrial membranes 

are transiently ruptured during homogenization and then re-form in solution to create a 

mitochondrial suspension with more uniform, spherical morphology than exists in their 

natural state of a more tubular, interconnected network.
188

 While these studies were done 



 

 

 145 

 

in mitochondria isolated from skeletal muscle, it is logical to assume that similar 

disruption of membranes could occur in mitochondria isolated from cultured cells as 

well. 

Mitochondrial analysis by CE and cIEF would benefit from a new method which 

is less disruptive to mitochondrial membranes and has reproducible effects on their 

electrophoretic properties. While disruption to their native morphology will occur with 

any isolation technique if mitochondria are reticulated and part of an interconnected 

network, giant mitochondria are an isolated subpopulation that does not participate in 

fusion with normal mitochondria
18

 and it should be possible to develop a technique which 

does not disrupt their morphology. The method below describes mitochondrial isolation 

by disruption of cytoskeleton by colchicine to prevent normal cytoskeleton growth in cell 

culture and digitonin/trypsin treatment to permeabilize the cell membrane and digest 

cytoskeletal proteins, followed by delivery of a pulsed electric field (electroporation) to 

further disrupt the cell. This method should be less harsh than current methods for 

mitochondrial isolation as it avoids use of shearing forces which disrupt mitochondrial 

membranes. Mitochondria released by this method have been characterized by 

fluorescence microscopy and flow cytometry, we propose further characterization by the 

cIEF method described in Chapter 3 of this work. 

7.3.2. Disruption of Cytoskeleton and Electroporation 

Mitochondria are anchored to the cellular scaffold of cytoskeletal proteins. These 

attachments help control mitochondrial morphology, motility, and cellular localization.
38
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Isolation methods to produce preparations of individual mitochondria must disrupt 

mitochondrial-cytoskeleton interactions. The proposed method utilizes a two-pronged 

approach to detach mitochondria from cytoskeleton in the cell. Treatment with colchicine 

in culture prevents polymerization of tubulin (a component of cytoskeleton) via a 

colchicine-tubulin binding interaction.
189

 This disrupts the cytoskeletal network as the 

cell grows. After the cells are harvested, they are treated with digitonin and trypsin in 

suspension. Digitonin binds to cholesterol in the cell membrane which disrupts and 

permeabilizes the membrane, allowing trypsin to enter the cell.
190

 Trypsin cleaves 

proteins C-terminal to lysine and arginine residues,
147

 digesting the remaining 

cytoskeletal proteins attached to mitochondria. The digitonin/trypsin treatment strategy 

has been used to release mitochondria from single cells for analysis by CE.
88

 After 

disruption of cytoskeletal binding to mitochondria by colchicine treatment in culture 

followed by digitonin/trypsin treatment of the cell suspension, electric pulses are 

delivered to the cells to release mitochondria. As pulses are delivered, the cell is 

disrupted as mitochondria and other cellular components migrate at different rates in the 

electric field. While research into electroporation as a method to disrupt membranes of 

organelles using very strong (>10 kV/cm) and very short (<1 µs) electric pulses is a 

growing field, the strength (350 V/cm) and duration (1-5 ms) of the pulses used for this 

method is in the region of conventional electroporation, which is used for gene delivery 

and results in cell survival; minimal or no damage is expected to mitochondria.
191
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Current methods for mitochondrial isolation are inadequate to disrupt their 

interaction with cytoskeletal proteins, which affect their electrophoretic properties. 

Previous work investigated cytoskeleton bound to mitochondria isolated by mechanical 

homogenization.
40

 CE-LIF analysis of mitochondria using a probe specific to a 

cytoskeletal protein revealed that some but not all mitochondria were bound to detectable 

levels of cytoskeleton, and effects of this cytoskeleton binding on electrophoretic 

mobility distributions were observed. Mitochondria were “shaved’ of bound cytoskeleton 

by treatment with the protease trypsin, this treatment also resulted in differences in 

electrophoretic mobility distributions. This work suggests that a method to disrupt 

cytoskeletal binding to isolated mitochondria is important for their isolation from the cell 

for analysis of their electrophoretic properties.  

Mitochondrial release by digitonin/trypsin treatment combined with 

electroporation was demonstrated, shown in Figure 7-5 below. This data demonstrates 

that mitochondria are released from the cell membrane by this technique and remain 

intact. In this experiment, electric pulses were applied before digitonin/trypsin treatment 

to aid delivery of trypsin into the cell. 
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Figure 7-5. Mitochondria released by application of electric field and 

digitonin/trypsin treatment. (A) Microchannel chamber device used to deliver 

electric pulses. (B) Single cell adhered to microchannel before pulse delivery. (C) 

Cell after three ~0.5 pulses of 200 V/cm (cathode positioned on left side of image). 

Some disruption of the cell occurs, mitochondria remain intact, demonstrated by 

retention of soluble DsRed2 fluorescent fusion protein inside the mitochondrial 

matrix. 
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(Figure 7-5, continued) (D) Addition of 6 µg/mL digitonin (Calbiochem, San Diego, 

CA) and 750 µg/mL trypsin (Invitrogen) in buffer SH (see section 5.2.2 in Chapter 5 

for composition) begins cell membrane permeabilization and cytoskeleton cleavage. 

(E) Mitochondria are released after incubation with digitonin/trypsin. Mitochondria 

are outside of the cell and remain intact. Mitochondrial movement is due to 

diffusion and slight hydrodynamic flow in microchannel induced by height 

difference between inlet and outlet reservoirs. (F) Continued release of 

mitochondria. Mitochondria drift out of the cell and out of the focal plane. 

Mitochondria in L6 rat myoblast cell visualized by expression of DsRed2 fusion 

protein with mitochondrial targeting sequence (Clonetech, Mountain View, CA, see 

the procedure in Kostal and Arriaga
40

 for cell culture and transfection details). 

After transfection, cells were harvested and delivered into a 140 µm i.d. cylindrical 

microchannel fabricated in polydimethylsiloxane (PDMS, Sylgard 184 kit was from 

Dow Corning, Midland, MI and was used according to the manufacturer’s 

instructions). Microchannels were fabricated using a 20 mm long fused silica 

capillary (Polymicro, Pheonix, AZ) attached to a glass slide by application of a spot 

of epoxy at each end as a mold. PDMS prepolymer solution was cast over the mold 

as a thin film (~5 mm film thickness) and allowed to cure. After curing, the PDMS 

film was removed from the mold, inlet and outlet reservoirs (~5 mm diameter) were 

punched through the film at each end of the channel, and the channel was applied to 

a glass microscope coverslip. Microchannels were coated with poly-L-lysine before 

use to improve cell adhesion (Sigma-Aldrich, Saint Louis, MO). Cells were allowed 

to attach overnight in DMEM with 10% FBS, 100 IU/mL penicillin, and 100 µg/mL 

streptomycin (cell culture reagents from Invitrogen). DMEM was exchanged with 

buffer SH before imaging. The electric field was applied by manually controlling a 

Spellman CZE 1000 high voltage power supply (Plainview, NY) connected to 

platinum electrodes placed in the inlet and outlet reservoirs. Scale bar = 10 µm. 

Images acquired using Olympus IX81 inverted fluorescence microscope (Melville, 

NY) equipped with a 120W mercury lamp, DS-IX100 disk spinning unit, 60x oil 

immersion objective (NA = 1.45), RFP filter cube (λex = 545 ± 10 nm, λem = 597.5 ± 

27.5 nm, 565 nm dichroic, Olympus M-RFPHQ filter cube) and C9100-01 EM CCD 

camera (Hamamatsu, Bridgewater, NJ). This experiment was performed by Dr. 

Vratislav Kostal.  
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The experiment shown in Figure 7-6 below demonstrates the migration of 

mitochondria out of the cell in the electric field. This result demonstrates that 

mitochondria remain intact and are not damaged by the electric field after they are 

released from the cell. These experiments should be repeated with colchicine treatment of 

the cells to compare the effects of disruption of cytoskeleton in culture on the observed 

mitochondrial morphology and disruption of the cell by this method. Additionally, the 

CE-LIF method for determination of cytoskeletal binding to mitochondria described 

above should be used for additional validation that this method disrupts the binding 

between mitochondria and cytoskeleton.
40

 

 

Figure 7-6. Mitochondrial migration out of cell in applied electric field. (A) Cell 

treated with digitonin/trypsin before electric field pulses were applied. (B) During 

application of a pulse (~0.5 s, 200 V/cm, cathode at left of image), single 

mitochondrion is moving and appears as streak. (C) After several pulses, 

mitochondrion is intact and outside of the cell. All experimental conditions as 

described in Figure 7-5. This experiment was performed by Dr. Vratislav Kostal. 
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Flow cytometry was used to characterize the size distributions of mitochondria 

released from L6 rat myoblasts transfected with ATG7-siRNA for 24 h and control cells. 

A mitochondrial-specific dye, MitoTracker Red, was used to label mitochondria. This 

probe was chosen to allow for dual labeling using a cytoskeleton-specific probe 

conjugated to a green fluorophore (data not shown). The flow cytometry results shown in 

Figure 7-7 below suggest that mitochondria isolated from ATG7-siRNA treated cells are 

larger than those from control cells, suggesting that this method is appropriate for 

isolation of giant mitochondria. However, flow cytometry has modest sensitivity for 

detection of individual organelles and may miss subpopulations. Additional 

characterization of the mitochondria released by this method is needed. 

One limitation of the previous work was the reproducibility of pulse delivery. In 

the imaging experiments described in Figures 7-5 and 7-6, pulses were delivered 

manually with no precise control over their duration. In the experiment described in 

Figure 7-7, more control over pulse duration was possible, but pulse spacing was still 

controlled manually. An improved instrument, the Bio-Rad Gene Pulser Xcell, will be 

used for the future experiments. This instrument is capable of faster, automated pulse 

delivery, delivering 60 square wave pulses of 350 V/cm and 5 ms duration in under two 

minutes, which should increase the reproducibility of this technique. 
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Figure 7-7. Q-Q plot of fluorescence intensity distributions measured by flow 

cytometry of ATG7 siRNA-treated cells vs. control cells. Culture conditions for L6 

cells were as described in Chapter 3. The cells were treated with 14 µM colchicine 

for 15 h, cells were harvested with trypsin (Invitrogen) and washed with phosphate-

buffered saline (Invitrogen), then mitochondria were labeled by suspending the cells 

with 250 nM MitoTracker Red (Molecular Probes, Eugene, OR) for 45 min at 37 °C 

in mitochondrial isolation buffer (see Chapter 3 for composition and suppliers). 

After labeling, cells were washed and mitochondria were isolated via 

digitonin/trypsin treatment (0.03 µM digitonin and 0.08 µM trypsin for 20 min at 4 

°C) and electroporation. Cells were disrupted using a Gene Pulser II electroporator 

(Bio-Rad, Hercules, CA). Exponential decay pulses were delivered at 350 V/cm at 25 

µF, with time constants ranging from 1.9 to 2.8 ms. Data collected with a FACS 

ExCalibur 501 Bench Top flow cytometer (Becton and Dickinson, San Jose, CA). 

Excitation: 488 nm Ar
+
 laser. FL2 emission filter (585/42 nm). 10000 events per 

sample detected using the “Low” setting, fluorescence intensities plotted on a 

logarithmic scale. Gating was used in FL and side scatter plots to define an 

exclusion region for whole cells present in the preparation. This experiment was 

performed by Scott Rose.  
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7.3.3. cIEF of Mitochondria Isolated by Cytoskeletal Disruption and 

Electroporation 

Ultimately, development of a method compatible with isolation of giant 

mitochondria from cell models of aging will make it possible to characterize these 

organelles using the methods described in this thesis. The cIEF method described in 

Chapter 3, with improvements described in section 7-1 above, can be used to characterize 

mitochondria from ATG7-siRNA treated cells and untreated control cells released by 

colchicine/digitonin/trypsin treatment and electroporation. Characterization of these 

samples using cIEF will test the hypothesis that giant mitochondria have different pIs 

based on differences in their surface properties. An additional technique should be used 

to confirm that mitochondrial isolation by cytoskeletal disruption and electroporation is a 

suitable technique for analysis of giant mitochondria. Besides being subjected to analysis 

by cIEF, these preparations can be characterized by transmission electron microscopy 

(TEM) to examine morphological differences in the mitochondria released by this 

technique if the amount of sample permits (i.e. conventional preparation for TEM 

requires a pellet after centrifugation of the mitochondria). Isolated mitochondria prepared 

by a conventional method (i.e. mechanical homogenization as described in Chapter 3) can 

also be used to prepare samples for comparison by cIEF and TEM to investigate the 

differences in sample preparation methods on the electrophoretic and morphological 

properties of isolated mitochondria. 
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Analysis of giant mitochondria in aging models requires development of the 

method for mitochondrial isolation described in this section. This method can be 

validated by TEM and the CE-LIF method for quantitation of cytoskeletal binding to 

mitochondria, as described above. This method would be a valuable tool in the analysis 

of mitochondrial heterogeneity as it would allow for analysis of delicate mitochondrial 

subpopulations which may not survive traditional isolation techniques. Moreover, this 

method would enable detection of differences in the pI distributions of mitochondrial 

preparations from cells with inhibited autophagy vs. untreated cells which could not be 

observed using current methods for mitochondrial isolation. Ultimately, determination of 

differences in pI could lead to a method for the preparative separation of giant and 

normal mitochondria, which would enable further characterization to elucidate their role 

in the aging process. 

7.3.4. Separations for Proteomics 

If application of the techniques described in this chapter to aging models reveal 

subpopulations of mitochondria with different pIs, this could be used as a basis for 

separation of these subpopulations for analysis by mass spectrometry-based proteomics. 

This field encompasses a broad array of techniques whose ultimate goal is to identify and 

quantify all the proteins in a biological system. 

Since cIEF is not a preparative technique, scaling up the separation to produce 

different mitochondrial fractions separated by pI would be necessary to provide sufficient 

sample for a proteomics experiment. This can be achieved by translating the separation 
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from the capillary to the free-flow electrophoresis format. Free-flow isoelectric focusing 

is a powerful method to separate analytes by pI and which allows for continuous 

collection of fractions.
77

 Free-flow electrophoresis techniques have been widely applied 

to preparation of protein or organelle fractions for analysis by proteomics.
192

 This 

technique has been adapted to the microchip format and applied to separations of 

mitochondria.
59

 One caveat is that the resolving power of this technique does not match 

that of cIEF, so differences in the pI of subpopulations of interest would need to be at 

least 0.25 pH units apart (the resolving power demonstrated in a recently described 

device for free-flow isoelectric focusing).
193

 An additional limitation in the use of 

isoelectric focusing for proteomics sample preparation is that carrier ampholytes can be 

detrimental identification of molecules by mass spectrometry. The large number of 

compounds present in carrier ampholytes mixtures can result in noisy spectra which 

makes detection of peptides and small molecules difficult. A new strategy using a 

mixture of six amino acids to establish the pH gradient in cIEF addresses this issue.
194

 

This strategy could be adapted to establish the pH gradient in a preparative microfluidic 

device. 

Strategies for future proteomics experiments would depend on the source of 

mitochondria. If cell models are used, stable isotope labeling by amino acids in cell 

culture (SILAC) is an established technique that can provide excellent relative 

quantitation of proteins between samples.
195

 For animal models, isobaric tags for the 

relative quantitation of peptides (iTRAQ),
196

 super-SILAC,
197

 or stable isotope labeling 
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of mammals (SILAM)
198

 could be used depending on the resources available. These 

techniques achieve protein quantitation by labeling at the peptide level (iTRAQ), by 

comparison to an isotopically-labeled spike-in standard (super-SILAC), or by isotopic 

labeling of the entire animal at the protein level (SILAM). A standard protocol of in-gel 

digestion and peptide extraction could be used for sample preparation,
199

 although if 

sample sizes are limited, in-solution digestion could be performed. A high-performance 

liquid chromatography separation of peptides coupled to an Orbitrap-family mass 

spectrometer (Thermo) is the gold standard for mass-spectrometry based proteomics. 

Characterization of mitochondrial subpopulations by these techniques could result 

in discovery of new biomarkers for age-related diseases (i.e. proteins that are up- or 

down-regulated in a specific disease that could be used for identification or earlier 

diagnosis). Additionally, the ability to determine quantitative changes in specific proteins 

in these subpopulations could shed light on the molecular mechanisms involved in aging. 

7.3.5. Application to Other Organelles 

Analysis of other organelles by the methods described in this chapter could shed 

light on the heterogeneity in other organelle populations, reveal subpopulations with 

different functional characteristics, and provide additional insight into a myriad of 

cellular processes. As long as an appropriate fluorescent labeling strategy exists, 

preparations of any organelle of interest could be characterized by the cIEF technique 

described in this thesis. For an extensive list of organelle-specific antibodies, synthetic 

probes, and fluorescent proteins that can be targeted to organelles, see the recent review 
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by Satori et al.
48

 Cytoskeletal-organelle connections are not limited to mitochondria – the 

method for mitochondrial isolation by disruption of cytoskeleton and electroporation 

could provide a valuable tool for preparation of fractions of other difficult-to-isolate or 

delicate organelles. Determination of pI distributions of other individual organelles by the 

cIEF method described in Chapter 3 could lead to new insights into their surface 

composition by application of the modeling method described in Chapter 4 of this work. 

Detection of subpopulations with different pI could lead to preparative separations to 

prepare enriched fractions for analysis by proteomics. These future applications could 

represent important advances in our understanding of subcellular heterogeneity. 
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Reprinted (adapted) with permission from Wolken, G. G., Kostal, V., Arriaga, E.A., 

“Capillary Isoelectric Focusing of Individual Mitochondria.” Anal. Chem. 2011, 83, 612-

618. Copyright 2011 American Chemical Society. 
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A.1. Control for False Positives 

 

Figure A-1. Control for false positives. A) shows a cIEF trace of unlabeled 

mitochondria, which mainly shows broad peaks corresponding to pI standards. B) 

shows a replicate run of the same sample in which mitochondria were labeled with 

NAO. There are 7 spikes selected as events in A and 509 spikes selected as events in 

B (top traces, y-axis offset) when a threshold of 5 standard deviations over the 

background signal is used. Separation conditions for both runs: 1% Biolyte 3-10, 

1% Biolyte 4-6, 230 mM sucrose, 0.02 ng/mL of each fluorescent pI marker. The 

anolyte, catholyte, and chemical mobilizer were 100 mM H3PO4, 20 mM NaOH, and 

350 mM acetic acid. The electric field applied during focusing and mobilization was 

400 V/cm. Detection was at 535 ± 17.5 nm, data acquisition was at 100 Hz, 1000 V 

was applied to the PMT.  
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A.2. Peak Overlap 

To determine that peak overlap is not a significant problem, we have adapted a 

statistical test designed for mitochondrial capillary electrophoresis.
1
 In the experiment 

shown in Figure 3-2, the 360 events can be represented in a histogram with 10 bins, as 

shown in Figure 3-3 (A2). Now, the most crowded bin (from pI = 6.00 to 6.33, or tm = 

379.41 to 229.96 seconds) contains 99 events, and by measuring the baseline peak widths 

we calculate an average peak standard deviation σ = 0.016 ± 0.006 seconds. The reduced 

peak standard deviation s can be calculated by            where X is the width in 

seconds of a bin. Using the equation                             

                           for βt = 0.90, we can calculate a critical peak 

saturation threshold    of 189 peaks. Since the number of observed peaks in this bin (99) 

is much smaller than the critical peak saturation threshold, we can say that the observed 

peak number is a good representation of the number of actual peaks in this experiment, 

and peak overlap is not a significant issue. Repeating this analysis for the experiment 

shown in Figure 3-3 (A1) also results in a critical peak saturation threshold of       , 

which is above the number of observed peaks in the most crowded bin (116 peaks from 

pI = 6.00 to 6.33 or tm = 409.32 to 260.16 seconds). 
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A.3. Photobleaching of Carrier Ampholytes 

 

Figure A-2. Effect of photobleaching carrier ampholytes. (A) is not photobleached, 

(B) is photobleached overnight with an LED. A solution of 2% Biolyte 3-10 and 2% 

Biolyte 4-6 with 220 mM sucrose was injected by pressure and focused at 600 V/cm 

for 20 minutes in an HPC-coated capillary of total length 41.5 cm and effective 

length 38.2 cm. Mobilization was at 600 V/cm with 20 mM acetic acid, detection at 

535 ± 17.5 nm, data acquisition at 10 Hz, 1000 V applied to PMT. The average signal 

is 3.57 ± 1.84 V for (A) and 1.11 ± 0.45 V for (B). 
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A.4. Propagation of Error in pI Determination 

It is informative to calculate the uncertainty introduced by using a linear interpolation 

between two pI markers to determine the pI of an individual mitochondrion. Standard 

formulas for calculation of uncertainty in linear regression do not apply because the pI is 

calculated using only two data points. Accordingly, we must first derive an expression for 

calculating the pI of an individual mitochondrion (   ) using the mobilization times 

(        and        ) and pIs (       and       ) of the standards and the mobilization time 

(    ) of the mitochondrion. An expression for     is found by writing an equality for the 

Pythagorean distances between the pairs of points                                    

                              and                            , then solving for    . This 

is shown below graphically. 

 

Figure A-3. Graphical representation of pI determination. 
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In Figure A-3, the distances between the pairs of points are: 

 

                                       
 
  (Equation A-1) 

                                 
 
   (Equation A-2) 

                                 
 
   (Equation A-3) 

 

Setting             and solving the expression for    , we get: 

 

    
                                                     

               
    (Equation A-4) 

 

To find the uncertainty in     calculated by F, we must evaluate the following 

expression:
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(Equation A-5) 

 

The e terms in equation A-5 are the uncertainties in the pIs and mobilization times. 

Evaluating and simplifying this expression (using Mathematica 7.01.0 software, Wolfram 

Research Inc.), we can write the following expression: 

 

       

 
  
  
  
  
  
  
  
  

 

                 
 

 

 
 
 
 
 

       
                  

 
              

 
 

       
                  

 
              

 
 

        

                               
 
 

        

                               
 
 

     

                                  
 

 

 
 
 
 
 

  

 

(Equation A-6) 

 

The uncertainties in the measurement of mobilization times (the     terms) are 0.01 

seconds because the data is collected at 100 Hz. The uncertainties in the pI of each 

standard (the       terms) are assumed to be 0.1 pH units. For the mitochondrial cIEF 
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experiment shown in Figure 3-1, the mobilization times of the pI 6.5 and 5.5 standards 

are, respectively, 148.04 seconds and 611.67 seconds. Shown below is a plot of pI vs. tm 

for these two standards, with the dashed lines representing the pI plus or minus the 

calculated uncertainties from equation A-6 above. Uncertainties range from a maximum 

of 0.14 at tm = 0 to a minimum of 0.07 at tm = 379.86, directly between the pI markers. 

 

 
 

Figure A-4. Uncertainty in pI calculation. 
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Supporting Information for Chapter 4 

 
Reprinted (adapted) with permission from Wolken, G. G., Fossen, B.J., Noh, A., Arriaga, 

E.A., “Predicting Isoelectric Points of Non-functional Mitochondria from Monte Carlo 

Simulations of Surface Compositions.” Langmuir 2013, 29, 2700-2707. Copyright 2013 

American Chemical Society. 
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B.1. Initial Conditions 

Amino acid component of model. The complete proteome of the outer mitochondrial 

membrane is unknown, so we determined initial conditions for the amino acid component 

of the model by defining an “average protein” to avoid biasing the results of the model 

toward those mitochondrial membrane proteins which have already been discovered by 

current techniques. First, the average sequence length in the UniProt Knowledgebase 

protein database was 351 amino acids (accessed Dec. 18, 2009).
1
 Data on the relative 

abundance of amino acids in proteins is also available from this database (Table B-1). We 

calculated abundance by mass for each of the twenty common amino acids (molecular 

weight multiplied by relative abundance). We then calculated an abundance-weighted 

average molecular weight for an amino acid of 129.0 Da. Therefore, the “average 

protein” of 351 amino acids has a molecular weight of 45283 Da. From this value, we 

calculate 0.04528 mg protein/nmol protein for the “average protein”. We next considered 

only the ionizable amino acids to find the relative abundance of ionizable amino acids in 

an “average protein” (Table B-2). We assume a model of a transmembrane protein with a 

hydrophobic transmembrane domain and hydrophilic domains exposed on the inside and 

outside of the membrane. Assuming ionizable amino acids are located only in these 

hydrophilic domains, and that the inner and outer domains are of equal size, we calculate 

that each “average protein” (with 351 total amino acid residues) has 53 ionizable amino 

acids on the outer surface of the membrane (since the relative abundance of ionizable 

amino acids on the outer surface of the membrane to all amino acids is 15%, Table B-2). 
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Although the complete proteome of the outer mitochondrial membrane is unknown, a 

comparison of the average ionizable amino acid composition of known mitochondrial 

outer membrane proteins (from Table B-4) to the normalized ionizable amino acid 

composition of the “average protein” reveals a difference of 1.1% or less for each amino 

acid with a total absolute difference of less than 4%. This comparison is shown in Table 

B-2 (below). This result suggests that the “average protein” is a reasonable model for 

mitochondrial outer membrane proteins. 

Phospholipid component of model. We have included five phospholipids that contribute 

to mitochondrial pI (see Table 4-1 in Chapter 4). Both Hovius et al. and de Kroon et al. 

determined the relative phospholipid composition and phospholipid to protein ratio in 

outer mitochondrial membranes of mitochondria isolated from rat liver.
2-3

 We use an 

average value of their determinations. We excluded phospholipids determined by de 

Kroon et al. to be less than 1% each of the outer mitochondrial membrane (phosphatidic 

acid, phosphatidylglycerol, lyso-phospholipids, and sphingomyelin, representing a total 

of 1.7% of their determination). We also consider the determination by Hovius et al. of 

accessible (outer leaflet) outer membrane phospholipids in rat liver mitochondria by 

multiplying the average abundance of outer membrane phospholipids by the fraction that 

is present on the cytosolic side of the outer mitochondrial membrane (see Table B-3).
4
 

Cardiolipin (CL) was previously thought to be exclusively found in the inner 

mitochondrial membrane, but we include it in our model as an outer mitochondrial 

membrane phospholipid. While de Kroon et al. did not detect significant levels of CL in 
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the outer membrane, other reports have determined that from 9 to 25% of the outer 

mitochondrial membrane phospholipids are CL.
5-6

 Therefore, it seems prudent to consider 

CL as an outer membrane phospholipid in the model (see Table 4-1 in Chapter 4).  

Phospholipid to protein ratio. de Kroon et al. (1997) and Hovius et al. (1990) 

determined phospholipid to protein ratios in the outer mitochondrial membrane of 1220 

and 1110 nmol phosphorus per mg protein, respectively. We use an average value of 

these two determinations and the ratio determined above for an “average protein” of 

0.04528 mg protein per nmol protein to calculate a ratio of 52.76 mol phospholipid per 

mol protein in our model. Combining this ratio and our assumption of 53 ionizable amino 

acids on the outer surface of the membrane per “average protein,” we calculate a ratio of 

1.0 mol phospholipid per mol ionizable amino acid for the outer membrane surface. We 

use this ratio and the values for initial conditions of amino acids and phospholipids to 

determine initial conditions in numbers of amino acids and phospholipids for the model 

(Table 1 in Chapter 4). 
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Table B-1. Average amino acid composition of all known proteins.
a
 

Amino 

acid 

Average 

composition 

(%) 

Molecular 

weight (Da) 

Composition 

normalized 

by molecular 

weight
b
 (%) 

ala 8.28 89.1 5.72 

arg 5.54 174.2 7.48 

asn 4.05 132.1 4.15 

asp 5.45 133.1 5.62 

cys 1.35 121.2 1.27 

gln 3.94 146.2 4.46 

glu 6.77 147.1 7.72 

gly 7.09 75.1 4.12 

his 2.27 155.2 2.73 

ile 5.99 131.2 6.09 

leu 9.67 131.2 9.84 

lys 5.86 146.2 6.64 

met 2.42 149.2 2.80 

phe 3.86 165.2 4.95 

pro 4.68 115.1 4.18 

ser 6.50 105.1 5.29 

thr 5.32 119.1 4.91 

trp 1.07 204.2 1.69 

tyr 2.91 181.2 4.08 

val 6.88 117.2 6.25 

Total 100% N/A 100% 

a. Calculated from all entries in the complete Uniprot KB protein database 

(http://ca.expasy.org/sprot/relnotes/relstat.html, accessed Dec. 18, 2009) 

b. Normalized by multiplying the average composition of each amino acid by the 

molecular weight of that amino acid and dividing by the average molecular weight of all 

the amino acids 

  

http://ca.expasy.org/sprot/relnotes/relstat.html
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Table B-2. Ionizable amino acids contributing to isoelectric point for initial conditions 

and comparison to average amino acid composition from known outer mitochondrial 

membrane proteins. 

Amino 

acid 

Average 

composition 

(%) 

Normalized 

composition 

(%) 

Normalized 

composition, 

OMM proteins
a
 

(%) 

Absolute 

value of 

difference (%) 

arg 5.54 18.37 18.43 0.06 

asp 5.45 18.08 17.40 0.68 

cys 1.35 4.48 5.58 1.10 

glu 6.77 22.45 23.19 0.74 

his 2.27 7.53 7.06 0.47 

lys 5.86 19.44 18.85 0.59 

tyr 2.91 9.65 9.48 0.17 

Total 30% 100% 100% 3.81% 

a. Average composition of outer mitochondrial membrane (OMM) proteins in Table B-4 

 

Table B-3. Phospholipid composition for initial conditions. 

Phospholipid 
Composition 

of OM
a
 (%) 

Accessible 

on OM
b
 (%) 

Composition, 

adjusted for 

accessibility (%) 

phosphatidylcholine (PC) 52.18 55 47.59 

phosphatidylethanolamine (PE) 29.70 77 37.93 

cardiolipin (CL) 4.70 100 7.80 

phosphatidylinositol (PI) 11.84 30 5.89 

phosphatidylserine (PS) 1.58 30 0.78 

Total 100% N/A 100% 

a. Average value from Hovius et al. (1990) and de Kroon et al. 

b. “Accessible” means accessible by phospholipase A2 and indicates the phospholipid is 

located in the outer leaflet of the outer mitochondrial membrane (OM) as determined by 

Hovius et al. (1993) 
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B.2. Equation for Isoelectric Point 

We derive the Zx(pH) terms from Equation 4-1 (in Chapter 4) for each functional group 

by using the Henderson-Hasselbach equation, which is as follows for acidic functional 

groups 

  (Equation B-1) 

 

where A
-
x and HAx are the fractions of the ionized and neutral forms of x. Now, these 

fractions are described by 

   (Equation B-2) 

 

so by combining Equations S-1 and S-2 and solving for the ionized form, we obtain 

 

 (Equation B-3) 

 

For basic functional groups, the Henderson-Hasselbach equation is written as 

 

      (Equation B-4) 

 

and so by a similar derivation we obtain the following expression for the ionized form. 

 

     (Equation B-5) 

 

 

Equation 4-1 (from Chapter 4) is then used with either Equation B-3 or B-5 for all the 

functional groups shown in Table 4-1 (in Chapter 4) to find the pI of an individual 

composition (with different nx for each amino acid and phospholipid). An additional + 1 

term is included in the expression for PC to account for its quaternary ammonium cation. 

The complete expression (Equation B-6) is shown below. 
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 (Equation B-6)  
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B.3. Comparison to Mitochondrial Outer Membrane Proteins 

The list of mitochondrial outer membrane proteins was obtained using two protein 

databases (the Mitominer
7
 and Uniprot Knowledgebase

1
 databases, accessed 7/22/2011). 

Appropriate keywords and search parameters were used to select proteins from Rattus 

norvegicus located in the mitochondrial outer membrane. 

 

Table B-4. Mitochondrial outer membrane proteins. 

Protein name pI
a
 Accession IPI 

TOM22_RAT 4.2603 Q75Q41 IPI00417749 

Q5K547_RAT 4.3491 Q5K547 IPI00231893 

Q9QWT2_RAT 4.4969 Q9QWT2 IPI00957420 

Q7TS62_RAT 4.7136 Q7TS62 IPI00231894 

BAX_RAT 4.8403 Q63690 IPI00211129 

Q63144_RAT 4.8637 Q63144 IPI00193233 

B2CL1_RAT 4.8659 P53563 IPI00211135 

Q9WUI5_RAT 4.9214 Q9WUI5 IPI00231893 

AKAP1_RAT 4.9303 O88884 IPI00213479 

Q548R7_RAT 5.0048 Q548R7 IPI00231893 

CYB5B_RAT 5.0070 P04166 IPI00193233 

TIM8A_RAT 5.0615 Q9WVA1 IPI00204831 

SNN_RAT 5.1904 P61808 IPI00208675 

MIRO2_RAT 5.4537 Q7TSA0 IPI00337111 

PEBP1_RAT 5.4771 P31044 IPI00230937 

GLPK_RAT 5.4915 Q63060 IPI00950299 

MFF_RAT 5.5226 Q4KM98 IPI00358063 

Q5U345_RAT 5.5782 Q5U345 IPI00480662 

SPT19_RAT 5.6849 Q920Q3 IPI00200836 

HXK2_RAT 5.7560 P27881 IPI00201057 

O54892_RAT 5.7560 O54892 IPI00201057 

SHLB1_RAT 5.7882 Q6AYE2 IPI00392306 

PI4KB_RAT 5.8126 O08561 IPI00193760 

Q4QRB8_RAT 5.8838 Q4QRB8 IPI00949912 

A1L1L6_RAT 5.9882 A1L1L6 IPI00557644 

ARLY_RAT 5.9993 P20673 IPI00325599 

2ABB_RAT 6.0149 P36877 IPI00206749 

MAVS_RAT 6.0649 Q66HG9 IPI00364200 

GIMA5_RAT 6.1071 Q8K3L6 IPI00202353 

MFN1_RAT 6.1182 Q8R4Z9 IPI00201334 

HXK1_RAT 6.2994 P05708 IPI00202543 

SYJ2B_RAT 6.3616 Q9WVJ4 IPI00205132 

SAM50_RAT 6.3649 Q6AXV4 IPI00372941 

Q6IRL2_RAT 6.4260 Q6IRL2 IPI00951357 

continued on next page 
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continued from previous page 

 MFN2_RAT 6.5249 Q8R500 IPI00325525 

TM40L_RAT 6.6361 A4F267 IPI00202955 

ACSL1_RAT 6.6572 P18163 IPI00188989 

NOS1_RAT 6.7061 P29476 IPI00204773 

Q9ET45_RAT 6.7227 Q9ET45 IPI00324438 

ACSL6_RAT 6.7383 P33124 IPI00324041 

FRAP_RAT 6.7439 P42346 IPI00339164 

VAMP1_RAT 6.9806 Q63666 IPI00211083 

ACSL5_RAT 7.3039 O88813 IPI00213231 

NLRX1_RAT 7.5506 Q5FVQ8 IPI00369394 

ASSY_RAT 8.0496 P09034 IPI00211127 

AOFA_RAT 8.2896 P21396 IPI00202370 

GPAT1_RAT 8.4207 P97564 IPI00205564 

B2GV33_RAT 8.4296 B2GV33 IPI00955184 

AOFB_RAT 8.5752 P19643 IPI00231774 

ABCB6_RAT 8.6585 O70595 IPI00199586 

ACSL3_RAT 8.6919 Q63151 IPI00205908 

NB5R3_RAT 8.7641 P20070 IPI00231662 

TOM40_RAT 8.7741 Q75Q40 IPI00421376 

VDAC1_RAT 8.8152 Q9Z2L0 IPI00421874 

CPT1A_RAT 8.8274 P32198 IPI00213538 

FIS1_RAT 8.8830 P84817 IPI00371036 

CPT1B_RAT 8.9008 Q63704 IPI00196647 

VDAC3_RAT 9.0041 Q9R1Z0 IPI00231067 

MOSC2_RAT 9.0297 O88994 IPI00214398 

CXA1_RAT 9.0419 P08050 IPI00231746 

PGAM5_RAT 9.0419 Q562B5 IPI00392594 

TOM20_RAT 9.0486 Q62760 IPI00208207 

KMO_RAT 9.0519 O88867 IPI00213422 

BAD_RAT 9.1430 O35147 IPI00206258 

CISD1_RAT 9.1730 B0K020 IPI00870183 

Q4KLN2_RAT 9.2586 Q4KLN2 IPI00766105 

TOM34_RAT 9.2886 Q3KRD5 IPI00565421 

B5DFG1_RAT 9.3064 B5DFG1 IPI00208560 

Q6Q6S2_RAT 9.5231 Q6Q6S2 IPI00231746 

B0BN02_RAT 9.6353
b
 B0BN02 IPI00368621 

MGST1_RAT 9.7564
b
 P08011 IPI00230889 

ADT1_RAT 9.8520
b
 Q05962 IPI00231927 

Q99PC8_RAT 10.0364
b
 Q99PC8 IPI00231774 

a. pI calculated from amino acid compositions 

b. These proteins were excluded from the analysis because their pIs were too high for 

compositions to be generated. 
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Figure B-1. Comparison of predicted compositions to known compositions of 

mitochondrial outer membrane proteins. Average percentages of amino acids in 

predicted compositions with similar pI (± 0.02) were plotted against actual 

percentages of amino acids in known protein sequences of mitochondrial outer 

membrane proteins. Error bars are plus/minus one standard deviation of the 

average percent of each amino acid in the predicted compositions. Trends may be 

difficult to appreciate due to the large standard deviation associated with each 

determination. 
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B.4. Comparison of Compositions 

Table B-5. Simulated compositions associated with several pIs representative of 

experimental individual mitochondrial pI.
a
 

pI 6.77 6.75 6.41 4.93 

Ionizable species Composition (%)
b 

asp 7.11 ± 1.87 7.08 ± 1.83 7.17 ± 1.88 8.51 ± 2.25 

glu 8.24 ± 1.83 8.37 ± 1.89 8.50 ± 1.94 10.41 ± 2.67 

cys 2.24 ± 0.65 2.26 ± 0.66 2.25 ± 0.65 2.25 ± 0.66 

tyr 4.80 ± 1.39 4.84 ± 1.37 4.88 ± 1.35 4.78 ± 1.37 

his 3.89 ± 1.08 3.81 ± 1.07 3.83 ± 1.08 3.84 ± 1.08 

lys 11.84 ± 1.91 11.95 ± 1.89 11.73 ± 1.99 10.22 ± 2.34 

arg 11.11 ± 1.81 11.10 ± 1.91 10.91 ± 2.01 9.64 ± 2.27 

PC 23.78 ± 2.45 23.63 ± 2.47 23.64 ± 2.41 23.48 ± 2.60 

PE 18.92 ± 2.00 18.87 ± 2.11 19.00 ± 2.09 18.78 ± 2.19 

PI 3.83 ± 0.50 3.85 ± 0.51 3.84 ± 0.49 3.85 ± 0.52 

PS 0.39 ± 0.06 0.39 ± 0.06 0.39 ± 0.06 0.39 ± 0.06 

CL 3.85 ± 0.48 3.86 ± 0.50 3.85 ± 0.50 3.85 ± 0.52 

Total 100% 100% 100% 100% 

N
c 6017 6248 7808 19362 

a. Each column represents all compositions within 0.01 pH units of the pI. 

b. For a given pI the data is shown as the average ± one standard deviation of the amount of each species in 

compositions that were included in the calculation. 

c. N = number of compositions included in the calculation 
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Table B-6. Difference from pI 6.77 composition.
a
 

pI 6.75 6.41 4.93 

Ionizable species Difference (%) 

asp -0.03 0.06 1.40 

glu 0.13 0.26 2.18 

cys 0.02 0.01 0.01 

tyr 0.04 0.07 -0.02 

his -0.08 -0.06 -0.05 

lys 0.11 -0.11 -1.62 

arg -0.01 -0.19 -1.46 

PC -0.16 -0.15 -0.31 

PE -0.05 0.09 -0.13 

PI 0.02 0.01 0.01 

PS -0.001 0.0002 -0.004 

CL 0.01 0.01 0.01 

a. Calculated as the amount of each ionizable species from the pI 6.77 composition minus 

the amount from the compositions denoted in each column. 

 

Table B-7. Compositions representing changes in total protein and Fis1.
a
 

pI 6.77 6.30
a
 6.73

b
 

Ionizable species Composition (%) 

asp 7.11 6.73 7.09 

glu 8.24 7.80 8.23 

cys 2.24 2.12 2.24 

tyr 4.80 4.54 4.79 

his 3.89 3.68 3.89 

lys 11.84 11.21 11.83 

arg 11.11 10.52 11.04 

PC 23.78 25.01 23.84 

PE 18.92 19.90 18.97 

PI 3.83 4.03 3.84 

PS 0.39 0.41 0.39 

CL 3.85 4.05 3.86 

Total 100% 100% 100% 

a. Represents a 10% reduction in total protein from the pI 6.77 composition. 

b. Represents a 50% reduction in Fis1 from the pI 6.77 composition, assuming Fis1 

represents 1% of the total outer membrane protein. 
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Appendix C 

 

Supporting Information for Chapter 5 

 
Reprinted (adapted) with permission from Wolken, G. G.; Arriaga, E.A. “Measurement 

of Individual Mitochondrial Membrane Potential by Capillary Electrophoresis.” Anal. 

Chem. 2013, In preparation. Unpublished Work Copyright (2013) American Chemical 

Society. 
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C.1. Photobleaching SH buffer 

 

Figure C-1. Photobleaching SH buffer with 2.5 mM succinate. A device containing 

120 blue LEDs (467 nm, 4.2 × 10
5
 mcd intensity) was used to reduce the fluorescence 

background in the SH buffer containing 2.5 mM succinate. Samples were taken at 

different time points. Samples of buffer were flowed through the sheath flow 

cuvette, and the fluorescence and standard deviation of the signal was measured. 

The photobleaching device reduced the red fluorescence (A), red standard deviation 

(B), green fluorescence (C), and green standard deviation (D). Decreases were 

observed for the time period measured, although the largest difference is seen after 

a 24 hour treatment. 
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C.2. Unmodified Images 

 

Figure C-2. Unmodified confocal fluorescence microscopy images of polarized (A 

and B) and depolarized (C and D) L6 rat myoblast cells labeled with 500 nM JC-1 

for 30 minutes. Scale bars are 10 µm. Red channel (A and C): 2.0 s exposure time, 

gain of 100, λex = 545 ± 10 nm, λem = 597.5 ± 27.5 nm, 565 nm dichroic, Olympus M-

RFPHQ filter cube; green channel (B and D): 10.0 s exposure time, gain of 100, λex = 

470 ± 10 nm, λem = 517.5 ± 22.5 nm, 485 nm dichroic, Olympus U-MGFPHQ filter 

cube. 
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C.3. JC-1 Labeling Strategy for Isolated Mitochondria 
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Figure C-3 (continued from previous page). JC-1 labeling strategy for isolated 

mitochondria. A) Mitochondria from C2C12 cells were isolated and kept on ice in 

buffer R with no succinate/rotenone or valinomycin. At different time points, 

aliquots were taken and succinate/rotenone was added (valinomycin was added to 

depolarized controls). Aliquots were labeled with JC-1 then added to a 96-well plate. 

Time points shown on the plot represent the time elapsed after mitochondrial 

isolation before the data was collected. Red (B) and green (C) fluorescence was 

measured in a plate reader. Red fluorescence and red/green ratio (D) decreases over 

time for polarized mitochondria. Additionally, aliquots labeled later in the 

experiment show higher red/green ratios than aliquots labeled earlier at the same 

point in time (e.g., the polarized sample labeled and measured at 112 minutes has 

higher red/green ratio than the polarized sample labeled and measured at 36 min, 

the polarized sample labeled and measured 200 min after isolation shows the highest 

red/green ratio at the final measurement, 256 min). Each data point is corrected for 

photobleaching caused by exposure to the excitation light in the plate reader 

according to the formula below, where photobleaching (Δfluorphotobleaching) was 

determined by reading the plate two additional times at the end of the experiment 

(data not shown). Plate reader settings as described in Figure 5-1, JC-1 labeling as 

described in Chapter 5, section 5.2.5. 
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C.4. Bulk Fluorescence from Isolated Mitochondria 

 

Figure C-4. Bulk fluorescence from isolated mitochondria. Buffer R and 100 nM 

JC-1 in buffer R are included as controls. A) Red fluorescence (λex = 530 ± 12.5 nm, 

λem = 590 ± 17.5 nm). B) Green fluorescence (λex = 485 ± 10 nm, λem = 528 ± 10 nm). 

C) Red/green ratio. Mitochondrial samples have higher red and green fluorescence 

compared to controls, showing an uptake of JC-1 into mitochondria. Polarized 

mitochondria have higher red fluorescence than depolarized mitochondria, showing 

JC-1 aggregate formation from the higher concentration. Error bars represent the 

standard deviation of measurements from three different wells containing the same 

sample. 
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C.5. CE-LIF Detector Alignment 

 
Figure C-5. Alignment of capillary using Alignflow flow cytometry beads. A) All 

data. Red channel is top, y offset = 1. n = 719 coincident events. Fluorescence 

intensity was much higher in the red channel than in the green channel (green 

channel is pictured but difficult to see on the same scale as red channel). B) Detail 

from 0 to 50 s, red channel. Y-axis shown with different scale than in A. Average 

event fluorescence intensity %RSD = 18%. C) Detail from 0 to 50 s, green channel. 

Y-axis shown with different scale than in A. Average event fluorescence intensity 

%RSD = 35%. Average event red/green %RSD = 14%. See section 5.2.9 in Chapter 

5 for CE-LIF conditions. 
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C.6. False Positives 

 
Figure C-6 Control for false positives in CE-LIF. A) Blank injection of 200 nM JC-1 

with 5 × 10
-10

 M fluorescein (peak at 423 s). The concentration of JC-1 was chosen to 

match the concentration that is present in the mitochondrial samples after dilution 

with buffer SH for injection. After peak picks and coincidence analysis, 6 events 

were detected in this run. B) In four runs containing liver mitochondria (two 

polarized and two depolarized samples), there were 701 coincident events, for an 

average of 175 events per run. Since the CE-LIF run of the blank injection 

contained 6 events, this results in a false positive rate of 3.4%. All plots: green 

channel y-offset = 5. CE-LIF conditions as in Figure 5-2. 
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C.7. Peak Overlap 

Table C-1. Peak overlap results for a CE-LIF experiment of mitochondria from 

cultured cells. For all runs below (except for two), the number of events in the most 

crowded bin is smaller than m at both βt = 0.85 and βt = 0.90, indicating that peak 

overlap is not a problem in these runs. For the two runs in which n is larger than m, 

this is only true for βt = 0.90, and n exceeds m by only 3 and 5 events in each case. 

Results from other mitochondrial CE-LIF experiments are not shown, but peak 

overlap was determined not to be a problem in these experiments (i.e. the detected 

number of events in each run from these experiments is smaller than the detected 

number of events in the runs below). 

CE-LIF run 1 2 3 4 5 6 

ptot (total events) 385 287 278 318 287 301 

N (number of bins) 10 9 9 10 9 9 

σ (event st dev, s) 0.009 0.009 0.009 0.009 0.009 0.009 

X (bin width, s) 23.9 19.4 20.8 23.6 24.1 21.6 

s = log(σ /X)t -3.42 -3.33 -3.36 -3.41 -3.42 -3.37 

n (events in most crowded bin) 90 61 76 91 83 74 

       

βt = 0.85       

m (threshold number of events) 105 92 96 104 105 99 

is overlap a problem at βt = 0.85? No. No. No. No. No. No. 

       

βt = 0.90       

m (threshold number of events) 87 77 80 86 88 82 

is overlap a problem at βt = 0.90? Yes. No. No. Yes. No. No. 
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C.8. Reproducibility of CE-LIF Runs 

 

 
Figure C-7. Distributions of red/green ratios (A) and corrected electrophoretic 

mobility (B) from individual runs of polarized mitochondria isolated from C2C12 

cells, n = 385, 287, and 278 detected events for runs 1, 2, and 3, respectively. See 

Figure 5-3 in the main text for combined distributions and Q-Q plots. CE-LIF 

conditions as described in Figure 5-2. 
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Figure C-8. Reproducibility of red/green ratios in multiple CE-LIF runs of 

depolarized mitochondria isolated from C2C12 cells. A) Distributions of red/green 

ratios in three replicate runs of depolarized mitochondria. n = 318, 287, and 301 

detected events for runs 1, 2, and 3, respectively. B) Distribution of red/green ratios 

from the combined runs. C) Q-Q plot of individual runs vs. combined data. This 

plot is a qualitative indication that the distributions of red/green ratios are 

reproducible (i.e. data points closely follow the y = x line shown on the plot). There is 

much more run-to-run variation in the 90-95
th

 percentiles (inset in Q-Q plot in C, 

normalized ssres = 509%, 291%, and 605% for runs 1, 2, and 3, respectively), but the 

5-85
th

 percentiles are reproducible (normalized ssres = 23%, 6%, and 20% for runs 

1, 2, and 3, respectively). CE-LIF conditions as described in Figure 5-2. 
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Figure C-9. Reproducibility of corrected electrophoretic mobility distributions in 

multiple CE-LIF runs of depolarized mitochondria isolated from C2C12 cells. A) 

Distributions of corrected mobility in three replicate runs of depolarized 

mitochondria. n = 318, 287, and 301 detected events for runs 1, 2, and 3, 

respectively. B) Distribution of corrected mobility from the combined runs. C) Q-Q 

plot of individual runs vs. combined data. This plot is a qualitative indication that 

the distributions of corrected mobility are reproducible (i.e. data points closely 

follow the y = x line shown on the plot, normalized ssres = 4%, 5%, and 5% for runs 

1, 2, and 3, respectively). CE-LIF conditions as described in Figure 5-2. 
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C.9. Definition and Reproducibility of ROIs 

 

Table C-2: Fits to red vs. green data using different models. Reduced chi-square 

(red. χ
2
), sum of squares of residuals (ssres), and adjusted coefficient of variance (adj. 

R
2
) are shown to evaluate goodness of fit. Uncertainty values shown for each 

coefficient are standard error of the mean. 

Fit  A B C red. χ
2
 ssres adj. R

2
 

linear 

       

cells 0.01 ± 0.02 1.31 ± 0.04  0.52 970 0.37 

muscle 0.08 ± 0.01 1.08 ± 0.01  0.15 149 0.89 

liver 0.03 ± 0.02 1.03 ± 0.01  0.22 154 0.89 

        

polynomial 

           

cells 0.09 ± 0.02 0.90 ± 0.07 0.16 ± 0.02 0.51 948 0.38 

muscle 0.04 ± 0.01 1.28 ± 0.03 -0.03 ± 0.01 0.15 142 0.90 

liver -0.05 ± 0.02 1.25 ± 0.03 -0.04 ± 0.01 0.21 144 0.90 

        

exponential 

         

cells -4.8 ± 1.0 4.9 ± 1.0 0.20 ± 0.03 0.51 949 0.38 

muscle
a
 -9.9 ± 1.7 10.0 ± 1.6 0.08 ± 0.01 0.18 177 0.88 

liver 16 ± 2 -16 ± 2 -0.08 ± 0.01 0.21 145 0.90 

        

power 

     

cells 1.27 ± 0.02   0.53 988 0.36 

muscle 1.04 ± 0.01   0.17 164 0.89 

liver 1.01 ± 0.01   0.23 157 0.89 

        

logarithm 

             

cells
b
 -1000 ± 5000 -200 ± 900 100 ± 700 0.52 971 0.37 

muscle -40 ± 10 -17 ± 3 13 ± 2 0.15 143 0.90 

liver -32 ± 9 -14 ± 2 11 ± 2 0.21 145 0.90 

        

sigmoidal 

  
 

          
 

cells 7.0 ± 0.4 1.47 ± 0.06 2.27 ± 0.09 0.53 976 0.36 

muscle 6.38 ± 0.09 1.27 ± 0.03 2.52 ± 0.05 0.18 175 0.88 

liver 6.3 ± 0.1 1.07 ± 0.03 2.81 ± 0.06 0.26 177 0.87 

a. To produce a fit which resulted in error smaller than the coefficients, lower and upper bounds of -10 and 

10 were used for coefficients A and B. 

b. Could not produce a fit in which error was smaller than the coefficients. 
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Figure C-10. Optimization of ROIs. The slope of a line defining the ROIs was varied 

and the difference in the number of events in the polarized ROI between the 

polarized and depolarized samples was maximized. A) Cells; optimal slope was 0.96 

for 8.26% more events in the polarized ROI from the polarized sample than from 

the depolarized sample. B) Muscle; optimal slope was 1.48 for 37.80% more events 

in the polarized ROI from the polarized sample than from the depolarized sample. 

C) Liver; optimal slope was 1.47 for 8.80% more events in the polarized ROI from 

the polarized sample than from the depolarized sample. Slope used to define ROIs 

in both muscle and liver samples was 1.475. CE-LIF conditions as described in 

Figure 5-2.  
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Table C-3: Number of events in all runs and ROIs of each sample type. The percent 

difference in the number of events between ROIs from polarized and depolarized 

samples (i.e. percent in polarized ROI from polarized sample minus percent in 

polarized ROI from depolarized sample) was maximized to define the ROIs. 

Sample n 
n, pol. 

ROI 

%, pol. 

ROI 

n, depol. 

ROI 

%, depol. 

ROI 

% difference in n between 

ROIs from pol. and depol. 

samples 

cells, pol. 950 501 53% 449 47% 
8.26% 

cells, depol. 906 403 44% 503 56% 

       

muscle, pol. 622 306 49% 316 51% 
37.52% 

muscle, depol. 351 41 12% 310 88% 

       

liver, pol. 334 61 18% 273 82% 
8.29% 

liver, depol. 361 36 10% 325 90% 
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Figure C-11. Definition of ROIs. A) Mitochondrial events from depolarized muscle 

sample with ROIs shown. B) Detail of A. C) Mitochondrial events from polarized 

sample with ROIs shown. D) Detail of C. Data shown with logarithmic scale in 

Figure 5-4. CE-LIF conditions as described in Figure 5-2. 
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Figure C-12. Reproducibility in ROIs of multiple CE-LIF runs using mitochondria 

isolated from C2C12 cells. Shaded shapes (■,▲,♦) denote polarized runs and ×,−,+ 

denote depolarized runs. A) Red/green ratio distributions of polarized ROIs from 

individual runs of polarized samples and depolarized ROIs from individual runs of 

depolarized samples vs. combined data from polarized ROIs of polarized samples. 

Distributions of red/green ratios from depolarized ROIs from individual runs (data 

points close to x-axis) appear reproducible (overlapping data points indicate 

minimal scatter among three individual runs each of mitochondria in ROIs from 

polarized and depolarized samples). B) Corrected mobility distributions of polarized 

ROIs from individual runs of polarized samples and depolarized ROIs from 

individual runs of depolarized samples vs. combined data from polarized ROIs of 

polarized samples. The y = x line is shown on each plot for comparison purposes. See 

Table C-4 for normalized ssres for each run. CE-LIF conditions as described in 

Figure 5-2. 

 

  



 

 

 211 

 

C.10. Quantitative Representation of Q-Q Plots 

 

Table C-4: Sum of squares of residuals (ssres) and normalized ssres from all Q-Q plots 

in Chapter 5 and Appendix C. The normalized ssres is the square root of the ssres 

divided by the median of the data from the x-axis, reported as a percentage: 

                                    

Figure Sample Data Comparison Quantiles ssres 
Norm. 

ssres 

    all 12.2 353% 

5-3 B cells red/green run 1 vs combined runs, pol. 5-85
th

 0.1 26% 

    90-95
th

 12.1 352% 

       

    all 4.8 221% 

5-3 B cells red/green run 2 vs combined runs, pol. 5-85
th

 0.03 18% 

    90-95
th

 4.8 221% 

       

    all 13.5 371% 

5-3 B cells red/green run 3 vs combined runs, pol. 5-85
th

 0.02 13% 

    90-95
th

 13.4 370% 

       

   run 1 vs combined runs, pol. all 7.28×10
-10

 7% 

5-3 D cells mobility run 2 vs combined runs, pol. all 7.65×10
-10

 7% 

   run 3 vs combined runs, pol. all 3.50×10
-10

 5% 

       

    all 21.0 510% 

C-8 C cells red/green run 1 vs combined runs, depol. 5-85
th

 0.04 23% 

    90-95
th

 21.0 509% 

       

    all 6.9 291% 

C-8 C cells red/green run 2 vs combined runs, depol. 5-85
th

 0.003 6% 

    90-95
th

 6.8 291% 

       

    all 29.7 606% 

C-8 C cells red/green run 3 vs combined runs, depol. 5-85
th

 0.03 20% 

    90-95
th

 29.6 605% 

       

   run 1 vs combined runs, depol. all 2.16×10
-10

 4% 

C-9 C cells mobility run 2 vs combined runs, depol. all 3.33×10
-10

 5% 

   run 3 vs combined runs, depol. all 4.29×10
-10

 5% 

       

    all 4.3 210% 

5-6 C cells red/green depol. vs pol. 5-85
th

 0.1 24% 

    90-95
th

 4.3 208% 

       

    all 314.2 1444% 

5-6 D cells red/green depol. ROI vs pol. ROI 5-85
th

 13.9 304% 

    90-95
th

 300.2 1412% 

       

continued on next page    
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continued from previous page    

       

5-7 C cells mobility depol. vs pol. all 5.30×10
-10

 6% 

       

5-7 D cells mobility depol. ROI vs pol. ROI all 1.83×10
-8

 37% 

       

   pol. ROI from pol. run 1 vs 

combined pol. ROIs 
all 3.7 156% 

C-12 A cells red/green 
pol. ROI from pol. run 2 vs 

combined pol. ROIs 
all 3.3 148% 

   pol. ROI from pol. run 3 vs 

combined pol. ROIs 
all 12.4 287% 

       

   depol. ROI from depol. run 1 vs 

combined pol. ROIs 
all 314.3 1444% 

C-12 A cells red/green 
depol. ROI from depol. run 2 vs 

combined pol. ROIs 
all 313.6 1443% 

   depol. ROI from depol. run 3 vs 

combined pol. ROIs 
all 314.7 1446% 

       

   pol. ROI from pol. run 1 vs 

combined pol. ROIs 
all 1.29×10

-9
 10% 

C-12 B cells mobility 
pol. ROI from pol. run 2 vs 

combined pol. ROIs 
all 1.29×10

-9
 10% 

   pol. ROI from pol. run 3 vs 

combined pol. ROIs 
all 1.50×10

-9
 10% 

       

   depol. ROI from depol. run 1 vs 

combined pol. ROIs 
all 2.48×10

-8
 43% 

C-12 B cells mobility 
depol. ROI from depol. run 2 vs 

combined pol. ROIs 
all 1.30×10

-8
 31% 

   depol. ROI from depol. run 3 vs 

combined pol. ROIs 
all 1.80×10

-8
 36% 

       

5-8 C muscle red/green 
depol. vs pol. all 58.4 529% 

depol. ROI vs pol. ROI all 203.5 501% 

       

5-8 C liver red/green 
depol. vs pol. all 1.7 139% 

depol. ROI vs pol. ROI all 70.1 447% 

       

5-8 D muscle mobility 
depol. vs pol. all 1.07×10

-8
 34% 

depol. ROI vs pol. ROI all 2.14×10
-8

 49% 

       

5-8 D liver mobility 
depol. vs pol. all 1.50×10

-8
 37% 

depol. ROI vs pol. ROI all 1.78×10
-8

 47% 

 

 

 


