
Placement and Motion Planning Algorithms for Robotic
Sensing Systems

A DISSERTATION

SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL

OF THE UNIVERSITY OF MINNESOTA

BY

Pratap Rajkumar Tokekar

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

Doctor of Philosophy

Prof. İbrahim Volkan İs.ler

October, 2014

c© Pratap Rajkumar Tokekar 2014

ALL RIGHTS RESERVED

Acknowledgements

First and foremost, I would like to express my sincere gratitude towards my adviser,

Prof. Volkan Isler. Thank you for believing in me, for your constant support and

encouragement, for all the efforts you have put in me, and for being a true role-model

and inspiration. I could not have asked for a better adviser. I am very proud to have

been your student and hope to keep learning from you. Special thanks to Dr. Hilal Isler

for your kind words of encouragement and support over the years.

I am grateful for the guidance and invaluable feedback from my committee members

Prof. Ravi Janardan, Prof. Nikolaos Papanikolopoulos, and Prof. Sonia Martinez. I

would also like to thank Prof. Stergios Roumeliotis, who although could not be on my

final defense committee, has been very helpful and from whom I’ve learned a lot.

Thanks to all my collaborators and co-authors for their contributions to this dis-

sertation. I am indebted to the financial support from National Science Foundation

grants #1317788, #1111638, #0917676 and #0936710. Special thanks to Dr. Antonio

Franchi for hosting me at the Max Planck Institute in May 2013, and for your kind

help and support since then. The work presented in Chapter 5 is a direct result of this

collaboration (and many Skype conversations). I hope we can continue to collaborate

in the future.

I started at Minnesota as a Masters in Electrical Engineering student with no previ-

ous exposure to algorithms. The excellent courses I took at Minnesota have played a big

role in making this dissertation possible. I would especially like to thank Prof. Janardan

(Advanced Algorithms and Computational Geometry), Prof. Roumeliotis (Sensing and

Estimation in Robotics), and Prof. Isler (Special Topics: Robotic Sensor Networks)

for the most enjoyable and enriching courses I’ve taken. I would also like to thank the

members of the Robotic Sensor Networks lab for all the fruitful, sometimes frustrating,

i

but ultimately rewarding discussions in the journal club.

I am grateful for the excellent office staff of the Computer Science department. In

particular, thanks to Georganne Tolaas, Peggy Stewart, and Sara Grothe for your help

and patience, and for making all my administrative tasks hassle-free and very enjoyable.

The Robotic Sensor Networks lab has been a home for the past six years thanks to

the wonderful people who made it so. Thank you Onur Tekdas, Nikhil Karnad, Deepak

Bhadauria, Patrick Plonski, Deniz Ozsoyeller, Joshua Vander Hook, Narges Noori, Elliot

Branson, Alessandro Renzaglia, Gabriel Oliveira, Ubaldo Ruiz, Roman Ripp, Andy

Erickson, Nikolaos Stefas and Pravakar Roy. Thanks for all the lively discussions, for

all the help, and for all the Village Wok dinners after (fun and occasionally frustrating)

field experiments. I am proud of the research we do and the culture in the lab, and it

has been a privilege working with all of you.

Thanks to all my friends in Minnesota for the fun times (with a sprinkling of long

discussions about the ups and downs of life and research): Vineet Bhatawadekar, Vinit

Padhye, Anup Holey, Shreyas Bhaban, Neha Kulkarni, Mikhil Masli, Amruta Bam-

nikar, Vineeth Mekkat, Ram Varma, Sayan Ghosal, Raamesh Deshpande, Shruti Patil,

Pushkar Nandkar, and Nachiket Gokhale. Thanks to friends who were never more than

a phone-call away: Amey Deshpande, Shriram Devi, Amey Bhagwat, Chetan Tonde,

Prasanna Kulkarni, Mayur Tailor, Rohit Sawkar, Sonal Joshi, Mandar Jadhav, Rakesh

Khoje, Mithila Burute, and all members of the Global Katta and the Pune Katta.

Thanks for being there!

Special thanks to Starbucks for being a constant companion and for much more.

Finally, I cannot fully express my gratitude towards my family. Their confidence

in me has kept me going these past six years and more. They have always encouraged

me and given me the freedom and opportunities to pursue my goals. It is impossible

to overstate how important their endless support and love has been in making this dis-

sertation possible. Thank you to my parents, Rajkumar and Sheela Tokekar, my two

lovely sisters, Urmila Tokekar and Ashwini Prabhu, and special thanks to my grand-

mother (Aai) who couldn’t be there to see me complete my Ph.D. but has been just as

instrumental in making it possible.

ii

Dedication

To Akka, Tai, Dad and Maa.

iii

Abstract

Recent technological advances are making it possible to build teams of sensors and

robots that can sense data from hard-to-reach places at unprecedented spatio-temporal

scales. Robotic sensing systems hold the potential to revolutionize a diverse collection

of applications such as agriculture, environmental monitoring, climate studies, security

and surveillance in the near future. In order to make full use of this technology, it

is crucial to complement it with efficient algorithms that plan for the sensing in these

systems. In this dissertation, we develop new sensor planning algorithms and present

prototype robotic sensing systems.

In the first part of this dissertation, we study two problems on placing stationary

sensors to cover an environment. Our objective is to place the fewest number of sensors

required to ensure that every point in the environment is covered. In the first problem,

we say a point is covered if it is seen by sensors from all orientations. The environment is

represented as a polygon and the sensors are modeled as omnidirectional cameras. Our

formulation, which builds on the well-known art gallery problem, is motivated by prac-

tical applications such as visual inspection and video-conferencing where seeing objects

from all sides is crucial. In the second problem, we study how to deploy bearing sensors

in order to localize a target in the environment. The sensors measure noisy bearings

towards the target which can be combined to localize the target. The uncertainty in

localization is a function of the placement of the sensors relative to the target. For both

problems we present (i) lower bounds on the number of sensors required for an optimal

algorithm, and (ii) algorithms to place at most a constant times the optimal number of

sensors.

In the second part of this dissertation, we study motion planning problems for

mobile sensors. We start by investigating how to plan the motion of a team of aerial

robots tasked with tracking targets that are moving on the ground. We then study

various coverage problems that arise in two environmental monitoring applications:

using robotic boats to monitor radio-tagged invasive fish in lakes, and using ground

and aerial robots for data collection in precision agriculture. We formulate the coverage

problems based on constraints observed in practice. We also present the design of

iv

prototype robotic systems for these applications. In the final problem, we investigate

how to optimize the low-level motion of the robots to minimize their energy consumption

and extend the system lifetime.

This dissertation makes progress towards building robotic sensing systems along

two directions. We present algorithms with strong theoretical performance guarantees,

often by proving that our algorithms are optimal or that their costs are at most a

constant factor away from the optimal values. We also demonstrate the feasibility

and applicability of our results through system implementation and with results from

simulations and extensive field experiments.

v

Contents

Acknowledgements i

Dedication iii

Abstract iv

List of Tables xii

List of Figures xiii

1 Introduction 1

1.1 Applications, Typical Tasks and Challenges 2

1.1.1 Coverage . 2

1.1.2 Active Target Tracking . 4

1.2 Contributions . 6

1.2.1 Sensor Placement for Visibility-Based Coverage with Orientation 6

1.2.2 Bearing Sensor Placement for Target Localization 8

1.2.3 Multi-Target Visual Tracking with Teams of Aerial Robots . . . 9

1.2.4 Sampling Algorithms with Aerial and Ground Robots (Precision

Agriculture) . 10

1.2.5 Coverage and Tracking with Autonomous Boats (Monitoring In-

vasive Fish) . 12

1.2.6 Energy-Optimal Trajectory Planning 13

1.3 Organization of the Dissertation . 13

vi

2 Preliminaries 15

2.1 Set Cover and Maximum k–coverage Problems 15

2.2 The Art Gallery Problem . 16

2.3 The Traveling Salesperson Problem . 19

3 Sensor Placement for Visibility-Based Coverage with Orientation 21

3.1 Lower Bound on the Number of Guards 24

3.2 O(log copt)–approximation with Vertex Guards 26

3.3 △-guarding Chords . 30

3.3.1 Notation . 30

3.3.2 Overview . 31

3.3.3 Guarding Type I and II chords 32

3.3.4 Guarding a subset of Type III chords 33

3.3.5 Guarding remaining Type III and IV chords 35

3.4 Conclusion . 40

4 Bearing Sensor Placement for Target Localization 42

4.1 Related Work . 44

4.2 Problem Formulation . 45

4.2.1 Notation and Sensing Model . 45

4.2.2 Adversarial Formulation of Uncertainty 46

4.2.3 Objective . 48

4.3 Lower Bounds for Optimal Placement 48

4.4 Performance Analysis for the Triangular Grid Placement 51

4.4.1 Uncertainty with Triangular Grid 51

4.4.2 Number of Sensors with Triangular Grid 53

4.5 Conclusion . 54

5 Multi-Target Visual Tracking with Teams of Aerial Robots 56

5.1 Related Work . 57

5.2 Problem Formulation . 58

5.3 Infeasibility of Tracking All Targets . 60

5.4 1/2 Approximation Algorithm . 63

vii

5.4.1 Maximizing Number of Targets 63

5.4.2 Maximizing Quality of Tracking 64

5.5 Simulations . 65

5.6 Experiments . 68

5.6.1 Validating the Sensing Model . 68

5.6.2 Tracking Experiment . 69

5.7 Conclusion . 71

6 Sampling Algorithms with Aerial and Ground Robots (Precision Agri-

culture) 72

6.1 Related Work . 74

6.2 Sampling TSPN Problem . 76

6.2.1 Overview of the GridSample Algorithm 77

6.2.2 Performance Analysis of the GridSample Algorithm 80

6.3 Motivating Application: Precision Agriculture 82

6.3.1 Finding Potentially Mislabeled Points 83

6.4 Symbiotic UAV+UGV Path Planning 87

6.4.1 Planning for Aerial Measurements 87

6.4.2 Planning for Ground Measurements 90

6.5 Simulations . 90

6.5.1 System Description . 90

6.5.2 Modeling . 91

6.5.3 Results . 92

6.6 Field Experiments . 95

6.7 Conclusion . 97

7 Coverage and Tracking with Autonomous Boats (Monitoring Invasive

Fish) 100

7.1 Related Work . 102

7.2 System Description . 104

7.2.1 Robots . 104

7.2.2 Navigation Routine . 104

7.2.3 Radio Tag and Receivers . 106

viii

7.3 Coverage . 108

7.3.1 Algorithm Description . 109

7.3.2 Visiting the Regions: TSPN and the Zookeeper Problems 110

7.3.3 Covering Regions with Given Entry and Exit Points 111

7.3.4 Experiments . 113

7.4 Active Localization . 114

7.4.1 Measurement Model . 114

7.4.2 Optimization of Robot Motion 115

7.4.3 Simulations and Experiments . 118

7.5 Field Experiments . 120

7.6 Conclusion . 122

8 Energy-Optimal Trajectory Planning 124

8.1 Related Work . 127

8.2 Problem Formulation . 128

8.2.1 Energy Model . 129

8.2.2 Problem Statement . 130

8.3 Optimal Velocity Profile without Bounds 132

8.3.1 Solution to Problem 4 . 132

8.3.2 Structure of the Optimal Profile 135

8.3.3 Comparisons with trapezoidal velocity profile 136

8.4 General Solution Incorporating Maximum Velocity Bound 137

8.4.1 Unconstrained optimal profile does not violate bound v(t) ≤ vm . 137

8.4.2 Unconstrained optimal profile violates the bound v(t) ≤ vm . . . 138

8.5 Optimal Profile over Multiple Segments 141

8.5.1 Velocity profile subroutines . 141

8.5.2 Dynamic Programming . 144

8.6 Energy Optimal Paths . 146

8.6.1 Implementation . 149

8.6.2 Comparison with Dubins’ Paths 150

8.7 Calibration and Experiments . 151

8.7.1 Calibration . 151

ix

8.7.2 Experiments . 156

8.8 Conclusion . 158

9 Conclusion and Discussion 159

9.1 Summary of Contributions and Open Problems 159

9.2 Future Research Directions . 162

9.2.1 Realistic Environments . 163

9.2.2 Realistic Robot Motion Models 164

9.2.3 Robustness against Uncertainty in the Model 165

9.2.4 Long-Term Planning . 166

9.3 Concluding Remarks . 167

References 168

Appendix A. Proofs from Chapter 3 186

A.1 Proof of Lemma 1 . 186

A.2 Proof of Lemma 3 . 188

A.3 Proof of Lemma 8 . 189

Appendix B. Proofs from Chapter 4 191

B.1 Proofs for the Lower Bounds . 191

B.1.1 Proof for Lemma 13 . 191

B.1.2 Proof for Corollary 2 . 192

B.1.3 Proof for Corollary 3 . 193

B.2 Proofs for the Upper Bounds . 193

B.2.1 Proof for Lemma 14 . 193

B.2.2 Proof for Lemma 15 . 204

B.2.3 Proof for Lemma 16 . 206

B.2.4 Proof for Lemma 17 . 208

B.3 Proof for Theorem 4 . 209

Appendix C. Proofs from Chapter 5 213

C.1 Proof of Theorem 7 . 213

x

Appendix D. Proofs from Chapter 8 216

D.1 Proof: Unconstrained Solution . 216

D.2 Proof for Lemma 24 . 218

D.3 Proof: Constrained Solution . 221

D.3.1 0 ≤ t ≤ t1 . 221

D.3.2 tf − t2 ≤ t ≤ tf . 223

D.3.3 Corner conditions . 224

D.4 Proof for Lemma 25 . 225

D.5 Proof of Energy Model for Non-zero Initial and Final Velocities 225

xi

List of Tables

6.1 Percentage of input PML points visited (avg. of 30 instances). 94

7.1 Experimental results with the ground robot for depth 2 120

8.1 Energy model parameters (SI units) obtained using the calibration pro-

cedure. 155

8.2 Energy consumption during experiments. The numbers in parentheses

indicate the percentage of extra energy consumption with respect to Eopt. 158

xii

List of Figures

1.1 Visibility regions of nearby points can be significantly different. 4

1.2 Bearing measurements from robots r1 and r2 are intersected to obtain

an estimate of the target’s position. The robot’s position relative to

the target determines the area of intersection which is a measure of the

uncertainty in the estimate. 5

1.3 (Left) Autonomous boat developed for monitoring radio-tagged invasive

fish during field experiments in lake Keller, Maplewood, MN. (Middle)

During winters, we use a mobile robot on frozen lake. (Right) UAV

obtaining multispectral images to form a nitrogen map of a corn plot in

Janesville, MN. We study mobile sensing problems motivated by these

applications. 7

2.1 Polygon with n = 15 vertices for which ⌊n/3⌋ = 15 guards are both

necessary (one per prong) and sufficient (figure adapted from [1]). 17

2.2 Polygon with n = 32 total vertices and h = 4 holes for which ⌊(n+h)/3⌋ =
12 guards are both necessary and sufficient (figure adapted from [1]). . . 18

3.1 The standard art gallery problem ensures that every point in the envi-

ronment is seen from at least one guard (left). However, due to self-

occlusions, some part of a person may not be visible (middle). We study

the art gallery problem in the presence of self-occlusions (right). 23

3.2 Polygon P consists of k×k holes aligned along a grid. The outer boundary

of the polygon forms a square. The number of vertices of P are n =

4k2 + 4. O(k) = O(√n) guards (marked by small squares) are sufficient

for △-guarding P . 26

xiii

3.3 H is a closed half-plane defined by some line l passing through p. Ac-

cording to Proposition 1, p is △-guarded only if half-planes of all possible

orientations through p contain a guard. A guard vi that sees p is con-

tained in only those half-planes whose normal vectors are between −π/2
and π/2 of the segment pvi. 27

3.4 A vertex vi is said to cover any orientation at point ai if it is at most π/2

away from the line viai. All such orientations covered by vi are marked

shaded. 29

3.5 The endpoints of all chords map to a circle in clockwise order. The

corresponding arc is termed as the induced arc Ai. Pi is the subpolygon

induced by Ci. 31

3.6 Type III chords. The arcs in MIS are shown dotted, gaps are marked

shaded. In each gap, we place guards (marked square) on the endpoints

of chords with earliest start point or latest terminal point. Chords with

arcs A1, . . . , A4 may not be △-guarded by this set of guards, where as A5

is. 33

3.7 Illustration of the proof for Lemma 7. Ci and Cj start in different gaps.

At least one of Ci or Cj cuts a chord with guards placed on two endpoints,

Ck. 34

3.8 One iteration of Algorithm 1 (Steps 4–7). The guards are placed at

locations marked by a square. Any chord with a starting vertex lying in

between si and sk is △-guarded. 38

4.1 The areas of intersection for a square grid1(middle) and random place-

ment (right) are 1.32 and 3.27 times that of the triangular placement

(left). The true location of the target is marked by a triangle. 43

4.2 The actual measurement θmi lies anywhere between θti ± α. θti is the true

bearing. The wedge for a given measurement is guaranteed to contain

the true target location x. 46

4.3 Two estimates for the same sensors and target location, but different

measurements resulting in different uncertainty. We use worst-case inter-

section as the uncertainty measure. 47

xiv

4.4 (a) Based on α, we upper bound the uncertainty when the target lies

within an equilateral triangle or a circle contained within a regular hexagon

of sensors. (b) We pad the three regions with additional sensors to ensure

any point in A is enclosed by an equilateral triangle of sensors. 52

5.1 (a) Backprojection from a pixel yields a pyramid. (b) Uncertainty in tar-

get’s estimate due to uncertain yaw angle of the robot. (c) Map showing

the area of projection for the true target at [x, y, 0] (best viewed in color).

The camera pose is estimated to have position [0, 0, 5]m and roll, pitch

and yaw angles as 0 radians. Maximum image noise is ±5 pixels. 59

5.2 At τ = 0, t3 and t4 are covered by the same robot to achieve Q∗(0), where

as for τ > d12, t3 and t4 are covered by separate robots. 61

5.3 At the start of each round, we have a set of m candidate trajectories per

robot. The trajectories may be non-uniform and of varying speeds. Using

the predicted motion of the targets, we can determine which targets will

be covered for a given trajectory and the corresponding quality of tracking. 64

5.4 (a) Number of targets covered out of 50 targets in the environment. (b)

The average quality of tracking. The weight qi(Rj(x) is computed as the

inverse of the minimum distance between the target and the robot along

Rj(x). 66

5.5 The number of targets tracked in one trial. As the targets spread the total

number of targets that can be tracked decreases. Once a target moves

out of the field-of-view, the robots cannot predict their future locations. 67

5.6 Experimental setup. Each robot is fitted with a downward facing wireless

camera. All robots directly communicate with a central computer. . . . 68

5.7 Validating the sensing model. (a) On-board camera image. (b) The true

target location (colored circles) in the global frame, and the estimated

locations using the method described in Section 5.2. 69

5.8 Start (left figures) and end (right figures) of two rounds. Dashed trail

shows the locations of the robots and targets in the preceding 5 secs. . 70

xv

6.1 Solving SamplingTSPN by first finding a TSPN tour, and then choosing

sampling locations on this tour can lead to bad results. (a) The TSPN

tour presented in [2] visits all the disks by touring the circumference of

each disk in the Maximal Independent Set (one shown shaded). This

tour will be forced to take a separate measurement for each outer disk

and thus have O(n) measurement locations. (b) In general, we are not

forced to move along the circumference and can visit a smaller number

of locations where the disks overlap. 77

6.2 The point p marked by a star is the output from solving a hitting set

problem. We compute grid locations G(p) (filled circles) at a distance of

at most 2rmin from p. Lemma 18 guarantees that any disk containing p

having radius greater than rmin, also contains at least one point from G(p). 79

6.3 A generated random field using the GP parameters learned from the soil

dataset. (a) The ground-truth samples obtained at location marked by

a cross, along with the GP regression. (b) The data partitioned into

three labels: low, med, high. (c) The variance of the sampling. The

variance has a regular pattern, since the samples were obtained along a

grid. (d) The mislabel probability. Note that it is high in many places,

even though the variance is roughly uniform and low since the mislabel

probability also depends on the value N(x). (e) The points at which the

labeling certainty is below Pd, and the corresponding ranges described in

Equation 6.19. 86

6.4 Path Planning Algorithm. (a) Square grid of resolution C/
√
2. The

reward for visiting each grid point (red square) is the number of PML

points (gray star) falling within the grid. (b) UAV tour found using

orienteering on the graph of grid points. For this instance, UAV budget

was 500 secs out of which 200 secs are spent traveling and 240 secs are

spent for the 2 ascents/descents. (c) Sampling TSPN tour (Section 6.2)

for the UGV. (d) Final UGV tour including UAV take-off locations (red

squares). 88

xvi

6.5 Soil organic matter data set from [3]. Dense sampling was collected by

hand (black crosses) and used to train a Gaussian Process. The resulting

estimate of nitrogen levels is shown as the contour map. From this data

set we learn the sensor noise values σa and σg, as well as model the

underlying soil organic matter for larger simulations (Figure best viewed

in color). 91

6.6 Sample simulation instance. (a) & (b) shows the tours found using a

UAV-only and UAV+UGV system. The input consists of 75 PML points.

The UAV+UGV tour consists of 6 subtours. (c) & (d) shows the PML

points found in the updated N level map after incorporating aerial and

ground measurements. The UGV allows the UAV to transport to farther

locations in the plot which is reflected in fewer posterior PML points. . 93

6.7 Histograms of the ratio of (a) number of PML points visited, and (b)

number of posterior PML points generated after updating the N map with

simulated measurements for UAV+UGV system and a UAV-only system,

for 100 random instances. Both systems are given an equal budget of 25

minutes. 94

6.8 Preliminary field experiment with a UAV carrying a multi-spectral cam-

era in a corn plot in Janesville, MN, U.S.A. Visible and near-infrared

images shown were obtained from an altitude of 30m during the experi-

ment. 95

6.9 (a) Prior map built using dipole measurements as proxy for nitrogen lev-

els. Dipole measurements of the soil conductivity depend on the elevation

and soil moisture and texture, which in turn affect nitrogen levels. (b)

Elevation map of the test site. (Figures best viewed in color) 96

6.10 (a) 169 PML points were found after classifying the prior map into two

labels. (b) The camera footprint along a UAV-only tour covered only 102

PML points (marked by larger star, in red) with a maximum budget of

200 s. (c) UAV+UGV tour consisted of two paths, and covered 134 of

the PML points with the same budget. (d) GPS coordinates of the UAV

for executing the tours in (c). 98

xvii

7.1 Left: Fish biologists manually tracking carp. Right: Targeted removal

of the carp aggregation in Lake Lucy, MN, USA, using a large under-ice

seine. Over 95% of all carp in this lake were captured in 4 hours. Photos

courtesy of Peter Sorensen. 101

7.2 Robotic sensing system for monitoring radio-tagged carp in lakes. A

directional radio antenna is mounted on a pan-tilt unit. In winter, the

system employs a wheeled robot to operate on frozen lakes. 101

7.3 Top view of the electronics compartment: On-board electronics comprises

of a laptop, GPS, micro-controller board, batteries, digital compass, mo-

tor controller, and radio receiver. 105

7.4 Waypoint navigation between points A and B. Hgps is the track obtained

from the GPS and Hrobot is the heading obtained of the robot. Hrobot is

shown with slight error with respect to true heading of the boat. Hdest

is the desired heading. 106

7.5 Plot of signal strength vs. distance with least squares linear fit. A ref-

erence tag was immersed at different depths under water and the cor-

responding signal strength was measured by moving the boat along a

straight line away from the tag. 107

7.6 We incorporate domain knowledge to restrict the coverage region for the

fish to a given set of regions, e.g. R = {R1, R2, R3}. A simple approach

of discretizing these regions and finding a TSP tour becomes infeasible

when the regions are large. 109

7.7 Covering a rectangle with given entry and exit points (s and t) with a

2-approximation: Follow π from s to a, complete π, follow π from b to t.

In the worst-case the optimal path π is covered twice. 112

7.8 Coverage experiment conducted at Lake Phalen, MN, USA. (a) the four

input regions, (b) the path found by the algorithm described in Sec-

tion 7.3, (c) the actual path followed by the robot during coverage. The

robot traveled a total distance of 5.6km in about 87min. Locations where

signals from radio-tags were detected are also marked, along with their

frequencies. 113

xviii

7.9 A coarse sampling and the corresponding estimates. The horizontal axis

is the bearing and the vertical is the measured signal strength. In gen-

eral, least squares estimation of a cubic polynomial provided the best

estimates. 115

7.10 Min-max tree: u1, . . . , u8 are the neighboring locations for the robot, and

z1, . . . , z12 are candidate bearing measurements. 117

7.11 Setup and experimental results for two strategies. R1 and R2 are the two

locations used for initialization. R3 and R4 are the measurement locations

obtained using the corresponding strategy. The estimates at R2, R3 and

R4 are shown along with the corresponding 1-σ ellipse bounds. The true

location of the tag is marked by a star. 119

7.12 Localization experiments with the Greedy strategy. Ellipses shown en-

compass the 1-σ uncertainty after each measurement. We use the second

measurement to disambiguate which side the tag lies from bearing ob-

tained at r1. Bearing measurements are shown as solid green lines. . . . 121

7.13 A field trial on Lake Gervais, MN. The robot covered the regions via the

path shown in the middle figure. On the right, a closeup of the localiza-

tion of a reference tag is shown. The true location of the reference tag is

marked with a black star. The red box in the middle figure corresponds

to the triangulation area on the right. 122

7.14 Field experiments at Lake Gervais, MN. Figure 7.14(a) shows the areas

we wish to cover. The computed search path and the trajectory executed

by the robot are shown in Figure 7.14(b). Upon detecting a tag, the robot

executed a localization strategy as shown in Figure 7.14(c). Because the

robot attempted to triangulate a tagged fish, we do not know the true

location of the tag. 123

xix

8.1 The minimum length path consists of 3 circular segments, whereas the

minimum energy path consists of a straight line segment and 5 circular

segments of varying radii. The optimal velocity profile along the path

is given by the color in the heat map along the path. The straight line

and circular segments with higher turning radius allow the robot to move

at a higher speed and thus for a lesser time leading to lower energy

consumption (despite being longer). We explore this trade-off between

velocity, turning radius, path length and energy in this chapter. 126

8.2 The optimal velocity profile v∗(t) for a distance D = 50m using c1, . . . , c4

obtained during calibration in Section 8.7.1. The optimal profile consists

of symmetric exponential curves, reaching a maximum velocity at t = tf/2.134

8.3 Optimal Control a∗(t) obtained for traveling a distance of D = 50m

corresponding to the optimal velocity profile shown in Figure 8.2. . . . 134

8.4 Optimal Velocity v∗(t) profiles obtained for traveling distances D =

5, 35, 70, 100m follow a similar structure. 135

8.5 Optimal trapezoidal profile computed using the same energy function

shown together with the general optimal profile for traveling D = 50m.

The general optimal profile we compute gains higher savings with respect

to the trapezoidal profile while accelerating and decelerating. This yields

higher energy savings when the total distance to travel is less, a scenario

commonly seen when the robot has to frequently start and stop. 136

8.6 Optimal Velocity (v∗(t)) profile obtained for maximum velocity vm =

1m/s. The constrained velocity profile consists of exponential accelera-

tion and deceleration curves with the constraint boundary in the middle.

This profile is not the same as that obtained from unconstrained solution

by setting velocity to vm wherever it exceeds. 140

8.7 Optimal control for the case with bound on maximum velocity. Note that

the control is zero whenever the velocity is on the constraint boundary

(see Figure 8.6). 140

8.8 Optimal velocity profile with v0 = 0.3m/s, vm = 0.4m/s and vf =

0.1m/s for traveling 30m. 143

xx

8.9 Typical path for a robot composed of two straight line segments and

two turns of different radii. Segments have different maximum allowable

velocities, depending on their radii. 143

8.10 Optimal velocity profile with different bounds for different segments. The

given path consists of 4 segments with bounds vm = {0.8, 0.2, 0.8, 0.4}m/s

and distances D = {6, 0.5, 6, 1}m . 145

8.11 In the Energy Roadmap we connect any two discretized poses by a circu-

lar path, if it exists. (a) All possible circular paths starting from (0, 0, 0).

The minimum turning radius is set to 1m. A total of 2254 paths exists

from (0, 0, 0) using side resolution of 0.1m and orientation resolution of
π
64 . (b) Paths starting from (0, 0, 0) reaching all discretized vertices with

(x, 3, θ). There exists a unique circular path starting from a given pose

reaching a given position. 148

8.12 There exists only one circle passing through a pose (xi, yi, θi) and a posi-

tion (xj , yj). All other circular arcs (shown dashed) passing through the

same pair of points will not have a tangent aligned along θi at (xi, yi).

Hence, in building the Energy Roadmap, instead of searching over all

pairs of poses (O(|X|2 · |Θ|2)), we search over pairs of poses and positions

(O(|X|2 · |Θ|)). 149

8.13 The left column shows the energy-optimal paths found using Algorithm 4.

The color profile along the path indicates the optimal velocity profile, also

shown in the middle column. The dashed path is the minimum length

Dubins’ paths. The energy-optimal velocity profiles along the Dubins’

paths (using the dynamic programming presented in Section 8.5) are

shown in the right column. Energy parameters c1, . . . , c4 were set to 1,

Fmax = 0.05, m = 1 and minimum turning radius was set to 1m for

each instance. A discretization of 0.1m, π
64rad and 0.5m/s was used for

finding minimum energy trajectories. Resolution of 0.02m/s was used for

dynamic programming. 152

8.14 Left: Custom-built robot used in our experiments. Right: Attopilot

voltage and current measurement circuit from SparkFun Electronics. . . 154

xxi

8.15 Figures obtained during calibration on the corridor surface. Left to right:

(a) The robot initially accelerates from rest to various set velocity values.

We compute the average current and voltage for the region where the

robot moves at vset (STEP 1). (b) Current consumption as a linear

function of the velocity, when the motor is not accelerating (STEP 2).

(c) Voltage applied to the motor as a linear function of the velocity, when

the motor is not accelerating (STEP 2). (d) Calibration procedure to

determine the parameter c1 in the energy model. We accelerate the robot

with various set acceleration values aset while logging current and voltage

values (STEPS 3 and 4). 155

8.16 Current and voltage as a function of velocity, for the grass surface out-

doors. Since the surface outdoors is not flat, the plots contain more noise

than the corridor surface (Figure 8.15(b) & (c)) 156

8.17 Optimal velocity profile executed by the robot for multiple segments.

The dashed curve shows the optimal profile computed using the dynamic

programming solution for segments with D = {10, 3, 10}m and maximum

velocity constraints vm = 1, 0.2, 1m/s. 157

8.18 Left: Optimal velocity profile executed by the robot for traveling 20m

in 18.4s while consuming 296J energy. The optimal profile is shown as

dashed. Right: Sub-optimal velocity profiles executed by the robot for

traveling 20m at maximum set velocities of 1m/s and 2m/s. The energy

consumption for these profiles is 303J and 319J 157

A.1 There exists a guard on every convex vertex of the polygon. 186

A.2 To △-guard all points lying in the cell (shown shaded) near the edge,

there must exist a guard on each edge extension. 187

A.3 If Ci and Cj intersect, then the correspondings arcs cut each other. If Ci

and Cj do not intersect, either Aj is completely contained in Ai, or Ai

and Aj are disjoint (given si ≺ sj). 189

B.1 Five sensors placed uniformly on a circle with radius r. The true target

is located at the center of the circle. Each sensor receives a measurement

with no noise. 191

xxii

B.2 (a) We divide the interior of the △sisjsk with perpendicular bisectors

into Rij , Rjk, Rki. For x ∈ Rjk, we show that the area of intersection

of any valid sensing wedges from sj and sk is bounded. (b) Intersection

of sensing wedges from s′j and s′k is a kite. s′j and s′k are obtained by

extending sj and sk along lines θmj and θmk with x̂s′j = x̂s′k = r′. This

kite bounds the intersection of the original sensing wedges. 194

B.3 Instead of projecting the sensors back, as in Figure B.2, we approximate

each sensor by taking the union of all feasible sensing wedges when x ∈
Rjk. For (a)

π
18 ≤ α < π

12 , and (b) π
12 ≤ α <

π

6
. Note for Rjk is different

for (a) and (b). 199

B.4 Bounding the intersecting area with 6 sensors si, sj , sl, sm, sn, so. The

target can be anywhere within a circle C of radius
r√
3
centered at sensor

sk. (a) We ignore sk and approximate each other sensor by taking the

union of all valid sensing wedges when x ∈ C. The resulting shape

is a star with six petals. (b) An instance of execution with randomly

generated target (blue square) and measurements with ±α =
π

4
. 205

B.5 The target can lie anywhere within C. All sensors inside a circle of

radius kr are projected on to its boundary. The resulting set of sensors

has bounded intersection for any α = π
2 − ǫ if sin−1

(
1√
3k

)

+ π
6(k−1) < 2ǫ.207

B.6 (a) Regions A1,A2,A3 are not covered by equilateral triangles by sensors

placed on a triangular grid. (b) We place additional sensors in these

three regions to cover all portions except near the ends. (c) We place two

additional sensors per corner (shown in square) to cover the rest of A. 208

D.1 Sections of this velocity profile crossing (vc =

√
c4
c2
) between [t1, t2] and

[t3, t4] can be replaced by constant velocity (vc) sections resulting in a

velocity profile that consumes lesser energy to travel the same distance. 219

xxiii

Chapter 1

Introduction

Today assembly lines throughout the world employ robots to carry out a variety of

complex tasks with high speed and precision. The industrial robot has been the most

widespread and successful accomplishment for robotics researchers and engineers. Repli-

cating this success outside of the controlled, industrial settings on the other hand, has

remained elusive. Fortunately, this situation is changing. We are now starting to wit-

ness early success of robots deployed “in the wild.” An autonomous underwater vehicle

from Bluefin robotics was used to search over 850 sq. km. of the ocean floor to help

locate a missing airplane [4]. Google’s self-driving cars have already logged over 700,000

autonomous miles [5]. Telepresence robots are available for purchase from a number

of companies [6]. This early success is built on the technological advances in sensing,

computing, and actuation and fundamental robotics research on estimation, perception,

and motion planning. We are building robots that have the potential to carry out com-

plex tasks with minimal human intervention. In order to realize this potential, what we

need are new algorithms that make efficient use of the robot’s capabilities and enable a

robot to carry out complex tasks. In this dissertation, we make progress towards this

goal by studying the sensing capability of robots and developing planning algorithms

for robotic sensor systems.

Sensing becomes critical when a robot has to carry out a task in an uncontrolled

or dynamic environment. Sensing the environment and reacting to this information are

defining capabilities of a robot. The capability of a robot to execute a task is limited

by the on-board sensors [7]. Consequently it is crucial to understand the performance

1

2

limits for sensing and develop algorithms that can achieve this limit.

There are two broad categories of sensing: proprioceptive and exteroceptive. Pro-

prioceptive sensing is primarily used for determining the state of the robot in a suitable

reference frame. Accelerometers, rate gyros, compass, odometers are examples of pro-

prioceptive sensors. Exteroceptive sensing, on the other hand, refers to sensing the

environment exterior to the robot. Cameras, radio antennas, laser range-finders are

examples of exteroceptive sensors. We focus on planning for exteroceptive sensing in

this dissertation.

Exteroceptive sensors typically have a strong underlying geometric structure. With a

better understanding of this structure, efficient robotic sensing systems can be designed.

We can answer fundamental questions such as: How many sensors are required to

complete a given task? Where should the sensors be located? How should the robots

plan their movements in order to improve the sensing quality? In this dissertation,

we study these questions for a number of sensing problems. Before we introduce the

specific problems, we will discuss two prominent tasks that arise in many robotic sensing

applications and the associated challenges in completing these tasks.

1.1 Applications, Typical Tasks and Challenges

Robotic sensing systems can be broadly categorized with respect to the main tasks they

are designed to carry out. Of these, two tasks, coverage and target tracking, are among

the most common. In the former, we want to ensure every point in the environment is

sensed (i.e., covered) by the sensors. In contrast, in the latter task we want to ensure

a smaller subset of the environment, typically corresponding to regions likely occupied

by one or more targets-of-interest, is covered by the sensors. The sensors may have to

reconfigure in order to track the moving targets, where as a static placement may suffice

for a coverage task. We discuss each of the task in more details next.

1.1.1 Coverage

For coverage, we start with a layout of the environment given in some suitable represen-

tation such as a building floor-plan. Typically, we also know the relevant characteristics

of the sensors (e.g., sensing range and failure rates) and the robots (e.g., maximum

3

speed and battery lifetime). The coverage task requires that every point in the environ-

ment or in a pre-determined region-of-interest within the environment is sensed by one

or more sensors.

Installing cameras for security in supermarkets or for video conferencing are common

examples of coverage applications. Coverage is also frequently seen in environmental

monitoring applications. For example, Carter et al. [8] covered an area of over 1500

hectares with motion detection cameras placed at 76 locations in order to monitor the

spatiotemporal changes in tiger habitat. Coverage will also play a big role in emerging

applications such as indoor maps and location-aware services, which use a combination

of stationary sensors (e.g., Apple’s iBeacon) and mobile devices (e.g., cellphones).

The coverage requirement can vary depending on the application. Some applications,

such as surveillance, may require all points in the environment to always be covered.

Other applications, such as robotic vacuum cleaning, may tolerate the environment to

be covered over time or covered periodically. Former scenarios are suitable to be solved

by installing a network of stationary sensors whereas the latter are better solved using

fewer but mobile sensors. A combination of the two is also possible. For example,

Tekdas et al. [9] showed how to use a mobile robot to gather data from stationary

sensors placed in the environment.

The standard coverage problem can be formulated as an optimization problem:

Given the layout of an environment, find a trajectory for a robot to sense every point

in the environment in the least amount of time (or distance or energy). Equivalently,

for placing stationary sensors we can formulate the coverage problem as: Given the

layout of an environment, find a placement for the fewest number of stationary sensors

to sense every point in the environment.

In this formulation we treat coverage as a constraint and time spent or number of

sensors as resources to be optimized. Depending on the task at hand, we can formulate

the dual version in which we are given a time budget or a fixed number of sensors and we

wish to maximize the number of points covered. In this dissertation, we study problems

for both formulations.

Solving coverage problems are challenging for a number of reasons. For an example,

consider Figure 1.1 which shows regions that would be covered if an omnidirectional

camera were to be placed at either location x or y. Although the locations are very

4

Figure 1.1: Visibility regions of nearby points can be significantly different.

close to each other, the regions that they cover differ vastly. Thus, naively applying

general discretization or optimization techniques may not be suited for solving coverage

problems. Although, brute-force approaches may work in restricted scenarios, they do

not scale as environments become more complex and number of sensors increase leading

to difficult combinatorial problems. In fact, as we will see in Chapter 2 many coverage

problems are NP-hard. Nevertheless, we show how to devise efficient approximation

algorithms for many coverage problems.

1.1.2 Active Target Tracking

Achieving a complete coverage of the environment may be unnecessary when we are

interested in sensing a small number of targets in the environment. We can restrict our

sensing to only those regions of interest which are likely occupied by the targets at any

time. These regions of interest will change as the targets move and the sensors may

have to reconfigure themselves correspondingly. We refer to this scenario as the target

tracking task.

Target tracking is an important sensing task that appears in a diverse number of ap-

plications. For example, fish biologists study the movement and aggregation of invasive

fish by tracking radio-tagged fish [10]. Researchers have been studying algorithms for

tracking and capturing tumbling satellites using robotic manipulators in space [11]. Tar-

get tracking also features as a prominent task in emerging applications such as robotic

assembly of furniture [12].

The typical objective for target tracking is to accurately estimate the position of

one or more mobile targets and/or maintain targets within some robot’s sensing range

5

for as long as possible. There are two complimentary aspects to the problem. First,

we have algorithms that are used to process and combine the sensor measurements in

order to accurately estimate the location of the targets. Second, we have algorithms

that decide where the robot should obtain the measurements from. In this dissertation,

we will focus on the latter aspect, distinguished as active target tracking. In the special

case when the targets are stationary at an unknown location, the problem is referred to

as active target localization.

Figure 1.2: Bearing measurements from robots r1 and r2 are intersected to obtain an

estimate of the target’s position. The robot’s position relative to the target determines

the area of intersection which is a measure of the uncertainty in the estimate.

Actively planning while tracking is crucial since often the accuracy in estimating

the target’s location is a function of the sensors’ locations relative to that of the target.

For example, Figure 1.2 shows two instances in which a pair of robots, r1, r2, obtain

measurements from different positions relative to the target. Each measurement is a

cone which is guaranteed to contain the true target location. Intersecting the cones gives

an estimate of the target’s location. The area of intersection varies greatly for different

relative positions. Since the true location of the target is not known a priori, active

tracking algorithms will have to plan in an online fashion. These algorithms must be

robust against noisy measurements. The motion limitations on the robots (e.g., speeds

relative to the targets) also affects their ability to track the targets, possibly making it

infeasible. These factors make developing active target tracking problems a challenging

prospect.

In this dissertation we study a number of coverage and tracking problems which

6

address many of the challenges listed above. Our approach is to formulate specific

sensing problems, often motivated by practical applications, and provide algorithms

with provable performance guarantees for each problem. We list these problems and

our contributions next.

1.2 Contributions

Towards building robotic sensing systems, this dissertation makes the following contri-

butions: In the first part, we present placement algorithms for coverage using stationary

sensors. In the second part, we present coverage and tracking algorithms for mobile sen-

sors. We demonstrate the efficiency of our algorithms by giving theoretical performance

guarantees. We prove that our algorithms are optimal or that their costs are guaran-

teed to be within some factor of the optimal values. A minimization algorithm whose

solution has a value at most α times the optimal value in the worst-case is known as an

α–approximation algorithm.

To ground our work in practical constraints, we study some of the problems in

the context of two real-world applications: autonomously monitoring fish in lakes, and

using robots in agriculture (Figure 1.3). We present the design and architecture of

prototype systems developed along with results from large-scale field experiments. A

major bottleneck for practical deployments is the limited on-board energy for the robots.

In the last part, we will study the problem of optimizing paths and velocity profiles of

the robots in order to minimize their energy consumption.

A brief overview of each problem and our contributions is given next.

1.2.1 Sensor Placement for Visibility-Based Coverage with Orienta-

tion

Cameras are one of the most commonly used sensors for coverage tasks. The capability

of seeing every point in the environment is useful in a large number of applications. The

problem of placing cameras for environment coverage is a classical one, broadly known

as the art gallery problem. In the standard formulation, the environment is represented

by an n sided 2D polygon and the sensors, also called guards, are modeled as points

with omnidirectional vision. A guard is said to cover a point in the environment if

7

Figure 1.3: (Left) Autonomous boat developed for monitoring radio-tagged invasive fish

during field experiments in lake Keller, Maplewood, MN. (Middle) During winters, we

use a mobile robot on frozen lake. (Right) UAV obtaining multispectral images to form

a nitrogen map of a corn plot in Janesville, MN. We study mobile sensing problems

motivated by these applications.

the line segment joining them lies completely within the environment. The art gallery

problem asks for the minimum number of guards sufficient to cover all points in the

environment [1]. A summary of related research on art gallery problems is presented in

the next chapter, in Section 2.2.

The standard formulation of the art gallery problem does not consider self-occlusions.

Even when each point in the environment is covered, if some person starts moving in

the environment, his/her back may occlude the front view. Obtaining a good view

from all orientations is seen as an important requirement for many applications such as

surveillance and video-conferencing.

Motivated by such applications, we study the coverage problem by imposing a new

constraint termed △-guarding. The △-guarding constraint, introduced by Smith and

Evans [13], states a point is covered if it is visible from two or more guards and it lies

in the convex hull of the visible guards. If all points in the environment satisfy the

△-guarding constraint, then even if any convex object is introduced anywhere in the

environment all points on its perimeter will always be visible, in spite of self-occlusion.

The △-guarding problem is to place the fewest number of guards such all points in

a given input polygon satisfy the △-guarding constraint. Smith and Evans [13] proved

the problem is NP-Hard. Efrat et al. [14] presented a randomized algorithm achieving

8

O(log copt)–approximation for polygons without holes,1 where copt is the optimal number

of guards.

Our contributions are as follows: First, we prove a lower bound on the number of

guards required for △-guarding any input polygon. We show that any △-guarding set

uses at least Ω(
√
n) guards for any n-sided simple polygon. Second, we use this lower

bound to present an O(log copt) approximation algorithm for polygon with and without

holes, when the guards are restricted to vertices of the polygon. Since copt itself can be

very large in practice, we restrict the input to a set of chords in the polygon. These

chords can represent, for example, paths a target is likely to take in the environment.

Our goal is to △-guard at least one point per chord. We present an approximation

algorithm that is guaranteed to use at most 12 times the optimal number of guards.

This result is one of the few constant-factor approximations for visibility-based coverage

problems.

The results on this problem were first presented at ICRA 2014 [15] and a journal

version is currently under review.

1.2.2 Bearing Sensor Placement for Target Localization

While a single camera can detect a target, information from multiple cameras might be

necessary to precisely localize it. Cameras give bearing measurements towards targets

in their field-of-view. Measurements from multiple sensors can be combined to estimate

the target’s position. The uncertainty in estimation decreases as more sensors are used.

Furthermore, the uncertainty is a function of the relative position of the target and the

sensors.

In such a scenario, it is no longer sufficient to say a point is covered if it is sensed

by one or more sensors. Instead, a richer notion of coverage is required. We will require

each point to be sensed with multiple sensors placed in such a way so as to guarantee

some upper bound on the estimation uncertainty. Thus, the coverage requirement is to

guarantee that if the target were at any point in the environment, measurements from

all sensors can be combined to yield an estimate with sufficiently good quality.

We model the sensors as measuring a bearing towards the target corrupted by an

1A polygon with holes is a polygon which contains one or more non-overlapping polygons within it.

See Section 2.2 for more related terminology.

9

unknown but bounded amount of noise. We seek worst-case guarantees for our place-

ment: Given the true location of the target, imagine an adversary choosing the noise

values for sensors. The true target location can be anywhere in the intersection and we

would like this set to be “small” no matter where the target is. One way of solving this

problem would be to place sensors everywhere in the environment. There is a trade-off

between the number of sensors and the guarantee on resulting uncertainty. We study

the bi-criteria optimization problem of minimizing the number of sensors used and the

resulting uncertainty achieved. We consider a simple square environment. Even in this

basic setting, devising a sensor placement scheme and analyzing its performance turns

out to be challenging, as we will see in Chapter 4.

Our first contribution is to present a lower bound on the number of sensors required

for any placement algorithm as a function of the desired uncertainty. Our main result

shows that by placing sensors on a triangular grid-like placement, 9 times as many sen-

sors as an optimal algorithm are sufficient to guarantee 6 times the desired uncertainty

when the maximum sensing noise is less than π
4 . We also show that in the triangu-

lar grid placement, only a constant number of sensors need to be activated to achieve

the desired uncertainty, a property that can be used for designing energy/bandwidth

efficient sensor selection schemes.

The results on this problem were first presented at ICRA 2013 [16] and a journal

version is currently under review.

1.2.3 Multi-Target Visual Tracking with Teams of Aerial Robots

If we are given a large number of robots, sufficient to cover an environment at any time,

we may not need to design active tracking algorithms. Instead we can treat the robots

as stationary sensors. On the other hand if the number of robots is too small, it may

make it infeasible to track all the targets. Thus, it is important to understand the effect

of the relative number of robots and targets on the feasibility of tracking. In order to

study this effect, we consider the following target tracking scenario. A collection of k

targets are moving on the ground. A team of n aerial robots are tasked with tracking

all the targets. Each robot carries a camera that can detect targets within its footprint.

A robot can potentially view more targets by flying to a higher altitude, thus increas-

ing its camera footprint. However, this may reduce the quality of the view due to the

10

increased distance between the cameras and the targets. There is a trade-off between

the number of targets tracked and the corresponding quality of tracking. We investigate

this trade-off and show that k ≥ 3 robots may not be able to track n > k targets while

maintaining a constant factor approximation of the optimal quality of tracking at all

times.

The infeasibility result requires constructing specific adversarial target trajectories.

However, for other non-adversarial trajectories it may be possible to track more than

n targets with some guaranteed quality of tracking. Alternatively, it may be possible

to maximize the total quality of tracking, for example, by tracking fewer targets each

with higher quality. We study the problem of how to choose robot trajectories to

maximize either the number of targets tracked or the quality of tracking. We formulate

this problem as the weighted version of a combinatorial optimization problem known

as Maximum Group Coverage (MGC). We show that a greedy algorithm yields a 1/2

approximation for weighted MGC. Finally, we evaluate the algorithm and the sensing

model through simulations and preliminary experiments.

The results on this problem were first presented at IROS 2014 [17] and a journal

version is in preparation.

1.2.4 Sampling Algorithms with Aerial and Ground Robots (Precision

Agriculture)

Coverage with mobile robots is suited for scenarios where instantaneous measurements

are not necessary, and some delay in coverage is tolerated. Nevertheless, we would still

like to minimize the time taken by the robots to cover the environment. Typically,

the coverage time is defined as the traveling time and formulated as an instance of the

Traveling Salesperson Problem (TSP) or its variant, TSP with Neighborhoods (TSPN).2

However, for many sensors the time taken to obtain a measurement cannot be neglected,

especially when the robot has to stop to obtain a measurement. In such cases, the robot

can spend less total time by sampling in locations where a larger area is covered and

thus requiring fewer samples, even if it comes at the expense of additional travel time.

Motivated by these practical constraints, we introduce a new coverage problem,

termed SamplingTSPN. The input in SamplingTSPN consists of a set of possibly

2See Section 2.3 for a review of TSP and TSPN problems.

11

overlapping disks lying in the plane. The disks may have varying radii. When the robot

is sensing a field with spatial correlation, we can get sufficient information without

having to sample at a point. Instead we can sample anywhere within a neighborhood of

the point. We use disks to model this property. SamplingTSPN asks for a sampling

location in each disk, and a tour to visit the set of sampling locations. The objective is

to minimize the sum of travel time and measurement time.

There is a trade-off between number of samples and travel time since it is possible

to reduce the measurement time by combining sampling locations of overlapping disks,

possibly at the expense of travel time (as opposed to standard TSPN, where the objective

is only travel time). Our main contribution is a O
(
rmax
rmin

)

approximation algorithm for

SamplingTSPN, where rmin and rmax are the minimum and maximum radii of input

disks.

A practical application of SamplingTSPN is in the emerging application of preci-

sion agriculture. Precision agriculture is a data-driven technique to precisely estimate

the status of crops and prescribe targeted fertilizers applications [18]. Soil measure-

ments obtained by an Unmanned Ground Vehicle (UGV) can be combined with aerial

images obtained with an Unmanned Aerial Vehicle (UAV) to estimate the status of

crops in an agricultural plot. We show how to apply our SamplingTSPN algorithm to

the problem of obtaining ground measurements with the UGV for estimating nitrogen

levels in a plot.

We also study the aerial coverage problem for the UAV. Since small UAVs have

limited battery lifetime, we focus on the problem of maximizing the number of aerial

measurements subject to an energy budget. The problem of finding a tour to maximize

the number of points visited (i.e., rewards) subject to a budget is known as the orien-

teering problem. The novelty of our formulation is the capability of the UGV to mule

the UAV to deployment points. Instead flying between all points, the UAV may land on

the UGV and piggy-back on the UGV before taking off at the next deployment location.

Thus, the UAV can conserve energy, although it still spends some energy taking-off and

landing. This leads to the question of when the UAV should use the UGV. We show

how to formulate this capability as complete, metric graph which allows us to apply a

4-approximation [19] algorithm for orienteering.

Along with theoretical results, we present results from simulations conducted with

12

real data collected from the field. Finally, we present preliminary field experiments

conducted with the UAV in a corn plot.

The results on this problem were first presented at IROS 2013 [20] and a journal

version is currently under review.

1.2.5 Coverage and Tracking with Autonomous Boats (Monitoring In-

vasive Fish)

The second application we study in this dissertation is that of autonomously monitoring

radio-tagged Common Carp, an invasive species of fish in Minnesota lakes, in order to

enable biologists to study their behavior. We present the design of a robotic system

consisting of autonomous boats (summer) and wheeled robots (winter) that carry radio

antennas in order to search for the radio tags. We also study coverage and tracking

problems motivated by practical considerations arising in our system.

The problem of searching for radio-tagged carp can be formulated as a coverage

task under the assumption that carp loiter in their home ranges for long periods of

time [21]. However, instead of covering the entire lake, fish biologists can often pro-

vide a set of regions within the lake that are likely to contain the fish. We study the

problem of designing a tour that covers a set of regions scattered in the lake in mini-

mum time. While this problem can be solved by discretizing and formulating a TSP

instance, we show approximation algorithms for coverage and TSPN can combined to

obtain computationally efficient solutions. We prove that the resulting algorithm is a

constant-factor approximation. In particular, we obtain a 3-approximation when the

regions are rectangles touching the boundary of a simply-connected polygonal lake.

Once the radio-tagged fish are detected in the coverage phase, we switch to the

active tracking to precisely localize them. For this, we use the directional properties

of the radio antenna to obtain bearing measurement towards static radio tags. Such

bearing measurements are noisy and take appreciable time to obtain (about 1 min). A

good active target localization algorithm must be able to robustly estimate the target

location using only a few measurements. We propose three active localization strategies

and evaluate their performance through simulations and experiments. Finally, we report

results from deployments where the robot executed both coverage and active localization

algorithms, covering more than 5 kms in over an hour of autonomous operation.

13

The results on this problem were first presented at ICRA 2010 [22] and IROS

2011 [23]. The journal versions appeared in the Journal of Field Robotics [24] and

IEEE Robotics & Automation Magazine [25].

1.2.6 Energy-Optimal Trajectory Planning

A major bottleneck for practical deployments of robotic sensing systems is the limited

on-board battery capacity of the robots. Driving motors are a major source of power

consumption for most mobile robots. The power consumption due to motion can be

minimized by optimizing the velocity and the acceleration profiles of the robots. Mo-

tivated by this, we study the problem of finding minimum energy paths and velocity

profiles for mobile robots with car-like steering.

Often, in many applications, the path to be followed by the robot is given by high-

level planners such as the coverage and tracking algorithms described previously. How-

ever, the velocity and acceleration profiles are either set arbitrarily or left to some

low-level controller. We study the problem of optimizing the velocity profiles to mini-

mize energy consumption when the path to be followed by the robot is given. The path

for a car-like robot may be composed of multiple straight line segments or curves of

various radii. The maximum safe velocity of the robot along each path is a function of

the turning radius. We present a closed-form solution for the minimum-energy velocity

profile under these constraints.

Obtaining both minimum-energy paths and velocity profiles in closed form is diffi-

cult. However, instead of solving the problem with naive discretization, we show how

to use minimum-energy velocity profiles as a subroutine to compute minimum energy

paths. We contrast these paths with the minimum time Dubins’ paths. Finally, we

present a calibration procedure to obtain the energy model parameters and experimen-

tally validate the velocity profiles.

The results on this problem were first presented at ICRA 2011 [26] and the journal

version appeared in Autonomous Robots [27].

1.3 Organization of the Dissertation

This dissertation is organized in 8 chapters, following this chapter.

14

In Chapter 2, we present a review of the fundamental problems of set cover, art

gallery problem, and the traveling salesperson problem. We refer to these problems in

later chapters, however, each chapter is written to be self-contained.

In Chapters 3 and 4 we study sensor placement problems for the coverage task.

Chapter 3 is on visibility-based coverage with the △-guarding constraint. In Chap-

ter 4, we study the problem of placing sensors in order to localize targets using bearing

measurements with bounded uncertainty.

Chapters 5-8 present planning algorithms and system design for robotic sensing

systems. We study the problem of active target tracking with a team of aerial robots

in Chapter 5. In Chapters 6 and 7, we present coverage and tracking algorithms for

problems motivated by two practical applications: precision agriculture and autonomous

monitoring of radio-tagged fish. We also present the design of prototype systems for

both applications which were developed as part of this dissertation, along with results

from field experiments. In Chapter 8 we show how to compute energy optimal velocity

profiles and paths in order to minimize the energy consumption and extend deployments

for robotic sensing systems.

We conclude the dissertation with an overview of our contributions and highlight

avenues of future research. Some additional proofs are presented in the appendix.

Videos and software corresponding to the work in this dissertation are available on-

line at http://pratap.tokekar.com/thesis/.

http://pratap.tokekar.com/thesis/

Chapter 2

Preliminaries

In this chapter we review the fundamental problems in combinatorial optimization and

computational geometry that are related to the work in this dissertation. Many of the

sensing tasks we study can be reduced to one of the following problems. However, we

can often get better results by considering the additional structure present in the sensing

tasks, as we demonstrate in subsequent chapters. Additional related work specific to

each topic is presented in the corresponding chapter.

2.1 Set Cover and Maximum k–coverage Problems

The sensing coverage problem can be reduced to a set cover instance defined as follows:

Let (X,R) be a set system, where X is a set of n elements and R =
⋃
Rj is a set of

subsets of X (Rj ⊆ X, ∀j). The set cover problem is to find the smallest subset of R
such that its union is X.

Set cover is NP-hard [28] (the decision version is NP-complete). Johnson [29] showed

that a simple greedy algorithm (iteratively, choose sets inR that contain most uncovered

elements) yields an H(n) ≤ lnn + 1 approximation algorithm, where H(n) is the nth

harmonic number. In weighted set cover, we are given a positive integer cj for each

Rj representing the cost of choosing Rj . The objective is to pick a subset of R with

minimum total cost such that its union is X. Chvátal [30] showed that the greedy

algorithm (iteratively, select a set Rj maximizing the number of uncovered elements

contained in Rj divided by cj) also yields an H(n) ≤ lnn+1 approximation. Feige [28]

15

16

showed that a (1− ǫ) lnn approximation is not possible, unless NP is contained in the

class that has deterministic algorithms with nO(log logn) running time.

Maximum k–coverage is a closely related problem: Let (X,R) be a set system and

k be some integer. The maximum coverage problem is to find at most k sets in R such

that the size of their union is maximized. In the weighted formulation each element in

X has an associated weight. The objective is to pick at most k sets in R such that the

sum of the weights of elements they cover is maximized.

Hochbaum and Pathria [31] showed the greedy algorithm that iteratively picks sets in

R containing highest total weight of uncovered elements, yields a 1−1/e approximation

algorithm. Feige [28] showed that a (1 − 1/e + ǫ) approximation is not possible in

polynomial time, unless NP is contained in the class that has deterministic algorithms

with nO(log logn) running time.

Many sensing coverage problems can be formulated as set cover or maximum k–

coverage instances as follows. The universal setX is the set of all points in the workspace

which must be sensed. Every set in R corresponds to a candidate location, say xj , where

a sensor may be placed. Rj ∈ R is defined as the points in the workspace (subset of X)

that can be sensed from xj . If the objective is to sense every point in the workspace

using fewest sensors, we have a set cover instance. If the objective is to maximize the

number of points in the workspace that are sensed using a limited number of sensors,

we have a maximum k–coverage instance. The cost for Rj can represent, for example,

the time or energy required to obtain a sensor measurement from xj . Alternatively, the

weights for elements in X can represent, for example, their importance or profits.

Without any other information, we cannot do better than the inapproximability

results given above. However, the geometric structure of sensors often allows us to devise

algorithms with stronger performance guarantees. The art gallery problem, described

next, is one such example with better approximation algorithms than general set cover.

2.2 The Art Gallery Problem

A simple polygon is one whose edges do not intersect each other. We only consider

simple polygons in this dissertation. A polygon with holes is a polygon P along with

a number of non-overlapping polygons all of which are contained within P . A polygon

17

with holes is also called as a multiply-connected polygon, whereas a polygon without any

holes is called simply-connected.

The art gallery problem asks the following question: What is the minimum number

of guards required to see all points in an n–sided simply-connected 2D polygon? A guard

is modeled as a point with omnidirectional vision. We say a guard at point p sees a

point q if the line segment pq contains no point exterior to the polygon. A polygon is

said to be guarded or covered by a set of guards if all points within the polygon are

seen from at least one guard.

Over the years the art gallery problem has evolved into an important branch of

research on visibility-based sensing. There are broadly two types of results in this area:

(i) bounds on the minimum number of guards necessary and/or sufficient to guard a

given class of polygons, and (ii) algorithms to place the minimum number of guards

(or some bounded deviation from the minimum number) for a specific input polygon.

Books by O’Rourke [1] and Urrutia [32] and a recent survey by Ghosh [33] contain some

of the important results established over the years.

Figure 2.1: Polygon with n = 15 vertices for which ⌊n/3⌋ = 15 guards are both necessary

(one per prong) and sufficient (figure adapted from [1]).

Chvátal [34] was the first to prove that ⌊n/3⌋ guards are sometimes necessary and

always sufficient to cover an n–sided polygon containing no holes. Figure 2.1 shows an

example of a polygon for which n/3 guards are necessary (and sufficient). For polygons

with holes, let n be the total number of vertices. That is, n is the sum of the number of

vertices on the outer boundary and all hole boundaries. Bjorling-Sachs and Souvaine [35]

and Hoffmann et al. [36] proved that ⌊(n+ h)/3⌋ are sufficient, where h is the number

of holes. Earlier, Shermer [1] had proved that there are polygons for which ⌊(n+ h)/3⌋
guards are necessary (see Figure 2.2).

18

Figure 2.2: Polygon with n = 32 total vertices and h = 4 holes for which ⌊(n+h)/3⌋ = 12

guards are both necessary and sufficient (figure adapted from [1]).

When guards can be placed anywhere within the polygon, they are termed as point

guards. When they are restricted to the vertices of the polygon, they are termed as

vertex guards. Chvátal’s proof [34] (and a later proof by Fisk [37]) show that ⌊n/3⌋
vertex guards are always sufficient for polygons without holes. For polygons with holes,

⌊(n+2h)/3⌋ vertex guards are always sufficient. The necessity of ⌊n/3⌋ and ⌊(n+h)/3⌋
vertex guards comes from the same examples as point guards (Figures 2.1 and 2.2,

respectively). The gap between the necessity of ⌊(n+h)/3⌋ vertex guards and sufficiency

of ⌊(n+ 2h)/3⌋ is still open for h > 1.

The optimization version of the problem is to guard a given input polygon by finding

a placement using the fewest number of point guards. O’Rourke and Supowit [38] showed

that this problem is NP-hard for polygons with holes. Lee and Lin [39] showed that the

problem remains NP-hard even when the polygon does not contain any holes. Eidenbenz

et al. [40] gave further inapproximability results for this problem. They proved there

exists a δ > 0 such that no polynomial time algorithm can achieve a 1+δ approximation

for polygons without holes. For polygons with holes, the inapproximability bound rises

to ((1− ǫ)/12) lnn. These bounds also hold for vertex guards.

Ghosh [33] presented a deterministic O(log n) approximation algorithms for vertex

guards in polygons with or without holes. The algorithm shows how to formulate the

vertex guarding problem as a set cover instance. The O(log n) approximation comes

from the greedy set cover algorithm. The approximation ratio can be improved to

19

O(log copt), where copt is the optimal number of guards, using techniques presented

by Brönnimann and Goodrich [41] for solving set cover instances for set systems with

finite VC-dimension. The VC-dimension for visibility is at most 14 [42]. Recently,

King and Kirkpatrick [43] improved the best known approximation for vertex guards to

O(log log copt).
For point guards, Efrat and Har-Peled [44] presented a O(log copt) approximation

when given an arbitrarily dense grid where guards may be placed. If the polygon con-

tains h holes, the approximation ratio for the same algorithm becomesO(log h log(copt log h)).
Here, copt is the size of the optimal guarding set restricted to the grid. Deshpande et

al. [45] presented an algorithm which constructs a grid such that the optimal guarding

set on the grid has size at most three times that of an optimal guarding set not restricted

to any grid. Their algorithm constructs such a grid in time polynomial in n and the

ratio of the largest and smallest pairwise distances between the vertices of the polygon.

In the worst-case, the running time is exponential in the input size.

Stronger approximation guarantees are known for special classes of polygons. For

example, a constant factor approximation algorithm was presented by Krohn and Nils-

son [46] for guarding the interior of monotone polygons with point guards. However, no

constant factor approximation algorithm for either vertex or point guards is known for

the general case, which remains the main open problem in this area.

2.3 The Traveling Salesperson Problem

In the Traveling Salesperson Problem (TSP) we are given a graph with weights on

all edges. The objective is to find a tour that visits each vertex exactly once while

minimizing the sum of weights of edges along the tour. Metric TSP is an instance

where the vertices lie in a metric space (edges satisfy triangle inequality). Euclidean

TSP is the special case when the vertices are points on a plane and the weights are

Euclidean distances between the two points.

TSP, even when restricted to the Euclidean version, is NP-hard [47]. Christofides [48]

presented a 3/2 approximation algorithm for metric TSP which is currently the best

known performance guarantee for metric TSP [49]. Euclidean TSP, on the other hand,

can be approximated arbitrarily close to the optimal. Arora [50] and Mitchell [51]

20

presented Polynomial Time Approximation Schemes (PTAS) for Euclidean TSP which

produce a 1 + ǫ approximation for any ǫ > 0 in O(n
1

O(ǫ)) time.

Of the many variations of TSP in existence, most relevant to our work is TSP

with Neighborhoods (TSPN). In TSPN, instead of points in the plane, we are given a

collection of neighborhoods (e.g., disks). The objective is to find a tour of minimum

length that visits at least one point in each neighborhood.

TSPN was introduced by Arkin and Hassin [52] where they presented constant-

factor approximations for some classes of neighborhoods. Dumitrescu and Mitchell [2]

presented constant factor approximations when the neighborhoods are unit radius disks.

In particular, they presented a PTAS when all the disks are disjoint and an 11.15

approximation when some disks overlap. Recently, Dumitrescu and Tóth [53] improved

the approximation ratio for the overlapping disks case to 6.75. They also presented

constant factor approximation algorithms for neighborhoods that are lines, balls or

planes in R
3.

For the case of general neighborhoods in a plane, Mitchell [54] presented a constant

factor approximation if the neighborhoods are disjoint. If the neighborhoods are both

disjoint and fat, there is a PTAS given by Mitchell [55]. A region is called fat if it

contains a disk whose radius is within a constant factor of the diameter of the region

containing all the neighborhoods. The existence of a constant factor approximation for

the case of overlapping and arbitrarily sized neighborhoods is still an open problem.

Chapter 3

Sensor Placement for

Visibility-Based Coverage with

Orientation

In this chapter, we study the problem of placing a minimum number of cameras to cover

a polygonal environment. The novelty of our formulation is in the notion of covering

a point where simply seeing an object is not sufficient but getting a good view is also

important. Obtaining a good view is an important requirement for many applications

such as surveillance, visual inspection and video-conferencing. We formulate a new

coverage problem which formalizes this requirement and builds on the classical art

gallery problem.

Art gallery problems are a class of visibility problems that deal with placing omni-

directional cameras, also called as guards, in polygonal environments. The original art

gallery problem asked for the fewest number of guards sufficient to see every point in

an n-sided 2D polygon with no holes. Chvátal [34] answered this question in 1975 by

showing that ⌊n/3⌋ guards are always sufficient and sometimes necessary. Since then,

a number of bounds have been established for various classes of polygons. We review

some of the important results in Section 2.2.

Art gallery problems are important for robotics since cameras (or more generally

21

22

visibility-based sensors) are commonly used in many tasks such as coverage [56], surveil-

lance and inspection [57], and simultaneous localization and mapping [58]. Solutions

to art gallery problems can be leveraged as subroutines for robotic planning problems.

For example, Danner and Kavraki [57] used locations given by solutions to art gallery

problems to construct 2D and 3D inspection tours for mobile robots. González-Baños

and Latombe [59] presented an algorithm to acquire 3D views of an environment using

a robot equipped with a 3D laser scanner by solving a variant of the art gallery problem

which models some practical sensing constraints. Blaer and Allen [60] extended this

work to include more practical constraints and presented experimental results where

their robot reconstructed 3D models of two sites in New York. Ganguli et al. [56] stud-

ied a distributed art gallery deployment problem and presented control strategies for

robots with line-of-sight communication to achieve visual coverage in unknown environ-

ments. Thus, efficient algorithms for art gallery problems can be useful for a number of

robotic tasks.

The classical art gallery problem only requires each point in the environment to be

visible from at least one camera. However, for many applications a binary notion of

visibility is not sufficient. Obtaining a good view is equally important. For example,

consider a video conferencing system where a person can move within a room. If the

room is convex, then a single camera is sufficient to guarantee visibility (Figure 3.1).

However, if the person stands with his or her back to the only camera, no good view of

the person will be available. Our goal will be to place cameras such that any person or

object will be seen from all orientations, in spite of self-occlusion.

We use this as motivation to study the problem of placing the minimum number

of cameras in order to see all faces of any convex object moving in the environment.

Smith and Evans [13] introduced this problem, and formalized it with the following

△-guarding condition:

Definition 1. A point p is said to be △-guarded by a set of guards G, if p is visible

from a non-empty set of guards G′ ⊆ G and p lies in the convex hull of G′. A simple

polygon P is said to be △-guarded by G, if every point p ∈ P is △-guarded by G.

Based on this definition, if a polygon is △-guarded then the perimeter of any convex

object located anywhere in the polygon will always be visible from the set of guards.

23

Figure 3.1: The standard art gallery problem ensures that every point in the environ-

ment is seen from at least one guard (left). However, due to self-occlusions, some part of

a person may not be visible (middle). We study the art gallery problem in the presence

of self-occlusions (right).

Thus, the △-guarding constraint models our requirement of getting a good view of an

object despite possible self-occlusion. Note that the guards themselves need not be

visible from each other.

Smith and Evans [13] proved that deciding if k vertex guards can △-guard a simple

polygon is NP-hard. Efrat et al. [14] presented a randomized algorithm based on [41]

that when applied to the △-guarding problem yields a O(log copt)–approximation for

polygons without holes (copt is the optimal number of guards). Since the △-guarding

constraint generalizes the simple visibility requirement for the art gallery problem, we

expect to place more guards. The first problem aims to find how large copt can be.

Problem 1. How many guards are necessary to △-guard every point in any n-sided 2D

simple polygon?

We show that Ω(
√
n) guards are always necessary to △-guard any simple polygon.

Contrast this with the standard formulation without △-guarding, where there are poly-

gons, namely, star-shaped polygons, where a single guard is necessary and sufficient.

The Ω(
√
n) lower bound applies to any n–sided polygon. The optimal number of

guards for a specific input polygon may be higher. Next, we study the algorithmic

problem of placing guards in order to △-guard a given input polygon. We consider

the case when guards can only be placed on the vertices of the polygon, termed vertex

guards.

24

Problem 2. Given a simple polygon P , find the minimum number of vertex guards,

and their placement, sufficient to △-guard every point in the interior of P .

We present aO(log copt) approximation algorithm for this problem. Our main insight

is to show how to convert the problem of △-guarding every point in the interior of P to

△-guarding only a finite number of points which can be solved using a greedy set cover

algorithm.

In many applications such as surveillance or mobile video conferencing, we may not

need to △-guard the entire polygon. Instead, △-guarding may be required only for a

set of paths a person or object of interest is likely to take within the environment. With

this as motivation, we study the problem of placing the fewest number of guards to

△-guard a set of line segments between visible points on the boundary of a polygon.

Such line segments are termed as chords. For example, the points can correspond to

entry and exit points in the environment, the line segments being paths likely to be

taken by a person. Our goal is to △-guard at least one point on each line segment, thus

guaranteeing that independent of the orientation, all sides of the person will be seen at

some point along the path.

Problem 3. Let C be a set of chords in a simply-connected polygon P . Find the

minimum number of guards, and their placement, in order to △-guard at least one point

on each chord in C.

In this problem, the guards may be placed anywhere within P and not necessarily

on the vertices of P . We present a constant factor approximation for this problem.

The rest of the chapter is organized as follows: We prove the lower bound on the

number of guards for △-guarding in Section 3.1. The log approximation for Problem 2

is given in Section 3.2. The constant factor approximation for Problem 3 is presented

in Section 3.3. We conclude in Section 3.4.

3.1 Lower Bound on the Number of Guards

In this section, we prove a lower bound on the number of guards necessary to △-

guard any simple polygon P . For establishing the lower bound, we will prove necessary

conditions on where the guards must be placed.

25

We first define an edge extension as follows. Extend an edge of P from either

endpoint until it reaches the boundary of the polygon. Each of the (closed) line segments

lying on either side of the edge is termed as an edge extension. An edge introduces as

many edge extensions as the number of its reflex endpoints. As a matter of convention,

we will refer to a vertex on a hole as a convex vertex if the angle formed by the two

adjacent sides containing the interior of the polygon is smaller than π
2 . Else, we refer

to the vertex as a reflex vertex.

Lemma 1. Let G be a set of guards that △-guards a simple polygon P . If v is a convex

vertex in P (lying on the exterior or hole boundary), then v ∈ G. If e is any edge

extension in P , then there exists a guard in G that lies on e.

The proof is presented in Appendix A.1. Using Lemma 1, we can prove the lower

bound on the number of guards of any △-guarding set of P .

Theorem 1 (Lower Bound). Let G be a set of guards placed in an n-sided simple

polygon P . If G △-guards P , then |G| = Ω(
√
n).

Proof. Let the total number of convex and reflex vertices in P be nc and nr, respectively.

We have two cases, nc ≥ n/4 or nc < n/4. First consider, nc ≥ n/4. From Lemma 1 we

know |G| ≥ nc. Hence, |G| ≥ n/4 and consequently |G| = Ω(
√
n).

Now consider, nc < n/4. That is, nr ≥ 3n/4. Each edge in P may introduce up

to two unique edge extensions. Consider the set of edge extensions due to edges whose

endpoints are both reflex vertices. Let m be the total number of such edge extensions.

We know, m ≥ 2(nr − nc) ≥ n.

From Lemma 1, we know each of these m extensions must have a guard placed

on them. The optimal algorithm may be able to use the same guard if two or more

extensions intersect at a point. Let k be the maximum number of extensions that

intersect in one point. To cover m extensions, any algorithm will require at least m/k

guards. Hence, |G| ≥ m/k.

Now consider the polygon edges that contributed to the k extensions which intersect

at a point. Since we are focusing only on edges with reflex vertices on both ends, each

such edge must have introduced another extension, contributing another k extensions.

Since the two extensions resulting from a polygon edge are colinear, any guarding set

26

will be forced to use a separate guard for covering each of the other k extensions. Hence,

|G| ≥ k.

Multiplying the two lower bounds, we get |G|2 ≥ m or |G| ≥ √m. Since m ≥ n, the

theorem statement follows.

The bound is tight for polygon with holes. Figure 3.2 shows an instance where the

△-guarding has size O(√n). The bound may not be tight for polygons without holes.

Figure 3.2: Polygon P consists of k×k holes aligned along a grid. The outer boundary of

the polygon forms a square. The number of vertices of P are n = 4k2+4. O(k) = O(√n)
guards (marked by small squares) are sufficient for △-guarding P .

3.2 O(log copt)–approximation with Vertex Guards

In this section, we present a deterministic algorithm that yields aO(log copt)–approximation

for △-guarding polygons with and without holes when the guards are restricted to be

placed only on the vertices of P (Problem 2). This improves upon the randomized al-

gorithm presented by Efrat et al. [14] which would yield a O(log copt log(copt log copt))–
approximation for polygons with holes. Our main result in this section is as follows.

Theorem 2 (Vertex Guards). There exists a deterministic algorithm which finds a set

of vertex guards G that △-guards any simple polygon P such that |G| = O(copt log copt),
where copt is the minimum number of vertex guards required to △-guard P .

Before we describe our algorithm, we will present a more convenient definition (equiv-

alent to Definition 1) for △-guarding a point.

Proposition 1. Let p be any point in a polygon, l be any line passing through p, and

H be any of the two closed half-planes defined by l. p is △-guarded if and only if H

contains a guard visible from p.

27

We represent a half-plane by drawing a vector which starts at p and is perpendicular

to the line l (Figure 3.3). Let θ be the orientation of this vector with respect to some

globally defined axis. By Proposition 1, in order to △-guard p, we must ensure half-

planes corresponding to every orientation θ ∈ [0, 2π) must contain a guard.

Figure 3.3: H is a closed half-plane defined by some line l passing through p. According

to Proposition 1, p is △-guarded only if half-planes of all possible orientations through

p contain a guard. A guard vi that sees p is contained in only those half-planes whose

normal vectors are between −π/2 and π/2 of the segment pvi.

If a guard vi sees p, then vi will be contained in all half-planes whose vectors are

between −π/2 and π/2 of the segment pvi. Hence, the point p is △-guarded by a set

of guards if and only if for any θ, the pair (p, θ) is covered by the set of guards. △-

guarding the interior of P thus is equivalent to covering (p, θ) for all points p ∈ P and

all orientations θ at p. Unfortunately, there are infinitely many such (p, θ) pairs in P .

Nevertheless, we will show that there exists only finitely many points and finitely many

orientations at each point that need to be considered in order to △-guard a polygon.

Using this, we construct a set system (X,R) with |X| = O(n6). We can then apply

a simple greedy set cover algorithm which gives a O(log |X|) approximation. Together

with our lower-bound given in Theorem 1, Theorem 2 follows. We start by describing

what these finitely many points are.

Create a visibility arrangement of the set of vertices in P as follows: If two vertices

are visible from each other, draw a line segment joining them, extending out on both

28

sides till you reach the boundary of P . The set of all such line segments yields the

visibility arrangement A. The arrangement A partitions the interior of P into a set of

cells, each of which is convex [33]. The vertices of each cell are the points of intersection

of two or more segments. There are O(n2) line segments and O(n4) cells.

All points in the same cell are visible from the same set of vertices (see e.g., Lemma

2.1 in [33]). The following lemma shows that we can convert the problem of △-guarding

the entire interior of P into the problem of △-guarding only the set of vertices in the

visibility arrangement.

Lemma 2. Let Ai be any cell in the visibility arrangement of all vertices of a simple

polygon. Let pi be any point inside Ai and V (i) be the vertices of the polygon visible

from p. If all vertices of Aj are △-guarded by V (i), then pi is △-guarded by V .

Proof. Suppose not. Then, along with Proposition 1 this implies there exists a line

passing through pi, say l and a corresponding half-plane, say H, which does not contain

any guard visible from pi. Let ai be a vertex of cell Ai that lies in H (ai exists since

the cell Ai is convex). We draw a line parallel to l passing through ai which forms a

half-plane, say H ′. We know ai is △-guarded by vertices V (i). Hence, by Proposition 1

H ′ contains a vertex, say vi ∈ V (i) of P visible from ai. vi is also visible from pi. Hence,

vi lies in H and visible from pi which is a contradiction.

We can thus restrict the problem of △-guarding the interior to the problem of △-

guarding only the finite set of vertices in the visibility arrangement. We will now show

that there are only finitely many orientations that we need to consider at each such

vertex.

Consider a vertex ai of some cell Ai. Let V (i) be the set of polygon vertices visible

from any point in Ai. For every vi ∈ V (i) draw a line perpendicular to the segment viai

and passing through ai (Figure 3.4). These set of lines create O(|V (i)|) angular sectors
about ai. If θ1 and θ2 are any two orientations lying within the same sector, then any

polygon vertex that covers (ai, θ1) also covers (ai, θ2) and vice versa. Thus, we need to

consider only O(|V (i)|) orientations per vertex ai.

We now create a finite set system (X,R) as follows: For every cell vertex ai create

O(|V (i)|) elements in X, one corresponding to each angular sector θi. R is a collection

of n subsets of X, each corresponding to a polygon vertex vi. The subset corresponding

29

Figure 3.4: A vertex vi is said to cover any orientation at point ai if it is at most π/2

away from the line viai. All such orientations covered by vi are marked shaded.

to vi contains all pairs (ai, θi) that are covered by vi. There are O(n4) cells with O(n)
vertices per cell and O(|V (i)|) = O(n) sectors per vertex. Thus |X| is at most O(n6).

A greedy set cover algorithm yields a log |X| = O(log n) = O(log copt) approximation.

This proves Theorem 2.

Nevertheless, copt itself is subject to the Ω(
√
n) lower bound. The large lower bound

results from having to guard each convex vertex and edge extension, which may not be

important for many applications. Instead, we will restrict our attention to △-guarding

only regions of interest within the polygon, specifically, line segments joining points on

the boundary of a simply-connected polygon.

30

3.3 △-guarding Chords

In this section, we present a constant factor approximation for △-guarding a set of

chords in a polygon (Problem 3). A chord in a simple polygon P is any line segment

which joins two mutually visible points that lie on the boundary of P . A diagonal is

special type of chord where both points are vertices of P .

Problem 3 asks for △-guarding at least one point per chord. For the problem of

△-guarding every point on the chord, one can construct an instance where the set of

input chords fill the entire polygon. Thus, the problem becomes at least as hard as

△-guarding the entire polygon. Hence, we need Ω(
√
n) guards in the worst-case. The

algorithm from the previous section can be applied to obtain a log factor approximation

for △-guarding every point on a set of chords with vertex guards. We focus on △-

guarding at least one point per chord, and present a constant factor approximation

algorithm.

Our main result for this problem is as follows.

Theorem 3 (Chord Guarding). Given a set of chords C in a simply-connected polygon

P , there exists an algorithm which finds a set of guards G △-guarding C, such that

|G| ≤ 12copt where copt is the minimum number of guards required to △-guard C.

3.3.1 Notation

We label the points on the boundary of P in the clockwise order, starting from an

arbitrarily chosen vertex. If a point p on the boundary appears before point q in the

clockwise ordering, then we denote this by p ≺ q. For each chord Ci, we term the

endpoint that appears first in the clockwise ordering along the boundary as its start

point (si) and the other endpoint as the terminal point (ti). Thus, si ≺ ti.

We map all si and ti to a circle maintaining their clock-wise ordering (Figure 3.5).

The part of the boundary of P from si to ti along the clockwise order maps to an arc

on the circle; we term this as the induced arc (Ai). The chord also divides the polygon

into two subpolygons. We term the subpolygon corresponding to the induced arc as the

induced subpolygon, denoted by Pi. Pi is made up of the boundary of P between si and

ti and the edge tisi.

31

s4

v1
s1

s3

s2

s5

t1

t3

t4 t2

t5

s1 t1

s2

s3

s4t3

t4

t2

s5
t5

A1

A2

A3
A4

A5

P3

Figure 3.5: The endpoints of all chords map to a circle in clockwise order. The cor-

responding arc is termed as the induced arc Ai. Pi is the subpolygon induced by Ci.

The set of all arcs induced by C creates a circular-arc graph [61], with arcs as

vertices, and an edge between two vertices if the corresponding arcs overlap. The

maximum independent set (MIS) of this graph is the largest set of disjoint arcs. Masuda

and Nakajima [61] presented an optimal algorithm for finding the MIS of circular-arc

graphs.

We use the following distinction for non-disjoint arcs: Ai and Aj with Ai ∩ Aj 6= ∅
are termed cutting arcs, if Ai 6⊆ Aj and Aj 6⊆ Ai. Ai and Aj are said to cut each other.

We will refer to a chord, its induced arc, and the corresponding vertex in the circular-

arc graph, interchangeably. Next, we present a high level discussion of our strategy for

placing guards.

3.3.2 Overview

Given the MIS of the circular-arc graph, we classify each chord in C into four types. A

chord Ci is of

• Type I if Ai is in the MIS,

• Type II if Ai cuts some arc in the MIS,

• Type III if Ai contains some arc in the MIS,

32

• Type IV if Ai is contained in some arc in the MIS.

First in Section 3.3.3, we describe the placement of a guard set △-guarding chords

of Types I & II. In Section 3.3.4, we will △-guard a subset of Type III guards. Finally,

in Section 3.3.5 we describe an algorithm for △-guarding the remaining set of guards of

Type III and Type IV chords.

We will show that the total number of guards placed by our algorithm is at most

a constant times that of an optimal algorithm. We will use the following two useful

properties that will allow us to obtain a constant factor approximation.

Lemma 3. Two chords Ci and Cj intersect if and only if their corresponding arcs Ai

and Aj cut each other.

The proof, which verifies the ordering of si, sj , ti, tj for both directions, is presented

in Appendix A.2.

Lemma 4. If chord Ci is △-guarded by a set of guards G, then at least one guard in

G must lie in its induced subpolygon Pi.

Proof. Let p be a point on Ci that is △-guarded by G. Consider the line containing

chord Ci which passes through p. This line creates two closed half-planes one of which

contains all points from Pi visible from p. From Proposition 1, we know this closed

half-plane must contain a guard visible from p. Since no point in this half-plane outside

of Pi lies within the polygon, this guard must be contained in Pi.

We term such a guard as the cardinal guard of Ci. We will charge a constant

number of guards in our placement to a cardinal guard in the optimal placement. We

first establish a lower bound on the minimum number of guards necessary to △-guard

C using the MIS of the circular arc graph.

3.3.3 Guarding Type I and II chords

Lemma 5. If M is the MIS of disjoint arcs in the circular-arc graph, then |M | ≤ copt,

where copt is minimum number of guards for △-guarding C.

Proof. Since all arcs in the MIS are disjoint, their induced subpolygons are disjoint.

That is, for any two arcs Ai, Aj ∈ M we have Pi ∩ Pj = ∅. From Lemma 4, we

33

know each chord must have at least one guard in its induced subpolygons. Since the

subpolygons for all chords in the MIS are disjoint, no two chords may share a cardinal

guard. Hence, there are at least as many cardinal guards as the number of disjoint

subpolygons. Therefore, |M | ≥ copt.

We now describe set S1 for guarding chords of Types I & II.

Lemma 6. If S1 is the set of endpoints of chords in M , then S1 △-guards all chords

of Types I & II, and |S1| ≤ 2copt.

Proof. First consider Type I chords. Since we place a guard at both endpoints of each

such chord, all points lying on a Type I chord are △-guarded. Let Ci by a Type II chord

whose arc cuts an arc of Cj , a Type I chord. According to Lemma 3, Ci and Cj must

intersect in a point. Since all points on Cj are △-guarded, Ci is △-guarded. Hence, all

Type II chords are △-guarded.

3.3.4 Guarding a subset of Type III chords

Consider chords of Type III. We call the portion of the circle between two consecutive

arcs in the MIS gaps. Type III chords have both endpoints in a gap, and the start and

terminal endpoints must lie in different gaps. Each gap may contain multiple start and

terminal points. Since there are as many gaps as arcs in the MIS, from Lemma 5, we

may place a constant number of guards per gap and perform comparable to an optimal

algorithm.

A2

A3

A4

A5

A1

Figure 3.6: Type III chords. The arcs in MIS are shown dotted, gaps are marked shaded.

In each gap, we place guards (marked square) on the endpoints of chords with earliest

start point or latest terminal point. Chords with arcs A1, . . . , A4 may not be △-guarded

by this set of guards, where as A5 is.

We will place at most four guards per gap in a guard set S2 as follows (Figure 3.6):

34

• on the two endpoints of the Type III chord with the first start point within each

gap (if any), and

• on the two endpoints of the Type III chord with the last terminal point within

each gap (if any).

Lemma 7. If Ci and Cj are any two Type III chords not △-guarded by S2, then either

Ai and Aj are non-cutting arcs or both chords start from the same gap and end in the

same gap. |S2| ≤ 4copt, where copt is the optimal number of guards for △-guarding C.

Proof. There are as many gaps as the number of arcs in the MIS. We place at most four

guards per gap. Using Lemma 5, |S2| ≤ 4copt.

We will prove the contrapositive of the statement of the lemma. If Ai and Aj are

cutting arcs with either their start or terminal points in different gaps, then Ci and Cj

are △-guarded by S2. We will prove the case when their start points lie in different

gaps. The case for the terminal points of Ci and Cj lying in different gaps is symmetric.

Without loss of generality, let si ≺ sj . For contradiction, assume that Ci and Cj

are not △-guarded by S2. Consider the gap containing sj . We know this gap contains

at least one start point of a Type III chord, i.e., sj . If sj is the earliest start point in

this gap, then S2 contains two guards placed on either endpoints of Cj and hence, Cj

must be △-guarded, which is a contradiction. Thus, there exists some other start point

in the same gap before sj , say sk corresponding to a Type III chord Ck.

sk tksj

si

tj

sk tksj

si

tj

Figure 3.7: Illustration of the proof for Lemma 7. Ci and Cj start in different gaps. At

least one of Ci or Cj cuts a chord with guards placed on two endpoints, Ck.

For the terminal point of Ck, we have two possibilities (See Figure 3.7)

35

1. tk ≺ tj . We know sk ≺ sj . tk and tj do not lie in the same gap as sk and sj

respectively. Thus we get, sk ≺ sj ≺ tk ≺ tj . Therefore, Ak cuts Aj . From

Lemma 3, Ck must intersect with Cj . Since we have guards placed on both

endpoints of Ck, all points on Ck are△-guarded including Cj ’s point of intersection

with Ck. Hence, Cj is △-guarded, which is a contradiction.

2. tj ≺ tk. Since Ci and Cj are cutting arcs and si ≺ sj , we get ti ≺ tj . Therefore

ti ≺ tk. Since si lies in a gap before the one that contains sj and sk, we get

si ≺ sk ≺ ti ≺ tk. Hence, the arcs of Ci and Ck cut each other. Following a

similar argument as above, Ci must be △-guarded, which is a contradiction.

This completes the proof.

Lemmas 6 and 7 present a guard set of size at most 6copt covering all Type I, II and

a subset of III chords in C. We describe the placement of another guard set to △-guard

all remaining chords in C.

3.3.5 Guarding remaining Type III and IV chords

Let C ′ ⊂ C be the set of chords not △-guarded by guard sets S1 and S2 described in

Section 3.3.3. C ′ consists of a subset of Type III chords given by Lemma 7 and all Type

IV guards. Lemma 7 states that if Ci, Cj ∈ C ′ cut each other, then they must start and

terminate in the same gap. We will define an equivalence class of all Type III chords

that start and terminate in the same gap. Similarly, we will define another equivalence

class of Type IV chords that are contained in the same arc in the MIS. We term each

such class as a group. Thus two chords in C ′ lie in the same group if they start and

terminate in the same gap, or if they are contained within the same arc in the MIS.

While the chords within each group may cut each other, we show that chords in

distinct groups do not.

Lemma 8. If Cm ∈ Gi and Cn ∈ Gj are two chords in distinct groups, then Am and

An do not cut each other.

The full proof, presented in Appendix A.3, verifies all the cases and shows that the

arcs cannot cut each other. Hence, two groups are either disjoint or one completely

36

contains the other. This gives a partial ordering on all groups based on inclusion. We

use this to create a tree of chords T :

1. Re-index all chords in T , such that for any Ci and Cj if si ≺ sj then i < j. That

is, if a chord starts before another, then it has a lower index than the other.

2. The circumference of the circle forms the root.

3. Create a tree of groups. Iteratively add all groups as nodes in the tree using

the rule: group Gj is an ancestor of Gi if and only if the induced arc of Gi is

completely contained in Gj .

4. Replace each group node Gi with a chain of chord nodes, one node per chord in

the group. The chord with a lower index is at a lower depth in this chain. The

subtree rooted at Gi is attached to the chord node with the highest index, and

the parent of Gi is attached to the chord node with the lowest index.

In the following lemmas, we will prove useful properties of T which will form the

basis of our guard placement algorithm. Denote the shortest path from any node Ck

towards the root by Π(Ck). We show the start points of chords lying on the same path

follow in order of the path. Furthermore, no chord which is an ancestor of Ck in Π(Ck)

terminates before Ck starts.

Lemma 9. If Cm is the ancestor of Cn then sm � sn and sn � tm.

Proof. First let Cm and Cn belong to the same group. By construction, sm � sn.

Furthermore, if both are Type III chords, then sm and sn must lie in the same gap

which comes before the gap containing tm and tn. Therefore, sn ≺ tm. Similarly, if

both are Type IV chords, then if tm ≺ sn then Am and An are disjoint leading to a

contradiction about them being contained in the same arc in the MIS. Hence, if Cm and

Cn belong to the same group then the lemma follows.

Next, let Cm and Cn belong to different groups. Since Cm is an ancestor of Cn, we

know that the group containing Cm completely contains the group containing Cn (Steps

(3) and (4) of the construction of T). Therefore, Am completely contains An implying

sm ≺ sn ≺ tn ≺ tm.

37

We will place guards to △-guard chords in the ordered tree T . By construction, all

leaf nodes in T have disjoint induced subpolygons. Furthermore, only guards along the

same path to the root may share a cardinal guard. Hence, any guard set must contain

at least as many cardinal guards as the number of paths from leaf nodes to the root.

However, this lower bound is not sufficient to obtain a constant factor approximation

directly. There are instances where the number of guards necessary to △-guard a path

can vary from as few as two to as many as the number of chords along the path. In ad-

dition, two or more paths may merge and thus be able to share guards. Nevertheless, we

show that the greedy approach in Algorithm 1 correctly △-guards all chords in T using

at most a constant times the number of guards in an optimal guard set (Lemma 12).

The algorithm uses the ordering property presented in Lemma 9. Initially all chords

are marked as not being △-guarded. At the start of each iteration (Step 4), we pick

a chord Ck with the highest depth not yet marked △-guarded. All descendants of Ck

have been △-guarded in previous iterations. We will place a cardinal guard x ∈ Pk for

Ck. We will choose its location to be such that it sees a point on the chord with the

lowest depth which lies on Ck’s path to the root. All intermediate chords are marked

△-guarded using at most six guards as given in Step 6. The following lemma proves

the correctness of this intermediate step.

Algorithm 1: TreeGuarding

Input: T Ordered tree of chords in C ′

Output: S3 guard set △-guarding C ′

1 S3 ← ∅
2 mark all chords in T as not △-guarded

3 while ∃ a chord in T is not marked △-guarded do

4 k ← largest index such that Ck is not △-guarded

5 i← smallest index such that some point y ∈ Ci ∈ Π(Ck) is visible from a

point x ∈ Pk

6 S3 ← S3 ∪ {x, y, sk, tk, si, ti}
7 mark all Cj ∈ Π(Ck) with i ≤ j ≤ k as △-guarded

8 end

9 return guarding set S3

38

Lemma 10. If a point x ∈ Pk sees a point y ∈ Ci such that Ci is the ancestor of Ck,

then {x, y, sk, tk, si, ti} △-guard all chords on the path from Ck to Ci.

Proof. First observe that Ci and Ck are △-guarded by guards on their endpoints. Let

Cj be any chord on the path from Ck to Ci. If either endpoint of Cj is shared with that

of Ci or Ck, then Cj is △-guarded. Otherwise, we have Cj lying on the path from Ck to

Ci, i < l < k. By the ordering property (Lemma 9), si ≺ sj ≺ sk. We have two cases:

(1) ti � tk. From Lemma 9, we get the ordering si ≺ sj ≺ sk � ti � tk. Also from

Lemma 9, Cj cannot terminate before sk since Ck is a descendant of Cj . Therefore, Cj

must intersect at least one of Ci and Ck and thus be △-guarded by the guards placed

on the endpoints of Ci and Ck.

Figure 3.8: One iteration of Algorithm 1 (Steps 4–7). The guards are placed at locations

marked by a square. Any chord with a starting vertex lying in between si and sk is

△-guarded.

(2) tk ≺ ti. We have three cases: (a) tk ≺ tj ≺ ti, (b) tj ≺ tk, or (c) ti ≺ tj . Recall

that si ≺ sj ≺ sk. Hence for (b) and (c), Cj intersects with either Ck or Ci, respectively.

Hence, Cj will be △-guarded by the guards on the endpoints of Ck and Ci.

Consider case (a) (Figure 3.8). We have Pk ⊂ Pj ⊂ Pi. x ∈ Pk sees a point y ∈ Ci.

Extend the segment from y to x till it hits the boundary of Pk at point z. Segment zy

is a chord in Pi. Since z ∈ Pj , let y′ be the point of intersection of segment zy (other

than z) with the boundary of Pj . y
′ may either lie on the edge Cj of Pj or on the part

of the boundary of P from sj to tj . However, the latter is also a part of the boundary

39

of Pi – in fact, the part of the boundary of Pi which does not contain the edge Ci. This

leads to the contradiction that a chord zy intersects the boundary of Pi at three distinct

points, z, y and y′. Hence, y′ must lie on Cj which implies y′ is visible from the guards

at x and z. Thus, Cj is △-guarded.

The correctness of the algorithm follows from the correctness of the intermediate

step.

Corollary 1. All chords in T are △-guarded by Algorithm 1.

We show that the size of S3 is only a constant times that of any optimal guarding

set. Consider an optimal guard set Gopt covering C ′. For each guard in Gopt, we create

a new set containing all chords for which the guard acts as a cardinal guard. That is,

for any g ∈ Gopt we create the set {Ci|Ci ∈ C ′, g ∈ Pi}. Denote this collection of sets

by Copt.
We create another collection of sets, denoted C, for Algorithm 1. For each iteration

of the algorithm, we create a new set that contains all chords marked △-guarded in

Step 7. That is, create the set Ck = {Cj |i ≤ j ≤ k} and add it to C. The largest index

of chords contained in this set corresponds to the largest unmarked index (i.e. k) found

in Step 4.

Lemma 11. If k and k′ are the largest indices in distinct sets Ck and Ck′ in C respec-

tively, then k 6= k′ and no set in Copt contains both Ck and Ck′ .

Proof. Consider any iteration of Algorithm 1 and the corresponding set in C. If k was the

largest unmarked index in Step 4, then it is not included in the sets in C from previous

iterations. Furthermore, all descendants of k are marked △-guarded. All chords in the

current iteration marked △-guarded have indices smaller than k. Hence, if k and k′ are

the largest indices in two distinct sets of C then k 6= k′.

Now we show that Ck and Ck′ cannot appear in the same set in Copt. Suppose they

do. We have two possibilities: Ck and Ck′ lie on the same or different paths to the root.

If Ck and Ck′ lie on different paths to the root, then their induced subpolygons Pk and

Pk′ are disjoint. Hence, their cardinal guards cannot be the same, implying Ck′ and Ck′

cannot be in the same set in Copt.

40

Then Ck′ and Ck′ must lie on the same path. Assume without loss of generality,

k < k′. Since k and k′ lie in the same set in Copt, they must share the same cardinal

guard, say g ∈ Pk′ . Furthermore, g also sees a point on Ck. Therefore, Ck will be

marked △-guarded and included in Ck′ according to Step 7. However, Ck cannot be

included in some other set Ck′ ∈ C, which gives a contradiction.

Lemma 12. If S3 is the guarding set obtained in Algorithm 1, and copt is the optimal

number of guards for △-guarding C ′, then |S3| ≤ 6copt.

Proof. Since we place at most six guards per iteration, |S3| ≤ 6|C|. We know |Copt| =
copt. If we show |C| ≤ |Copt|, we are done. Suppose |C| > |Copt|. Using Lemma 11

this implies there is some chord Ci not contained in any set in Copt such that i is the

largest index of some set in C. This implies no guard in the optimal guard set acts as

the cardinal guard for Ci. From Lemma 4 this implies Ci is not △-guarded, which is a

contradiction. Thus, |C| ≤ |Copt|, which proves the statement of the lemma.

From Lemmas 6, 7, and 12, the guard sets S1, S2 and S3 △-guard all input chords

using at most 12 times as many guards as an optimal algorithm, thus proving Theo-

rem 3.

3.4 Conclusion

In this chapter, we studied the problem of guarding a polygon under the △-guarding

constraint [13]. The △-guarding constraint is motivated by practical surveillance sce-

narios where the goal is to see all sides of a person despite self-occlusion. We showed

that Ω(
√
n) guards are always necessary to △-guard any simple n–sided polygon. We

also presented a O(log copt) approximation algorithm for △-guarding the interior using

vertex guards. Since the required number of guards to cover the complete interior is

large, we turned our attention to a scenario in which we are given entry and exit points

to the environment connected by straight-line paths, i.e., chords. The goal is to △-

guard at least one point on each chord. We presented an approximation algorithm for

simply-connected polygons which uses at most 12 times the optimal number of guards.

In addition to solving a practical problem, our result is of theoretical interest because

41

this is one of the few instances where a constant factor approximation algorithm for an

art gallery problem is known.

Chapter 4

Bearing Sensor Placement for

Target Localization

In this chapter, we study a coverage problem where the goal is to accurately locate

targets that may be anywhere in the environment. This coverage task arises in many

applications, e.g., locating parts in warehouses, intruder detection in surveillance and

location-aware services. In fact, indoor positioning systems have been identified as

key technologies for the advancement of robotics and automation [62]. A good sensor

placement scheme can significantly aid indoor positioning systems.

We focus on the problem of placing bearing sensors for target localization. Bearing

sensors are used often in robotics. Monocular cameras, microphone/acoustic arrays,

directional radio antennas, passive infrared receivers, etc., all measure bearing towards

a target. We consider sensors whose bearing measurements are corrupted by unknown

but bounded noise. Bounded noise models provide a useful alternative to probabilistic

models especially when a precise device model is not available (perhaps due to the

difficulty of calibration or changing device parameters). Such models have long been

used for state estimation [63] and for sensor fusion [64].

As an example, consider an application where sensors are deployed to be used as

beacons for localizing a person navigating in an indoor setting where no GPS is available

(Figure 4.1). At each time instant, the person can query the sensors for their bearing

measurements. In the bounded uncertainty model, the true bearing is guaranteed to be

42

43

in a 2D wedge which is centered at the measured bearing and has an apex angle equal

to the maximum sensing noise. Measurements from multiple sensors are combined by

intersecting the corresponding wedges. The uncertainty in location is usually taken to be

the diameter or area of the intersection. We seek worst-case quality guarantees for our

estimate. Irrespective of where the target is in the environment and what measurements

the sensors receive (subject to the maximum noise), we would like the uncertainty in

locating the target to be below a desired level.

Figure 4.1: The areas of intersection for a square grid2(middle) and random placement

(right) are 1.32 and 3.27 times that of the triangular placement (left). The true location

of the target is marked by a triangle.

We consider a simple workspace for the problem: The target can lie anywhere within

a square environment without any obstacles or visibility constraints. It is intuitively

clear that the optimal placement should be some kind of a uniform grid. However

it is not clear if the grid should be square, triangular or some other shape. Further,

optimizing parameters of the grid (e.g. resolution) is not straightforward because as

illustrated in Figure 4.1, the estimate is obtained by combining measurements from

all sensors. This makes it difficult to express its area or diameter in closed-form in

order to optimize grid parameters. While there have been attempts to find the optimal

solution [65], the problem of optimal placement for bearing sensors remains open.

In this dissertation, we make progress towards solving this fundamental problem. We

focus on a triangular grid placement and derive the relationship between uncertainty

2We randomly place additional sensors to the square grid, so that it has the same number of sensors

as the triangular grid.

44

and grid resolution. We prove that the number of sensors required to achieve a desired

uncertainty is only a constant times that of an optimal algorithm. Furthermore for a

triangular grid, only a constant number of sensors can be queried to obtain performance

comparable to querying all sensors. This implies for our motivating example, the person

may query only a fixed number of nearby sensors to localize itself without losing much

estimation quality.

The rest of the chapter is organized as follows: We begin by presenting the related

work in Section 4.1. We describe the sensing model and formalize the problem in

Section 4.2. The analysis for lower bounds for an optimal placement, and upper bounds

for a triangular grid placement are presented in Sections 4.3 and 4.4. We conclude

with a discussion of our results in Section 4.5. Proofs for the main results are given in

the chapter, whereas those for some technical lemmas and corollaries are presented in

Appendix B.

4.1 Related Work

The problem of optimizing the placement of sensor nodes has received significant atten-

tion in the past decade [66]. A large amount of research has focused on self-localization

of networks, for example in the case of mobile, reconfigurable sensor networks [67] and

for stationary sensor networks with reference anchor nodes [68]. In our present work,

we assume that the locations of the sensors themselves are accurately known and focus

on the complementary problem of placing sensors so as to localize targets.

For bearing sensors, the uncertainty in target’s estimate depends on the relative

position of the sensors and the target. Motivated by this, Efrat et al. [14] studied the

problem of minimizing the number of sensors to be placed in a polygon, such that each

point in the polygon is visible from at least two sensors and their relative angle lies

within a desired interval. They presented a log factor approximation subject to a fine

discretization.

In addition to the relative angles, the uncertainty is also affected by the distance

between the sensors and the target. Geometric Dilution of Precision (GDOP) is one

measure relating the uncertainty with distance and relative angles. Tekdas and Isler [69]

presented a placement scheme which guarantees that for any target location there are

45

always two sensors whose GDOP is a constant factor of the GDOP achieved by any two

sensors from an optimal placement. We do not restrict the estimator to use only two

sensors. Instead we allow combining measurements from all sensors.

Ercan et al. [70] studied the problem of placing horizontal scan-line cameras only

along the boundary of a circular room to minimize least-squares localization error for

a target with a given prior. Their placement result shows that a uniform placement

along the boundary is optimal. We allow sensors to be placed anywhere within a square

workspace, without assuming any prior for the target’s location.

Sensor selection is closely related to the sensor placement problem. Isler and Magdon-

Ismail [71] considered the problem of selecting a small subset of sensors from a given

placement. Each sensor’s output is a convex subset of the plane. They proved that

irrespective of the total number of sensors, there is always a subset of four measure-

ments that can be selected, which when combined yield an intersection area at most

twice of that obtained by intersecting all measurements. In their problem, the place-

ment of the sensors and the actual sensor measurements are already given. For the

same placement of sensors, this subset would change if the measurement changes. This

poses an interesting question of whether there is some placement of sensors for which

the same subset can be used to approximate the uncertainty region for different (but

perhaps “nearby”) measurements. In this chapter, we present a result in this direction

for bearing measurements with bounded noise.

We begin by defining the bounded noise sensing and uncertainty models in the

following section.

4.2 Problem Formulation

We first describe the notation, then define the sensing and estimation models, and use

them to formulate the problem studied in this chapter.

4.2.1 Notation and Sensing Model

The workspace A is a d×d square. The target’s true location x can be anywhere within

A. Consider a sensor placement S = {s1, . . . , sn} where each si ∈ A denotes the sensor

location. Each sensor measures the bearing towards the target as θmi = θti + ni, where

46

si 2
x

Figure 4.2: The actual measurement θmi lies anywhere between θti ± α. θti is the true

bearing. The wedge for a given measurement is guaranteed to contain the true target

location x.

θti ∈ [0, 2π) is the true bearing (Figure 4.2). ni ∈ [−α,+α] is the bounded sensor noise.

α is the bound on the absolute noise in the sensor. The pre-image of a measurement

θmi is a 2D wedge (denoted by W (si, θ
m
i)) as shown in Figure 4.2. This wedge is not the

same as a fixed field-of-view sensor; for the same target location, the sensor can receive

any sensing wedge of angular width 2α so long as it contains the true target location.

The target estimate obtained by combining a set of measurements θm = [θm1 , . . . , θmn]T

from n sensors, is defined as the intersection of the n sensing wedges W (si, θ
m
i). That

is, P̂ (S, θm) ,
⋂n

i=1W (si, θ
m
i). Here P̂ is a convex polygonal region which can possibly

be unbounded.

4.2.2 Adversarial Formulation of Uncertainty

The size of P̂ depends on the actual measurements. Figure 4.3 shows two instances

where the size of P̂ differs significantly for different measurements obtained from the

same placement of sensors. The actual measurements obtained by the sensors cannot

be controlled by the user. However, we will show that by carefully placing the sensors

one can guarantee there always exists a good set of valid measurements.

There are two approaches to model the situation: We can assume a distribution for

the measurements and the target and optimize for the expected quality of estimate.

47

s1

s2

s3 s4

Figure 4.3: Two estimates for the same sensors and target location, but different mea-

surements resulting in different uncertainty. We use worst-case intersection as the un-

certainty measure.

Alternatively, we can model this as an adversarial process and guard against worst-

case measurements and target locations. Adversarial models are appealing since no

additional information about the sensors or targets is needed and since they provide

guarantees over all possible scenarios, as opposed to only the average case scenario.

We choose to model the objective using an adversarial process: Given a placement

of sensors, an adversary selects a target location within the square and a corresponding

set of measurements to maximize the uncertainty in the target estimate. We use two

measures (area and diameter3 of P̂) to define the uncertainty. The diameter uncertainty

of a placement S is defined as:

UD(S) , max
x∈A

max
θm∈θ(x)

diameter(P̂ (S, θm)), (4.1)

where θ(x) is the set of valid measurements that can be obtained from S for a target

location x. The area uncertainty can be similarly defined.

3The diameter of a polygon is the length of the largest segment contained completely within the

polygon.

48

4.2.3 Objective

Broadly, there are two factors that affect the worst-case uncertainty: (i) the number

of sensors, and (ii) the location of placed sensors. In this work, we take the approach

that the user specifies a desired uncertainty and the objective is to minimize the num-

ber of sensors and find the corresponding placement to guarantee that the worst-case

uncertainty is below the user-specified value. In particular, we address the following

problem: Find the minimum number of sensors required and the corresponding place-

ment to achieve a desired diameter uncertainty U∗
D (or area uncertainty U∗

A).

Our main result shows that a triangular placement scheme compares competitively

with respect to the (unknown) optimal algorithm.

Theorem 4. Let the maximum absolute noise for bearing sensors be 0 < α ≤ π
4 .

Let the desired diameter uncertainty for a d × d square environment be U∗
D <

d

7 sinα

(respectively, area uncertainty be U∗
A <

π sin2 α

196
d2). If an optimal placement algorithm

achieves U∗
D (respectively, U∗

A) with n∗ sensors, then a triangular grid-like placement

achieves at most 5.88U∗
D (respectively, at most 7.76U∗

A) with at most 9n∗ sensors.

The analysis for Theorem 4 is based on covering a d × d square with equilateral

triangles of sensors. When the desired uncertainty is higher than the restriction in

Theorem 4 and comparable to the size of A, an optimal placement may use very few

sensors. Nevertheless, even for that case the total number of sensors for the grid-like

placement is bounded (given by Lemma 17).

In the following sections, we analyze the number of sensors required for an optimal

algorithm and for a triangular grid-like placement.

4.3 Lower Bounds for Optimal Placement

In this section, we first present lower bounds on the uncertainty achieved by any place-

ment of sensors in the plane. We apply this to bound the number of sensors placed

within A by an optimal algorithm.

First consider the case when the maximum sensing noise α ≥ π
2 , i.e., the sensing

wedges are at least half-planes. We show that the adversary can always choose a valid

49

measurement set for any placement, such that the sensing wedges have an unbounded

intersection.

Theorem 5. For any placement S of n bearing sensors with maximum absolute noise

α ≥ π
2 , there exists a measurement set θm such that the intersection of the wedges

(
⋂n

i=1W (si, θ
m
i)) is unbounded.

Proof. Consider the following construction for α = π
2 : Draw a line l passing through

any sensor si and any point in A (denoted by x). For all sensors sb such that vector

product −→xsi × −→xsb is zero or negative, let θm be the direction obtained by rotating −→sbx
clockwise by π

2 and for all sensors su such that −→xsi×−→xsu is positive, let θm be obtained

by rotating −→sux counter-clockwise by π
2 . For all sensors, the sensing wedges are half-

planes described by lines which pass through x. Further each sensing wedge contains the

half-line starting from x and passing through si. Hence, the intersection of all sensing

wedges is unbounded. For all α > π
2 , the sensing wedges are a superset of that obtained

with α = π
2 . Hence, the proof holds.

Theorem 5 implies that when α ≥ π
2 the uncertainty can be as large as A, i.e.,

UA(S) = Θ(d2) and UD(S) = Θ(d) for any placement of sensors, including the optimal.

This is not surprising, since α ≥ π
2 corresponds to very high noise. In practice, bearing

sensors are much more accurate. For the rest of this chapter, we only focus on the case

when the maximum sensing noise α < π
2 .

In the following, we will lower bound the uncertainty for any placement parametrized

by the distance of the target to the closest sensor. Recall from Equation 4.1, the uncer-

tainty is defined as the max over all possible target locations, and all valid measurements.

Hence, for a lower bound, it is sufficient to consider a particular target location and valid

measurement set, as given next.

Lemma 13. If there exists a circle C with radius r which doesn’t contain any sensor

from a placement S of n bearing sensors, then the diameter uncertainty is bounded as

UD(S) ≥ 2r sinα (respectively, UA(S) ≥ πr2 sin2 α).

The proof for Lemma 13, given in the appendix, shows that when the target lies at

the center of C and each sensor receives a measurement equal to the true bearing, a

50

circle of radius r sinα centered at the target lies completely within the intersection of

all sensing wedges. This instance gives a lower bound for the worst-case uncertainty.

When a desired uncertainty is given, we can apply Lemma 13 to find the radius of

the largest such circle lying in the workspace A and not containing any sensor. Such

a radius, denoted by r∗, is the maximum distance for any point in A to the closer of

the closest sensor in S∗ or the closest point on the boundary of A. We can now apply

Lemma 13 to bound how large r∗ can be, when a desired diameter or area uncertainty

is given.

Corollary 2. Let S∗ be an optimal placement achieving a desired diameter uncertainty

U∗
D (respectively, area uncertainty U∗

A) in a square workspace of side d. If r∗ is the

radius of the largest circle lying completely within A and not containing any sensor in

its interior, then r∗ ≤ U∗
D

2 sinα
(respectively, r∗ ≤

√

U∗
A

π

1

sinα
).

Corollary 2 implies an upper bound on how far each point in A can be from any

sensor or the boundary of A. This allows us to bound the number of sensors required

for an optimal algorithm as a function of r∗. Corollary 3 states that Ω

(
d2

r2

)

sensors

are needed to guarantee coverage of a d× d area.

Corollary 3. Let r∗ be the radius of the largest circle within a square of side d, not

containing any sensor from an optimal placement in its interior. If the desired diameter

uncertainty is U∗
D < d sinα (respectively, U∗

A < d2
π sin2 α

4
) then the number of sensors

for an optimal algorithm n∗ ≥ (d− 2r∗)2

πr∗2
.

When d ≤ 2r∗, the desired uncertainty is comparable to A, and the optimal algo-

rithm would place very few sensors, yielding a trivial lower bound. The bound on the

uncertainty implies that d > 2r∗ is an interesting case: If d > 2r∗, then there is a smaller

square within A where all points are more than r∗ away from the boundary and hence

require at least one sensor within r∗. We can show that the set of circles of radii r∗

drawn about each sensor in the optimal placement, should form a cover of this smaller

square, yielding the bound.

51

4.4 Performance Analysis for the Triangular Grid Place-

ment

Next, we analyze the number of sensors required and the uncertainty for a triangular

grid-like placement. While for lower bounds it sufficed to consider specific instances,

upper bounds require considering all possible target locations and sets of measurements.

4.4.1 Uncertainty with Triangular Grid

Before the main analysis, first consider two special configurations of sensors: (i) three

sensors placed on the vertices of an equilateral triangle △s1s2s3 with side r, when

0 < α < π
6 , and (ii) six sensors placed on the vertices of a regular hexagon when

π
6 ≤ α ≤ π

4 . For case (i), the target may lie anywhere within △s1s2s3 (Figure 4.4(a)).

We further divide the analysis into intervals based on α, given next.

Lemma 14. Let △s1s2s3 be an equilateral triangle of side r with a bearing sensor placed

at each vertex. If the target lies within △s1s2s3 and S = {s1, s2, s3} then

UD(S) ≤







11.35r sinα 0 < α < π
18 ,

2.04r π
18 ≤ α < π

12 ,(

1 +
1√
3

)

r π
12 ≤ α < π

6

and,

UA(S) ≤







23.46r2 sin2 α 0 < α < π
18 ,√

3r2

4
+ 10.1(r sinα)2 π

18 ≤ α < π
12 ,

3
√
3r2

4
π
12 ≤ α < π

6 .

The proof, given in Appendix B.2.1, partitions the triangle into three regions, and as-

signs sensors for each region such that any valid set of measurements results in bounded

intersection. The sensing wedges corresponding to each partition are approximated to

bound their intersection.

52

When α ≥ π
6 , the sensing wedges become too large to result in bounded intersection

with just three sensors. Instead we use six sensors, placed on a regular hexagon with

center o and side r, to bound their intersection. The target can lie anywhere within a

circle of radius
r√
3
centered at o. We find an upper bound to the uncertainty, by finding

the intersection of the union of all sensing wedges for each sensor, corresponding to all

target locations within the circle.

Lemma 15. Let s1 . . . s6 be a regular hexagon of side r and center o with a bearing

sensor placed at each vertex, and maximum absolute noise π
6 ≤ α ≤ π

4 . If the target lies

inside a circle of radius
r√
3
centered at o then,

UD({s1, . . . , s6}) ≤ r
(
sin2 α+ 3.76 sinα+ 1.232

)

and, UA({s1, . . . , s6}) ≤ 1.5rUD({s1, . . . , s6}.

s1

s6

s5 s4

s3

s2

a

e
rs1

r s2s3

(a)

r

(b)

Figure 4.4: (a) Based on α, we upper bound the uncertainty when the target lies within

an equilateral triangle or a circle contained within a regular hexagon of sensors. (b) We

pad the three regions with additional sensors to ensure any point in A is enclosed by

an equilateral triangle of sensors.

Lemma 15 bounds the intersection when the sensing wedges are at most a quadrant

(α ≤ π
4), and the target lies within a circle of radius

r√
3
. We can extend the result

in Lemma 15 for α = π
2 − ǫ with 0 < ǫ, to bound the number of sensors placed on a

triangular grid, sufficient to guarantee that the intersection of all wedges is bounded.

53

Theorem 5 shows that when sensing wedges are at least a half-plane (α ≥ π
2), the

resulting intersection can be unbounded in the worst-case.

Lemma 16. Let the maximum absolute sensing noise be α = π
2 − ǫ with 0 < ǫ. If

sin−1

(
1√
3k

)

+ π
6(k−1) < 2ǫ then O(k2) sensors placed on a triangular grid are sufficient

for bounded intersection of sensing wedges when the target lies within a circle of radius
r√
3
.

The proof is given in Appendix B.2.3.

4.4.2 Number of Sensors with Triangular Grid

Lemma 14 gives an upper bound on the uncertainty for a placement of sensors in A,
if there exists an equilateral triangle of sensors enclosing any point in A. Since the

sensors cannot be placed outside of A, regions near the boundary of A may not have an

enclosing equilateral triangle if sensors are placed only on a triangular grid. The three

regions where this occurs are marked A1,A2,A3 in Figure 4.4(b). We place additional

sensors within these regions to ensure that any point in A is enclosed by an equilateral

triangle of sensors. Lemma 17 states that O
(
d2

r2

)

sensors are sufficient to cover a

square of area d× d.

Lemma 17 (Upper Bound on Number of Sensors). If wr = ⌊d/r⌋+1,, wc =
⌊
d/
√
3r
⌋
+1,

br =
⌊

(d− r

2
)/r
⌋

, bc =








d−
√
3r

2√
3r







+1 are the number of sensors in odd and even rows

and columns, respectively of a triangular grid with side r in a square of side d, then

wrwc + brbc + 3(2wr + br) + 8 sensors are sufficient to cover the square with equilateral

triangles of side r.

The lower and upper bounds obtained can be applied to get the main result of this

chapter. Recall from Corollary 2, that an optimal algorithm has to place a sensor within

distance r∗ ≤ U∗
D

2 sinα
(equivalently, r∗ ≤

√

U∗
A

π

1

sinα
) of every point A to ensure the

desired uncertainty. For the triangular grid placement, set the grid length as r =
U∗
D

2 sinα

(respectively, r =

√

U∗
A

π

1

sinα
). Hence, r∗ ≤ r. Corollary 3 gives a lower bound on the

54

number of sensors required for an optimal algorithm in terms of r∗, and Lemma 17 gives

an upper bound for the grid-like placement in terms of r. Lemmas 14 and 15 bound the

uncertainty of the grid-like placement in terms of r. Using r∗ ≤ r and substituting the

value of r, the result in Theorem 4 can be obtained.

The upper bounds from Lemma 14 and 15 reveal that only a small number of

sensors in our placement suffice to achieve uncertainty comparable to that obtained

by combining all measurements. This is useful when there is prior knowledge about

the target location (e.g. a subset of A) and only those sensors corresponding to the

enclosing triangle or hexagon need be queried for their measurements.

Corollary 4. Given a target location x within a square and desired diameter uncertainty

U∗
D (respectively, area uncertainty U∗

A), if sensors are placed on a triangular grid with

side r =
U∗
D

2 sinα
(respectively, r =

√

U∗
A

π

1

sinα
), three sensors are sufficient when 0 <

α < π
6 and six sensors are sufficient when π

6 ≤ α ≤ π
4 to ensure diameter uncertainty

at most 5.88U∗
D (respectively, 7.76U∗

A).

Corollary 4 provides a sensor selection method which may be useful in sensor network

applications with energy or bandwidth constraints that require activating only a small

number of sensors.

4.5 Conclusion

In this chapter, we studied a sensor placement problem for covering an environment

with bearing sensors. Bearing measurements from multiple sensors are used to precisely

locate a target within the environment. We used a bounded uncertainty formulation

which allowed us to represent each measurement as a wedge containing the target’s

location. The quality of the estimated target location was quantified by the diameter

or the area of the intersection of wedges. In this setting, a fundamental question that

arises is: What is the minimum number and placement of sensors that guarantees that

no matter where the target is, or what the actual measurements are, the uncertainty in

the estimate is below a desired level?

This basic question turned out to be surprisingly hard due to the fact that the

quality of the estimation depends on the locations of all sensors as well as the actual

55

measurements. Our results provided insights about the structure of this problem and

yielded a placement scheme with constant-factor approximation guarantees. In partic-

ular, we showed that unless the sensor noise is too large, a placement of sensors on a

triangular grid yields a good performance. Further, (excluding some extreme cases) we

showed that for the triangular grid placement, if a rough estimate of the target location

is available, one can obtain a good estimate by querying only a fixed number of sensors.

This latter sensor selection scheme is particularly appealing for resource constrained

sensor-network applications.

Chapter 5

Multi-Target Visual Tracking

with Teams of Aerial Robots

In this chapter, we study the problem of visually tracking targets that are moving on

the ground using a team of aerial robots. This task routinely appears in a number

of applications. For example, Vermeulen et al. [72] flew a small unmannned aerial

aircrafts at an altitude of 100m to survey the population of elephants in a game ranch

in Burkina Faso. Developing efficient target tracking algorithms, consequently, has

important practical implications.

In previous chapters, we studied coverage problems where our emphasis was on

ensuring every point in the environment was sensed using the least number of sensors.

In this chapter we will consider the dual formulation where the number of sensors,

i.e., the robots, is fixed and instead we would like to achieve the best possible sensing

performance. The overall goal is to plan for the trajectories of the robots in order to

track the most number of targets, and accurately estimate the target locations using

the images. The two objectives can conflict since a robot may fly to a higher altitude

and potentially cover a larger number of targets at the expense of accuracy.

We start by showing that it may not always be possible to track all targets while

always maintaining the optimal quality of tracking (or any factor of the optimal qual-

ity), even if the targets’ motion is fully known. Hence, we focus on the following two

56

57

variants: maximize the number of targets tracked subject to a desired tracking qual-

ity per target, and maximize the sum of quality of tracking for all targets. We show

how the two problems can be formulated as the unweighted and weighted versions of

the Maximum Group Coverage Problem (MGC). A simple greedy approach provides a

1/2 approximation to unweighted MGC [73]. We show that the approximation guaran-

tee also holds for the weighted case which allows a practical solution to the trajectory

planning problem with provable performance guarantees. We evaluate the algorithm

in simulations and preliminary experiments with an indoor platform using four aerial

robots.

The rest of the chapter is organized as follows: We begin with a review of the re-

lated work in Section 5.1. The problem setup and a discussion of the sensing quality

are presented in Section 5.2. The infeasibility of tracking all targets with a constant

factor of the optimal quality is proven in Section 5.3. The tracking algorithm is pre-

sented in Section 5.4, and evaluated through simulations and preliminary experiments

in Sections 5.5 and 5.6 respectively. Section 5.7 concludes the chapter.

5.1 Related Work

Active target tracking is an important problem for robotics, and has been widely studied

under different settings. Spletzer and Taylor [74] considered the problem of tracking

multiple mobile targets with multiple robots. They presented a general solution based on

particle filtering in order to choose robot locations for the next time step that maximizes

the quality of tracking. Frew [75] studied the problem of designing a robot trajectory, as

opposed to just the next robot location, in order to maximize the quality of tracking a

single moving target. LaValle et al. [76] studied the problem of maintaining the visibility

of a single target from a robot for the maximum time. Gans et al. [77] presented a

controller that can keep up to three targets in one robot’s field-of-view.

When the motion of the targets is fully known, the tracking problem can be for-

mulated as a kinetic facility location problem. The goal of the stationary version is

to place k facilities (sensors) given the location of n sites (targets), so as to minimize

the maximum distance between a facility and a site. In the kinetic version, the sites

are mobile and the motion of the facilities is to be designed. Bespamyatnikh et al. [78]

58

and Durocher [79] presented approximation algorithms to control respectively one and

two mobile facilities, when the trajectories for the sites are given. Recently, de Berg et

al. [80] presented improved approximation algorithms with two mobile facilities when

only an upper bound on the velocities of the sites is available. However, the general

problem of kinetic facility location with k facilities is open.

On the other extreme, when no prior information of the targets is available, the

multi-robot tracking problem can be formulated as a coverage problem [81]. Schwager

et al. [82] presented strategies to control the position and orientation of overhead cameras

mounted on aerial robots in order to achieve equal visual coverage of the ground plane.

Unlike previous works, we study the trade-off between quality of tracking, and the

number of targets tracked. We present an algorithm that chooses trajectories for each

robot, instead of choosing just the next best location. This algorithm can be applied

to the following two versions of the problem: tracking maximum number of targets,

and maximizing the quality of tracking. We begin by formulating the problem and

describing the sensing model.

5.2 Problem Formulation

Let k denote the number of robots, and n denote the total number of targets in the

environment. We assume that the robots can communicate with each other at all times.

The position of any robot or target is specified by their 3D coordinates x, y, z. The

position of the ith robot at time τ is denoted by ri(τ). Let zmin be the minimum

flying altitude. All robots have a camera that faces downwards. Let φ represent the

field-of-view angle for the cameras.

Let ti(τ) denote the position of the ith target. ti(τ) is given by the position of a

reference point that the robots can use to uniquely identify any target. For example,

the reference point can be the centroid of a colored patch or a unique feature point on

the object. All targets always move on the ground plane, i.e., z = 0 for all ti.

The reference point of any target ti in the field-of-view of a robot projects to some

pixel in the image. A pixel can be backprojected to a ray in the world frame. In general,

with no other information, it is not possible to solve for the target’s location along this

ray with a single camera measurement. However, since we assume that all targets move

59

−1

0

1

−1

0

1
0

1

2

3

4

5

6

X(m)

R
1

Y(m)

Z
(m

)

(a)

−1 0 1 2 3
0

0.5

1

1.5

2

2.5

3

3.5

4

Area =0.11

Area =0.23

Area =0.26

Uncertainty due to noise in yaw +/− π/24

(b)

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

maximum noise in position +/− [0.2,0.2,0.2]
maximum noise in orientation +/− [π/24,π/24,π/24]

X(m)

Y
(m

)

4

6

8

10

12

14

16

18

20

(c)

Figure 5.1: (a) Backprojection from a pixel yields a pyramid. (b) Uncertainty in target’s

estimate due to uncertain yaw angle of the robot. (c) Map showing the area of projection

for the true target at [x, y, 0] (best viewed in color). The camera pose is estimated to

have position [0, 0, 5]m and roll, pitch and yaw angles as 0 radians. Maximum image

noise is ±5 pixels.

on the ground plane, we can solve for the coordinates of ti.

Ideally, we can exactly estimate ti given an image measurement, the camera pose,

and the projection matrix. In practice, however, the following factors lead to an uncer-

tain estimate of ti:

1. The backprojection of camera pixels, which have quantized, integer coordinates,

is no longer single ray but a pyramid (Figure 5.1(a)).

2. Pixel measurements may be corrupted by noise. If the maximum noise is bounded

by ∆p pixels, we backproject the set of pixels ±∆p around the measured pixel.

The true target location is contained within the larger backprojection.

3. The pose of the camera (or the robot) may not be accurately known. Typically,

using exteroceptive sensors such as GPS and compass, we can bound the maximum

uncertainty in estimating the robot pose. When the robot pose is known up to a

bounded uncertain set, we can compute the backprojection for each pose within

the set (Figure 5.1(b)).

In general, the quality of tracking under the three sources of errors, is a function of

60

the relative distance and angle between the robot and the target, as seen in Figure 5.1(c).

For a given true location of the target and an estimate of the robot pose, Figure 5.1(c)

plots the maximum area of backprojection over all possible noisy measurements of the

target, and all possible true robot poses.

Robots only have an estimate of the true target position while tracking. The un-

certain estimate can be represented as a set of possible target locations on the ground

plane. Given a motion model, the robots can propagate the set to obtain predicted

target position, e.g., using particle filtering [83]. The maximum area of backprojection

can be computed for each predicted target position as shown in Figure 5.1(c).

The quality of tracking for a given target and robot pair can be defined as some

measure of the areas of backprojection found for a predicted target position. Let qi(rj , τ)

denote the measure for target ti and robot rj at time τ . The quality of tracking ti at

τ , is given by the best quality of tracking amongst all robots tracking ti, i.e., qi(τ) =

maxj qi(rj , τ). Finally, the total quality of tracking at τ is given by the sum of quality

over all targets Q(τ) =
∑

∀i qi(τ) over all targets. Alternatively, we may also consider

the bottleneck quality over all targets Q(τ) = mini qi(τ).

5.3 Infeasibility of Tracking All Targets

In this section, we show the infeasibility of tracking all targets while maintaining any

constant factor approximation of the optimal quality of tracking. We prove this by

constructing an instance where the two goals, track all targets and maximize quality of

tracking, conflict each other. We create a simple instance on a line where the quality

of tracking is inversely proportional to the distance between the robot and the target:

qi(rj , τ) = 1/d(ti(τ), rj(τ)) if ti is in the field-of-view of rj , and qi(rj , τ) = 0 otherwise.

The overall quality of tracking will be given by the bottleneck quality Q(τ) = mini qi(τ).

We use the instantaneous optimal quality of tracking, Q∗(τ), as the baseline for

comparison. Q∗(τ) is the quality of tracking at τ , if one were to optimally place all the

cameras at any location for any τ , regardless of their locations before τ . The placement

of k cameras achieving Q∗(τ) may be significantly different from the placement achieving

Q∗(τ − ǫ). There may or may not exist k continuous robot trajectories achieving Q∗(τ).

Nevertheless, Q∗(τ) is an upper bound on the quality of tracking. This raises the

61

question of whether we can at least maintain a constant-factor approximation of Q∗(τ)

while tracking all targets. The theorem given next shows this is not possible, even when

the motion of the targets is fully known.

Theorem 6. Let Q∗(τ) be the instantaneous optimal quality of tracking at time τ . Let

the maximum speed of all targets be v. For any 0 < α ≤ 1 and β > 0, no algorithm

can track n > k targets with at least αQ∗(τ) quality for all τ with k ≥ 3 robots having

a maximum speed of βv.

Proof. Consider Figure 5.2. We have k = 3 robots and n = 4 targets on a line. The

distance between t3 and t4 is 0 at time 0. Targets t1, t2 and t3 remain stationary at all

times, and t4 moves with v = 1 to the right on the line. zmin = 1 and φ = π/4 denote

the minimum flying altitude and field-of-view angles (Section 5.2).

Figure 5.2: At τ = 0, t3 and t4 are covered by the same robot to achieve Q∗(0), where

as for τ > d12, t3 and t4 are covered by separate robots.

If we have 4 targets and 3 robots, then there must exist a robot covering at least

two targets at any given time. At τ = 0, we can verify that the optimal algorithm uses

separate robots to cover t1 and t2, and one robot to cover t3 and t4 (Figure 5.2). That

is, Q∗(0) = 1. Similarly, for any time τ > d12, optimal uses separate robots to cover t3

and t4, and same the robot to cover t1 and t2 making Q∗(τ) =
√
2

d12
.

62

Thus, in any optimal algorithm, of the two robots covering t1 and t2, one will switch

to cover either t3 or t4, after τ = d12. An approximation algorithm, on the other

hand, does not necessarily have to make the same switch. Nevertheless, by setting d12

appropriately, we will show that any approximation algorithm will be required to make

a switch at some time. By making d23 sufficiently large, we will show that such a switch

is infeasible with bounded velocity robots. The rest of the proof shows the existence

of appropriate d12 and d23 values. This construction is similar to the one used by

Durocher [79] to prove the inapproximability of the kinetic k–center problem. For the

case of aerial robots, however, we show how to additionally take into account non-zero

zmin and φ values.

Let ALG be any algorithm that maintains a quality Q(τ) ≥ αQ∗(τ). If we set

d12 >
√
2

α
, then ALG cannot use the same robot to cover t1 and t2 at time τ = 0. Else,

Q(0) < α = αQ∗(0) which violates the approximation guarantee. Hence, ALG uses

separate robots to cover t1 and t2 at time 0.

Similarly, we can show that for any time τ > d12
α
, ALG must use separate robots to

cover t3 and t4. Else Q(τ) <
√
2
τ

< αQ∗(τ) violating the approximation guarantee.

One of the two separate robots, say r, covering t1 and t2 initially, must cover either

t3 and t4 at time τ > d12
α
. In time τ , r must travel at least d23 − 1

α
− d12√

2α
distance.

Here, 1
α
and d12√

2α
come from the condition that Q(0) ≥ α and Q(τ) ≥ α

√
2

d12
.

Consider a time τ = 2d12
α

. At this time, r covers a maximum distance of βτ = β 2d12
α

.

Set d23 > β 2d12
α

+ 1
α
+ d12√

2α
. r cannot simultaneously cover at least one of t1 or t2 at

time 0, and at least one of t3 or t4 at time τ , which is a contradiction. Hence, ALG

cannot maintain an α approximation of Q∗ for all times.

The instance created in the proof above uses minimum flying altitude zmin = 1 and

camera field-of-view angle φ = π/4. We can create corresponding instances for any

other values of these parameters. In light of Theorem 6, we drop the requirement that

all targets must always be tracked. Instead we focus on the case when the robots are

allowed to track a fraction of all targets.

63

5.4 1/2 Approximation Algorithm

In this section, we present the main algorithm to maximize the number of targets

tracked, or maximize the quality of tracking. We divide the time into rounds of fixed

duration. We consider the scenario where using measurements from previous rounds,

the robots are able to predict the motion of the targets for the current round. For each

robot, we create a set of m candidate trajectories that can be followed for the current

round. For example, these trajectories can be generated using existing grid-based or

sampling-based methods [84]. Our goal is to choose a trajectory for each of the robots

for the current round.

Figure 5.3 shows a simple instance with two robots and three candidate trajectories

per robot. The camera footprint along two such trajectories as well as the set of targets

covered by these trajectories are shown. Note that the trajectories need neither be

restricted to any discretized grid, nor have uniform length or uniform speed.

Let Rj(x) denote the set of targets predicted to be covered by xth trajectory followed

by jth robot. We create a set system (X,R) where X is the set of all targets and R is a

collection of all Rj(x) sets. We group sets in R into k collections, one per robot. Each

group contains m sets each. That is,

R = { R1(1), . . . , R1(m)
︸ ︷︷ ︸

candidate trajectories for r1

, . . . , Rk(1), . . . , Rk(m)
︸ ︷︷ ︸

candidate trajectories for rk

} (5.1)

A valid assignment of trajectories can be represented by a map, σ : [1, . . . , k] →
[1, . . . ,m], indicating trajectory σ(j) (i.e., the set Rj(σ(j))) is chosen for the jth robot.

We can remove a target from the set Rj(x) if it does not satisfy a given minimum quality

of tracking requirement.

5.4.1 Maximizing Number of Targets

First consider the case of maximizing the number of targets tracked by k robots. This

problem is a generalization of the maximum coverage problem1 stated as: Choose k

subsets to maximize the cardinality of the union of all subsets. In our case, we cannot

arbitrarily pick k subsets since they must belong to distinct groups (i.e., the same robot

cannot be assigned to two trajectories).

1See Section 2.1 for a review of the maximum coverage problem.

64

Figure 5.3: At the start of each round, we have a set of m candidate trajectories

per robot. The trajectories may be non-uniform and of varying speeds. Using the

predicted motion of the targets, we can determine which targets will be covered for a

given trajectory and the corresponding quality of tracking.

The maximum coverage problem, under group constraints, can be stated as: Choose

k subsets of R given by a map, σ : [1, . . . , k] → [1, . . . ,m] such that the union of all

subsets is maximized. The constraint that the same robot cannot be assigned to two

trajectories is enforced by requiring the output be a map σ. This problem is known as the

Maximum Group Coverage (MGC) problem. Chekuri and Kumar [73] proved that the

greedy algorithm yields a 1/2 approximation for MGC which is also the best possible

approximation. Their algorithm can directly be applied to track half the number of

targets as an optimal algorithm. Our contribution is to extend the analysis to the

weighted case, which is used for maximizing the quality of tracking.

5.4.2 Maximizing Quality of Tracking

For the case of maximizing the overall quality of tracking, we formulate a weighted

version of MGC. Let qi(Rj(x)) be the quality of tracking target ti with robot rj following

the xth trajectory. qi(Rj(x)) can represent the expected quality of tracking as described

in Section 5.2. The weight of any set Rj(x) ∈ R is given by the sum of qualities of all

targets tracked by Rj(x). The objective is to maximize the sum of quality of tracking

65

for all targets.2

The greedy algorithm for the unweighted MGC can be modified for the weighted

setting (Algorithm 2). In each iteration, we choose a set Rj(x) greedily that maximizes

the total weight. We add Rj(x) to the solution, and discard all other sets belonging

to the same group, i.e., all other candidate trajectories for the same robot rj . This

proceeds until we have chosen a trajectory for all robots.

Algorithm 2: Greedy Weighted MGC Algorithm

1 C ← ∅, I ← ∅
2 for p = 1 to k do

3 Find Ri(x) such that Q(Ri(x) ∪ C) is greatest, and i 6∈ I

4 σ(i)← x

5 C ← C ∪Ri(x)

6 I ← I ∪ {i}
7 end

8 Return σ

Theorem 7. Algorithm 2 gives a (1/2−ǫ) approximation for the weighted MGC problem

for any ǫ > 0 in polynomial time.

The analysis by Chekuri and Kumar [73] for the unweighted case can be modified

for this weighted case. We present our full proof in Appendix C.1, for completeness.

We now evaluate the greedy algorithm through simulations and preliminary experi-

ments.

5.5 Simulations

In this section, we describe our implementation of the algorithm, and evaluate its per-

formance through simulations. We carried out the simulations using the SwarmSimX

simulation environment [85]. SwarmSimX is a real-time multi-robot simulator designed

2The bottleneck version of maximizing the minimum quality of tracking over all targets cannot be

applied since not all targets are tracked.

66

for modeling rigid-body dynamics in 3D environments. Models of the MikroKopter

Quadrotor [86] were used to simulate the motion of the robots.

For simulating the targets, we generated random trajectories as follows. Each target

randomly chooses a speed and direction and moves along this direction for a random

interval of time, drawn from a normal distribution. This class of trajectories is motivated

by wildlife monitoring applications where foraging animals have been found to follow

such mobility models [87]. The mean and standard deviation of the normal distribution

were set to 10 s and 1 s, respectively in the simulations.

The target trajectories were restricted to 20 × 20m square on the ground plane.

The initial locations of all targets were chosen uniformly at random near the robot

locations. A moving average filter of window length 5 running at 10Hz was used to

estimate the position and velocity of the observed targets for the next planning round.

A measurement for a target was obtained only if it was contained within the field-of-view

of some robot.

For each robot, we created the following set of candidate trajectories: (a) stay in

place, and (b) radially symmetric along 8 horizontal directions with a speed of 0.5m/s.

Thus, each robot could choose from a set of 9 trajectories in a round. Each round was

set to a duration of 2 s. A trial consisted of 50 rounds.

1 2 3 4 5 6 7 8
10

15

20

25

30

35

40

45

50

Number of robots

N
um

be
r

of
 ta

rg
et

s
tr

ac
ke

d

Max. target speed = 0.5m/s
Max. target speed = 1m/s

(a) (b)

Figure 5.4: (a) Number of targets covered out of 50 targets in the environment. (b)

The average quality of tracking. The weight qi(Rj(x) is computed as the inverse of the

minimum distance between the target and the robot along Rj(x).

67

Figures 5.4(a) and 5.4(b) show the effect of the number of robots and the maximum

speed of the targets. As expected, the number of tracks and quality of tracking increases

as the number of robots increase. Increase in the maximum speeds of the targets has the

effect of spreading them further apart, which further reduces the number of targets that

can be tracked. For these trials, the height of the robots was fixed to 3.5m (i.e., the size

of the camera footprint was fixed). Figure 5.5 shows the total number of targets tracked

in one representative trial as a function of the time. Once the robots have lost track

of a particular target, they do no receive any position information about that target.

Thus, they cannot predict the future locations for a lost target, unless it appears again

in the field-of-view of some robot.

0 20 40 60 80 100
0

5

10

15

20

25

30

Time in sec

N
um

be
r

of
 ta

rg
et

s
co

ve
re

d

Figure 5.5: The number of targets tracked in one trial. As the targets spread the

total number of targets that can be tracked decreases. Once a target moves out of the

field-of-view, the robots cannot predict their future locations.

For the simulations, we did not incorporate the uncertainty due to sensing. In the

next section, we validate the uncertainty model and present results from a preliminary

experiment using 4 aerial robots.

68

Figure 5.6: Experimental setup. Each robot is fitted with a downward facing wireless

camera. All robots directly communicate with a central computer.

5.6 Experiments

In order to validate our sensing model and the algorithm, we performed trials on an

indoor setup (Figure 5.6). The setup consisted of four quadrotors controlled using the

TeleKyb framework [88]. All robots communicated directly with a central computer

via a wireless XBee link. Each robot was fitted with a downward facing camera. The

cameras streamed the live images wirelessly directly to the central computer. An indoor

motion capture system was used for position feedback and the orientation was stabilized

on-board.

5.6.1 Validating the Sensing Model

We first conducted trials to validate the sensing model presented in Section 5.2. A robot

was programmed to fly along a given trajectory at heights of 1m and 1.5m. The motion

of the robot was smoothed, so as to ensure that the roll and pitch angles remained close

to zero. Colored balls were placed on the ground (Figure 5.6). The pink and the

yellow colored balls were fixed to motion capture markers to record their ground truth

locations. All cameras were calibrated to obtain they camera parameters.

Figure 5.7 shows an image obtained using the on-board camera, along with the

69

(a)

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Area =0.76

Area =1.2

X(m)

Y
(m

)

(b)

Figure 5.7: Validating the sensing model. (a) On-board camera image. (b) The true

target location (colored circles) in the global frame, and the estimated locations using

the method described in Section 5.2.

estimated and true locations of the balls. The backprojection area was computed con-

sidering ±5 maximum measurement error in pixels, ±5 cm maximum error in robot

position, ±π/18 radians maximum error in the yaw angle, and ±π/48 radians maxi-

mum error in the roll and pitch angles. The average area of backprojection (for 50

images which contained either the yellow or pink balls) was 0.46m2. The average error

between the centroid of the projected area and the true location was 0.28m, with a

standard deviation of 0.3m.

5.6.2 Tracking Experiment

We implemented the greedy algorithm on four robots. The controller on-board the

robot was set to operate the robots smoothly in near-hovering mode at an average

speed of 0.5m/s. Each round lasted for 3 seconds. The pink and yellow balls were

moved manually (Figure 5.6). For this trial, the locations of the targets were obtained

from the motion capture system. The robots used a moving average filter to predict

the locations of the targets, based on previous measurements. A radius of
√
2m was

found empirically to correspond to the camera footprint when the robots operated at a

height of 2.5m. The robots had one of the four grid neighbors in the z = 2.5m plane

as candidate trajectories.

Figure 5.8 shows the locations of the robots and the targets before and after two key

70

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
−3−2−10123

R
1R

2

R
3 R

4

X
(m

)

Y(m)

t=110 secs
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
−3−2−10123

R
1

R
2

R
3 R

4

X
(m

)

Y(m)

t=113 secs

(a) At t = 110 s, R3 chose the trajectory moving to the left to keep tracking the yellow

target.

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
−3−2−10123

R
1R

2

R
3

R
4

X
(m

)

Y(m)

t=119 secs
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
−3−2−10123

R
1

R
2

R
3

R
4

X
(m

)

Y(m)

t=123 secs

(b) At t = 119 s, R1 chose the trajectory moving to the right to keep tracking the pink

target.

Figure 5.8: Start (left figures) and end (right figures) of two rounds. Dashed trail shows

the locations of the robots and targets in the preceding 5 secs.

rounds: at times 110 s and 119 s. The two rounds show events when the robots predicted

that the target would move out of the coverage area in the next round. Hence, as an

outcome of the greedy algorithm, the robots chose corresponding trajectories in order

to continue to track the targets.

The sensing validation and tracking trials presented here demonstrate a proof-of-

concept implementation of the components of our system. Our future efforts are directed

towards performing large scale experiments with this system.

71

5.7 Conclusion

In this chapter, we studied a visual tracking problem in which a team of robots equipped

with cameras are charged with tracking the locations of targets moving on the ground.

We discussed the sources of uncertainty that affect the quality of estimating the locations

of ground targets using overhead images. We showed the infeasibility of tracking all

targets while maintaining the optimal quality of tracking, or any factor of the optimal

quality, at all times. We then formulated the target tracking problem where the goal is

to assign trajectories for each robot in order to maximize the quality of tracking. When

we are given a set of candidate robot trajectories, we showed how the problem can be

posed as a combinatorial optimization problem. A simple and easy-to-implement greedy

algorithm applied to this problem yields a 1/2 approximation. Finally, we presented

results from simulations and preliminary experiments validating the sensing model and

demonstrating the feasibility of implementing the algorithm.

Chapter 6

Sampling Algorithms with Aerial

and Ground Robots (Precision

Agriculture)

In Chapters 3 and 4, we saw how to cover an environment using stationary sensors.

In this chapter, we will study coverage problems for mobile robots. Unlike stationary

sensors, robots have to travel to various locations in order to cover the environment.

Hence, not all points in the environment will be sensed simultaneously. Consequently,

we must optimize the motion of the robots in order to minimize the coverage time.

Furthermore, robots have limited on-board energy. Hence, they may not be able to

cover the environment completely. Again, we must optimize their motion so as to cover

as many points as feasible. In this chapter, we study how to find coverage tours for

ground and aerial robots that address the aforementioned challenges.

We start by introducing a new problem of planning a minimum time coverage tour

when we want to optimize not just the travel time for the robots, but also the time

for measurements. The input to this problem is given by a set of disks, not all of the

same radius, lying in the plane. The coverage tour must obtain a measurement in each

disk. The total time is given by the sum of the traveling time and the measurement

time (number of measurements times some fixed time per measurement). Our objective

is to minimize the total time by choosing a sampling location in each disk, and a tour

72

73

that visits the chosen sampling locations. We term this as the Sampling Traveling

Salesperson Problem with Neighborhoods (SamplingTSPN).

SamplingTSPN generalizes the classical Euclidean Traveling Salesperson Problem

(TSP) [89]. In Euclidean TSP, the objective is to find a minimum length tour that visits

a given set of points lying in the plane. Arkin and Hassin [52] introduced a variant of

TSP, termed TSP with Neighborhoods1 (TSPN), where instead of visiting each point

exactly, we are given a set of geometric neighborhoods (e.g. disks), and we want to

find a minimum length tour that visits at least one point in each neighborhood. In

SamplingTSPN, the total time, which is a combination of both the tour length, and

the number of samples, is to be minimized. We can reduce the total time by combining

samples of overlapping disks. As we show in Section 6.2, a TSPN tour may perform

arbitrarily worse when directly applied to SamplingTSPN.

In the first part of this chapter, we present an O
(
rmax

rmin

)

approximation algorithm

for SamplingTSPN, where rmin and rmax are the smallest and largest radii of the input

disks. SamplingTSPN models the problem of obtaining ground measurements in our

motivating application of precision agriculture. Precision agriculture is a data-driven

technique to estimate and predict the health of crops in a farm, and use this to design

targeted fertilizer treatment plans [18]. A key component of precision agriculture is data

collection. We propose a prototype robotic system consisting of an Unmanned Ground

Vehicle (UGV) and an Unmanned Aerial Vehicle (UAV) for autonomous soil and aerial

data collection, respectively. Obtaining a soil measurement with a UGV takes some

time. We show how to formulate the problem of obtaining ground measurements as a

SamplingTSPN instance, and show how to apply our SamplingTSPN algorithm.

In the second part, we study the corresponding coverage problem for the UAV.

Unlike soil measurements, aerial measurements, i.e., multi-spectral aerial images in our

application, can be obtained instantaneously. However, small UAVs have a limited

battery life. Visiting all input points in a large plot may not be feasible. Hence, we

study the problem of maximizing the number of points visited subject to the maximum

battery life. The general problem of visiting the most number of points subject to a

budget is called orienteering. Instead of using the UAV alone, we consider the scenario

where the UAV can land on the UGV, and use the UGV to travel to the next take-off

1See Section 2.3 for a review of TSP and TSPN problems.

74

locations. Consequently, the number of points visited will be higher subject to the small

energy cost of take-off and landing. We show how to model this capability in the form

of a metric graph, which allows applying constant factor approximation algorithms for

this problem.

Finally, we present results from simulations using real data collected from an agri-

culture plot. We also present results from preliminary field experiments for the UAV

conducted in an agriculture plot.

Our contributions can be summarized as follows as follows: We begin by presenting

the related work in Section 6.1. We then formulate the SamplingTSPN problem,

and present the O
(
rmax

rmin

)

approximation algorithm. In Section 6.3, we introduce our

motivating application of precision agriculture. In Section 6.4, we show how to plan

for the symbiotic UAV+UGV paths for obtaining ground and aerial measurements.

Simulation results based on field data are presented in Section 6.5, and preliminary

field experiments are presented in Section 6.6. We finally conclude with a discussion of

future work in Section 6.7.

6.1 Related Work

The problem of designing sensor trajectories and the related problem of selecting sensor

locations has recently received much attention. Low et al. [90] presented a control law

to minimize the probability of misclassification in a Gaussian Process map. The authors

enforce measurements to be taken continuously, and sensors to only move along a 4-

connected grid. Zhang and Sukhatme [91] presented an adaptive search algorithm for

finding the optimal sensor path to estimate a scalar field. Song et al. [92] presented an

algorithm to localize multiple radio sources using a mobile robot. They presented upper

bounds on the time required to localize the sources up to a desired probability. In all

these works, the sensing model is assumed to be continuous (i.e. no time cost), unlike

our work where we penalize discrete measurements explicitly.

Instead of labeling certainty, Krause et al. proposed Mutual Information as a mea-

sure of uncertainty [93]. An algorithm to place sensing locations was given which can

closely approximate the optimal increase in Mutual Information. The work was extended

75

to mobile sensor routing in [94] and multiple robots in [95]. Since we are designing algo-

rithms for a heterogeneous sensor network, and use different objective functions, these

results are not directly applicable.

The SamplingTSPN problem generalizes the TSPN problem. Dumitrescu and

Mitchell [2] presented an 11.15-approximation algorithm for TSPN when the neighbor-

hoods are possibly-overlapping unit disks centered at each site. The main difference in

SamplingTSPN and TSPN is that our cost is not just the traveling time of the tour,

but also the total time taken for obtaining soil measurements. Finding a minimum

length/time path does not necessarily ensure that the robot takes fewer soil measure-

ments, and the cost for the UGV tour is not necessarily minimized.

Bhadauria et al. [96] studied the problem of computing a minimum time data col-

lection tour for k robots tasked with wirelessly collecting data from deployed sensors

by visiting a point in the sensor’s communication range. In their model, robots spends

time for both traveling and downloading data from robots. Tekdas et al. [97] extended

this model to the case where the communication range consists of two disks centered

at the sensor and the inner ring requires less download time than the outer. In these

problems, the robot has to separately query each sensor whereas in our model, the robot

can combine soil measurements for multiple points by sampling the intersection of their

neighborhoods.

In [98], Alt et al. studied the problem of covering a given set of points with k radio

antennas with circular ranges, where the algorithm has to choose the center and radius

ri for each circle. They consider a cost function which is a weighted sum of the length

of the tour and the sum of rαi for each disk (α models the transmission power for the

antennas). The main difference between this problem formulation and ours is that we do

not require the number of samples i.e., k, to be fixed. Instead our formulation penalizes

higher k in the cost function.

The problem of maximizing the number of points visited by the UAV subject to a

battery lifetime constraint is modeled as an orienteering problem. Blum et al. [19] pre-

sented a 4-approximation to the orienteering problem for complete graphs with metric

edges. We show in Section 6.4 how to model the problem of selecting most input points

can be solved as an orienteering problem by constructing a complete graph with metric

edges.

76

Recently, there has been a significant interest in developing cooperative aerial and

ground/surface/underwater robot systems. Grocholsky et al. [99] described a system

with coordinating aerial and ground vehicles for the application of detecting and locating

targets. Sujit and Saripalli [100] studied the problem of exploring an area to detect

targets using an UAV and inspecting the targets with Autonomous Underwater Vehicles

(AUV). The authors compared in simulations three strategies to address the trade-off

between quickly exploring the environment for all targets, and minimizing the latency

between detection with UAVs and inspection with AUVs. Tanner [101] presented control

laws for the UGVs to form a grid of sensors and UAVs to fly in a formation over the

grid, such that a target moving on the ground can be detected if it moves from one grid

cell to the other.

The main difference between existing literature and our work is that we explicitly

consider that the UAV can be carried between takeoff locations by the UGV in the sensor

planning phase. The resulting plan found by our algorithm may consist of multiple

deployments for the UAV, which increases its coverage with limited battery.

Next, we formulate the SamplingTSPN problem and present our main algorithm.

6.2 Sampling TSPN Problem

The SamplingTSPN problem is defined as follows: Given a set of disks with centers

at points X and maximum and minimum radii rmax and rmin respectively, find a tour τ

of N distinct sample locations to minimize the cost len(τ) + Cg ·N such that each disk

contains a sample location, where Cg is the cost of obtaining each measurement.

SamplingTSPN generalizes TSPN with disk neighborhoods. The objective in

TSPN is to minimize only the length of the tour. A natural strategy for finding a

SamplingTSPN tour would be to first find a TSPN tour, and then choose sampling lo-

cations on this tour. However, this approach may lead to bad solutions (see Figure 6.1).

Instead, we present an algorithm which finds a tour whose length is at most O
(
rmax

rmin

)

of the optimal length, and which obtains at most a constant times the optimal number

of measurements, yielding a O
(
rmax

rmin

)

approximation.

77

(a) (b)

Figure 6.1: Solving SamplingTSPN by first finding a TSPN tour, and then choosing

sampling locations on this tour can lead to bad results. (a) The TSPN tour presented

in [2] visits all the disks by touring the circumference of each disk in the Maximal

Independent Set (one shown shaded). This tour will be forced to take a separate mea-

surement for each outer disk and thus have O(n) measurement locations. (b) In general,

we are not forced to move along the circumference and can visit a smaller number of

locations where the disks overlap.

6.2.1 Overview of the GridSample Algorithm

Our algorithm works in three main stages. In the first stage, we find a tour that gives us

the order in which to visit a carefully chosen subset of the disks. In the second stage, we

find a set of candidate sampling locations for each disk. In the third stage, we perform

local detours to the tour to visit sampling locations for all disks. The details of each

stage are presented next. We will refer to our algorithm as GridSample.

Stage 1. The first stage of GridSample is similar to the standard algorithm for

finding a TSPN tour of unit disks [2]. We replace each disk in X with a larger disk of

radius rmax. Let X
′ be this new set of disks. We find a Maximal Independent Set (MIS),

i.e. a set of non-overlapping disks, in X ′. Then, we find a TSP tour of the centers of

the disks in the MIS. This tour, denoted by TC , gives us the order in which to visit the

disks in M .

This completes Stage 1. Note that TC visits only a subset of all disks in X. We will

78

now find a candidate set of sampling locations for all the disks, and add local detours

to TC to visit the set of sampling locations.

Before we present our approach, consider the following straight-forward approach

for finding the set of candidate sampling locations. Draw a square grid with side rmin

about each disk in the MIS. Extend the grid so that any disk that intersects with a disk

in the MIS lies within the grid. Now add a local detour to TC as follows: every time a

new disk in the MIS is visited, visit and obtain a sample at all the grid locations near

this disk.

This guarantees that we obtain a sample for each of the input disk inX. However, the

number of grid locations will be O
(
rmax

rmin

)

per disk in the MIS. On the other hand, there

could possibly be a single location within each MIS disk, where an optimal algorithm

can obtain a sample. Thus, this approach would yield an O
(
r2max

r2min

)

approximation

with respect to the number of measurements. Instead, the following procedure will

obtain a constant factor approximation with respect to the number of measurements,

and guarantee an overall O
(
rmax

rmin

)

approximation for SamplingTSPN.

Stage 2. We first find the smallest sized set of points, such that there exists at

least one point in the interior of every disk in X. Consider the arrangement of disks

in X in the plane. We create a set of points P by placing a point in each face of the

arrangement. For each point in p ∈ P , let R be the set of disks containing p. Let R
be the collection of such sets for all points in P . We then solve a geometric hitting set

problem for the set system (P,R). The hitting set solution finds the minimum number

of points in P such that each disk in X has at least one such point in its interior. Finding

the minimum number of points is NP-complete in general. However, there exist efficient

approximation algorithms, e.g., (1 + ǫ)–approximation in [102], that we can use. Let C

be the result from the hitting set algorithm.

Stage 3. We will add local detours to the tour TC computed in Stage 1 to visit

the candidate sampling locations C. Instead of visiting a point in C, however, we will

impose a grid and visit grid points neighboring C. This allows us to bound the length

of the tour, while simultaneously bounding the number of measurements.

Let x be some center along the tour TC . Let N(x) ⊂ C be the set of all candidate

locations corresponding to disks in X whose centers are at most 2rmax from x. These

79

are disks that are completely contained inside a disk of radius 3rmax centered at x.

Figure 6.2: The point p marked by a star is the output from solving a hitting set

problem. We compute grid locations G(p) (filled circles) at a distance of at most 2rmin

from p. Lemma 18 guarantees that any disk containing p having radius greater than

rmin, also contains at least one point from G(p).

Let p ∈ N(x) be any such candidate location (Figure 6.2). We impose a grid of

resolution rmin over the entire plane. Let G(p) be the set of all grid points within

distance 2rmin from p. There are at most 25 such grid points. In Lemma 18 we will

show that any disk having radius greater than rmin that contains p must contain at least

one grid point in G(p). Hence, we can restrict our samples to only grid points without

missing any disks.

The final tour is obtained by modifying the TSP tour of the centers as follows: After

having visited x, instead of continuing on to the next center, the tour visits the set of all

grid points within a distance of 3rmax of x. Along this tour, we add a sampling location

every time a grid point belonging to G(p) for some p ∈ N(x) is encountered. Let S be

the set of all sampling locations.

In general, S contains more sampling locations than necessary. As post-processing,

we greedily choose a smaller subset of S such that each disk contains one sampling

location. Having found this subset, we can compute a TSP tour of just these locations

as the final tour. The construction described above allows us to conveniently bound the

performance of the algorithm.

80

6.2.2 Performance Analysis of the GridSample Algorithm

In Lemma 18 we show the correctness of the algorithm by proving that S has at least one

sampling location in each input disk (not just the larger disk). In Lemma 19 we upper

bound the number of candidate sampling locations, and in Lemma 20 we bound the

total distance traveled. Finally, these results are combined to prove the approximation

ratio of our algorithm in Theorem 8.

Lemma 18. Let S be the set of all candidate sampling locations in GridSample.

Then, for each disk in X, there exists a point in S lying in its interior.

Proof. The set S of sampling locations is computed based on the solution C to the

hitting set problem. For any disk in X centered at x, there exists a point p ∈ C lying in

its interior. Since we choose sampling locations from the grid, our algorithm may not

be able to choose p. However, we show that by including at most 25 points for each

point in the hitting set, we can hit all disks.

G(p) is the set of grid points within 2rmin of p. Instead of sampling at p, we sample

at some grid point in G(p) (Figure 6.2). Let D be any disk in X that contains p. We

will show that at least one grid point, say p′ ∈ G(p), is also contained in D. Draw a

disk D2 centered at p, with radius 2rmin. Any disk of radius rmin contained completely

within D2 must also contain at least one point of G(p). Replace D by a smaller disk,

say D1, such that D1 has a radius rmin, D1 is contained completely within D, and D1

contains p. D1 is completely contained within D2. Hence, D1 contains some point of

G(p).

Next, we will show that this point p′ is also included in S. We have one of two cases,

either the larger disk centered at x lies in the MIS or not. If it lies in the MIS, then p′ is

within 3rmax of x and we are done. If not, then the larger disk of radius rmax intersects

some other larger disk, centered at say x′, lying in the MIS. Hence, the distance between

x and x′ is at most 2rmax, which implies that p′ is at most 3rmax away from x′. Hence,

in both cases, p′ will be in S.

Lemma 19. If N∗ is the number of samples by an optimal algorithm for the general

SamplingTSPN problem and S is the set of grid locations computed in GridSample,

then |S| ≤ 25(1 + ǫ)N∗.

81

Proof. N∗ is the minimum number of points, such that there exists at least point per

disk in X. The set C can be found using any constant-factor approximation for this

hitting set problem. For example, using the algorithm in [102], we have |C| ≤ (1+ǫ)N∗.

For each point in C, we add at most 25 points in S. Hence, |S| ≤ 25|C| ≤ 25(1 + ǫ)N∗.

Lemma 20. Let TALG be the tour constructed by GridSample, and T ∗ be the tour for

the optimal SamplingTSPN algorithm. Then len(TALG) ≤ O
(
rmax
rmin

)

T ∗.

Proof. For ease of notation, in this proof we refer both a tour and its length by T , and

T ∗ refers to an optimal tour.

Denote by TI and TC the TSPN tour of the MIS and TSP tour of the center of the

MIS respectively. Let n be the total number of disks in the MIS. Now

T ∗
C ≤ T ∗

I + 2nrmax (6.1)

≤ T ∗ + 2nrmax. (6.2)

The first inequality follows from the fact that a tour of the centers can be constructed

by taking a detour of at most 2rmax for each disk from the tour of the disks. The second

inequality comes from the fact that the optimal tour is also a tour of the disks in the

MIS.

TALG consists of a TSP tour of the centers of the disks in MIS and a tour of the

grid locations within 3rmax of the center. Using the (1 + ǫ)-approximation for the TSP

tour [51] we get,

TALG ≤ (1 + ǫ)T ∗
C + 36n

rmax

rmin
rmax + 6n(1 +

√
2)rmax (6.3)

Here, 6 rmax
rmin

are the number of horizontal rows in the grid traversed, each horizontal row

has a length of 6rmax. The last term accounts for moving from the center of the disk to

the start and end of the grid, and moving vertically along one column.

Using Theorem 1 from [97], we know that the length of any tour that visits n non-

overlapping disks of radius rmax is at least n
2 0.4786rmax. That is, T ∗ ≥ n

2 0.4786rmax.

This gives, nrmax ≤ 2
0.47T

∗.

82

Therefore,

TALG ≤ (1 + ǫ) (T ∗ + 2nrmax) (6.4)

+

(

36
rmax

rmin
+ 6 + 6

√
2

)

nrmax (6.5)

≤ (1 + ǫ)T ∗ +

(

36
rmax

rmin
+O(1)

)

nrmax (6.6)

≤ O
(
rmax

rmin

)

T ∗ (6.7)

Theorem 8. GridSample gives a valid SamplingTSPN tour with cost O
(
rmax

rmin

)

times that of the optimal tour, where rmax and rmin are the radii of the largest and the

smallest of the input disks, respectively.

Proof. Let C∗ be the cost of the optimal algorithm for the general SamplingTSPN

problem. Therefore, C∗ ≥ T ∗+N∗ ·Cg, where T ∗ is the optimal TSPN tour visiting all

disks, and N∗ is the minimum number of sample locations such that each disk has at

least one sample location.

Consider the cost of our algorithm,

CALG = TALG + |S| · Cg, (6.8)

≤ O
(
rmax

rmin

)

T ∗ +O(1)N∗ · Cg, (6.9)

≤ O
(
rmax

rmin

)

C∗. (6.10)

where the first inequality comes from Lemmas 19 and 20.

In the next sections, we will formulate the informative path planning problem for

our motivating application of precision agriculture as a SamplingTSPN instance. We

begin by describing the application.

6.3 Motivating Application: Precision Agriculture

Precision agriculture is a data-driven technique to determine the status of crops and the

corresponding fertilizer treatment plans for a specific agriculture plot. We use nitrogen

83

deficiency as a proxy for the status of the crops. We want to label each point in the

plot accurately based on the level of nitrogen present at that point. If any point has

a high probability of being mislabeled, we can obtain ground and aerial measurements

near this point and reduce the risk of being mislabeled. In this section, we show how to

identify points whose probability of being mislabeled, based on a prior nitrogen map, is

above a threshold. We term these as Potentially Mislabeled (PML) points. The set of

PML points thus identified will form as the input to the sensor planning algorithms.

Our approach can be summarized as follows:

1. We first identify the set of PML points, Xpml, from a given prior nitrogen map

(Section 6.3.1). We then show how to compute a disk centered at each such point,

such that an expected measurement within this disk is sufficient to reduce the

mislabeling probability below a user-defined threshold.

2. Next, we find (an approximation to) the largest subset of the PML points, Xs ⊆
Xpml, that can be visited by the UAV using the symbiotic UAV+UGV system,

subject to its maximum battery lifetime constraint (Section 6.4.1). The UAV

obtains aerial measurements for each PML point in Xs.

3. Finally, we compute the UGV tour to obtain ground measurements for each PML

point in Xs (Section 6.4.2). This tour is obtained by applying the SamplingTSPN

algorithm from Section 6.2 to the set of disks, corresponding to Xs, computed in

step (1) above.

We begin by describing how to compute the PML points.

6.3.1 Finding Potentially Mislabeled Points

Our operating environment is a farm plot discretized into a set of points X = {x1, x2, · · · , xn}.
We want to estimate the level of Nitrogen (N) at each point in X by combining ground

and aerial measurements. We use Gaussian Process regression to estimate the N levels

using the two types of measurements [103].

Previously obtained measurements are used to build a prior N level map. For each

point we associate a most likely estimate as N(xi), with variance of the estimate given

by σ2(xi). Our task is to find regions in the plot with similar N levels. For example,

84

the task can be to classify each point in the plot into three labels: low N, medium N,

and high N. In general, we are given a set of labels, and each label Li is specified by a

minimum and maximum N level, L−
i , L

+
i respectively.

Since we do not have access to the true N levels and instead have a distribution

N(xi), we associate with each label a probability of being correct. We define Plj(xi) as

the probability that the label j for point xi is correct Plj(xi) = P(L−
j ≤ N(xi) < L+

j).

Labels can then be assigned to points based on which is most likely to be correct, given

the estimates of N levels at each point. We use the shorter notation Pl(xi) to denote

the probability of the most likely label.

We define PML points as all points in X for which the probability of the most-likely

label being incorrect is below a user-desired value Pd ∈ (0, 1).

Xpml = {xi ∈ X : pmislabeled(xi) ≤ Pd}. (6.11)

Our goal is increase the probability of the label being correct by taking soil and aerial

measurements near the PML points.

The previous equation expresses an upper bound on the probability that N(xi) is

below the minimum value of the current label, L−(xi), or above the maximum, L+(xi).

Let Φ(a) denote the Gaussian cumulative distribution function. Then we have,

pmislabeled(xi) ≤ Pd (6.12)

∴ Φ

(
L−(xi)−N(xi)

σ(xi)

)

+ 1− Φ

(
L+(xi)−N(xi)

σ(xi)

)

≤ Pd (6.13)

Taking measurements near xi will reduce σ(xi) due to the spatial correlation of

the N values. For any value of N(xi), there exists a corresponding σ(xi) such that

Equation 6.13 as follows.

First, we define the constant ∆(xi) for each PML point,

∆(xi) = min
(
|L+(xi)−N(xi)|, |L−(xi)−N(xi)|

)
(6.14)

Now Equation 6.13 can be expressed more conveniently as,

2 · Φ
(−∆(xi)

σ(xi)

)

≤ pmislabeled(xi) ≤ Pd (6.15)

85

Rearranging the previous equation yields the desired value for σ(xi) as,

−∆x

Φ−1

(
Pd

2

) ≥ σ(xi) (6.16)

We will use the shorthand σd for the left hand side of Equation 6.16 since σd can be

calculated from prior data, and can be treated as a constant. For each point, there will

be a different σd depending on the exact value of N(xi), and the current most likely

label L(xi).

Let the measurement location be denoted z, and the sensor noise of the measurement

be σs. The correlation between the N levels at z and xi is modeled by the Gaussian

Process equations [103]. Thus the new variance at xi, conditioned on the measurement

at point z, satisfies,

σ2(xi|z) = σ2(xi)−K(xi, z)[K(z, z) + σ2
s]

−1KT (xi, z) (6.17)

The function K(·, ·) is the covariance or kernel function of the Gaussian Process

[103]. We fix K(·, ·) to be the squared exponential function, which is commonly used in

precision agriculture [104].

Recall from Equation 6.16, σ2(xi|z) should be no greater than σ2
d. Given the mea-

surement location z, Equation 6.17 simplifies as follows,

σ2
d − σ2(xi) ≥ −σ4

f (σ
2
f + σ2

s)
−1 exp(− 1

2l2
||xi − z||2) (6.18)

σf and l are the hyperparameters of the covariance function, which are previously learned

from the data.

After further rearrangement and taking the natural log of both sides,

||xi − z||2 ≤ −2l2 log[(σ2(xi)− σ2
d)(σ

2
f + σ2

s)σ
−4
f]. (6.19)

Denote the right hand side of Equation 6.19 by ri. Thus, for every PML point

xi ∈ Xpml (i.e., points where N estimates do not satisfy Equation 6.16), we can find

a disk of radius ri centered at xi. A sample obtained inside this will yield sufficiently

small variance on N(xi) to determine the proper label with probability higher than Pd.

An example of a field, the field labels, and the points with high mislabeling probability

are shown in Figure 6.3.

In the next section, we show how to plan for the ground and aerial measurements

where the input is the set of PML points and their corresponding disks.

86

(a)

0 50 100 150 200 250 300 350 400
0

50

100

150

200

250

300

350

400

(b)

0

50

100

150

200

250

300

350

400
0 50 100 150 200 250 300 350 400

(c)

0 50 100 150 200 250 300 350 400
0

50

100

150

200

250

300

350

400

(d) (e)

Figure 6.3: A generated random field using the GP parameters learned from the soil

dataset. (a) The ground-truth samples obtained at location marked by a cross, along

with the GP regression. (b) The data partitioned into three labels: low, med, high. (c)

The variance of the sampling. The variance has a regular pattern, since the samples were

obtained along a grid. (d) The mislabel probability. Note that it is high in many places,

even though the variance is roughly uniform and low since the mislabel probability also

depends on the value N(x). (e) The points at which the labeling certainty is below Pd,

and the corresponding ranges described in Equation 6.19.

87

6.4 Symbiotic UAV+UGV Path Planning

In this section, we describe the algorithms to find the UAV and UGV tours that visit

the PML points. We first show how to compute the UAV tour, and then apply the

SamplingTSPN algorithm to find the UGV tour.

6.4.1 Planning for Aerial Measurements

The main limitation for the UAV is the limited on-board energy. The UAV may not be

able to visit all input PML points. Consequently, we consider the problem of maximizing

the number of PML points visited subject to the maximum battery lifetime. We reduce

this to the orienteering problem. Let G(V,E, π, w) be a graph with weights w(u, v) on

edges, and rewards π(v) on the vertices. The objective in the orienteering problem is to

find a tour of a subset of vertices collecting maximum reward, with the constraint that

the sum of weights of edges on the tour is less than a given budget.

Instead of using the UAV alone, we consider the scenario where the UAV and UGV

operate together, in order to increase the number of points visited. The UAV can land

on the UGV, and the UGV can carry the UAV between deployment locations, thus

saving energy. However, the UAV still spends some energy taking-off and landing on

the UGV. We show how to model this trade-off for the symbiotic UAV+UGV system

as an orienteering instance.

First consider the case of finding the maximum subset of points in a UAV-only

system. For simplicity, let the camera footprint be a single point for now. Let the

vertices of the graph be the set of PML points and let each vertex have unit reward.

We add an edge to G between every pair of points with weight equal to the Euclidean

distance between the points. The budget for the UAV equals the battery lifetime minus

2Ca to account for the single takeoff and landing. The solution for the orienteering

problem for this instance will be a path traversing a set of PML points (with a single

landing and take-off location).

Since the edge weights are Euclidean distances, this graph is a complete metric graph.

Blum et al. [19] presented a 4-approximation for orienteering problems on undirected

metric graphs. Applying this algorithm to the graph we constructed above will yield a

UAV tour visiting at least 1/4th of the PML points visited by the optimal algorithm.

88

0 50 100 150 200 250 300 350
100

150

200

250

300

350

400

2

1

4

4

1

2

2

4

2

4

(a) Vertices with rewards

0 50 100 150 200 250 300 350
100

150

200

250

300

350

400

(b) UAV tour from orienteering

0 50 100 150 200 250 300 350
100

150

200

250

300

350

400

(c) Final Sampling TSPN

0 50 100 150 200 250 300 350
100

150

200

250

300

350

400

(d) Final UGV+UAV Tours

Figure 6.4: Path Planning Algorithm. (a) Square grid of resolution C/
√
2. The reward

for visiting each grid point (red square) is the number of PML points (gray star) falling

within the grid. (b) UAV tour found using orienteering on the graph of grid points. For

this instance, UAV budget was 500 secs out of which 200 secs are spent traveling and

240 secs are spent for the 2 ascents/descents. (c) Sampling TSPN tour (Section 6.2) for

the UGV. (d) Final UGV tour including UAV take-off locations (red squares).

89

Now consider the case of a UAV+UGV system. The UGV can transport the UAV

between two PML locations, without affecting the UAV’s battery life. Furthermore,

since the UAV carries a camera with a footprint of diameter C, it can sample a point

without flying directly over it. Hence, we will also modify the set of vertices. The

detailed construction of the input graph for the orienteering problem is given in Algo-

rithm 3.

Algorithm 3: Creating Input Graph G.

1 Create a square grid of resolution C/
√
2 over the plane. Each point in Xpml is

associated with its nearest grid location (Figure 6.4(a)). Store the number

(denoted by π(v)) of PML points associated with a grid location.

2 Let V be the set of grid vertices with at least one PML point associated. For

each v ∈ V , let π(v) be the number of associated PML points (Figure 6.4(a)).

3 Build a complete undirected graph G = {V,E, π, w}. For each edge between

(u, v) ∈ V , add a weight w(u, v) = min{d(u, v), 2Ca}. This implies there are two

types of edges between grid points: The UAV can either use the UGV to travel

paying only for the ascent/descent (2CA) or travel directly between points paying

the distance cost (d(u, v)).

The following lemma shows that the resulting graph G is a metric graph.

Lemma 21. The graph G constructed in Algorithm 3 is a metric graph.

Proof. We verify G is a metric graph. Consider a triple of vertices u, v, w. We know

w(u, v), w(v, w), w(w, u) ≤ 2Ca. It is easy to see the triangle inequality holds when two

or three edges have weights equal to 2Ca. Consider the case when only one edge has

weight equal to 2Ca, say w(u, v) = 2Ca. Now, w(v, w) + w(w, u) = d(v, w) + d(w, u) ≥
d(u, v). Since w(u, v) = min{2Ca, d(u, v)} = 2Ca, we have d(u, v) ≥ 2Ca. Hence,

w(v, w) + w(w, u) ≥ w(u, v). And since w(u, v) = 2Ca and w(v, w), w(w, u) < 2Ca,

w(u, v) + w(w, u) ≥ w(v, w) and w(u, v) + w(v, w) ≥ w(w, u). For the case when all

three edges have weights less than 2Ca, the weights are equal to Euclidean distances.

Hence, weights satisfy triangle inequality in addition to symmetry, identity and non-

negativity. Hence, the graph constructed above is a complete metric graph.

90

Since G is a metric graph, we apply the algorithm in [19] to obtain a 4-approximation

for this problem.

6.4.2 Planning for Ground Measurements

The main limitation for the UGV is the time required to obtain a soil measurement. The

UGV tour must minimize the total time required to obtain all measurements. The input

consists of a set of PML points, along with their corresponding disks. The SamplingT-

SPN algorithm presented in Section 6.2 can directly be applied to this problem. The

resulting tour yields an O
(
rmax

rmin

)

approximation to the optimal tour (Figure 6.4(c)).

This UGV tour does not include the UAV landing and take-off locations. We can add

all the take-off locations to measurement locations determined from SamplingTSPN.

A TSP tour of the combined set of points yields the final tour (Figure 6.4(d)).

Next, we study the performance of the two sensing algorithms through simulations

based on field data.

6.5 Simulations

In the previous sections, we showed theoretical bounds on the number of PML points

selected and the distance traveled by our algorithm with respect to optimal. We expect

the UAV+UGV system to sample more PML points as compared to a UAV-only system

with the same battery limitations. We investigate this through simulations based on

actual system parameters and real data collected from an agricultural plot.

6.5.1 System Description

We present the details of the robotic system we are developing to motivate the choice

of our simulation parameters. Our UGV is a Husky A200 by Clearpath Robotics [105].

The UGV has a typical battery life of two hours on a single charge. The operating

lifetime can be extended to over six hours easily with additional batteries. The UGV

will measure soil organic matter as a proxy for soil N supply to the crop using a Minolta

SPAD-502 Chlorophyll meter [106].

Our UAV is a Hexa XL by MikroKopter [86]. This UAV can operate for a maximum

of 25 mins (under ideal conditions). Deploying the UAV to approximately 100 meters

91

100 200 300 400 500 600 700

20

40

60

80

100

120

140

x(m)

y(
m

)

Figure 6.5: Soil organic matter data set from [3]. Dense sampling was collected by hand

(black crosses) and used to train a Gaussian Process. The resulting estimate of nitrogen

levels is shown as the contour map. From this data set we learn the sensor noise values

σa and σg, as well as model the underlying soil organic matter for larger simulations

(Figure best viewed in color).

height gives the camera a 50 meter diameter coverage with a single image. The UAV

takes about 2 minutes to ascend/descend this height. The images include multi-spectral

information, such as near-infrared reflectance, which is used to estimate the crop N

status [3].

6.5.2 Modeling

To generate realistic data, we need a generative model of nitrogen levels and realistic

values for the sampling noise for both systems. We will briefly discuss how we obtained

these from an existing nitrogen remote sensing and soil sampling dataset [3]. The data

from [3] consists of 1375 soil measurements taken manually in a 50m by 250m corn field,

along with corresponding 1m spatial resolution remote sensing images in the green (G),

red (R) and Near Infrared (NIR) portions of the spectrum. The samples were taken

along a dense uniform coverage (see Figure 6.5) and provided the levels of soil Organic

Matter (OM). R and NIR are known to be inversely related to crop N status [3].

We used OM as a proxy for the initial quantity of soil N supplied to the crop. We

modeled the UGV as taking direct measurements of OM, corrupted by some sensor noise

with variance σ2
g , and the UAV as measuring the Normalized Difference Vegetation Index

(NDVI), which is a combination of NIR and R levels [18]. We assume the NDVI levels

are corrupted by sensor noise with variance σ2
a. The noise variances were estimated to

be σa = 0.31 and σg = .05 for our dataset, using the following procedure.

To model the spatial patterns of the OM levels, we used GP regression over the

92

set of sample points and OM measurement values. This densely-sampled GP defined

the hyperparameters which were used to generate new ground-truth N maps in our

simulations. We used the GPML Toolbox [107] for performing the GP regression.

As part of the ground-truth GP regression, we can estimate the sample noise at

each point from the data directly (σs in Equation 6.17). We used this value directly as

σg, since we assumed the robot would have the same sensing capability as the human

operators. To estimate σa, we calculated the sample covariance between NDVI (from

the hand-measured R and NIR levels) and OM (measured directly), yielding the 2× 2

matrix,

[

σ2
OM σOM,NDVI

σNDVI,OM σ2
NDVI

]

(6.20)

From the above equation, we can find the variance in OM given a measurement of

NDVI, and use this as the UAV sensor noise as,

σ2
a = σ2

OM|NDVI = σ2
NDVI −

σ2
OM,NDVI

σ2
OM

(6.21)

In simulations, we formed a prior estimate of OM levels by down sampling each

randomly-generated ground-truth N-map by a factor of 20 and fitting a new GP. We

randomly generated 100 N-maps for a 600× 400 m field. For each randomly generated

prior GP, we found the PML point set as described in Section 6.3 using a desired labeling

probability of 0.6. The number of PML points in any instance depends on the randomly

generated map.

6.5.3 Results

We first compare the number of PML points covered by the UAV+UGV system versus an

UAV-only system. We use the procedure described in Section 6.4 for finding the subset

of PML points visited by the UAV-only and the UAV+UGV system, subject to the

battery constraint of 25 mins. We used the implementation from the SFO Toolbox [108]

for finding an orienteering tour, and the Concorde TSP solver [109] as a subroutine in

the Sampling TSPN algorithm implementation.

Figure 6.6 shows a sample run from the simulations. We observe that the UAV-

only tour is constrained to only one part of the field, whereas the UAV+UGV system

93

0 100 200 300 400 500 600

0

50

100

150

200

250

300

350

400

(a) UAV-only tour visiting 38 PML points

0 100 200 300 400 500 600
−50

0

50

100

150

200

250

300

350

400

450

(b) UAV+UGV tour visiting 50 PML points

0 100 200 300 400 500 600
−50

0

50

100

150

200

250

300

350

400

450
Posterior PML points with UAV only

(c) 35 Posterior PML points with UAV-only

tour

0 100 200 300 400 500 600
−50

0

50

100

150

200

250

300

350

400

450
Posterior PML points with UAV+UGV

(d) 11 Posterior PML points with UAV+UGV

tour

Figure 6.6: Sample simulation instance. (a) & (b) shows the tours found using a UAV-

only and UAV+UGV system. The input consists of 75 PML points. The UAV+UGV

tour consists of 6 subtours. (c) & (d) shows the PML points found in the updated N

level map after incorporating aerial and ground measurements. The UGV allows the

UAV to transport to farther locations in the plot which is reflected in fewer posterior

PML points.

94

1 1.2 1.4 1.6 1.8 2 2.2
0

5

10

15

20

Ratio of PML points visited
with UAV+UGV and UAV only

(a)

0 0.5 1 1.5 2
0

5

10

15

20

25

30

Ratio of Posterior PML points
with UAV+UGV and UAV only

(b)

Figure 6.7: Histograms of the ratio of (a) number of PML points visited, and (b) number

of posterior PML points generated after updating the N map with simulated measure-

ments for UAV+UGV system and a UAV-only system, for 100 random instances. Both

systems are given an equal budget of 25 minutes.

can obtain measurements from farther away locations. This input instance consisted

of 75 PML points, the UAV-only tour covers 38 points whereas the UAV+UGV tour

covers 50 points. Figure 6.7 shows a histogram of the ratio of the points covered by the

UAV+UGV and the UAV-only tours for 100 random instances. As expected, the ratio

is always greater than 1 as the UAV+UGV system is at least as good as a UAV-only

system in terms of the number of points visited. Table 6.1 shows the effect of varying

the budget on the percentage of input PML points visited.

Table 6.1: Percentage of input PML points visited (avg. of 30 instances).

Budget (sec) UAV-only UAV+UGV

500 19 25

1000 36 49

1500 55 72

The UAV+UGV system can cover points that are spread across the field. Intu-

itively, if the measurements are distributed across the field, we expect the resulting

map (after incorporating the measurements) to have fewer mislabeled points than if

95

all measurements are nearby. After calculating the desired UAV/UGV tours, random

measurements for the sensors were sampled directly from OM values given the dense

(ground truth) GP. We added noise to the measurements using estimated variances

σa = 0.31 and σg = 0.5 as described in Section 6.5.2. These values were then used

to update the prior GP, which was then used to find the posterior PML points. We

observe the posterior PML points in Figures 6.6(c) & 6.6(d). For a fair comparison, we

add UGV measurements for each PML point visited by a UAV-only tour, in obtaining

the updated N level map.

Figure 6.7(b) shows a histogram of the ratio of the posterior PML points with a

UAV+UGV system and a UAV-only system. Since the number of PML points depend

on both the variance, and the estimated N(x) values, occasionally there are instances

when the number of posterior PML points with UAV-only system are lesser than that

of UAV+UGV system. However, as we can observe in Figure 6.7(b) the UAV+UGV

system often outperforms the UAV only system in terms of number of posterior PML

points.

6.6 Field Experiments

Figure 6.8: Preliminary field experiment with a UAV carrying a multi-spectral camera

in a corn plot in Janesville, MN, U.S.A. Visible and near-infrared images shown were

obtained from an altitude of 30m during the experiment.

We conducted proof-of-concept field experiments with the prototype system which

is under development. Our current system capabilities include data collection with

96

an autonomous UAV (Figure 6.8). The experiments were conducted in a corn plot at

Janesville, MN, U.S.A. The corn plot is a 122m × 61m site for studying the effect

of fertilizer treatments on nitrogen stress. The UAV was fitted with a multi-spectral

camera from Tetracam [110]. Figure 6.8 shows the visible and NIR images obtained from

30m altitude. A camera footprint of diameter C = 30m was determined empirically for

a flying altitude of 30m.

A prior estimate was built using dipole data as a proxy for the nitrogen level map.

The dipole data consists of ground measurements of electrical conductivity of the soil.

The conductivity, in turn, depends on the land elevation, soil moisture, and soil texture.

Elevation changes lead to water run-off leading to changes in the nitrogen levels due to

leaching. The prior estimate built using the dipole data is shown in Figure 6.9(a), and

the elevation map of the plot is shown in Figure 6.9(b).

0 50 100 150 200
0

20

40

X(m)

Prior Map

Y
(m

)

30

40

50

(a)

0 50 100 150 200
0

20

40

X(m)

Elevation (m)

Y
(m

)

329

330

331

332

(b)

Figure 6.9: (a) Prior map built using dipole measurements as proxy for nitrogen levels.

Dipole measurements of the soil conductivity depend on the elevation and soil moisture

and texture, which in turn affect nitrogen levels. (b) Elevation map of the test site.

(Figures best viewed in color)

Each point in the prior map was labeled as either high or low, using the average

97

prior map value as the threshold. The desired maximum probability of mislabeling was

set of Pd = 0.45. 169 PML points were identified based on this (Figure 6.10(a)). These

points were partitioned into a grid of resolution C/
√
2. The orienteering algorithm was

run on the graph constructed using the grid. All the tours were computed considering a

nominal UAV speed of 4m/s. The waypoint following controller on-board the UAV was

programmed to maintain this speed. The typical battery lifetime of the UAV at this

speed was observed to be approximately 600 s. The UAV can potentially cover all the

input PML points in 600 s. Since the goal of this experiment was to demonstrate the

proof-of-concept implementation for a larger setup, we restricted the battery lifetime to

200 s.

Figure 6.10(c) shows the UAV tour found for a UAV-only system. The number of

points visited by the UAV increase from 102 with a UAV-only system to 134, using a

UAV+UGV system. Figure 6.10(b) shows two deployments computed for a UAV+UGV

system. Figure 6.10(d) shows the GPS coordinates of the UAV during actual execution

of the two deployments given in Figure 6.10(b). We programmed the UAV to take-

off and land from the same location at one of the corners of the plot where we were

stationed (instead of the locations computed by the algorithm) for safety purposes.

6.7 Conclusion

In this chapter, we studied two coverage problems motivated by the use of robots in

precision agriculture. Precision agriculture uses data from ground and aerial sensors in

order to estimate and predict the status of crops. Obtaining a soil measurement from

a ground robots requires spending some time. With this as motivation, we introduced

a new coverage problem, termed SamplingTSPN, which penalizes the time spent in

traveling and the time spent for obtaining measurements, given a set of input disks

within which measurements must be obtained. We presented an O
(
rmax

rmin

)

approxi-

mation algorithm where rmin and rmax are the minimum and maximum radius of input

disks. Aerial images, on the other hand, can be obtained instantaneously. However,

small UAVs have limited on-board energy. We studied the problem of maximizing the

number of points visited by the UAV, subject to its maximum battery lifetime. Un-

like traditional approaches, our algorithm takes into consideration the situation where

98

0 20 40 60 80 100 120 140 160 180 200

0

10

20

30

40

169 PML Points found

X(m)

Y
(m

)

(a)

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

102 PML points visited

(b)

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

134 PML points visited

(c)

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

134 PML points visited

(d)

Figure 6.10: (a) 169 PML points were found after classifying the prior map into two

labels. (b) The camera footprint along a UAV-only tour covered only 102 PML points

(marked by larger star, in red) with a maximum budget of 200 s. (c) UAV+UGV tour

consisted of two paths, and covered 134 of the PML points with the same budget. (d)

GPS coordinates of the UAV for executing the tours in (c).

99

the UAV can land on the UGV and thus be carried between points without expending

energy.

We have started building the complete system using a Clearpath Husky A200 as the

ground robot. In order to execute the algorithms presented in this chapter, additional

capabilities such as soil sampling and autonomous landing are necessary, which are part

of our future work.

Chapter 7

Coverage and Tracking with

Autonomous Boats (Monitoring

Invasive Fish)

In this chapter, we study a practical application for the coverage and tracking tasks seen

in the previous chapters. Our motivating application is that of autonomously monitoring

radio-tagged invasive fish in Minnesota lakes. We describe a prototype robotic sensing

system designed for this application along with coverage and tracking algorithms that

are motivated by sensing constraints observed in practice.

Invasive fish, such as the common carp, pose a major threat to the ecological integrity

of freshwater ecosystems around the world. Presently, these fish are controlled using

non-specific toxins which are expensive, ecologically damaging, and impractical in large

rivers and lakes. Recent studies in small lakes have established that common carp

aggregate densely at certain times and regions within the lakes [10]. Their population

can be controlled by targeting these aggregations using netting. To predict the locations

of aggregations within a lake, biologists surgically implant radio tags on some fish, and

use radio antennas to track them periodically (Figure 7.1). Manually locating tagged

fish in large, turbid bodies of water is difficult and labor-intensive making them a prime

candidate for automation using a robotic sensing system.

In this chapter, we describe our system developed for autonomously monitoring the

100

101

Figure 7.1: Left: Fish biologists manually tracking carp. Right: Targeted removal of

the carp aggregation in Lake Lucy, MN, USA, using a large under-ice seine. Over 95%

of all carp in this lake were captured in 4 hours. Photos courtesy of Peter Sorensen.

radio-tagged carp using robotic boats (Figure 7.2). In winter, the system uses a wheeled

robot to operate on the frozen lakes. The process of locating tagged fish consists of

a coverage phase followed by an active target localization phase. We formulate the

coverage and localization problems by grounding them in practical constraints observed

in our system.

Figure 7.2: Robotic sensing system for monitoring radio-tagged carp in lakes. A direc-

tional radio antenna is mounted on a pan-tilt unit. In winter, the system employs a

wheeled robot to operate on frozen lakes.

The goal in the coverage phase is to locate the tagged fish within the sensing range of

the radio antenna (around 50m). Common carp are known to loiter in a region (called

home ranges) for long periods of time [21]. Instead of covering the entire lake, the

102

coverage algorithm takes as input a set of regions likely to contain the fish. We present

approximation algorithms for finding a minimum length tour to cover all regions and

report results from field executions.

In the active localization phase, the goal is to accurately estimate the location of the

tagged fish, assuming they remain relatively stationary. The radio antenna, in addition

to detecting the tags, also has directional properties. The antenna can be rotated

to obtain a bearing measurements towards the tag. However, these measurements are

noisy. We propose three active localization strategies to compute measurement locations

so as to localize stationary tagged fish precisely. We evaluate these through simulations

and compare their performance using experiments with a reference radio tag. Finally,

we present large scale field experiments where the robots carry out both coverage and

active localization tasks in order to locate reference radio tags as well as radio-tagged

fish.

The rest of the chapter is organized as follows: We start with the related work

in Section 7.1. We describe the system architecture, low-level navigation algorithms

and preliminary tests with the radio antennas in Section 7.2. The coverage algorithms

along with their analysis and field trials are presented in Section 7.3. In Section 7.4, we

describe the three active localization strategies, followed by results from simulations and

experimental evaluation. Finally in Section 7.5, we report results from field experiments

where the robot executed both coverage and localization phases for locating reference

tags and radio-tagged fish.

7.1 Related Work

Marine robotics has seen significant activity in recent years. Numerous groups across the

world are involved in designing and developing marine robotic systems for various appli-

cations such as tracking dynamic phytoplankton [111], autonomous bathymetry [112],

ship hull inspection [113], guarding naval assets [114], and collecting biological data

from stationary sensors [115]. The underwater robotic system developed by Clark et

al. [116] to track tagged leopard sharks is closest to our application. The recent sur-

vey by Dunbabin and Marques [117] provides an excellent overview of environmental

monitoring systems, many of which employ marine robots.

103

The robotic coverage problem has been well studied in the literature (c.f. [118]).

Typically, the emphasis is on covering unknown environments and the objective is to

guarantee that all points are eventually covered. In our problem, the environment itself

is known and the goal is to cover all points in the minimum time. This is closely related

to the Traveling Salesperson Problem (see Section 2.3 for a review).

In the localization phase, we perform active, bearing-only target localization. In

one of the earlier works on this problem, Hammel et al. [119] used the determinant

of the Fisher Information Matrix (FIM) as the objective function to be maximized,

and numerically computed an optimal open-loop trajectory for a robot in the case

where measurements are obtained continuously. The resulting trajectory follows a spiral

shape, but is an open-loop trajectory which does not depend on the actual measure-

ments the robot obtains. Frew [75] presented a feedback strategy for tracking targets

with bearing measurements obtained using monocular vision. The strategy is based

on a state-exploration tree, and a trajectory is obtained using breadth-first search for

the minimum uncertainty. Recently, Zhou and Roumeliotis [120] considered the ac-

tive localization problem for a team of robots capable of taking range and/or bearing

measurements towards a moving target. They consider maximum speed and minimum

sensing range constraints, and plan for the next best sensing location using the trace of

the posterior covariance matrix as the uncertainty measure.

What differentiates our problem from these works is that each measurement in our

system takes a long time, and the uncertainty in measurements is considerably larger.

We address these factors in our strategy by using the best worst-case behavior as our

objective function, and limit the number of measurements as part of our planning pro-

cess. Since the completion of the work presented in this chapter, we have developed a

new active localization algorithm [121] which provides strong theoretical performance

guarantees, as well as performs robustly in practice.

We start with an overview of the system and present our search and active localiza-

tion strategies in Sections 7.3 and 7.4 respectively.

104

7.2 System Description

Our system consists of a robotic platform with on-board sensors, radio tags and receiver,

and a directional antenna. We discuss each of these in turn.

7.2.1 Robots

The hull of our robotic platform (Figure 7.1) is theQBoat designed by Oceanscience [122].

The QBoat has dimensions of 182cm × 71cm, and can carry a payload of approximately

40kg. The boat is capable of a maximum speed of 1.65m/s. An on-board 12V, 30Ah

NiMH battery allows approximately two hours of continuous operation. In winter, once

the lakes are frozen, we use a wheeled robot as the main platform.

The electronics on-board the robots (Figure 7.3) consist of a laptop running high-

level software, an Atmel micro-controller board for low level interface, radio receiver

equipment (described in the following section), a digital compass and a Garmin 18x

Global Positioning System (GPS) unit. We also have a remote override radio control

system that can directly control the boat, if desired.

We have a modular software architecture based on the Robot Operating System

(ROS), comprising of packages for navigation, localization, simulation, and reading

sensor data. ROS allows remote monitoring of data from another computer on the

shore via an ad-hoc network formed with the on-board laptop. The electronics and

software can be easily transferred to between the two platforms. At the core of the

navigation package for the boat are the waypoint following routine described next and

an EKF-based localization routine similar to the catamaran solution presented in [123].

7.2.2 Navigation Routine

The boat uses on-board GPS and compass sensors as feedback for navigation. A simple

control algorithm is used to generate the steering angle θ for the boat. The propeller

is always set to move in the forward direction. While going from starting point A to

destination point B, the angle by which the boat should steer depends upon the current

heading Hheading, the angle made by the line AB, denoted by Hstart and the angle made

by the line joining the current position of the boat to the destination position, called

105

Micro-controller

Motor

controller

Laptop Receiver

Battery
GPSCompass

Figure 7.3: Top view of the electronics compartment: On-board electronics comprises

of a laptop, GPS, micro-controller board, batteries, digital compass, motor controller,

and radio receiver.

Hdest. The desired change in the heading, ∆H, of the boat is then given by,

∆H = α(Hstart −Hheading) + (1− α)(Hdest −Hstart) (7.1)

θ = kp∆H (7.2)

where α is a weighting factor.

The first term in Equation 7.1 gives the error between the starting heading and

the current heading, where as the second term calculates the error between the current

heading and the desired heading. The steering angle θ is set proportional to the error

∆H. The weighting factors α, β and the constant of proportionality, kp, were determined

experimentally.

Waves and wind can potentially throw the boat off the straight line which would

require large error correction. Hence, we constantly check to see if the boat is within

a particular band drawn about the line AB. If the boat drifts outside of this band on

either side, we make a new call to the method with the current position and heading of

the boat as the starting point towards the same destination.

106

Hdest
Hgps

Hrobot

Hstart

B

C

Figure 7.4: Waypoint navigation between points A and B. Hgps is the track obtained

from the GPS and Hrobot is the heading obtained of the robot. Hrobot is shown with

slight error with respect to true heading of the boat. Hdest is the desired heading.

7.2.3 Radio Tag and Receivers

For sensing the fish, we use radio tags manufactured by Advanced Telemetry Systems

(ATS) [124]. A complete fish sensing system by ATS consists of radio tags, a loop

antenna connected to a radio receiver, and a data logger which provides the computer

interface for the receiver. Each radio tag emits a short pulse roughly once per second.

The radio antenna (shown on top of the boat in Figure 7.2) is used to detect these

pulses.

The radio receiver reports the received signal strength of the pulse. We conducted a

set of experiments1 to understand the relationship between signal strength and detection

distance. These experiments were conducted at Lake Riley in Eden Prairie, Minnesota.

A reference frequency tag was inserted under the water in the middle of the lake at a

depth of about 1 meter. The robot was directed in a straight line away from the tag,

with the antenna was always pointing towards the tag (i.e. the received signal strength

was always at the maximum for the directional antenna).

The plot of the observed readings with respect to distance is shown in Figures 7.5(a)

for a depth of 1 meter. The maximum distance from the tag up to which the signal was

1The experiments reported in this subsection were conducted using an earlier version of the system

described in [125].

107

5 10 15 20 25 30 35 40 45 50
0

50

100

150

200

S
ig
n
al

S
tr
en

gt
h
(u
n
it
s)

Signal Strength vs. Distance

Distance (meters)

(a) Depth: 1m, Maximum Detection Distance:

49m

0 2 4 6 8 10 12 14 16 18 20
0

50

100

150

200

S
ig
n
al

S
tr
en

gt
h
(u
n
it
s)

Signal Strength vs. Distance

Distance (meters)

(b) Depth: 2m, Maximum Detection Distance:

20m

Figure 7.5: Plot of signal strength vs. distance with least squares linear fit. A reference

tag was immersed at different depths under water and the corresponding signal strength

was measured by moving the boat along a straight line away from the tag.

received for this trial was approximately 49 meters. It can be observed that the signal

strength decreases with respect to distance, in general. However, this relation is also a

function of the depth of the tag in the water. We repeated the same experiment varying

the tag depth to 2 and 4 meters. The plots for the experiment with depth of 2 meters

is shown in Figure 7.5(b). In this case, the tag was only detected up to a distance of 20

meters, while for a depth of 4 meters, this distance further reduced to 10 meters. This

makes localizing with only signal strength measurements difficult since the depth of the

fish is not known. Therefore we rely only on the directional nature of the antenna, and

obtain a bearing measurement towards the tag. Our method for estimating the bearing

is presented in Section 7.4.

The tag on each fish is assigned a unique frequency. The receiver can be programmed

to tune in on one or more frequencies. In the coverage phase, we program the receiver

to loop through a list of frequencies of tagged fish present in the lake. To reliably detect

a pulse from a tag, the receiver needs to stay tuned on the corresponding frequency

for more than one second since the tags emit pulses at about 1Hz. After detecting

a radio tagged-fish in the coverage phase, we program the receiver to tune only to

the corresponding frequency and switch to the localization phase. In the coverage

108

phase, described in the next section, we do not rotate the antenna or obtain bearing

measurements, since the goal of this phase is only to detect the presence of a tag.

7.3 Coverage

The first phase of our monitoring task is to search for all tagged fish in the lake. One of

the current models for carp mobility suggests that each fish moves to its preferred region

in the lake during day time, and remains in that region for long periods of time [21]. To

increase the efficiency of our system, we restrict our attention to only those regions of

the lake which are likely to contain the fish (Figure 7.6). We assume that these regions

are connected in the sense that there is a path between any two points. We also assume

the fish remain stationary for the duration of covering a region.

The radio antenna has limited sensing range. A given robot path is said to cover

a point if the point lies within the sensing range of the robot at some instance along

the path. The coverage problem can be defined as follows: Given a set of connected

regions R = {R1, R2, . . . , Rn}, find a minimum length tour which covers every point in

each region Ri ∈ R.

A possible approach for solving this problem is based on the Traveling Salesper-

son Problem (TSP). We can discretize each region with a resolution dependent on the

sensing range (Figure 7.6), and compute a TSP tour of this set of points. However,

approximation algorithms for TSP usually require a metric graph, which is typically

represented as a complete graph whose vertex set is the point set to be covered. In

such a representation the number of edges is quadratic in the number of points. As the

lake size or the sampling granularity increases, maintaining and operating on this large

graph can become infeasible.

The coverage problem defined above is a generalization of Euclidean TSP and conse-

quently NP-Hard. Next, we present a general approach for solving the coverage problem

and show that the length of the path using this approach does not deviate significantly

from the length of an optimal tour.

109

R1

R2

R3

Figure 7.6: We incorporate domain knowledge to restrict the coverage region for the

fish to a given set of regions, e.g. R = {R1, R2, R3}. A simple approach of discretizing

these regions and finding a TSP tour becomes infeasible when the regions are large.

7.3.1 Algorithm Description

Our general approach is composed of two steps. First, we compute a tour τR that visits

all the regions in R exactly once. We say that region Ri is visited if any point in Ri

is visited by the tour. The tour τR imposes an ordering on the regions, and defines

(possibly same) entry and exit points for each region. The entry and exit points are

where τR intersects a region for the first and the last time. Such a tour is not necessarily

a solution to the original problem, since it is not guaranteed to cover all points in each

region. We compute a coverage tour CRi
for each region Ri ∈ R independently, starting

and finishing at the entry and exit points for each Ri. The final tour τ is constructed

by augmenting the coverage tours of each region to the visiting tour τR.

We now analyze the performance of this algorithm. Let OPT be an optimal tour

which visits and covers all the regions in R in minimum time. Let τ∗R be the optimal

tour which visits all the regions in R. Since OPT also visits all the regions in R,

we have |OPT | ≥ |τ∗R|, where |τ | denotes the length of tour τ . Let C∗
Ri

be the optimal

coverage tour for a region Ri. OPT covers every region in R therefore, we have |OPT | ≥

110
∑

Ri∈R |C∗
Ri
|.

Suppose we use an α-approximation algorithm for computing τR and a β-approximation

algorithm for finding the coverage tour of each region. Then the tour τ obtained by

visiting the regions according to the order given by τR, and covering each region inde-

pendently when it is visited, has a cost of at most α|τ∗R|+
∑

Ri∈R β|C∗
Ri
|. Equivalently,

|τ | ≤ α|τ∗R|+
∑

Ri∈R
β|C∗

Ri
| ≤ α|OPT |+ β|OPT |

∴ |τ | ≤ (α+ β)|OPT |

Therefore, this approach costs at most a factor (α+ β) of an optimal algorithm.

We now present algorithms for the two components of the strategy: computing a

tour that visits the regions and covering the regions with specified entry and exit points.

7.3.2 Visiting the Regions: TSPN and the Zookeeper Problems

Computing a tour τR that visits all the regions depends on the geometric properties of

the regions. This problem is commonly known as TSP with Neighborhoods (TSPN).

Most geometric instances of the TSPN problem are NP-Hard. In general, we can use

constant-factor approximation algorithms for TSPN (e.g., [54, 55]) to find τR and α.

In our application, it is reasonable to model the lake as a simply-connected region,

i.e., without any obstacles. Furthermore, regions of interest where the fish may lie are

usually close to the shore. If the regions are convex polygons touching the boundary of

a simply-connected lake then the tour can be computed using the so-called zookeeper’s

route [126]. This special case of the TSPN can be solved optimally (α = 1) in polynomial

time due to the following lemma.

Lemma 22 ([126]). Let R = {R1, R2, . . . , Ri, . . . , Rn} be a set of convex regions located

along the perimeter of a simply connected polygon P . There exists an optimal solution

for visiting the regions in R which visits them in the order they appear along the boundary

of P .

Once the ordering of the regions is known, the shortest tour visiting all regions can

be calculated using dynamic programing. The exact solution is given in [126]. We use

a simpler solution by discretizing the boundary of the regions for determining the entry

111

and exit locations for each region. We build a table C(i, si) which stores the length of a

tour that enters the region Ri at location si for the first time. The entries of the table

are computed using the following recurrence:

C(i, si) = min
ti−1

[

min
si−1

(C(i− 1, si−1)) + d(ti−1, si)

]

, (7.3)

where si−1 and ti−1 lie on the boundary of Ri−1 and d(x, y) is the Euclidean distance

between points x and y. The cost of entering the region Ri at point si is equal to the

minimum cost of reaching the previous region, Ri−1, entering at location si−1, plus the

shortest distance from Ri−1 to Ri, d(ti−1, si). By Lemma 22, the ordering of the regions

is optimal. Since we cover all possible values of t and s, the algorithm computes an

optimal solution up to the discretization error.

To turn these tours into coverage paths, we need a way to cover a region with

specified entry and exit points. We next present such a technique when the regions are

arbitrarily oriented rectangles. Rectangles are both easy to specify and general enough

for practical purposes.

7.3.3 Covering Regions with Given Entry and Exit Points

The algorithm presented in Section 7.3.2 generates an entry and exit point for each

region. These points impose a constraint on our algorithm for finding a path that covers

the rectangle. The following lemma shows that we can cover a rectangle satisfying this

constraint, and be only a constant factor away from an optimal coverage path without

such constraints. We assume that the rectangle has an x × y grid imposed on it, such

that visiting all grid cells covers the rectangle.

Lemma 23. Let R be a rectangle with a grid imposed on it. Let s and t be two grid

points on the boundary specified as entry and exit points. There exists a tour T which

starts at s, visits every grid point and exits at t such that the length of T is at most

twice that of an optimal tour which visits every grid point but can start and end at any

points on the boundary of R, not necessarily s and t.

Proof. Let π be the optimal path to cover R without any restrictions on the starting

and ending points. When R is a rectangle, π is a boustrophedon path which visits every

point exactly once.

112

s

ta

b

Figure 7.7: Covering a rectangle with given entry and exit points (s and t) with a 2-

approximation: Follow π from s to a, complete π, follow π from b to t. In the worst-case

the optimal path π is covered twice.

Suppose that π starts at a and ends at b. Note that s, t ∈ π. Without loss of

generality, we assume that t is between s and b along π (See Figure 7.7). We form a

coverage path from s to t using π as follows: From s, go to a along π and come back

to s by retracing these steps. Then go to b from s along π (passing through t). Finally,

arrive at t from b along π. This path visits every point on π and has length at most

twice that of π.

The result is tight; when the input is a rectangle with one side length equal to r,

and s = t, each point is covered twice.

To summarize, we showed that the following algorithm for covering rectangles along

the boundary of a lake is an (α+ β)-approximate algorithm with α = 1 and β = 2.

1. Compute the shortest tour τR which visits each region in R using the dynamic

programming solution presented in Section 7.3.2. This algorithm returns an entry

and exit point for each rectangle, along with their ordering.

2. Follow τR as follows: Starting from the entry point of an arbitrary region, whenever

a region is visited, cover it using the strategy given in Lemma 23 which ends at

the exit point. Move to the entry point of the next region given by τR and repeat

till all regions are visited.

113

7.3.4 Experiments

(a) Coverage regions

−100 0 100 200 300 400 500 600

−500

−400

−300

−200

−100

0

Coverage Path

X(m)

Y
(m

)

Input regions
Coverage path
Coverage waypoints

(b) Coverage path found using our al-

gorithm.

−200 −100 0 100 200 300 400 500

−500

−400

−300

−200

−100

0

X(m)

Y
(m

)

Robot Path, with non−zero dcc signals by frequency

 Path
48111
48271
48351
48471
48751
49691

(c) Actual path executed by the

robot.

Figure 7.8: Coverage experiment conducted at Lake Phalen, MN, USA. (a) the four

input regions, (b) the path found by the algorithm described in Section 7.3, (c) the

actual path followed by the robot during coverage. The robot traveled a total distance

of 5.6km in about 87min. Locations where signals from radio-tags were detected are

also marked, along with their frequencies.

We implemented this coverage algorithm on our robotic boat and evaluated it

through field trials at Lake Phalen, MN, USA. The input regions for one such trial

are shown in Figure 7.8(a) (chosen arbitrarily for testing our algorithm). The series of

offline waypoints generated by our algorithm are shown in Figure 7.8(b). We used an

empirically determined sensing range of 50m to generate the boustrophedon paths. The

actual trajectory executed by the robot is shown in Figure 7.8(c). The robot traveled a

total distance of 5.6km in about 87min while executing this trajectory.

114

While moving along the coverage path at certain locations, the robot detected signals

from five radio-tagged fish and a reference tag present in the lake. These robot locations

are marked with the corresponding tag frequency in Figure 7.8(c). The actual position

of the fish can be anywhere within a distance equal to the sensing range from these

locations. To better localize the fish, we switch to the active localization phase whenever

we detect a signal on one of the tuned frequencies. We describe our algorithms for the

localization phase next.

7.4 Active Localization

The objective of the localization phase is to use bearing measurements from the radio

antenna to localize a tagged fish accurately once it is found during the coverage phase.

The robot must choose sensing positions which provide the most information about the

location of the tag. We use an EKF to estimate the position of the tag and represent

the uncertainty in the position of the tag with its covariance. We seek sensing locations

which minimize the determinant of the covariance matrix.

We begin by describing how to use the signal strength output of the radio receiver

to obtain a bearing towards the tag.

7.4.1 Measurement Model

The received signal strength varies with the relative angle of the plane of the loop

antenna with the tag. If the tag is directly aligned with this plane, the signal strength

is highest. Since the antenna is mounted on a pan-tilt unit we can rotate it and sample

the signal strength as a function of the relative angle from the robot.

Figure 7.9 shows a subset of the samples obtained by rotating the antenna in steps

of 15◦ over [−90◦, 90◦]. The true bearing angle is −30◦. As we can see, the values

around the true bearing are all high. This makes finding a single bearing direction from

the maximum signal value difficult. Instead, we fit a function to the samples obtained,

and find the maximum value of this function. After trying different models and fitting

methods, we concluded that least squares fitting of a cubic polynomial works best for

our system. We found this reliably estimated the bearing to the tag to within 15◦.

Note that the bearing obtained is an infinite line (as opposed to a directed ray),

115

−100 −80 −60 −40 −20 0 20 40 60 80
90

95

100

105

110

115

120

125

130

135

Data
LS cubic
RANSAC
SINE

Figure 7.9: A coarse sampling and the corresponding estimates. The horizontal axis is

the bearing and the vertical is the measured signal strength. In general, least squares

estimation of a cubic polynomial provided the best estimates.

and hence there is ambiguity in the obtained bearing. For example, if α is the direction

with maximum signal strength, then α and α+π are both valid bearing measurements.

We disambiguate by moving along either α or α+ π and checking if the signal strength

increases or decreases. A detailed description of other methods for disambiguating the

measurements is given in [127].

7.4.2 Optimization of Robot Motion

Since measuring the bearing takes time (about 1min), the estimation must be performed

using a small number, say k, of measurements. Further, these locations must be chosen

in an online fashion as the measurements become available. We present three strategies

to compute k sensing locations, and compare their performance in simulations and real-

world experiments. All three active localization strategies require an initial estimate of

the tag. In [128], we presented a scheme to initialize the target based on two bearing

measurements taken from different sensing locations. In [129], we presented a slower

116

but more robust initialization scheme which uses only the radio detection signals. Given

this initial estimate, we propose the following three strategies to determine the next k

sensing locations.

FIM

The Cramer-Rao Lower Bound (CRLB) for an unbiased estimator is a lower bound on

the estimation error covariance. This lower bound is equal to the inverse of the FIM

(denoted by I) for the k measurements. The determinant of I is inversely proportional

to the square of the area of the 1-σ uncertainty ellipse, and is commonly used as the ob-

jective function to be maximized. For k bearing measurements with zero-mean Gaussian

noise, the determinant of I (denoted by |I|) is given as,

|I| = 1

σ4

k∑

i=1

k∑

j=1

[
sin(θi − θj)

didj

]2

(7.4)

where θi and di is the angle and distance from the ith sensing location to the true target

location.

We impose a grid of size n × n centered at the current position of the robot. To

compute the k sensing locations, we exhaustively consider each of the
(
n2

k

)
combinations

as a candidate trajectory, and compute |I| for each. An optimal trajectory can then be

chosen as one with the minimum value of |I|.

Greedy

Instead of computing a fixed path for the k measurements, we can use an online greedy

strategy which picks the next sensing location based on the current estimate and un-

certainty of the position of the tag. Given the current robot and tag estimates, Greedy

considers all neighboring locations of the robot as candidate sensing locations, and

computes the posterior covariance by simulating an EKF update at each sensing loca-

tion with a discretized set of possible bearing measurements. Greedy then picks the

candidate location where the determinant of the posterior is minimum.

117

Enumeration Tree

We extend the objective function of Greedy to look ahead k measurements, in the

Enumeration tree strategy. We build a min-max tree that explores the set of all sensing

locations and all possible measurements that can be obtained, since the uncertainty

depends on both. The tree consists of two types of nodes at alternate levels (Figure 7.10):

MAX nodes (ui) represent neighboring robot locations to the current, and MIN nodes

(zi) represent the discretized set of possible measurements. Each node stores an estimate

of the target’s state and covariance by simulating EKF updates based on the sensing

locations and bearing measurements stored along the path in the tree. Details are

presented in [128].

u1 u2 u8

z1 z12

u1 u8

......

...

.....

MAX

MIN

Leaf

z1 z12

u1 u8

.....

...

MIN

Neighboring

Locations

Candidate

Measurements

Figure 7.10: Min-max tree: u1, . . . , u8 are the neighboring locations for the robot, and

z1, . . . , z12 are candidate bearing measurements.

Once the tree is built, the min-max values for each node are propagated bottom-up

starting with the leaf. The min-max value for the leaf nodes is defined as the determinant

of the simulated posterior covariance matrix stored at that node. The min-max value

for all MAX nodes is the max of min-max values of its children, and that for non-leaf

MIN nodes is min of min-max values of its children.

During execution, the robot chooses the MAX node with the minimum min-max

value as next sensing location at each iteration. The MIN node is chosen as per the

actual bearing obtained. Since we use discrete measurement samples, there might not

be a node with bearing exactly equal to the actual measurement. In addition, there is

118

uncertainty associated with the position of the robot itself. Hence, we use the Bhat-

tacharya Distance [130] to find a MIN node with posterior covariance closest to the

covariance after the measurement update.

7.4.3 Simulations and Experiments

We first compared the performance of the three strategies in simulation. We ran 100

random trials with the true tag 25m away from the starting position of the robot in

each trial. A grid with side length 3m was used to generate sensing locations for 3 mea-

surements. We generated noisy bearing measurements by corrupting the true bearing

with Gaussian noise (σ = 15◦).

The mean errors for FIM, Greedy, and Enumeration tree were 6.30m, 5.98m, and

5.73m, and the mean determinant of the final covariances were 54.81, 40.59, and 48.36

units respectively. The poor performance for the FIM strategy can be attributed to the

fact that it is an open-loop strategy which depends on the initial estimate. Further, it

computes locations which minimize the lower bound on final uncertainty of an “efficient

estimator” (i.e. estimator whose variance is equal to the CRLB). Since EKF is not an

efficient filter, there is no guarantee that it would achieve this lower bound. On the

other hand, the Enumeration tree and the Greedy compute the actual covariance of the

EKF estimator and pick the location which would minimize its determinant.

We conducted experiments with the wheeled robot as well as the boats. The ex-

perimental setup for the wheeled robot is shown in Figure 7.11(a). A reference tag was

kept at a location marked with a star, with its GPS coordinates noted for ground truth.

We conducted three trials each using the Enumeration tree and the Greedy strategy to

determine two measurement locations.

The results from one such trial with the Enumeration tree and Greedy are shown

in Figures 7.11(b) and 7.11(c), respectively. The robot’s mean estimated positions are

labeled by green circles, while estimates of fish locations are shown as blue crosses. The

true location of the tag is marked with a red star. The final estimate of the target from

the EKF was (13.72, 10.73), which was within 2 meters of the true position. The final

covariance from the EKF is shown in Figure 7.11(b) with the smallest blue ellipse.

The results from other trials are given in Table 7.1. The Enumeration tree strategy

performs slightly better than Greedy, both in terms of final error and final uncertainty.

119

(a) Experimental setup.

2 4 6 8 10 12 14 16 18

0

2

4

6

8

10

12

Tree

X(m)

Y
(m

)

R1

R2
R3

R4

(b) Enumeration Tree Strategy

(depth 2)

0 5 10 15 20

4

6

8

10

12

14

16

18

Greedy

X(m)

Y
(m

)

R1

R2

R3

R4

(c) Greedy Strategy

Figure 7.11: Setup and experimental results for two strategies. R1 and R2 are the two

locations used for initialization. R3 and R4 are the measurement locations obtained

using the corresponding strategy. The estimates at R2, R3 and R4 are shown along

with the corresponding 1-σ ellipse bounds. The true location of the tag is marked by a

star.

However, the performance gains are a trade-off with respect to the significant computa-

tion time and space required for building the tree. Hence, we decided to use the Greedy

strategy on our system in field experiments with the boat.

For the boat tests, a reference tag submerged in the lake at a known position. The

results from one such trial are shown in Figure 7.12. Sensing locations r4, r5, r6 were

obtained by running the Greedy strategy. The resulting 1-σ uncertainty ellipses are

shown (in blue) along with the tag estimates (as red crosses). The true location of the

tag is marked by a black star. The final error of this triangulation was 1.21m, with 1-σ

bounds of 3.3m and 2.7m in the x and y directions, respectively.

120

Table 7.1: Experimental results with the ground robot for depth 2

Method Final error Final uncertainty

Enumeration Tree

0.97 3.53

3.32 8.57

5.35 6.04

Greedy

3.21 20.52

3.29 11.93

8.65 11.34

The field experiments demonstrate that our system is capable of localizing stationary

reference tags reliably. Next, we present complete field experiments where the robot

executed both the coverage and localization phases.

7.5 Field Experiments

In this section, we report results from two field tests conducted at Lake Gervais in MN,

USA. In the first test, a reference tag was deployed at a known location. In the second

test, we searched for tagged fish present in the lake with the boat.

Figure 7.13 shows results from the first experiment with a reference tag deployed at

the location marked in Figure 7.13(b). The robot executed the coverage pattern while

continuously monitoring the radio antenna on the frequency of this reference tag. After

detecting signal from this radio tag at r1 (Figure 7.13(c)), the robot switched from the

search phase to the localization phase.

During the localization phase, the robot executed the Greedy strategy with k = 2

measurements, in addition to the two initialization measurements taken at r1 and r3.

The measurement at r2 is used to distinguish which side of the bearing at r1 the fish is

located by comparing their signal strengths. The robot then moved to r4 and r5 and

obtained bearing measurements as shown. The 1-σ uncertainty ellipse after each step

is also shown. After completing the localization, the robot continued to cover the rest

of the regions. The robot covered a total path of approximately 2km in 49min.

121

−40 −30 −20 −10 0 10 20 30

−40

−30

−20

−10

0

10

20
 r

1

 r
2

 r
3

 r
4

 r
5 r

6

X(m)

Y
(m

)

Localization Experiment

Figure 7.12: Localization experiments with the Greedy strategy. Ellipses shown encom-

pass the 1-σ uncertainty after each measurement. We use the second measurement to

disambiguate which side the tag lies from bearing obtained at r1. Bearing measurements

are shown as solid green lines.

The second field trial (Figure 7.14) was conducted in the same lake without a refer-

ence tag. We programmed the robot to search for frequencies corresponding to actual

radio-tagged fish present in this lake. While searching the first region, the robot de-

tected one of the frequencies in the list, executed the localization strategy, and returned

to the search plan. Figure 7.14(b) shows the coverage path followed by the robot. The

red box marks the area where the robot followed the localization strategy to obtain

additional bearing measurements and localize the unknown tag. Figure 7.14(c) shows a

closeup of the localization phase. Since this was an actual radio-tagged fish, the ground

truth is unknown.

122

(a) Coverage regions

−100 0 100 200

−100

−50

0

50

100

 start

Coverage

X(m)

Y
(m

)

(b) Coverage track of the robot.

−10 0 10 20
−40

−35

−30

−25

−20

−15

 r
1

 r
2

 r
3

 r
4

 r
5

 r
6

X(m)

Y
(m

)

Triangulation

(c) Localization with reference

tag.

Figure 7.13: A field trial on Lake Gervais, MN. The robot covered the regions via the

path shown in the middle figure. On the right, a closeup of the localization of a reference

tag is shown. The true location of the reference tag is marked with a black star. The

red box in the middle figure corresponds to the triangulation area on the right.

7.6 Conclusion

In this chapter, we presented a prototype robotic sensing system for the application of

monitoring radio-tagged invasive fish. We divided the monitoring task into two sub-

tasks of finding the tagged fish and localizing them accurately. For the first task, we

presented a coverage algorithm for finding a tour whose length is at most a constant

factor away from an optimal tour. For actively localizing the tagged fish, we first

showed how the bearing of the tag can be estimated by using measurements obtained

by rotating a directional antenna. Next we addressed the problem of actively choosing

sensing locations to reduce localization uncertainty. We compared three algorithms

in simulations and field experiments, and incorporated the most effective one into our

123

(a) Coverage regions

−100 0 100 200
−150

−100

−50

0

50

100

 start

Coverage

X(m)

Y
(m

)

(b) The track of the robot during

coverage.

10 20 30 40 50

−65

−60

−55

−50

−45

−40

−35 r
1

 r
2

 r
3

 r
4

 r
5

 r
6

 r
7

X(m)

Y
(m

)

Triangulation

(c) Close up of the measurements.

Figure 7.14: Field experiments at Lake Gervais, MN. Figure 7.14(a) shows the areas

we wish to cover. The computed search path and the trajectory executed by the robot

are shown in Figure 7.14(b). Upon detecting a tag, the robot executed a localization

strategy as shown in Figure 7.14(c). Because the robot attempted to triangulate a

tagged fish, we do not know the true location of the tag.

system. We concluded the chapter with additional field trials.

Chapter 8

Energy-Optimal Trajectory

Planning

In previous chapters, we presented path planning algorithms to solve coverage and

tracking problems. In doing so, we ignored many low-level aspects of motion planning.

The output of the path planners was a series of waypoints to be followed by the robot.

However, planning for the path and/or velocity to drive towards the points was left to

a low-level controller that is present on most robots. In this chapter, we will focus on

a low-level planning aspect. Specifically, we will show how to compute velocity profiles

and paths using energy as the optimization criterion.

Energy optimization is a fundamental requirement to achieve long term autonomous

deployments. One of the main bottlenecks for robots is the limited lifetime of on-board

batteries. To extend the lifetime, it is critical to optimize the energy consumption of the

robot, in addition to harvesting additional energy. Motion is a major source of energy

consumption for mobile robots. In this chapter, we study the problem of minimizing

the energy consumption by optimizing the motion of the robots.

In particular, we focus on car-like robots powered by Direct Current (DC) motors. It

is well-known that the energy consumption of a DC motor depends on its angular speed

and acceleration [131]. The angular speed and acceleration of the driving DC motor

in turn controls the translational velocity and acceleration. We study the problem of

computing paths and velocity profiles for a forward-only car-like robot that minimizes

124

125

the energy consumption in a flat, obstacle-free environment.

First, we focus on the case of finding the energy optimal velocity profile when the

path is given. Depending on the application, a high-level planner can specify the exact

path to be followed by the robot. However, often the velocity along the path is free to

be arbitrarily set. For such situations, we present a closed form solution for the velocity

and acceleration profile that minimizes the energy consumption as given by our model.

Second, we consider the problem of computing the minimum energy path itself, given

a start and goal position and orientation (pose) for the robot. Computing closed-form

paths and velocity profiles simultaneously is difficult. Instead, we will show how to

leverage the closed form solution for velocity profiles to obtain energy optimal paths

leading to computational savings.

In computing minimum energy paths we face a trade-off between the length of the

paths, turning radius, frictional forces, velocity and acceleration of the robot. Unlike

minimum length paths, a minimum energy path may contain segments with varying

turning radius (Figure 8.1). To accommodate this, we construct a graph (termed En-

ergy Roadmap) which incorporates the closed-form solution for optimal velocity profiles.

We show how to build this structure efficiently, and present details of an implementa-

tion. Finally, we investigate the structure of minimum energy paths found using our

algorithm, and highlight instances when these paths deviate from the minimum length

paths.

The rest of the chapter is organized as follows: The energy model and the formal

problem statement are presented in Section 8.2. We derive the optimal velocity pro-

files with and without a maximum velocity bound for a path with single segment in

Sections 8.3 and 8.4 respectively and for multiple segments in Section 8.5. The applica-

tion of these results to simultaneously compute the minimum energy path and velocity

profiles is presented in Section 8.6. Experiments on our custom-robot are presented in

Section 8.7 along with a calibration procedure for estimating the parameters of the en-

ergy model in Section 8.7.1. We conclude with a discussion on the utility of our results

in Section 8.8. Proofs and derivations for all the results are presented in Appendix D.

We start by discussing the related work on energy-optimal trajectory planning.

126

Energy−Optimal Path

(0.0,1.5,0) (1.2,1.5,π)

Dubins Path
Min. Energy Path

Figure 8.1: The minimum length path consists of 3 circular segments, whereas the

minimum energy path consists of a straight line segment and 5 circular segments of

varying radii. The optimal velocity profile along the path is given by the color in the

heat map along the path. The straight line and circular segments with higher turning

radius allow the robot to move at a higher speed and thus for a lesser time leading

to lower energy consumption (despite being longer). We explore this trade-off between

velocity, turning radius, path length and energy in this chapter.

127

8.1 Related Work

The classical problem of optimizing the path and velocity profiles for mobile robots

while satisfying velocity and/or acceleration constraints is known as kinodynamic plan-

ning [132]. The pioneering work for finding minimum length paths for a forward-only

car-like robot was done by Dubins [133]. Reed and Shepps [134] extended this work for

a car that can go forward and backward. Balkcom and Mason [135] used an optimal

control formulation to derive the time optimal trajectories for bounded velocity differ-

ential drives. Recently, Chitsaz et al. [136] used similar techniques to give the complete

characterization for minimum wheel rotation paths for differential drive robots.

Existing literature on finding minimum energy paths for robots includes the work

of Sun and Reif [137] who considered the problem of computing the optimal path for

robots traversing a terrain. Under the assumption that the friction coefficients are

known across the terrain, they showed how to compute a path that requires minimum

energy to overcome frictional forces. This work generates the path but does not yield an

optimal velocity and acceleration profile. Furthermore, the paths found are piecewise

linear which cannot be directly applied for car-like robots.

With recent advancements in hybrid and electric vehicles technology, power man-

agement and optimization has received considerable interest in the automotive sector

(see e.g. [138]). Research studies in this area target power optimization based on the

users’ input and driving profiles. However, there has been little work on finding energy

efficient trajectories for vehicles that navigate autonomously. Energy optimal trajectory

planning has also been studied for robotic manipulators. Gregory et al. [139] studied

the problem of finding energy-optimal control inputs for a manipulator with two rev-

olute joints to follow a prescribed path. Wigstrom et al. [140] studied the problem of

scheduling jobs for possibly multiple industrial robots, where each job requires the robot

to optimize its control profile with respect to energy and follow a prescribed path. Our

work differs from this literature in that we use the kinematic and energy model for a

car-like robot. In addition, we focus on simultaneously computing the energy optimal

path and velocity profile along this path.

In order to compute velocity profiles, the power consumption needs to be modeled.

Mei et al. [141] modeled the power consumption as a sixth-degree polynomial of the

128

robot’s speed using experimentally collected data. However, their model does not incor-

porate acceleration. More importantly, they use this model to compare velocity profiles

but do not address the problem of computing an optimal profile.

Kim and Kim [142] computed the optimal velocity profile for a robot moving on a

straight line, when the total time to travel is fixed. However, this solution does not

incorporate any bound on maximum velocity of the robot. In [143], they proposed

a rotational trajectory planner that minimizes the energy consumption. They do not

present a systematic method to combine the solutions for translational and rotational

trajectories. Thus, it is not clear if this approach yields an optimal solution. Wang et

al. [144] studied the problem of finding a minimum energy trapezoidal velocity profile.

As we will show shortly, a trapezoidal profile itself is not optimal in terms of total energy

consumption. In addition, they do not consider any upper bound on the velocity of the

robot. Further, their technique is only applicable for turn-in-place-move-forward type

of motion for differential drives, and is not experimentally verified.

Broderick [145] et al. studied the problem of computing energy-efficient velocity

profiles for a tracked robot. The path of the robot was computed using a boustrophedon

coverage pattern and decomposed into straight-line segments and turns. The goal was

to compute the velocity profiles for the left and right tracked wheels along each segment.

The cost function for each segment penalized a linear combination of the control inputs,

efficiency of the motors, and the fraction of area not covered by the trajectories before

the start of the current segment. Based on this cost-function, the paper presented trade-

offs between the control inputs and the area covered by the robots. Instead, we focus

on optimizing only the control inputs (i.e., velocity and path). We describe the problem

formulation next.

8.2 Problem Formulation

First consider the problem of computing the optimal velocity profile when given a path

τ on which the robot will move. The instantaneous position of the robot along τ is

parameterised by a single variable of time x(t). The linear velocity and acceleration of

the robot along this path are represented by v(t) and a(t) respectively. We define the

state of the robot by X(t) = [x(t), v(t)]T . The state transition equation can be written

129

as,

Ẋ(t) =

[

ẋ(t)

v̇(t)

]

=

[

v(t)

a(t)

]

(8.1)

where a(t) is the control input.

We first describe the energy consumption model for the robot, before formally stating

the problem.

8.2.1 Energy Model

Consider a robot with car-like steering, with forward, translational velocity provided by

a DC motor. We use the model described in [131] for energy consumption in a brushed

DC motor. This detailed model takes into account the energy dissipated in the resistive

winding, the energy required to overcome internal and load friction and the mechanical

power delivered to the output shaft. The instantaneous current i(t) in the motors is

given by,

i(t) =
1

KT

[

TF + TL +Dfω(t) + (JM + JL)
dω(t)

dt

]

(8.2)

and the voltage e(t) across the motor is given by,

e(t) = i(t)R+KEω(t) (8.3)

where ω(t) is the angular velocity of the motor, KE and KT are back-electromotive

force and torque constants, TF and TL are internal and load frictional torques, Df is

the internal damping, and JM and JL are motor and load moments of inertia.

Since linear velocity of the robot and angular velocity of the motor for a car-like

robot are proportional to each other, we can rewrite Equations 8.2 and 8.3 to yield the

energy consumption for traveling from t = 0 to t = tf as,

E =

∫

0

tf [

e(t)i(t)
]

dt.

=

∫

0

tf [

c1a
2(t) + c2v

2(t) + c3v(t) + c4 + c5a(t) + c6v(t)a(t)
]

dt. (8.4)

where constants c1, . . . , c6 are combinations of the motor parameters, and v(t) and a(t)

are the linear velocity and acceleration of the robot obtained from ω(t) and the radius

of the wheel. When the initial and final velocity values are the same for τ , the net

130

contribution by the terms corresponding to c5 and c6 is zero and can be ignored [131].

Hence, we can rewrite the energy model as,

E =

∫

0

tf [

c1a
2(t) + c2v

2(t) + c3v(t) + c4

]

dt. (8.5)

The constants c1, . . . , c4 depend on the motor parameters which in turn depend on the

robot design and the surface on which the robot is moving. These parameters can be

obtained using the calibration procedure presented in Section 8.7.1.

The robot’s wheels may slip when it is making a sharp turn at a high speed. The

maximum speed with which the robot can move along τ is a function of the instantaneous

turning radius, the inertia of the robot and the frictional forces with the surface. We

assume the maximum centrifugal force without slipping can be specified by a parameter

Fmax. Thus the maximum safe translational speed without slipping will be,

vm(t) =

√

Fmaxr(t)

m
, (8.6)

where r(t) is turning radius and m is the mass of the robot. Any other function of the

form vm(t) = f(r(t)) can be easily incorporated in our formulation.

8.2.2 Problem Statement

LetD be the total length of τ . The energy consumption for a velocity profile v(t) travers-

ing τ is given by Equation 8.5. The final time tf can be fixed or kept free. The robot

starts from and returns to rest over τ . This gives us the following boundary conditions,

v(0) = 0, v(tf) = 0, x(0) = 0, x(tf) = D (8.7)

We study four problems of increasing generality. For the first three problems, the

objective is to find a velocity profile v(t) to minimize E, subject to the constraints given

below:

Problem 4. τ consists of a single segment. There is no bound on the maximum ve-

locity of the robot, i.e., v(t) ≥ 0 for 0 ≤ t ≤ tf . Find the optimal velocity profile v∗(t)

minimizing Equation 8.5 subject to state transition and boundary constraints given by

Equations 8.1 & 8.7.

131

Problem 5. τ consists of a single segment. The maximum velocity of the robot over τ is

bounded by constant vm, i.e., 0 ≤ v(t) ≤ vm for 0 ≤ t ≤ tf . Find the optimal velocity

profile v∗(t) minimizing Equation 8.5 subject to state transition and boundary constraints

given by Equations 8.1 & 8.7.

Problem 6. τ consists of N segments composed of straight lines and curves. There is

a separate velocity bound for each segment i given by vm(i). vm(i) is constant over the

ith segment. Let D(i) be the distance to travel for each 1 ≤ i ≤ N . Find the optimal

velocity profile v∗(t) minimizing Equation 8.5 subject to state transition and boundary

constraints given by Equations 8.1 & 8.7.

Finally, we consider the problem of computing the path τ itself. τ is specified by

the steering control input φ(t) and the translational velocity v(t). The robot starts at

and returns to rest. We do not consider the cost of steering, and assume for simplicity

that the robot can instantaneously switch the steering input. There are existing tech-

niques [146, 147] to compute continuous trajectories for car-like robots where the rate of

change of the steering input is bounded. The physical interaction between the surface

and the steering wheel has also been extensively studied [148]. Since our algorithm first

computes a graph (as presented in Section 8.6), smoothness constraints and the steering

cost can be included while searching for the optimal solution in the graph. We assume

that there are no obstacles in the environment. Many sampling-based planning algo-

rithms that consider obstacles often require a subroutine that computes the optimal cost

and path between two poses in an obstacle-free environment (see e.g. [149, 150]). Hence,

we focus on the fundamental case of finding energy-optimal paths without considering

obstacles, which can be used as subroutines for the general case.

Problem 7. Given start and goal poses, compute a path τ and a velocity profile along

this path for a car-like robot to minimize Equation 8.5. The velocity at all times must

obey the constraint given by Equation 8.6. The robot starts at and returns to rest.

The solutions for Problems 4, 5, 6 & 7 are presented in Sections 8.3, 8.4, 8.5 & 8.6

respectively. Problems 4 & 5 form special cases of the last two problems and provide

insight into the structure of general optimal velocity profiles. We use the generalized

solutions of the first two problems, with non-zero boundary conditions, as subroutines

132

for solving Problems 6 & 7. The full proofs for subsequent lemmas and theorem are

given in the appendix.

8.3 Optimal Velocity Profile without Bounds

In this section, we present the solution to Problem 4, when the path τ consists of a

single section with no bound on the maximum velocity of the robot. We first state

the necessary conditions and present the closed form solution for the optimal velocity

profile. Then, we discuss and provide insights for the structure of the optimal profile.

Finally, we compare the optimal profile with the commonly-used trapezoidal velocity

profile.

8.3.1 Solution to Problem 4

When there is no bound on the maximum velocity, the Hamiltonian [151] for this prob-

lem can be obtained as,

H(X(t), a(t),λ(t), t) = c1a
2(t) + c2v

2(t) + c3v(t) + c4 + λ1(t)v(t) + λ2(t)a(t) (8.8)

where λ1(t) and λ2(t) are the Lagrange multipliers and acceleration a(t) is the control.

The three necessary conditions for a∗(t) to optimize the Hamiltonian for all times

t ∈ [0, tf] are given as,

Ẋ∗(t) =
∂H

∂λ
, λ̇

∗
(t) = −∂H

∂X
, 0 =

∂H

∂a
(8.9)

Applying these necessary conditions, we can solve the resulting partial differential

equations for the optimal control and states to get,

a∗(t) = ks1e
kt − ks2e

−kt (8.10)

v∗(t) = s1e
kt + s2e

−kt −
(
c3 + s3
2c1

)

(8.11)

x∗(t) =
s1e

kt

k
− s2e

−kt

k
−
(
c3 + s3
2c1

)

t+ s4. (8.12)

where k =

√
c2
c1

and s1, . . . , s4 are constants.

133

We can solve for s1, . . . , s4 in terms of the final time tf by substituting the boundary

conditions given in Equation 8.7 for v∗(t) and x∗(t). We obtain,

s1 = −
Dk

ktf + ektf (ktf − 2) + 2
,

s2 = s1e
ktf , s3 = 2c1(s1 + s2)− c3

s4 = −
s1 − s2

k
. (8.13)

By substituting in Equations 8.10-8.12 we obtain,

a∗(t) = D

(
c2
c1

)(

ek(tf−t) − ekt

ktf + ektf (ktf − 2) + 2

)

,

v∗(t) = D

√
c2
c1

(

(1 + ektf − (ek(tf−t) + ekt))

ktf + ektf (ktf − 2) + 2

)

,

x∗(t) = D

(

(ek(tf−t) − ekt)− (ektf − 1) + kt(ektf + 1)

ktf + ektf (ktf − 2) + 2

)

. (8.14)

Since the final time is free, it can be solved for using the additional boundary condition

(known as the transversality condition) given by,

H(X∗(tf), a
∗(tf),λ

∗(tf), tf) = 0. (8.15)

Substituting Equations 8.10-8.12 and 8.13 above results in,

(D
c2
c1

+ 2)(1− ektf) +

√
c4
c1
ktf (1 + ektf) = 0, (8.16)

which is an equation in a single variable tf (all other terms are constant) and can be

solved using any existing solver for transcendental equations. We used MATLAB’s

fzero function. Alternatively, if the final time is fixed, we can directly substitute this

given value in Equation 8.14 to find v∗(t).

Figure 8.2 shows the optimal velocity profile obtained for traveling a distance of 50m

using Equation 8.14. It can be observed that the profile consists of symmetric accel-

eration and deceleration curves with an almost-constant velocity region in the middle.

From Equations 8.14 and 8.16, we can show that the peak velocity is reached at t = tf/2

and is given by, v∗
(
tf
2

)

=

√
c4
c2

(

e
k
2
tf − 1

)

(

e
k
2
tf + 1

) . The corresponding optimal control profile

134

0 5 10 15 20 25 30
0

0.5

1

1.5

2

Time in secs

V
el

oc
ity

 in
 m

/s

Optimal Velocity Profile

Figure 8.2: The optimal velocity profile v∗(t) for a distance D = 50m using c1, . . . , c4

obtained during calibration in Section 8.7.1. The optimal profile consists of symmetric

exponential curves, reaching a maximum velocity at t = tf/2.

0 5 10 15 20 25 30

−0.5

0

0.5

Time in secs

A
cc

el
er

at
io

n
in

 m
/s

2

Optimal Control

Figure 8.3: Optimal Control a∗(t) obtained for traveling a distance of D = 50m corre-

sponding to the optimal velocity profile shown in Figure 8.2.

135

a∗(t) is shown in Figure 8.3. The acceleration profile is a smooth exponentially de-

creasing function. The acceleration is almost zero in the middle region (exactly zero at

t = tf/2).

8.3.2 Structure of the Optimal Profile

The optimal velocity profile shows similar structure when the distance to travelD varies.

Figure 8.4 shows the optimal velocity profiles for traveling four different distances. The

optimal profile reaches the same peak velocity and does not go faster even if the distance

to travel increases.

0 10 20 30 40 50
0

0.5

1

1.5

2

Time in secs

V
el

oc
ity

 in
 m

/s

Optimal Velocity Profile

Figure 8.4: Optimal Velocity v∗(t) profiles obtained for traveling distances D =

5, 35, 70, 100m follow a similar structure.

From the cost function (Equation 8.5), we see that both higher velocities (through

terms c2 and c3) and longer times (through c4) are penalized by higher energy cost.

Consider a time-optimal trajectory where the solution would be to move as fast as

possible, subject to maximum acceleration and deceleration. Such a trajectory would

pay a much higher instantaneous cost (through terms c1, c2, c3) but integrated over a

shorter time. The energy-optimal trajectory, on the other hand, achieves the optimal

energy trade-off between moving faster (and consequently for a lesser time) and moving

136

slower (and for longer times). In contrast to a time-optimal trajectory, the solution for

the energy-optimal trajectory does not exceed the peak velocity of

√
c4
c2
. The following

lemma sheds light on this underlying structure for the optimal velocity profiles.

Lemma 24. Consider an arbitrary velocity profile v(t) traveling a distance D. Let the

total energy consumption of v(t) be E. If the given profile crosses

√
c4
c2

at times ti and

ti+1, we can replace this section of v(t), ti ≤ t ≤ ti+1 by a constant velocity section of

vc =

√
c4
c2
, so that the resulting velocity profile covers the same distance and consumes

energy less than v(t).

8.3.3 Comparisons with trapezoidal velocity profile

0 5 10 15 20 25 30 35
0

0.5

1

1.5

2

Time in secs

V
el

oc
ity

 in
 m

/s

Optimal vs. Optimal Trapezoidal

Figure 8.5: Optimal trapezoidal profile computed using the same energy function shown

together with the general optimal profile for traveling D = 50m. The general optimal

profile we compute gains higher savings with respect to the trapezoidal profile while

accelerating and decelerating. This yields higher energy savings when the total distance

to travel is less, a scenario commonly seen when the robot has to frequently start and

stop.

A trapezoidal velocity profile is commonly used for its ease of implementation. A

137

trapezoidal velocity profile (see Figure 8.5) consists of a constant acceleration section,

followed by a constant velocity section, followed by a constant deceleration section. In

[144], Wang et al. computed the optimal trapezoidal velocity profile for traveling a

given distance D. However, their result is only applicable in the case when there is no

bound on the maximum velocity of the robot. Figure 8.5 shows the general optimal

profile and optimal trapezoidal profile computed for traveling a distance of D = 50m,

with no maximum velocity constraints.

The general optimal profile we compute gains higher savings with respect to the

trapezoidal profile while accelerating and decelerating. For example, the optimal profile

yields 1.94% savings when traveling 1m, while the savings drop to 0.32% when D =

100m for the parameters calculated on our custom robot. In situations where the robot

has to frequently stop, following an optimal profile would result in more energy savings

and a longer lifetime. In addition, these figures are highly system-specific. The velocity

profile computed in this chapter is guaranteed to minimize the energy consumption for

the stated assumptions.

8.4 General Solution Incorporating Maximum Velocity Bound

The optimal profile given in Section 8.3 does not satisfy any bound on the maximum

velocity imposed by the physical limitations of the robot. In this section, we solve

for the optimal velocity profile for Problem 5, with a bound on the maximum velocity

v(t) ≤ vm. We now derive the analytical solution for Problem 5 by first discussing the

possible structures of an optimal profile. Depending on the value of vm and D, the

optimal velocity profile can belong to one of the following two cases.

8.4.1 Unconstrained optimal profile does not violate bound v(t) ≤ vm

In the case that the optimal velocity profile computed in Section 8.3 does not exceed

the bound vm, then this profile is a valid solution for the constrained case too. This

happens when vm ≥
√

c4
c2
. Additionally, in the case when the distance to travel D is

small, the optimal velocity profile may not have enough time to reach vm or

√
c4
c2
. We

can observe this situation in Figure 8.4 when D = 5m.

138

8.4.2 Unconstrained optimal profile violates the bound v(t) ≤ vm

If the unconstrained optimal profile violates the bound vm, the constrained optimal

velocity profile will consist of unconstrained U (v(t) < vm) and constrained arcs C

(v(t) = vm) joined together at corner points. We show that there exists an optimal

profile with a U−C−U sequence (or one of its degenerate cases {U−C,C−U,C})
having corner points at times t = t1 and t = tf − t2 (degeneracy occurs when either or

both of t1 and t2 equal to 0).

By definition, there cannot be any U − U or C − C sequence, as these do not

include any corner points. Combining this observation with the following lemma, we

show that the constrained velocity profile is limited to a U−C−U sequence or one of

its degenerate case.

Lemma 25. The optimal velocity profile cannot consist any sequence of the form C−
U−C.

The proof, given in the appendix, follows a process similar to that in Lemma 24. We

show that any C−U−C sequence can be replaced by a single C segment to reduce

the energy consumption.

We now show how to obtain the solution for this case in closed form. Specifically,

we show how to obtain v∗(t) for the unconstrained and constrained arcs and compute

the corner points t1 and t2.

We begin by writing the velocity constraint in the form of state inequality S̄ =

(v(t) − vm) ≤ 0. We convert the state inequality S̄ into a control equality S̄(1) and

interior point constraint G by differentiating S̄ once, leading to S̄(1) = v̇(t) = u and

G = ξ(v(t) − vm). The Hamiltonian is augmented with the control equality constraint

between [t1, tf − t2] and is given by Ĥ = H + µ(t)a(t). Here, µ(t) is the slack variable

associated with the control constraint and H is given by Equation 8.8.

We use the three necessary conditions given in Equation 8.9 to obtain the optimal

profile in the time interval [0, t1] and [tf − t2, tf]. On the constraint boundary, i.e.,

t ∈ [t1, tf − t2], the following necessary conditions must hold [152],

Ẋ∗(t) =
∂Ĥ

∂λ
λ̇
∗
(t) =

∂Ĥ

∂X
0 =

∂Ĥ

∂a
(8.17)

139

Additionally, on the two corners (t = t1, t = tf − t2), the following conditions must

hold for the optimal solution,

H(t+1) = H(t−1) +

[
∂G

∂t

]

t1

,λ(t+1) = λ(t−1)−
[
∂G

∂X

]T

t1

H((tf − t2)
+) = H((tf − t2)

−)

λ((tf − t2)
+) = λ((tf − t2)

−) (8.18)

Using the conditions given above, we can solve for the optimal control and velocity

profile in terms of the constants for the off-boundary exponential curves, and times t1,

t2 and tf . The optimal velocity profile in this case is given by,

v∗(t) =







s1
(
ekt + ek(2t1−t) − (1 + e2kt1)

)
, 0 ≤ t ≤ t1

vm, t1 ≤ t ≤ tf − t2

s2
(
e−k(tf−t−2t2) + ek(tf−t) − (1 + e2kt2)

)
tf − t2 ≤ t ≤ tf .

(8.19)

We can obtain the values of these constants and times using the initial and final

conditions, the transversality condition given in Equation 8.15, and the interior point

constraint v∗(t) = vm, t1 ≤ t ≤ tf − t2 as,

s1 = −
vm

(ekt1 − 1)2
,

s2 = −
vm

(ekt2 − 1)2
,

t1 = t2 =
1

k
ln







√
c4
c2

+ vm
√

c4
c2
− vm






. (8.20)

The final time can then be calculated by using the total distance to travel and the

distances traveled in the two exponential curves.

tf = t1 + t2 +
x∗(tf − t2)− x∗(t1)

vm
. (8.21)

Figure 8.6 shows the optimal velocity profile obtained for traveling a distance of

25m with the maximum velocity bound set to vm = 1m/s. Observe that the optimal

velocity profile follows an exponential curve till it hits the boundary at t1 = 4.06s and

140

0 5 10 15 20 25 30
−0.5

0

0.5

1

1.5

2

Time in secs

V
el

oc
ity

 in
 m

/s

Optimal Velocity Profile

Figure 8.6: Optimal Velocity (v∗(t)) profile obtained for maximum velocity vm = 1m/s.

The constrained velocity profile consists of exponential acceleration and deceleration

curves with the constraint boundary in the middle. This profile is not the same as that

obtained from unconstrained solution by setting velocity to vm wherever it exceeds.

0 5 10 15 20 25

−0.5

0

0.5

Time in secs

A
cc

el
er

at
io

n
in

 m
/s

2

Optimal Control

Figure 8.7: Optimal control for the case with bound on maximum velocity. Note that

the control is zero whenever the velocity is on the constraint boundary (see Figure 8.6).

141

then stays on the constraint boundary, before following a symmetric exponential curve

to zero. However, this profile is not the same as that obtained from the unconstrained

solution by setting velocity equal to vm wherever it exceeds. This unconstrained optimal

velocity profile obtained from Section 8.3 is also shown in Figure 8.6. The corresponding

optimal control a(t) is shown in Figure 8.7. The acceleration is zero when v(t) is on the

constraint boundary, and follows exponential curves otherwise.

8.5 Optimal Profile over Multiple Segments

In many applications, a high level task planner is used to find the exact path to be

followed by the robot. However, the velocity profile of the robot along this path is

free to be optimized. We use the solution from the preceding sections to solve for

the problem of finding the optimal velocity profile when the given path consists of N

segments (see Figure 8.9). We restrict our attention to the case when the paths are

composed of straight-line segments and constant curvature turns with possibly different

turning radii. For each segment, we are given maximum allowable velocity for the robot

vm(i) (see Equation 8.6) and the distance to travel D(i), 1 ≤ i ≤ N .

The robot initially starts at and returns to rest, however the initial and final velocity

for the intermediate segments is not constrained to zero. Let v0(i) and vf (i) be the initial

and final velocities for segment i. Thus, v0(1) = 0 and vf (N) = 0. The velocities v0(i)

and vf (i) can be non-zero for all other intermediate segments. If we know the v0(i) and

vf (i) that the optimal uses, we can find the entire velocity profile.

8.5.1 Velocity profile subroutines

While solving for the optimal profiles in Sections 8.3 and 8.4, we considered only zero

initial and final velocity boundary conditions. Here, we extend this result for possibly

non-zero v0 and vf as initial and final velocities, and use this extension as a subroutine

for solving Problem 6. Note that in Problem 6, the first and the last segments have zero

initial and final velocities respectively, and hence the energy model (which ignores the

terms c5 and c6 because they cancel-out) remains valid (see proof in appendix).

For segments with no bound on the maximum velocity, by following a process similar

142

to that described in Section 8.3 we get,

s1 =
(v0 − vf)(1− e−ktf − ktf) +Dk(1− e−ktf)

ektf (2− ktf) + e−ktf (2 + ktf)− 4
,

s2 =
(v0 − vf)(1− ektf + ktf)−Dk(1− ektf)

ektf (2− ktf) + e−ktf (2 + ktf)− 4
,

s3 = 2c1(s1 + s2)− c3 − v0,

s4 = −
s1 − s2

k
. (8.22)

The resulting profiles can be obtained by substituting the above in Equations 8.10-8.12.

Similarly for segments with a maximum velocity bound vm, the optimal velocity

profile is given by,

v∗(t) =







s1
(
ekt + ek(2t1−t) − (1 + e2kt1)

)
+ v0, 0 ≤ t ≤ t1

vm, t1 ≤ t ≤ tf − t2

s2
(
e−k(tf−t−2t2) + ek(tf−t) − (1 + e2kt2)

)
+ vf , tf − t2 ≤ t ≤ tf .

(8.23)

where,

s1 = −
(vm − v0)

(ekt1 − 1)2
, s2 = −

vm − vf
(ekt2 − 1)2

,

t1 =
1

k
ln

(

c4 + c2v
2
m − 2c2v0vm

c4 − c2v2m
+

2(c2vm(c4 − c2v0vm)(vm − v0))
1
2

c4 − c2v2m

)

,

t2 =
1

k
ln

(

c4 + c2v
2
m − ca2vfvm

c4 − c2v2m
+

2(c2vm(c4 − c2vfvm)(vm − vf))
1
2

c4 − c2v2m

)

. (8.24)

Figure 8.8 shows the optimal velocity profile obtained for traveling a distance of 30m,

with velocity bound vm = 0.4m/s and initial and final velocities v0 = 0.3m/s and

vf = 0.1m/s respectively. Note that the acceleration and deceleration times are different

in this case.

The following theorem summarizes the results for all the cases considered.

Theorem 9. The optimal velocity profile that minimizes the energy consumption given

by Equation 8.5 for a segment with distance D is given by,

• Equations 8.13 and 8.14 when there is no maximum velocity bound or if vm >
√

c4
c2
, and initial and final velocities for the segment are both zero. The final time

tf is obtained from Equation 8.15.

143

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

Time in secs

V
el

oc
ity

 in
 m

/s

Optimal Velocity Profile

Figure 8.8: Optimal velocity profile with v0 = 0.3m/s, vm = 0.4m/s and vf = 0.1m/s

for traveling 30m.

6m, 0.8m/s

0.5m, 0.2m/s

6m, 0.8m/s

1m, 0.4m/s

Figure 8.9: Typical path for a robot composed of two straight line segments and two

turns of different radii. Segments have different maximum allowable velocities, depend-

ing on their radii.

144

• Equations 8.22 and 8.14 when there is no maximum velocity bound or if vm >
√

c4
c2
, and at least one of initial or final velocities for the segment is non-zero.

The final time tf is obtained from Equation 8.15.

• Equations 8.19 and 8.20 when the maximum velocity bound vm ≤
√

c4
c2

and initial

and final velocities are both zero for the segment. The final time tf is obtained

from Equation 8.21.

• Equations 8.23 and 8.24 when the maximum velocity bound vm ≤
√

c4
c2
, and ini-

tial or final velocity is non-zero for the segment. The final time tf is obtained

from Equation 8.21. The initial and final velocity for the first and last segment

respectively is zero.

We can use the separate cases of this theorem as subroutines to compute the optimal

velocity profile for multiple segments using dynamic programming. Note that the last

case is only valid when the initial and final velocity of the first and the last segment is

zero (i.e., the net effect of c5 and c6 is zero).

8.5.2 Dynamic Programming

Let Vmax = max{vm(1), vm(2), . . . , vm(i), . . . , vm(N)}. We then discretize the velocity

space at the segment boundary into M +1 equal partitions v(k) =
k

M
Vmax, 0 ≤ k ≤M .

Let C(v(k), i) be the cost to reach velocity v(k) at the ith segment boundary. Let

E(v0, vm, vf) be a function which gives the energy consumption for an optimal velocity

profile in a segment starting with v0 and ending with vf , using the solution in Theorem 9.

If either v0 > vm or vf > vm then the function returns the cost as E(v0, vm, vf) =∞.

We can then use the following recurrence for the ith segment boundary:

C(v(k), i) = min
0≤j≤M

(

C(v(j), i− 1) + E(v(j), vm(i), v(k))
)

, 1 ≤ k ≤M.

Since the robot initially starts from rest, we have the following,

C(v(k), 0) =







0 k = 0,

∞ 1 ≤ k ≤M.

145

The solution can be obtained by backtracking from C(v(0), N) and finding optimal

segment boundary velocity values. The optimal velocity profile can then be constructed

using these optimal boundary velocity values to find individual segment profiles using

Theorem 9.

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Time in secs

V
e
lo

c
it
y
 i
n
 m

/s

Optimal Velocity Profile

Figure 8.10: Optimal velocity profile with different bounds for different segments. The

given path consists of 4 segments with bounds vm = {0.8, 0.2, 0.8, 0.4}m/s and distances

D = {6, 0.5, 6, 1}m

Figure 8.10 shows the optimal velocity profile obtained for a path consisting of 4

segments. The velocity bounds for these segments are vm = {0.8, 0.2, 0.8, 0.4}m/s and

the distances D = {6, 0.5, 6, 1}m respectively. By discretizing velocity at the junction

boundaries, we obtain the set of transition velocities using the recurrence given above

as,

v0(1) = vf (4) = 0m/s, vf (1) = v0(2) = 0.2m/s,

vf (2) = v0(3) = 0.2m/s, vf (3) = v0(4) = 0.4m/s.

146

The profiles between the boundaries are computed using Theorem 9.

For building the table C, we consider M + 1 discretized velocities at transition

boundaries of N segments. The table has size O(MN) and can be constructed in time

O(M2N). This discretization can be avoided when a segment is sufficiently long so that

the robot can accelerate (or decelerate) to the bound for the next segment. In this case

a greedy approach which chooses the transition velocity at the ith segment boundary

using the following rule suffices:

v(i) =







0, i = 0,

min {vm(i− 1), vm(i)}, 0 < i < N,

0, i = N.

We can then use Theorem 9 to compute velocity profiles for each segment i using

v0(i) = v(i− 1) and vf (i) = v(i).

Using a procedure similar to that in Lemma 24 we can show that at any segment

boundary, if a velocity profile decelerates further than min{vm(i), vm(i+ 1)}, it con-

sumes more energy than another profile that only decelerates up to min{vm(i), vm(i+ 1)}.
It can also be shown that the complete velocity profile obtained by combining profiles

for each segment is optimal, when each distance D(i) is large. However, when the dis-

tances are small, this strategy forces the velocity profile to achieve vf (i) = v(i) leading

to higher energy consumption. The optimal solution on the other hand will reach a

much lower value for vf (i). The dynamic programming solution presented here covers

this possibility by incorporating all boundary velocity values.

8.6 Energy Optimal Paths

In this section, we study the problem of finding an energy optimal path and a velocity

profile along this path, given a start and goal poses for a car-like robot (refer Problem 7).

Dubins [133] first showed that the minimum length curves between two poses consists

of at most three segments. Each segment is either a left or a right turn of minimum

turning radius or a straight line path, and no other type. The maximum feasible speed

along a curve depends on the turning radius of the robot (Equation 8.6). In the absence

147

of any constraints on the maximum speed, we know from the discussion in Section 8.3

that the energy consumption is a monotonically increasing function of the length of the

paths. This suggests that for a car-like robot capable of traveling at more than

√
c4
c2

at

the minimum turning radius, the minimum length paths are also the minimum energy

paths. The optimal profile for such paths will be those given in Section 8.3.

In general, computing the energy optimal paths cannot be decoupled from finding

the velocity profiles. The structure of the minimum energy paths will depend on the

trade-off between turning radii r(t), maximum feasible speed as a function of turning

radii vm(t), the length of the path and the energy parameters. While finding a general

solution where the turning radius varies continuously in time seems difficult, we find

an approximate solution by restricting the robot to move along a sequence of constant

curvature paths.

To find such a path, we build a weighted graph (which we term as the Energy

Roadmap) G(V,E), where each vertex represents a discretized pose and velocity, i.e.

V = {(x, y, θ, v)}.1 We add an edge between two vertices vi = (xi, yi, θi, vi) and vj =

(xj , yj , θj , vj) if (i) there exists a (directed) circular arc (or straight line) from (xi, yi, θi)

to (xj , yj , θj), and (ii) vi and vj are both less than or equal to the maximum feasible

speed along this circular arc. The weight on the edge from vi to vj is set to the energy

for the minimum energy velocity profile along this circular arc with start and end speeds

set to vi and vj . The energy is computed using the result in Theorem 9.

The minimum energy path from the start and goal vertex can then be computed

by any shortest path algorithm on G, e.g. A* search. The shortest (minimum energy)

path will be a sequence of poses and discretized velocities; the entire robot path can be

obtained by connecting the sequence of poses with circular arcs or straight line segments

and the optimal profile along the path can be obtained by applying Theorem 9 to the

corresponding sequence of velocities.

In the Energy Roadmap, although the poses are discretized, we allow connecting

any two poses with a circular arc (Figure 8.11). Note that we do not impose any grid

connectivity or fixed radius turns. Further, although we discretize velocities at a pose,

we use the optimal energy profiles leveraging Theorem 9 to interpolate the velocity

1In this section, x refers to the X-coordinate of the robot, and not the parametric position of the

robot along a path as used in the preceding sections.

148

0 1 2 3 4 5 6
0

1

2

3

4

5

Paths from (0,0,0)

(a)

0 1 2 3 4 5 6

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

Paths from (0,0,0)

(b)

Figure 8.11: In the Energy Roadmap we connect any two discretized poses by a circular

path, if it exists. (a) All possible circular paths starting from (0, 0, 0). The minimum

turning radius is set to 1m. A total of 2254 paths exists from (0, 0, 0) using side resolu-

tion of 0.1m and orientation resolution of π
64 . (b) Paths starting from (0, 0, 0) reaching

all discretized vertices with (x, 3, θ). There exists a unique circular path starting from

a given pose reaching a given position.

between two vertices (as opposed to enforcing any fixed profile).

The complete algorithm is presented in Algorithm 4. The main subroutines GetMinEnergy

and GetMinEnergyProfile are applications of Theorem 9. The subroutine GetPath

finds the directed circular arc or straight line path. The rest of the subroutines are

obvious from their names.

If |X|, |Θ|, |V | are the number of discretized positions, orientations and velocities

respectively, then the Energy Roadmap has |V| = |X| · |Θ| · |V | vertices. Checking for

a feasible path between every pair of vertices would require O(|X|2|Θ|2|V |2) checks.

Instead we can reduce the number of checks to O(|X|2|Θ|) by observing that there is

exactly one circular arc or line from a given pose (xi, yi, θi) to a position (xj , yj) as

shown in Figure 8.12. Hence, we only check each pose with every other position for a

feasible path (Lines 4–6 in Algorithm 4). Looking up a vertex from a pose or position

while adding the edge (FindVertex in Lines 12–13) can be done in constant time by

maintaining a map of pointers.

149

Figure 8.12: There exists only one circle passing through a pose (xi, yi, θi) and a position

(xj , yj). All other circular arcs (shown dashed) passing through the same pair of points

will not have a tangent aligned along θi at (xi, yi). Hence, in building the Energy

Roadmap, instead of searching over all pairs of poses (O(|X|2 · |Θ|2)), we search over

pairs of poses and positions (O(|X|2 · |Θ|)).

8.6.1 Implementation

We implemented2 the algorithm in C++. We used the GNU Scientific Library [153] to

perform numerical integration in computing energy and for solving the transversality

condition given in Equation 8.15. To find the Dubins’ paths, we used the Open Mo-

tion Planning Library [154]. Our implementation makes the following optimizations to

reduce the runtime and storage requirements:

• In general, the number of edges in G can be O(|X|2|Θ||V |2). For a fine dis-

cretization, the storage can become prohibitively high. We reduce the storage

requirement to O(|X||Θ||V |2) by observing that the paths between two poses are

invariant to rotation and translation in the plane. Hence, instead of computing

and storing edges between all possible pairs of vertices, we initially create a lookup

table consisting of outgoing edges from (0, 0, θ, v0), for all θ ∈ Θ and v0 ∈ V to all

other vertices. While finding the shortest path using A* search, each time a new

2Code is available to download from http://rsn.cs.umn.edu/index.php/Downloads

http://rsn.cs.umn.edu/index.php/Downloads

150

vertex, say (x, y, θ, v), is discovered, we first transform all other vertices in the

relative coordinate frame centered at (x, y). We can then extract its neighbors by

looking up the relative coordinates in the table. This approach trades the running

time of the search phase with the running time for building the Energy Roadmap

(Lines 4–18) and the storage required for the Energy Roadmap.

• To further speed up the A* search, we use a lower bound on the energy as a

heuristic function. For any vertex (xi, yi, θi, vi), a lower bound on the energy to

reach the goal (xt, yt, θt, vt) can be computed as c4
d
vm

where d is the Euclidean

distance between (xi, yi) and (xt, yt).

A discretization of 0.1m, π
64rad and 0.5m/s was used for finding minimum energy tra-

jectories. Energy parameters c1, . . . , c4 were set to 1, Fmax = 0.05, m = 1 and minimum

turning radius was set to 1m for each instance. The graph, thus created consisted of

6.4M vertices. The lookup table to store potential edges (as described above) used

10GB memory. Computing the minimum energy path typically took under 15mins on

a 3.0GHz computer. To find the optimal velocity profile along the Dubins’ path a

resolution of 0.02m/s was used for dynamic programming.

8.6.2 Comparison with Dubins’ Paths

Figure 8.13 shows the energy-optimal paths and velocity profiles obtained using Algo-

rithm 4 for four start and goal poses. These four instances are representative of the

trade-off between the turning radius, maximum velocity and energy. Figure 8.13(a)

shows an instance where the Dubins’ path consisted of three consecutive circular seg-

ments of minimum turning radius. The maximum allowable speeds along turns of

minimum radii using Equation 8.6 was 0.22m/s. Hence, the optimal velocity profile

along the Dubins’ path (right column) was forced to move at a slower speed, for a

longer time consequently paying a higher energy cost. On the other hand, the optimal

path consisted of a straight line segment and turns with greater turning radii, allowing

the robot to move at a higher velocity. The resulting path, although longer than the

Dubins’ path, takes a lesser amount of time to travel and pays a lower energy cost.

Figure 8.13(b) shows an instance where the minimum energy path does not contain

a straight line segment, whereas the Dubins’ path does. Both paths begin and end with

151

circular segments of minimum turning radius. The minimum energy path, however,

spends lesser time on the minimum turning radius segments and switches to segments

with higher turning radius (consequently lower energy) in the middle. We can observe

that one of the characteristics of minimum energy paths is to avoid turns with minimum

turning radius. Figure 8.13(c) shows an instance where the minimum energy path does

not contain any segment of minimum turning radius.

We observed that as the length of the minimum radius turns becomes smaller than

length of the straight line segment of the Dubins’ path, the energy overhead of traveling

at slower speeds decreases. Figure 8.13(d) shows one such instance.

It must be noted that these observations are a function of the system parameters.

For example, if the robot is capable of moving at very high speeds at minimum turning

radius, then the minimum energy path will coincide with the minimum length paths.

Nevertheless, Algorithm 4 will find the minimum energy path, subject to the discretiza-

tion.

8.7 Calibration and Experiments

To test the validity of our results, we performed experiments using our custom-built

robot. We first describe a simple procedure to find the energy model (Equation 8.5) of

the robot for a given flat surface.

8.7.1 Calibration

We use a custom-built robot (see Figure 8.14) for experiments. Two DC motors with

their output shafts coupled together through a gearbox drive the robot. The robot

has car-like steering controlled by a servo motor through a fixed steering rod (unlike

Ackermann steering). We use separate batteries to drive the DC motors and power the

rest of the electronics on the robot.

Our method utilizes a simple current and voltage measurement circuit (Figure 8.14)

connected between the output of the motor and the motor driver circuit. This circuit

measures the current flowing through and the voltage across the motor. An optical

encoder installed on one of the robot’s wheels measures its linear velocity. In the cali-

bration procedure described next, we fix the steering of the robot so that it drives in a

152

Energy−Optimal Path

(0.0,1.5,0) (1.2,1.5,π)

Dubins Path
Min. Energy Path

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Time (sec)

V
el

oc
ity

 (
m

/s
)

Energy−Optimal Velocity Profile

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Time (sec)

V
el

oc
ity

 (
m

/s
)

Optimal Velocity Profile on Dubins Path

(a) Energy-Optimal trajectory (39.4J, 7.6m).

Dubins’ path with energy-optimal velocity pro-

file (40.1J, 6.9m). Dubins’ path consists of C-C-

C segments, whereas the minimum energy path

found has 1 straight line and 5 circular segments.

Energy−Optimal Path

(0.0,1.0,0)

(0.0,3.5,π)

Dubins Path
Min. Energy Path

0 2 4 6 8 10 12 14 16
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Time (sec)

V
el

oc
ity

 (
m

/s
)

Energy−Optimal Velocity Profile

0 2 4 6 8 10 12 14 16
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Time (sec)

V
el

oc
ity

 (
m

/s
)

Optimal Velocity Profile on Dubins Path

(b) Energy-Optimal trajectory (19.1J, 3.7m).

Dubins’ path with energy-optimal velocity profile

(20.7J, 3.6m). The Dubins’ path consists of C-S-

C segments, whereas the minimum energy path

found consists of 4 circular segments.

Energy−Optimal Path

(0.0,1.0,0)

(4.5,2.0,π/4)

Dubins Path
Min. Energy Path

0 2 4 6 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Time (sec)

V
el

oc
ity

 (
m

/s
)

Energy−Optimal Velocity Profile

0 2 4 6 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Time (sec)

V
el

oc
ity

 (
m

/s
)

Optimal Velocity Profile on Dubins Path

(c) Energy-Optimal trajectory (17.4J, 4.7m).

Dubins’ path with energy-optimal velocity profile

(17.8J, 4.6m). Dubins’ path consists of C-S-C seg-

ments, whereas the minimum energy path found

consists of 1 straight line initially and 3 circular

segments.

Energy−Optimal Path

(0.0,0.0,0)

(4.5,4.5,0)

Dubins Path
Min. Energy Path

0 2 4 6 8 10 12 14 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (sec)

V
el

oc
ity

 (
m

/s
)

Energy−Optimal Velocity Profile

0 2 4 6 8 10 12 14 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (sec)

V
el

oc
ity

 (
m

/s
)

Optimal Velocity Profile on Dubins Path

(d) Energy-Optimal trajectory (26.29J, 6.55m).

Dubins’ path with energy-optimal velocity pro-

file (26.35J, 6.59m). The Dubins’ path consists

of C-S-C segments, whereas the minimum energy

path found consists of 1 straight line and 5 circu-

lar segments.

Figure 8.13: The left column shows the energy-optimal paths found using Algorithm 4.

The color profile along the path indicates the optimal velocity profile, also shown in the

middle column. The dashed path is the minimum length Dubins’ paths. The energy-

optimal velocity profiles along the Dubins’ paths (using the dynamic programming pre-

sented in Section 8.5) are shown in the right column. Energy parameters c1, . . . , c4 were

set to 1, Fmax = 0.05, m = 1 and minimum turning radius was set to 1m for each

instance. A discretization of 0.1m, π
64rad and 0.5m/s was used for finding minimum

energy trajectories. Resolution of 0.02m/s was used for dynamic programming.

153

Algorithm 4: Minimum Energy Trajectories

Input: s, t: Start and goal pose

Data: X,Θ, V discretized positions, orientations, speeds

Output: {φ(t), v(t)}: Steering angle and translational velocity profiles.

1 P ← {(l ∈ X, θ ∈ Θ)} /* discretized poses */

2 V← {(p ∈ P, v ∈ V)} /* vertices */

3 E← ∅
/* There exists exactly one circle/line through given pose &

position */

4 forall the p ∈ P do

5 forall the l ∈ X do

6 (θ, len, rad)← GetPath (p, l)

7 if θ ∈ Θ then

8 vm ← GetMaxVel (rad)

9 forall the v0 ∈ V AND v0 ≤ vm do

10 forall the vf ∈ V AND vf ≤ vm do

11 E ← GetMinEnergy (len,v0, vf , vm)

12 vi ← FindVertex (p, v0)

13 vj ← FindVertex (l, θ, vf)

14 E← E ∪ Edge (vi,vj, E)

15 end

16 end

17 end

18 end

19 end

20 s← FindVertex (s, 0)

21 t← FindVertex (t, 0)

22 Path←A* Search (V,E, s, t)

23 φ(t)←GetSteering (Path)

24 v(t)←GetMinEnergyProfile (Path)

25 return {φ(t), v(t)}

154

Figure 8.14: Left: Custom-built robot used in our experiments. Right: Attopilot

voltage and current measurement circuit from SparkFun Electronics.

straight line.

We can write Equations 8.2 and 8.3 as,

i(t) = b1 + b2v(t) + b3a(t),

e(t) = b4 + b5v(t) + b6a(t) (8.25)

where b1, . . . , b6 are linear combinations of the internal parameters of the motors. The

calibration procedure to obtain the energy parameters consists of the following steps:

STEP 1: Drive the robot at a constant velocity (vset) for some time interval (we

used 10s in our calibration experiments). Log the current and voltage across the motor.

Repeat for different vset values ranging from the minimum to the maximum achievable

velocity for the robot. Figure 8.15(a) shows some of the actual profiles obtained during

calibration for vset from 0.5m/s to 2.5m/s.

STEP 2: Compute the average current and voltage for each of the above trials

disregarding the initial acceleration phase. Using Equation 8.25, we can find the pa-

rameters b1, b2, b4 and b5 using least-squares linear fitting to the data (see Figure 8.15(b

and c)).

STEP 3: To find the remaining two terms b3 and b6 in the model, program the

robot to drive from rest at various set acceleration values aset to reach some velocity

value (we used 1.6m/s for our system, see Figure 8.15(d)).

STEP 4: Compute the values of b3 and b6 by substituting aset and b1, b2, b4 and b5

values obtained above in Equation 8.25 and taking the average of all the readings.

155

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

Time in secs

V
el

oc
ity

 in
 m

/s

Calibration

0 0.5 1 1.5 2 2.5
5

5.5

6

6.5

7

C
ur

re
nt

 in
 a

m
ps

Velocity in m/s

Current vs. Velocity

0 0.5 1 1.5 2 2.5
1.5

2

2.5

3

3.5

4

4.5

5

5.5

V
ol

ta
ge

 in
 v

ol
ts

Velocity in m/s

Voltage vs. Velocity

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Time in secs

V
el

oc
ity

 in
 m

/s

Calibration

Figure 8.15: Figures obtained during calibration on the corridor surface. Left to right:

(a) The robot initially accelerates from rest to various set velocity values. We compute

the average current and voltage for the region where the robot moves at vset (STEP

1). (b) Current consumption as a linear function of the velocity, when the motor is

not accelerating (STEP 2). (c) Voltage applied to the motor as a linear function of the

velocity, when the motor is not accelerating (STEP 2). (d) Calibration procedure to

determine the parameter c1 in the energy model. We accelerate the robot with various

set acceleration values aset while logging current and voltage values (STEPS 3 and 4).

STEP 5: Finally, calculate the required parameters c1, . . . , c4 in Equation 8.5 using

c1 = b3b6, c2 = b2b5, c3 = b1b5 + b2b4, and c4 = b1b4.

Table 8.1: Energy model parameters (SI units) obtained using the calibration procedure.

Surface c1 c2 c3 c4

Corridor 17.75 1.16 10.46 4.70

Concrete 5.47 0.77 10.10 4.24

Grass 8.10 5.28 28.01 25.07

Using the above procedure, we calibrated our robot on three surfaces: indoors on a

corridor and outdoors on concrete and grass. The corridor surface was flat whereas the

two outdoor surfaces had uneven terrain, the grassy area more so. Figure 8.15 shows

plots for the complete calibration procedure with the corridor surface. Figure 8.16 shows

the current and voltage plots for the grass surface. The current consumption and voltage

required for driving the robot are higher for grass than for the corridor surface. Since

the surfaces outdoors are uneven, the plots contain more noise than those for corridor.

The model parameters computed for all surfaces are shown in Table 8.1.

156

8.7.2 Experiments

We conducted experiments on the smooth corridor surface to experimentally validate

the optimal velocity profiles found in Section 8.5 and compared with two other profiles.

We first computed the analytical solution for the velocity profile to travel the given

distance. We then sampled this profile at 10Hz and stored the values in a look-up

table.

Figure 8.17 shows the optimal profile computed using the dynamic programming so-

lution presented in Section 8.5, for a given path three segments with distancesD = {10, 3, 10}m
and maximum velocity constraints as vm = {1, 0.2, 1}m/s. The computed velocity pro-

file is shown as a dashed curve. The total energy consumed over the entire profile

was 595J . The actual profile executed has small deviations arising due to noise and

disturbances on the surface. In this work, we pre-compute the optimal trajectory for

the robot. A useful extension to this could be to design an optimal velocity feedback

controller which minimizes the energy consumption.

We compare the energy consumption of our optimal profile with two commonly-used

trapezoidal profiles. We chose the maximum speeds for these profiles as 1m/s and 2m/s,

so that the robot covers the same distance taking more and less time than the optimal

respectively. We perform these comparisons for D = 20m and D = 45m.

0.8 1 1.2 1.4 1.6 1.8 2
6

8

10

12

14

16

18
Current vs. Velocity

C
ur

re
nt

 in
 a

m
ps

Velocity in m/s
0.8 1 1.2 1.4 1.6 1.8 2

3.5

4

4.5

5

5.5

6

6.5
Voltage vs. Velocity

V
ol

ta
ge

 in
 v

ol
ts

Velocity in m/s

Figure 8.16: Current and voltage as a function of velocity, for the grass surface outdoors.

Since the surface outdoors is not flat, the plots contain more noise than the corridor

surface (Figure 8.15(b) & (c))

157

0 5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

1.2

Time in secs

V
el

 in
 m

/s

Actual
Computed

Figure 8.17: Optimal velocity profile executed by the robot for multiple segments.

The dashed curve shows the optimal profile computed using the dynamic program-

ming solution for segments with D = {10, 3, 10}m and maximum velocity constraints

vm = 1, 0.2, 1m/s.

0 5 10 15
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Time in secs

V
el

oc
ity

 in
 m

/s

Optimal profile

Actual
Computed

0 5 10 15 20
0

0.5

1

1.5

2

2.5

Time in secs

V
el

oc
ity

 in
 m

/s

Faster and slower profiles

Figure 8.18: Left: Optimal velocity profile executed by the robot for traveling 20m in

18.4s while consuming 296J energy. The optimal profile is shown as dashed. Right:

Sub-optimal velocity profiles executed by the robot for traveling 20m at maximum set

velocities of 1m/s and 2m/s. The energy consumption for these profiles is 303J and

319J .

158

Figure 8.18 shows the optimal, slower and faster velocity profiles executed by the

robot in the corridor. The optimal profile computed is also shown in Figure 8.18 as

dashed. Table 8.2 shows the comparison of the energy consumption for all the trials

conducted. As we can observe, the optimal profile consumes lesser energy than the two

sub-optimal profiles. Also, the energy savings become more significant as the distance

traveled increases.

Table 8.2: Energy consumption during experiments. The numbers in parentheses indi-

cate the percentage of extra energy consumption with respect to Eopt.

D (m) Eopt(J) Eslow(J) Efast(J)

20 296 303 (2.4%) 319 (7.8%)

45 656 694 (5.8%) 696 (6.1%)

8.8 Conclusion

Optimizing the energy consumption is important for long-term deployments of robotic

sensor systems. In this chapter, we studied the problem of computing trajectories for a

car-like robot so as to minimize the energy consumed while traveling on a flat surface.

We separately considered the problem of computing the energy optimal velocity profiles,

and that of simultaneously computing the energy optimal paths and velocity profiles.

We presented closed form solutions for the velocity profiles for two cases: no constraints

on the robot’s speed, and a single upper-bound on the speed. For the general problem

of computing both paths and trajectories, a discretized graph search algorithm that

leverages our closed form solution for optimal velocity profiles was presented. Using an

implementation of this algorithm, we investigated the structure exhibited by minimum

energy paths and highlighted instances when these paths differ from the minimum length

(Dubins’) paths. The closed-form velocity profiles and the obstacle-free trajectories can

be used as subroutines by sampling-based planners for computing trajectories in the

presence of obstacles. In addition, we presented a calibration procedure for obtaining

robot’s internal energy parameters. We demonstrated the utility of the calibration

procedure and the algorithms through experiments performed on a custom-built robot.

Chapter 9

Conclusion and Discussion

In this dissertation, we studied two main types of robotic sensing problems: coverage

and target tracking. The goal for coverage problems was to ensure each point in the en-

vironment (or a given region-of-interest) is covered by one or more sensors. The notion

of covering a point depends on the specific application. We investigated coverage prob-

lems motivated by applications such as visual inspection and video-conferencing where

seeing an object from all sides is important, as well as applications such as surveil-

lance and location-aware services where locating an object is important. In the target

tracking task, our goal was to sense only those regions in the environment which are

likely occupied by one or more targets. The goal was to design motion strategies for the

robots in order to track these regions as the targets move. We presented algorithms with

theoretical performance guarantees (often in the form of constant-factor approximation

algorithms) and described the design of prototype robotic systems developed for two

practical applications.

In the following, we will summarize our contributions and highlight some follow-up

research questions and open problems. We will then conclude with a broader discussion

of future research for robotic sensing systems.

9.1 Summary of Contributions and Open Problems

In Chapter 3, we studied the problem of covering all points in a polygonal environment

with omnidirectional cameras (called guards). A point was said to be covered if it

159

160

satisfied the so-called △-guarding constraint: the point is seen by one or more guards

and it lies within the convex hull of the guards that see the point. This constraint

ensures that any convex object within the environment will be inspected from all sides.

This is a typical requirement in applications such as surveillance and video-conferencing.

We showed that Ω(
√
n) guards are necessary for △-guarding any n–sided polygon. The

bound is tight for polygons with holes. We conjecture that for polygons without holes

Ω(n) guards are always necessary.

For the optimization problem of placing guards, we presented a log factor approxima-

tion for △-guarding the interior with vertex guards. We then formulated the following

version for which we presented a constant factor approximation: We are given a set of

chords (representing for example paths a person may take) and our goal is to △-guard

one point per chord. This constant factor approximation is particularly encouraging

since few such results exist for visibility-based coverage problems. An immediate re-

search question is whether we can obtain similar results for other types of input regions

such as convex subpolygons instead of chords, and for the standard notion of visibility

(without △-guarding constraint).

In Chapter 4, we studied the problem of coverage with bearing sensors in order

to precisely localize a target anywhere in the environment. Each sensor measures a

bearing corrupted by an unknown, but bounded amount of noise. Measurements from

all sensors are combined in order to find an estimate for the target’s location. We

analyzed the trade-off between the number of sensors and worst-case uncertainty in a

simple, obstacle-free environment. In particular, we showed that at most nine times as

many sensors in a triangular grid placement achieve at most six times the uncertainty

of an unknown optimal placement.

Future work would be to show whether a triangular placement is optimal. There is

some evidence in this direction. Yfantis et al. [65] showed a triangular grid placement

is more efficient than a square placement. Future work would also include addressing

sensing limitations such as visibility constraints and placement in complex environments,

as in the case of Chapter 3.

In Chapter 5, we studied the problem of tracking mobile targets using a team of

aerial robots. We consider the scenario where each robot is carrying a camera that is

facing downwards. The quality of tracking a ground target is a function of the distance

161

between the robot and the target. A major difference between visibility-based coverage

(considered in Chapter 3) and visibility-based tracking is that it may not be feasible

to track all targets with a limited number of robots. We show a negative result in

this direction. We show that k robots may not be able to track n > k targets while

maintaining some bound on the quality of tracking. Our proof relies on the existence

of a sufficiently large environment. Future work would be to study tracking in bounded

environments.

We then formulated the problem of tracking the maximum number of targets or the

maximum quality of tracking as a variant of the maximum k–coverage problem. It has

been shown [73] that a simple greedy algorithm achieves a 1/2 approximation for this

variant which we adapted for our problem. One avenue of extending this work is to

seek better approximation guarantees, perhaps by restricting the motion of the targets

(e.g., bound on their maximum speed). Future work would also include investigating

the problem under inter-robot communication constraints.

In Chapters 6 and 7, we studied coverage and tracking problems motivated by two

practical environment monitoring applications: precision agriculture and autonomously

monitoring radio-tagged fish, respectively. We described prototype systems developed

for these applications and studied coverage and tracking problems motivated by prac-

tical constraints. In Chapter 6, we introduced a new coverage problem termed Sam-

plingTSPN, where we want to obtain samples in a set of disks in the plane and the

objective is to minimize the total travel and sampling time. We presented a O
(
rmax

rmin

)

approximation algorithm for this problem. In Chapter 7, we introduced a new coverage

formulation where the goal is to visit and cover a set of regions scattered in the plane.

We showed how algorithms for TSPN and coverage can be combined to yield constant

factor approximations for our problem.

An immediate extension of our work is to develop planning algorithms with multiple

robots to improve the coverage and tracking performance. Additional issues faced when

building such a system (e.g. communication and coordination) must be addressed. Fu-

ture work includes studying the online version of the coverage problems. In the online

version, new points are likely to appear while executing the coverage tours. There has

been some work on online TSP [155, 156], but online problems for TSP with neighbor-

hoods are currently open.

162

In Chapter 8, we studied the problem of optimizing the motion of car-like robots in

order to minimize their energy consumption. Starting with a known model for energy

consumption of DC motors, we showed how to compute energy-optimal velocity profiles

in closed-form when the path is given. We also presented a technique to compute

energy-optimal paths and velocity profiles which uses the closed-form velocity solution

as a subroutine. Extending this work to take into account both higher-level sensing

constraints and environmental factors affecting the robot’s dynamics, such as the work

by Ru and Martinez [157], is an important direction of future work.

9.2 Future Research Directions

These are exciting times for robotics. Robotic technology today has matured to the point

where robots capable of operating in the natural environment are available commercially.

We regularly see impressive demonstrations of robots performing skillful and challenging

tasks. This trend will continue thanks to the renewed interest in robotics by the industry

and government.

On the other hand, rapid technological progress can make defining research problems

itself challenging. What is considered a challenge today may become ubiquitous by

tomorrow. For example, the availability of inexpensive and accurate GPS sensors have

largely solved the outdoor robot localization problem.1 Most modern robots carry a

powerful computer by today’s standard, that allows us to perform many operations

on-board which would have been considered infeasible earlier. For example, the UAV

in the current version of the precision agriculture sensing system (Chapter 6) has a

sophisticated ODroid U3 computer with a 1.7GHz Quad-Core processor and 2GByte

RAM on-board. This is orders of magnitude better than the PDP-10 computer with

less than 1MByte memory which was on the Shaky robot, one of the first mobile robots

developed in the sixties [158].

In such a situation, theoretical results that rely on some level of abstraction can be

helpful in defining and making progress. Such theoretical results are useful is telling us

the fundamental performance limits. However, the utility of such results is diminished

1There is however, considerable ongoing research on localizing in GPS-denied environments and

precise localization beyond GPS-level accuracy.

163

if they are based on abstractions and models that are far removed from practice. In the

following, we list some directions to pursue future research with the ultimate goal of

bridging the gap between theoretical models and abstractions and practical constraints

for robotic sensing systems.

9.2.1 Realistic Environments

Many of the worst-case bounds for visibility-based coverage problems are based on

creating pathologically bad input instances. Realistic environments are typically are

more structured. One way of bridging the gap between theory and practice would be

to derive the theoretical bounds for realistic environments. However, defining what we

mean by “realistic” itself is not easy. We outline a few approaches.

In one of the first attempts, Valtr [159] defined the notion of ǫ–good polygons. A

point is called ǫ–good if a guard placed at that point sees at least ǫ fraction of the

polygon. The polygon is ǫ–good if all points are ǫ–good. Valtr showed that the number

of guards sufficient for covering an ǫ–good polygon depends only on ǫ and the number

of holes but is independent of the total number of vertices, which is not the case for

general polygons.

We can have polygons that are ǫ–good but have long, thin spikes which go against

our intuitive notion of realistic environments. An alternate notion that disallows such

instances is that of fat polygons. One description of fat polygons are the so-called

(α, β)–covered polygons [160]. A polygon P is called (α, β)–covered if for any point p

on the boundary of P there exists a triangle T (p) such that, (i) p is a vertex of T (p),

(ii) T (p) is completely contained within P , (iii) all three angles of T (p) are at least

α, and (iv) the length of each edge of P is at least β times the diameter of P . The

intuition is that we can always place a fat triangle T (p) on the boundary of the polygon,

thus avoiding long, thin spikes. The consequence of this definition is that the number

of guards sufficient to cover the boundary of P depends only on α and β, but not on

n [161]. An immediate research problem would be to determine the number of guards

sufficient to see the interior of (α, β)–covered polygons.

Both the definitions given above are based on avoiding unrealistic scenarios. Alter-

natively, we can explicitly define a class of realistic polygons. Orthogonal polygons, in

which all edges are aligned along two orthogonal axis, is a class of polygons that is a

164

good approximation for real-life building floorplans [162].

Finally, instead of defining what we mean by realistic environments, we can use

examples from the real-world. For example, recently Amigoni et al. [163] presented

a data-driven approach to randomly general realistic indoor environments based on

what they term as structural realism. They used floorplans of 150 actual buildings

and assigned semantic labels to all the rooms and corridors in the floorplans. The

floorplans themselves were obtained from architectural design textbooks and came with

some functional labels already assigned. From this, the authors computed statistics for

rooms in each label and relational information between separate labels. These statistics

were then used to randomly generate new environments. Using a more data-driven

approach may be an interesting direction study more practical versions of coverage

problems.

9.2.2 Realistic Robot Motion Models

In addition to developing and using realistic input models, it is important to use realistic

motion models for the robot in order to bridge the gap between theory and practice.

In Chapters 5–7 we used a simple point model for the robot. We neglected any kine-

matic constraints (e.g. the steering model) or dynamic constraints (e.g. drifts due to

winds/waves) while planning the robot’s path. This will cause a gap in the theoretical

and experimental performance of the system.

One way of modeling this gap is in a hierarchical fashion with increasing levels of

fidelity. Consider the problem of computing TSP tours. The point robot model repre-

sents the highest level of abstraction, which gives the strongest theoretical guarantees in

the form of a PTAS but possibly at a lower fidelity. At the next level, we can incorpo-

rate steering constraints in the robot’s motion model improving the fidelity. A constant

factor approximation is known [164] when the motion model is a Dubins’ car. This

algorithm builds on the point motion model of the previous level. At even lower levels

of abstraction, we can incorporate further practical constraints, such as robot dynamics

and energy, as long as they improve the fidelity. It will be interesting and useful to

build and understand this hierarchy for some of the commonly available robotic sensing

tasks.

165

9.2.3 Robustness against Uncertainty in the Model

In this dissertation, we saw how noise in the sensing can limit the quality of coverage and

tracking. Unlike passive sensing systems, however, robotic sensors have the capability

to reconfigure themselves. By designing adaptive planning algorithms, the robots can

overcome the limitations of sensing noise and improve the sensing performance. Sensing

noise is one amongst many sources that cause uncertainty for robotic sensing systems.

Designing efficient planning algorithms to address other sources of uncertainty with

both provable performance guarantees, as well as through rigorous experimentation is

a crucial challenge. We discuss one particular source of uncertainty.

In formulating many of the problems in this dissertation, we implicitly assumed the

input can be perfectly specified and is a faithful representation of the actual scenario. For

example, the coverage algorithm to find radio-tagged carp in Section 7.3 takes as input

a set of polygons that represent regions within the lake that are likely to contain carp.

The algorithm and its analysis rely only the geometry of the input regions. In practice,

however, it may not be possible to specify such regions with certainty. Similarly, for the

coverage problems input polygons may not be an accurate representation of the actual

environment. Consequently, this will cause the empirical performance of an algorithm

to deviate from the theoretical analysis. One possible way of bridging this gap would

be to allow the input itself to be uncertain instead of assuming it is perfectly specified.

There are two related questions that must be addressed: how to represent or model the

uncertainty in the input, and how does this uncertainty affect our algorithms and their

theoretical analysis?

When the input itself is estimated from sensor measurements or in a data-driven

fashion, the uncertainty can be derived from the relevant estimator. For example,

Vasudevan et al. [165] show how Gaussian Process (GP) regression can be used to

model an environment using terrain data and use the GP to determine the uncertainty

and incompleteness of the model. Similarly, for the target tracking problem, Joseph et

al. [166] used GPs to estimate motion models (and the uncertainty in the estimates)

from a dataset of time-stamped GPS coordinates of taxis in Boston. On the other

hand, if a human is specifying the input, we may have to take into account additional

uncertainty factors [167]. For example, users’ backgrounds can influence how they view

the functionality of a robot [168] which may potentially affect how they specify inputs

166

or tasks. Understanding such factors and developing algorithms that take them into

account is an important research direction.

For the second question, there have been recent efforts in understanding the role

played by uncertainty in geometric problems that have been studied in mostly deter-

ministic settings. Kamousi and Suri [169] studied the classical TSPN problem for disks,

where the radii of disks is a random variable drawn from a known probability distri-

bution. Given some assumptions on the probability distribution, they presented an

algorithm which for a given random instance of n disks computes a tour whose length

is at most O(log log n) times the expected length of the optimal tour. In this case, the

radii are all revealed before the tour is computed. If the radii are revealed in an online

fashion, then they presented an expected O(log n) approximation algorithm.

The effect of uncertainty in the environment representation on visibility has not been

studied largely. Cai and Keil [170] showed that the visibility graphs for polygons whose

vertices are known only up to an accuracy of ǫ distance can be computed efficiently.

Establishing “robust” bounds for visibility-placed coverage algorithms remains an open

research problem and an avenue of future research.

9.2.4 Long-Term Planning

All the coverage and tracking problems we studied in this dissertation focused on a

single, well-defined task. We formulated these problems as optimization problems with

one or sometimes two criteria from amongst sensing quality, time, distance or energy.

The situation will be more complex when we consider practical deployments of robotic

sensor systems for a longer time period. Instead of relying on either stationary sensors

or one or more robots, a combination of various types of sensors and robots may be

used. Addressing and planning for the communication between various components of

the system will become important. Managing overall system energy will be critical to

ensure long-term operation. Moreover, the system could be expected to carry out a

number of tasks simultaneously whose objectives may be in conflict with each other.

In recent years, robotics researchers have made progress towards solving separate

components, both through theoretical results and through field studies. Going forward,

a principled study of the interplay between various components of this system will

become important. Our lab’s research efforts [171] are aligned in this direction.

167

9.3 Concluding Remarks

We started this dissertation by noting that industrial robots that carry out complex

assembly and manufacturing tasks have been one of the most widespread and successful

accomplishments for the field of robotics. We end on an optimistic note. Robots that

are no longer constrained to controlled, industrial settings will become ubiquitous in

the future and perform tasks deemed too complex, unsafe, or infeasible for humans

today. A number of challenges will need to be solved before we get there. Achieving a

greater synergy between theory and practice is a crucial challenge. In this dissertation,

we investigated some of the algorithmic and system challenges pertaining to robotic

sensing systems. Our hope is that engineers and researchers from diverse areas will

continue to work together and ultimately overcome the challenges that lie before a

robotics revolution.

References

[1] Joseph O’Rourke. Art gallery theorems and algorithms. Oxford University Press

Oxford, 1987.

[2] Adrian Dumitrescu and Joseph SB Mitchell. Approximation algorithms for tsp

with neighborhoods in the plane. Journal of Algorithms, 48(1):135–159, 2003.

[3] D. J Mulla, M Beatty, and A. C. Sekely. Evaluation of remote sensing and targeted

soil sampling for variable rate application of nitrogen. In Proceedings of 5th In-

ternational Conference on Precision Agriculture. American Society of Agronomy,

Crop Science Society of America, and Soil Science Society of America, 2001.

[4] Malaysia missing MH370 plane: “ping area” ruled out, 2014 (accessed August 20,

2014). http://www.bbc.com/news/world-asia-26514556.

[5] Chris Urmson. The latest chapter for the self-driving car: mastering city street

driving, 2014 (accessed August 20, 2014). http://googleblog.blogspot.com/

2014/04/the-latest-chapter-for-self-driving-car.html.

[6] The Economist. Telepresence robots: Your alter ego on wheels, 2013 (accessed

August 26, 2014). http://www.economist.com/news/technology-quarterly/

21572916-robotics-remotely-controlled-telepresence-robots-let-

people-be-two-places.

[7] Jason M O’Kane. A Theory for Comparing Robot Systems. PhD thesis, University

of Illinois at Urbana-Champaign, 2007.

168

http://www.bbc.com/news/world-asia-26514556
http://googleblog.blogspot.com/2014/04/the-latest-chapter-for-self-driving-car.html
http://googleblog.blogspot.com/2014/04/the-latest-chapter-for-self-driving-car.html
http://www.economist.com/news/technology-quarterly/21572916-robotics-remotely-controlled-telepresence-robots-let-people-be-two-places
http://www.economist.com/news/technology-quarterly/21572916-robotics-remotely-controlled-telepresence-robots-let-people-be-two-places
http://www.economist.com/news/technology-quarterly/21572916-robotics-remotely-controlled-telepresence-robots-let-people-be-two-places

169

[8] Neil H Carter, Bhim Gurung, Andrés Viña, Henry Campa III, Jhamak B Karki,

and Jianguo Liu. Assessing spatiotemporal changes in tiger habitat across different

land management regimes. Ecosphere, 4(10):art124, 2013.

[9] Onur Tekdas, Volkan Isler, Jong Hyun Lim, and Andreas Terzis. Using mo-

bile robots to harvest data from sensor fields. IEEE Wireless Communications,

16(1):22, 2009.

[10] P. G. Bajer, C. J. Chizinski, and P. W. Sorensen. Using the Judas technique to

locate and remove wintertime aggregations of invasive common carp. Fisheries

Management and Ecology, 2011.

[11] Ioannis Rekleitis, Eric Martin, Guy Rouleau, Régent L’Archevêque, Kourosh

Parsa, and Eric Dupuis. Autonomous capture of a tumbling satellite. Journal

of Field Robotics, 24(4):275–296, 2007.

[12] Jue Wang, Fadel Adib, Ross Knepper, Dina Katabi, and Daniela Rus. Rf-compass:

robot object manipulation using RFIDs. In Proceedings of the 19th annual inter-

national conference on Mobile computing & networking, pages 3–14. ACM, 2013.

[13] Jocelyn Smith and William S Evans. Triangle guarding. In Canadian Conference

on Computational Geometry, pages 76–80, 2003.

[14] Alon Efrat, Sariel Har-Peled, and Joseph SB Mitchell. Approximation algorithms

for two optimal location problems in sensor networks. In 2nd International Con-

ference on Broadband Networks, pages 714–723, 2005.

[15] P. Tokekar and V. Isler. Polygon guarding with orientation. In Proceedings of

IEEE International Conference on Robotics and Automation. IEEE, 2014.

[16] P. Tokekar and V. Isler. Sensor placement and selection for bearing sensors

with bounded uncertainty. In Proceedings of IEEE International Conference on

Robotics and Automation, pages 2515–2520. IEEE, 2013.

[17] P. Tokekar, V. Isler, and A. Franchi. Multi-target visual tracking with aerial

robots. In Proceedings of IEEE/RSJ International Conference on Intelligent

Robots and Systems. IEEE, 2014.

170

[18] David J. Mulla. Twenty five years of remote sensing in precision agriculture: Key

advances and remaining knowledge gaps. Biosystems Engineering, 114(4):358 –

371, 2013. Special Issue: Sensing Technologies for Sustainable Agriculture.

[19] Avrim Blum, Shuchi Chawla, David R Karger, Terran Lane, Adam Meyerson, and

Maria Minkoff. Approximation algorithms for orienteering and discounted-reward

tsp. SIAM Journal on Computing, 37(2):653–670, 2007.

[20] P. Tokekar, J. Vander Hook, D. Mulla, and V. Isler. Sensor planning for a symbi-

otic UAV and UGV system for precision agriculture. In Proceedings of IEEE/RSJ

International Conference on Intelligent Robots and Systems, pages 5321–5326.

IEEE, 2013.

[21] P.G. Bajer, H. Lim, M.J. Travaline, B.D. Miller, and P.W. Sorensen. Cognitive

aspects of food searching behavior in free-ranging wild Common Carp. Environ-

mental Biology of Fishes, 88(3):295–300, 2010.

[22] D. Bhadauria, V. Isler, A. Studenski, and P. Tokekar. A robotic sensor network

for monitoring carp in Minnesota lakes. In Proceedings of IEEE International

Conference on Robotics and Automation, pages 3837–3842. IEEE, 2010.

[23] P. Tokekar, J. Vander Hook, and V. Isler. Active target localization for bearing

based robotic telemetry. In Proceedings of IEEE/RSJ International Conference

on Intelligent Robots and Systems, pages 488–493. IEEE, 2011.

[24] P. Tokekar, D. Bhadauria, A. Studenski, and V. Isler. A robotic system for

monitoring carp in Minnesota lakes. Journal of Field Robotics, 27(6):779–789,

2010.

[25] P. Tokekar, E. Branson, J. Vander Hook, and V. Isler. Tracking aquatic invaders:

Autonomous robots for invasive fish. IEEE Robotics and Automation Magazine,

20(3):33–41, 2013.

[26] P. Tokekar, N. Karnad, and V. Isler. Energy-optimal velocity profiles for car-

like robots. In Proceedings of IEEE International Conference on Robotics and

Automation, pages 1457–1462. IEEE, 2011.

171

[27] P. Tokekar, N. Karnad, and V. Isler. Energy-optimal trajectory planning for

car-like robots. Autonomous Robots, 2014.

[28] Uriel Feige. A threshold of ln n for approximating set cover. Journal of the ACM

(JACM), 45(4):634–652, 1998.

[29] David S Johnson. Approximation algorithms for combinatorial problems. In

Proceedings of the fifth annual ACM symposium on Theory of computing, pages

38–49. ACM, 1973.

[30] Vašek Chvátal. A greedy heuristic for the set-covering problem. Mathematics of

operations research, 4(3):233–235, 1979.

[31] Dorit S Hochbaum and Anu Pathria. Analysis of the greedy approach in problems

of maximum k-coverage. Naval Research Logistics (NRL), 45(6):615–627, 1998.

[32] Jorge Urrutia. Art gallery and illumination problems. Handbook of Computational

Geometry, pages 973–1027, 2000.

[33] Subir Kumar Ghosh. Approximation algorithms for art gallery problems in poly-

gons and terrains. In Md.Saidur Rahman and Satoshi Fujita, editors, WALCOM:

Algorithms and Computation, volume 5942 of Lecture Notes in Computer Science,

pages 21–34. Springer Berlin Heidelberg, 2010.

[34] Vasek Chvatal. A combinatorial theorem in plane geometry. Journal of Combi-

natorial Theory, Series B, 18(1):39–41, 1975.

[35] Iliana Bjorling-Sachs and Diane L. Souvaine. An efficient algorithm for guard

placement in polygons with holes. Discrete & Computational Geometry, 13(1):77–

109, 1995.

[36] Frank Hoffmann, Michael Kaufmann, and Klaus Kriegel. The art gallery theorem

for polygons with holes. In 2013 IEEE 54th Annual Symposium on Foundations

of Computer Science, pages 39–48. IEEE Comput. Soc. Press, 1991.

[37] Steve Fisk. A short proof of chvátal’s watchman theorem. Journal of Combina-

torial Theory, Series B, 24(3):374, 1978.

172

[38] Joseph O’Rourke and Kenneth Supowit. Some NP-hard polygon decomposition

problems. IEEE Transactions on Information Theory, 29(2):181–190, 1983.

[39] Der-Tsai Lee and ARTHURK Lin. Computational complexity of art gallery prob-

lems. Information Theory, IEEE Transactions on, 32(2):276–282, 1986.

[40] S. Eidenbenz, C. Stamm, and P. Widmayer. Inapproximability results for guarding

polygons and terrains. Algorithmica, 31(1):79–113, 2001.

[41] Hervé Brönnimann and Michael T Goodrich. Almost optimal set covers in finite

VC-dimension. Discrete & Computational Geometry, 14(1):463–479, 1995.

[42] Alexander Gilbers and Rolf Klein. A new upper bound for the vc-dimension of

visibility regions. Computational Geometry, 47(1):61–74, 2014.

[43] James King and David Kirkpatrick. Improved approximation for guarding simple

galleries from the perimeter. Discrete & Computational Geometry, 46(2):252–269,

2011.

[44] Alon Efrat and Sariel Har-Peled. Guarding galleries and terrains. Information

Processing Letters, 100(6):238–245, 2006.

[45] Ajay Deshpande, Taejung Kim, Erik Demaine, and Sanjay Sarma. A pseudopoly-

nomial time o (log n)-approximation algorithm for art gallery problems. Algo-

rithms and Data Structures, pages 163–174, 2007.

[46] Erik A Krohn and Bengt J Nilsson. Approximate guarding of monotone and

rectilinear polygons. Algorithmica, 66(3):564–594, 2013.

[47] Christos H Papadimitriou. The euclidean travelling salesman problem is np-

complete. Theoretical Computer Science, 4(3):237–244, 1977.

[48] Nicos Christofides. Worst-case analysis of a new heuristic for the travelling sales-

man problem. Technical report, DTIC Document, 1976.

[49] Michael Lampis. Guest column: the elusive inapproximability of the tsp. ACM

SIGACT News, 45(1):48–65, 2014.

173

[50] Sanjeev Arora. Polynomial time approximation schemes for euclidean traveling

salesman and other geometric problems. Journal of the ACM (JACM), 45(5):753–

782, 1998.

[51] Joseph SB Mitchell. Guillotine subdivisions approximate polygonal subdivisions:

A simple polynomial-time approximation scheme for geometric tsp, k-mst, and

related problems. SIAM Journal on Computing, 28(4):1298–1309, 1999.

[52] Esther M Arkin and Refael Hassin. Approximation algorithms for the geometric

covering salesman problem. Discrete Applied Mathematics, 55(3):197–218, 1994.

[53] Adrian Dumitrescu and Csaba D Tóth. The traveling salesman problem for lines,

balls and planes. In Proceedings of the Twenty-Fourth Annual ACM-SIAM Sym-

posium on Discrete Algorithms, pages 828–843. SIAM, 2013.

[54] Joseph SB Mitchell. A constant-factor approximation algorithm for tsp with

pairwise-disjoint connected neighborhoods in the plane. In Proceedings of the

twenty-sixth annual symposium on Computational geometry, pages 183–191. ACM,

2010.

[55] Joseph SB Mitchell. A ptas for tsp with neighborhoods among fat regions in the

plane. In Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete

algorithms, pages 11–18. Society for Industrial and Applied Mathematics, 2007.

[56] Anurag Ganguli, Jorge Cortés, and Francesco Bullo. Distributed coverage of

nonconvex environments. In Networked sensing information and control, pages

289–305. Springer, 2008.

[57] Tim Danner and EE Kavraki. Randomized planning for short inspection paths. In

Proceedings of the IEEE International Conference on Robotics and Automation,

volume 2, pages 971–976. IEEE, 2000.

[58] Andrew J Davison, Ian D Reid, Nicholas D Molton, and Olivier Stasse. Monoslam:

Real-time single camera slam. IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence, 29(6):1052–1067, 2007.

174

[59] Héctor González-Baños and Jean-Claude Latombe. A randomized art-gallery al-

gorithm for sensor placement. In Proceedings of the seventeenth annual symposium

on Computational geometry, pages 232–240. ACM, 2001.

[60] Paul S Blaer and Peter K Allen. View planning and automated data acquisition

for three-dimensional modeling of complex sites. Journal of Field Robotics, 26(11-

12):865–891, 2009.

[61] Sumio Masuda and Kazuo Nakajima. An optimal algorithm for finding a maximum

independent set of a circular-arc graph. SIAM Journal on Computing, 17(1):41–

52, 1988.

[62] R. D’Andrea. Guest editorial: A revolution in the warehouse: a retrospective on

Kiva systems and the grand challenges ahead. IEEE Transactions on Automation

Science and Engineering, 9(4):638–639, 2012.

[63] D. Bertsekas and I. Rhodes. Recursive state estimation for a set-membership

description of uncertainty. IEEE Transactions on Automatic Control, 16(2):117–

128, 1971.

[64] A. Garulli and A. Vicino. Set membership localization of mobile robots via angle

measurements. IEEE Transactions on Robotics and Automation, 17(4):450–463,

2001.

[65] E.A. Yfantis, G.T. Flatman, and J.V. Behar. Efficiency of kriging estimation for

square, triangular, and hexagonal grids. Mathematical Geology, 19(3):183–205,

1987.

[66] M. Younis and K. Akkaya. Strategies and techniques for node placement in wireless

sensor networks: A survey. Ad Hoc Networks, 6(4):621–655, 2008.

[67] L. Hu and D. Evans. Localization for mobile sensor networks. In Proceedings of

the 10th annual international conference on Mobile computing and networking,

pages 45–57. ACM, 2004.

175

[68] F. Benbadis, K. Obraczka, J. Cortés, and A. Brandwajn. Exploring landmark

placement strategies for topology-based localization in wireless sensor networks.

EURASIP Journal on Advances in Signal Processing, 2008:138, 2008.

[69] O. Tekdas and V. Isler. Sensor placement for triangulation-based localization.

IEEE Transactions on Automation Science and Engineering, 7(3):681–685, 2010.

[70] A. Ercan, D. Yang, A. El Gamal, and L. Guibas. Optimal placement and selection

of camera network nodes for target localization. In International Conference on

Distributed Computing in Sensor Systems, pages 389–404. Springer, 2006.

[71] V. Isler and M. Magdon-Ismail. Sensor selection in arbitrary dimensions. IEEE

Transactions on Automation Science and Engineering, 5(4):651–660, 2008.

[72] Cédric Vermeulen, Philippe Lejeune, Jonathan Lisein, Prosper Sawadogo, and

Philippe Bouché. Unmanned aerial survey of elephants. PloS one, 8(2):e54700,

2013.

[73] Chandra Chekuri and Amit Kumar. Maximum coverage problem with group bud-

get constraints and applications. In Approximation, Randomization, and Combi-

natorial Optimization. Algorithms and Techniques, pages 72–83. Springer, 2004.

[74] John R Spletzer and Camillo J Taylor. Dynamic sensor planning and control

for optimally tracking targets. The International Journal of Robotics Research,

22(1):7–20, 2003.

[75] Eric W Frew. Observer trajectory generation for target-motion estimation using

monocular vision. PhD thesis, Stanford University, 2003.

[76] Steven M LaValle, Hector H González-Banos, Craig Becker, and J-C Latombe.

Motion strategies for maintaining visibility of a moving target. In IEEE Interna-

tional Conference on Robotics and Automation, volume 1, pages 731–736. IEEE,

1997.

[77] Nicholas R Gans, Guoqiang Hu, Kaushik Nagarajan, and Warren E Dixon. Keep-

ing multiple moving targets in the field of view of a mobile camera. IEEE Trans-

actions on Robotics, 27(4):822–828, 2011.

176

[78] Sergei Bespamyatnikh, Binay Bhattacharya, David Kirkpatrick, and Michael Se-

gal. Mobile facility location. In Proceedings of the 4th International Workshop

on Discrete Algorithms and Methods for Mobile computing and Communications,

pages 46–53. ACM, 2000.

[79] Stephane Durocher. Geometric Facility Location under Continuous Motion. PhD

thesis, The University of British Columbia, 2006.

[80] Mark de Berg, Marcel Roeloffzen, and Bettina Speckmann. Kinetic 2-centers

in the black-box model. In Proceedings of the 29th Annual on Symposium on

Computational Geometry, pages 145–154. ACM, 2013.

[81] Sonia Martinez, Jorge Cortes, and Francesco Bullo. Motion coordination with

distributed information. IEEE Control Systems, 27(4):75–88, 2007.

[82] Mac Schwager, Brian J Julian, Michael Angermann, and Daniela Rus. Eyes in

the sky: Decentralized control for the deployment of robotic camera networks.

Proceedings of the IEEE, 99(9):1541–1561, 2011.

[83] Sebastian Thrun, Wolfram Burgard, Dieter Fox, et al. Probabilistic robotics, vol-

ume 1. MIT press Cambridge, 2005.

[84] Colin J Green and Alonzo Kelly. Toward optimal sampling in the space of paths.

Springer Tracts in Advanced Robotics, 66:281–292, 2010.

[85] J. Lächele, A. Franchi, H. H. Bülthoff, and P. Robuffo Giordano. SwarmSimX:

Real-time simulation environment for multi-robot systems. In 3rd International

Conference on Simulation, Modeling, and Programming for Autonomous Robots,

Tsukuba, Japan, Nov. 2012.

[86] Mikrokopter, 2014 (accessed August 31, 2014). http://www.mikrokopter.de/.

[87] Simon Benhamou. How many animals really do the levy walk? Ecology,

88(8):1962–1969, 2007.

[88] V. Grabe, M. Riedel, H. H. Bülthoff, P. Robuffo Giordano, and A. Franchi. The

TeleKyb framework for a modular and extendible ROS-based quadrotor control.

http://www.mikrokopter.de/

177

In 6th European Conference on Mobile Robots, pages 19–25, Barcelona, Spain,

Sep. 2013.

[89] Sanjeev Arora. Polynomial time approximation schemes for euclidean tsp and

other geometric problems. In Foundations of Computer Science, 1996. Proceed-

ings., 37th Annual Symposium on, pages 2–11. IEEE, 1996.

[90] Kian Hsiang Low, Jie Chen, John M Dolan, Steve Chien, and David R Thomp-

son. Decentralized active robotic exploration and mapping for probabilistic field

classification in environmental sensing. In Proceedings of the 11th International

Conference on Autonomous Agents and Multiagent Systems-Volume 1, pages 105–

112, 2012.

[91] Bin Zhang and Gaurav S. Sukhatme. Adaptive Sampling for Estimating a Scalar

Field using a Robotic Boat and a Sensor Network. Proceedings 2007 IEEE Inter-

national Conference on Robotics and Automation, pages 3673–3680, April 2007.

[92] Dezhen Song, Chang-Young Kim, and Jingang Yi. Simultaneous localization of

multiple unknown and transient radio sources using a mobile robot. Robotics,

IEEE Transactions on, 28(3):668–680, 2012.

[93] Andreas Krause, A. Singh, and C. Guestrin. Near-optimal sensor placements

in Gaussian processes: Theory, efficient algorithms and empirical studies. The

Journal of Machine Learning Research, 9:235–284, 2008.

[94] Alexandra Meliou, Andreas Krause, Carlos Guestrin, and Joseph M Hellerstein.

Nonmyopic informative path planning in spatio-temporal models. In Proceedings

of the 22nd national conference on Artificial intelligence-Volume 1, pages 602–607.

AAAI Press, 2007.

[95] Amarjeet Singh, Andreas Krause, and William J Kaiser. Nonmyopic Adaptive

Informative Path Planning for Multiple Robots. International Joint Conference

on Artificial Intelligence, pages 1843–1850, 2008.

[96] Deepak Bhadauria, Onur Tekdas, and Volkan Isler. Robotic data mules for col-

lecting data over sparse sensor fields. Journal of Field Robotics, 28(3):388–404,

2011.

178

[97] Onur Tekdas, Deepak Bhadauria, and Volkan Isler. Efficient data collection from

wireless nodes under the two-ring communication model. The International Jour-

nal of Robotics Research, 31(6):774–784, 2012.

[98] Helmut Alt, Esther M Arkin, Hervé Brönnimann, Jeff Erickson, Sándor P Fekete,

Christian Knauer, Jonathan Lenchner, Joseph SB Mitchell, and Kim Whittlesey.

Minimum-cost coverage of point sets by disks. In Proceedings of the twenty-second

annual symposium on Computational geometry, pages 449–458. ACM, 2006.

[99] Ben Grocholsky, James Keller, Vijay Kumar, and George Pappas. Cooperative air

and ground surveillance. Robotics & Automation Magazine, IEEE, 13(3):16–25,

2006.

[100] P.B. Sujit and S. Saripalli. An empirical evaluation of co-ordination strategies for

an auv and uav. Journal of Intelligent & Robotic Systems, 70:373–384, 2013.

[101] Herbert G Tanner. Switched uav-ugv cooperation scheme for target detection. In

Robotics and Automation, 2007 IEEE International Conference on, pages 3457–

3462. IEEE, 2007.

[102] Nabil H Mustafa and Saurabh Ray. Improved results on geometric hitting set

problems. Discrete & Computational Geometry, 44(4):883–895, 2010.

[103] Carl Edward Rasmussen and Christopher KI Williams. Gaussian processes for

machine learning, volume 1. MIT press Cambridge, MA, 2006.

[104] Donald E Myers. Estimation of linear combinations and co-kriging. Mathematical

Geology, 15(5):633–637, 1983.

[105] Clearpath robotics. 2013 (accessed Jan 2013).

[106] Spectrum technologies inc. 2013 (accessed Mar 2013).

[107] Carl Edward Rasmussen and Hannes Nickisch. Gaussian processes for machine

learning (gpml) toolbox. The Journal of Machine Learning Research, 11:3011–

3015, 2010.

179

[108] Andreas Krause. Sfo: A toolbox for submodular function optimization. The

Journal of Machine Learning Research, 11:1141–1144, 2010.

[109] David Applegate, ROBERT Bixby, Vasek Chvatal, and William Cook. Concorde

tsp solver. URL http://www. tsp. gatech. edu/concorde, 2006.

[110] Tetracam. 2014 (accessed Feb 2014).

[111] J. Das, F. Py, T. Maughan, T. OReilly, M. Messié, J. Ryan, K. Rajan, and

G. Sukhatme. Simultaneous Tracking and Sampling of Dynamic Oceanographic

Features with Autonomous Underwater Vehicles and Lagrangian Drifters. In In-

ternational Symposium on Experimental Robotics, 2010.

[112] H. Ferreira, C. Almeida, A. Martins, J. Almeida, N. Dias, A. Dias, and E. Silva.

Autonomous Bathymetry for Risk Assessment with ROAZ Robotic Surface Vehi-

cle. In OCEANS 2009 - Europe, pages 1–6, May 2009.

[113] Geoffrey A Hollinger, Brendan Englot, Franz S Hover, Urbashi Mitra, and

Gaurav S Sukhatme. Active planning for underwater inspection and the

benefit of adaptivity. The International Journal of Robotics Research, page

0278364912467485, 2012.

[114] Eric Raboin, Petr Švec, Dana S Nau, and Satyandra K Gupta. Model-predictive

asset guarding by team of autonomous surface vehicles in environment with civil-

ian boats. Autonomous Robots, pages 1–22, 2014.

[115] M. Dunbabin, P. Corke, I. Vasilescu, and D. Rus. Experiments with Cooperative

Control of Underwater Robots. The International Journal of Robotics Research,

28(6):815, 2009.

[116] Christopher M Clark, Christina Forney, Esfandiar Manii, Dylan Shinzaki, Chris

Gage, Michael Farris, Christopher G Lowe, and Mark Moline. Tracking and fol-

lowing a tagged leopard shark with an autonomous underwater vehicle. Journal

of Field Robotics, 30(3):309–322, 2013.

180

[117] M. Dunbabin and L. Marques. Robots for environmental monitoring: Signifi-

cant advancements and applications. IEEE Robotics and Automation Magazine,

19(1):24 –39, Mar 2012.

[118] H. Choset. Coverage for robotics: A survey of recent results. Annals of Mathe-

matics and Artificial Intelligence, 31(1–4):113–126, 2001.

[119] S. E. Hammel, P. T. Liu, E. J. Hilliard, and K. F. Gong. Optimal observer

motion for localization with bearing measurements. Computers and Mathematics

with Applications, 18(1-3):171 – 180, 1989.

[120] Ke Zhou and S.I. Roumeliotis. Multi-robot active target tracking with combina-

tions of relative observations. IEEE Transactions on Robotics, 27(4):678 –695,

Aug. 2011.

[121] J. Vander Hook, P. Tokekar, and V. Isler. Cautious greedy strategy for bearing-

only active localization: Analysis and field experiments. Journal of Field Robotics,

31(2):296–318, 2014.

[122] Oceanscience, 2011 (accessed November 11, 2011). http://www.oceanscience.

com/.

[123] Massimo Caccia, Marco Bibuli, Riccardo Bono, and Gabriele Bruzzone. Basic

navigation, guidance and control of an Unmanned Surface Vehicle. Autonomous

Robots, 25(4):349–365, Aug 2008.

[124] Advanced Telemetry Systems, 2011 (accessed November 11, 2011). http://www.

atstrack.com/.

[125] P. Tokekar, D. Bhadauria, A. Studenski, and V. Isler. A Robotic System for

Monitoring Carp in Minnesota Lakes. Journal of Field Robotics, 27(6):779–789,

2010.

[126] W.P. Chin and S. Ntafos. The zookeeper route problem. Information Sciences:

an International Journal, 63(3):245–259, 1992.

http://www.oceanscience.com/
http://www.oceanscience.com/
http://www.atstrack.com/
http://www.atstrack.com/

181

[127] J. Vander Hook, P. Tokekar, E. Branson, P. Bajer, P. Sorensen, and V. Isler. Local-

Search Strategy for Active Localization of Multiple Invasive Fish. In International

Symposium on Experimental Robotics, 2012.

[128] P. Tokekar, J. Vander Hook, and V. Isler. Active Target Localization for Bearing-

Based Robotic Telemetry. In Proceedings of the IEEE/RSJ International Confer-

ence on Intelligent Robots and Systems, pages 488–493, 2011.

[129] J. Vander Hook, P. Tokekar, E. Branson, P. Bajer, P. Sorensen, and V. Isler.

Local-search strategy for active localization of multiple invasive fish. In Jaydev P.

Desai, Gregory Dudek, Oussama Khatib, and Vijay Kumar, editors, Experimen-

tal Robotics, volume 88 of Springer Tracts in Advanced Robotics, pages 859–873.

Springer International Publishing, 2013.

[130] A. Bhattacharyya. On a measure of divergence between two multinomial pop-

ulations. Sankhyā: The Indian Journal of Statistics (1933-1960), 7(4):401–406,

1946.

[131] DC Motors, Speed Controls, Servo Systems: An Engineering Handbook. Electro-

Craft Corporation, 1977.

[132] Bruce Donald, Patrick Xavier, John Canny, and John Reif. Kinodynamic motion

planning. Journal of the ACM, 40(5):1048–1066, 1993.

[133] LE Dubins. On curves of minimal length with a constraint on average curvature,

and with prescribed initial and terminal positions and tangents. American Journal

of Mathematics, 79(3):497–516, 1957.

[134] JA Reeds and LA Shepp. Optimal Paths for A Car That Goes Both Forwards

and Backwards. Pacific Journal of Mathematics, 145(2):367–393, 1990.

[135] D.J. Balkcom and M.T. Mason. Time optimal trajectories for bounded veloc-

ity differential drive vehicles. The International Journal of Robotics Research,

21(3):199, 2002.

182

[136] H. Chitsaz, S.M. LaValle, D.J. Balkcom, and M.T. Mason. Minimum wheel-

rotation paths for differential-drive mobile robots. The International Journal of

Robotics Research, 28(1):66, 2009.

[137] Z. Sun and J.H. Reif. On finding energy-minimizing paths on terrains. IEEE

Transactions on Robotics, 21(1):102–114, 2005.

[138] L. Guzzella and A. Sciarretta. Vehicle propulsion systems: introduction to mod-

eling and optimization, volume 10. Springer Verlag, 2007.

[139] John Gregory, Alberto Olivares, and Ernesto Staffetti. Energy-optimal trajectory

planning for robot manipulators with holonomic constraints. Systems & Control

Letters, 61(2):279–291, 2012.

[140] O. Wigstrom, B. Lennartson, A. Vergnano, and C. Breitholtz. High-level schedul-

ing of energy optimal trajectories. Automation Science and Engineering, IEEE

Transactions on, 10(1):57–64, 2013.

[141] Y. Mei, Y.H. Lu, YC Hu, and CSG Lee. Energy-efficient motion planning for

mobile robots. In Proceedings of IEEE International Conference on Robotics and

Automation, 2004.

[142] C.H. Kim and B.K. Kim. Minimum-energy translational trajectory generation

for differential-driven wheeled mobile robots. Journal of Intelligent and Robotic

Systems, 49(4):367–383, 2007.

[143] C.H. Kim and B.K. Kim. Minimum-Energy Rotational Trajectory Planning for

Differential-Driven Wheeled Mobile Robots. In Proceedings of 13th International

Conference on Advanced Robotics, pages 265–270, 2007.

[144] G. Wang, M.J. Irwin, P. Berman, H. Fu, and T. La Porta. Optimizing sensor

movement planning for energy efficiency. In Proceedings of the ACM International

Symposium on Low power electronics and design, 2005.

[145] John A Broderick, Dawn M Tilbury, and Ella M Atkins. Optimal coverage trajec-

tories for a ugv with tradeoffs for energy and time. Autonomous Robots, 36(3):257–

271, 2014.

183

[146] Florent Lamiraux and J-P Lammond. Smooth motion planning for car-like vehi-

cles. Robotics and Automation, IEEE Transactions on, 17(4):498–501, 2001.

[147] Thierry Fraichard and Alexis Scheuer. From reeds and shepp’s to continuous-

curvature paths. Robotics, IEEE Transactions on, 20(6):1025–1035, 2004.

[148] Liang Ding, Zongquan Deng, Haibo Gao, Keiji Nagatani, and Kazuya Yoshida.

Planetary rovers’ wheel—soil interaction mechanics: new challenges and applica-

tions for wheeled mobile robots. Intelligent Service Robotics, 4(1):17–38, 2011.

[149] Sertac Karaman and Emilio Frazzoli. Optimal kinodynamic motion planning using

incremental sampling-based methods. In Decision and Control (CDC), 2010 49th

IEEE Conference on, pages 7681–7687. IEEE, 2010.

[150] Steven M LaValle and James J Kuffner. Randomized kinodynamic planning. The

International Journal of Robotics Research, 20(5):378–400, 2001.

[151] D.E. Kirk. Optimal Control Theory: An Introduction. Prentice Hall, 1970.

[152] D.G. Hull. Optimal control theory for applications. Springer Verlag, 2003.

[153] Mark Galassi, Jim Davies, James Theiler, Brian Gough, Gerard Jungman, Patrick

Alken, Michael Booth, and Fabrice Rossi. GNU Scientific Library Reference Man-

ual. 3rd edition, 2007.

[154] Ioan A. Şucan, Mark Moll, and Lydia E. Kavraki. The Open Motion Planning

Library. IEEE Robotics & Automation Magazine, 19(4):72–82, December 2012.

http://ompl.kavrakilab.org.

[155] Giorgio Ausiello, Vincenzo Bonifaci, and Luigi Laura. The online prize-collecting

traveling salesman problem. Information Processing Letters, 107(6):199–204, 2008.

[156] Michiel Blom, Sven O Krumke, Willem E de Paepe, and Leen Stougie. The online

tsp against fair adversaries. INFORMS Journal on Computing, 13(2):138–148,

2001.

[157] Yu Ru and Sonia Martinez. Coverage control in constant flow environments based

on a mixed energy–time metric. Automatica, 49(9):2632–2640, 2013.

http://ompl.kavrakilab.org

184

[158] Nils J Nilsson. Shakey the robot. Technical report, DTIC Document, 1984.

[159] Pavel Valtr. Guarding galleries where no point sees a small area. Israel Journal

of Mathematics, 104(1):1–16, 1998.

[160] Alon Efrat. The complexity of the union of (α,β)-covered objects. SIAM Journal

on Computing, 34(4):775–787, 2005.

[161] Greg Aloupis, Prosenjit Bose, Vida Dujmović, Chris Gray, Stefan Langerman,

and Bettina Speckmann. Triangulating and guarding realistic polygons. Compu-

tational Geometry, 47(2):296–306, 2014.

[162] Sándor P Fekete, Sophia Rex, and Christiane Schmidt. Online exploration and

triangulation in orthogonal polygonal regions. In WALCOM: Algorithms and

Computation, pages 29–40. Springer, 2013.

[163] Francesco Amigoni, Matteo Luperto, and Alberto Quattrini Li. Towards more

realistic indoor environments for the virtual robot competition. In RoboCup2014

Team Description Papers, 2014.

[164] Ketan Savla, Emilio Frazzoli, and Francesco Bullo. Traveling salesperson problems

for the dubins vehicle. Automatic Control, IEEE Transactions on, 53(6):1378–

1391, 2008.

[165] Shrihari Vasudevan, Fabio Ramos, Eric Nettleton, and Hugh Durrant-Whyte.

Gaussian process modeling of large-scale terrain. Journal of Field Robotics,

26(10):812–840, 2009.

[166] Joshua Joseph, Finale Doshi-Velez, Albert S Huang, and Nicholas Roy. A bayesian

nonparametric approach to modeling motion patterns. Autonomous Robots,

31(4):383–400, 2011.

[167] Eric Horvitz. Principles of mixed-initiative user interfaces. In Proceedings of the

SIGCHI conference on Human Factors in Computing Systems, pages 159–166.

ACM, 1999.

185

[168] Hee Rin Lee, Selma Šabanovic, and Erik Stolterman. Stay on the boundary:

artifact analysis exploring researcher and user framing of robot design. In Pro-

ceedings of the 32nd annual ACM conference on Human factors in computing

systems, pages 1471–1474. ACM, 2014.

[169] Pegah Kamousi and Subhash Suri. Euclidean traveling salesman tours through

stochastic neighborhoods. In Algorithms and Computation, pages 644–654.

Springer, 2013.

[170] Leizhen Cai and J Mark Keil. Computing visibility information in an inaccurate

simple polygon. International Journal of Computational Geometry & Applica-

tions, 7(06):515–537, 1997.

[171] Narges Noori, Patrick A Plonski, Alessandro Renzaglia, Pratap Tokekar, Joshua

Vander Hook, and Volkan Isler. Long-term search through energy efficiency and

harvesting. Technical Report 13-001, Department of Computer Science & En-

gineering, University of Minnesota, January 2013. http://www.cs.umn.edu/

research/technical_reports.php?page=report&report_id=13-001.

http://www.cs.umn.edu/research/technical_reports.php?page=report&report_id=13-001
http://www.cs.umn.edu/research/technical_reports.php?page=report&report_id=13-001

Appendix A

Proofs from Chapter 3

A.1 Proof of Lemma 1

Proof. Convex vertices. Suppose not. There exists a convex vertex vi with no guard

placed on it. Without loss of generality, say vi lies at the origin of a coordinate system,

with the perpendicular bisector of the interior angle as the Y -axis.

Figure A.1: There exists a guard on every convex vertex of the polygon.

Consider the triangle spanned by vi−1, vi, and vi+1 (see Figure A.1). Without loss

of generality, say vi−1 has a lower Y -coordinate than vi+1. Draw a line through vi−1

parallel to the X-axis. Let a be the point of intersection with the edge vivi+1. We have

two cases: (a) There exists a guard in the interior of triangle vi−1via, or (b) There does

186

187

not exist a guard in the interior of the triangle vi−1via.

For (a), let g be some guard with the smallest Y-coordinate (say y) lying in the

triangle. We have y > 0, since v lies at the origin. Consider a point, say y′ on the

Y-axis midway between y and v. Draw a line through y′ parallel to the X-axis, and

consider the lower half-plane. If there exists a guard visible from y′ lying in the lower

half-plane, then that contradicts the assumption that g is the guard with the lowest

Y-coordinate in the triangle. Hence, there does not exist any guard in the lower half-

plane through y′. Thus, y′ is not △-guarded from Proposition 1, which sets up our

contradiction.

For (b), we repeat the same argument as the case (a) above using any arbitrary

point y′ with Y -coordinate less than that of vi−1.

Edge extensions. We will prove by contradiction. Consider the case when the edge

has two reflex vertices on its endpoints, say vi and vi−1. Let the edge be aligned with

the X-axis such that its midpoint is the origin. From all guards, draw a line passing

through all vertices of the polygon creating a visibility arrangement (Figure A.2).

Figure A.2: To △-guard all points lying in the cell (shown shaded) near the edge, there

must exist a guard on each edge extension.

Consider any cell, A, in the visibility arrangement sharing an edge with vivi−1. Let

p be any point in the interior of this cell. p is not visible from any guard with negative

188

Y -coordinate (the visibility of any such guard is blocked by either vi or vi−1). Let y

and y′ be the smallest Y -coordinates of guards visible from p and with X coordinate

smaller and greater than p, respectively. We denote the corresponding guards by g and

g′ respectively.

If both y and y′ are greater than 0, then draw a line parallel to the X-axis with

Y -coordinate equal to 0.5min{y, y′}. Let p′ be a point on this line contained in cell

A. Then the halfplane containing p′ extending towards the negative Y -axis does not

contain any guard visible from p′. Hence, p′ is not △-guarded, which is a contradiction.

Suppose only one of y and y′ is greater than 0, say y′. Then g must lie on the

X-axis. We have either g lies on an edge extension, or g lies in the (open) polygon edge.

Suppose g is the left-most point on the X-axis lying on the polygon edge, but not on

the edge extension. Let A be the cell sharing with vi as one of its vertices. Rotate the

X-axis about g clockwise till the first guard g′′ lying to the right of g is encountered.

Let H be the open halfplane using the line through g and g′′ containing vi. If there

exists a point p′ lying in H ∩A then draw a line through p′ parallel to gg′′ and consider

the closed lower halfplane. This halfplane does not contain any guard in its interior,

and hence p′ is not △-guarded, which is a contradiction. Hence p′ must not exist, which

implies g′′ lies on the X-axis to the left of g. Since g is the left-most guard on the

edge, g′′ must lie on the edge extension. The argument for the other edge extension is

symmetrical.

A.2 Proof of Lemma 3

Proof. Without loss of generality let Ci start first along clockwise ordering on the bound-

ary, i.e., si ≺ sj . If Ci and Cj intersect, then we have si ≺ sj ≺ ti ≺ tj (Figure A.3).

Hence, Ai cuts Aj .

Consider the other direction. We prove the contrapositive. That is, if Ci and Cj do

not intersect then Ai and Aj do not cut each other. If Ci and Cj do not intersect, then

we have either si ≺ ti ≺ sj ≺ tj or si ≺ sj ≺ tj ≺ ti (Figure A.3). These imply either

Ai and Aj are disjoint or Aj ⊂ Ai. In both cases, Ai and Aj do not cut each other.

189

si

ti

sj

tj

v1

si

ti

sj

tj

v1

si

ti

sj

tj

v1

Figure A.3: If Ci and Cj intersect, then the correspondings arcs cut each other. If

Ci and Cj do not intersect, either Aj is completely contained in Ai, or Ai and Aj are

disjoint (given si ≺ sj).

A.3 Proof of Lemma 8

Proof. When bothGi andGj contain Type IV chords, all arcs inGi andGj are contained

in disjoint arcs in MIS. Hence, Am and An do not cut each other.

If only one group contains Type IV chords, say Gi, then all arcs in Gi lie between

two consecutive gaps. On the other hand, arcs in Gj start and terminate in a gap.

Hence, all arcs in Gj are either disjoint from arcs in Gi or completely contain arcs in

Gi.

The third possibility is both Gi and Gj contain Type III chords.

We have three cases:

1. Both starting and terminal gaps for Gi and Gj are distinct. Without loss of

generality, let sm ≺ sn. Hence we have,

(a) sm ≺ tm ≺ sn ≺ tn: All arcs in Gi and Gj are disjoint.

(b) sm ≺ sn ≺ tn ≺ tm: All arcs in Gj are completely contained in any arc in Gi.

(c) sm ≺ sn ≺ tm ≺ tn: Am and An cut each other. That is, Cm and Cn are

Type III chords with distinct start or terminal gaps cutting each other. From

190

Lemma 7 we have that S2 covers both Cm and Cn. Hence Cm, Cn 6∈ C ′ which

is a contradiction.

2. Only starting gaps for Gi and Gj are distinct. Without loss of generality, let

sm ≺ sn. Hence we have,

(a) sm ≺ tm ≺ sn ≺ tn: We know tm and tn lie in the same gap. Therefore, sn

and tn lie in the same gap which is a contradiction since Type III arcs span

at least one gap.

(b) sm ≺ sn ≺ tn � tm: An is completely contained in Am.

(c) sm ≺ sn ≺ tm ≺ tn: Similar to (1c) above.

3. Only terminal gaps for Gi and Gj are distinct. Without loss of generality, let

tm ≺ tn. Hence we have,

(a) sm ≺ tm ≺ sn ≺ tn: We know sm and sn lie in the same gap. Therefore, sm

and tm lie in the same gap which is a contradiction since Type III arcs span

at least one gap.

(b) sn � sm ≺ tm ≺ tn: Am is completely contained in An.

(c) sm ≺ sn ≺ tm ≺ tn: Similar to (1c) above.

Appendix B

Proofs from Chapter 4

B.1 Proofs for the Lower Bounds

B.1.1 Proof for Lemma 13

o

si

si-1r

Figure B.1: Five sensors placed uniformly on a circle with radius r. The true target is

located at the center of the circle. Each sensor receives a measurement with no noise.

Proof. Before we prove the lower bound for any placement, we first consider the case

of n ≥ 3 sensors placed uniformly on the boundary of C (Figure B.1). The true target

location x is at the center o and all sensors receive measurements θmi without any noise.

Hence, for any point q on any sensing wedge, we have oq ≥ r sinα, since r sinα is the

perpendicular distance of o to any of the bounding half-planes.

Recall that P̂ denotes the possibly unbounded convex polygonal region of intersec-

tion of sensing wedges. We claim that the area of P̂ in this case is lower bounded by

πr2 sin2 α. Since o is in the intersection, if we show that there is a circle C centered at

191

192

o with radius r sinα such that it lies in the interior or shares a boundary point with P̂

then the claim holds. Suppose there is a point p in the interior of C such that p 6∈ P̂ .

Let p′ 6= p be the point of intersection of the segment op with the boundary of P̂ . We

have op′ < op < r sinα. Since p′ lies on the boundary of P̂ , it must also lie on one

of the bounding half-planes of some sensing wedge. Hence, op′ ≥ r sinα which is a

contradiction. Since n here was arbitrary, the result holds for the case when the sensors

are everywhere on the boundary of C.

Now consider any placement of sensors S. From Equation 4.1, we know that U(S) is

defined as the maximum over all possible true target locations. Hence, U(S) ≥ U(S|x =

o) which is the uncertainty when the target is located at o. Assume that all sensors

receive a measurement with zero noise, i.e., θmi = θti for all i = 1, . . . , n. Hence, UD(S)

and UA(S) are lower bounded by the diameter and area of intersection of all such sensing

wedges.

We further lower bound this by the following construction: Replace each sensor si

with the point of intersection of the boundary of C with the segment joining o and

si. Denote this point of intersection by s′i. Note W (si, θ
t
i) ⊇ W (s′i, θ

t
i) and hence the

intersection area and diameter formed by W (s′i, θ
t
i) is a lower bound on U(S). Hence,

UA(S) ≥ Area

(
n⋂

i=1

W (si, θ
t
i)

)

≥ Area

(
n⋂

i=1

W (s′i, θ
t
i)

)

≥ πr2 sin2(α)

since the last step covers the case that the sensors are everywhere on the circle including

all s′i locations. Similarly, UD(S) ≥ 2r sinα.

B.1.2 Proof for Corollary 2

Proof. Suppose the corollary does not hold not. Then there must exist a point, say

p, with distance r∗ >
U∗
D

2 sinα
(or r∗ >

√

U∗
A

π

1

sinα
) to the boundary and any sensor in

S∗. We can draw a circle lying completely inside A with radius r∗ centered at p, not

containing any sensor in its interior. By Lemma 13, U∗
D ≥ 2r∗ sinα or r∗ ≤ U∗

D

2 sinα

(equivalently U∗
A ≥ πr∗2 sin2 α or r∗ ≤

√

U∗
A

π

1

sinα
), which is a contradiction.

193

B.1.3 Proof for Corollary 3

Proof. We first show that U∗
D < sinα · d implies d > 2r∗. Suppose not, i.e., d ≤ 2r∗.

Hence we have, U∗
D < 2r∗ sinα. However, from Corollary 2 we have U∗

D ≥ 2r∗ sinα,

which is a contradiction. Similarly we can show U∗
A <

π sin2 α

4
· d2 implies d > 2r∗.

Consider a square A′ centered at the center of A but with side length d− 2r∗. From

the definition of r∗, we observe that any point within A′ will be at most r∗ away from

a sensor in S∗. This implies that the set of circles of radii r∗ centered at each sensor in

S∗ cover A′. Hence,

n∗πr∗2 ≥ (d− 2r∗)2 ,

∴ n∗ ≥ (d− 2r∗)2

πr∗2
.

This completes the proof.

B.2 Proofs for the Upper Bounds

B.2.1 Proof for Lemma 14

We break down the proof for Lemma 14 into the following three lemmas for each of the

following cases.

First consider the case of the area of intersection of wedges from two sensors. Let

SALG = {si, sj , sk} be three sensors forming an equilateral triangle of side r (Fig-

ure B.2(a)). We divide △sisjsk into three equal regions Rij , Rjk and Rki as shown in

Figure B.2(a) using three perpendicular bisectors. Suppose the true target x ∈ Rjk. We

begin by bounding Area(W (sj , θ
m
j) ∩W (sk, θ

m
k)), where θmj , θmk are any two valid mea-

surements from sj and sk respectively. Let x̂ be the intersection of rays along θmj and

θmk . Note that x̂ is not necessarily coincident with x but x̂, x ∈W (sj , θ
m
j) ∩W (sk, θ

m
k).

Then we have the following:

Lemma 26 (Intersection of two wedges). When 0 < α <
π

18
,

max
x∈Rjk

max
θmi ,θmj

Diameter(W (sj , θ
m
j) ∩W (sk, θ

m
k)) ≤ 11.35r sinα

194

Rjk

Rki Rij

si

sj sk

(a)

sj sk

b

a

cd

y' '

r r
' '

(b)

Figure B.2: (a) We divide the interior of the △sisjsk with perpendicular bisectors into

Rij , Rjk, Rki. For x ∈ Rjk, we show that the area of intersection of any valid sensing

wedges from sj and sk is bounded. (b) Intersection of sensing wedges from s′j and s′k
is a kite. s′j and s′k are obtained by extending sj and sk along lines θmj and θmk with

x̂s′j = x̂s′k = r′. This kite bounds the intersection of the original sensing wedges.

and,

max
x∈Rjk

max
θmi ,θmj

Area(W (sj , θ
m
j) ∩W (sk, θ

m
k)) ≤ 23.46r2 sin2(α)

Proof. Consider Figure B.2(a). We have π
3 ≤ ∠sjxsk ≤ 2π

3 and d(sj , x), d(sk, x) ≤ r,

where d(·, ·) gives the distance between two points. We now bound d(sj , x̂), d(sk, x̂) and

∠sj x̂sk. We have: ∠sj x̂sk = π − ∠x̂sjsk − ∠x̂sksj .

∴ min∠sj x̂sk = π −max∠x̂sjsk −max∠x̂sksj ∴ min∠sj x̂sk = π − 2(
π

3
+ α) =

(π

3
− 2α

)

.

Similarly max∠sj x̂sk = π − min∠x̂sjsk − min∠x̂sksj =
(
2π
3 + 2α

)
. Hence, we have

(
π
3 − 2α

)
≤ ∠sj x̂sk ≤

(
2π
3 + 2α

)
. Since both ∠x̂sjsk and ∠x̂sksj are acute, sjsk =

sjy + sky. Consider △x̂ysk. By law of sines we have,

sin(∠sj x̂sk)

sjsk
=

sin(∠x̂sjsk)

x̂sk

x̂sk =
sin (∠x̂sjsk)

sin (∠sj x̂sk)
sjsk =

sin (∠x̂sjsk)

sin (∠sj x̂sk)
r ≤ sin

(
π
3 + α

)

sin (∠sj x̂sk)
r

Let θ̂ , ∠sj x̂sk and r′ ,
sin
(
π
3 + α

)

sin
(

θ̂
) r. By symmetry we have d(sj , x̂), d(sk, x̂) ≤ r′.

195

The actual distance varies depending on θmj , θmk . In order to bound Area(W (sj , θ
m
j) ∩

W (sk, θ
m
k)) for all possible θmj , θmk , we construct the following instance:

• For any θmj , θmk draw a circle C, centered at x̂ with radius r′.

• Extend segment from x̂ towards sj and sk. Let s′j and s′k be its points of inter-

section with C. Note that sj , sk ∈ C, d(s′j , x) = d(s′k, x) = r′, and W (sj , θ
m
j) ⊆

W (s′j , θ
′m
j) and W (sk, θ

m
k) ⊆W (s′k, θ

′m
k).

We have, Area
(

W (sj , θ
m
j) ∩W (sk, θ

m
k)
)

≤ Area
(

W (s′j , θ
m
j) ∩W (s′k, θ

m
k)
)

. We

first show that the intersection of hli′ , h
r
j′ , h

l
k′ , h

r
l′ is a bounded quadrilateral acbd (Fig-

ure B.2(b)). First consider the intersection of hrj′ with hlk′ denoted by a. We have,

∠s′jas
′
k = π − 2

(
∠as′js

′
k

)
= π − 2

(

π

2
− θ̂

2
− α

)

= θ̂ + 2α ≤ 2π

3
+ 4α < π.

Hence a lies on the same side of s′js
′
k as x̂. Further this implies that the intersection of

hlj′ with hrj′ (i.e., s
′
j) and hlk′ with hrk′ (i.e., s

′
k) does not lie within or on the intersection

region of the sensing wedges. Next consider the intersection of hlj′ with hrk′ denoted by

b. Suppose that b does not exist. Let bj 6= s′j and bk 6= s′k be any points on hlj′ and hrk′

respectively. Since hlj′ and hrk′ do not intersect we have,

∠bjs
′
js

′
k = ∠bjs

′
j x̂+ ∠x̂s′js

′
k ≥

π

2

∴ α+
π

2
− θ̂

2
≥ π

2
=⇒ α ≥ π

12

which is a contradiction since 0 < α <
π

18
. Since a and b exist the intersection of hrj′

with hrk′ (denoted by c) and hlj′ with hlk′ (denoted by d) also exist. By symmetry, it is

easy to show that △bcs′j
∼= △bds′k and △das′j

∼= △cas′k so that bc = bd and ac = ad.

Thus, acbd is a kite. Furthermore, x̂ is collinear with a and b since △s′j x̂s
′
k and △s′jas

′
k

are both isosceles.

By property of a kite, ab ⊥ cd and Area(acbd) = 0.5ab× cd. Next, we compute the

length of the two diagonals ab and cd. First we find ab = ax̂+ x̂b.

196

We have △s′j x̂a
∼= △s′kx̂a. Hence, ∠s′j x̂a =

∠s′j x̂s
′
k

2
. Thus, ∠s′j x̂a =

θ̂

2
. Further

∠s′jax̂ = π −
(

θ̂

2
+ α

)

yielding ∠s′jbx̂ = ∠s′jba =

(

θ̂

2
− α

)

. By law of sines in △s′jbx̂,

x̂b =
sin
(

∠bs′j x̂
)

sin
(

∠s′jbx̂
)s′j x̂ =

sin (α)

sin

(

θ̂

2
− α

)r′.

Similarly applying law of sines in △s′j x̂a we get ax̂ =
sin (α)

sin

(

θ̂

2
+ α

)r′. Hence,

ab = ax̂+ x̂b = r′ sinα

[

sin−1

(

θ̂

2
+ α

)

+ sin−1

(

θ̂

2
− α

)]

(B.1)

If we extend segment from b to a onto s′js
′
k, by symmetry we can show that the

segment is a perpendicular bisector of s′js
′
k. Since cd ⊥ ab, quadrilateral abcd forms a

trapezoid. We have,

∠cs′ks
′
j = ∠cs′kx̂+ ∠x̂s′ks

′
j = α+

(

π

2
− θ̂

2

)

=
π

2
−
(

θ̂

2
− α

)

.

Hence ∠dcs′k = π − ∠cs′ks
′
j =

π

2
+

(

θ̂

2
− α

)

and ∠ds′ks
′
j =

π

2
−
(

θ̂

2
+ α

)

.

Drop a perpendicular from d onto s′js
′
k and let y be its point of intersection. Since

∠bs′ks
′
j , bs

′
js

′
k <

π

2
, y lies between s′j and s′k. Now we get,

ys′k = ds′k cos

(

π

2
−
(

θ̂

2
+ α

))

= ds′k sin

(

θ̂

2
+ α

)

and

dy = ds′k sin

(

π

2
−
(

θ̂

2
+ α

))

= ds′k cos

(

θ̂

2
+ α

)

Further,

∠ds′js
′
k = ∠bs′js

′
k = ∠bs′j x̂+ ∠x̂s′js

′
k = α+

π

2
− θ̂

2
=

π

2
−
(

θ̂

2
− α

)

.

197

Therefore,

s′jy = dy cot
(
∠ds′jy

)
= dy tan

(

θ̂

2
− α

)

= ds′k cos

(

θ̂

2
+ α

)

tan

(

θ̂

2
− α

)

We can now solve for ds′k,

s′js
′
k = s′jy + ys′k

∴ 2r′ sin

(

θ̂

2

)

= ds′k cos

(

θ̂

2
+ α

)

tan

(

θ̂

2
− α

)

+ ds′k sin

(

θ̂

2
+ α

)

∴ ds′k =

2r′ sin

(

θ̂

2

)

sin

(

θ̂

2
+ α

)

+ cos

(

θ̂

2
+ α

)

tan

(

θ̂

2
− α

)

By law of sines in △dcs′k,

cd

sin
(
∠cs′kd

) =
ds′k

sin
(
∠dcs′k

)

∴ cd =

2r′ sin (2α) sin

(

θ̂

2

)

sin

(

π

2
+

(

θ̂

2
− α

))[

sin

(

θ̂

2
+ α

)

+ cos

(

θ̂

2
+ α

)

tan

(

θ̂

2
− α

)]

=

4r′ sin (α) cos (α) sin

(

θ̂

2

)

cos

(

θ̂

2
− α

)[

sin

(

θ̂

2
+ α

)

+ cos

(

θ̂

2
+ α

)

tan

(

θ̂

2
− α

)]

=

4r′ sin (α) cos (α) sin

(

θ̂

2

)

sin
(

θ̂
) =

2r′ sin (α) cos (α)

cos
(
θ̂
2

) (B.2)

Using Equations B.1 and B.2 we get,

Area(acbd) = 0.5ab× cd

=
0.5× 2r′2 sin2 (α) cos (α)

(

sin−1
(
θ̂
2 + α

)

+ sin−1
(
θ̂
2 − α

))

cos
(
θ̂
2

)

198

Now, r′ = r
sin
(
π
3 + α

)

sin
(

θ̂
) ≤ r

sin
(
π
3 + π

18

)

sin
(

θ̂
) =

0.9397r

sin
(

θ̂
) .

Substituting,

Area(acbd) ≤
0.93972r2 sin2 (α) cos (α)

(

sin−1
(
θ̂
2 + α

)

+ sin−1
(
θ̂
2 − α

))

sin2
(

θ̂
)

cos

(

θ̂

2

)

Recall that we have
(π

3
− 2α

)

≤ θ̂ ≤
(
2π

3
+ 2α

)

and 0 < α <
π

18
. We split this into

the following: (a)
(π

3
− 2α ≤ θ̂ ≤ π

2

)

and (b)

(
π

2
< θ̂ ≤ 2π

3
+ 2α

)

.

For (a) we get,

Area(acbd) ≤ 0.93972r2 sin2 (α)
(
sin−1

(
π
6

)
+ sin−1

(
π
18

))

sin2
(
2π
9

)
cos
(
π
4

) ≤ 23.46r2 sin2 (α) .

Similarly for (b) we get,

Area(acbd) ≤ 0.93972r2 sin2 (α)
(
sin−1

(
π
4

)
+ sin−1

(
7π
36

))

sin2
(
2π
9

)
cos
(
7π
18

) ≤ 19.74r2 sin2 (α) .

The diameter for the intersection of wedges is bounded by the diameter for acbd.

We have,

max
x∈Rjk

max
θmi ,θmj

Diameter(W (sj , θ
m
j) ∩W (sk, θ

m
k)) ≤ Diameter(acbd)

= max{ab, cd}
≤ 11.35r sinα,

where the last step is obtained by substituting the expressions for ab and cd using

Equation B.1 and B.2 and finding the bound similar to the area case.

For other cases since α ≥ π
18 , we know from Lemma 13 that U(S∗) is lower bounded

by πr∗2 sin2
(
π
18

)
≈ 0.095r∗2 unlike in Lemma 26 where the lower bound could be ar-

bitrarily small. However since α ≥ π
18 we cannot use just two sensors to get a good

approximation especially when the angle between the sensors and the target is close to
π
3 . Instead we approximate the sensing wedges from three neighboring sensors in the

next lemma.

199

Lemma 27 (Intersection of three sensing wedges). When
π

18
≤ α <

π

12
,

max
x∈Rjk

max
θmi ,θmj ,θm

k

Diameter
(
W (si, θ

m
i) ∩W (sj , θ

m
j) ∩W (sk, θ

m
k)
)
≤ 2.04r

and

max
x∈Rjk

max
θmi ,θmj ,θm

k

Area
(
W (si, θ

m
i) ∩W (sj , θ

m
j) ∩W (sk, θ

m
k)
)
≤
√
3r2

4
+ 10.1r2 sin2 α.

i

s

(a)

Rjk

Rki
Rij

si

sj sk

a

cd

(b)

Figure B.3: Instead of projecting the sensors back, as in Figure B.2, we approximate

each sensor by taking the union of all feasible sensing wedges when x ∈ Rjk. For (a)
π
18 ≤ α < π

12 , and (b) π
12 ≤ α <

π

6
. Note for Rjk is different for (a) and (b).

Proof. Consider Figure B.3(a) where si, sj , sk are three neighboring sensors. x ∈ Rjk

where Rjk is defined as in Lemma 26. We have
π

3
≤ ∠xsjsk,∠xsksj ≤

2π

3
and 0 ≤

∠xsisj ≤
π

3
. For each sensor we are going to build a larger sensing wedge with the union

of sensing wedges ∀x ∈ Rjk. Denote such a sensing wedge by Ŵ (st, Rjk) where t = i, j, k.

Ŵ is an approximation to the actual sensing wedges: W (st, θ
m
t) ⊂ Ŵ (st, Rjk), ∀x ∈

Rjk. We have,

max
x∈Rjk

max
θmi ,θmj ,θm

k

Area




⋂

t=i,j,k

W (st, θ
m
t)



 ≤ Area




⋂

t=i,j,k

Ŵ (st, Rjk)





Ŵ (sj , Rjk) and Ŵ (sk, Rjk) have an angular width of
π

6
+ 4α whereas Ŵ (si, Rjk)

has
π

3
+ 4α. Let acebfd be the six-sided convex polygon formed by the intersection of

200

three Ŵ ’s as shown in Figure B.3(a). Since there are six bounding half-lines, we have

fifteen cases to consider.

We denote the bounding half-planes of Ŵ (st, Rjk) by ĥlt and ĥrt . Consider point of

intersection of ĥrj and ĥlk, denoted by a. In △sjask we have,

∠sjask = π − 2
(π

6
− 2α

)

=
2π

3
+ 4α ≤ π.

Hence a lies to the same side of sjsk as si and thus sj (intersection of ĥlj and ĥrj) and

sk (intersection of ĥlk and ĥrk) do not lie on or within the intersecting polygon. Now

consider the intersection of ĥlj and ĥri , denoted by f . In △sifsj we have,

∠sifsj = π − 4α.

Since
π

18
≤ α <

π

12
,

2π

3
< ∠sifsj ≤

7π

9
.

Denote by d the point of intersection of ĥlj and ĥlk. We have

∠sjdsk = π −
(π

3
+ 2α+

π

6
− 2α

)

=
π

2
.

The considerations for e and c (as shown in Figure B.3(a)) are symmetric to f and

d respectively. Vertex b is coincident with si, hence the points of intersection of ĥrj

with ĥri , ĥlj with ĥli, ĥrk with ĥri , and ĥlk with ĥli do not lie within or on the inter-

secting polygon. Similarly, the point of intersection of ĥlj with ĥrk is at a height of
(

r

2
tan

(π

3
+ 2α

)

>

√
3

2
r

)

perpendicular to sjsk and hence outside Ŵ (si, Rjk). Finally

consider g and h, the points of intersection of ĥrj with ĥli and ĥlk with ĥri respectively.

Since ∠sjdsk =
π

2
i.e., ĥlj ⊥ ĥlk and ĥri intersects ĥlj , then si and h cannot lie on the

same side of ĥlj . Since si = b lies on the intersecting polygon, hence h does not. The

case for g is symmetric.

We can verify that the vertices appear cyclically on the intersection polygon in the

order acebfd. Hence, the intersecting polygon of the three Ŵ wedges is the six-sided

convex polygon acebfd.

Now we compute and bound the area of the polygon:

Area(acebfd) = Area(agbh)− 2Area(△dfh) = 0.5ab× gh− df × hd. (B.3)

201

The above equation follows from the properties that △dfh ∼= △ceg and quadrilateral

agbh is a kite due to symmetry. Next we compute each of the lengths in turn. Drop

a perpendicular from a onto sjsk and denote its point of intersection with y. Since

△sjask is isosceles, y, a and b are collinear. We have,

ab = by − ay

=

√
3r

2
− r

2
tan

(π

6
− 2α

)

=
r

2

(√
3− tan

(π

6
− 2α

))

(B.4)

Similarly f , w and sk are collinear. Thus,

skf = skw + wf

=

√
3r

2
+

r tan (2α)

2
=

r

2

(√
3 + tan (2α)

)

.

df = skf sin (2α) =
r sin (2α)

2

(√
3 + tan (2α)

)

.

dsk = skf cos (2α) =
r cos (2α)

2

(√
3 + tan (2α)

)

.

Consider △sjdsk,

dsk = sjsk sin
(π

3
+ 2α

)

= r sin
(π

3
+ 2α

)

Now in △dfsk we get,

df = dsk tan (2α) = r sin
(π

3
+ 2α

)

tan (2α) (B.5)

In △dfh we have ∠hdf =
π

2
and

∠hfd = π − ∠sjfsi = π − (π − 4α) = 4α.

Therefore,

hd = df tan (∠hfd) = r sin
(π

3
+ 2α

)

tan (2α) tan (4α) (B.6)

Finally since agbh is a kite, ab is a perpendicular bisector of gh giving

gh = 2ah sin (∠hab) = 2ah sin

(
∠sjask

2

)

= 2ah sin
(π

3
+ 2α

)

202

where,

ah = dsk + hd− ska

= r sin
(π

3
+ 2α

)

+ r sin
(π

3
+ 2α

)

tan (2α) tan (4α)− r

2 sin
(
π
3 + 2α

) .

Substituting we get,

gh = 2r sin2
(π

3
+ 2α

)

[1 + tan (2α) tan (4α)]− r. (B.7)

Now since π
18 ≤ α < π

12 from Equations B.4 and B.7 we get,

ab× gh =
r

2

[√
3− tan

(π

6
− 2α

)]

×
[

2r sin2
(π

3
+ 2α

)

[1 + tan (2α) tan (4α)]− r
]

≤
√
3r

2
×
[

2r sin2
(π

3
+ 2α

)

[1 + tan (2α) tan (4α)]− r
]

≤
√
3r2 (1 + tan 2α tan 4α)−

√
3r2

2

=

√
3r2

2
+

8
√
3r2 sin2 α cos2 α

cos 4α

≤
√
3r2

2
+

8
√
3r2 sin2 α cos2

(
π
18

)

cos
(
π
3

)

≤
√
3r2

2
+ 26.88r2 sin2 α.

Also from Equations B.5 and B.6,

df × hd = r2 sin2
(π

3
+ 2α

)

tan2 2α tan 4α

≥ r2 sin2
(π

3
+

π

9

)

tan 2α (tan 2α tan 4α)

≥ r2 sin2
(
4π

9

)

tan 2α

(
8 sin2 α cos2 α

cos 4α

)

≥ 8r2 sin2 α sin2
(
4π

9

)

tan
(π

9

)
(

cos2
(
π
12

)

cos
(
2π
9

)

)

≥ 3.439r2 sin2 α.

Finally substituting in Equation B.3,

Area(acebfd) ≤
√
3r2

4
+ 13.44r2 sin2 α− 3.439r2 sin2 α

=

√
3r2

4
+ 10.1r2 sin2 α.

203

The bound for diameter follows immediately,

max
x∈Rjk

max
θmi ,θmj ,θm

k

Diameter(W (si, θ
m
i) ∩W (sj , θ

m
j) ∩W (sk, θ

m
k)) ≤ Diameter(acebfd)

≤ Diameter(agbh)

= max{ab, gh}
≤ 2.04r sinα

where the last step is obtained by substituting the values of ab and gh.

Next we consider π
12 ≤ α < π

6 in the following lemma. Instead of using Rjk as

in Figure B.3(a) we now use the partition as shown in Figure B.3(b). Similar to the

previous lemma, we consider for each sensor the union of all possible sensing wedges,

and show that the intersection of such wedges for the three sensors is bounded.

Lemma 28 (Intersection of three sensing wedges). When
π

12
≤ α <

π

6
,

max
x∈Rjk

max
θmi ,θmj ,θm

k

Diameter
(
W (si, θ

m
i) ∩W (sj , θ

m
j) ∩W (sk, θ

m
k)
)
≤
(

1 +
1√
3

)

r.

and

max
x∈Rjk

max
θmi ,θmj ,θm

k

Area
(
W (si, θ

m
i) ∩W (sj , θ

m
j) ∩W (sk, θ

m
k)
)
≤ 3
√
3

4
r2.

Proof. We use a procedure similar to the previous lemma, except that the assigned

regions x ∈ Rjk is changed (Figure B.3(b)). We have
2π

3
≤ ∠sjxsk ≤ π and 0 ≤

∠sjxsi ≤
π

3
. For sensors sj and sk, we draw sensing wedges Ŵ (sj , Rjk) and Ŵ (sk, Rjk)

that approximate any valid sensing wedges. As before, we denote the bounding half-

lines of Ŵ (sj , Rjk) (Ŵ (sj , Rjk)) by ĥlj and ĥrj (ĥlj and ĥrj respectively). We consider

the intersection of all the bounding half-lines and bound the area using these points.

Since α <
π

6
, we draw ĥrj by rotating line through sjsk clockwise by

π

3
about

sj . Similarly ĥlj is drawn by rotating the line through sj and perpendicular to sisk

counter-clockwise by
π

3
about sj . ĥlk and ĥrk are drawn symmetrically. ĥli (ĥri) are

drawn by rotating line sisk (sisj) counter-clockwise (clockwise) by
π

3
about si. Note

that for all x ∈ Rjk, for any valid θmj and θmk we have Ŵ (sj , Rjk) ⊇ W (sj , θ
m
j) and

Ŵ (sj , Rjk) ⊇W (sj , θ
m
j).

204

Denote by d the intersection of ĥri with ĥlj , by c the intersection of ĥli with ĥrk, and

by a the intersection of ĥrj with ĥlk. We can see that dcsksj is a rectangle with sides

sjsk = dc = r and sjd = skc =

√
3r

3
. Further △sjska is an equilateral triangle with

side r. Hence,

max
x∈Rjk

max
θmi ,θmj ,θm

k

Area
(
W (si, θ

m
i) ∩W (sj , θ

m
j) ∩W (sk, θ

m
k)
)

≤ Area (sjskcd) + Area (sjska) =

√
3

2
r2 +

√
3

4
r2 =

3
√
3

4
r2.

The bound on the diameter follows:

max
x∈Rjk

max
θmi ,θmj ,θm

k

Diameter
(
W (si, θ

m
i) ∩W (sj , θ

m
j) ∩W (sk, θ

m
k)
)
≤ Diameter(asjdcsk)

= ad =

(

1 +
1√
3

)

r

Lemma 14. Using Lemmas 26, 27, and 28.

B.2.2 Proof for Lemma 15

Proof. Consider Figure B.4(a). Sensors si, . . . , so are seven neighboring sensors in SALG:

sk is the center of a regular hexagon of side length r formed by si, sj , sl, sm, sn, so.

Instead of considering that the target lies in one of the triangular faces, we instead draw

a circle of radius r′ =
r√
3

centered at each sensor and bound the uncertainty when

the true target lies in one of such circles. The union of all such circles covers A and

hence, the uncertainty bound holds for any true target location. Denote by Ck the circle

corresponding to sensor sk as shown in Figure B.4(a), and let x ∈ Ck.

As in the previous lemmas, we approximate the sensing wedges from each sensor

and then bound their intersection area. Consider sensor si in Figure B.4(a). When

x ∈ Ck, θ
t
i is bounded between the two tangents from si to Ck i.e., between within

∠asie. From △siask we have, ∠asisk = sin−1
(

ask
sisk

)

= sin−1
(

r√
3r

)

= sin−1
(

1√
3

)

.

Define θ , sin−1
(

1√
3

)

. By symmetry, ∠dsisk = ∠csjsk = θ. Recall that the sensing

wedge is defined as the intersection of two bounding half-planes.

205

si

sj

sl

sk

sm

sn

sob

d

a

c
e

(a) (b)

Figure B.4: Bounding the intersecting area with 6 sensors si, sj , sl, sm, sn, so. The target

can be anywhere within a circle C of radius
r√
3
centered at sensor sk. (a) We ignore

sk and approximate each other sensor by taking the union of all valid sensing wedges

when x ∈ C. The resulting shape is a star with six petals. (b) An instance of execution

with randomly generated target (blue square) and measurements with ±α =
π

4
.

We now approximate all sensing wedges from si (when x ∈ Ck) by a larger wedge

Ŵ (si, Ck) using the following operations: (a) Draw ĥri by rotating line sia pivoted at

si, clockwise by an angle of 2α. (b) Draw ĥli by rotating line sib pivoted at si, counter-

clockwise by an angle of 2α. (c) Ŵ (si, Ck) is defined as the intersection of the two

half-planes given by ĥli and ĥri . We can see that Ŵ (si, C
k) as defined above ensures

that W (si, θ
m
i) ⊂ Ŵ (si, Ck) for all θ

m
i . We can similarly define Ŵ for all other sensors.

The intersection of any combination of W (st, θ
m
t) sensing wedges lie completely inside

the intersection of Ŵ sensing wedges. Hence, we compute the area of intersection of all

Ŵ sensing wedges next.

Consider two adjacent sensors si and sj as shown in Figure B.4(a). We first show

that ĥri and ĥlj intersect at a point b such that sksjbsi forms a kite. Suppose not. Let bi

and bj be any points on ĥri and ĥlj lying on opposite sides of the line sisj as sk. Hence

we must have ∠bisisj , bjsjsi ≥
π

2
. Since ∠bisisk = θ + 2α, we get 2α + θ − π

3 ≥ π
2 .

Therefore 2α ≥ 5π
6 − sin−1

(
1√
3

)

=⇒ α ≥ π
3.313 . But α ≤

π

4
, hence its a contradiction

and ĥri and ĥlj must intersect at a point b. Furthermore by symmetry, sksjbsi is a kite

and bsk is a perpendicular bisector of sisj . We compute the area of the kite next, and

206

use that to bound the total area.

We have,

bsk = bd+ dsk

=
r

2
tan (∠bsjsi) +

√
3

2
r

=
r

2

[

tan
(

θ + 2α− π

3

)

+
√
3
]

By the property of kite,

Area(sksjbsi) = 0.5bsk × sisj

=
r2

4

[

tan
(

2α−
(π

3
− θ
))

+
√
3
]

=
r2

4

[

sin 2α cos
(
π
3 − θ

)

cos
(
2α−

(
π
3 − θ

)) − cos 2α sin
(
π
3 − θ

)

cos
(
2α−

(
π
3 − θ

)) +
√
3

]

=
r2

4

[

2 sinα cosα cos
(
π
3 − θ

)
− cos2 α sin

(
π
3 − θ

)
+ sin2 α sin

(
π
3 − θ

)

cos
(
2α−

(
π
3 − θ

)) +
√
3

]

≤ r2

4

[

2 sinα cos π
6 cos

(
π
3 − θ

)
− cos2 π

4 sin
(
π
3 − θ

)
+ sin2 α sin

(
π
3 − θ

)

cos
(
π
2 −

(
π
3 − θ

)) +
√
3

]

=
r2

4

(
sin2α+ 3.76 sinα+ 1.232

)
.

Now the complete intersection polygon is made up of the union of six such kites

(one per adjacent sensor pair). Hence, the uncertainty when x ∈ Ck is bounded by
6r2

4

(
sin2α+ 3.76 sinα+ 1.232

)
.

The diameter can be bounded as,

UD({s1, . . . , s6}) ≤ 2bsk ≤ r
(
sin2 α+ 3.76 sinα+ 1.232

)

B.2.3 Proof for Lemma 16

Proof. The construction is similar to that in Lemma 15. Let o be the center of the circle

C of radius
r√
3
that contains the target. Let si be a sensor on the triangular grid at a

distance r′ = kr from o (let o lie on a grid location). Draw two tangents from si onto

207

a
e

C

C'

kr

si

sj

Figure B.5: The target can lie anywhere within C. All sensors inside a circle of radius kr

are projected on to its boundary. The resulting set of sensors has bounded intersection

for any α = π
2 − ǫ if sin−1

(
1√
3k

)

+ π
6(k−1) < 2ǫ.

C. Let a and e be their point of intersection with C (see Figure B.5). Draw ĥli and

ĥri by rotating sia and sib about si away from sisk by an angle of 2α < π
2 . ĥli and ĥri

enclose any valid sensing wedge for si when the target lies within C.

Let bl and br be a point on the half-line ĥli and ĥri (starting at si) respectively. We

have,

∠blsio = ∠blsia+ ∠asio = 2α+ sin−1

(
1√
3k

)

< π

∠brsio = ∠brsie+ ∠esio = 2α+ sin−1

(
1√
3k

)

< π.

Draw a circle C ′ of radius kr centered at o. We project all sensors lying in C ′ on

to its boundary, along the line passing through the origin and the sensor. ĥlj and ĥrj

drawn about the projected sensor location enclose the original sensing wedges for every

sj . Observe that for every integer k, there exist six sensors in the triangular grid that

enclose a regular hexagon or side kr. Further there are k − 1 sensors that lie along

each side of this hexagon, not counting the sensors on the vertices. Hence, when the

sensors are projected on to a circle of radius kr, it must enclose a hexagon of side at

least k − 1. Further, if s′i and s′j are adjacent projected sensors along the boundary,

then ∠s′ios
′
j ≤ π

3(k−1) .

The area of C ′ is πk2r2, where r is the grid side. Each triangle in the grid covers an

area

√
3

4
r2. Hence, C ′ contains O(k2) sensors.

208

Now for bounded intersection, we require ĥli to intersect with ĥrj (or vice-versa) for

every adjacent pair of projected sensors. Suppose the intersection is unbounded for some

pair s′i and s′j . Then, ĥ
l
i does not intersect with ĥrj . Hence, ∠bis

′
is

′
j ≥ π

2 where bi is any

point on hli. But ∠bis
′
is

′
j = ∠bis

′
io−∠os′is′j . Therefore 2α+sin−1

(
1√
3k

)

−
(
π
2 − π

6k

)
≥ π

2 .

That is, sin−1
(

1√
3k

)

+ π
6(k−1) ≥ 2ǫ. This is a contradiction. Hence, the intersection of

all valid sensing wedges is bounded.

B.2.4 Proof for Lemma 17

A B

CD

(a)

d O

(b)

O

r

r
O

r

r

(c)

Figure B.6: (a) Regions A1,A2,A3 are not covered by equilateral triangles by sensors

placed on a triangular grid. (b) We place additional sensors in these three regions to

cover all portions except near the ends. (c) We place two additional sensors per corner

(shown in square) to cover the rest of A.

Proof. Consider Figure B.6. Regions A1,A2,A3 are not covered by equilateral triangles.

The width of each of these regions is d and the height is at most r. We place additional

sensors in each of these regions as shown in Figure B.6(b). Each region will require

at most 2wr + br of such sensors. Observe that, these sensors cover the three regions

(A1,2,3) everywhere except the two ends. We will add additional sensors to ensure that

A is covered by equilateral triangles.

Note that amongst the newly added sensors, one sensor is placed at one of the four

corners (marked O in Figure B.6(b)). We align this corner with vertex B, C and D for

regions A3,A2 and A1 respectively. The uncovered portions of A are now four regions

209

near each of the corners of sides at most r. For each of the corners we have a situation

as shown in Figure B.6(c), where already placed sensors are marked as white and black

circles. We require two additional sensors per corner (marked as squares) to cover the

remaining portion of A. Hence, the total number of sensors required are,

nALG ≤ (wrwc + brbc) + 3(2wr + br) + 4 · 2.

This completes the proof.

B.3 Proof for Theorem 4

Proof. First consider the number of sensors. Let nALG be the number of sensors placed

by our algorithm for covering A with equilateral triangles. From Lemma 17,

nALG ≤ wrwc + brbc + 6wr + 3br + 8,

≤ 2wrwc + 9wr + 8,

≤ 2

(
d

r
+ 1

)(
d√
3r

+ 1

)

+ 9

(
d

r
+ 1

)

+ 8,

=
2√
3

d2

r2
+

(

11 +
2√
3

)
d

r
+ 19. (B.8)

From Corollary 3, we now the number of sensors used by an optimal algorithm is

bounded by,

n∗ ≥ (d− 2r∗)2

πr∗2
,

=
1

π

d2

r∗2
− 4

π

d

r∗
+

4

π
.

Recall from Corollary 2, r∗ ≤ U∗
D

2 sinα
and r∗ ≤

√

U∗
A

π

1

sinα
. For the triangular grid

placement, we set the grid length r =
U∗
D

2 sinα
and r =

√

U∗
A

π

1

sinα
, for the diameter and

area uncertainty problems respectively. Hence r∗ ≤ r which gives,

n∗ ≤ 1

π

d2

r2
− 4

π

d

r
+

4

π
. (B.9)

When d ≤ 14r, we have d ≤ 14U∗
D

2 sinα
which implies U∗

D ≥
d

7 sinα
(equivalently

d ≤ 14

sinα

√

U∗
A

π
which implies U∗

A ≥
πd2 sin2 α

196
). This refers to the case when the

210

desired uncertainty is greater than a constant times the diameter or area of A. In this

case, since we know
d

r
≤ 14, we only require a constant number of sensors (nALG) as

given by Equation B.8.

Now consider d > 14r. Then we have,

2√
3

d2

r2
+

(

11 +
2√
3

)
d

r
+ 19 ≤ 9

(
1

π

d2

r2
− 4

π

d

r
+

4

π

)

∴ nALG ≤ 9n∗.

Next, we bound the uncertainty achieved by our placement with that by an optimal.

We consider each of the four cases defined in Lemma 14 and Lemma 15 in turn. For

the first three cases, we require the target to lie within an equilateral triangle. From

Lemma 17 we know that our placement strategy ensures a cover of A with equilateral

triangles. Recall that we set r =
U∗
D

2 sinα
and r =

√

U∗
A

π

1

sinα
, for the diameter and area

uncertainty problems respectively.

CASE (a) 0 < α <
π

18
:

For diameter uncertainty,

UD(SALG) ≤ 11.35r sinα,

= 11.35
U∗
D sinα

2 sinα

∴ UD(SALG) ≤ 5.675U∗
D.

For area uncertainty,

UA(SALG) ≤ 23.46r2 sin2 α

= 23.46
U∗
A

π

sin2 α

sin2 α

∴ UA(SALG) ≤ 7.47U∗
A.

CASE (b)
π

18
≤ α <

π

12
:

211

For diameter uncertainty,

UD(SALG) ≤ 2.04r

= 2.04
U∗
D

2 sinα

≤ 2.04
U∗
D

2 sin π
18

∴ UD(SALG) ≤ 5.88U∗
D.

For area uncertainty,

UA(SALG) ≤
√
3r2

4
+ 10.1r2 sin2 α

=

√
3U∗

A

4π sin2 α
+ 10.1

U∗
A sin2 α

π sin2 α

≤
√
3U∗

A

4π sin2 π
18

+ 10.1
U∗
A

π

∴ UA(SALG) ≤ 7.76U∗
A.

CASE (c)
π

12
≤ α <

π

6
:

For diameter uncertainty,

UD(SALG) ≤
(

1 +
1√
3

)

r

=

(

1 +
1√
3

)
U∗
D

2 sinα

≤
(

1 +
1√
3

)
U∗
D

2 sin π
12

∴ UD(SALG) ≤ 3.05U∗
D.

For area uncertainty,

UA(SALG) ≤
3
√
3

4
r2

=
3
√
3U∗

A

4π sin2 α

≤ 3
√
3U∗

A

4π sin2 π
12

∴ UA(SALG) ≤ 6.17U∗
A.

212

CASE (d)
π

6
≤ α ≤ π

4
:

We apply Lemma 15 to bound this uncertainty. In Lemma 15, we constructed an

over approximation to the union of all possible sensing wedges from the sensors placed

on the hexagon. Without loss of generality let x ∈ Ck. The union of all Ck circles covers

A. When x is close to the boundary of A, we may find only a subset of the sensors

i, . . . , o, as shown in Figure B.4(a), which are required by Lemma 15. However, the

intersection of the available sensing wedges from t = i, . . . , o with the boundary of A is

a subset of the over approximation used in Lemma 15.

Hence for diameter uncertainty,

UD(SALG) ≤ r
(
sin2 α+ 3.76 sinα+ 1.232

)

=
U∗
D

2 sinα

(
sin2 α+ 3.76 sinα+ 1.232

)

≤ U∗
D

2

(

sinα+ 3.76 +
1.232

sinα

)

∴ UD(SALG) ≤ 3.47U∗
D.

For area uncertainty,

UA(SALG) ≤ 1.5r2
(
sin2 α+ 3.76 sinα+ 1.232

)

= 1.5
U∗
A

π sin2 α

(
sin2 α+ 3.76 sinα+ 1.232

)

= 1.5
U∗
A

π

(

1 +
3.76

sinα
+

1.232

sin2 α

)

≤ 1.5
U∗
A

π

(

1 +
3.76

sin π
6

+
1.232

sin2 π
6

)

∴ UA(SALG) ≤ 6.42U∗
A.

This completes the proof.

Appendix C

Proofs from Chapter 5

C.1 Proof of Theorem 7

For the analysis we will convert the weighted version of the problem to an unweighted

one. Choose a small δ > 0 such that for all i, j, x, we have qi(Rj(x))− δ⌊ qi(Rj(x))
δ
⌋ ≤ 2ǫ

n
.

We now create a new set system (X ′,R′). For each target we create ⌊ qi
δ
⌋ elements in

X ′ labeled t1i , . . . , t
⌊ qi

δ
⌋

i . R′ has one range set corresponding to each Rj(x), say R′
j(x).

If qi(Rj(x)) > 0, then R′
j(x) contains t

1
i , . . . , t

⌊ qi(Rj(x))

δ
⌋

i .

Let σ and σ∗ be the map given by Algorithm 2 and the optimal algorithm, respec-

tively on the original weighted problem. σ and σ∗ also define corresponding maps for

the modified set system. We use the shorthand Ri , R′
i(σ(i)) and R∗

i , R′
i(σ

∗(i)) to

indicate the actions chosen by the greedy and optimal algorithms for each robot. With-

out loss of generality, relabel the robots such that Algorithm 2 picks a set corresponding

to robot 1 in the first iteration, corresponding to robot 2 in the second iteration, and

so on.

Let A(i) and A∗(i) denote the set of all elements in X ′ covered by the greedy and

optimal algorithm using robots labeled 1 through i in the modified set system (X ′,R′).

That is,

A(i) ,
i⋃

p=1

Rp, A∗(i) ,
i⋃

p=1

R∗
p.

In the case of the greedy algorithm, A(i) also refers to the set of elements covered in

213

214

the first i iterations.

After the last round, the greedy algorithm covers |A(k)| elements, whereas the op-

timal algorithm covers |A∗(k)| elements. We have |A(k)| ≤ |A∗(k)|. Hence, there are

at least |A∗(k)| − |A(k)| elements covered by the optimal algorithm, which are not cov-

ered by any set selected by the greedy algorithm. Hence, there exists a set of at least

|A∗(k)| − |A(k)| elements present in A∗(k) but not in A(k).

Lemma 29. If U is any set of exactly |A∗(k)| − |A(k)| elements present in A∗(k) but

not in A(k), then for any i = 1, . . . , k |A(i)| ≥ |A∗(i) ∩ U |.

Proof. We prove this by induction over i. The base case is for i = 1. Since R1 =

R′
1(σ(1)) is the first set picked by the greedy algorithm the base case is trivially true.

Now suppose that the statement holds for some 1 < j < k. That is,

|A(j)| ≥ |A∗(j) ∩ U |. (C.1)

We will show that the statement then also holds for j + 1.

In the (j+1)th iteration, the greedy algorithm chooses some Rj+1 = R′
j+1(σ(j+1)).

Recall A(j) refers to the set of elements covered by the greedy algorithm in the first j

iterations. Hence due to the greedy choice in the original set system we have,

|A(j) ∪R′
j+1(σ(j + 1))| ≥ |A(j) ∪R′

j+1(l)|, ∀l = 1, . . . ,m

∴ |A(j) ∪Rj+1| ≥ |A(j) ∪R′
j+1(σ

∗(j + 1))|
= |A(j) ∪R∗

j+1|.

We can write R∗
j+1 as,

R∗
j+1 =

(
R∗

j+1 ∩ U
)
∪
(
R∗

j+1 ∩ Ū
)

where Ū is the complement of U in U . Therefore,

|A(j) ∪Rj+1| ≥ |A(j) ∪
((
R∗

j+1 ∩ U
)
∪
(
R∗

j+1 ∩ Ū
))
|

≥ |A(j) ∪
(
R∗

j+1 ∩ U
)
|

= |A(j)|+ |R∗
j+1 ∩ U | − |A(j) ∩R∗

j+1 ∩ U |
= |A(j)|+ |R∗

j+1 ∩ U |

215

since A(j) ∩ U = ∅ by definition of U .

Using the induction hypothesis in Equation C.1,

|A(j) ∪Rj+1| ≥ |A∗(j) ∩ U |+ |R∗
j+1 ∩ U |

≥ | (A∗(j) ∩ U) ∪
(
R∗

j+1 ∩ U
)
|

∴ |A(j + 1)| ≥ |A∗(j + 1) ∩ U |.

Hence proved by induction.

This gives us,

|A(k)| ≥ |A∗(k) ∩ U |
≥ |U |
= |A∗(k)| − |A(k)|

where the second inequality comes from U ⊆ A∗(k). Therefore, |A(k)| ≥ |A∗(k)|
2 .

Finally, we will relate |A(k)| and |A∗(k)| to the correspond weights in the original

problem. We have,

w∗ =
∑

∀ti
max
∀j

qi(Rj(σ
∗(j)))

≤
∑

∀ti
max
∀j

2ǫ

n
+ δ⌊qi(Rj(σ

∗(j)))
δ

⌋

≤ 2ǫ+ δ|A∗(k)|.

On the other hand,

w =
∑

∀ti
max
∀j

qi(Rj(σ(j)))

≥
∑

∀ti
max
∀j

δ⌊qi(Rj(σ(j)))

δ
⌋

= δ|A(k)|.

Thus, w ≥ δ|A(k)| ≥ δ|A∗(k)|
2 ≥ w∗

2 − ǫ.

Appendix D

Proofs from Chapter 8

D.1 Proof: Unconstrained Solution

The state transition equation can be written as,

Ẋ(t) =

[

ẋ(t)

v̇(t)

]

=

[

v(t)

a(t)

]

(D.1)

The objective is to find a velocity profile v∗(t) which minimizes the total energy required

for motion given by the following cost functional,

J =

∫

0

tf [

c1a
2(t) + c2v

2(t) + c3v(t) + c4

]

dt, (D.2)

where the final time tf is kept a free variable. The initial boundary conditions are given

as,

x(0) = 0, v(0) = 0, (D.3)

and the final boundary conditions are given as,

x(tf) = D, v(tf) = 0. (D.4)

Hamiltonian

The hamiltonian H(X,λ, u, t) is defined as,

H(X,λ, u, t) = J + λ1(t)ẋ(t) + λ2(t) ˙v(t), (D.5)

216

217

where λ1(t) and λ2(t) are the Lagrange multipliers, also called the co-state variables

which include the state transition equations as a constraint to the objective.

When there is no bound on the maximum velocity, the Hamiltonian for this problem

can be obtained using Equations D.1 and D.2 as,

H(X(t), a(t),λ(t), t) = c1a
2(t) + c2v

2(t) + c3v(t) + c4 + λ1(t)v(t) + λ2(t)a(t) (D.6)

where the acceleration a(t) is the control.

The three necessary conditions for a∗(t) to optimize the Hamiltonian [151] for all

time t ∈ [0, tf] are given as,

Ẋ∗(t) =
∂H

∂λ
, λ̇

∗
(t) = −∂H

∂X
, 0 =

∂H

∂a
(D.7)

By substituting we get,

ẋ(t) = v(t),

v̇(t) = a(t),

λ̇1(t) = 0,

λ̇2(t) = 2c2v(t) + c3 + λ1,

λ2(t) = −2c1a(t),
∴ λ2(t) = −2c1v̇(t).

Using the last two equations, we can write,

2c2v(t) + c3 + λ1 = −2c1v̈(t),
2c1v̈(t) + 2c2v(t) + c3 + λ1 = 0.

We can solve for this second order differential equation to yield,

v∗(t) = s1e
kt + s2e

−kt −
(
c3 + s3
2c1

)

(D.8)

where k =
√

c2
c1

and s1 − s4 are constants and λ1 = s3.

Applying the state transition equations, we can get the optimal control and states

given as,

a∗(t) = ks1e
kt − ks2e

−kt (D.9)

x∗(t) =
s1e

kt

k
− s2e

−kt

k
−
(
c3 + s3
2c1

)

t+ s4. (D.10)

218

We can solve for s1 − s4 in terms of the final time tf by substituting the boundary

conditions given in Equations D.3 and D.4 for v∗(t) and x∗(t). We obtain,

s1 = −
Dk

ktf + ektf (ktf − 2) + 2
,

s2 = s1e
ktf ,

s3 = 2c1(s1 + s2)− c3,

s4 = −
s1 − s2

k
. (D.11)

By substituting in Equations D.9-D.10 we obtain,

a∗(t) = D

(
c2
c1

)(

e(ktf−t) − e(kt)

ktf + ektf (ktf − 2) + 2

)

,

v∗(t) = D

√
c2
c1

(

(1 + ektf − (ek(tf−t) + ekt))

ktf + ektf (ktf − 2) + 2

)

,

x∗(t) = D

(

(ek(tf−t) − ekt)− (ektf − 1) + kt(ektf + 1)

ktf + ektf (ktf − 2) + 2

)

. (D.12)

Since the final time is free, it can be solved for using the additional boundary condition

(known as the transversality condition) given by,

H(X∗(tf), a
∗(tf),λ

∗(tf), tf) = 0. (D.13)

Substituting Equations D.9-D.10 and D.11 above results in,

(D
c2
c1

+ 2)(1− ektf) +

√
c4
c1
ktf (1 + ektf) = 0, (D.14)

which is an equation in single variable tf and can be solved using existing solvers. (We

used MATLAB’s solve function). Alternatively, if the final time is fixed, we can directly

substitute this given value in Equation D.12 to find v∗(t).

D.2 Proof for Lemma 24

Proof. Consider any velocity profile v(t) shown in Figure D.1. Let D and E be the total

distance covered and energy consumed by v(t). This profile crosses

√
c4
c2

between times

219

[t1, t2] and [t3, t4]. Let d12 and d34 be the distances covered by v(t) in these sections.

The total energy consumption of v(t) is given by,

E = E01 + E12 + E23 + E34 + E45, (D.15)

where Eij refers to the energy consumption to cover the distance dij .

0
0

0.3

0.6

0.9

1.2

1.5

1.8

2.1

t1

vc

t2 t3 t4 t5

V
e
lo
ci
ty

Time

Figure D.1: Sections of this velocity profile crossing (vc =

√
c4
c2
) between [t1, t2] and

[t3, t4] can be replaced by constant velocity (vc) sections resulting in a velocity profile

that consumes lesser energy to travel the same distance.

We construct another velocity profile v′(t) by replacing the sections [t1, t2] and [t3, t4]

by constant velocity vc =

√
c4
c2

sections for time
d12
vc

and
d34
vc

respectively. The total

distance traveled by v′(t) is D, same as v(t). The total energy consumption of v′(t) is

given by,

E′ = E01 + E′
12 + E23 + E′

34 + E45, (D.16)

220

since v′(t) is the same as v(t) everywhere except t ∈ [t1, t2] and t ∈ [t3, t4].

We now show that E′ ≤ E by proving both E′
12 ≤ E12 and E′

34 ≤ E34. This result

can then be generalized to velocity profiles with any number of crossing sections in

either directions.

First, consider the energy consumption E12 for v(t),

E12 =

∫

t1

t2[

c1a
2(t) + c2v

2(t) + c4

]

dt+ c3d12. (D.17)

Now, let us consider E′
12. The time taken in this case would be tc =

d12
vc

. The energy

consumption is,

E′
12 =

∫

t1

tc[

c1a
2(t) + c2v

2(t) + c3v(t) + c4

]

dt,

= c2vcd12 + c3d12 + c4
d12
vc

. (D.18)

The distance d12 can also be written as,

d12 =

∫

t1

t2

[v(t)dt] . (D.19)

Substituting Equation D.19 in D.18, we obtain,

E′
12 = c2

∫

t1

t2

vcv(t)dt+ c3d12 + c4

∫

t1

t2 v(t)

vc
dt. (D.20)

Using Equations D.17 and D.20, we can write,

E12 − E′
12 = c1

∫

t1

t2

a2(t)dt+
c2
vc

∫

t1

t2

[vc(t)− v(t)]

[
c4
c2
− v(t)vc

]

dt

∴ E12 − E′
12 ≥ 0,

since v(t) ≤ vc ≤
√

c4
c2
. For the section between t3 and t4, we can show that E34−E′

34 ≥
0.

In general we can replace any number of such sections crossing

√
c4
c2

to yield another

velocity profile with lower energy covering the same distance moving at

√
c4
c2
. Hence,

once the velocity profile hits

√
c4
c2
, there is no reason to deviate from this value except

at the boundary (initial and final conditions).

221

D.3 Proof: Constrained Solution

We begin by writing the velocity constraint in the form of state inequality S̄ = (v(t)−
vm) ≤ 0. The state inequality S̄ is converted into a control equality and interior point

constraint by differentiating S̄ once leading to,

S̄(1) = v̇(t) = u.

v(t1) = vm (D.21)

Along the unconstrained arc, the state transition is governed by Equation D.1. On

the constrained arc, the state transition is given by,

Ẋ(t) =

[

ẋ(t)

v̇(t)

]

=

[

vm

0

]

(D.22)

The Hamiltonian is augmented with the control equality constraint in [t1, tf − t2]

and is given by,

Ĥ = c1a
2(t) + c2v

2(t) + c3v(t) + c4 + λ1(t)v(t) + λ2(t)a(t) + µ(t)a(t) (D.23)

where µ is the slack variable associated with the control constraint. In the interval [0, t1]

and [tf − t2, tf], the Hamiltonian is given by,

H = c1a
2(t) + c2v

2(t) + c3v(t) + c4 + λ1(t)v(t) + λ2(t)a(t) (D.24)

The interior point constraint is given by,

G = ξ(t)(v(t)− vm). (D.25)

D.3.1 0 ≤ t ≤ t1

Using the necessary condition λ̇ = −∂H

∂x
we get,

λ̇1 = 0,

∴ λ1 = s3.

and,

λ̇2 = −
∂H

∂x
, (D.26)

∴ λ̇2 = − [2c2v(t) + c3 + s3] . (D.27)

222

Applying the third necessary condition, 0 =
∂H

∂a
we get,

0 = 2c1a(t) + λ2(t),

∴ λ2(t) = −2c1a(t).

Differentiating the above equation we get,

˙λ2(t) = −2c1v̈(t).

From Equation D.27 we can write,

2c1 ¨v(t) = 2c2v(t) + c3 + s3,

∴ v̈(t)− c2
c1
v(t)− c3 + s3

2c1
= 0.

The solution for the above differential equation is given as,

v∗(t) = s1e
kt + s2e

−kt − c3 + s3
2c1

,

a∗(t) = s1ke
kt − s2ke

−kt,

x∗(t) =
s1
k
ekt − s2

k
e−kt − c3 + s3

2c1
t+ s4,

λ∗
1(t) = s3,

λ∗
2(t) = −2c1a∗(t).

Using initial conditions x(0) = 0 and v(0) = v0, we get,

s4 = −
s1 − s2

k
,

c3 + s3
2c1

= s1 + s2 − v0.

Putting these together we get,

v∗(t) = s1e
kt + s2e

−kt − (s1 + s2 − v0),

a∗(t) = s1ke
kt − s2ke

−kt,

x∗(t) =
s1
k
ekt − s2

k
e−kt − (s1 + s2 − v0)t−

s1 − s2
k

,

λ∗
1(t) = 2c1s1 + s2 − v0 − c3,

λ∗
2(t) = −2c1a∗(t),

223

where s1 and s2 are two constants left to be evaluated.

D.3.2 tf − t2 ≤ t ≤ tf

In this section, the system is governed by the same state equation as in the interval

0 ≤ t ≤ t1. Hence, we get a similar form for the optimal state and control given by,

v∗(t) = s′1e
−ktf ekt + s′2e

ktf e−kt − c3 + s′3
2c1

,

a∗(t) = s′1ke
−ktf ekt − s′2ke

ktf e−kt,

x∗(t) =
s′1
k
e−ktf ekt − s′2

k
ektf e−kt − c3 + s′3

2c1
t+ s′4,

λ∗
1(t) = s′3,

λ∗
2(t) = −2c1a∗(t).

where s′1 . . . s
′
4 are the new constants to be solved for. Using the final condition, x(tf) =

D, we get

D =
s′1
k
− s′2

k
− c3 + s′3

2c1
tf + s′4,

∴ s′4 = D −
[
s′1
k
− s′2

k
− c3 + s′3

2c1
tf

]

.

Using the second final condition, v(tf) = vf we get,

vf = s′1 + s′2 −
c3 + s′3
2c1

,

∴ s′3 = 2c1(s
′
1 + s′2 − vf)− c3.

The equations can then be written as,

v∗(t) = s′1e
−k(tf−t) + s′2e

k(tf−t) − (s′1 + s′2 − vf),

a∗(t) = s′1ke
−k(tf−t) − s′2ke

k(tf−t),

λ∗
1(t) = 2c1(s

′
1 + s′2 − vf)− c3,

λ∗
2(t) = −2c1a∗(t).

224

D.3.3 Corner conditions

We can now use the corner conditions to determine the unknown constants s1, s2, s
′
1, s

′
2.

The corner conditions state that λ((tf − t2)
+) = λ((tf − t2)

−) and v((tf − t2)
+) =

v((tf − t2)
−) and µ((tf − t2)

+) = 0,

H(t+2) = H(t−2),

∴ a(tf − t2) = 0,

∴ s′2 = s′1e
−2kt2 .

Using the other corner condition v((tf − t2)
+) = v((tf − t2)

−) we have,

v(tf − t2) = vm,

∴ vm = s′1e
−kt2 + s′1e

−kt2 − (s′1 + s′1e
−2kt2 − vf),

∴ s′1 = −
vm − vf

(e−kt2 − 1)2
.

Using similar arguments at the other corner t = t1 we get the final form for the optimal

velocity profile as,

v∗(t) =







s1
(
ekt + ek(2t1−t) − (1 + e2kt1)

)
+ v0, 0 ≤ t ≤ t1

vm, t1 ≤ t ≤ tf − t2

s2
(
e−k(tf−t−2t2) + ek(tf−t) − (1 + e2kt2)

)
+ vf , tf − t2 ≤ t ≤ tf .

where,

s1 = −
(vm − v0)

(ekt1 − 1)2
,

s2 = −
vm − vf

(ekt2 − 1)2
,

Using the transversality condition H(tf) = 0, we can determine the times t1 and t2 as,

t1 =
1

k
ln

(

c4 + c2v
2
m − 2c2v0vm

c4 − c2v2m
+

2(c2vm(c4 − c2v0vm)(vm − v0))
1
2

c4 − c2v2m

)

,

t2 =
1

k
ln

(

c4 + c2v
2
m − 2c2vfvm

c4 − c2v2m
+

2(c2vm(c4 − c2vfvm)(vm − vf))
1
2

c4 − c2v2m

)

. (D.28)

225

and the final time can then be calculated by using the total distance to travel and the

distances traveled in the two exponential curves. It is easy to see that if v0 or vf is

equal to vm, then t1 = 0 or t2 = 0 respectively.

D.4 Proof for Lemma 25

Proof. Consider any velocity profile consisting of a C−U−C sequence covering dis-

tance D. We can replace this C−U−C sequence with a single C section, so that the

resulting velocity profile covers the same distance and consumes energy less than the

original profile.

Let v(t) be any velocity profile that contains a C−U−C sequence. That is,

v(t) = vm(t) for t0 ≤ t ≤ t1 and t2 ≤ t ≤ t3 and v(t) < vm between t1 ≤ t ≤ t2. The

energy consumption of this profile for traveling a distance D = d01 + d12 + d23 is

E = E01 + E12 + E23, where Eij is the energy spent in traveling dij for v(t). We con-

struct another velocity profile that is identical to v(t) in [t0, t1] and [t2, t3] but covers

the section d12 at v(t) = vm. The energy consumption for this new profile differs only

in the d12 section.

By following a process similar to that in Lemma 24, we can show that E′
12 ≤ E12

leading to E′ ≤ E. Hence, any C−U−C sequence can be replaced by a single C

segment to reduce the energy consumption. Hence, the optimal velocity profile will

never consist of a C−U−C sequence.

D.5 Proof of Energy Model for Non-zero Initial and Final

Velocities

Lemma 30. Let τ be a path with N segments starting and returning to rest, i.e.,

v0(1) = 0 and vf (N) = 0. Let E14(i) and E16(i) be the minimum energy obtained for

the ith segment using Equations 8.5 and 8.4 respectively. Then
∑

iE14(i) =
∑

iE16(i).

Proof. First, consider the energy obtained using Equation 8.4. For each segment, we

226

have

E16(i) =

∫

0

tf [

c1a
2(t) + c2v

2(t) + c3v(t) + c4 + c5a(t) + c6v(t)a(t)
]

dt

=

∫

0

tf [

c1a
2(t) + c2v

2(t) + c3v(t) + c4

]

dt+

∫

0

tf [

c5a(t) + c6v(t)a(t)
]

dt

= E14
16(i) + E56

16(i).

Now we have,

∑

i

E16(i) =
∑

i

E14
16(i) +

∑

i

E56
16(i)

=
∑

i

E14
16(i)

=
∑

i

E14(i).

The second statement follows since
∑

iE
56
16(i) = 0 when v0(0) = vf (N) = 0 as given

by [131]. That is, the net effect of c5 and c6 is zero when the robot starts and returns

to rest.

	Acknowledgements
	Dedication
	Abstract
	List of Tables
	List of Figures
	Introduction
	Applications, Typical Tasks and Challenges
	Coverage
	Active Target Tracking

	Contributions
	Sensor Placement for Visibility-Based Coverage with Orientation
	Bearing Sensor Placement for Target Localization
	Multi-Target Visual Tracking with Teams of Aerial Robots
	Sampling Algorithms with Aerial and Ground Robots (Precision Agriculture)
	Coverage and Tracking with Autonomous Boats (Monitoring Invasive Fish)
	Energy-Optimal Trajectory Planning

	Organization of the Dissertation

	Preliminaries
	Set Cover and Maximum k–coverage Problems
	The Art Gallery Problem
	The Traveling Salesperson Problem

	Sensor Placement for Visibility-Based Coverage with Orientation
	Lower Bound on the Number of Guards
	`39`42`"613A``45`47`"603AO(logcopt)–approximation with Vertex Guards
	-guarding Chords
	Notation
	Overview
	Guarding Type I and II chords
	Guarding a subset of Type III chords
	Guarding remaining Type III and IV chords

	Conclusion

	Bearing Sensor Placement for Target Localization
	Related Work
	Problem Formulation
	Notation and Sensing Model
	Adversarial Formulation of Uncertainty
	Objective

	Lower Bounds for Optimal Placement
	Performance Analysis for the Triangular Grid Placement
	Uncertainty with Triangular Grid
	Number of Sensors with Triangular Grid

	Conclusion

	Multi-Target Visual Tracking with Teams of Aerial Robots
	Related Work
	Problem Formulation
	Infeasibility of Tracking All Targets
	1/2 Approximation Algorithm
	Maximizing Number of Targets
	Maximizing Quality of Tracking

	Simulations
	Experiments
	Validating the Sensing Model
	Tracking Experiment

	Conclusion

	Sampling Algorithms with Aerial and Ground Robots (Precision Agriculture)
	Related Work
	Sampling TSPN Problem
	Overview of the GridSample Algorithm
	Performance Analysis of the GridSample Algorithm

	Motivating Application: Precision Agriculture
	Finding Potentially Mislabeled Points

	Symbiotic UAV+UGV Path Planning
	Planning for Aerial Measurements
	Planning for Ground Measurements

	Simulations
	 System Description
	Modeling
	Results

	Field Experiments
	Conclusion

	Coverage and Tracking with Autonomous Boats (Monitoring Invasive Fish)
	Related Work
	System Description
	Robots
	Navigation Routine
	Radio Tag and Receivers

	Coverage
	Algorithm Description
	Visiting the Regions: TSPN and the Zookeeper Problems
	Covering Regions with Given Entry and Exit Points
	Experiments

	Active Localization
	Measurement Model
	Optimization of Robot Motion
	Simulations and Experiments

	Field Experiments
	Conclusion

	Energy-Optimal Trajectory Planning
	Related Work
	Problem Formulation
	Energy Model
	Problem Statement

	Optimal Velocity Profile without Bounds
	Solution to Problem 4
	Structure of the Optimal Profile
	Comparisons with trapezoidal velocity profile

	General Solution Incorporating Maximum Velocity Bound
	Unconstrained optimal profile does not violate bound v(t) vm
	Unconstrained optimal profile violates the bound v(t) vm

	Optimal Profile over Multiple Segments
	Velocity profile subroutines
	Dynamic Programming

	Energy Optimal Paths
	Implementation
	Comparison with Dubins' Paths

	Calibration and Experiments
	Calibration
	Experiments

	Conclusion

	Conclusion and Discussion
	Summary of Contributions and Open Problems
	Future Research Directions
	Realistic Environments
	Realistic Robot Motion Models
	Robustness against Uncertainty in the Model
	Long-Term Planning

	Concluding Remarks

	References
	 Appendix A. Proofs from Chapter 3
	Proof of Lemma 1
	Proof of Lemma 3
	Proof of Lemma 8

	 Appendix B. Proofs from Chapter 4
	Proofs for the Lower Bounds
	Proof for Lemma 13
	Proof for Corollary 2
	Proof for Corollary 3

	Proofs for the Upper Bounds
	Proof for Lemma 14
	Proof for Lemma 15
	Proof for Lemma 16
	Proof for Lemma 17

	Proof for Theorem 4

	 Appendix C. Proofs from Chapter 5
	Proof of Theorem 7

	 Appendix D. Proofs from Chapter 8
	Proof: Unconstrained Solution
	Proof for Lemma 24
	Proof: Constrained Solution
	0 t t1
	tf-t2 t tf
	Corner conditions

	Proof for Lemma 25
	Proof of Energy Model for Non-zero Initial and Final Velocities

