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Abstract 

DNA sequencing as an application of Next Generation Sequencing (NGS) is 

beginning to reshape how physicians diagnose and make treatment decisions for their 

patients. These NGS technologies provide a great depth of information by bringing along 

unprecedented throughput of data, huge scalability and speed. The terabytes of data 

generated has precipitated a need for efficient bioinformatics analysis and interpretation 

processes. My dissertation provides an end-to-end solution to analyze DNA sequencing 

data, interpret and deliver results efficiently and effectively. I developed a modular, 

robust workflow Targeted RE-sequencing Annotation Tool (TREAT) to provide a 

backbone for NGS DNA analysis, in collaboration with Mayo Clinic’s bioinformatics 

core [1]. TREAT is one of the first bioinformatics solutions to incorporate alignment, 

variant calling, annotation and visualization of DNA sequencing data. To better evaluate 

the increasing foray of NGS into the clinical domain, I designed a module for 

comprehensive depth of coverage evaluation for genes and variants of interest. This 

module extending upon the TREAT pipeline helps quantify the applicability of NGS for 

clinical gene panels [2]. With dwindling costs and increasing availability of whole 

genome sequencing, turnaround time remains a major factor for clinical adaptation of 

NGS. I developed a novel iterative bioinformatics approach to expedite whole genome 

analysis by focusing on clinically relevant genomic regions, reporting results in less than 

10% of the original processing time [3]. Further research employing additional clinical 

annotation has given us insight into a comprehensive genotype phenotype correlation 
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evaluation of clinically reportable variants. Here I report on the characteristics of 

clinically relevant variants typically expected per individual from whole exome DNA 

sequencing data. These data highlight challenges that need to be addressed including both 

phenotype issues of disease penetrance and uncertainty about what is clinically 

reportable, and sequencing issues like incomplete sequencing coverage, thresholds for 

data filtering and lack of high quality databases to determine functional annotation. 
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Chapter 1: Introduction 

 

 

1.1 Next Generation DNA Sequencing 

 

Know thyself has a whole new meaning from the standpoint of knowing one’s 

entire DNA sequence for preventative and personalized medicine. DNA quantifies an 

individual’s uniqueness and is useful for disease risk prediction and drug efficacy. 

Simply put, DNA sequencing is the determination of the string of nucleotides in a DNA 

molecule. Its knowledge is imperative for understanding a broad range of biological 

phenomena [5]. Sequence of DNA is useful in studying the genome itself, identifying 

genes, phenotypes and potential drug targets along with evolutionary history and 

metagenomic relationships. Identification of sequence differences, i.e. variants, is the 

starting point to elucidate the mechanism of disease and bring research into clinical 

practice.  

 

In 2001, the Human Genome Project gave researchers a near complete map of a 

reference human genome revealing vast expanses of evolutionarily conserved and 

therefore functional yet novel DNA sequences [6-8]. After decades of Sanger sequencing 

based techniques for determining the DNA sequence [9], massively parallel sequencing 
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technologies have democratized the entire field of sequencing [10]. There are some basic 

differences in these two technologies to generate DNA sequencing data (Figure 1.1). The 

traditional methods of Sanger sequencing, though of better quality, remain time 

consuming and expensive. Next Generation Sequencing (NGS) on the other hand 

simultaneously sequences millions of DNA segments [11], each segment referred to as a 

‘read’. Each nucleotide in the sequenced region may be contained in multiple reads to 

repeatedly call the nucleotide providing confidence or higher quality in the read out. The 

sum of sequenced reads mapping at a nucleotide position is referred to as the ‘coverage’ 

of that nucleotide. 
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Figure 1.1: Conventional versus second-generation sequencing [12]. (a) With high-

throughput shotgun Sanger sequencing, genomic DNA is fragmented, then cloned to a 

plasmid vector and used to transform E. coli. For each sequencing reaction, a single 

bacterial colony is picked and plasmid DNA isolated. Each cycle sequencing reaction 

takes place within a microliter-scale volume, generating a ladder of ddNTP-terminated, 

dye-labeled products, which are subjected to high-resolution electrophoretic separation 

within one of 96 or 384 capillaries in one run of a sequencing instrument. As 

fluorescently labeled fragments of discrete sizes pass a detector, the four-channel 

emission spectrum is used to generate a sequencing trace. (b) In shotgun sequencing with 

cyclic-array methods, common adaptors are ligated to fragmented genomic DNA, which 

is then subjected to one of several protocols that results in an array of millions of spatially 

immobilized PCR colonies or 'polonies' [13]. Each polony consists of many copies of a 

single shotgun library fragment. As all polonies are tethered to a planar array, a single 

microliter-scale reagent volume (e.g., for primer hybridization and then for enzymatic 

extension reactions) can be applied to manipulate all array features in parallel. Similarly, 

imaging-based detection of fluorescent labels incorporated with each extension can be 

used to acquire sequencing data on all features in parallel. Successive iterations of 

enzymatic interrogation and imaging are used to build up a contiguous sequencing read 

for each array feature. (Permissions to reproduce figure and label obtained from Nature 

Publishing Group – Appendix A.4) 

 

The major sequencing technologies to gain prominence in the last decade are 

usually lumped into the category of NGS, sometimes referred as second-generation 

sequencing. These include sequencing by hybridization [14], single molecule sequencing 

[15, 16] and cyclic array sequencing [17]. The latter encompasses the popular 

commercial platforms of Roche 454, Illumina Solexa and Life Technologies SOLiD 

sequencing platforms. After the first human genome sequenced using traditional Sanger 

sequencing methods, a plethora of whole genomes were sequenced using these disruptive 

high throughput technologies [18-22]. 

 

DNA sequencing as an application of NGS is in the phase of being adapted 

towards realizing the goal of personalized medicine. It is gradually replacing the 



 

  4 

traditional Sanger sequencing and becoming a robust technology of choice to find novel 

variants for human disorders [23]. An increasing number of papers have been published 

on the importance and wide applicability of DNA sequencing analysis in recent years. 

This includes large international projects like 1000 genomes [24], The Cancer Genome 

Atlas (TCGA) [25, 26], International Haplotype Mapping (HapMap) project [24], Beijing 

Genomics Institute (BGI) sequenced 200 Danish exomes [27] and NHLBI exomes [28] 

setup to study large groups of individuals. Large projects like Encyclopedia of DNA 

Elements (ENCODE) are leveraging the NGS technology to generate comprehensive 

maps of genomic and epigenomic elements in normal human and cancer cell lines [29]. 

The idea of a $1000 genome and ubiquitous access to whole genomes is a looming reality 

bringing with it many ethical and legal issues that need to be resolved [30]. Despite that, 

NGS technologies are bound to have a tremendous and far reaching impact on genomic 

research in the years to come [31]. 

 

Figure 1.2 gives a brief overview of the process of NGS experiments [32]. The 

double stranded DNA template is fragmented and sent to the sequencing reaction after a 

size selection step. The sequenced reads are then aligned or assembled based on the 

employed analytic technique. 
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Figure 1.2: NGS workflow depiction of the four major phases carried out in order to 

generate the data 

 

1.2 Whole Genome and Whole Exome Sequencing 

 

Whole Genome Sequencing (WGS) is the read-out of the entire 3 billion 

nucleotides of an individual’s DNA sequence to report potential variants, but is not 

always cost effective. Whole Exome Sequencing (WES) on the other hand involves 

enriching for and sequencing the entire coding DNA, approximately 1-2% of the whole 

genome and thus less expensive, has spurred a rush for clinical adaptation and 

commercialized services. Human exome has been shown to harbor more than 85% of the 

known disease causing mutations [23]. Many recent projects involving exome sequencing 

were a success because of WES being able to provide higher coverage of multiple 

samples at a more affordable cost to do mutation discovery ([33], [34], [35], [36], [37], 
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[38]). WES has also gained widespread application for diagnostic and clinical genetics 

along with characterizing various Mendelian disorders [39, 40].  

 

With the plummeting costs, WGS is primed to gain wider usage. The biases 

inherent to the capture and library preparation process of WES may result in poorly 

covered regions leading to inadequate evaluation. It is also likely that many yet 

undiscovered disease-causing mutations are located not within the coding exon regions, 

but within intronic and intergenic regions. Many structural changes such as deletions, 

inversions and duplications, especially more than a few hundred nucleotides long, are 

more efficiently identified by WGS.  

 

Essentially the choice of WGS or WES is a subjective matter as both NGS 

applications have context specific benefits depending on the genomic mechanism being 

studied. There have been high-profile reports of WES resolving incidental findings and 

revealing complexity missed by WGS evaluation [41], [42]. At the same time research 

has highlighted discovery of novel disease causing mutations from WGS that would have 

likely escaped detection from WES [43]. This dissertation and the identified solutions are 

applicable to both WGS and WES, providing timely and prioritized high quality results 

for clinical applicability. 
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From an analytic standpoint, the processing of both the datasets is similar as it 

begins with alignment of the short sequenced reads to the entire genome. The quality 

checks and technical challenges dealing with high error rate of sequencer, multiply 

mapped reads due to sequence homology or reference sequence bias in variant calling are 

much the same for WES and WGS [44]. WES does present additional challenges of 

uneven coverage (due to only the coding regions being targeted and sequenced) making 

identification of copy number and structural variation challenging. Majority of the 

bioinformatics workflows are cognizant of these similarities and differences between 

WES and WGS and are therefore designed to implement the common processes of 

alignment, re-alignment and variant calling before diversifying into specific modules for 

Copy Number Variants (CNV) and Structural Variants (SV) identification. 

 

1.3 Workflow infrastructure for NGS analysis 

 

The terabytes of data generated by NGS applications have precipitated the need 

for efficient bioinformatics processes to conduct high throughput genomic analysis and 

interpretation. A typical run of the current Illumina HiSeq instrument can generate more 

than 600 billion bases (Gb) of DNA throughput (Table 1.1). The voluminous and 

complex nature of NGS data has brought about an explosion of computational and 

statistical tools to analyze and interpret the sequencing data. These tools are designed for 

one of the 5 major steps of analyzing DNA sequencing data: 1) quality checks, filtering 

and basic throughput evaluation of the sequenced reads, 2) alignment of the raw reads to 
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the reference sequence, 3) identification of differences between the sample being 

analyzed and the standard reference to call variants, 4) annotation of those variants with 

known genomic feature information like intronic, stop-gain or missense and 5) 

visualization of the aligned reads and variants on the genomic scale. 

 

 

Table 1.1: List of NGS sequencing platforms and their expected throughputs, error types 

and error rates [45]. (Permissions to reproduce obtained from Elsevier – Appendix A.5) 

 

Presently, there are more than 60 aligners available for mapping the high-

throughput of short reads to a reference sequence [46]. This has led to the arduous task of 

selecting the most appropriate aligner for a particular application [47]. There is an even 

greater number of genotype calling tools that use base quality, mapping quality, coverage 

depth, model of known variants and Linkage Disequilibrium among other features [48]. 
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The burgeoning of these tools has been accompanied with a lack of good benchmarking 

and a lack of automated workflows utilizing these tools for routine analysis. The very 

popular view of a $1000 genome, but $10000 analysis [49] has been largely true due to 

the huge informatics challenges faced by research labs. The need for closing the gap 

between high throughput data generation and the ability to process, analyze and navigate 

through the resulting data has been highlighted by multiple groups [50]. 

 

For a typical NGS analysis, 5-8 or even more separate bioinformatics tools might 

be required to QC the data, map reads, identify sequence variants, annotate using local or 

public databases and visualize the data. Usually these tools need to be installed and 

configured in a way such that NGS data can be sequentially analyzed through the process 

in an automated fashion (bioinformatics workflow). However this does require end users 

to download the individual tools, any associated dependencies, files and databases. The 

dependencies and associated files need to be formatted appropriately to ensure 

compatibility with the mosaic set of tools. Another challenge with using a set of tools is 

input output format inconsistencies and the requirement of data parsing to ensure proper 

functioning of the automated workflow as a whole. The tools have a variety of 

parameters and features for flexibility of usage in different scenarios but the end users 

need to understand the impact and tweak the settings for their custom setup. The tools are 

being actively developed leading to new releases and versions that require a constant 

commitment to keep the workflow up-to-date and efficiently functional. 
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As detailed in the later chapters, by overcoming a lot of these hurdles our 

Targeted RE-sequencing Annotation Tool (TREAT) workflow [1] fills the need for a 

robust integrated bioinformatics framework. As TREAT was being used other groups 

have also developed similar workflows, with many focusing on the downstream filtering 

and interpretation of human sequence variation data ([51], [52], [4], [53], [54], [55], [56], 

[57], [58], [59]). However, TREAT remains a well-suited application for researchers, labs 

and programmers and has been adapted by organizations like University of Illinois 

Urbana Champaign and Appistry©. It has been adopted at Mayo Clinic for tens of 

thousands of DNA samples sequenced by various investigators and clinicians. 

 

1.4 Depth of Coverage from NGS data 

 

One of the most vital metrics in DNA sequencing is depth of coverage. It is 

defined as the number of times a particular nucleotide is evaluated, that is, the number of 

reads mapping to that nucleotide location. Coverage is reported as an average coverage of 

a region based on the total number of nucleotides sequenced and region length, or as a 

percentage of the region covered by at-least a threshold number of reads. Higher 

coverage ensures greater accuracy but also entails higher cost of data generation implying 

a trade-off decision that is made during the study design phase of the project. Much 

higher average sequencing depth is necessary to achieve accurate variant calling over the 

entire genome/exome [60]. 
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As NGS is rapidly moving towards clinical application, its usage to replace an 

existing Sanger sequencing based gene-panel test requires a comprehensive read 

coverage analysis. It has been reported that some regulatory regions consistently have 

lower coverage from NGS data leading to poorer variant detection ([61], [62]). 

Sequencing costs often limit the amount of sequence reads generated, limiting the 

coverage and quality of the data. There is a justifiable need to report coverage before 

claiming genome-wide or exome-wide survey for sequencing projects. This is especially 

necessary for studies that demonstrate applicability of NGS to replace gene-panel testing. 

For instance, the Dewey et al paper [63] highlights the inability of WGS to detect variants 

in vital inherited disease genes due to sub-optimal sequencing coverage. The obvious 

use-case is to evaluate the depth of coverage observed in regions or genes of interest from 

a pilot sequencing experiment. Such comprehensive analysis can potentially identify 

systematic lack of coverage in regions critical for the research or disease being studied. 

As an extension of the TREAT workflow, I developed an approach to perform an 

exhaustive evaluation of genes and known disease mutations of interest and report that 

for a sequencing experiment. This approach was developed in collaboration with Mayo 

Clinic’s Neuropathy workgroup [2] and then also adopted by Colon cancer, Dilated 

Cardio-myopathy and Sudden Death research groups to report an extensive understanding 

of screening using NGS data and the potential for diagnosis. 
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1.5 Speed of WGS bioinformatics analysis for clinical 

application 

 

A typical WGS bioinformatics analysis workflow takes approximately 3-4 days 

per sample [64]. The rate at which newer datasets can be generated, analyzed and 

interpreted is limited less by the instrument time but more by the computational analysis 

[65]. It has been reported that the central processing unit (CPU) time required on a single 

2.1 GHz processor for a single WGS analysis would be about 1701 hours or 0.20 years 

[66]. Newer methods that rely on specialized and expensive hardware to provide faster 

solutions are also limited to particular sequencing platform ([66, 67]). Meanwhile, as the 

cost of WGS is decreasing, clinical laboratories are looking at broadly adopting this 

technology to screen for variants of clinical significance. To completely leverage this 

technology in a clinical setting, results need to be reported rapidly, as the turnaround rate 

could potentially impact patient care.  

 

From a diagnostic and personalized medicine perspective, a very limited number 

of genomic regions are clinically reportable and actionable. Depending on the computing 

infrastructure available, the processing of WGS data can take several days, with the 

majority of computing time devoted to aligning reads to genomics regions that are to date 

not clinically interpretable [3]. Currently, most of the clinically relevant genomics 

information is related to protein-coding exon regions where the impact of coding variants 

can be interpreted in the context of proteins and their function [3]. This focus provides an 
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opportunity to develop new bioinformatics algorithms that prioritize and swiftly report 

clinically relevant findings [3]. To expedite the delivery of most clinically relevant results 

from WGS data, we developed a platform that is sequencing technology and hardware 

independent. This recent work reports all the clinically actionable variants from WGS 

data in a matter of 5 hours, only 1/15
th

 of the original analytic time [3].  

 

1.6 Clinical filtering and interpretation of NGS data  

 

Even with the high accuracy of NGS data, the enormous throughput implies that a 

low error rate of 0.1% would still introduce 3 million erroneous base calls within the 3 

billion long human genome sequence. Identification and removal of systematic errors of a 

particular technology can help reduce such false positives. The bioinformatics workflows 

introduced in Section 1.3 have their own inherent biases due to the tools and parameters 

or thresholds used for the automated analysis. Despite the adoption of Illumina© as a 

common sequencing platform, there is wide diversity to the annotation and reports 

provided as non-standardized passive decision support in electronic health records [68]. 

From a clinical reporting perspective, a vast majority of the variants called from NGS 

data are VUS (Variants of Unknown Significance) [69]. VUS could be due to incomplete 

or missing information on the gene function or lack of knowledge about the effect of the 

variant on the protein translated from the gene. The VUS are generally confusing for the 

individuals and their families and challenging for the clinicians. 
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The abovementioned reasons imply a need for careful and systematic filtering of 

variants generated from NGS data. There is ongoing debate on the subjective nature of 

such filtering and the scientific community has not yet settled on an accepted solution. 

Typically variants are filtered based on the mapping quality of reads at that position, the 

total number of independent reads showing the variant and frequency of the variant in 

known repositories like HapMap [70], 1000 Genomes [24] and in-house databases. 

 

A large variety of fragmented annotation sources and databases need to be setup 

and queried in order to extract out all known information about a variant or the function 

of a gene. The huge amount of data generated by NGS, although of great value, threatens 

to be a major obstacle with no readily available methods to accurately interpret all the 

results [71]. NGS has led to the uncovering of incidental findings that need to be 

carefully evaluated and in some cases reported back to the individuals. However, it 

requires multiple hours of manual curation by genetic counselors to refer relevant 

literature, access multiple fragmented databases and discuss with physicians to reach a 

decision to report or not report each individual variant [63]. It remains challenging to 

effectively interpret NGS data and the content of results reported to an individual.  

 

1.7 Challenges and Motivation 
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Despite almost a decade of advances and successes from NGS DNA sequencing 

applications, there remain numerous challenges and deficiencies in the current 

understanding and interpretation of results. There is incomplete coverage of known 

disease genes, low reproducibility of genetic variation findings and uncertainty about the 

clinically reportable of findings ([63], [72],[73]) limiting clinical applicability. There are 

broadly four key challenges for clinical applicability of NGS sequencing that call for 

more effective and novel computational approaches: 

1. Workflow infrastructure for analysis: NGS analysis, applications and 

results are still a moving target with ever-changing needs. It is almost always 

necessary to bring together a conglomeration of 5-8 or even more 

computational tools in order to begin to use the sequencing data. This entails 

installation and availability of IT resources along with knowledge of file 

formats and scripting in order to make the mosaic set of tools work together. 

The entire workflow requires sufficient flexibility to allow replacement of 

tools with newer better alternatives. 

2. Depth of coverage evaluation and reporting: It is critical to evaluate the 

depth of coverage of genes, regions and nucleotide positions to ensure 

sensitivity from NGS DNA sequencing results. Lack of variant call for a 

particular sample could be due to the genetic variant not being present, or due 

to the lack of supporting sequence reads. Reporting the coverage information 

on a pilot set of data for select genes or regions of interest helps identify the 
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expected yield from NGS DNA sequencing before performing the actual 

experiment. 

3. Expedite analysis of clinical relevance: The high throughput of data requires 

large amounts of computational time for efficient analysis. However, not the 

entire set of results is immediately pertinent for clinical evaluation, as the 

phenotypic implications of a large majority of genetic variation remain 

unknown. Prioritizing return of the most relevant results as the first iteration 

would be tremendously beneficial for bringing NGS applications into a clinic. 

This process needs to be implemented with no loss in quality and accuracy of 

the results.  

4. Clinical filtering and data interpretation: Although a large percentage of 

genetic variants identified through NGS are accurate and have a high 

validation rate, there remains an uncertainty to the assignment of clinical 

significance to variants. Even before that, due to limited understanding of the 

deleterious effect of the variants, multiple iterations of variant filtering is 

commonly done to prioritize the variants important for clinical evaluation. 

There has been no concerted benchmarking of the yield from WES or WGS 

for the number and type of interpretable variants identified per individual. It 

remains unclear how many of the identified variants annotated by genetic 

counselors or physicians potentially cause a phenotype in the individual. 
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1.8 Outline of the chapters 

 

To address these challenges, my dissertation entails the development of an end-to-

end solution to analyze, interpret and deliver DNA sequencing data, efficiently and 

swiftly. In precisely the order of these challenges, the next four chapters elaborate on the 

four major contributions of this dissertation.  

 

Chapter 2 introduces the Targeted RE-sequencing Annotation Tool (TREAT) 

workflow [1] and how it provides the backbone for DNA sequencing bioinformatics. 

Specifically, I provide details on the various modules of the TREAT workflow, selection 

of appropriate set of tools, flexibility of doing analysis from various starting points, 

efficient reporting and visualization of data and the Amazon EC2 cloud image for 

utilization by end-users who are not experienced in programming and software 

installation. 

 

Chapter 3 addresses the critical aspect of sequencing coverage for NGS DNA 

sequencing studies. The module developed builds upon TREAT to report coverage depth 

information for clinically relevant genes. This involves a comprehensive sequencing 

depth coverage analysis of regions-of-interest for prompt data interpretation. I 

collaborated with Dr Christopher Klein (Associate Professor of Neurology) at Mayo 

Clinic and evaluated coverage for a set of known neuropathy genes and disease causing 

variants using exome-sequencing data from 24 samples with Inherited Peripheral 
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Neuropathy (IPN) [2]. This approach can be generalized to any set of genes or regions of 

interest and has been adopted by Cardio-myopathy and Sudden Death groups at Mayo 

Clinic for coverage analysis. 

 

Chapter 4 pursues the challenge of computational time needed for bioinformatics 

analysis of Whole Genome Sequencing data and its impact on clinical applicability. To 

be an option of routine clinical diagnostic and screening usage, WGS requires faster turn-

around of results. At the same time, only a very limited number of genomic regions are 

clinically reportable and actionable. From a diagnostic or screening standpoint, the 

analysis and results of only those relevant regions or genes would be of interest. I present 

an iterative approach for WGS bioinformatics focuses on such clinically relevant 

genomic regions and reports results in less than 5 hours [3]. It provides a huge 

improvement on a generic WGS bioinformatics analysis that takes about 75 hours to 

complete alignment and variant calling on WGS data. This speed-up is a critical step 

towards delivering results to the patient and potentially impacting course of treatment. 

 

Chapter 5 explores the complexities in making the field of personalized 

genomics riding the wave of NGS a reality. The impact and significance of a large 

majority of genetic variants identified by NGS is currently unknown. Recent literature 

[63] highlights the large amount of time necessary for genetic counselors and physicians 

to research a variant before concluding on its appropriate pathogenecity. The scientific 

community is lacking an understanding of the number of variants to expect per individual 
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that warrant such rigorous interpretation by geneticists. Moreover, there has been no 

comprehensive evaluation of how the genetic results correlate with the medical 

phenotype of an individual. In order to develop capability of establishing NGS as a 

routine prognostic test for healthy individuals, it would be important to overcome these 

challenges. 

 

Chapter 6 discusses the major implications of my dissertation including a 

summary of contributions, limitations and insights into possible future research 

investigations. 
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Chapter 2: Targeted RE-sequencing Annotation 

Tool (TREAT) 
1
 

 

2.1 Bioinformatics Workflow 

 

Computational approaches for biological research need to link together meta-data 

information and the actual analysis in order to setup systematic workflows [74].  Such 

workflows involve analytic methods that use input files and tool definitions to analyze 

the data and compute the results to be presented in some output files. Such workflows 

have become a commonplace necessity for even small bioinformatics groups as they 

ensure standardization, automation, scalability and efficient personnel utilization. A 

person or team is usually involved in the nine major stages of workflow development and 

deployment: 

1. Identifying the set of components or tasks needed for the entire analytic 

process 

2. Researching the available tools for each of those tasks and evaluating and 

comparing the performance, accuracy, usability and other appropriate metrics 

                                                 
1
 Text and figures reproduced with permissions from Oxford University Press (Appendix Figure A.1) 
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3. Installing the set of tools identified in the previous step and their associated 

dependencies and ensuring optimum performance in the local computational 

environment 

4. Analyzing sets of test or pilot datasets through the iterative process of the 

analyses identified in the first step and evaluating output results at various end 

points 

5. Ensuring appropriate results from each of the steps and evaluating the overall 

performance 

6. Programming custom software and parsing scripts to ensure compatibility of 

all the tools in order to be able to execute all the steps without interruption 

7. Assembling the execution of all the tools into a single process, a conveyor belt 

of bioinformatics tools, in order to have the complete workflow and generate 

the end results 

8. Analyzing real sized and complexity datasets using the workflow to evaluate 

performance, accuracy and efficient functioning 

9. Further optimizing each of the tasks and the process as a whole using 

parallelization, latest version of the tools, efficient data formatting and lookup 

and other techniques 

 

As is clear, this is a very tedious and complicated process, made even more 

difficult by the lack of documentation, benchmarking and robust test datasets. It also 
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requires extensive maintenance to keep up with the latest versions of the tools, format 

changes, bug fixes or parameter optimizations and updates to best practices in the general 

community based on newer evaluations. 

 

2.3 Introduction to the TREAT Workflow 

 

Biomedical research has been revolutionized by the emergence of NGS 

technology [75], which enables massive parallel sequencing of biological samples at 

highly informative depths [76, 77].  Technological innovations continue at an 

unprecedented rate, providing better chemistry for more accurate sequencing with ever-

increasing throughput and reducing cost.  Sequencing platforms offered by Roche, 

Illumina, Life Technologies, and others have expanded the utility of NGS beyond limited 

number of large genome centers. While WGS is still cost prohibitive for most 

investigators, targeted re-sequencing has gained vast popularity by focusing on genomic 

regions of interest. For instance, exome capture and sequencing or WES, which targets 

the coding regions of the genome, has facilitated the identification of both causal 

mutations in rare genetic diseases [78-81], and disease associated variants in complex 

diseases [82, 83].   

 

Evolution of sequencing instrumentation is very dynamic leading to critical needs 

of standardized and centralized analytic expertise for medium to large bioinformatics 

groups [84]. Research groups have had short reaction time in which to develop processes, 
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best practices, rigorous QC/QA and automated management system environments to cope 

with the increasing demand due to NGS. There is growing demand to have the eventual 

data and results delivered from NGS analysis in more useful, interpretable formats rather 

than simply the alignments or lists of variants [84]. 

 

Data management and analysis also remain challenging for NGS projects due to 

the sheer volume of the data. Filtering the tens of thousands of identified single 

nucleotide variants (SNV) and small insertions/deletions (INDEL) down to a small 

number of disease relevant variants can be laborious and time consuming. To help 

mitigate the human effort, several annotation tools have been offered for the variants 

identified from the NGS data. ANNOVAR [85] was the first such tool published to 

functionally annotate genetic variants, which selects non-synonymous SNV or frame-

shifting INDEL in conserved regions that are not reported in dbSNP or 1000 genome 

projects, and focuses on genes with multiple variants. Another tool, GAMES [86], 

annotates variants using UCSC annotations tables and KEGG pathways, and visualizes 

the variants using UCSC tracks. Other tools emphasize on the integration of a data 

management system into the annotation workflow, or the implementation of a web-

interface, while providing similar annotations to the variant list [87, 88]. These open 

source tools were the first attempts to automate the variant filtering process for the 

targeted re-sequencing data.  
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Another stumbling block of NGS projects is the requirement of powerful 

computational infrastructure. For example, a single run from an Illumina HiSeq 2000 

sequencer produces up to one billion 100 to 200 nucleotide long reads and the alignment 

of these reads alone takes days on a single Linux node using the fast alignment tool BWA 

[89]. Without access to advanced IT infrastructure, investigators face fiscal challenges 

and frustration with managing and processing of the profusion of data in order to extract 

biologically relevant information [90]. One solution to alleviate the infrastructure 

challenges is the recent development of Cloud Computing technology that can host 

analytic workflows for a nominal fee, eliminating the need to locally manage the complex 

infrastructure required to efficiently analyze NGS data.  

 

As part of this dissertation, I collaborated with Mayo Clinic’s bioinformatics core 

to develop an open source comprehensive workflow, Targeted RE-sequencing 

Annotation Tool (TREAT), for read alignment, genotype calling, annotation, and 

visualization of the targeted re-sequencing data. An Amazon Cloud Image of TREAT is 

also available for investigators without sufficient local IT and or bioinformatics 

infrastructure. 

 

2.4 Methods 

 

Website: The source code and executables (for both the parallelized and non-

parallelized versions of the tool), a detailed user manual and other supplementary files 
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can be downloaded from http://www.mayo.edu/research/departments-divisions/department-health-

sciences-research/division-biomedical-statistics-informatics/software/bioinformatics-software-packages. 

An instruction for installing the tool locally or launching the Amazon Cloud image is also 

available at the web site. 

 

Gene Definition: The TREAT workflow uses human reference Genome Build 37 

(hg19) and gene definitions from UCSC Genome Browser (refFlat file) by default. The 

gene definition from Build 36 (hg18) is also available.  

 

Sequence Alignment and Variant Calling: The read qualities are examined by 

FastQC [91] which generates QC matrix from the FASTQ files including per-base 

sequence qualities, per-sequence quality scores, per-base nucleotide content, and 

sequence duplication levels. The FastQC tool also provides warnings for parameters 

failing to pass QC thresholds. The reads are aligned to the human reference genome and 

the mitochondrial genome using Burrows-Wheeler Aligner (BWA) [89]. This requires 

indexing the reference genome. If the sequence duplication levels failed to pass the 

FastQC threshold, the duplicated reads are removed using the SAMtools’s rmdup method 

[92]. The BWA alignment is then locally re-aligned using the Genome Analysis ToolKit 

(GATK) [93, 94] in order to correct mis-alignments due to the presence of INDEL. SNV 

are called using SNVMix [95] with a cut-off probability score of 0.8 based on our 

preliminary testing using a HapMap CEPH subject sequenced by the 1000 genome 

project, and INDEL are called by GATK with default parameters setting.  

http://www.mayo.edu/research/departments-divisions/department-health-sciences-research/division-biomedical-statistics-informatics/software/bioinformatics-software-packages
http://www.mayo.edu/research/departments-divisions/department-health-sciences-research/division-biomedical-statistics-informatics/software/bioinformatics-software-packages
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Functional Prediction Tools: Two open-source annotation tools are included in 

TREAT. SIFT [96] is a sequence homology based tool that predicts whether amino acid 

substitutions in protein have phenotypic effects. It uses multiple alignment information to 

predict tolerated and deleterious (affecting protein function) substitution at a given 

variant position. SeattleSeq [97] is a variant annotation tool based on GVS (Genome 

Variation Server) database, which contains 4.5 million variants with the corresponding 

genotype data. Its annotations include gene/transcript information along with predicted 

functional consequence of the input variant.  

 

Variant Annotation: The read depths of each of the A, C, G, T bases at each 

variant position, as well as the average mapping quality score are provided by curating 

the BAM pile-up files using SAMtools [92]. If an identified SNV is a known variant from 

dbSNP [98] or 1000 Genome Project [24], the allele frequencies of Caucasian (CEU), 

Yoruban (YRI), and East Asian (CHB/JPT) populations from HapMap [70] and 1000 

Genome Project are provided. Both SNV and INDEL are annotated by batch submission 

to the SeattleSeq server [97], and for SNV additional annotations are acquired using a 

locally or cloud installed SIFT [99]. The SNV or INDEL within a user defined distance 

(default: 5 base-pairs) to exon-intron splice boundaries are flagged as potential splice 

variants and the corresponding transcript IDs are provided. 
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Gene Annotation: Information is reported on genes hosting SNV and INDEL, 

including (i) the KEGG pathway(s) [100],[101] to which the gene belongs; and (ii) tissue 

expression specificity of the gene. For the latter, three Affymetrix© microarray data sets 

were downloaded from Gene Expression Omnibus (GEO) [102],[103]: (i) GSE7307 

consisting of 677 samples from 130 different normal and diseased tissue types; (ii) 

GSE2109 from the Expression Project for Oncology (expO) [104] which has 1426 cancer 

or tumor samples of 130 tissue origins; and (iii) GSE3526 consisting of 353 normal 

human tissue samples from ten post-mortem donors which totals 65 different tissue types. 

These data sets were normalized individually using RMA [105] and the outlier samples 

were removed. The distribution of the log2 expression values of all probe sets from all 

samples within the study was used to define the noise level. Specifically, we observed a 

bi-modal distribution from each study and defined the noise level as the mode of the first 

peak in the histogram. The average expression level (log2 scale) and standard deviation 

of a gene across multiple samples of the same tissue type within the study were 

calculated. If the average expression level of a gene was below the defined noise level, 

the gene was defined as “not expressed”.  

 

Visualization: 

Visualization of the variant positions: The variant report provides a hyper-link to 

a sample-specific Integrated Genome Viewer (IGV) [106, 107] view of aligned reads at 

the variant position for each SNV and INDEL. The IGV sessions also include track views 

of the RefSeq genes, the targeted genomic regions, and pre-compiled UCSC Genome 
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Browser tables [108]. The UCSC track includes: (i) regulatory regions from the tables of 

firstEF, vista Enhancers, regPotentail7X, tfbsConsSites, and switchDBTss; (ii) 

evolutionarily conserved domains. 

 

Visualization of the tissue expression specificity: for each of the microarray 

studies, the average log2 expression level and standard deviation of a gene across 

multiple samples of the same tissue type are plotted using R [109]. Each gene from the 

variant report is hyper-linked to a HTML page that contains three plots for each of the 

three microarray data sets.   

 

Visualization of the gene-pathway association: for each of the variant-hosting 

genes, a hyper-link is provided to a Microsoft Excel© file that contains all pathways the 

host gene belongs to. In addition, each pathway in the Excel file is hyper-linked directly 

to the specific pathway at the KEGG [100],[101] web site.  

 

Default variant filtering: A list of potential disease associated SNV or INDEL is 

provided consisting of variants with at least one of the following characteristics: non-

synonymous or non-sense variants, “novel” variants not observed in dbSNP and 1000 

Genome Project, potential splice-variants near the exon-intron boundaries, variants 

predicted by SIFT [99]/PolyPhen [110] as damaging, or INDEL causing frame-shifting.  
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Workflow Integration: The different components of the workflow are integrated 

and the data files are parsed using custom Perl, Java, Groovy and shell scripts. The 

sequence alignment and variant calling modules were parallelized using the Sun Grid 

Engine. Parallelization focused on distributing sample and chromosome levels processing 

on individual CPUs. Note that a non-parallelized version is also available for end users 

with no access to a Linux cluster.  

 

2.5 Results 

 

TREAT components/workflow: TREAT consists of three key analytic 

components (Figure 2.1). These three modules, in order of execution, are: (A) the read 

QC and alignment module, (B) the variant calling module, and (C) the variant and gene 

annotation module. There are three separate entry points to the workflow. A user can 

either: (I) upload the FASTQ files to run all three modules, (II) supply the aligned reads 

(BAM files) to take advantage of the variant calling and the annotation modules, or (III) 

provide the variant lists (INDEL and SNV variants in separate files) in the defined format 

and run the annotation module only. The selection of BWA for alignment of short-read 

data was due to its fast and superior performance on paired-end sequenced reads that we 

routinely encountered [89]. Assessment was done using both real and simulated data 

utilizing a variety of read-length to determine the best tool as default in the TREAT 

workflow (Table 2.1 and Table 2.2). The evaluation of variant callers demonstrated 

SNVMix [95] as the most efficient (Figure 2.2) and was thus selected for the workflow. 
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Figure 2.1: Basic flowchart of the TREAT workflow. The three major sections of 

alignment, variant calling and annotation are highlighted as A, B and C. The three entry 

points for utilizing the TREAT workflow are also highlighted as user interface options. 
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Table 2.1: Evaluation of short-read aligners on a real dataset using about 12 million 

sequencing reads mapped to the human genome (Reproduced with permissions from 

Oxford University Press – Appendix A.6) 

 

 

 

 

 
 

Table 2.2: Evaluation of short-read aligners on a simulated datasets using 1 million 

sequencing reads of lengths 32bp, 70bp and 125bp mapped to the human genome 

(Reproduced with permissions from Oxford University Press – Appendix A.6) 
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Figure 2.2: Evaluation of SNVMix using cross-validation runs highlights the better 

performance even with worst-case runs [95] (Reproduced with permissions from Oxford 

University Press – Appendix A.7) 
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Figure 2.3: Annotation and Visualization Features from the TREAT Variant Report. (A). 

Four annotation categories provided by TREAT: the general variant annotations, the 

sample-related variant annotations, SIFT and SeattleSeq annotations, and in-house 

developed annotations. The specific annotation items are listed under each category. (B). 

A snapshot view of the Excel variant report. The variants are in rows, and annotations are 

in columns. (C). Three visualization options provided by TREAT: the IGV browser view 

of the variant positions, the hyper-linked KEGG pathway for each variant-hosting genes, 

and the tissue expression specificity figures based on three microarray studies. 

 

HTML-based results report: the results from TREAT, including the project 

description, QC reports, coverage and sequencing depth information, summary of the 
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SIFT [99] and SeattleSeq [97] annotations, as well as links to the SNV and INDEL 

reports, are presented in one easy-to-navigate HTML page. Different sections of the 

HTML page are explained in detail in the TREAT user manual.   

 

Variant Reports: TREAT outputs four variant report files, including the 

complete INDEL and SNV reports as well as the filtered INDEL and SNV reports using 

the default filtering criteria described above. These variant reports are provided in 

Microsoft Excel© format (note that for bigger report files, the users will need Excel 

2007). As shown in Figure 2.2.A, there are 5 categories of annotations for each reported 

variant. The general annotations include the variant physical positions on the 

chromosome, the reference base at the position, the dbSNP ID when available, and the 

allele frequencies in CEU, YRI, and JPT/CHB of the SNV reported in both HapMap and 

the 1000 Genome Project. The sample-related annotations give the read depths at the 

variant positions, the SNVMix [111] probability score for SNV, and the called genotype 

of the sample. The SIFT and SeattleSeq annotations including transcript and gene IDs, 

variant type (synonymous or non-synonymous), and the SIFT and PolyPhen predictions. 

Our in-house developed annotations provide the distances of each variant to the closest 

intron-exon boundaries, the tissue expression specificities of the host genes based on 

multiple microarray experiments, and KEGG pathways each host gene belongs to.  

 

The TREAT workflow also implemented flexible and easy-to-use visualization 

options (Figure 2.2.C). It automatically outputs a pre-formatted IGV session file for each 
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sample, and each variant position is visualized with a click-able hyper-link from the 

Excel file. This enables close examination of the multiple sequence alignment of short 

reads and the read/base qualities at each reported variant positions (Figure 2.2.C1). 

Hyper-links are also used to display additional annotations on each variant hosting gene, 

including the list of KEGG pathways a host gene belongs to and the tissue expression 

specificity of the gene. The list of pathways is itself hyper-linked to the KEGG website 

(Figure 2.2.C2) for detailed visualization. Tissue expression specificity is displayed in a 

separate HTML page which provides additional links to the detailed descriptions of the 3 

microarray experiments (GEO link), links to the Excel tables of the actual expression 

values, and links to the visualization of the expression specificities of each gene across 

different tissue types (Figure 2.2.C3). For users who choose to locally install TREAT, the 

~21,000 Excel files (one for each gene) for the KEGG pathway associations, and ~63,000 

PDF files (three microarray studies per gene) for the tissue specificities can be 

downloaded from the TREAT website. For those who use TREAT on Amazon Cloud, 

these annotation files are pre-loaded. 

 

Redundant Sources for Variant Annotation: When evaluating SeattleSeq and 

SIFT, we observed that for regions with two overlapping genes, one of the tools only 

reports the annotations on one randomly selected gene. Although rarely, we also observed 

that one of the tools changes the input alleles of some variants for no obvious reason.  

Other differences between SIFT and SeattleSeq where observed when we submitted 

22,135 SNV from an Exome-Seq sample, together with two known causal mutations 
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from Freeman-Sheldon Syndrome (FSS) [112] and Van Den Ende-Gupta Syndrome 

(VDEGS) [113], to both SeattleSeq and SIFT. As shown in Figure 2.3, SIFT predicted 

the FSS mutation as “damaging” and the VDEGS mutations as “damaging with low 

confidence”, while SeattleSeq which uses PolyPhen as the prediction method categorizes 

the FSS mutation as the “probably damaging” but didn’t give a prediction for the VDEGS 

mutation. Both mutations are correctly classified as “novel” non-synonymous variants by 

SIFT and SeattleSeq, although the number of coding and non-coding variants defined by 

the two tools are slightly different. However, since none of these two tools could be fairly 

assessed as being more accurate than the other, we decided to provide the annotations 

from both. 

 

 

Figure 2.4: Evaluation of the TREAT workflow using spiked-in known variants. The 

variants for Freeman-Sheldon Syndrome (FSS) and Van Den Ende-Gupta Syndrome 

(VDEGS) were spiked into an exome dataset and run through the TREAT annotation to 

evaluate how the diverse annotation tools recover the variants. 
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Amazon Machine Image: We have built a non-parallelized Machine Image that 

can be launched on the Amazon Elastic Compute Cloud (EC2).  The Machine Image is 

loaded with the all the open-source tools and necessary annotation files for the direct 

execution of TREAT. Table 2.1 summarizes a run performed on 75 million, 100bp 

single-end (SE) WES reads from an Illumina Sequencer. It took 106 hours for TREAT to 

upload the FASTQ files, align the reads, call the genotypes, and annotate the called 

variants. The process cost ~$75. For comparison, a run performed on 500 million 100-

base SE reads using the locally installed TREAT that have been parallelized on SGE took 

10 hours. On the Amazon Cloud, the most time-consuming step was the local re-

alignment of the BAM files before the genotype calling (100 hours). It should be noted 

that the annotation module was executed in less than one hour with a cost of less than a 

dollar. Since most genome centers provide called variants as part of the output, the 

Amazon Cloud implementation of TREAT provides a very cost effective means to 

annotate these called variants.  

 

   Run Time (hrs)  Cost  ($)  

  FASTQ Upload 3.00  $     1.90  

  BWA Alignment  4.00  $     2.72  

  Local Re-alignment  100.00  $   68.00  

  INDEL Calling 1.50  $     1.02  

  SNV Calling 0.33  $     0.68  

  Annotation 0.67  $     0.68  

  Total 106.50  $   75.00  

 

Table 2.3: Cost Estimate of Running TREAT on Amazon Cloud. The FASTQ files of an 

Exome sequencing run of 75 million 100-base pair-end reads were submitted (single 

node), actual run times and the associated costs were recorded. 
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Availability: The source code and executables (for both the parallelized and non-

parallelized versions of the tool), a detailed user manual, and other supplementary files 

can be found at: http://www.mayo.edu/research/departments-divisions/department-health-sciences-

research/division-biomedical-statistics-informatics/software/bioinformatics-software-packages. In 

addition, an Amazon Machine Image is also available at the website for users who don’t 

have access to a LINUX cluster. 

 

2.6 Discussions 
 

We have developed an analytical workflow TREAT [1], which addresses the 

current challenges in analyzing and interpreting targeted re-sequencing data. The modular 

design of the workflow allows the users to interface with TREAT and initiate the 

analyses at different levels: (i) to start with FASTQ files and utilizes all three modules; 

(ii) to start using the aligned reads in BAM format and use TREAT for variant calling and 

annotation; (iii) to use the variant annotation only. Compared to other variant annotating 

tools such as ANNOVAR [85], GAMES [86], and SeqAnt [87] that tend to focus on 

certain aspects of sequence analysis, TREAT provides the largest set of annotations, 

including the tissue specificity and KEGG [100],[101] pathway associations to each 

variant-hosting genes, both SIFT [99] and SeattleSeq [97] variant annotations, and allele 

frequencies of known variants in multiple populations using both HapMap [70] and 1000 

genome project [24] data. At the time of publication, TREAT was the only workflow 

with modular flexibility, excel formatted end-reports that investigators can directly work 

http://www.mayo.edu/research/departments-divisions/department-health-sciences-research/division-biomedical-statistics-informatics/software/bioinformatics-software-packages
http://www.mayo.edu/research/departments-divisions/department-health-sciences-research/division-biomedical-statistics-informatics/software/bioinformatics-software-packages


 

  39 

with, integrated visualization option along with variant and annotation information and an 

amazon cloud instance to ensure capability to kick-start the analysis without 

comprehensive local bioinformatics or IT infrastructure. 

 

The superior accuracy and efficiency of TREAT workflow is due to the 

component applications utilized in the entire process. These applications included in 

TREAT have been carefully evaluated and selected from a pool of available open source 

applications. For read alignment, Bowtie [114], BWA, MAQ and SOAP [115] were the 

top aligners we identified from a usability and support stand-point. BWA was more 

accurate in both the fraction of confidently mapped reads and the error rate of confident 

mappings [89]. So we decided to use BWA for our workflow. For variant calling, 

SNVMix, MAQ and GATK were selected. We found SNVMix to be the most accurate 

for SNV calling and GATK for INDEL and thus selected those for our default workflow. 

In some circumstances the output of more than one application providing similar 

annotations has been included in TREAT since no fair criteria could be used to rank the 

quality/accuracy of one application above the other. This is the case of SeattleSeq and 

SIFT for variant annotations with observed discrepancies. Both annotations are includes 

in the final report to let the user choose the more appropriate one or perform consensus 

selection. 

 

The various reports and graphic interfaces provided by TREAT make it a flexible 

and easy to use application. The reporting of results in Excel format integrates the 
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visualizations of the sequence alignment at variant positions, pathways and expression 

specificity of the variant hosting genes via click-able hyper-links for each reported 

INDEL and SNV. In addition, the summary of the targeted re-sequencing results is stored 

in a centralized HTML report with links to the TREAT website, the targeted region 

coverage report, the read QC report, the description of the TREAT workflow, and links to 

the website of the annotation tools and databases.  

 

For maximum flexibility, three versions of TREAT were implemented: (i) a 

parallelized version for users with access to Sun Grid Engine LINUX clusters; (ii) a non-

parallelized version for users with a single LINUX node; (ii) and an Amazon Cloud 

version for users with no access to local bioinformatics infrastructures.  By targeting all 

user groups and enabling rapid integration of emerging analytic methods, we believe that 

TREAT provides a sustainable NGS analytic workflow with wide applicability to the 

research community.  

 

We continue to add new functionality and features to TREAT to make it a 

comprehensive tool for targeted re-sequencing analysis, annotation and interpretation. 

These include the accommodation of allele frequencies from the large list of populations 

from dbSNP database, and adding more splice-site prediction data from various tools for 

variants near exon-intron boundaries. In addition, we are constantly comparing the new 

alignment and variant-calling tools with the ones used in TREAT and will switch to 

better tools in our workflow when validated. Most importantly, we are in the process of 
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developing an in-house variant database that collects all variants detected from hundreds 

of individuals with various types of diseases using exome and whole-genome sequencing. 

This database will provide critical annotations whether the observed variants are truly 

“novel” or disease-specific.  

 

In summary, TREAT integrates sequence alignment, variant calling, variant 

annotation, variant filtering, and visualization in one comprehensive analytic workflow. 

The rich set of annotations provided by TREAT, the easy to use, centralized HTML 

summary report, and the Excel-formatted variant reports with hyper-linked visualization 

utilities enable the filtering of detected variants based on their functional characteristics, 

and allow the researchers to navigate, filter, and elucidate tens of thousands of variants to 

focus on potential disease-associated variant(s). It is a modular, efficient and streamlined 

workflow that scales well, is used by multiple institutes including Mayo Clinic, UIUC, 

Appistry© and is capable of evolving with the changing needs of NGS Bioinformatics. 
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Chapter 3: Depth of Coverage Evaluation - A 

Case Study of Inherited Neuropathy
2
 

 

3.1 Coverage from Sequencing Data 

 

Depth of coverage, or simply coverage, is one of the most vital metrics in DNA 

sequencing data evaluation. It is defined as the number of times a particular nucleotide is 

sequenced, that is, the number of reads mapping to that nucleotide location. Coverage is 

generally reported as an average coverage of a region based on the total number of reads 

and region length, or as a percentage of the region covered by at-least a threshold number 

of reads. Much higher average sequencing depth is necessary to achieve accurate variant 

calling over the entire genome/exome [60]. It has been reported that some regulatory 

regions consistently have lower coverage from NGS data leading to poorer SNP detection 

[62]. However, higher coverage also entails greater cost of data generation implying 

making a trade-off decision.  

 

To illustrate this, Figure 3.1 demonstrates a set of sequencing data with varying 

coverage. In most cases, coverage profiles are reproducible among samples sequenced 

using comparable technology and throughput, with the coverage variability being 

                                                 
2
 Text and figures reproduced with permission from BMJ Publishing Group Ltd (Appendix Figure A.2) 
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sequence (homology to genomic regions) and GC (percentage of Guanine and Cytosine 

nucleotides) content dependent. 

 

 

Figure 3.1: Variability in coverage of exons from WES data visualized using IGV. The 

red and blue segments are short Illumina reads, while the solid blue bars at the bottom are 

coding exons of the gene. Two samples of the same batch with similar coverage profiles 

are depicted. 

 

3.2 Inherited Peripheral Neuropathy 

 

Peripheral neuropathy is a common medical problem suffered by adults with a 

prevalence reported to be 15% in persons older than 40 years [116]. A wide range of 
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neuropathy screening tests such as electrophysiological examinations (nerve conductions 

and EMG), blood tests, and MRI imaging studies are performed in routine clinical 

evaluation [117]. Nerve and skin biopsies may also be performed in select patients [118, 

119]. Most recently reviewed mean Medicare expenditures per neuropathy patient in the 

year of diagnosis were $14,362, and despite the expense, many patients (48% of 12, 673) 

went without specific diagnosis [117]. The ordered tests objectify the neuropathy and 

focus on determining inflammatory, autoimmune; metabolic, toxic causes and exclusion 

of alternative symptomatic causes. Highlighted to explain the high rate of undiagnosed 

patients is the lack of standard evaluations including for early hyperglycemia [120]. 

However, also contributing in the low rate of diagnosis is the lack of any standard test to 

simultaneously address a wide array of inherited neuropathy causes. 

 

Inherited neuropathies are common and their genetic and clinical heterogeneity 

make diagnosis difficult. The phenotypic similarity to acquired neuropathies further adds 

to the complexity in diagnosis.  For example, a large prospective clinical trial of 205 

undiagnosed neuropathy patients found that only by intensive clinical evaluation 

including by kindred studies were diagnosis possible and inherited neuropathies 

accounted for 42% of these patients [121]. Inherited causes of neuropathy are diverse and 

currently Online Mendelian Inheritance in Man (OMIM) [122] lists 593 entries linking 

chromosomal locus or mutated genes with neuropathy. If identified as inherited 

comprehensive genetic testing can lead to specific genetic diagnosis. In one common 

form of inherited neuropathy, Charcot-Marie-Tooth (CMT), also known as hereditary 
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motor and sensory neuropathy (HMSN), a recent large study demonstrated that extensive 

genetic testing was able to find genetic causes for 67% of HMSN patients [123]. 

 

In an attempt to reduce cost in an ever-growing list of causative neuropathy genes 

helpful algorithmic candidate gene selection approaches have evolved [123-126]. 

Inherent in the effectiveness of candidate gene approaches, however, are: 1) expertise in 

bedside neuropathy clinical examinations, 2) medical genetics understanding for patterns 

of inheritance, and knowledge of family history; 3) accurate nerve conductions to 

segregate axonal from demyelinating forms; and 4) the assumption there is a limited 

phenotypic range with the ordered candidate genes [127]. Unfortunately current review of 

standard U.S. neuropathy evaluations would suggest these candidate gene approaches to 

be problematic for most patients as only 19.8% have been evaluated by nerve 

conductions, [117] and the ability of physicians to properly classify neuropathy types has 

been seriously questioned [120]. Additional complication is that gene mutations may 

have a wider phenotypic range than initially appreciated thereby preventing proper 

candidate gene selection. Compounding the problem is that even if a genetic cause is 

suspected the cost of even a limited number of candidate genes is typically prohibitive, 

with an average cost per gene ranging from $500-1000.   

 

3.3 NGS in Inherited Neuropathy 
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With recent advent of NGS technology, WES has emerged as an exciting new tool 

with potential to diagnose heterogeneous genetic neurological disorders [128]. Single-

family examples of next generation application in neuropathy gene identification are now 

reported including by targeted candidate exome regional analysis [129-132]. WES 

screens nearly all exons in the genome with unprecedented speed, and the cost is 

continuously decreasing. Despite the excitement of applying WES in routine neurological 

practice, a comprehensive study to establish its effectiveness in the many categories of 

inherited neuropathy has not been reported. WES has capability of screening a large 

number of genetic heterogeneities simultaneously when clinical similarities exist among 

different disorders. In this report, we investigate the utility of WES as a screening test in 

genetic diagnosis of five common inherited neuropathy categories: 1) hereditary motor 

and sensory neuropathy (HMSN); 2) distal hereditary motor neuropathy (dHMN); 3) 

hereditary sensory and autonomic neuropathy (HSAN); 3) complicated-hereditary spastic 

paraplegia (c-HSP); 4) various metabolic neuropathies.  

 

The number of causal genes for inherited neuropathies is predicted to accelerate, 

largely due to the application of WES [133]. WES can readily cover any newly 

discovered causal genes and expand our understanding of phenotype–genotype 

associations. For example, mutations in ATL1 have been largely linked with pure HSP 

and only rarely with HMSN or HSAN neuropathies [134, 135]. 
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3.4 Our WES Data to Study Inherited Neuropathy 

 

Twenty-four indexed patient samples from 15 kindred underwent WES and 

bioinformatics analysis for coverage and sequencing depth of genes responsible for 

inherited neuropathies. These kindred had earlier unsuccessful candidate gene testing and 

the five probands were initially thought to have acquired neuropathy. Five major 

classifications of inherited neuropathies (HMSN, dHMN, HSAN, complicated-HSP, and 

genetic metabolic neuropathies) were chosen for evaluation. A total of 74 known genes 

were reviewed including specific interrogation of their 5195 previously reported 

pathogenic mutations. The most commonly reported mutated genes were also specifically 

reviewed. These 74 neuropathy genes (Table 3.1) were generated based on a recent 

review [136], GeneReviews [137], Online Mendelian Inheritance in Man (OMIM) [122] 

and the Human Genome Mutation Database (HGMD) [138]. Simply extracting the 

average coverage sequencing depth may miss nucleotide-level details, so we further 

evaluated each nucleotide in the coding exons of these genes. Nucleotide bases with at 

least 1× (one-fold) coverage were considered sequenced, and those with coverage of ≥ 

10× (≥ 10-fold) were considered genotyped [139]. 
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Table 3.1: Genes studied by Neuropathy type. These neuropathy genes were generated 

based on a recent review [136], GeneReviews [137], OMIM and HGMD. (Reproduced 

with permission from BMJ Publishing Group Ltd Appendix Figure A.2) 
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For the selected 24 WES cases, we generated 12–14 billion nucleotide (Gb) of 

sequencing data per sample to achieve an average sequencing depth of 140× with high 

quality genotype calls for targeted region. 

 

3.5 WES Data Analysis  

 

In-solution exome capture was performed using SureSelect Human All Exon Kits 

V4 (51Mb) according to the manufacturer’s protocol (Agilent Technologies, Santa Clara, 

CA).  Illumina Hiseq2000 (Illumina, San Diego, CA) 101-bp paired-end read sequencing 

was performed and data was analyzed with the in-house workflow. Briefly, the sequence 

reads were aligned to the human genome build 37.1 using Novoalign (v2.07.13) [140] 

followed by re-alignment, re-calibration and variant calling using GATK (v1.2-26) [93, 

94]. The called variants were filtered using variant quality score recalibration (VQSR) 

and annotated using the latest TREAT workflow [1]. The dbSNP135 [98], 1KGenome 

[24] and EPS6400 Exome database [28] annotation were used as additional filtering tool 

on the lists of variants. 

 

3.6 Coverage Report from TREAT 

 

An output from the TREAT workflow for WES is a coverage plot of the targeted 

region, reporting the percentage of region covered at a particular depth of coverage. WES 
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like all other NGS applications has non-uniform sequence depth, requiring larger 

amounts of sequencing to better cover majority of the targeted region. I developed a 

comprehensive read coverage analysis package that uses the alignment data to evaluate a 

list of prioritized genes from DNA sequencing data. The analysis reports gene, exon and 

nucleotide level coverage of the genomic regions along with assessment of the known 

mutations for the disease being studied. Moreover, the coverage reports are provided as 

the alignment completes, before the steps of variant calling and annotation. It is useful to 

get that early access information in order to gauge the sequencing performance. This 

work was done by way of focused bioinformatics analysis to examine the efficacy of 

WES as a screening tool for the five major types of Inherited Peripheral Neuropathy. 

 

3.7 Coverage among Inherited Neuropathy Genes 

 

To further investigate the utility of exome sequencing as a screening tool for 

diverse neuropathies, we comprehensively analyzed the WES on 24 unrelated Caucasians 

for the percent and depth of coverage of causal genes and known mutations in 5 common 

classifications of inherited neuropathies (Table 3.1, Figure 3.2). Our analyses include (1) 

HMSN: 33 genes, 1342 mutations; (2) dHMN: 10 genes, 443 mutations; (3) c-HSP: 17 

genes, 1037 mutations; (4) HSAN: 13 genes, 142 mutations; and (5) select genetic 

metabolic neuropathies: 11 genes, 2331 mutations (Table 3.2). Among the metabolic 

neuropathies, we focused on those with treatment prospects [136]. 
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Figure 3.2: Coverage of coding regions for genes implicated in axonal motor 

neuropathies. It displays the sequencing depth of coverage across coding region of axonal 

neuropathy genes for a WES sample. The solid black line demarcates 10x (ten-fold) 

coverage that is sufficient for efficient genotyping, and the read-depth is plotted on a log-

scale. The results shown are from Agilent Sure Select All Exon Kit on HiSeq 2000 with 

100 base paired end sequencing. AD denotes autosomal dominant; AR, autosomal 

recessive; dHMN distal hereditary motor neuropathy; HMSN2, hereditary motor and 

sensory neuropathy type 2; WES, whole exome sequencing. (Reproduced with 

permission from BMJ Publishing Group Ltd Appendix Figure A.2) 

 

We conducted three steps of coverage analysis.  First, we checked the coverage of 

Agilent All-Exon capture kit for the Consensus Coding Sequence (CCDS) [141] exons of 

these 74 unique neuropathy genes.  The Agilent All-Exon kit is designed to capture 

almost all exon regions of entire genome, but not all the bases in the exons are captured 
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due to the difficulties in designing probes for certain regions such as repetitive elements 

and GC rich regions.  We found that >98% of CCDS exons of these 74 neuropathy genes 

are targeted by Agilent All-Exon capture kit. This means that theoretically WES should 

generate sequencing coverage data for more than 98% of exons in these 74 genes.   

 

 

Table 3.2: Coverage of neuropathy genes by clinical subtype using WES. The genes and 

mutations implicated in various clinical neuropathies were gleaned from literature 

reviews. The 5
th

 column for percent of CCDS exons with more than 10x coverage is 

assuming at-least 90% of the exon coding region at 10x or more coverage. Reproduced 

with permission from BMJ Publishing Group Ltd Appendix Figure A.2) 

 

Second, we performed analysis on actual coverage of exons in 74 neuropathy 

genes based on the sequencing data of 24 exomes.  We found that 89-97% of nucleotide 

bases of the exons are sequenced at >10X depth (Table 3.2). Based on our WES analysis 

experience, we consider 10X depth an adequate threshold of confident variant calling for 
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germ line mutation, especially when we plan to use Sanger sequencing to confirm the 

identified mutations tracking with the affected status in the kindred.   

 

Third, we investigated whether all known 5195 unique mutations in the non-

redundant list of 74 neuropathy genes were covered.  The results showed that on average, 

89% of 1342 mutations for HMSN, 94% of 443 mutations for dHMN, 97% of 1037 

mutations for complicates HSP, 90% of 142 mutations for HSAN, 91% of 2231 

mutations for metabolic neuropathy were sequenced at >10X depth. 

 

3.8 Discussions 

 

The comprehensive bioinformatics analysis revealed the diverse forms of 

inherited neuropathy: HMSN, dHMN, HSAN, c-HSP and select metabolic neuropathies 

with >98% coverage and >10× sequencing depth for 93% (range 89%–96%) of all exons 

and 5195 known mutations in 74 neuropathy genes. 

 

This analysis is a perfect use-case for demonstrating the importance of 

comprehensive coverage analysis. It highlights the importance of evaluating regions of 

low coverage from WES data that may result in suboptimal interrogation of the genes of 

interest. WES combined with Sanger sequencing fill-in of inadequately covered exons 
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may be necessary to improve a genetic test’s sensitivity to detect presence of disease 

associated mutations.  

 

Another observation is the considerable variability in coverage of genes among 

different samples, even though some regions may have consistently low coverage. This 

makes it important to run the coverage evaluation on each sample especially for the genes 

or regions of interest. The TREAT workflow [1] generates a generic coverage plot of 

targeted region, reporting percentage of region covered at a particular depth of coverage. 

The incorporation of focused coverage analysis reports on gene, exon and nucleotide 

level coverage of genomic regions along with an assessment of known mutations for the 

disease being studied. 
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Chapter 4: Fast Reporting of Clinically Relevant 

WGS Variants
3
 

 

4.1 Introduction 

 

Whole Genome Sequencing is beginning to reshape the understanding of how 

DNA variants work and influence disease risk from the perspective of personalized 

treatment. WGS has the potential to transform diagnostic testing in the very near future. 

As the cost of sequencing continues to decrease, the broader adoption of this protocol by 

clinical laboratories is expected. Sequencing platforms are being redesigned to accelerate 

the sequencing of whole genomes. For instance, the Illumina Hi-Seq 2500 platform can 

perform this task in almost a day, shifting the rate-limiting step to data processing. The 

computationally expensive step of aligning millions of short reads to the whole genome 

could be prohibitive for routine use of WGS in a clinical setting where the speed of 

analysis can impact patient outcome. Clinical applicability can be improved by 

expediting WGS variant reporting based on relevance for clinical decision-making. 

Currently, most of the clinically relevant genomics information is related to protein-

coding exome regions [38] where the impact of coding variants can be interpreted in the 

context of proteins and their function [71, 142]. This current focus opens opportunities to 

                                                 
3
 Text and figures reproduced under the terms of Creative Commons Attribution License (Appendix Figure 

A.3) 
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develop new bioinformatics algorithms that prioritize and swiftly report clinically 

relevant findings.   

 

Recently, an ultra-fast preprocessing workflow was published: ISAAC [67]. This 

workflow completes the whole genome alignment and variant calling in 7–8 hours. 

Although, ISAAC is the fastest solution currently to our knowledge, its deployment 

requires specific hardware and is, at least for now, limited to Illumina © sequencing data.   

 

We explored another approach that does not require specific hardware or software 

solution and is independent of the next generation sequencing platform used. Instead of 

expediting the whole alignment and calling process, our proposed approach prioritizes 

read alignment and variant calling in genomic regions of clinical relevance (referred to as 

the Target Reference Genome) before reporting variants in genomic regions of lower 

clinical significance. The proposed workflow operates in three steps. First, clinically 

relevant reads are selected by aligning all the sequencing data to the Target Reference 

Genome. Then, this reduced set of aligned reads is aligned to the whole reference genome 

to correct for alignment artifacts. These artifacts arise from reads forcibly aligned to the 

Target Reference Genome that align more accurately to non-targeted regions. After the 

second alignment step, reads that remain aligned on the Target Reference Genome are re-

aligned and recalibrated followed by variant calling. Variants are immediately reported to 

clinical experts for interpretation and decision support. The final step, which can be 
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deferred or executed at a slower pace, handles the remaining reads that are aligned on the 

whole reference genome.   

 

The gain of reporting speed obtained with this iterative workflow is due to the 

significantly smaller size of the Target Reference Genome compared to the whole 

reference genome. If the targeted region corresponds to the whole exome, read alignment 

in the first step would be limited to less than 2% of the reference genome. Similarly, 

assuming even coverage, only 2% of the reads will be aligned on the whole reference 

genome in the second step.   

 

Although conceptually very simple and straightforward to implement, the 

question of results accuracy remains to be addressed. In this manuscript, we compare 

results obtained by the target workflow with a generic whole genome sequencing 

workflow. In the process, we have also compared the impact on our iterative workflow of 

two aligners, BWA [89, 143] and Novoalign [140], on results accuracy. 

 

4.2 Methods 
 

4.2.1 Datasets 
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To test out approach, we selected a CEPH family trio from the 1000 Genomes 

project [24] consisting of NA12878 (Child), NA12891 (Father), and NA12892 (Mother). 

Each sample was sequenced using the Illumina Next Generation Sequencing Platform 

(HiSeq 2000) with the pair-end protocol that produced on average 397 bp long sequence 

fragments from which 100 bp were sequenced at both ends. Sequencing of these samples 

resulted in more than 2.4 billion 100 bp long reads with an average coverage of 80x 

across the entire genome. The Binary Alignment Map (BAM) files obtained for these 

samples were converted to FASTQ reads format for further analysis. The same 

individuals have been genotyped with a combination of Illumina and Affymetrix SNP 

chips for HapMap Phase III [70]. This genotype data was used to validate variants calls 

from sequencing data. 

Data Availability 

1. Sequencing data: ftp://ftp-trace.ncbi.nih.gov/1000genomes

/ftp/technical/working/20120117_ceu_trio_b37_decoy/ 

2. Genotyping data: ftp://ftp.ncbi.nlm.nih.gov/hapmap/genotypes/2010-

08_phaseIIIII/forward/ 

 

4.2.2 Target Reference Genome 

 

We selected the set of 2638 clinically relevant genes from the Clinical Genomic 

Database [144]. It should be noted a smaller set similar to clinical gene panels could have 

ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/technical/working/20120117_ceu_trio_b37_decoy/
ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/technical/working/20120117_ceu_trio_b37_decoy/
ftp://ftp.ncbi.nlm.nih.gov/hapmap/genotypes/2010-08_phaseIIIII/forward/
ftp://ftp.ncbi.nlm.nih.gov/hapmap/genotypes/2010-08_phaseIIIII/forward/
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been selected as well. The 2638 genes include 42048 unique exons in the UCSC RefFlat 

annotation. The average length of these exons is 280 bp with a standard deviation of 635 

bp. The boundary of each exon was extended by 550 bp to account for the sequencing 

protocol that produced 100bp long paired-end read from about 400 bp long sequence 

fragments. The extended sequence of each exon was extracted from the Human 

Reference Genome (Build 37) and concatenated into a single Target Reference Genome 

FASTA file. 

 

4.2.3 Standard sequence alignment and variant calling workflow 

 

As the standard whole genome alignment workflow, we used Novoalign [140] for 

initial alignment of sequence reads followed by GATK [93, 94] for re-alignment, re-

calibration and variant calling (Figure 4.1). This has been the de-facto analysis standard 

for high quality NGS data alignment and variant calling on DNA sequenced data.   

http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0086803#pone-0086803-g001


 

  60 

 

Figure 4.1: Basic components of the iterative workflow as compared to a standard NGS 

whole genome analysis. Using a smaller target reference sequence as the first step, the 

iterative workflow reduces the time to report variants on WGS data by 14-fold, taking a 

mere 5 CPU hours compared to the original time of 75 CPU hours. (Reproduced under 

the terms of Creative Commons Attribution License Appendix Figure A.3) 
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4.2.4 Iterative workflow 

 

The different steps of the iterative workflow are displayed in Figure 4.1. The first 

step filters out the reads that do not map on the Target Reference Genome while the 

second step refines the alignment of the mapped reads by aligning them on to the Human 

Reference Genome. As previously explained, this step eliminates reads that have been 

forcibly mapped on the Target Reference Genome but would have aligned more 

accurately to another location of the Human Reference Genome. Since the first alignment 

step produced a BAM file with mapped reads information, the BAM file was converted 

in FASTQ format to perform the second alignment step. 

 

We tested the iterative workflow with two aligners BWA and Novoalign. BWA is 

known to be faster than Novoalign, however, from our internal benchmark Novoalign 

produces slightly better read alignments. Since the workflow includes two alignment 

steps, we ran the workflow with different combinations of the two aligners. For any 

investigated combination of aligners, GATK was used to call variants. 

 

4.3 Results 

 

http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0086803#pone-0086803-g001
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The CEPH family FASTQ files were processed with both the standard and 

iterative workflows. The two sets of results were compared with the genotypes obtained 

from the OMNI SNP platform reported by 1000 Genomes project. No additional 

processing was done on these reported data that were used as the gold standard in this 

study. 18634 OMNI genotypes included in the Target Reference Genome were used for 

accuracy estimates. 

 

4.3.1 Results accuracy estimated from genotype calls 

 

Using the 18634 genotypes of the OMNI SNP platform as ‘truth’, we assessed the 

accuracy of genotypes called by the standard workflow and the iterative workflow (Table 

4.1). The iterative workflow results were produced with different combinations of 

aligners. Apart from one SNP on chromosome Y, all genotypes had adequate coverage. 

Results in Table 4.1 highlight that the BWA-Novoalign workflow has slightly higher 

performance accuracy than the Novoalign-Novoalign workflow. Although not necessarily 

significant, this result suggests that the accuracy difference that we have observed 

between BWA and Novoalign in the first alignment steep has little impact on the quality 

of the final results. However, since BWA is significantly faster than Novoalign, the 

BWA-Novoalign workflow completes the task more than 5 times faster than the 

Novoalign-Novoalign workflow. Based on these findings, our remaining analysis is 

limited to the results obtained with the BWA-Novoalign workflow. 

http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0086803#pone-0086803-t001
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0086803#pone-0086803-t001
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0086803#pone-0086803-t001
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Workflow 

Aligner 

used in 

step 1 

Aligner 

used in 

step 2 

Number of 

Concordant 

SNV 

Number of 

Discordant 

SNV 

% 

Concordance 

Execution 

time (hrs) 

Standard Novoalign - 18344 130 99.29 73.86 

Iterative BWA BWA 17459 947 94.88 3.09 

Iterative BWA Novoalign 18435 129 99.30 4.98 

Iterative Novoalign Novoalign 18435 129 99.30 14.09 

Iterative Novoalign BWA 18324 172 99.07 10.03 

 

Table 4.1: Concordance of SNP data with variants from standard and iterative workflow. 

The numbers were calculated for sample the HapMap NA12878, but we got similar 

results for the other two sample evaluated. (Reproduced under the terms of Creative 

Commons Attribution License Appendix Figure A.3)  

 

4.3.2 Genotyping calls missed by the standard and iterative workflows 

 

About 99.3% of the genotypes called accurately by both workflows. When 

comparing the overlap between the 0.7% miscalled genotypes (i.e. 130 with the standard 

workflow and 129 with the iterative workflow), all but one of the genotypes were 

identical. This result reinforces the very similar performance of the two workflows and 

suggests that no significant bias was introduced by the iterative approach. 
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4.3.3 Performance accuracy of iterative and standard workflows on SNV 

and INDEL 

 

We demonstrated that both the standard and iterative workflows had similar 

accuracy when compared to the OMNI SNP genotype calls. We then investigated the 

overlap between all the variants reported by the standard and the iterative workflow. 

These variants include single nucleotide variants (SNV) and insertions/deletions 

(INDEL). The large majority of the variants were called by both workflows (Table 4.2). 

We further analyzed discordant variants not called by the two workflows. Using the basic 

quality metrics of quality-by-depth (QD), strand bias and low read-depth coverage of less 

than 10 we observed that the majority of discordant variants had poor quality. For 

reference, less than 3% (236 out of 8754) of the concordant SNV had QD<5 or strand 

bias. To highlight the segregation that a basic quality metric like QD can achieve on low 

quality variant calls, Figure 4.2 highlights the poor QD for discordant variant calls. We 

reviewed the 35 (out of 118) exclusive SNV/INDEL variant calls with QD>5. Out of 

these 35 variants, 19 have a clear strand bias. Of the remaining 16, 9 have a low coverage 

depth of less than 10 reads and 6 fall in a region with multiple (> = 5) homologous 

regions in the whole genome. This leaves just one exclusive variant of good quality that 

was called by our iterative workflow but not called by the standard workflow. Thus, we 

concluded that variants exclusively called by only one of the approaches are of low 

quality. 

http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0086803#pone-0086803-t002


 

  65 

 

Workflow Variant Type NA12878 NA12891 NA12892 

Iterative SNV Shared 8754 8506 8809 

Standard SNV Shared 8754 8506 8809 

Iterative SNV Exclusive 38 34 39 

Standard SNV Exclusive 62 57 70 

Iterative INDEL Shared 975 902 905 

Standard INDEL Shared 975 902 905 

Iterative INDEL Exclusive 5 5 9 

Standard INDEL Exclusive 13 11 14 

Table 4.2: Evaluation of SNV and INDEL called by the iterative and standard workflow. 

Almost identical numbers were observed for the three samples evaluated with the 

majority of SNV and INDEL calls shared by both iterative and standard workflows. 

(Reproduced under the terms of Creative Commons Attribution License Appendix Figure 

A.3) 

 

 

Figure 4.2: Distribution of QD (Quality by Depth) scores of variants, with the variants 

shared by both workflows in green, those identified by only the standard workflow in 
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blue and those identified by only the iterative workflow in red. Y-axis is the count of 

variants and the inset shows a zoomed-in view of QD<5 region. 

 

4.3.4 Importance of the second alignment step 

 

We explore the contribution of the second alignment step to the accuracy of 

variant calling. When using our iterative workflow, 27.5% of the reads aligned from 1st 

step to the CGD genes are aligned to a different location in the 2nd step. When calling 

variants directly after the first alignment step, only 83.25% concordance is obtained with 

the SNP chip data compared to 99.3% concordance when the reads are processed by the 

second alignment step. We also observed that more than 15,000 exclusive variants are 

reported after the 1st alignment step, this number dropping to 100 after the second 

alignment step. The second alignment step in the iterative workflow is therefore critical 

for accurate variant calling. 

 

4.3.5 Reporting speed of clinically relevant variants 

 

As shown in Table 4.1, the preferred iterative workflow takes less than 5 CPU 

hours to complete the alignment on the target reference genome and calling of the 

variants. The alignment of the remaining reads and variant calling took ~71 CPU hours. 

http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0086803#pone-0086803-t001
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A total of ~76 CPU hours was therefore needed to complete the full preprocessing of the 

whole genome experiment. In comparison, it also took ~76 CPU hours for the standard 

workflow to complete. We believe that this CPU overhead is acceptable in a clinical 

setup where the fast reporting of clinical variants could have a critical impact on patient's 

fate. 

 

As a test, we extended Target Reference Genome to include all gene exons. The 

variants calls were reported in ~15 CPU hours, still an acceptable time compared to the 

76 CPU hours needed for alignment of the whole genome using standard workflow. 

  

4.4 Discussions 

 

We developed and tested an iterative whole genome sequencing workflow 

designed to rapidly report variants in target genomic locations. The approach first focuses 

on aligning all the sequence reads on the target genomic locations and then realigning this 

subset of mapped reads to the reference genome. We benchmarked the accuracy of the 

iterative workflow against genotype data used a gold standard and also compared 

reported SNV to those reported by our standard whole genome sequencing workflow. 

Our results indicate that the standard and iterative workflows performed similarly well, 

with 99.3% accurate genotypes called The overlap between any variants (SNV and 
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INDEL) called by the standard and iterative workflow is also very high (98.8%), with 

most of the non-concordant calls being of low confidence (low QD score). 

 

From this analysis, we can conclude that the iterative approach does not introduce 

significant noise or bias that would have a negative impact on the downstream calling of 

variants. With regards to time, using the Target Reference Genome, which included 2638 

genes, allowed for the reporting of variants called in these regions in less than 5 hours. 

When extending the alignment to the whole exome, results were obtained in ~76 hours. 

 

This iterative workflow can be particularly useful clinically when only a limited 

set of actionable variants need to be rapidly reported to clinicians. As compared to other 

published approaches, our iterative workflow does not require any additional investment 

in software or hardware. It is independent of the sequenced organism and the sequencing 

platform used as long as a reference genome is used to align the reads. Moreover, the 

iterative workflow can be implemented with any aligner or target reference region to 

swiftly report variants in those regions from whole genome sequencing data. This is 

relevant for applications related to regulatory regions, micro-RNA regions and potentially 

novel coding regions that may need a focused but fast evaluation. 
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Finally, the third step of the alignment, which consists of aligning the remaining 

reads, is the most time consuming. Interestingly, in our example, these reads are now 

naturally organized in independent islands covering the intergenic and intronic regions of 

the genome, facilitating the parallel processing of read realignment in these regions. 

Parallelization could be a means to significantly accelerate this final step. This option, 

however, was not investigated in this study. 
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Chapter 5: Clinical Filtering and Data 

Interpretation
4
 

 

5.1 Introduction 

 

There is growing availability of personal genomes and exomes in lieu of the 

decreasing cost and turn-around time of sequencing from Next Generation Sequencing 

(NGS) [24, 145]. Although potential for interpreting the functional consequences of 

results from sequencing data is lagging. There is great optimism and expectation that 

personal WGS/WES will benefit numerous individuals. This has led multiple institutions 

on the path to aggressively pursue application of NGS, assuming the evidence basis 

supporting this approach will evolve with experience. 

  

Exome is ~1% of the whole genome but harbors more than 85% of known disease 

causing mutations [23]. WES provides good return on investment by being less expensive 

and faster than WGS. This has led to the widespread popularity and application of WES 

for diagnostic and clinical genetics along with characterization of various Mendelian 

disorders [39]. 

  

                                                 
4
 This part of the work has been submitted for publication, the citation will be added as a supplemental file 
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Currently, few large-scale studies have comprehensively evaluated even the 

number of clinically interpretable variants from WES of an individual. There has been no 

in-depth assessment of how much or little the genetic variants from WES results correlate 

with the medical phenotype of an individual. The ClinSeq project aims to sequence 1000 

subjects in order to determine genotype-phenotype association of variants and modes of 

returning results to individual subjects [146, 147]. To date, the group has identified 12 

participants (1.2%) with gene mutation that leads to markedly increased risk of cancer. 

The next phase of this study would be to return carrier risk results to participants. A 

normal individual has been estimated to have 50–100 mutations in the heterozygous state 

that can cause a recessive Mendelian disorder as a homozygous genotype [24]. In a recent 

study, a team from Harvard Medical School utilized published recommendations of the 

National Heart, Lung, and Blood Institute (NHLBI) group [148] for the return of results 

[149]. They evaluated a representative sample of 160 disease-associated variants and 

extrapolated a conservative genome-wide estimate of 3955-12,579 variants per individual 

to be reported back. In another study, the group from Stanford [63] analyzed 12 WGS 

samples highlighting the lack of coverage in some of the 56 ACMG-reportable genes and 

large discordance of INDEL from two sequencing technologies. They curate 90 – 127 

variants per person yielding only 2 – 6 personal disease risk findings per individual. 

  

The goals of our study were to address these major clinical gaps, utilizing the 

Mayo Clinic Biobank.  WES was conducted on 89 individuals who had donated blood to 

the Biobank, a research resource that has enrolled over 40,000 Mayo Clinic patient 
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volunteers since 2009 [150]. The 89 individuals selected were deceased at the time they 

were selected for sequencing, and all had a long history of medical care at Mayo Clinic. 

There was extensive information about what medical issues they had encountered in their 

lifetime. Analysis of WES data from this cohort provides baseline information on quality, 

filtering strategies, expected number of variants and depth of coverage from sequencing 

data along with correlation of this output with medical diagnoses on an individual basis. 

 

5.2 Methods 
 

5.2.1 Sample selection criteria 

 

The Mayo Clinic Biobank resource is described in detail elsewhere [150].  

Briefly, patients at Mayo Clinic who are 18 years or older, English speaking, have mental 

capacity to consent, and are residents of the United States are eligible for the Mayo Clinic 

Biobank. Recruitment was conducted via a mailed invitation to people scheduled for an 

appointment in general internal medicine, primary care internal medicine, family 

medicine, and preventive medicine and the specialty areas of obstetrics/gynecology and 

executive health. No threshold for health or disease was required to enroll in the Biobank.   

 

The first group (group-1) of 39 Biobank participants (Table 5.1), including 24 

males and 15 females, was selected for WES based on three major criteria: a) being 

deceased; b) long period of electronic medical record (EMR) information (median 15 and 
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mean 13 years); and c) later age of death. Preference was given to those with a death 

certificate available at the time of selection to confirm cause of death. Fifty-three 

deceased subjects were available at the time of the group-1 selection. Of note, nearly all 

of the confirmed causes of death were due to diseases common in the USA (cancer, 

heart/lung disease or trauma) which is consistent with causes of death in the general 

population of this age group. Average age of this group was 77.0 years at death with a 

range from 53-93 years. 

 

As further funding became available for the project, the second group (group-2) 

of 50 Biobank participants (Table 5.1), including 27 males and 23 females, was selected 

from a total of 146 using the same criteria. In addition, we attempted to diversify the 

medical diagnoses among this group. To do this, we gave preference to individuals 

without a history of cancer, non-smokers and those with a younger age of death. This 

group had an average age of 72 years at death ranging from 28 to 93.  

 

For the entire set of 89 subjects, there were 51 males and 38 females with an 

average age at death of 74.5 years (range 28 to 93, median 78 years). 

 

88 Biobank WES samples 

74 years at death (range 28-93) 

  

51 Males 38 Females 

75 years at death 74 years at death 

32-91 years at death 28-93 years at death 

  

Group 1 Group 2 
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39 samples 50 samples 

~77 years at death ~72 years at death 

53-93 years at death 28-93 years at death 

24 Males 15 Females 27 Males 23 Females 

 

Table 5.1: Age and gender information of the 89 WES Biobank samples. The age 

information is shown by gender and also by group, as the 89 samples were sequenced in 

two groups or batches based on availability of resources and funding. 

 

5.2.2 Patient Phenotype 

 

We were interested in taking a high level view of how genotype might correlate 

with phenotype.  To obtain the phenotype, I collaborated with a medical geneticist who 

abstracted all significant medical diagnoses from the electronic medical record (EMR) at 

Mayo Clinic for each study participant. 61% (n=55) of participants have more than 15 

years of EMR while the remaining had median EMR of 12 years (inter-quantile range of 

8 to 14 years). An average of 12 diagnoses per participant (range 2-20) were entered into 

a free-text field. Diagnoses made only as part of the terminal event (low blood pressure, 

low cardiac output, low renal output, respiratory failure, etc) were not included when they 

reflected end-of-life situation that could describe most terminally ill individuals. Many, 

but not all participants had seen multiple specialists. Undoubtedly this sort of chart audit 

misses some diagnoses and clinical findings depending on the reasons for each medical 

visit, but given the routine use of the self-reported past medical illnesses and review of 

systems forms, the records were fairly comprehensive in scope. 
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5.2.3 Sample preparation and DNA exome capture 

 

The two groups of Mayo Clinic Biobank DNA samples were sequenced a year 

apart, based on resources becoming available for WES and analysis. The first group 

(n=39) was captured using Agilent’s 50 Mb SureSelect Human All Exon chip while the 

second group (n=50) was captured using Agilent’s SureSelect V4 + UTR kit. These 

enriched DNA samples were sequenced as one sample per lane on Illumina Genome 

Analyzer IIx flow cell and as three samples per lane on the Illumina HiSeq 2000, 

respectively. The sequencing was performed as 101 bp × 2 paired-end reads using TruSeq 

SBS sequencing kit version 1 and data collection version 1.1.37.0 followed by base-

calling using Illumina's RTA version 1.7.45.0.  

 

5.2.4 Bioinformatics Analysis and Annotation 

 

The data was analyzed using our in-house workflow and updated TREAT 

annotation package [1]. Briefly, the sequencing reads were quality-checked using the 

FASTQC [91] and custom tools, aligned using Novoalign [140], re-aligned and re-

calibrated using GATK [93, 94], followed by base-quality and variant-quality score 

recalibration and Single Nucleotide Variant (SNV), Insertion/Deletion (INDEL) calling 

using GATK (Figure 5.1). The variants were then annotated using SeattleSeq [97, 112], 

SIFT [99], PolyPhen [110], Variant Effect Predictor and internal annotation databases 

and reported in VCF and Excel formats. Custom parsing scripts were used to include 
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Human Gene Mutation Database (HGMD) [138] and Online Mendelian Inheritance in 

Man (OMIM) [151] annotation. The list of data sources used for variant annotation is 

provided in Table 5.2. 

 

Flow of Data

FASTQ files

Variant Reports (TREAT)

Merge Clinical notes with IDs

Sequencing Core

GenomeGPS (QC, Novoalign, GATK)

HGMD & OMIM annotation

Apply tiered filtering

OMIM OR HGMD annotated

AND 

Predicted Damaging by 
PolyPhen OR SIFT

AND

20-20-5-10 (minQ-minDepth-
minAltDepth-

maxCommonAltFreq)

One row per-sample-per-variant

Custom scripts/parsing

 

Figure 5.1: Flowchart for data analysis stages starting with sequencing to variant calling, 

filtering and annotation. The one row per-sample-per-variant was then used for medical 

phenotype evaluation 

 

Data Sources used for variant annotation 

Allele Frequency estimation 

NCBI database of Single Nucleotide Polymorphisms database, version 135 

Hapmap 2 and 3 Utah residents with Northern & Western European ancestry from CEPH 

collection 
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Hapmap 2 and 3 Youruba in Ibadan, Nigeria 

Hapmap 3 and 3 Han Chinese in Beijing, China 

1000 genomes project phase 1, European ancestry 

1000 genomes project phase 1, West African ancestry 

1001 genomes project phase 1, East Asian ancestry 

National Heart Lung Blood Institute Exome Sequencing Project 5400 European 

Americans 

National Heart Lung Blood Institute Exome Sequencing Project 5400 African Americans 

200 Danish Exomes sequenced at BGI 

Gene Annotation 

ENSEMBL Gene ID 

NCBI RefSeq 

ENTREZ Gene ID 

UCSC known gene 

Functional Effect Prediction 

Sorting Intolerant From Tolerant (SIFT) 

PolyPhen2 

SNP Effect Predictor 

Phenotype Association 

Human Gene Mutation Database (HGMD) 

Online Mendelian Inheritance in Man (OMIM) 

NHGRI Genome Wide Association Study catalog 

Catalog Of Somatic Mutations In Cancer (COSMIC) 

CLINVAR 

Leiden Open Variation Database (LOVD) 

Exome Variant Server 

ALAMUT 

Breast Cancer Information Core 

 

Table 5.2: Sources used for Variant Annotation. The collection of various resources used 

and split by the type of information queried from the annotation sources 

 

5.2.5 Concordance with Array Genotypes 

Samples in group-1 were genotyped using either the Illumina Infinium 

HumanOmni 2.5-8 plus HumanOmni 2.5-S-8  arrays (N=4) or the Illumina Infinium 

Human Omni5-Quad array (N=35), samples in group-2 were genotyped using the 

Illumina Infinium HumanOmni 2.5v1.1 array (N=50). Comprehensive quality control 

(QC) was performed in order to verify sample quality. Relationship checking analysis of 
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the SNP array data identified 4 samples from group-1 that were incorrectly pipetted twice 

on the SNP array resulting in 4 of the WES samples having no array SNPs available for 

concordance analysis. Concordance rates comparing WES variant calls to array 

genotypes were calculated for each subject including all array genotypes in the WES 

capture region. All WES variant calls with read-depth > 10 were included in the 

concordance analysis. 

 

5.2.6 Custom Variant Filtering  

 

Because clinical correlation was an eventual goal, a customized filtering strategy 

was devised for SNV that included variants only in genes that had a listed HGMD or 

OMIM phenotype. They were required to have a minimum (PHRED-scale) mapping 

quality score of 20 (probability of being accurate > 99%), a minimum depth of 20 

mapped reads and a minimum alternate (non-reference allele) read depth of 5 (Figure 

5.1). The variants with minor allele frequency of less than 10% in the 1000 genome 

[152], HapMap [153], NHLBI ESP exomes [28, 154] and 200 BGI Danish exomes [27] 

were included. In case of missense variants a deleterious in-silico prediction was required 

from either PolyPhen or SIFT. Variants common (>10%) to this dataset of 89 individuals 

were also filtered out. In HGMD, there are a variety of variants and genes that have had 

some functional work conducted but have not been associated with any disease state and 

these were removed as un-interpretable.  In addition, reported non-disease associations 

such as improved memory performance were also removed. We defined the SNV variants 

as follows: 1) Tier I SNV – nonsense, loss of stop or splice site variants; and 2) Tier II 

SNV – missense variants. 
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With respect to INDEL, only those identified in genes with HGMD or OMIM 

phenotype and a minimum alternate (INDEL-supporting) read depth of 5 reads were 

included for interpretation. INDEL were also split by potential impact as: 1) Tier I 

INDEL – frame-shift or splice site; and 2) Tier II INDEL – codon change or codon 

deletion/insertion. 

 

5.2.7 Gene Inheritance mode 

 

Prior to evaluating genotype-phenotype correlation, it was necessary to assign 

each genetic entry to the inheritance pattern generally associated with disorders due to 

alterations in that gene.  For each gene containing a variant included in the Tier 1 or Tier 

2 files a medical geneticist assigned that gene to one of 7 groups: 1) autosomal dominant 

(AD); 2) autosomal dominant or autosomal recessive (AD/AR); 3) autosomal recessive 

only (AR): 4) X-linked recessive (XLR); 5) X-linked dominant (XLD); 6) Y-linked (YL); 

and 7) GWAS association only (SNP).   For example, if the disorder was AD one might 

see a phenotype. For AR disorder with only one allele altered, no phenotype would be 

expected clinically.  If the disorder were XLR, we would not generally expect females to 

manifest a phenotype.  If the only association reported with a gene was a coding region 

GWAS hit, then we might see some tendency, but most likely not.  Assigning these genes 

to one of these 7 groups was a very inexact science: some classical autosomal dominant 

disorders have also been associated with GWAS hits for entirely different phenotypes.  In 
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general, a good faith effort was made to assign each gene into the most established 

category for that gene.   

 

5.2.8 Genotype-phenotype correlation scoring 

 

Once the inheritance pattern and the clinical phenotypes were added to the Tier 1 

and Tier 2 variants, a medical geneticist manually scored each genetic variant by 

comparing the participants’ disease phenotypes with all of the phenotypes that had been 

reported in that gene (not restricted to a specific variant).  The phenotype listings used 

were obtained from both HGMD and OMIM and were compared side by side with the 

patient disease diagnosis list.  A “Yes” score meant the participant phenotype overlapped 

in some way with one of the phenotypes reported in that gene.  A “No” meant there was 

no overlap seen. An “X” indicated inability to assess for genotype-phenotype 

correlations. For example a gene variant associated with prostate cancer found in a 

woman; or a gene resulting in abnormal sperm shape, which would not have been 

identified on typical medical visits; or variants that reduced risk for various conditions—

realistically there was no way to assess any effect.   

 

5.2.9 Coverage analysis of 56 ACMG-reportable genes 

 

Individual gene level coverage analysis was performed to evaluate efficient 

reporting of variants from the 56 genes for which clinical reporting has been 
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recommended by the ACMG (ACMG-reportable genes) [155]. This was done using 

BEDTools [156] and in-house developed scripts on the aligned BAM files from WES 

data. The per-nucleotide coverage was used to identify coding regions in ACMG-

reportable genes with less than 10x read-depth coverage. 

 

5.2.10 Variants in the 56 ACMG-reportable genes 

 

The resultant variants from our custom filtering were subset to only those found 

in any of the 56 ACMG reportable genes [155] using custom perl scripts. 

 

5.2.11 Cancer specific genes and cancer phenotypes 

 

The subset of genes known to be linked to cancer in the ACMG-reportable list of 

56 genes [155] and those now included on some of the cancer-specific NGS panels 

offered clinically (Table 5.3) were collected. The resulting 58 genes were used to select 

all Tier 1 or Tier 2 SNV and INDEL potentially disrupting the function of these genes. 

Manual curation was conducted for each variant in this list and variants were scored 

using the scale: 1=neutral/non-pathogenic, 2=likely neutral/non-pathogenic, 3=variant of 

uncertain significance; 4=likely pathogenic and 5=pathogenic.  The 89 Biobank 

participants were separated into those with cancer (excluding non-melanoma skin 

cancers) and those without cancers to compare the genetic results.  
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Gene ID 

Cancer 

NGS 

Panels 

ACMG 

reportable 

genes 

Other 

genes 

 

Gene ID 

Cancer 

NGS 

Panels 

ACMG 

reportable 

genes 

Other 

genes 

AKT1 1 0 0  PMS2 1 1 0 

APC 1 1 0  POLD1 1 0 0 

ATM 1 0 0  POLE 1 0 0 

ATR 1 0 0  PRSS1 1 0 0 

BAP1 1 0 0  PTEN 1 1 0 

BARD1 1 0 0  RAD50 1 0 0 

BMPR1A 1 0 0  RAD51 1 0 0 

BRCA1 1 1 0  RAD51C 1 0 0 

BRCA2 1 1 0  RAD51D 1 0 0 

BRIP1 1 0 0  RET 1 1 0 

CDH1 1 0 0  SDHB 1 1 0 

CDK4 1 0 0  SDHC 1 1 0 

CDKN2A 1 0 0  SDHD 1 1 0 

CHEK1 1 0 0  SMAD4 1 0 0 

CHEK2 1 0 0  STK11 1 1 0 

CTNNA1 1 0 0  TP53 1 1 0 

FAM175A 1 0 0  TP53BP1 1 0 0 

GALNT12 1 0 0  VHL 1 1 0 

GEN1 1 0 0  XRCC2 1 0 0 

GREM1 1 0 0  MEN1 0 1 0 

HOXB13 1 0 0  RB1 0 1 0 

MLH1 1 1 0  SDHARF2 0 1 0 

MRE11A 1 0 0  TSC1 0 1 0 

MSH2 1 1 0  TSC2 0 1 0 

MSH6 1 1 0  WT1 0 1 0 

MUTYH 1 1 0  NF2 0 1 0 

NBN 1 0 0  FLCN 0 0 1 

PALB2 1 0 0  BAP1 0 0 1 

PIK3CA 1 0 0  FH 0 0 1 

 

Table 5.3: List of 58 cancer related genes evaluated for the 89 WES samples. The three 

columns denote binary presence or absence of these cancer pre-disposition genes in the 

various clinical NGS gene panels, the list of 56 ACMG-reportable genes and other genes 

selected based on our experience. 
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5.3 Results 
 

5.3.1 Data Metrics 

 

An average of 270 million reads (140 – 421 million) and 116 million reads (69 – 

147 million) of sequence data were obtained for the 39-sample (group 1) and 50-sample 

(group 2), respectively (Table 5.4). The difference in throughput is due primarily to 

differences in the number of samples sequenced per lane; one sample per lane sequenced 

for group 1 compared to three samples per lane sequenced for group 2. More than 96% of 

the targeted region was covered with at least 10 reads (10x coverage) for group 2 samples 

compared to 88% for group 1 samples. Overall, the Agilent SureSelect V4+UTR capture 

kit used for the group 2 had much better capture efficiency with a greater number of all 

sequenced reads mapping to the intended capture region. This kit also provided improved 

performance by way of greater balance and uniformity in the overall coverage of the 

capture region. Due to the larger capture region in Agilent SureSelect V4+UTR, there 

were a greater number of variants (SNV and INDEL) reported for group 2 WES samples. 

However, when evaluating the final filtered lists of Tier1 and Tier2 variants, there were 

minimal differences in the number of variants from the two groups of WES samples 

(Table 5.4). 

 

We found an average of 149 (range 134-172) and 191 (range 169-215) Tier 1 

SNVs in group 1 and group 2 samples, respectively. Following our custom variant 
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filtering strategy described in the methods section, we found an average of 4 (range 0-7) 

and 4 (range 1-9) Tier 1 SNV per sample for group 1 and group 2, respectively. For Tier 

2 SNVs, we observed an average of 8751 (range 8164-9504) and 11039 (range 10650-

11387) variants per sample in group 1 and group 2, respectively that reduced to an 

average of 64 (range 44-88) and 63 (range 47-95) per sample, respectively after filtering. 

 

 Group 1 (39 samples) Group 2 (50 samples) 

 Mean Max Min Mean Max Min 

Total Reads (in millions) 270 421 141 116 147 69 

Mapped Reads (in millions) 259 405 134 115 146 68 

Mapped Reads within Targeted Region (in millions) 134 212 58 92 117 38 

% Coverage of Targeted Region at 5x 94.34 97.3 91.98 98.9 98.93 98.76 

% Coverage of Targeted Region at 10x 91.13 94.7 88.16 98.1 98.78 96.05 

% Coverage of Targeted Region at 20x 87.52 91.8 82.98 94.4 96.52 87.62 

Total SNV in the Coding Regions 42,661 49,065 38,444 64,696 68,875 61,996 

Tier1 = Stop gained/lost / Start lost / splice acceptor/donor 149 172 134 191 215 169 

Tier1 after filtering 4 7 0 4 9 1 

Tier2 = missense 8751 9504 8164 11039 11387 10650 

Tier2 after filtering 65 88 44 63 95 47 

   

Total INDELs in the Coding Regions 3,087 3,860 2,517 7,332 7,862 6,694 

Tier 1 after filtering 3 7 0 3 10 0 

Tier 2 after filtering 6 15 0 9 15 3 

       

Total Variants after filtering (Tier 1 & 2, SNV & INDEL) 78 107 56 79 119 62 
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Table 5.4: Number of reads and variants per sample from the 89 WES individuals. The 

per-sample data is separated into the two groups in which the actual sequencing was 

performed. Mean, maximum and minimum metrics are shown for each field. The Tier 1 

and Tier 2 fields are defined in the text and were selected based on the tool SNP Effect 

Predictor’s [4] effect severity as being high and medium respectively. The filtering refers 

to the custom thresholds defined in Figure 5.1 as the gene having OMIM or HGMD 

annotation, and minimum variant phred-scale quality 20 (>99% probability of being 

accurate), minimum read-depth 20, minimum non-reference allele depth 5 and maximum 

alternate frequency 0.1 (and predicted damaging by SIFT or PolyPhen in case of 

missense SNV) 

 

5.3.2 Concordance with array genotype calls 

 

Comparison of genotype calls from array chips provides a good assessment of 

sample quality. After restricting to variants in the target capture region we calculated the 

fraction of variant genotypes in the array that are also NGS called variants as well as the 

genotype concordance rate. All samples had high quality data having sample call rates > 

95%. The concordance between NGS called variants and array genotypes was indicative 

of high quality sequencing (concordance > 99% for all samples). 

 

5.3.3 Genotype-Phenotype correlation 

 

The clinical notes of the sequenced individuals and the phenotype annotations of 

genetic variants from WES data were manually evaluated. Table 5.5 shows a high level 

summary of the proportion of variants that correlated with any known phenotypic 

finding. The majority of medical diagnoses observed for these Mayo Clinic Biobank 
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individuals were common complex genetic disorders, similar to that seen in the general 

population (atherosclerotic cardiovascular disease, Type 2 Diabetes, obesity, 

degenerative joint disease, cataracts, osteoporosis, etc.), for which there is little useful 

genotypic information. Overall, 3% (N=202) of the total 7046 Tier-1 and Tier-2 

SNV/INDEL variants had a matching phenotype from clinical chart review while 53% 

(N=3710) variants did not exhibit a correlating phenotype. The remaining 44% (N=3134) 

variants were unable to be assessed for genotype-phenotype correlations.  

 

Focusing on the variants identified in genes known to have autosomal dominant 

expression (AD or AD/AR), there were 129 Tier-1 variants (73 SNVs and 56 INDELs) 

identified. Of these, 4 Tier-1 SNVs and 5 Tier-1 INDELs were in genes for which there 

was a phenotypic match (Table 5.6) On the other hand, 66 Tier-1 SNVs and 50 Tier-1 

INDELs in AD or AD/AR genes did not have an apparent phenotypic match to the 

individual’s medical record (Table 5.7). Among the 1091 Tier-2 SNVs in AD or AD/AR 

genes, we observed 42 with phenotypic matches (Table 5.8) compared with 1006 Tier-2 

SNVs with no apparent phenotype match to the individual’s medical record. 

 

Tier-1 

SNV 

# of 

variants 
Match 

No 

Match 

Cannot 

assess  
Tier-1 

INDEL 

# of 

variants 
Match 

No 

Match 

Cannot 

assess  

AD 60 3 55 2 AD 39 4 34 1 

AD/AR 13 1 11 1 AD/AR 17 1 16 0 

Digenic 2 0 2 0 Digenic 7 1 6 0 

AR 92 2 0 90 AR 84 0 0 84 

XLR 11 1 2 8 XLR 0 0 0 0 

XLD 2 0 2 0 XLD 0 0 0 0 

SNP 181 11 152 18 SNP 120 4 103 13 
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Others 13 0 0 13 Others 3 0 0 3 

Total 374 18 224 132 Total 270 10 159 101 

Tier-2 

SNV 

# of 

variants 
Match 

No 

Match 

Cannot 

assess  
Tier-2 

INDEL 

# of 

variants 
Match 

No 

Match 

Cannot 

assess  

AD 914 27 861 26 AD 212 2 179 31 

AD/AR 177 15 145 17 AD/AR 6 4 2 0 

Digenic 58 4 50 4 Digenic 0 0 0 0 

AR 2129 2 0 2127 AR 113 2 0 111 

XLR 51 0 12 39 XLR 35 0 11 24 

XLD 11 0 8 3 XLD 1 0 1 0 

SNP 2326 107 1897 322 SNP 198 11 161 26 

Others 37 0 0 37 Others 134 0 0 134 

Total 5703 155 2973 2575 Total 699 19 354 326  

 

Table 5.5: Phenotypic overlap of any type with gene containing the variant of interest.  

Tier 1 variants are most likely to be significant; Tier 2 variants contain many variants of 

uncertain clinical significance (See text for definitions). Autosomal Dominant (AD) and 

Recessive (AR), X-linked Dominant (XLD) and recessive (XLR) and GWAS associated 

Single Nucleotide Polymorphism (SNP) were compiled as separate lists 

 

Gene HGMD and OMIM descriptions Matching finding in 

Biobank participant 

SMAD3 

Aneurysms-osteoarthritis syndrome|Aortic 

aneurysms & dissections with early-onset 

osteoarthritis|Osteoarthritis|Thoracic aortic 

aneurysms & dissections;  

Loeys-Dietz syndrome, type 3 
degenerative joint 

disease, aneurysm 

MSR1 

Atherosclerosis, increased risk, association 

with|Barrett oesophagus/oesophageal 

adenocarcinoma|Chronic obstructive pulmonary 

disease, in smokers, association with|Prostate 

cancer|Prostate cancer, association with. atherosclerosis 

TULP3 

Glaucoma, primary open angle (due to copy 

number variant in this gene) glaucoma suspect 

FLG 

 

Eczema |Eczema, association with|Eczema, 

association with and Asthma, association 

with|Fissured skin on hands of patients without 

dermatitis|Genetic modifier in pachyonychia 

congenita|Hand eczema, association|Ichthyosis 

vulgaris|Peanut allergy, association 

with|Psoriasis|Psoriasis vulgaris|Psoriasis, 

eczema 
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increased risk, association 

 

Table 5.6: Four Autosomal Dominant (AD) genes or AD/AR genes with Tier 1 SNV 

variants for which there was a match (shown in bold) with phenotype in a biobank 

participant 

 

 

Gene HGMD and/or OMIM descriptions (some truncated) Frequency 

AADAC Tourette syndrome |Reduced enzyme activity 1 

ALK Neuroblastoma 1 

ANO7 Glaucoma, primary congenital 1 

ASXL1 

Bohring-Opitz syndrome|Systemic mastocytosis with associated non-mast cell 

lineage disease 
2 

BCMO1 

Hypercarotenemia and hypovitaminosis A|Altered beta-carotene metabolism, 

association with 
1 

CARD14 Psoriasis, association with|Psoriasis|Pityriasis rubra pilaris 1 

CATSPE

R2 Asthenoteratozoospermia & deafness, non-syndromic 
1 

COL8A2 Glaucoma, primary open angle|Fuchs corneal dystrophy  1 

COMP Pseudoachondroplasia|Multiple epiphyseal dysplasia|Early-onset osteoarthritis 1 

CRYBA4 Cataract and microcornea|Cataract, lamellar|Microphthalmia 1 

DPP6 Autism spectrum disorder  |Ventricular fibrillation, idiopathic  1 

EFHC1 

Myoclonic epilepsy, juvenile|Intractable epilepsy of infancy|Idiopathic epilepsy, 

generalised 
1 

FAM83H 

Amelogenesis imperfecta, hypocalcified|Amelogenesis imperfecta, hypoplastic 

local 
1 

FREM1 

Bifid nose, renal agenesis & anorectal malformations syndrome|Craniosynostosis, 

isolated metopic|Manitoba-oculo-tricho-anal syndrome  
1 

GON4L Intellectual disability   1 

HBM Thalassaemia alpha 1 

KRT83 Monilethrix 12 

MSR1 

Atherosclerosis, increased risk, association with|Barrett oesophagus/oesophageal 

adenocarcinoma|Chronic obstructive pulmonary disease, in smokers, association 

with|Prostate cancer|Prostate cancer, association with 

4 

MYBPC3 

Hypertrophic cardiomyopathy with inclusion body myositis|Increased left 

ventricular wall thickness|Left ventricle dysfunction in CAD, association 

with|Skeletal myopathy, association with|Sudden infant death syndrome  |Dilated 

cardiomyopathy|Cardiomyopathy, left-ventricular 

noncompaction|Cardiomyopathy, left ventricular 

noncompaction|Cardiomyopathy, hypertrophic/dilated|Cardiomyopathy, 

hypertrophic|Cardiomyopathy, dilated|Cardiomyopathy, association 

with|Cadiomyopathy, dilated 

4 

MYO1A Sensorineural deafness, nonsyndromic 1 

NBAS Short stature, optic atrophy & Pelger-Huet  1 
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NOL3 Cortical myoclonus 1 

OBSCN Cardiomyopathy, hypertrophic|Glioblastoma|Potential protein deficiency 1 

PITPNM

3 Cone dystrophy, autosomal dominant|Cone dystrophy  
1 

PLCB4 Auriculocondylar syndrome 1 

POLR1C Treacher-Collins syndrome 1 

PRPH Amyotrophic lateral sclerosis|High myopia  1 

RAD21 Cornelia de Lange-like syndrome 1 

RASA1 

5q14.3 neurocutaneous syndrome|Arteriovenous fistula|Arteriovenous 

malformation |Capillary malformation-arteriovenous malformation|Capillary 

malformations|Sturge-Weber syndrome 

1 

RNASEL 

Ribonuclease L deficiency, association with|Ribonuclease L deficiency|Prostate, 

cancer, protection against, association with|Prostate cancer, association with 

|Prostate cancer  

1 

RP1L1 Macular dystrophy, occult|Potential protein deficiency 1 

SLC6A2 

Reduced gene expression|Orthostatic intolerance and tachycardia|Major 

depression|Decreased transport activity|Attention-deficit hyperactivity disorder, 

association with 

1 

TBC1D4 Insulin resistance   1 

TRPA1 Episodic pain syndrome|Paradoxical heat sensation, association with  1 

TRPM2 Amyotrophic lateral sclerosis and parkinson disease 1 

TTF2 Autism 1 

TTN 

Tibial muscular dystrophy|Potential protein deficiency|Myopathy with early 

respiratory failure|Myopathy with cellular aggregates|Myopathy|Muscular 

dystrophy  |Cardiomyopathy, hypertrophic|Cardiomyopathy, 

dilated|Arrhythmogenic right ventricular cardiomyopathy 

1 

AADAC Tourette syndrome |Reduced enzyme activity 1 

ALK Neuroblastoma 1 

FLG 

Eczema |Eczema, association with|Eczema, association with and Asthma, 

association with|Fissured skin on hands of patients without dermatitis|Genetic 

modifier in pachyonychia congenita|Hand eczema, association|Ichthyosis 

vulgaris|Peanut allergy, association with|Psoriasis|Psoriasis vulgaris|Psoriasis, 

increased risk, association … 

4 

SH3TC2 

Charcot-Marie-Tooth disease 1|Charcot-Marie-Tooth disease 4C|Hereditary motor 

& sensory neuropathy 
1 

VWF 

Von Willebrand disease 2n/1|Von Willebrand disease 2n|Von Willebrand disease 

2m  |Von Willebrand disease 2c|Von Willebrand disease 2b-like|Von Willebrand 

disease 2b|Von Willebrand disease 2u|Von Willebrand disease 3 |Von Willebrand 

disease, association with|Von Willebrand disease, quantitative type, association 

with|Von Willebrand, … 

1 

SEMA3E CHARGE syndrome 1 

APOB 

Hypobetalipoproteinaemia|Hypobetalipoproteinemia-induced nonalcoholic 

steatohepatitis|Hypocholesterolaemia |Hypocholesterolaemia, association 

with|Increased apoB and cholesterol levels, association with|Increased cholesterol 

levels|Ischaemic stroke, association with |Oligoasthenoteratozoospermia, 

association with|Hypertriglyceridaemia |Hypercholesterolaemia |Altered APOB 

1 
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levels |Aortic stenosis, association with|Apolipoprotein B deficiency|Coronary 

artery disease, association with|Coronary heart disease|Coronary heart disease, 

association with|HDL cholesterol, association with |Hepatitis C virus infection, 

association with 

DOCK8 

Mental retardation|Immunodeficiency, combined|Hyper-IgE syndrome, autosomal 

recessive 
1 

BRCA2 

Ovarian / peritoneal carcinoma|Oesophageal squamous cell 

carcinoma|Oesophageal carcinoma  |Oesophageal cancer, association with|Ocular 

melanoma|Medulloblastoma |Male BC risk|Lung cancer  |Lunc cancer|Liver 

cancer|Ovarian cancer|Ovarian carcinoma|Ovarian insufficiency, primary 

|Reactive lymphoid hyperplasia |Prostate cancer, high-grade|Prostate cancer 

|Promyelocytic leukemia |Potential protein deficiency|Poorer survival in prostate 

cancer patients|Peritoneal carcinoma|Pancreatic cancer |… 

1 

LDLR 

Stroke, increased risk, association with|Reduced plasma LDL cholesterol, 

association with|Increased plasma LDL 

cholesterol|Hypercholesterolaemia|Coronary artery disease, increased risk in low 

BMI individuals|Coronary artery disease, association with|Altered transcription 

1 

EDN3 

Waardenburg-Hirschsprung disease|Waardenburg syndrome 4B|Waardenburg 

syndrome 4|Shah-Waardenburg syndrome|Phenotype modification in 

HSCR|Hirschsprung disease|Central hypoventilation syndrome 

1 

 

Table 5.7: AD genes or AD/AR genes that are either dominant or recessive, with Tier 1 

SNV variants for which there was a NO match with phenotype (n=55 examples) 

 

 

 

Gene HGMD and OMIM descriptions (some truncated) Matching 

phenotype 

ACTN4 Glomerulosclerosis, focal and segmental 

Maybe: 

chronic 

renal failure 

ASB10 Glaucoma, primary open angle  glaucoma 

BFSP2 

Cataract, progressive, juvenile onset|Cataract, Y-suture|Congenital 

cataract|Diffuse cortical cataract with scattered lens opacities cataracts 

BRCA1 

Breast-ovarian cancer, familial ; Papillary thyroid cancer, reduced 

risk|Pancreatic cancer   |Pancreatic adenocarcinoma|Ovarian carcinoma|Ovarian 

cancer, association with|Ovarian cancer|Ovarian / peritoneal carcinoma|Neuronal 

migration defect|Mean number of breaks per cell, association with|Peritoneal 

carcinoma|…  Breast ca 

CORIN Hypertension, association with|Impaired brain natriuretic peptide processing high BP 

CRYBA4 Cataract and microcornea|Cataract, lamellar|Microphthalmia cataracts 

DIRC2 Renal cancer renal ca 

ENPP1 

Myelopathy (OPLL)|Myelopathy (OPLL), association with|Obesity & type 2 

diabetes, association with|Obesity in metabolic syndrome, association 

with|Obesity, association with|Pseudoxanthoma elasticum|Rickets, 

hypophosphataemic|Rickets, hypophosphataemic & OPLL|Rickets, 

metabolic 

syndrome 
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hypophosphataemic, autosomal recessive|Major cardiovascular events in high 

risk individuals|Liver damage in NAFLD|Decreased kidney function|Diabetes, 

association with |Diabetic nephropathy, increased risk, association 

with|Generalized arterial calcification of infancy|Generalized arterial 

calcification of infancy and pseudoxanthoma elasticum|Hypertriglyceridaemia in 

males, association with|Hypertriglyceridemia in males, association 

with|Idiopathic infantile arterial calcification|Insulin resistance, association with 

EPHA2 Cataracts; posterior polar, 1, 116600 (3); Cataract, age-related cataracts 

EPHA2 Cataracts; posterior polar, 1, 116600 (3); Cataract, age-related cataracts  

EPHA2 Cataracts; posterior polar, 1, 116600 (3); Cataract, age-related cataracts 

EPHA2 Cataracts; posterior polar, 1, 116600 (3); Cataract, age-related cataracts 

ESPN 

Hearing loss, non-syndromic|Hearing loss, autosomal dominant|Deafness and 

vestibular areflexia SNHL 

FLNC 

Arrhythmia & myofibrillar myopathy, late-onset|Distal myopathy|Myopathy, 

myofibrillar arrhythmias 

FN1 Glomerulopathy with fibronectin deposits|Autism 

maybe 

microhemat

uria 

FN1 Glomerulopathy with fibronectin deposits|Autism 

maybe 

microhemat

uria 

KCNE2 

Cardiac arrhythmia|Long QT interval, drug induced, association with|Long QT 

syndrome|QTc interval, association with 

maybe 

LBBB/Vtac

h 

LIPI 

Hypertriglyceridaemia|Plasma HDL cholesterol|Plasma HDL cholesterol, 

association with high lipids 

LIPI 

Hypertriglyceridaemia|Plasma HDL cholesterol|Plasma HDL cholesterol, 

association with  high lipids 

LIPI 

Hypertriglyceridaemia|Plasma HDL cholesterol|Plasma HDL cholesterol, 

association with high lipids 

MED13L 

Autism|Colorectal cancer, increased risk, association with |Congenital heart 

defect|Intellectual disability, nonsyndromic, no cardiac involvement rectal ca 

MET 

Papillary renal carcinoma|Lymphoedema |Gastric cancer|Diffuse large B-cell 

lymphoma |Colorectal cancer  |Autism, association with 

kidney 

cancer but 

not papillary 

type 

MLH3 

Oesophageal cancer |Endometrial cancer|Colorectal cancer, non-

polyposis|Colorectal cancer, increased risk colon ca 

MSH3 

Radiosensitivity in breast cancer patients, association with|Proximal colon 

cancer, increased risk, association with|Colorectal cancer, increased risk, 

association with|Colorectal cancer |Colon cancer, association with|Colon cancer 

; Endometrial carcinoma colon ca 

MYH6 

Sick sinus syndrome, increased risk, association with|Congenital heart 

defects|Cardiomyopathy, hypertrophic|Cardiomyopathy, dilated |Atrial septal 

defect 

maybe 

LBBB/Vtac

h 

MYH6 Sick sinus syndrome, increased risk, association with|Congenital heart sick sinus 
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defects|Cardiomyopathy, hypertrophic|Cardiomyopathy, dilated |Atrial septal 

defect 
syndrome 

MYPN 

Cardiomyopathy, dilated|Cardiomyopathy, dilated / 

hypertrophic|Cardiomyopathy, hypertrophic|Cardiomyopathy, restrictive 

possible 

hypertrophi

c 

cardiomyop

athy 

NEURO

D1 

Diabetes, type 2, early-onset |Diabetes, permanent neonatal|Diabetes, 

MODY|Diabetes mellitus, type 2, association with|Diabetes mellitus, type 

2|Diabetes mellitus, type 1, association with  DM2 

PTCH1 

Multiple basal cell carcinoma |Nevoid basal cell carcinoma 

syndrome|Odontogenic keratocysts|Short stature, intellectual disability & facial 

dysmorphism|Skin cancer, association with|Microcephaly and developmental 

delay  |Keratocystic odontogenic tumours, non-syndromic|Basal cell 

carcinoma|Gorlin syndrome  |Gorlin syndrome and autism|Gorlin-syndrome-

related odontogenic keratocysts|Holoprosencephaly 

nonmelano

ma skin ca 

RUNX1 

Thrombocytopaenia |Thrombocytopaenia and acute myeloid 

leukaemia|Thrombocytopaenia, association with|Thrombocytopaenia, non-

syndromic with myelodysplasia|Rheumatoid arthritis, susceptibility, 

association|Platelet disorder, familial & myeloid leukaemia|Platelet disorder, 

familial|Mental retardation, short stature & thrombocytopaenia|Leukaemia, 

chronic myelomonocytic|Developmental delay, congenital anomalies & 

thrombocytopenia|Acute myeloid leukaemia, myelodysplastic syndrome-related 

yes 

myelodyspl

asia 

SERPIN

D1 Heparin cofactor 2 deficiency 

maybe- 

thombophili

a but in 

context of 

pancreatic 

cancer 

TTN 

Tibial muscular dystrophy|Potential protein deficiency|Myopathy with early 

respiratory failure|Myopathy with cellular aggregates|Myopathy|Muscular 

dystrophy  |Cardiomyopathy, hypertrophic|Cardiomyopathy, 

dilated|Arrhythmogenic right ventricular cardiomyopathy 

 possible 

hypertrophi

c 

cardiomyop

athy 

TTN 

Tibial muscular dystrophy|Potential protein deficiency|Myopathy with early 

respiratory failure|Myopathy with cellular aggregates|Myopathy|Muscular 

dystrophy  |Cardiomyopathy, hypertrophic|Cardiomyopathy, 

dilated|Arrhythmogenic right ventricular cardiomyopathy 

possible 

hypertrophi

c 

cardiomyop

athy 

AMPD1 

Adenosine monophosphate deaminase deficiency|Features of metabolic 

syndrome in coronary artery disease, association with 

metabolic 

syndrome 

BRCA2 

Breast-ovarian cancer, familial; Fanconi anemia; prostate and pancreatic 

cancer…   prostate ca 

BRCA2 

Breast-ovarian cancer, familial; Fanconi anemia; prostate  and pancreatic 

cancer…   

pancreatic 

ca 
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BRCA2 

Breast-ovarian cancer, familial; Fanconi anemia; prostate  and pancreatic 

cancer…   breast ca 

BRCA2 

Breast-ovarian cancer, familial; Fanconi anemia; prostate  and pancreatic 

cancer…   breast ca 

CFH 

Membranoproliferative glomerulonephritis|Macular degeneration, exudative age-

related, association with|Macular degeneration, age-related, association 

with|Lung cancer, increased risk|Kidney function, association with|Inflammation, 

visual impairment, and cardiovascular mortality, association with|IgA 

nephropathy |Hemolysis, elevated liver enzymes & low platelet 

count|Haemolytic uraemic syndrome, atypical|Membranoproliferative 

glomerulonephritis, association|Membranoproliferative glomerulonephritis, 

association with|Meningococcal disease, lower risk, association with|Thrombotic 

microangiopathy following transplantation|Thrombotic microangiopathy 

following kidney transplantation|Stargardt disease … 

macular 

degeneratio

n 

FLG 

Eczema |Eczema, association with|Eczema, association with and Asthma, 

association with|Fissured skin on hands of patients without dermatitis|Genetic 

modifier in pachyonychia congenita|Hand eczema, association|Ichthyosis 

vulgaris|Peanut allergy, association with|Psoriasis|Psoriasis vulgaris|Psoriasis, 

increased risk, association with|Autism|Atopic eczema |Allergen sensitization, 

association with|Atopic asthma  |Atopic asthma and dermatitis, asssociation 

with|Atopic asthma, association with|Atopic dermatitis  |Atopic dermatitis / 

eczema herpeticum|Atopic dermatitis & asthma, increased risk, association 

with|Atopic dermatitis and asthma|Atopic dermatitis, increased risk, association 

with|Atopic dermatitis, reduced risk, association with|Atopic disease, association 

with eczema 

LRP6 

Fragility fractures, increased risk, association with|Crohn's disease, early-onset 

ileal, association with|Coronary artery disease, early|Carotid artery 

atherosclerosis in hypertension, incr risk, association|Alzheimer disease, late 

onset, association with  

extensive 

peripheral 

vascular 

disease 

MC1R 

Vitiligo protection|UV-induced skin damage, vulnerability to|Red hair, increased 

risk|Photoaging, association with|Melanoma, in CDKN2A mutation carriers, 

association with|Melanoma, association with|Melanoma |Increasing size of 

congenital melanocytic nevi, association with|Impaired activity|Basal cell 

carcinoma|Depression, association with|Ephelides, increased risk, association 

with|Fair hair, association with|Functional melanin, lower levels, association 

with|Glucocorticoid deficiency without pigmentation 

Melanoma 

x2 

NBN 

Hepatic cancer, association with.|Lung cancer, association with |Lung cancer, 

increased risk, association with|Medulloblastoma|Melanoma|Nasopharyngeal 

carcinoma, increased risk, association with|NBS severity|Nijmegen breakage 

syndrome|Nijmegen breakage syndrome with macrocephaly, schizencephaly and 

large CSF spaces.|Ovarian carcinoma|Solid tumours|Gastrointestinal cancer, 

association with|Ganglioglioma|Acute lymphoblastic leukaemia|Acute 

lymphoblastic leukaemia, association with|Acute lymphoblastic leukaemia, 

increased risk|Aplastic anaemia|Bladder cancer in smokers / meta-analysis, 

association with|Breast cancer|Breast cancer, increased risk, association with 

|Breast cancer, reduced risk|Cancer, increased risk, association with |Colorectal 

cancer|Fertility defects[prostate not listed but is in literature] prostate ca 

PPARG Insulin resistance, diabetes and hypertension|Insulin sensitivity in DM2 
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normoglycaemia and type 2 diabetes, association|Maternal obesity, association 

with|Obesity|Obesity, association with|Obstructive sleep apnea, association 

with|Partial lipodystrophy|Periodontitis, association with|Plasma resistin levels, 

association with|Polycystic ovary syndrome modifier|Reduced serum HDL-C 

levels,  association with|Ulcerative colitis, association with |Insulin resistance in 

type 2 diabetes, association with|Insulin resistance|Increased plasma leptin levels 

in obesity, association… 

RP1 

Hypertriglyceridaemia, association with|Potential protein deficiency|Retinitis 

pigmentosa|Retinitis pigmentosa, autosomal recessive high lipids 

RP1 

Hypertriglyceridaemia, association with|Potential protein deficiency|Retinitis 

pigmentosa|Retinitis pigmentosa, autosomal recessive high lipids 

RP1 

Hypertriglyceridaemia, association with|Potential protein deficiency|Retinitis 

pigmentosa|Retinitis pigmentosa, autosomal recessive 

hyperlipide

mia 

SERPIN

C1 

Myocardial infarction, inceased risk, association with|Deep vein thrombosis  

|Antithrombin deficiency, type 1|Antithrombin deficiency & 

brachydactyly|Antithrombin deficiency|Altered promoter activity 

Maybe: 

retinal vein 

occlusion 

SERPIN

C1 

Myocardial infarction, inceased risk, association with|Deep vein thrombosis  

|Antithrombin deficiency, type 1|Antithrombin deficiency & 

brachydactyly|Antithrombin deficiency|Altered promoter activity 

Maybe:  

retinal vein 

occlusion 

 

Table 5.8: Number of autosomal dominant genes or dominant/recessive genes with Tier 

2 SNV for which there was a match (shown in bold) with phenotype in a biobank 

participant.  A total of 1091 variants of this type were noted and this was the subset with 

any phenotypic overlap or match. The other 834 are not shown 

 

 

Viewing the genotype-phenotype correlation from the other perspective, we 

assessed the phenotypes available from chart review that match the genotype from WES 

analysis. 16 of the 89 participants had none of their phenotypes potentially explained by 

the filtered WES genotypes. For the remaining 73 participants, 146 (23%) phenotype 

matches (average 2 per person, range 1-7 matches) were observed from a total of 636 

phenotypes. A maximum of 7 phenotypic matches were observed in an individual with 8 

phenotypes obtained from chart review. The genotypes contributing to phenotype 

matches were all Tier-2 SNVs in genes with AD or AD/AR inheritance or GWAS SNP 

candidates. 
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5.3.4 ACMG-reportable Gene Coverage Analysis 

 

For the purposes of this study, coverage of 10 reads mapped at a nucleotide 

position was considered sufficient for high quality variant calling. Utilizing these 

minimal criteria, we wanted to examine the extent of gene coverage for a typical set of 

clinically actionable genes.  Using the 56 ACMG-reportable [157] gene list, we found on 

average 9 (range 4-17) of the 56 ACMG genes with poor coverage, having less than 90% 

of the coding region covered with more than 10 reads in a WES sample (Figure 5.2). 

Coverage of three genes (PMS2, SDHC and SDHD) deteriorated in the WES samples 

from the second group that utilized the newer Agilent SureSelect V4+UTR capture kit 

compared to the first group that used Agilent SureSelect 50Mb capture kit (Figure 5.3). 

 

 

Figure 5.2: Lack of sequencing coverage of the coding region for 56 ACMG-reportable 

genes in the 89 WES samples. Y-axis represents percentage of coding region with less 

than 10x (ten-fold) coverage. 
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Figure 5.3: Average Gene coding-region coverage by capture-kit (Red is group 1 and 

blue is group 2) in the 56 ACMG-reportable genes. Y-axis represents percentage of 

coding region with less than 10x (ten-fold) coverage. 

 

5.3.5 Clinically Significant Variants in ACMG-reportable Gene  

 

We found an average of 1.8 OMIM/HGMD annotated Tier1 or Tier2 filtered 

variants (range 0-6, median 2) per sample among the list of 56 ACMG-reportable genes. 

15 samples had no variants. The 161 variants (13 Tier 1 and 148 Tier 2) found in 74 of 

biobank samples affect 27 of the 56 ACMG reportable genes. The 8 Tier 1 SNV are from 

5 genes (APOB, BRCA2, LDLR, MYBPC3, SMAD3) and are comprised of 7 stop-gain and 

1 splice variant from 7 samples. The 5 Tier 1 INDEL (in 5 samples) are all frame-shift 

from 4 genes (BRCA2, DSC2, PCSK9, DSP).  The BRCA2 variants were both found in 

males, and one was a stop-gain mutation one a frame-shift INDEL. All these variants 
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were reported as heterozygous and no confirmatory testing was conducted on any of 

these variants.  

 

5.3.6 Evaluation of variants in Cancer Predisposition Genes 

 

We also examined the frequency of variants among 58 cancer genes, as defined in 

the methods section.  For this group, a total of 115 genetic Tier 1 or Tier 2 variants were 

found.  The distribution of these variants by cancer history and gender is shown in Figure 

5.4 and Table 5.9. There were approximately 1.3 (range 0-3) variants per subject with 

cancer and about 1.1 (range 0-4) variants in subjects without cancer.  Even separating by 

gender, there is not a significant difference in the average number of variants found per 

person. However, after manual curation of pathogenicity scores using International 

Agency for Research in Cancer (IARC) guidelines [158, 159], there are 3 variants in the 

subjects with cancer with a score of 4 (likely pathogenic) compared to none in the 

subjects without cancer. These 3 variants, all reported as heterozygous, are a missense 

SNV in BRIP1 gene and frame-shift mutations in ATR and BRCA2 genes. 
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Figure 5.4: Distribution of Tier 1 / Tier 2 variants by cancer history and gender for the 

cancer predisposition genes is illustrated. The lists of cancer genes exclusively affected in 

individuals who had cancer in their lifetime, those who did not and the common ones are 

depicted by the Venn diagram accompanied with actual gene ID. The pathogenicity 

scores were assigned using International Agency for Research in Cancer (IARC) 

guidelines which assigns 1 for benign and 5 for pathogenic variants 

 

 89 Biobank Samples 

 Cancer diagnosed No cancer diagnosed 

# of samples 39 50 

Total Variants 58 57 

Mean, Range 1.3, 0-3 1.1, 0-4 

SNV 54 57 

INDEL 4 0 

Cancer Genes 24 20 

 Male Female Male Female 
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# of samples 26 13 25 25 

Total Variants 41 17 31 26 

Mean, Range 1.6, 0-3 1.3, 0-3 1.2, 0-4 1, 0-3 

SNV 39 15 31 26 

INDEL 2 2 0 0 

Cancer Genes 20 10 19 13 

Lists of Cancer 

Genes 

APC ATM APC APC 

ATM ATR ATM ATM 

BRCA1 BARD1 ATR ATR 

BRCA2 BMPR1A BRCA1 BARD1 

BRIP1 BRCA1 BRCA2 BRCA1 

CDKN2A BRCA2 CDH1 BRCA2 

FAM175A MUTYH CDKN2A GALNT12 

FLCN PALB2 CHEK2 MRE11A 

GALNT12 TP53BP1 GALNT12 NBN 

MSH6 TSC1 MRE11A PALB2 

MUTYH  MUTYH PRSS1 

NBN  NBN RAD50 

PALB2  PALB2 TSC2 

POLE  POLE  

PRSS1  PRSS1  

RAD50  RAD50  

RAD51C  RAD51C  

SMAD4  TP53BP1  

TP53BP1  TSC2  

TSC2    

 

Table 5.9: Distribution of 89 WES samples by cancer diagnosis and gender. Also 

included are metrics on Tier 1 / Tier 2 SNV & INDEL along with the list of cancer 

predisposition genes found in the groups 

 

5.4 Discussions 
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This first of its kind study evaluated the WES findings of potentially significant 

coding region DNA variants in genes of reported significance in 89 individuals who had 

lived out their entire lifespan and whose medical records were available for correlation.  

The majority of their medical diagnoses, which were those of the general population, 

(atherosclerotic cardiovascular disease, Type 2 Diabetes, obesity, degenerative joint 

disease, cataracts, osteoporosis, etc) were not accounted for by highly penetrant 

Mendelian gene variants, which is not unexpected. The contribution of WES in providing 

information that allows people to be proactive for these multi-factorial disorders is likely 

to be minimal.  Of more interest to this study was the degree to which mutations in genes 

of more Mendelian/single gene disorders did or did not correlate with medical events in 

these individuals’ lifetimes. 

 

We tried to select a set of samples from the Mayo Clinic Biobank to moderately 

represent the general population. Overall, for the entire set of 89 subjects, there were 51 

males and 38 females with an average age at death of 74.47 years (range 28 to 93, median 

78 years). In comparison, the average age of death in US is 79 years, while it is 80.9 

years in the state of Minnesota and 82.4 years in the Olmsted County [160] where 

Rochester, MN is located. The lower average age of death in our 89 subjects is primarily 

due to the selection of cases with younger age at death. 

 

Although different exome enrichment capture kits and different sequencing 

throughput per sample were used for the two groups of WES samples, the final numbers 



 

  101 

of filtered variants were comparable. This is due to the much better capture efficiency of 

the newer capture kit used for group 2 generating enough sequencing coverage using one-

third of a sequencing lane per sample. Overall, our WES dataset of 89 samples generated 

about 79 (range 56-119) filtered variants per individual (Table 5.4). This number is lower 

than the results from a recent work on clinical interpretation and implication of WGS data 

that estimates a median of 108 (range 90-127) variants identified for curation per person 

[63]. These were extracted from the close to 3 million variants identified for each of the 

12 WGS samples using the Sequence to Medical Phenotypes identification software 

developed by their group. Upon manual curation, median of 5 (range 2-6) reportable 

variants with personal inherited disease risk were identified.  

 

The slightly lower number of variant from WES data compared to the WGS study 

could be due to differences in sequencing coverage, along with stringency of filtering 

methods used. The 12 sample WGS dataset [63] was too small to use an internal common 

variant filtering and remove bioinformatics analyses biases, which was performed for our 

WES data. This step of filtering variants that were seen in 10% or more of the 89 WES 

samples removed more than 30% of the called variants in all categories. This highlights 

the need for a dynamic local repository of variants identified from sequencing to filter the 

commonly reported ones as likely artifacts of the bioinformatics processing. 

 

In the Tier 1 SNV (stop codon-gain/loss, start codon-loss or splice altering), 4 

genes were found to contain variants for which there was a phenotypic match (Table 
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5.6). The SMAD3 variant is intriguing: it is novel, and while the affected individual did 

not have a Loeys-Dietz phenotype, he did have a small abdominal aortic aneurysm, 

degenerative joint disease in his 60s.  In addition he had idiopathic pulmonary fibrosis, 

which has not been associated with SMAD3 in humans.  However, animal studies have 

suggested a role for fibrosing disorders in mice [161, 162]. Had this variant been 

discovered during life, it would have been concerning but defining optimal clinical 

management would have been challenging.   

 

Of the other three variants with overlap between gene and patient phenotype, the 

FLG1 mutation (Table 5.6) likely contributes significantly to this person’s eczema, but 

this knowledge is not particularly beneficial. Regarding the genes associated with 

atherosclerosis and glaucoma it is unlikely that these gene variants were the major 

contributors to these common and complex phenotypes and prior knowledge of these 

variants would not likely have led to medical interventions.  Table 5.8 looks at the Tier 2 

SNV phenotypic (missense predicted damaging) correlations and a longer list of matches 

shows up. However, the reader will quickly conclude that most of these are multifactorial 

disorders and the match called out is unlikely to be direct cause and effect.  Two 

exceptions to this may the RUNX1 mutation in a person with myelodysplastic disorder 

and the MC1R mutation in an individual with 2 melanomas.  

 

Table 5.7 looks at the other side of the coin: the DNA variants with Tier 1 SNV 

for which no phenotypic match was apparent.  Even if some of these genes are not well 
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established as disease causative or reported to have more associations/low penetrance 

than typical Mendelian, it is still notable that the list of genes with no evident phenotype 

is 10 times longer than the list of genes with phenotypic matches. A clinician undertaking 

testing of an individual would not know which of the Tier 1 SNV might actually be of 

relevance to this person and which would not.   

 

The majority of these variants would be classified as VUS, not as truly pathogenic 

using guidelines proposed by the ACMG at the 2013 NSGC meeting, in which in-silico 

analysis was deemed insufficient alone to distinguish pathogenic from non-pathogenic 

variants.  We observed a stark contrast between the number of variants of different types 

discovered and the low number of times for which a phenotypic match, even very 

leniently defined, could be found (Table 5.5).  In this dataset there were thousands of 

variants that have been reported before or are novel, in OMIM/HGMD genes, that in-

silico analysis defines as likely damaging but the evidence for that effect in the lives of 

these individuals was absent in the vast majority of instances. 

 

Because the presence or absence of a cancer diagnosis is more straightforward to 

categorize from a chart review than many sorts of medical disorders (e.g., limited ability 

to determine if diagnoses like cardiomyopathy or renal failure are primary or secondary 

on most chart reviews), a deeper genotype-phenotype evaluation of known Mendelian 

cancer predisposition genes was conducted.  There were approximately 1.3 (range 0-3) 

variants per individual with cancer and about 1.1 (range 0-4) variants in individuals 
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without cancer.  Even separating by gender, there is not a significant difference in the 

average number of variants found per individual. However, after manual curation of 

pathogenicity scores, there are 3 variants in the subjects with cancer with a score of 4 

(likely pathogenic) compared to none in the individuals without cancer.  Presently our 

ability to determine which DNA variants are pathogenic and which are benign is a major 

limiting factor in tapping into the clinical utility of WES.  This sub-analysis of cancer 

genes does suggest that a subset of the genetic variants might be contributing to disease, 

but that most missense variants, which were present in equal numbers in those with and 

without cancer diagnoses, are not creating apparent risk.   

 

A technical limitation to sensitive genetic variation assessment is the missing 

coverage of important genes. An average of 9 (17%), with a range 4-17 (7% - 30%) out 

of the 56 ACMG-reportable genes had sub-optimal coverage per individual for efficient 

variant calling in our WES data. These numbers are of poorer quality compared to 9-17% 

ACMG-reportable genes with low coverage identified in the recent WGS study [63]. 

There are several possibilities for this finding, including variable exome capture 

efficiency in the library preparation and the usage of multiply-mapped reads during the 

initial bioinformatics analysis. A sequence read aligning to multiple locations on the 

genome is commonly mapped randomly to one of those locations, discarded or mapped to 

a location with a probability based on general read coverage of the region. This is unclear 

for the WGS study [63] whereas we discarded multiply-mapped reads from our WES 

data analysis. The large variation in coding region coverage for some genes is due to the 
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different exome enrichment capture kits used in our two groups. Three genes in particular 

(PMS2, SDHC and SDHD) had different capture probe design in the Agilent V4+UTR 

exome kit in order to avoid the homologous pseudo-gene regions, thus yielding much 

lower overall coverage (Figure 5.3). 

 

Notable challenges of this analytic approach include personnel time needed for 

manual literature review, the subjective nature of bioinformatics filtering thresholds, 

ambiguity of assigning gene inheritance mode and uncertainty about variant 

pathogenicity classification. Though not timed, we would agree with recent reports that 

expert review of each variant to score for pathogenicity could take around an hour per 

variant [63]. Despite stringent bioinformatics filtering there are a large number of 

variants, especially missense, requiring classification. Working groups of experts in 

genomic research, analysis and clinical diagnostic sequencing are collaboratively looking 

for recommendations and guidelines for investigating genetic variants’ causality in 

human disease [163] and databases of curated variants are needed  even more urgently 

than ever as WES/WGS launches. 

 

Our study is limited to SNV and small INDEL identified from WES data. 

Compared to WGS, WES is not optimal for detecting Copy Number Variation (CNV) 

and large structural variants and most of the available tools suffer from limited power to 

detect CNVs [164]. Our project involved a single medical geneticist expert evaluating the 

gene inheritance and pathogenicity classification as opposed to a group of experts 
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engaged in other studies [63, 165]. The EMR at Mayo Clinic may have omitted some 

important diagnoses as patients may have received care elsewhere and not recorded 

significant findings on their intake forms.   The bioinformatics tools used are not 

clinically validated and arbitrary quality and read-depth thresholds were used for data 

filtering. The data we analyzed are from self-reported Caucasian individuals and some of 

the challenges are further aggravated in studying individuals from other populations. 

Lastly, our filtering had a heavy reliance on HGMD and OMIM for gene filtering and 

pathogenic mutation identification. 

 

This study provides new information and begins to quantitate the limited 

correlation between DNA variants and clinical manifestations on an individual basis, and 

as such, provides a cautionary note regarding the current predictive value of most DNA 

variants in the setting of a non-disease selected population. There were many technical 

challenges that likely affected the results, such as incomplete sequencing coverage, 

inability to provide clinical interpretation to most DNA variants, diagnoses missing from 

the EMR, but these alone are unlikely to account for the gap between variants found and 

absent medical diagnoses. Scores of genes whose functions remain unknown or under-

appreciated were excluded from this study. A large number of the variants assigned in 

silico as pathogenic may be neutral. To develop a disorder, multiple genes may need to 

be involved—single gene disorders may be rather rare in reality. Resolving and 

understanding these issues will require sustained and large scale collaborative research. 
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Chapter 6: Conclusions and Discussion 

 

 The advent of next generation sequencing has brought about a revolution in 

biological sciences, stoking novel ideas to pursue research that could potentially 

transform clinical care. DNA sequencing is by far the most popular of the NGS 

applications and includes Whole Genome Sequencing, Whole Exome Sequencing and 

sequencing of custom gene panels or targeted regions. However, the direct output from 

NGS instruments is uninformative and requires extensive infrastructure, analytics and 

interpretation. This dissertation highlights the major challenges associated with 

efficiently utilizing DNA sequencing data and provides precise bioinformatics solutions.  

 

There are four major aspects to this dissertation. We developed TREAT [1], an 

integrated workflow infrastructure to automate the basic analysis of NGS DNA data 

(Chapter 2). The workflow incorporates basic quality checks, alignment, variant calling, 

visualization and reporting. TREAT is a modular, efficient and streamlined workflow that 

scales well, is used by multiple institutes including Mayo Clinic, UIUC, Appistry© and is 

capable of evolving with the changing needs of NGS bioinformatics. In terms of the 

depth of coverage from NGS data, I implemented a module for comprehensive evaluation 

of a list of genes directly implicated in the disease or condition being studied (Chapter 

3). The result is a gene level report on nucleotide regions not adequately covered by 

sequenced reads, implying scant data for efficient variant calling [2]. The turnaround time 

for analysis of a single genome is currently about 75 hours, prohibitively long for clinical 
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adaptability of NGS. At the same time, not the entire genome’s evaluation is clinically 

actionable, and thus a vast majority of WGS variants are of low pertinence. As part of the 

thesis, we developed an iterative approach of WGS bioinformatics focusing on clinically 

relevant genomic regions and report results in less than 5 hours [3] (Chapter 4). The 

final aspect of this dissertation is exploring the interpretation and phenotypic implication 

of NGS DNA variants (Chapter 5). We sequenced 89 individuals who had 

comprehensive medical records and clinical diagnosis over their lifetime. Genes affected 

by SNV and INDEL identified for these 89 individuals were carefully curated for the 

potential function and the results were correlated to the individual’s clinical diagnoses. 

This study helped us understand the challenges of phenotypic annotation of genotypes 

from NGS data and uncertainty surrounding clinical reporting from NGS interpreted 

results. 

 

With the goal of making clinical applicability of NGS a reality, this thesis went 

into deeper evaluation as various hurdles were encountered. This meant building an 

integrated infrastructure for basic streamlined analysis of NGS data, ensuring clinical 

applicability with quick turn-around of prioritized results and interpretation of NGS 

results for clinicians, geneticists or the individual end users. As the field evolves, there 

are a lot of exciting avenues for future exploration. With decreasing costs and increasing 

availability of sequencing data, large-scale studies involving hundreds and even 

thousands of NGS samples have been initiated.  The bioinformatics workflows are 

evolving to utilize information from multiple samples [166], perform local sequence 
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assembly around INDEL and complex variants [167] and use tumor and normal 

information in order to detect somatic variant calls [168-173]. Furthermore, additional 

applications of DNA NGS data are identification of genomic events like Copy Number 

and Structural Variants [174-182]. ENCODE [29] and other whole genome atlas projects 

have uncovered functional evidence for vast regions of the genome, way beyond the 

comfortable 1-2% coding exon regions. The grappling with NGS data and associated 

applications will determine the successes and unraveling of biological and disease 

mechanisms in the next decade. 

 

At least 10% of the genes known to be linked to disease have been reported as not 

adequately sequenced by NGS [63]. Deciding what the results from NGS data analysis 

mean for the patient remains an active area of research and continues to improve. Lastly, 

in order to better understand the complex mechanisms of human disease, additional types 

of genomic data along with proteomic and metabolomic data would need to be integrated. 

Bioinformatics advancements would remain essential for further and more ubiquitous 

clinical utilization of next generation DNA sequencing data. 
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