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ABSTRACT 

Morphologically complex lakes usually have a significant water quality heterogeneity 

and hydrodynamic gradients that require a three dimensional (3D) model to accurately 

capture their temporal and spatial dynamics.  The objectives of this research were to 

evaluate and apply a 3D coupled hydrodynamic and ecological model to a 

morphologically complex lake and to investigate the effects of a changing climate on the 

lake ecosystem.  The research was conducted in a series of four separate studies including 

modeling investigations and laboratory experiments.  First, a 3D hydrodynamic model 

(ELCOM ) coupled with an ecological model (CAEDYM) was applied to three bays of 

the morphologically complex Lake Minnetonka, MN, to simulate water temperature, 

dissolved oxygen, total phosphorus, and algal concentrations.  The 3D model was 

calibrated and validated in two different years, and model results compared well with 

extensive field data.  Lake hydrodynamic and ecological processes were discovered to be 

sensitive to mixing due to inflow and wind variability over seasonal stratification.  In the 

second study, two sensitivity and uncertainty analysis methods were applied to the model 

to evaluate uncertainties in the model predictions.   The contributions of predicted water 

temperature, dissolved oxygen, total phosphorus, and algal biomass contributed 3, 13, 26, 

and 58% of total model output variance, respectively.   A laboratory experiment was 

conducted to measure the influence of fluid motion on growth and vertical distribution of 

Microcystis in a Plankton Tower bioreactor.  The laboratory results indicated that a 

depth-averaged energy dissipation rate in the range from 3 x 10-7 to 3 x 10-6 m2 s-3 

facilitated Microcystis growth.  Fourth, the applied calibrated and validated 3D model 

revealed the influence of local meteorological and global climate conditions on key water 

quality parameters and fish habitat in 3 bays of Lake Minnetonka.  The research was 

conducted by simulating the model and analyzing the model output results under three 

climate scenarios of historical normal (HN), future (FU), and future extreme (FE).  Water 

temperature (T) and dissolved oxygen (DO) concentrations were used to investigate the 

temporal and spatial variability of fish habitat dynamics.  The epilimnetic water 

temperature of the FU and FE climate scenarios were up to 4 °C warmer than the HN 
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scenario during ice-free seasons, stratification periods were predicated to expand up to 

23% (46 days), and thermocline depth to increase 49% under the FE climate scenario.  In 

all cases hypolimnion was mostly anoxic by June 15, but started by April 15, May 1, and 

May 15, under the three climate scenarios of HN, FU, and FE respectively.  Under future 

scenarios the good growth, restricted growth and lethal coolwater fish habitats that were 

based on T and DO thresholds changed +16%, -18%, and +85% compared to the HN 

scenario.  A modest change (8% of total lake volume) of good growth and restricted 

growth into lethal habitat separated the summer good growth coolwater fish habitat by 

over 3 weeks.  The research brought out the need for a 3D analysis in capturing the 

significant water quality heterogeneities and the ecological hot spots in a morphologically 

complex lake. 
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1. CHAPTER 1:  

Introduction 

 

1.1. Research significance  

Water quality models are essential tools that enable water resource researchers to study 

and extend the understanding of physical, chemical, and biological processes of the 

ecological systems (Li and Wu, 2006; Gal et al, 2009).  These models enhance the 

interpretation of available data, and allow evaluation of potential impacts of various lake 

restoration alternatives (Louks and Beek, 2005).  Water quality models play an 

increasingly larger role in water resources management (Erturk, 2010) and the results of 

such models are commonly integrated into a decision support system to meet water 

quality regulatory requirements (Lung, 2001; Romero et al., 2006; Trolle et al., 2008).  

Water quality and ecological models also help to form environmental policies and create 

consensus in managing water resources.   

 

Water quality models could be classified, based on their dimensionality, as well mix box 

models considered as zero-dimension, horizontal or vertical mixing as one-dimensional 

(1D), lateral and longitudinal with average depth as two-dimensional (2D), and a three- 

dimensional (3D) models.  Hydrodynamic and ecological processes of natural water 

bodies and reservoirs may well be captured by 1D models (Riley and Stefan, 1988; 

Imberger et al., 1978).  However, the interactions among aquatic physical, chemical, and 

biological processes are nonlinear and dynamic, and far from equilibrium (Hondzo and 

Warnaars, 2008; Leon et al., 2011).  Additionally, the impact of interactions of lake 

morphometry and hydrodynamics on ecological processes and their complexity is further 

expanded in morphologically complex lake ecosystems (Kalff, 2002; Wetzel, 2001).  For 

example, the water quality parameters and the geochemical cycles of the morphologically 

complex aquatic ecosystems are influenced by spatial and temporal hydrodynamic 

processes that are affected by multiple flow dynamics, morphometry, and metrological 
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parameters that increase water quality heterogeneity.  Aquatic systems reflect the effect 

of 3D hydrodynamic processes and therefore 3D hydrodynamic and water quality models 

are needed to capture spatial and temporal biogeochemical distributions within these 

complex systems.  3D models provide resolutions that capture individual morphological 

features such as bays and intra-lake circulations (Hodges et al, 2000). 

 

Lake Minnetonka (60 km2; 44◦54’ N; 93◦41’ W) with its 23 bays, 200 km of shoreline, 

and 24 km2 littoral zone, is considered a very morphologically complex lake (Wetzel, 

2001).  The lake has been regularly sampled for various water quality parameters since 

1968, with greater intensity since 2000.  The available data facilitates model calibration 

and verification which makes the lake a good candidate for water quality modeling 

investigation.  The lake has strong water quality heterogeneity with each bay having a 

specific water quality characteristic or grade as depicted in Fig. 1.1a.  The grade of each 

bay is based on the average grades of three water quality variables of total phosphorus 

(mg L-1), algae biomass (mg L-1), and water clarity (Secchi disk, m) (MCWD, 2000–

2008).  Temperature measurements of surface water (top 1 m) taken in the month of June 

(1999-2009) showed an averaged range (maximum–minimum) of 5°C throughout the 

surface of the lake. 

 

The rapidly advancing computing power and improvements in 3D water quality models 

in the past two decades have provided researchers opportunites to use 3D models of lakes 

and reservoirs.  However, the sensitivity and uncertainty methods of these complex 3D 

models have not advanced at the same pace (Ravalico et al., 2005).  To have confidence 

in the results, models need to be calibrated, validated, and their predicted outputs 

investigated by sensitivity and uncertainty analyses (Arhonditsis and Brett, 2004; Saltelli 

et al., 2006; Salacinska et al., 2009).   

 

Well documented, transparent sensitivity and uncertainty analyses minimize skepticism 

and raise confidence among scientists and the public for the use of complex 3D 
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ecological models (Radcliffe et al., 2009).  There is a need for more flexible sensitivity 

and uncertainty analyses methods for 3D ecological models. 

 

The physical processes in 3D hydrodynamic models are generally well defined and tend 

to require minimal calibrations.  On the other hand, the biological processes in water 

quality models are less defined and it is more difficult to simulate their field conditions.  

For example, algae biomass model predicted outputs usually contribute the largest degree 

of model output variance of the total model output variance and uncertainty.  The 

influence of hydrodynamics on algae, such as lateral patchiness, vertical distributions, 

temporal variations (blooming), and the evolving understanding of algae biological 

dynamics each contribute to the uncertainty of algae predicted model output (Hipsey et 

al., 2006; Reynolds, 2006).  In Lake Minnetonka, seasonal algae succession begins with 

diatoms during the Spring bloom followed by a Cryptophytes and Chlorophytes in early 

summer and then fully dominated by Cynobacteria for the rest of the season (PhycoTech, 

2007).  A greater understanding of the interaction of the hydrodynamic processes with 

algae and defining their regionally suited biological model parameters are needed.   

 

Against the background of uncertainty, climate change has added more uncertainty to 

water quality modeling by altering the frame of reference used to evaluate the water 

resources (Fig. 1.1b) (Kling et al., 2003).  Researching the interactions and influences of 

anthropogenic pollution, ecological processes, and complex morphometry, climate 

change requires a vast amount and diverse set of data (Argent and Houghton, 2001).  

Furthermore, any water quality research must adjust simultaneously to these various 

factors and drivers of ecosystem in temporal and spatial small scales that are useful to 

investigators (Power et al., 2005).  Models can be used to synthesize and integrate the 

information needed and have been the main tool in analyzing the impact of climate 

change on lake ecosystems (Milly et al., 2008; Menshutkin, Rukhovets & Filatov, 2014).  

Three dimensional models, in particular, have been used in climate change assessment of 

lakes (Cline, Bennington & Kitchell, 2013).  Three dimensional computer models have 



 

 

the feature of reproducing the ecological processes of the lake in fine temporal and spatial 

scales that can enhance our understanding of the 

chemical, and biological processes in morphologically complex lakes.

 

Fig. 1.1.  Map of Lake Minnetonka and the study area (circled), including West Upper Bay (WB), 
Cooks Bay (CB), Priest Bay (PB), Halsted Bay (HB), Six Mile Creek (SC), and Langdon Lake 
Creek (LC). The water quality heterogeneity of the lake is shown by the 10
average of water quality indicators (pie charts) for some of the bays. Water quality indica
from clear water (blue) with total phosphorus (TP) <23 mg L
L−1, and Secchi disk (clarity) >3 m, to poor water quality (green) with TP >152 mg L−1, Chla 
>77 mg L−1, and clarity <0.7 m; therefore, the greater the area
water; and b) predicted 2095 summer (
of Minnesota, USA. 
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the feature of reproducing the ecological processes of the lake in fine temporal and spatial 

t can enhance our understanding of the interactive feedbacks among physical, 

chemical, and biological processes in morphologically complex lakes. 

Map of Lake Minnetonka and the study area (circled), including West Upper Bay (WB), 
, Priest Bay (PB), Halsted Bay (HB), Six Mile Creek (SC), and Langdon Lake 

Creek (LC). The water quality heterogeneity of the lake is shown by the 10-yr (1999
average of water quality indicators (pie charts) for some of the bays. Water quality indica
from clear water (blue) with total phosphorus (TP) <23 mg L−1, algal biomass (Chla) <10 mg 

−1, and Secchi disk (clarity) >3 m, to poor water quality (green) with TP >152 mg L−1, Chla 
−1, and clarity <0.7 m; therefore, the greater the area of the blue/white the clearer the 

water; and b) predicted 2095 summer (red) and winter (blue) geographical climate shift for State 

the feature of reproducing the ecological processes of the lake in fine temporal and spatial 

interactive feedbacks among physical, 

Map of Lake Minnetonka and the study area (circled), including West Upper Bay (WB), 
, Priest Bay (PB), Halsted Bay (HB), Six Mile Creek (SC), and Langdon Lake 

yr (1999–2009) 
average of water quality indicators (pie charts) for some of the bays. Water quality indicators are 
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−1, and Secchi disk (clarity) >3 m, to poor water quality (green) with TP >152 mg L−1, Chla 
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) and winter (blue) geographical climate shift for State 
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1.2. Objectives 

The purpose of this research was to evaluate and apply a 3D coupled hydrodynamic and 

ecological model to a morphologically complex lake and to investigate the effects of a 

changing climate on the lake ecosystem.  The research framework and approach can be 

summarized by four objectives: 

1. Evaluation and application of a 3D model to accurately capture the spatial and 

temporal variability of lake water quality parameters in a shallow lake with complex 

morphometry; 

2. Conduct a detailed sensitivity and uncertainty analysis to evaluate uncertainties in the 

model predictions; 

3. Quantify the influence of fluid motion on spatial distribution and growth of 

Microcystis under controlled laboratory conditions, and 

4. Evaluate the key water quality parameters that ultimately determine fish habitat under 

changing climate. 

Each of the above objectives was independently researched and investigated and forms a 

chapter (2-5) of this thesis.  Each study has been prepared as a separate manuscript that is 

published or prepared for publication in a specific peer-reviewed journal. 

 

1.3. Overview of dissertation 

Along with the introduction (Chapter 1), this thesis consists of four chapters that each 

have been prepared as independent manuscripts and submitted for publication in peer-

reviewed journals.  Each chapter is, therefore, in the style of a manuscript published or 

prepared for the specific journal.  The four chapters (2-5) provide research methods and 

results of the investigation on the evaluation and application of the 3D model and the 

implications for Lake Minnetonka under a changing climate.  The lake’s measured data 

reflect a system with large spatial and temporal water quality and fish habitat 

heterogeneities which necessitated the use of 3D models to capture its biogeochemical 

changes and dynamics.   
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Input data sources, study area, and model description, along with model setup, 

configuration, parameterization, simulations, calibration, validatation, and model 

performance and fit are provided in Chapter 2.   A strong agreement between simulated 

and measured lake water levels and seasonal evaporation flux suggested an accurate 

water balance.  Comparison of 12 biweekly measured field data from three different 

locations within the study area against the model results agreed very well.  The simulated 

water temperature (T) and dissolved oxygen (DO) profile concentrations compared well 

with that of the measured profiles.  The model proved robust enough to capture the 

system’s physical, chemical, and biological seasonal and short term (intera-seasonal) 

spatial and temporal variations.  However, simulated algae biomass concentrations were 

moderately in agreement with the measured data.  The modeling efforts brought out the 

need for a greater understanding of biological processes in the ecosystem and the need for 

optimization of the biological module of the model.   

 

Chapter 3 lays out a detailed process of model parameter estimation, calibrations, and the 

application of two model sensitivity and uncertainty methods.  The top ten influential 

model parameters in the simulation of the model output variables were ranked by two 

independent methods.  The study also focused on the 3D spatial and temporal variabilities 

of model predictions.  Model performance was most sensitive in the epilimnion and 

thermocline to changes in parameter values with the largest sensitivity during the 

streamflow events.  The model outputs of T, dissolved oxygen, total phosphorus, and 

algae biomass contributed 3, 13, 26, and 58% to the total model variance, respectively.  

The analysis reiterated the need for a greater understanding of biological model 

parameters.   

 

Consequently, Chapter 4 is focused on investigating the factors influencing the spatial 

and temporal variabilities of Microcystis in order to enhance the model prediction and 

ultimately the management of aquatic ecosystems.  The study explored quantification of 

the influence of fluid motion on spatial distribution and growth of Microcystis under 
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controlled laboratory conditions in a Plankton Tower bioreactor.  The effects of fluid 

motion on Microcystis vertical distribution and cell growth were investigated under 

different fluid motion (turbulence).  The generated turbulence levels were measured by 

2D particle image velocimetry.  The results indicated that a depth-averaged energy 

dissipation rate in the range of 3 x 10-7 to 3 x 10-6 m2s-3 generated the largest values for 

both vertical distribution and cell growth of Microcystis.  The findings were quantified by 

fluid flow property-energy dissipation rate-that is predictable in most computational 

models for water quality modeling in lakes.  The integration of influence of fluid motion 

on growth and distribution of Microcystis in water quality models has the potential to 

significantly enhance the model algae predictability.  

 

In Chapter 5, the well calibrated and validated model is ultimately applied to test the 

specific and combined changes of the metrological forcing data on key water quality 

parameters and cool-water fish habitat under one historical and two future climatic 

scenarios.  The climate scenarios were based on the most recent climate normal and the 

application of Change Fields to predict future scenarios.  The modeled climate scenarios 

presented three hydrologically and climatically distinct years.  Lake thermal structure 

under the future scenarios reflected the influences of a warmer air temperature that along 

with decreased dissolved oxygen concentration patterns controlled the boundaries of fish 

habitats.  The lethal cool-water fish habitat had a modest increase (8 percentage points of 

total lake volume from historical normal) under the warmest future scenario.  However, 

the small increase had a significant spatial and temporal pattern that squeezed feasible 

good growth fish habitats to the point of separation in July for over 3 weeks.  Results 

showed that using 3D water quality model can capture important temporal and spatial 

consequences of changes in key water quality parameters.  The findings reported in 

Chapters 2-5 have advanced the understanding of the interactions of hydrodynamics and 

ecological processes of a morphologically complex lake under a changing climate.   
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2. CHAPTER 2 

Evaluation and Application of a Three-Dimensional Water Quality 

Model in a Shallow Lake with Complex Morphometry 

 

Published as:  Missaghi, S. and Hondzo, M., 2010. Evaluation and application of a three-
dimensional water quality model in a shallow lake with complex morphometry. Ecol. 
Model. 221, 1512-1525. 
 

 

Fundamental hydrodynamic and ecological processes of a lake or reservoir could be 

adequately depicted by one-dimensional (1D) numerical simulation models.  Whereas, 

lakes with significant horizontal water quality and hydrodynamic gradients due to their 

complex morphometry, inflow or water level fluctuations require a three-dimensional 

(3D) hydrodynamics and ecological analyses to accurately simulate their temporal and 

spatial dynamics.  In this study, we applied a 3D hydrodynamic model (ELCOM ) 

coupled with an ecological model (CAEDYM) to simulate water quality parameters in 

three bays of the morphologically complex Lake Minnetonka.  A considerable effort was 

made in setting up the model and a systematic parameterization approach was adopted to 

estimate the value of parameters based on their published values.  Model calibration 

covered the entire length of the simulation periods from March 29 to Oct 20, 2000.  

Sensitivity analysis identified the top parameters with the largest contributions to the 

sensitivity of model results.  The model was next verified with the same set up and 

parameter values for the period of April 25 to Oct 10, 2005 against field data.  Spatial and 

temporal dynamics were well simulated and model output results of water temperature 

(T), dissolved oxygen (DO), total phosphorus (TP) and one group of algae 

(Cyanobacteria) represented as chlorophyll a (Chla) compared well with an extensive 

field data in the bays.  The results show that the use of the model along with an accurate 

bathymetry, a systematic calibration and corroboration (verification) process will help to 

analyze the hydrodynamics and geochemical processes of the morphologically complex 
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Lake Minnetonka.  An example of an ecological application of the model for Lake 

Minnetonka is presented by examining the effect of spatial heterogeneity on coolwater 

fish habitat analysis in 3D and under a scenario where horizontal spatial heterogeneity 

was eliminated (1D).  Both analyses captured seasonal fish habitat changes and the total 

seasonal averages differed moderately.  However, the 1D analysis did not capture local 

and short duration variabilities and missed suitable fish habitat variations of as much as 

20%.  The experiment highlighted the need for a 3D analysis in depicting ecological hot 

spots such as unsuitable fish habitats in Lake Minnetonka. 
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2.1. Introduction 

The continuous improvements in numerical water quality models and computer 

computing power have increased reliability and use of advanced ecological models.  

Ecological models extend the understanding of our systems, give meaning to our 

observations and enhance the interpretation of available data.  The results of such models 

are also commonly integrated into a decision support system to meet regulatory 

requirements (Lung, 2001; Romero et al. 2006; Trolle et al., 2008).  One approach of 

distinguishing ecological models, specially the water quality models, is based on their 

dimensionality (Henderson-Seller, 1989).  With well mix box models considered as zero-

dimension, horizontal or vertical mixing as one-dimensional (1D), lateral and 

longitudinal with average depth as two-dimensional (2D) and a system discretisized into 

a three- dimensional mesh with finite cells allowing for temporal and spatial analysis as 

three- dimensional (3D) models.  Hydrodynamic and ecological processes for a number 

of natural water bodies and reservoirs have been well captured by 1D models such as 

MINLAKE (Riley and Stefan, 1988) or DYRESM (Imberger et al., 1978).   

However, the impact of interaction of lake morphometry and hydrodynamics on 

ecological processes (Kalff, 2002; Wetzel, 2001) seems to be magnified in 

morphologically complex lakes.  Morphometry may lead to regions of different water 

quality levels within a lake.  This water quality heterogeneity can be further increased by 

the process of urban eutrophication where different streams transport varying nutrient 

loads into a lake reflecting the landscape and land use of their individual watersheds 

(Wetzel, 2001).  Total phosphorus and sediment concentrations, two of the nutrient loads’ 

components, are considered strong lake water quality metrics and their impacts on water 

quality is well described (Wetzel, 2001; Brett and Benjamin, 2008; Gächter and Müller, 

2003; Jones and Bachmann, 1976).  However, the geochemical cycles of these 

parameters are influenced by spatial and temporal hydrodynamic processes that are 

affected by flow dynamics, morphometry, and metrological parameters.  The 

geochemical cycles are also impacted by internal factors such as sediment composition, 

sediment oxygen demand (SOD), entrainment by benthic boundary layers (BBL) and 
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other transport mechanisms that can contribute significant nutrient loadings  to their 

systems (Søndergaard et al., 2003; Hondzo and Haider, 2004; Marti and Imberger. 2008).  

Collectively, these factors increase both the large and the small localized scale changes 

that increase water quality heterogeneity.  Aquatic systems reflect the effect of 3D 

hydrodynamics processes and therefore a 3D hydrodynamic model is needed to capture 

spatial and temporal biogeochemical distributions within these systems.  3D models 

provide resolutions that can capture individual morphological features such as bays and 

intra-lake circulations (Hodges et al, 2000). 

 

The cultural eutrophication impact on Lake Minnetonka from developments in its 

watershed (319 km2) has been typical of the midwestern Unites States urbanization 

pattern ( Ramstack et al., 2003;  Murchie, 1985).  The hotels and resorts constructed on 

the lake in late 1860’s were replaced by large homes and estates in the 1890’s and by the 

1930’s most of the 175 km of the lake’s shoreline was well developed followed by an 

increased regional urbanization after 1940’s (Stein, 1978).  The lake is composed of so 

many bays and coves that Wetzel (2001) classifies Lake Minnetonka as an extremely 

complex lake.  Because of its complex morphometry, Lake Minnetonka has been 

described as a lake with three main water quality and sediment types (Murchie, 1984), 12 

small and 3 large basins (Megard 1972), 16 discrete basins (Engstrom and Swain, 1986), 

or by 23 named bays (Hennepin, 2003).  Nonetheless lake Minnetonka is currently 

described by 26 bays (MCWD, 2007).  The lake’s watershed has a precipitation average 

of 0.75 meter, delivering 10.8 tons (2006) of TP (MCWD, 2008) into the lake through 

five creeks.  The lake discharges at the eastern end through a controlled outlet dam 

structure.  The upland watershed hydrology of the lake and its discharge regime have 

been studied (Army Corps, 2008); however, a whole lake analysis including its internal 

loading, and intra lake water circulation has been lacking due to the lake’s complex 

morphology (MCWD, 2003; MCWD, 2008).  Review of water quality data collected 

since 1968 show areas of various degrees of water quality degradation within the lake. 
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The purpose of this study was to corroborate (validate) the 3D hydrodynamic model 

ELCOM coupled with an ecological model CAEDYM for sections of Lake Minnetonka 

(60 km2), west of Minneapolis-St. Paul, MN, USA.  Spatial water quality gradients and 

varying inflow loading distribution into Lake Minnetonka have created a mosaic of water 

quality areas within this morphologically complex lake.  We demonstrate the application 

of a 3D hydrodynamic model with a detailed ecological model to accurately predict 

spatial and temporal variability of lake water temperature (T), dissolved oxygen (DO), 

total phosphorus (TP), and chlorophyll-a ( Chla ) concentrations in a shallow lake with 

complex morphometry.  The results show that the lake hydrodynamic and ecological 

processes are sensitive to mixing due to inflow and wind variabilities over the seasonal 

stratification.  Additionally, the results illustrate the need of 3D fish habitat ecological 

modeling where spatial heterogeneity and short duration temporal variations are 

preserved.  In particular, the experiment highlighted the need for a 3D analysis in 

capturing ecological hot spots such as unsuitable fish habitats in Lake Minnetonka. 

 

2.2. Study Site 

West Upper Bay (WB), Cooks Bay (CB) and Halsted Bay (HB) were selected for model 

set-up and parameter calibrations (Fig. 1).  CB is connected to HB through a smaller bay 

on the east and on the south end it opens into WB that leads into the lower bays of Lake 

Minnetonka.  Six Mile Creek (SC), the largest surface water contributor to the lake, 

discharges into HB on the west and on the north, CB receives water from the small 

Langdon Lake Creek (LC).  Basic physical, chemical, and biological characteristics are 

listed in Table 1. 

 

Table 1.  Major physical, chemical and biological characteristics of the three bays in the study 
area. 

Bays Area Max. Depth Secchi Disk Chla TP 
 km2 m. m µg L-1 µg L-1 
Cooks  1.465 13.1 1.6 15.3 34.1 
Halsted  2.202 10 0.5 77.4 92.7 
West Upper  3.557 25.6 1.8 13.1 30.6 
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2.3. Methods 

2.3.1. Models Description 

We used the 3D hydrodynamic model Estuary and Lake Computer Model (ELCOM) 

maintained by Centre for Water Research (CWR) of University of Western Australia.  

ELCOM uses hydrodynamic and thermodynamic models to simulate spatial and temporal 

water temperature and velocity distribution.  ELCOM was dynamically coupled with 

Computational Aquatic Ecosystem Dynamics Model (CAEDYM), an ecological model, 

to simulate three dimensional biogeochemical processes.  ELCOM and CAEDYM are 

well described by Hamilton and Schladow (1997) and Hodges (2000).  Schematic 

representations of the modeled processes and summary of differential equations for 

nitrogen, phosphorous, dissolved oxygen and algal biomass in CAEDYM are also 

provided by Romero et al. (2004).  

 

2.3.2. Model Setup 

Lake Minnetonka topographical maps (LakeMaster, 2005) were used to manually 

discretize the study area (8.01 km2) into 200 m surface grids with a uniform 0.5 m depth 

layer resolutions to create the 3D Cartesian mesh of computational cells used by 

ELCOM.  Boundary conditions such as locations of tracer release, sampling stations, 

inflows, outflows and open water cells boundaries were identified in the bathymetry file.  

The time step was set to 120 seconds with output data recorded at every four hour 

intervals.  Model output files were regularly monitored to insure that the model time step 

(temporal) and grid sizes (spatial) were adequately selected.   

 

2.3.3. Data Sources 

ELCOM-CAEDYM is driven by inputs from inflow, water quality parameters, initial 

conditions, and metrological or forcing data.  An average stream flow was calculated 

based on the periodic stream flow data recorded.  Stream field data including flow, T, 

DO, Chla, TP and soluble reactive phosphorus (PO4) were used for inflow scalar values.  
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Streams were monitored biweekly at both Six Mile and Langdon Lake Creeks.  No 

stream flows were detected and recorded for the simulation period (2000).  However, an 

extensive hydrological study and modeling of the watershed (Army Corp, 2008) had 

predicted an average flow of 0.3 m3s-1 in year 2000 for SC which was equivalent to some 

of the highest annual average flows since 1990.  The large discrepancy between the 

modeled stream flow (0.3 m3s-1) and the recorded data (0.0 m3s-1) could not be explained 

and ultimately a stream flow with flow patterns matching the predicted output and with 

an averaged flow of 0.1 m3s-1 was adopted.  Stream water temperatures were estimated 

using available data from area streams and considering their stream water temperature 

patterns in a ten year period.  Lake water quality records were provided by the 

Minnehaha Creek Watershed District organization.  Samples were from three stations 

located at the deepest point of HB (10 m), CB (8.5 m), and WU (24 m).  Each station had 

been sampled biweekly for T, DO, conductivity, and pH profiles (1 m interval), surface 

and bottom TP, PO4, total nitrogen and a composite top two meter sample for Chla.  

Meteorological data (Fig. 2.2) included hourly readings of air temperature, relative 

humidity, atmospheric pressure, cloud cover, wind speed, and wind direction which were 

obtained from the Flying Cloud Airport (44 50 N; 93 27 W) about 14.5 km SE of the 

lake.  Precipitation data were obtained from Mounds weather station (44 56 N; 93 39 W) 

0.5 km NE of the study area.  Hourly solar radiation was obtained from Rosemount 

Experimental Station (44 45 N; 93 04 W) 45 km SE of the lake.  Air Temperature, 

relative humidity, wind direction and short wave solar radiations units required no unit 

conversions.  No factors were used on any of the meteorological data and none of the 

values were changed or modified.  Except all air temperatures of less than 7 Cº in the 

month of April were kept at 7 Cº to increase model stability.   
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Fig. 2.2.  Year 2000 metrological Data  
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2.3.4. Model Simulations 

Examination of the measured water quality data revealed that reliable measured DO was 

only available prior to year 2005.  However, additional field measured T and DO profiles 

were available for most of year 2000.  Therefore, the period of year 2000 was selected for 

model simulation and parameter calibration and year 2005 for model corroboration or 

verification (EPA, 2009).  The 2000 simulation period included 205 days from March 29 

to Oct 20, 2000.  The same period was also used for CAEDYM parameters calibration.  

CAEDYM was configured to model phosphorus, nitrogen, pH, DO, organic carbon, and 

one algae group (Cyanobacteria).  The corroboration period included 168 days from 

April 25 to October 10, 2005.  Measured field data were used to establish the model 

initial conditions. 

 

2.4. Results and Discussion 

2.4.1. Calibration, Sensitivity Analysis and Corroboration 

The ELCOM-CAEDYM model was calibrated for the entire simulation period where 

model results were compared against field data.  ELCOM does not use many variable 

parameters and its processes are well defined (Hodges and Dallimore, 2008).  ELCOM 

parameters used in the simulations had fixed constant values and required no calibrations.  

On the other hand, the complexity of CAEDYM necessitates the use of a large number of 

model parameters (Hipsey, 2008) which can generally be classified into biological, 

chemical, sediment process, and fixed parameters as listed in Table 2.    
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Table 2.2.  A partial list of the model parameters used in model calibration and sensitivity and 
uncertainty analysis with their symbols , units, number of samples (n), minimum (min), 
maximum (max), mean value (ave), standard deviations derived from literature review, and their 
assigned or best fit values (Val.) in the model.  Abbreviations are: carbon (C), oxygen (O2), 
ammonium (NH4), filterable reactive phosphorus, FRP (PO4), dissolved oxygen (DO), 
phosphorus (P), labile (L), dissolved organic carbon (DOC), particulate organic matter (POM), 
dissolved organic phosphorus (DOP), and dissolved organic nitrogen (DON). 
 

Parameters Symbol Units n Min Max Ave Stdev Val. 
Biological  Parameters         

Average ratio of C to chlorophyll a  Ycc mgC(mgChla)-1 7 0.3 90.00 31.45 30 80.00 
Algal constant settling velocity Ws mday-1 6 -0.1 0.3 0.04 0.16 -0.035 
Fraction of respiration relative to total 
metabolic loss   

FRML - 6 0.14 0.80 0.33 0.250 0.50 

Half saturation constant for N uptake KN mgL-1 17 0.00 30.0 4.9 10.8 0.07 
Half saturation constant for P KP mgL-1 23 0.001 6 0.65 1.78 0.02 
Maximum internal P concentration  IPmax mgP(mgChla)-1 12 0.08 3.00 1.18 0.87 2.40 
Maximum potential growth rate of 
phytoplankton 

Pmax - 29 0.70 4.66 1.98 1.00 1.20 

Maximum rate of N uptake UNmax mgN(mgChla)-
1day-1 

14 0.12 6.48 1.93 1.82 3.50 

Maximum rate of P uptake  UPmax mgP(mgChla)-
1day-1 

12 0.08 1.00 0.37 0.29 1.00 

Maximum temperature  Tmax C 7 28.3 39.0 35.2 3.6 28.0 
Minimum internal P concentration   IPmin mgP(mgChla)-1 12 0.008 1.00 0.27 0.28 0.02 
Optimum temperature  Topt C 7 23.4 30.0 26.9 2.5 21.0 
Respiration mortality and excretion Kr  day-1 18 0.001 0.28 0.10 0.065 0.11 
Standard growth temperature Tsta C 7 19.0 20.8 19.8 0.64 16.0 
Temperature multiplier for respiration θTr - 8 1.03 1.13 1.07 0.031 1.05 
Temperature multiplier for 
phytoplankton growth. 

θTb - 6 1.02 1.14 1.07 0.043 1.06 

 
Chemical Parameters 

        

Density of POM particles  POMDensity kgm-3 9 1218 2600 1010 518 1040 
Half sat constant for nitrification  KOn mgL-1 13 0.081 4.00 1.82 1.405 0.75 
Half saturation constant for 
denitrification dependence on O2 

KN2 mgL-1 9 0.01 2.00 0.57 0.562 0.44 

Max mineralization of DOCL to DIC  DOCmax day-1 6 0.001 0.15 0.07 0.047 0.01 
Max mineralization of DONL to NH4   DONmax day-1 14 0.003 1.00 0.12 0.263 0.08 
Max mineralization of DOPL to PO4    DOP day-1 17 0.002 1.00 0.19 0.291 0.25 
Max transfer of POCL to DOCL   POCmax day-1 6 0.001 0.07 0.03 0.032 0.07 
Maximum internal N concentration INmax mgN(mgChla)-1 11 0.06 15.00 7.37 5.008 9.00 
Nitrification rate coefficient  koNH day-1 13 0.005 0.20 0.06 0.073 0.25 
 
Sediment Related Parameters 

        

Controls sediment release of PO4 via 
O2 

KOxS-
PO4 

gm-3 5 0.05 3.00 1.32 1.55 1.00 

Half saturation constant for DO 
sediment flux 

KSOs mgOL-1 10 0.40 5.00 2.23 1.815 1.25 

Sediment, Release rate of PO4  SmpPO4 gm-2day-1 28 0.000
5 

49.00 5.14 0.110 0.04 

Static sediment exchange rate of O2 rSOs gm-2day-1 10 0.20 3.95 1.00 1.121 1.30 
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The model calibration began with simulating the minimum processes and state variables, 

and expanded gradually in a step wise process.  This process proved to be very time and 

effort intensive.  However, the process does provide a greater depth of understanding of 

the system (Hipsey et al., 2006).  By focusing on specific parameters and processes it 

allowed to recognize any potential errors in the data or model setup.  Through this 

iteratively process and using the available published parameter values (Bruce et al. 2006, 

Hamilton 1997, Romero et al., 2004, Hipsey et al., 2006), a reasonable range of 

parameter values were established.  These set of parameters were used to develop a 

reference model simulation for the calibration process.  Simulated T, DO, TP and Chla 

were used to calibrate the model by comparing them to 12 biweekly measured data from 

WB water quality station using the minimum weighted sum of squares (WSS) parameter 

estimation procedure (Omlin et al., 2001).  Phytoplankton growth rate and patterns were 

visually inspected and evaluated against measured data to further evaluate calibration fit 

(Robson and Hamilton, 2004; Bruce et al., 2006; Hipsey et al., 2006).  The model was 

then run with the same configuration, parameter values and set up for the period of April 

25 to October 10 of 2005 for corroboration.  A sensitivity analysis was performed that 

included over 40 major of the model parameters.  The mean value first-order reliability 

analysis method (Melching and Bauwens, 2001) was used to evaluate and rank the top 

dominant CAEDYM parameters.  The top ranking parameters provided the most 

significant sources of uncertainty affecting the estimation of model output of DO and 

Chla.  The top four ranking parameters and their fraction of the total variance of model 

outputs (values in parenthesis) were: DOCmax (45%), IPmin (23%), tcpy (7%) and sSOs 

(5%).  

2.4.2. Model fit 

The iterative parameter estimation and calibration process of the model yielded a base or 

a final set of model parameters and simulation configurations.  Model outputs of 

calibration and corroboration periods were measured against the base model output for 

fitness of the model.  Data from the vertical profiles of all sampling events and locations 

throughout the simulated period for each of T, DO, TP, and Chla were plotted against 
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each of their corresponding model control volume point in time and place on a scatter 

plot with y-intercept set at zero.  Model fitness was measured by evaluating the R2 

(coefficient of determination) using EzyFit toolbox in MATLAB software.  Additional 

insights were gained by examining and evaluating profiles of each parameter against 

meteorological data, stream flows and other parameters.  Concentration profiles for 

soluble reactive phosphorus (SRP) were not constructed as its epilimnion and 

metalimnion values were in general below detection levels.  Corresponding model SRP 

output values were below 5 µgL-1 in the first half of the simulation period as well, 

indicating that the system is phosphorus limited.  Furthermore, profiles of all parameters 

were also qualitatively examined by “eye” for patterns and times of peaks and minimums.  

This review was particularly valuable in evaluating the simulated algae growth.   

 

2.4.3. Lake Water Elevation  

The model calibration (2000) and corroboration periods (2005) presented two 

hydrologically distinct years and the model accurately simulated the lake water levels for 

both periods (Fig. 2.3).  The mean difference of water level between the simulated and 

measured water levels (n=151) during the periods of March 29 to September 30 of 2000 

and 2005 was 0.05 m (standard deviation = 0.06 m; range = -0.26-+0.15 m).  Analyses of 

the modeled evaporation volumetric flux (2000) yielded an average daily and seasonal 

rate of 0.64 m. The seasonal evaporation rate compared well with the known area rate of 

0.77 m (MCWD-2000 Hydro report).  The good agreement between simulated and 

measured lake water levels and seasonal evaporation flux suggest an accurate water 

balance.  However, review of the measured stream flow raises concerns about their 

accuracy and that the measured inflows do not appear to reflect the actual field conditions 

or precipitation rates  
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Fig. 2.3.  Simulated (lines) and field data for lake water elevations above mean sea water level for 
year 2000 (solid) and 2005 (blank), lake runout elevation (dashed line) and average lake 
discharge (Qave). 
 

 
 
 

2.4.4. Simulated and measured data 

Twelve biweekly measured field data from three inlake water quality monitoring stations 

(Fig. 1.1) were used to evaluate the model simulated T, DO, TP and Chla. profiles.  

Water quality field samples had been collected at various times of day from 9:00 am to 

8:00 pm.  Simulated data matching the vertical profiles for T and DO and epliminic and 

hypolimnic depths for TP and Chla were extracted from the model output corresponding 

to the specific dates of the measured data and the exact location of each of the water 

quality monitoring stations.  Temperature and dissolved oxygen profiles compared best 
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with the measured data (Fig. 2.4).  TP and Chla were reasonably well simulated and had 

the same general seasonal variation patterns as the measured data (Fig. 2.5).  The model 

managed to capture the diurnal cycle of stratifications and changes.  Anoxic conditions in 

hypolimnion are observed starting early June and were accurately simulated at all three 

water quality stations in both 2000 and 2005. 

 

Fig. 2.4.  Comparison of selected days of simulated (line) and observed water temperature 
(triangle) and dissolved oxygen (circles) at West Upper Bay in 2000. 
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Fig. 2.5.  Comparison of 2000 simulated (lines) and measured a) epilimnion and b) hypolimnion 
TP concentration and composite top 2 meter c) Chla. 

 

2.4.5. Temperature Profiles  

Water temperature profiles had the best fit in the quantitative comparison of the model 

output with the measured data.  Without adjusting the initial model parameters, the model 

was able to explain 98% of the observed temperature variability in the calibration year of 

2000 (R2 = 0.98, Fig. 2.6).  The measured lake water temperature profiles from the water 

quality stations represented three different distinct parts (bays) of the lake.  The model 

was successful in accurately capturing the three different mixing depths and thermoclines 

at each of these locations.  Most lake water temperature discrepancies between the model 

output and the observed data occurred in the epilimnion with the maximum difference in 

order of 4 ºC in CB in May.  Solar radiation is the major source of lake’s heat budget and 

surface water temperatures are more directly related to weather whereas hypolimnion 

water temperature is impacted more by lake morphometry (Robertson and Imberger, 
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1994; Hondzo and Stefan, 1996a).  The meteorological input data, including wind data 

that is used in the model to determine evaporation flux, were acquired from a weather 

station 14.5 km SE of the lake.  

 

Fig. 2.6.  Comparison of West Upper Bay (WU), Cooks Bay (CB) and Halsted Bay (HB) 
simulated and data for a) T, b) DO, c) TP, and d) Chla and their respective R2 values for the years 
2000 (calibration) and 2005 (corroboration).  

0 30 60 90 120

0 4 8 12 16
0

4

8

12

16

5 10 15 20 25 30

0.0 0.3 0.6 0.9
0.0

0.3

0.6

0.9

0.0 0.3 0.6 0.9

5 10 15 20 25 30
5

10

15

20

25

30

0 4 8 12 16

0 30 60 90 120
0

30

60

90

120

Chla (µgL-1
)

 WB: 0.83; 0.92
 CB:  0.54; 0.44
 HB: 0.46; 0.64

 WB: 0.92; 0.90
 CB:  0.84; 0.60
 HB: 0.67; 0.70

D
O

 (
m

gL
-1
)  

DO (mgL-1)

Τ (°C)

T
P

 (m
gL

-1
)

TP (µgL-1
) TP (µgL-1

)

 WB: 0.98 (2000); 0.98 (2005)
 CB:  0.98 (2000); 0.88 (2005) 
 HB: 0.98 (2000); 0.91 (2005)

d)

c)

b)

a) 2005

M
od

el
 T

 (
°C

)

Data T  (°C)

2000

  DO (mgL-1)

 WB: 0.42; 0.17
 CB:  0.48; 0.30
 HB: 0.38; 0.35

C
hl

a 
(µ

gL
-1

)

Chla (µgL-1
)



 

 24 

2.4.6. Dissolved Oxygen Profiles  

The simulated DO profile concentrations compared well with that of the measured 

profiles (R2 =0.67-0.92; Fig. 2.6).  The model was able to capture the DO concentrations 

at the lake surface and the onset of the hypolimnion anoxic conditions at each of the 

water quality stations (Fig. 2.4).  The hypolimnion anoxic conditions started at WB in 

early June followed by CB and finally HB by early July.  The simulated DO, similar to 

the measured data, decreased sharply from the metalimnion reflecting the rapid DO 

depletion.  A gentle metalimnic oxygen peak due to algae oxygen production (Wetzel, 

2001) is observed in 2000 at the deeper WB water quality station (Fig.2.4).  The model 

was only able to simulate this during a very short period with minimal but detectable 

peaks and 4 m deeper than the measured data.  This was identified during the calibration 

process by adjusting the algae settling velocities or the oxidation processes.  However, 

changes also altered the epilimnion algae growth peak times to an unacceptable levels 

which then limited the ability to calibrate the epilimnic DO concentrations.  The model 

can simulate up to five different algae groups.  To simplify the calibration and 

parameterization process only one algae group (Cynobacteria) was configured for this 

simulation.  But when four algae groups were simulated, the model was able to simulate 

the metalimnic oxygen peak well, particularly in year 2005 which had a more pronounced 

peak.   

 

The hypolimnitic DO concentration depletion rate is largely determined by sediment 

oxygen demand (SOD) which model simulated it well.  The DO concentrations were also 

impacted by large storms, wind or inflow induced mixing events.  Two large storm events 

occurred (July 18 and August 8) in-between the water quality sampling collection events 

during the simulation period (Fig. 2.2).  Both events created a mixing that drastically 

changed the DO concentrations profiles, specifically throughout HB.  The changes were 

not detected in the measured DO concentration profiles because the events lasted from 

few hours to less than 3 days, whereas the water quality sampling took place more than a 

week after these events.  However, the model successfully captured these mixings and 
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their consequences on DO concentrations.  The timing of the events corresponds well 

with the rain events dates.  Furthermore, the findings were also verified by the additional 

water quality monitoring data gathered by Three Rivers Park District using a Remote 

Underwater Sampling Station (RUSS unit) in 2000.  The RUSS unit on HB had operated 

for much of the 2000 with a four hour sampling intervals.  The model simulated DO 

compared very well with the RUSS unit measured data (Fig. 2.7).  The additional data 

confirmed the model simulations that during these storm events the water column was 

well mixed at HB, less at CB and with minimal mixing at WB.  A similar scenario was 

observed in 1999 (EPA, 1999) 

 
Fig. 2.7.  Qualitative comparison of short term duration variations of DO concentration (with few 
points of interest marked by solid circles) as simulated by (a) model and (b) measured by RUSS 
unit at Halsted Bay in a two month period in 2000.   
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2.4.7. Total Phosphorus Concentrations 

Model simulated total phosphorus concentrations were generally in good agreements with 

the measured data (Fig. 2.5 and Fig. 2.6).  Measured TP values show that the three 

sampling locations have distinct localized TP concentrations indicating TP heterogeneity 

with HB having the largest values followed by WB and CB.  Data analysis also indicated 

that the short duration variations of hypolimnitic TP in HB were more likely the 

consequences of storm events.  CAEDYM allows for dynamic sediment diagenesis model 

configuration but it was not simulated in order to simplify the calibration process and to 

keep the computing time manageable.  There was also a lack of measured field sediment 

data and associated parameters that are required by the dynamic sediment diagenesis.  

The static sediment model simulated TP is largely controlled by bottom T, DO, and the 

sediment phosphorus release rate.  Given the variation in the sediment characteristics, the 

selection of sediment phosphorus release rate value became a balance between capturing 

the short term TP variations in as many locations as possible, capturing the general TP 

seasonal variations and keeping it within the known regional values. 

Simulated eplimnic and hypolimnic TP values had a strong fit in the first half of the 

simulation period at all three sampling sites.  The model captured many of the short term 

TP variations at the two shallower HB and CB, but it generally over predicted the TP 

values for WB site.  The TP short term variations did not correspond to the measured 

wind data of those periods but they closely followed the inflow and precipitation events.  

The simulated inflows showed a clear sinking of the cooler inflows from SC through HB, 

suggesting that storm event mixing could have been induced by inflow plunge.  Further 

investigation with finer bathymetry grids of 100 m successfully showed the inflow plunge 

and mixing.  These results along with simulated and measured DO supports the notion 

that physical perturbations by inflows at HB and CB are causing the water column 

mixing and that the hydrodynamics are responsible for the spatial and temporal variations 

of state variables (Romero et al., 2004) .  The investigation also led to discovery of a few 

deep isolated non-active control volumes that were eliminated by minor changes to 
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bathymetry.  The bathymetry changes improved the model performance under both 200 

and 100 meter grids configurations. 

 

2.4.8. Chla Concentrations 

Simulated Chla concentrations were moderately in agreement with the measured data 

(Fig. 2.5.C).  The measured Chla data was collected as a composite sample of the top 2 

meter of water column while the simulated Chla values represented the average of top 2 

meters.  The model overestimated the Chla concentrations at WU and CB, missed the 

early summer algae bloom but did captured the late fall bloom.  The model also missed to 

capture any of the seasonal peaks and under predicted the Chla concentrations at HB, 

however the values stayed within range.  The general five year (1996-2000) algae growth 

cycle at the study area begins with a peak in late March during the turnover followed by a 

rapid decline after complete stratification by end of May.  Summer bloom peaks in June, 

followed by another late season (Aug-Oct) bloom at HB and then at WB.  On average in 

2000, HB was 10 times more productive than the other bays and it has historically been 

an extremely productive basin in compare to other regional basins (Megard, 1970).  The 

unusual high productivity at HB created a large heterogeneity that exasperated the 

calibration efforts.   

Modeling biological biomass concentrations such as algae are inherently difficult because 

of their lateral patchiness, vertical distributions , temporal variations (blooming) and the 

still evolving understanding of algae biological dynamics (Hipsey et al., 2006; Reynolds, 

2006).  Typical seasonal algae dominant succession on Lake Minnetonka begins with 

diatoms during the Spring bloom followed by a Cryptophytes and Chlorophytes in early 

summer and then fully dominated by Cynobacteria for the rest of the season (PhycoTech, 

2007).  The difficulty of simulating the algae biomass was more likely compounded by 

the fact that only the dominant group of algae (Cynobacteria) was configured in the 

simulations.  Measured Chla concentration was limited to one composite sample of the 

top 2 meters that didn’t allow creating vertical concentration profiles.  However, DO 

profiles suggested an increase in algae biomass right below the water surface where algae 
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is more sheltered and a peak at metalimnion where the algae gain access to additional 

nutrients from hypolimnion while still exposed to limited light.  The algae biomass then 

declines rapidly as it reaches hypolimnion.  These upper and lower boundaries form an 

algae growth favorable layer with seasonal thickness variations reflecting nutrient and 

light availability, turbulence, microbial loop interactions and hydrodynamic affects 

(Chen, et al., 2002; Scavia and Fahnenstiel, 1987; Robson and Hamilton, 2002; Hondzo 

and Warnaars, 2008).  Measured Chla profiles would have provided a valuable 

opportunity to further investigate the algae growth favorable layer in the study area.  

There were no measured zooplanktons data for the study site.  Zooplanktons were not 

simulated and the model did not include zooplankton grazing on phytoplankton.  

However, algae mortality rate was assumed to compensate for it. 

 

2.5. Example of a 3D Model Application for Lake Minnetonka 

Simulations showed that the 3D ELCOM-CAEDYM model was robust enough to capture 

the system’s physical, chemical and biological seasonal and short term duration (intera-

seasonal) spatial and temporal variations.  The spatial variation of our study area requires 

an accurate bathymetry and a detailed 3D hydrodynamics to capture its large 

heterogeneity.  The simulated surface water temperature for each model output shows 

temperature range (maximum-minimum) of 1 ºC to near 13 ºC with a seasonal average of 

5 ºC (Fig. 2.8).   
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Fig. 2.8.  Range (max-min) of simulated surface water temperature at each model output (4 hrs.) 
over the entire simulation period (2000) with the average seasonal range shown in dash line and 
the expanded map illustrating the range (6.5 ºC) of surface water temperature at 7/23/00 13:00, 
model output. 
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Some of the surface temperature variations are likely due to the temperature fluctuations 

in the shallow areas or the areas near the inflows.  Nonetheless, each of the three bays 

still show distinct water temperature ranges.  Such spatial variations may have significant 

impacts on ecological systems and need to be considered in any ecological modeling 

efforts.  The question was how would the elimination of T and DO spatial heterogeneity 

impact the analysis of coolwater fish habitat.  To illustrate this idea, we examined the 

variability of suitable coolwater fish habitat in our study area under two different 

scenarios.  In the first scenario, we analyzed the fish habitats by the 3D model.  In the 

second scenario (averaged), the spatial heterogeneity was eliminated by horizontally 

averaging the two state variables T and DO.  The analysis can be also considered as an 

example of an engineering application of such a 3D ecological model for Lake 

Minnetonka.  Fifteen fish species are found in Lake Minnetonka dominated, as defined 

by mass per gillnet, with northern pike (Esox lucius), walleye (Stizostedion vitreum), and 

bluegill (Lepomis macrochirus) (MNDNR, 2007).  Walleye abundance as measured by 

number of fish caught per gillnet, has been low, less than 4 catch per gillnet, since 1970, 

with a general decline since 1999.  In 2007, 99% of the Walleye population was found to 

be sustained by annual stocking.  Walleye population has remained steady regardless of 

increase of stocking rate as much as 100% in 2001.  Walleye grow to 33.0 cm by age 3, a 

rate slower compared to the regional lakes.  Walleye lake-wide average catch was 45.5 

cm.  Within the lake, the walleye catch in the two stocked bays were 43 and 45.7 cm.  

However, those that had migrated into the northwest bays had a catch average of 55.4 cm 

(MNDNR, 2007), indicating the presence of distinct fish habitats within the lake. 

Suitable fish habitat is determined by a large number of environmental factors.  T and DO 

are recognized as the two most significant water quality parameters that shape fish habitat 

(Hondzo and Stefan, 1996b; Coutant, 1985; Christie and Regier, 1988).  Different fish 

habitat criteria have been established using these two parameters (Stefan et al., 1995; 

Stefan et al., 2001).  For the purpose of this analysis we adopted the mean coolwater fish 

thermal and dissolved oxygen criteria established by Stefan et al. 2001 (Table 2.3) which 

includes both walleye and northern pike.    
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Table 2.3.  The three types of coolwater fish habitats and their associated T (Cº) and DO (mgL-1) 
criteria.  
 

Habitat Criteria Abbreviations Conditions 

Good Growth GG (16.3 < T < 28.2) AND ( DO > 3) 

Restricted Growth RG (28.2 <T < 30.4) OR (T< 16.3 AND DO > 3 ) 

Uninhabitable UI (T > 30.4) OR (DO < 3) 

 

 

The model was configured to generate the simulated T and DO of 12 depth layers at 2 

meter intervals (0-22 m).  These outputs were then quarried for coolwater fish T and DO 

criteria.  To represent the spatial heterogeneity minimized scenario, the T and DO values 

of each depth layer was first averaged horizontally (1D) for each time step and then 

queried same as in the 3D analysis.  The number of control volumes (cells) of each type 

of habitat was normalized by the total volume of the lake (V/Vt).  Sum of each of the 

three types of fish habitats were plotted at each time step for all depth layers over time 

and the mean integrated value (average) for each type was computed and plotted (Fig. 

2.9).  The process was completed for both calibration (2000) and corroboration (2005) 

periods which also presented an opportunity to compare the coolwater fish habitats under 

two different climate scenarios.  The summers (Jun.-Aug.) of 2000 and 2005 were ranked 

the 16th and the 5th warmest summers on the records (NOAA, 2009) making these two 

seasons significantly different. 
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Fig. 2.9.  Comparison of 3D (black lines) and 1D (red lines) analysis of the three coolwater fish 
habitats: a) GG, b) RG, and c) UI for all depth layers over time with inset showing the magnitude 
of short duration variations and d) is the maximum (abs) of the difference between 3D and 1D 
analysis of GG, RG, and UI at each depth layer and output. 

 
 
 

Initially, the 3D and the 1D analysis of coolwater fish habitats were conducted for the full 

simulation periods of 2000 and 2005.  Both analyses accurately captured major seasonal 

changes (Fig. 2.9).  Minimal changes in the fish habitats are expected early in the season 

with cooler water temperatures and before the water columns stratify.  During this period 

the fish habitat is dominated by RG.  This was captured in both years by both analysis as 

indicated by the straight lines at the start of the seasons.  The GG begins to increase as 

the season progresses and the temperature is increased and is minimized again towards 

the end of season.  RG and GG show large fluctuations in late Spring of 2000 which 

corresponds to the upper water column temperature fluctuation (Fig. 2.9.a-c), a reflection 

of the changing weather patterns.  The air temperature was 2 ºC and the average wind 
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speed was 10% less in May of 2000 than in 2005.  The UI increase coincides with the 

onset of hypolimnic anoxic conditions in both years and its small values reflect the 

smaller hypolimnic volume.  GG showed stronger correlation with RG and less with UI.   

The coolwater fish habitats seasonal (May 1-Sep. 30) averages for the 3D and the 1D 

analyses methods were similar (Table 2.4).   

 

Table 2.4.  3D and 1D analysis of GG, RG, and UI of seasonal (May 1-Sep. 30) coolwater fish 
habitats average values (V/Vt) for 2000 and 2005. 
 

Simulation scenarios GG RG UI 
2000, 3D 0.70 0.15 0.15 
2000, 1D 0.68 0.17 0.16 
2005, 3D 0.61 0.25 0.14 
2005, 1D 0.61 0.24 0.15 

 
 
This may have been driven by the large seasonal fluctuations of the state variables and 

their seasonal dependencies.  Percent changes from 3D to 1D analysis were grater in 

2000, where the difference of RG in 3D and averaged analysis was more than 11%.  The 

2000 GG habitat bias (3D-averaged) showed that 3D analysis was leading and was able 

to capture the changes faster early in the season while temperature was generally 

increasing and later in the season when temperature was decreasing.  The averaged 

analysis did not capture short term duration variations.  The 2000, GG averaged analysis 

missed to capture variations as large as 20% in a two week period (Inset Fig. 2.9) 

whereas the 3D analysis exhibited greater local variability.  The maximum bias (absolute 

values) of the three habitats (GG, RG, UI) at each depth layer and output was calculated 

as percent change of volume and plotted for each year (Fig. 2.9,d).  The patterns are 

similar for both 2000 and 2005.  The averaged analysis, where heterogeneity has been 

minimized by horizontally averaging the state variables, shows the largest differences (up 

to 20%) from the 3D occurring at surface layer.  These changes are localized in early, 

mid, and late season where T and DO may be changing rapidly.  Some moderate 

differences (2-8%) between 3D coolwater fish habitat and the averaged analysis are also 
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seen at 6 to 10 m depth.  To demonstrate the T and DO heterogeneity in the lake, the 

range (max-min) of their values for each depth layer at each model output was measured 

and plotted for all of 2000 season (Fig. 2.10).  The largest ranges of T values were 

detected on the surface layer and at the depth corresponding to thermocline and shallow 

areas (6-10 m).  The largest ranges of DO values were also concentrated at these depths 

during the early and late season with smaller concentrations in the deepest areas.  The 

results correspond well to our earlier findings that minimizing heterogeneity of state 

variables in coolwater fish habitat analysis has the greatest impact at surface layer and at 

6 to 10 m depth. 

The 2000 to 2005, 3D analysis compression of coolwater fish habitat, showed a 12% 

reduction in GG, 62% increase in RG and 5% reduction in UI.  These variations could be 

explained in parts by marked changes of the simulated T and DO values and patterns at 

WB from year 2000 to 2005 (Fig. 2.11).  In 2005, horizontally averaged values for water 

temperature in the top 10 m where temperature is more impacted by weather was about 2 

ºC warmer and the DO concentrations were about 1 mgL-1 less than 2000.  Based on our 

defined coolwater fish habitat T and DO criteria, it would be expected that an increase in 

T and a decrease in DO would yield less GG and greater RG conditions as shown by the 

3D analysis.   
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Fig. 2.10.  Range (max-min) of simulated T and DO values at each depth layer and model output 
over the entire year 2000 season, with a lake volume plot showing the accumulative volume at 
each depth. 
 

 
 
 
Fig. 2.11.  Contour plots of simulated T and DO, at WB showing their values and patterns for 
both year 2000 and 2005. 
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2.6. Conclusions  

We successfully validated and applied a coupled 3D hydrodynamic and ecological model 

to a morphologically complex lake.  Measured data reflect a system with large spatial and 

temporal water quality and fish habitat heterogeneity which necessitated the use of 3D 

models to capture its biogeochemical changes.  ELCOM-CAEDYM models were 

selected and configured for this analysis through an intensive calibration and validation 

process.  Simulated and biweekly measured data were used to evaluate model fit.  T 

profiles had a remarkable fit (R2 = 0.98) with DO profiles agreeing very well at the three 

water quality locations (R2 of 0.67 to 0.92) but missing gentle metalimnic oxygen peaks.  

TP (R2 of 0.44 to 0.92) and Chla (R2 of 0.3 to 0.48) agreed reasonably well.  The model 

was able to capture the spatial and temporal biogeochemistry variations including the 

short duration variations that were not detected by the regular biweekly measured data.  

The modeling efforts brought out the need for high quality input measured data.  Input 

data are used as boundary conditions in model configuration, in evaluation against 

simulated data to measure model fit and in sensitivity analysis.  High integrity input data 

are essential in establishing reliable models.  The 2000 measured stream flows proved 

questionable and failed to reflect field conditions.  Measured Chla profiles would have 

offered a rare opportunity to examine the algae growth favorable layer as well as aid in 

model calibration.  The apparent large variation of sediment phosphorous flux in each 

bay, as indicated by their TP, also requires further investigation.  The model captured the 

heterogeneity of the system and showed that a 3D analysis was needed to adequately gain 

insight into its spatial and temporal biogeochemistry distribution.  An example of an 

ecological application is provided by examining and comparing the coolwater fish habitat 

analysis in 3D and under a scenario where spatial heterogeneity was eliminated by 

horizontally averaging T and DO.  The 2000 and 2005 seasons also represented two 

climatologically distinct years.  The seasonally-averaged GG habitat for coolwater of 3D 

and that of 1D analyses agreed well in both years.  However, the averaged analysis failed 

to capture short term duration variations of as much as 20% of the lake volume during a 

two week period.  The largest (20%) differences between 3D and 1D analysis were 
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located in the surface layer with a modest (2-8%) difference around thermocline depth.  

The simulated fish habitat changes from 2000 to 2005 were supported by a 2 ºC warmer 

water temperatures and 1 mgL-1 lower DO levels of measured data in 2005. 

 

  



 

 38 

3. CHAPTER 3 

Three-Dimensional Lake Water Quality Modeling: Sensitivity and 

Uncertainty Analyses 

 

Published as:  Missaghi, S., Hondzo, M., Melching, C., (2013) “Three-Dimensional Lake 
Water Quality Modeling: Sensitivity and Uncertainty Analyses”; Journal of 
Environmental Quality 2013 42:1684-1698. 
 

 

Two sensitivity and uncertainty analysis methods are applied to a three-dimensional (3D) 

coupled hydrodynamic-ecological model (ELCOM-CAEDYM) of a morphologically 

complex lake.  The primary goals of the analyses are to increase confidence in the model 

predictions, identify influential model parameters, quantify the uncertainty of model 

prediction, and explore the spatial and temporal variabilities of model predictions.  The 

influence of model parameters on four model-predicted variables (model output) and the 

contributions of each of the model-predicted variables to the total variations in model 

output are presented.  The contributions of predicted water temperature, dissolved 

oxygen, total phosphorus, and algal biomass contributed 3, 13, 26, and 58% of total 

model output variance, respectively.  The fraction of variance resulting from model 

parameter uncertainty was calculated by two methods and used for evaluation and 

ranking of the most influential model parameters.  Nine out of the top ten parameters 

identified by each method agreed, but their ranks were different.  Spatial and temporal 

changes of model uncertainty were investigated and visualized.  Model uncertainty 

appeared to be concentrated around specific water depths and dates that corresponded to 

significant storm events.  The results suggest that spatial and temporal variations in the 

predicted water quality variables are sensitive to the hydrodynamics of physical 

perturbations such as those caused by stream inflows generated by storm events.  The 

sensitivity and uncertainty analyses identified the mineralization of dissolved organic 



 

 39 

carbon, sediment phosphorus release rate, algal metabolic loss rate, internal phosphorus 

concentration, and phosphorus uptake rate as the most influential model parameters.  
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3.1. Introduction 

Water quality in lakes and reservoirs is subject to the temporal and spatial variabilities of 

climatic and hydrologic processes which, in conjunction with the lake morphometry and 

aquatic basin setting in the watershed, drive water currents.  The resulting water currents, 

temperature (T), dissolved oxygen (DO), algal biomass (Chla), and nutrient 

concentrations, such as phosphorus (P) and nitrogen (N) have inherent spatial and 

temporal variabilities over the lake basin.  Interactions and interactive feedback among 

physical, chemical, and biological processes are nonlinear, dynamic, and far from 

equilibrium (Shigesada and Okubo, 1981; Hondzo and Warnaars, 2008; Sejnohova, 2008; 

Leon et al., 2011; Makler-Pick et al., 2011).  Thus, an advanced three-dimensional (3D) 

representation of physical, chemical, and biological processes of ecosystems is needed to 

capture ecological heterogeneity of ecosystems such as lakes and reservoirs, particularly 

those with complex morphometery (Hodges et al., 2000; Power et al., 2005). 

 

The concept of 3D hydrodynamic modeling implies that the fundamental description of 

physical processes would minimize the calibration process.  3D water temperature 

prediction models of lakes and reservoirs have successfully proven this concept in a 

variety of water bodies and associated climatic and hydrologic conditions (Hodges, 2000; 

Hodges et al., 2000; Romero and Imberger, 2003; Romero et al., 2004; Komatsu et al., 

2006; Spillman et al., 2007; Leon et al., 2011) and have become an essential tool in 

research and resource management (Li and Wu, 2006).  Aquatic environments include 

multiple, complex processes that depend on numerous dependent and independent 

variables across a wide range of scales.  This multi-level scale variability engenders a 

greater variability in the numerical 3D modeling of aquatic systems.  On the one hand, 

3D models are needed to capture the complex and interconnected physical, chemical, and 

biological processes in the aquatic systems (Arhonditsis and Brett, 2005), and on the 

other hand, the 3D depiction and corresponding prediction of state variables such as DO, 

N, P, and Chla generate a substantial number of calibration parameters needed to 

accurately describe the ecological processes of the simulated system.  Additionally, some 
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of these models use appropriate calibration parameters to address subgrid processes that 

are not necessarily resolved or captured at the larger, required computational grid scale 

(Passalacqua et al., 2006), which further increases the complexity of the models and their 

dependence on more parameters.  Therefore, the predictive ability of these models may 

depend upon numerous calibration parameters which work against the fundamental 

concept of minimal calibration needed by 3D modeling.  

 

The purpose of sensitivity and uncertainty analyses of a complex, nonlinear, temporally 

and spatially variable and configurable ecological model is to gain insight about the 

impact of the model parameters on model output and to find a reasonable or best fit set of 

parameters that best respond to available data (Brun et al., 2001).  Sensitivity and 

uncertainty analyses are the appropriate tools for such an exercise and can also be used as 

screening tools to set up the initial simulations where information on model parameter 

values is limited (Arhonditsis and Brett, 2005).  Furthermore, well-designed sensitivity 

and uncertainty analyses of complex models can yield important information about the 

key processes of the systems under study (Mooij et al., 2009: Makler-Pick et al., 2011) 

and about their spatial and temporal variations.  Sensitivity and uncertainty analyses of 

water quality prediction models have been effectively used to quantify how sensitive the 

prediction variables are to changes in corresponding calibration parameters and how 

uncertain the model prediction is due to the variability of the calibration parameters 

(Melching and Bauwens, 2001; Saltelli, 2002; Cacuci, 2003; Arhonditsis and Brett, 2004; 

Saltelli et al., 2006; Manache and Melching, 2008).  The results of sensitivity analysis 

enhance the understanding of the model, increase model reliability, identify influential 

model parameters, and confirm if the model resembles the system under study (Saltelli et 

al., 2000; Saloranta and Andersen, 2007; Zhang and Arhonditsis, 2009).  Sensitivity and 

uncertainty analyses guide which model input requires further investigation in order to 

reduce the uncertainty in model prediction and to set the stage for future research and 

model improvement (Beck, 1987; Burs and Jansen, 2004; Miao et al., 2004; Loucks and 
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van Beek, 2005; Saltelli et al., 2006; Munoz-Carpena, et al., 2010; Salacinska et al., 

2010).   

 

Sensitivity and uncertainty analysis are considered essential components of model 

evaluations (Gaber et al., 2009; Schmolke et al., 2010), but were reported in less than half 

of the modeling investigations published in the 1990 to 2002 (Arhonditsis and Brett, 

2004).  However, many strides have been made in the past two decades in conducting of 

sensitivity and uncertainty analyses for 1D, 2D, and a few other complex ecological 

models.  They have included new definitions and calculation processes (Turley and Ford, 

2009) and in depth description of uncertainty and sensitivity analyses for a multi-year 

simulation model (Saloranta and Andersen, 2007).  Janse et al. (2010), analyzed 

uncertainties of the phosphorus loading parameter influencing the clear and turbid 

equilibrium state in shallow lakes, and Makler-Pick et al. (2011) have conducted a 

detailed sensitivity analyses and have proposed a new approach to screen subsets of 

significance parameters.  A good list of models and the status of their sensitivity and 

uncertainly analyses is provided by Mooij et al. (2010), including static, minimal, and 

complex dynamic lake ecosystem models.  Nonetheless, many of the methods used in 

these investigations are not readily applicable to 3D models due to the intense 

computational cost of ecologically complex 3D models.  Whereas, the increased 

computing power and improvements in numerical models have advanced and increased 

the use of complex 3D ecological models, the sensitivity and uncertainty methods have 

not kept up with that pace (Ravalico et al., 2005).  There is a need for more flexible 

sensitivity and uncertainty analyses methods for 3D ecological models where these 

methods can become an integral part of models and are readily available to modelers.  

Finally, transparent sensitivity and uncertainty analyses can minimize skepticism and 

raise confidence among scientists and the public for the use of complex 3D ecological 

models (Radcliffe et al., 2009).   
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Sensitivity analysis is generally classified into global and local analyses.  In global 

sensitivity analysis, model parameters are changed within a particular region (space) and 

their influence on the model output variability is analyzed.  In local sensitivity analysis, 

the changes in model parameter values are limited to a fixed point in space.  Depending 

on the study’s approach and available data, the fixed point in space can be the first 

statistical moment (mean) from the available literature parameter values, creating a 

reasonable “operating point” (Brun et al., 2001), or from a “best fit” set of parameters 

obtained from the best calibrated model fit against measured data.  In either case, a one-

factor-at-a-time (OAT) approach is employed by changing the value of one parameter 

while the values of all other parameters are kept at their central or best fit values and the 

model output is evaluated against that of the baseline simulations (Van Griensven et al., 

2006; Gaber,  2009).   

 

A detailed application of two local sensitivity and uncertainty analyses methods is 

explored in this paper.  Both methods employ the OAT approach and have been applied 

to a coupled 3D hydrodynamic and ecological model simulating a morphologically 

complex lake.  The results of each method are discussed along with a comparison of the 

two methods.  The model predictions were compared to the measured seasonal patterns of 

the predicted variables in the study area.  Special attention is given to model performance 

during physical perturbations caused by stream inflows generated by storm events.  The 

primary goals of the analyses were to improve the understanding of the complex 3D 

model, gain insight into the ecological processes of the simulated system, increase 

confidence in the model predictions, identify influential model parameters, quantify the 

uncertainty of the model prediction, and explore spatial and temporal model output 

variabilities.   

 

 

 

 



 

 44 

3.2. Materials and Methods 

3.2.1. Analysis Framework and Setup  

The application of the 3D coupled ELCOM-CAEDYM ecological modeling for Lake 

Minnetonka consisted of many steps.  A detailed description of modeling evaluation and 

application of ELCOM-CAEDYM to Lake Minnetonka including model description, 

configuration, set up is provided by Missaghi and Hondzo (2010) and as described in 

chapter one.  The analyses presented in this chapter include the implementation of: a) 

parameterization, calibration, confirmation, and model performance (fit), b) sensitivity 

and uncertainty analyses by two different methods, and c) the process of model parameter 

ranking by importance and their influence on the model prediction.   

 

Sensitivity analysis could be conducted for any set of the model inputs, such as the model 

boundary conditions (Trolle et al., 2008), meteorological (Hondzo and Stefan, 1992; 

Arhonditsis and Brett, 2005; Leon et al., 2005), hydrodynamic (Romero et al., 2004; 

Hurtado, 2007), and field measured data.  In previous work, the boundary conditions used 

for this study were carefully reviewed, corrected with few modifications, and proved 

accurate.  However, the predicted biological variables proved to have the greatest spatial 

and temporal variabilities similar to the field measured data and representative of the 

system.  The objectives of sensitivity and uncertainty analyses conducted in this study 

were focused on the variability of model parameters, the parameters’ influence on model 

output variance, and ranking the influence of the most significant parameters on model 

predictions.  

 

3.2.2. Model calibration and confirmation 

Over 750 values of 80 model parameters were obtained from their published values 

(Hamilton and Schladow, 1997; Schladow and Hamilton, 1997; Romero et al., 2004; 

Bruce et al., 2006; Hipsey et al., 2006; Hipsey, 2008; Gal et al., 2009).  Minimum, 

maximum, mean, number of samples (n), and standard deviation (σ) of published values 
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of each of the parameters were determined (Table 2.2).  The averaged values of each of 

the 80 model parameters, or the most appropriate values used in similar studies, were 

used to form a reasonable operating set of parameter values as a starting point for model 

parameterization and calibration.   

 

The entire simulation period from Mar. 29 to Oct. 20, 2000, (205 days) was used for 

model calibration.  The model calibration process began with the minimal number of 

model processes and model state variables simulated.  Gradually and iteratively, 

additional model processes and predicted variables were included in model simulations.  

This step wise approach proved very time and effort intensive.  But, by focusing on 

specific parameters and processes the approach made clear any potential errors in the data 

and model setup as well as provided a greater depth of understanding of the system 

(Hipsey et al., 2006).   

At the end of each simulation, 12 biweekly measured field data of T, DO, TP, and Chla 

from the vertical profiles of the deepest sampling location (WB) were evaluated against 

their corresponding model control volume point in time and space.  The weighted square 

sum (WSS) parameter estimation procedure, described by Omlin et al. (2001), was used 

for model parameter calibration.  The WSS is the sum of the squares of the residuals 

divided by a scale: 

2
y t .
k 1 1 .

, , ( , , )
WSS( )=   k i

k

Zy meas k k j yk
j meas y

y j i y t z θ
θ σ= =

− 
 
 

∑ ∑ ∑  (1) 

where the index i  represents the spatial (vertical) locations from 1 to the total number

( )
kyZ  of depth field sampling locations for model predicted variables ( )ky  wherek  

represents T, DO, TP, and Chla model outputs.  The total vertical profile points 

represented by 
kyZ  is not the same number for all model predicted variables, as some 

variables are sampled at different water depth intervals.  Index j  is time (t )j  from 1 to 

the total number of dates (t)  where measured profiles were used.  Model predicted 

variables calculated with the parameter value ( )θ  are represented by ( ) , ,
ki

k y jy Z t θ  and 
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corresponds to the same location and time of the measured data .( , j,i )meas ky .  Different 

scale factors, or the standard deviation of the measured variable 
.

( ) 
meas kyσ   with the same 

units as the model output, can be used to make WSS dimensionless and to give all model 

predicted variables similar influence in the parameter estimation.  The WSS was used to 

assign optimal estimates of the 80 model parameters.  These sets of parameters were used 

to create the assigned values for the best fit set of parameters (Table 2.2) and to develop a 

reference model output used for calibration and confirmation.   

 

From this set of parameters, the calibrated parameters with the smallest values of WSS 

were selected for the sensitivity and uncertainty analyses.  To strengthen the analyses, all 

simulations of evaluated parameters with less than five prior data points (i.e. n in Table 

2.2) were excluded from consideration in the sensitivity and uncertainty analyses.  A total 

of 29 parameters remained that are listed in Table 2.2.  The values for the biological 

parameters of standard (Tsta), maximum (Tmax), and optimum (Topt) temperature 

representations were assigned considering regional climate conditions and field data.  The 

published values reported for these three parameters associated with CAEDYM are from 

studies conducted in relatively much warmer climate and water temperature than the 

current study area.  Consequently the assigned values for Tsta, Tmax, and Topt parameters 

are lower than their reported ranges.  Particularly, Topt was set at a lower value to initiate 

early season Cyanobacteria growth and to capture the smaller portion of diatom growth, 

i.e. the algal group that grows first in the early season but were not included in the model. 

 

The agreement between prediction and measurement was quantified by using the 

coefficient of determination (R2) as computed by the Ezyfit Toolbox in Matlab software 

(The MathWorks, Inc., R2008b).  The measured data of T, DO, TP, and Chla from the 

vertical profiles of the three different sampling locations (bays) within the study area 

were plotted against each of their corresponding model control volume point in time and 

space on a scatter plot and their R2 computed.  Additional insights were gained by 

examining and evaluating profiles of each model prediction against meteorological data 
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and stream inflows to the lake.  The profiles of all variables were also qualitatively 

examined by eye for patterns and times of maximum and minimum.  This review was 

particularly valuable in evaluating the simulated algal growth (Robson and Hamilton, 

2004; Bruce et al., 2006; Hipsey et al., 2006).  The model was then run with the same 

configuration, parameter values, and setup for 168 days of confirmation period (Apr. 25-

Oct. 10, 2005).  Evaluation of agreement (goodness of fit) between model predictions and 

field measured data as measured by R2 for both the calibration and confirmation periods 

from all three water quality stations are listed in (Fig. 2.6).  

 

The model accurately simulated lake water level under the two hydrologically distinct 

periods of calibration (2000) and confirmation (2005) years.  The mean difference of 

water level between the simulated and measured water levels (n = 151) for both years 

was 0.05 m with a standard deviation of 0.06 m and a range of  -0.26 to +0.15 m.  The 

simulated (2000) seasonal average of evaporation volumetric flux (0.64 m) agreed very 

well with the reported field value (0.77 m) (MCWD-2008).  Both results indicated an 

accurate modeled water balance.   

 

The model reference simulation,( )mg θ , for the calibration period, predicted the spatial 

and temporal variabilities of T, DO, TP, and Chla.  Temperature predictions were 

excellent (R2 =0.98).  DO profiles agreed well at all of the three measuring locations 

(0.67–0.92) but missed gentle metalimnic oxygen peaks. TP (0.46–0.83) and Chla (0.38–

0.48) agreed reasonably well (Fig. 2.6).  The model was able to capture the spatial and 

temporal variations of the physical, chemical, and biological processes of the system.  

Specifically, the model was able to capture the drastic short duration (less than 1 week) 

variations of the system that were not detected by the regular biweekly measured data but 

were well documented by simulated DO changes in HB. 

 

3.2.3. Model sensitivity and uncertainty analyses 
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The 3D hydrodynamic model, ELCOM, uses physical processes that are well defined 

(Hodges and Dallimore, 2008) and it requires minimal calibration with most of its model 

parameters set at fixed values.  However, the focus of this study was to evaluate the 

model output sensitivity to model parameters of the ecological model, CAEDYM, which 

relies on numerous model parameters (Hipsey, 2008), depending on model configuration 

and model processes invoked during the model setup.  The large number of parameters 

and the simulation computation cost (24 h per simulation for the full calibration period, 

using 2526 Mhz X86-based PC) were also a few of the major criteria for selection of the 

sensitivity analysis methods and only a few methods could realistically be considered 

(Melching and Bauwens, 2001; Ravalico et al., 2005; Van Griensven et al., 2006; Van 

Griensven and Meixner, 2007; Salacinska et al., 2010).  The Mean Value First-Order 

Reliability (MFOR) method described by Melching and Bauwens (2001), and the Mean 

Square Root (MSQR) method described by Omlin et al. (2001) were selected to address 

the research objectives.  Both methods assume linear correlation between the changes in 

model parameters and model predictions, use differential and correlation analyses, and 

the OAT approach (local sensitivity) to measure the effect of variability in the model 

parameters on the uncertainty of the model prediction (Brun et al., 2001; Melching and 

Bauwens, 2001; Omlin et al., 2001). 

 

Initially, the top 40 calibrated parameters with the least values of WSS were selected and 

a total of 40 model simulation runs, ( )g ιθ , were conducted for the sensitivity and 

uncertainty analyses.  However, 11 simulation results were excluded due to lack of 

sufficient prior parameter data points or unreliable simulation results.  All further 

sensitivity and parameter ranking evaluations and analysis are based on the remaining 29 

parameters (Table 2.2).  No other modifications were made to the data. 

 

Although 29 parameters were included in these analyses, only a few were expected to 

contribute significantly to the uncertainty in the model prediction.  It is clear for example, 

that if 5 parameters out of a list of 100 parameters were to contribute more than 50% of 
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the total model variance, then the average individual contribution of all of the remaining 

parameters would be drastically less (Saltelli, 2008). 

3.2.4. Mean Value First-Order Reliability (MFOR) method 

The MFOR method (Burges and Lettenmaier, 1975; Scavia et al., 1981a, b; Chadderton 

et al., 1982; Melching and Bauwens, 2001) relies on the statistical moments of the 

estimated model parameters ( ) θ   and the model sensitivity to yield the variance of model 

prediction variables (model outputs,ky ).  The model sensitivity is evaluated about the 

best fit values of model parameters ( ) mθ   and is represented by 
( )g ι

ι

θ

θ

∂

∂
 where ( )g �  is 

the function representing the model prediction variables and is computed by the forward 

difference numerical approach 
( ) ( ) 

   
 

m

m

g gι

ι

θ θ

θ θ

 −
 

− 
  with ιθ  as the “ith” parameter.  All 

parameters are perturbed uniformly using a  θ∆   of 10%, (  )m mιθ θ θ= + ∆ , except for 

parameters of the temperature multipliers where a θ∆  of 1% was used instead.  

The MFOR method implies (Melching and Bauwens, 2001) a first-order truncated Taylor 

series expansion of ky : 
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                                     (2)  

where the ι  index represents the number of model parameters (θ) from 1 to p , and the 

expected (mean) value (E) and variance ( 2)
kyσ , given the case of statistically 

independent model parameters, can be approximated by: 

( ) ( )k mE y g θ≈
                                       (3)  
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where 
kyσ  is the standard deviation of ky , and ισ  is that of model parameters ιθ  

(derived from literature values, Table 2.2). 

 

The fraction of variance resulting from each parameter for each model prediction variable 

( )kFOV y
ιθ  was calculated by dividing the variance contributed by that parameter, 

( ) kvar y
ιθ
 by the total variance contributed by all parameters, ( ) kvar y :  

( )

( )

( )

2
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ι

ι θ
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σ

θ

  ∂
   ∂  =

  

(5) 

The dimensionless ( )kFOV y
ιθ  was used to evaluate the influence of each parameter ( )ιθ  

within each of the model outputs ky  (T, DO, TP, and Chla).  The average of the  

( )k m
FOV y

ιθ  of all four model outputs was calculated for each parameter and used in 

ranking the influence of model parameters on model predictions. 

3.2.5. The Mean Square Root (MSQR) method 

The MSQR method (Omlin et al., 2001) is based on the concept developed by Brun et al. 

(2001) stating that the uncertainty (variance) contributed by a model parameter (θ ) is 

defined as: 

( ) ( )1
 msqr S

nιθ ιδ θ θ=
  

(6) 

where n is the number of total sampled data, ( )Sι θ  is the norm (positive values) of the 

dimensionless sensitivity measure ( )Sι θ , defined as: 
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The uncertainty (σ)  contribution of each parameter  ( )ιθ  to the uncertainty results of the 

simulated model predicted variable  k simly  is expressed as: 

( ) ( )
 , 

 ,
k simly

g
z t

θ ιι

ι
θ

ι

θ
σ σ

θ

∂
=

∂   
(8) 

and is made dimensionless by division with the standard deviation of the measured 

variable ( )
kyσ .  This allows a measure of sensitivity of  k simly  as influenced by  ιθ , by 

averaging the squares of the dimensionless error contributions of all corresponding model 

state and measured variables for all points in time and all sampling locations: 
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The ( )kFOV y
ιθ , 

1

msqr

p msqr

ι

ι

θ

θ

δ

δ∑
 , was used to evaluate the influence of each parameter ( )ιθ  

within each of the model outputs, ky  (T, DO, TP, and Chla).  The sum of ( )kFOV y
ιθ  of 

the four model outputs (T, DO, TP, and Chla) was computed for each parameter and used 

in ranking the influence of model parameters on model predictions.  The dimensionless 

( )msqr

ιθδ θ  is a global sensitivity (across all model outputs) of total model outputs to each 

model parameter.  This made it possible to calculate the FOV contributed by each model 

output ( )ky  to the total model variance, by: 

1 1
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The 
kyFOV  was used to compare the influence of each model output to the total model 

variance and to identify the most influential model output.  
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3.3. Results and discussion 

3.3.1. Influence of model parameters on model predicted variables 

The FOV
ιθ  in each individual model output (T, DO, TP, and Chla) were computed by the 

MFOR and MSQR methods and the most influential parameters for each model output 

were selected for analysis (Fig. 3.1). 

Fig. 3.1.  Percent of fraction of variance (FOV) contributed by the top ranking parameters within 
each of the four temperature (T), dissolved oxygen (DO), total phosphorus (TP), and algal 
biomass (Chla) model outputs as analyzed by a) Mean Value First-Order Reliability, and b) the 
Mean Square Root methods. 
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Modeled temperature output  

The three biological model parameters – minimum internal P concentration (IPmin), half 

saturation constant for phosphorus (KP), and maximum mineralization of dissolved 

organic carbon to dissolved inorganic carbon (DOCmax) – were rated as the highly 

influential parameters but ranked differently by the two methods.  Cumulatively, IPmin 

(38%-average of the two methods), KP (31%), and DOCmax (6%) together explained 75% 

of the total variance of model temperature output contributed by the 29 tested parameters 

(Fig. 3.1).  In the CAEDYM model temperature prediction is impacted by light (I, 

2 1µmol photons m  s )− −  attenuation that penetrates into the water according to Beer’s Law 

 ( ) 0,    PAR

PAR

Z
PARZI f I eη

η =
 (12) 

where in the case of the photosynthetically active radiation (PAR) fraction, ( ), PAR ZI η is the 

intensity of PAR at depth Z, and 0I is the incident shortwave intensity.  ( ), PAR ZI η  is 

influenced by the PAR extinction coefficient ( )PARη  which in turn is dynamically 

calculated at each time step depending on concentrations of algal biomass (A )a , 

suspended particle concentration (SSS ), particulate organic carbon ( )POC , and 

dissolved organic carbon (DOC) concentration. 

 
         PAR w A a SS S POC DOC

a S POC DOC

A SS POC DOCη η η η η η= + + + +∑ ∑ ∑ ∑
 

(13) 

The higher ranking parameters of IPmin and KP influence algal biomass where Microcystis 

relies on the stored internal P to grow when the available P becomes scarce in the water 

column.  Therefore, in a P limited system, Microcyctis growth is influenced by the level 

of the minimum internal P concentration and its biomass ultimately influences the 

extinction coefficient (Eq. 13).  The sensitivity of the extinction coefficient variability to 

IPmin reflects a P limited system.  Similarly, the DOCmax influences the dissolved organic 

carbon (DOC) concentration in the water column which impacts the extinction 

coefficient.  All three parameters ultimately influence temperature.   
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Modeled dissolved oxygen output 

The oxygen rate equation in the DO module as configured in CAEDYM included 

atmospheric flux (ATM), algal group photosynthetic oxygen production (PHY) and 

respiration consumption (R), oxidation through nitrification (OXD), sediment oxygen 

demand (SED), and oxygen uptake through organic matter decomposition (BOD).   

 
2 2 2 2 2 2

  ATM PHY R OXY SED BOD
O O O O O O

DO
f f f f f f

t

∂
= + − − − −

∂  
(14) 

The sensitivity analyses showed that the three parameters of DOCmax, KP, and density of 

particulate organic matter particles (POMDensity) were most influential and they were 

ranked in the same order by both methods (Fig. 3.1).  The three parameters explained 

about 65% of the total variance observed in DO model output.  The DOCmax parameter is 

most dominant in the BOD processes and specifically in the utilization (UDOC) of oxygen 

through mineralization of organic matter (Eq. 15) 

 ( ) ( )
2:    DOC max O CU DOC f DO f T DOC Y=

 (15) 

where 
2:O CY  is the conversion of carbon to DO.  The rate of the dissolved inorganic (DI) 

nutrients (C, N, and P) that is available to algae controls algal biomass and in turn the DO 

production.  Bacteria, responsible for mineralization of dissolved organic carbon to 

dissolved inorganic carbon, were not simulated; however, their nutrient uptake was 

considered as part of the DOCmax parameter.  Similarly, Chen et al. (2002) demonstrated 

that the maximum dissolved organic P uptake rate by bacteria in Lake Michigan was the 

top ranking parameter in the sensitivity analysis.  The model parameter KP is used by 

CAEDYM to model the algae internal phosphorus dynamics, which directly impacts algal 

growth and, consequently, DO concentrations.  The POMDensity determines the availability 

and the rate of dissolved organic matter mineralization where heavier particulate organic 

matter would settle faster and minimize their availability for mineralization.  Bruce et al. 

(2006) suggested POMDensity as the parameter to which CAEDYM was most sensitive in 

the prediction of DO dynamics in Lake Kinneret, Israel, and Romero et al. (2004) 

identified particle settling and resuspension parameters as essential in improving the algal 

growth component of the model.   
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Modeled total phosphorus output 

The phosphorus rate equation in CAEDYM as configured includes PO4, as simulated in 

the model and reported as the filterable (soluble) reactive phosphorus (FRP), dissolved 

organic phosphorus (DOP), and particulate organic phosphorus (POP). 

Total Phosphorus, TP FRP DOP POP= + +  (16) 

The model parameters of the sediment release rate of phosphorus (SmpPO4), POMDensity, 

and DOCmax explained about 85% of the variance for TP model output.  The FOV of 

SmpPO4 calculated by the MFOR method (82%) was near twice as large as that estimated 

by the MSQR method (45%).  However, all three parameters were ranked in the same 

order by the two methods (Fig. 3.1).  The parameters SmpPO4 along with the parameter 

of the sensitivity of PO4 flux to the overlaying concentration of DO (KOxS-PO4) are used 

in the CAEDYM static sediment model to determine the release of FRP from sediment  

 
( ) ( )4

bot

1SmpPO   ZFRPf f DO f T  =  
   

(17) 

where botZ  is the layer above the sediment-water interface and ( )DOf  is defined as: 

 
( ) ( )

( ) bot

KOxS PO4
DO  

KOxS PO4 DO
f

−
=

− +  
(18) 

The hypoliminic TP concentrations are negatively correlated (R2= -0.86) with the 

depletion of overlaying DO concentrations that become anoxic early in the season (Fig. 

3.2).  Therefore, SmpPO4 becomes an influential parameter as it regulates the release rate 

of PO4 from sediment into the water column (internal loading) where it is readily taken 

up by algae and directly impacts biological components and geochemical cycles 

(Christophoridis and Fytianos, 2006; Belmont et al., 2009; Radcliffe et al., 2009).  The 

timing and the degree of hypoliminic anoxic condition determines the magnititute of the 

internal loading and its consequences on water quality. 
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Fig. 3.2.  Simulated time series of dissolved oxygen (DO Bottom) and total phosphorus (TP 
Bottom) at 1 m above the sediment bed, and TP at 1 m below the water surface (TP Surface). 

Modeled algal biomass output 

The three most influential model parameters DOCmax,, the respiration rate coefficient 

(respiration and metabolic loss, kr), and the temperature multiplier function ( bTθ ) 

explained 55% of the observed variance within the model predicted Chla.  The high 

ranking of the DOCmax parameter represents the cycle of mineralization of DOC to 

dissolved inorganic carbon (DIC) and eventual biological uptake and it relates to bacteria 

responsible for mineralization of DOC to DIC.  POMDensity regulates the availability of 

DOC mineralization and is essential in providing nutrients in the algal growth model.   

 

The respiration rate coefficient influences the photosynthetic oxygen production: 
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( ) ( ) ( ) ( )

2 2: : (  T min N , P , kr)   PHY
O max O C C Chlaf P f f f P I Y Y A = −   

(19) 

where : C ChlaY , is the stoichiometric factor that converts chlorophyll a to carbon.  The 

respiration rate coefficient (kr), also influences the general loss term (L) used in the 

model  

 
T 20

rp krθT  kr gL µ−= +
 (20) 

where gµ  is algal growth rate, g  represents Cyanobacteria, the phytoplankton group 

configured in the simulations, and rpk  is the fraction of production lost during 

photosynthesis.  Together, the components of the total loss term include the constant loss 

fractions such as respiration, excretion, particulate matter (detritus), and settling.  Loss 

rate is then multiplied by the dynamic internal nutrient concentrations to determine 

metabolic loss due to mortality and exudation.  The IPmin parameter itself did not rank as 

high as expected but it does influence the loss term which was ranked high.  Grazing by 

zooplankton was not specifically configured in the model, but was lumped into the loss 

term kr .  The sensitivity of the model to the loss term is important because it shows that 

predation could be an important factor and necessitates the modeling of zooplankton 

which may also better highlight the influence of IPmin on algal biomass. 

 

Algal growth depends on availability and rate of mineralization (DOCmax) and its 

magnitude is determined by θTb where gµ is modeled by maximum potential growth rate 

( maxP ) at 20 ⁰C multiplied by bTθ , and the minimum value of expressions for limitation 

by light, phosphorus, and nitrogen.   

 
( ) ( ) ( ) ( ) min I ,   N ,   P  Tg maxP f f F fµ  =    

(21) 

The maximum growth is achieved at the optimum temperature (Topt) with zero growth 

over the maximum temperature (Tmax). 

 

It is worth mentioning that the other temperature related parameters, Tmax and Tsta were 

ranked as the 11th and 12th highest ranking parameters by both methods (not shown).  The 
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model sets the growth rate to zero for any temperature above Tmax, and for any 

temperature below Tsta, it follows an exponential relation similar to the loss term with 

temperature multipliers determining the slope of the growth rate.  The sensitivity of the 

model outputs to algae temperature related parameters are a consequence of the 

dependencies of algal biomass on temperature.  This is important because the study area 

has a large horizontal (spatial) temperature heterogeneity that may lead to increased algal 

biomass within different bays with similar geochemical concentrations; therefore, algal 

spatial distribution has significant ecological importance (Robson and Hamilton, 2004; 

Salacinska et al., 2010; Wu et al., 2010). 

 

The total influence of the three highest ranking model parameters on the total model 

variance is less for Chla than for the other model outputs.  This result indicates that 

model predicted Chla sensitivity is spread over a larger number of biological model 

parameters.  A process that further exacerbates the problem is the model configuration 

setup where different sets of model routines or groups of phytoplankton can be 

configured simultaneously, leading to an increased need for an additional number of 

parameters and expanded parameter intra-dependency.  Up to seven groups of 

phytoplankton may be configured in CAEDYM, and each group has its own set of 

biological model parameters which multiplies the number of total model parameters.  

There is also a large interdependence between the different functional groups (Mieleitner 

and Reichert, 2008) which compounds the complexity.  The biological parameter 

identifiability also involves neighboring parameter sets where the value of one parameter 

depends on and can influence the values of other parameters and different sets of values 

of parameters may lead to similar simulation results (Beck, 1987; Mieleitner and 

Reichert, 2008).  Therefore, a universal set of best parameter values may not be 

identified.  For that reason, the Cyanobacteria group was the only algae group configured 

in the simulations in order to keep the number of parameters manageable.  Furthermore, 

the Cyanobacteria group constitutes of nearly 80% of the total algae in the system.   
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3.3.2. Model parameter ranking  

The fraction of variance of every parameter (FOV
ιθ ) was calculated by the MFOR 

 and MSQR methods and used for evaluation and ranking of the most influential model 

parameters.  The results of the two methods agreed very well (Fig. 3.3).  On average, the 

MFOR ranking method had a 30% larger slope (faster accumulation of the proportion of 

the total variance for the highest ranking parameters) than for the MSQR method.  In the 

MFOR method the first four highly ranked parameters (DOCmax, SmpPO4, IPmin, and KP) 

explained over 70% of the total variance of model predictions.  However, the MSQR 

method required the contribution of seven parameters (DOCmax, SmpPO4, kr, KP, 

POMDensity, θTb, and IPmin) to reach the same level.  The ranking of the first and second 

most influential parameters (DOCmax, SmpPO4) were the same for both methods, but the 

ranking order of the other top ranked parameters were different.  Nonetheless, nine out of 

the top ten parameters were identified by both methods (Fig. 3.3).  The four parameters 

related to sediment nutrient and DO flux (SmpPO4, sSOs, KOxS-PO4, and KSOs) were 

all in the top 10 ranking model parameters (Fig.3.3), a fact that reflects the system’s 

potential sensitivity to internal loading. 
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Fig. 3.3.  Model parameter ranking measured by the fraction of variance (FOV) contribution by 
each parameter (values in parenthesis) and evaluated by the Mean Value First-Order Reliability 
(dark line) and the Mean Square Root (gray line) methods. 

 
 

3.3.3. Contributions of model predicted variables to total variance  

The dimensionless sensitivity measure, ( )msqr

ιθδ θ , derived by the MSQR sensitivity and 

uncertainty method created a gauge for the global sensitivity of total model outputs to 

each model parameter (Omlin et al., 2001) that made it possible to calculate the 

contributions of each of the model predicted variables (
kyFOV ) to the total model output 

variation.  The results showed that the model predicted biological component (Chla) had 

the greatest contribution to the total model variance followed by TP, DO, and T output 

with FOV contributions of 58, 26, 13, and 3%, respectively.  This corresponds well with 



 

 61 

the results of the model goodness of fit (R2) from the model calibration process where T 

had the best fit and the biological component of the model (Chla) had the poorest fit 

between the measured data and simulated model predicted variable (Fig. 2.6).  In this 

case, the FOV of each model output was defined as their contributed variability (1-R2) 

divided by the total of the four model output variabilities.  The FOV of model predicted 

variables derived from calibration process correlated very well with those derived from 

the MSQR method (Fig. 3.4).   

 
Fig. 3.4.  Comparison of the fraction of variance (FOV) contributed by each model predicted 
variable of temperature (T), dissolved oxygen (DO), total phosphorus (TP), and algal biomass 
(Chla) to the total model variance as derived by Mean Square Root (MSQR) method and model 
calibration process for West Upper Bay location. 
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The relative parameter contributions to each model predicted variable and the relative 

variability contributed by each model predicted variable to total model variability is 

shown in Figure 3.5.  The analysis confirms the earlier observation that Chla output 

sensitivity is spread over a larger number of parameters, with almost 40% of the variance 

depending on all other lower ranking parameters.  The results show that there are model 

outputs (T, DO, TP, Chla) of specific influential parameters which reflect the design of 

rate equations and their sensitivity to these parameters.  However, there are also 

parameters that influence multiple model predicted variables reflecting the interaction of 

various processes.  The analyses of these parameters and their related processes have 

yielded a greater understanding of ecological processes of the system (Makler-Pick et al., 

2011). 

 
Fig. 3.5.  Contributions of model predicted variables to total model variance measured by 
percent fraction of variance (FOV) of each output (T, DO, TP, and Chla) to the total model 
variance.  The contributions of model parameters within each of the model output variables also 
are shown. 
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3.3.4. Spatial and temporal visualization of model uncertainty 

The average model predicted variables (model outputs) along with their standard 

deviation (σ) and coefficient of variation (COV) were plotted on contour maps to 

visualize the spatial and temporal variabilities of model uncertainty (variances) (Fig. 3.6).  

Starting mid-June, the concentration of DO is rapidly depleted at depths below 9 m and 

its value in the control volume approaches zero.  This creates a situation where the COV 

(σ/average) becomes infinity; therefore, the DO plots were not included in the analyses.   

 

The impact of seasonal meteorological forces on the model outputs are readily observed 

(Fig. 3.6).  The water temperature gradually increases from 4 ⁰C at the start of the season 

in April to 26 ⁰C in July, and gradually decreases down to 14 ⁰C at the end of the 

simulation period in October.  Whereas, for the same periods, DO (not shown) starts at 

about 14 mgL-1, then gradually declines to 5 mgL-1, and gradually rises again to about 10 

mgL-1.  On the other hand, TP stays below 0.03 mgL-1 until July 7th (the largest rainstorm 

and stream inflow event), and then steadily increases to near 0.12 mgL-1.  The influence 

of Chla on DO and TP concentrations also is evident.  In the hypolimnion, a steady 

increase of TP, initiated by anoxia, is observed as well.   

 

Model uncertainty appeared to be concentrated around certain depths and dates (e.g., 

April 26; July 6-22; and August 12-17) (Fig. 3.6).  An analysis of these dates revealed 

that they closely corresponded to stream inflow into the lake generated from rainstorm 

events.  Previous investigations of lake model results had indicated that the lake 

hydrodynamic and ecological processes area are sensitive to mixing due to inflow and 

wind variabilities as observed in similar investigations (Scavia and Fahnenstiel, 1987; 

Asaeda, et al., 2001; Chen et al., 2002; Robson and Hamilton, 2004; Hondzo and 

Warnaars, 2008).  It was also observed that periods with extreme, sudden, and short term 

duration of varying DO concentrations in the water column were driven by stream inflow 

events 
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Fig. 3.6.  Contour plots of spatial and temporal variabilities:  a) average  model output (T, TP, 
Chla), b) standard deviation (σ) of the model outputs from the sensitivity analysis of the 29 model 
parameters; and c)  coefficient of variation (σ/average). 

 
 
The spatial and temporal model uncertainties were further evaluated by analyzing the 

COV of model outputs at three different fixed water column layers.  These values were 

plotted against the flow of a major stream (Six Mile Creek) that contributes 25% of the 

total inflow to the lake.  The COV in each of three depth averaged layers of top (top 8 

m,), middle (8.5-10 m), and bottom (10.5-25 m) showed a distinct pattern and behavior.  

The impacts of spring and late season water column mixing, summer stratification, and 

stream event inflows on model outputs are readily observed (Fig. 3.7).  In the top layer, 

DO correlated best (R2 values in parenthesis) with Chla (0.88) and TP (0.52) outputs.  

The rapid rise of the COV (greater model output uncertainty) for both DO and Chla are 

preceded by the largest streamflow event.  In the middle layer the COV of T correlated 
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best with that of Chla (0.77) and DO (0.41), followed by correlation between Chla and 

TP (0.32).  Rapid COV fluctuations of DO are focused in periods of the largest inflows.  

The largest COV values of Chla are observed later in the season in the same period of the 

largest streamflow events and the largest COV values of T are during the spring 

streamflow events.  In the bottom layer, the COV of Chla correlated best with T (0.7) and 

TP (0.61) followed by the correlation between T and TP (0.45).   

 

Generally, the largest values of COV coincide with the stream inflow to the lake 

generated from rainstorm events in the top and middle layers and it appears that model 

performance is most sensitive to changes of parameter values during these periods.  

These findings are supported by the authors’ previous findings that the greatest range 

(max-min) of model output values in each control volume were near the thermocline and 

on the surface (Missaghi and Hondzo, 2010).  The results suggest that spatial and 

temporal variations of the model outputs are sensitive to the hydrodynamics of physical 

perturbations such as stream inflows.  
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Fig. 3.7.  Comparison of the stream flow (m3s-1) with the coefficient of variation (COV) of the 
model output temperature (T), dissolved oxygen (DO), total phosphorus (TP), and algal biomass 
(Chla) in a) upper, b) middle, and c) bottom water layers where multiplication factors for the right 
hand side Y axis are (0.00125, 0.033, 0.05, 0.2), (0.0033, 1, 0.05, 0.1), and (0.0009, --, 0.02, 0.1), 
respectively. 

3.4. Conclusions 

A 3D coupled hydrodynamic and ecologic model was applied in a morphologically 

complex shallow lake.  The model parameter estimation, sensitivity and uncertainty 

analyses by two methods, and parameter sensitivity ranking were presented.  The most 

influential model parameters in the simulation of model output variables T, DO, TP, and 

Chla were successfully ranked by the MFOR and MSQR methods and the results agreed 

very well.  Seventy percent of the total model output uncertainty (variance) was 
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explained by the four highest ranked model parameters (DOCmax, SmpPO4, IPmin, and KP) 

using the MFOR method and the seven highest ranked parameters (DOCmax, SmpPO4, kr, 

KP, POMDensity, θTb, and IPmin) using the MSQR method.  However, the parameters 

influenced the variance of each model output differently based on model equations and 

the ecological processes of the system.   

 

The three model parameters of IPmin, KP, and DOCmax explained 75% of model predicted 

T variance.  DOCmax, KP, and POMDensity contributed 65% of the variance observed in DO 

model output with DOCmax as the most prominent parameter.  SmpPO4, POMDensity, and 

DOCmax explained 85% of the variance of model predicted TP variable.  Model 

simulations suggest that the lake is strongly sensitive to internal loading, a fact that 

should be considered in any future management schemes. 

 

The model outputs of T, DO, TP, and Chla contributed 3, 13, 26, and 58% to the total 

model variance, respectively.  This corresponded with the model performance (fit) (Fig. 

2.6).  The Chla output sensitivity was spread over a larger number of parameters, with 

almost 40% of the variance depending on all other lower ranking parameters.  The 

analysis highlighted the need for a greater understanding and number of field 

measurements of biological model parameters and inclusion of zooplankton in the model.  

The sensitivity and uncertainty analyses were limited to model predictions at only one 

location in the study area.  Future work should evaluate model sensitivity at more than 

one location (bays) to aid in establishing a stronger set of best fit model parameter values 

with greater transferability (universality). 

 

Contour maps of COV of the model predictions showed that COV values were the 

greatest around specific depths and time periods.  In the epilimnion and thermocline the 

largest values of COV coincided with streamflow events where model performance is 

most sensitive to changes in parameter values.  Therefore, simulation periods selected for 

3D sensitivity and uncertainty analyses must include periods with appreciable rainstorm 
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events and corresponding inflows to the lake.  Such an approach may also improve the 

water quality monitoring plans and regimes to better capture the system processes that 

happen at different scales and during the growing season, and to reveal any needs for 

additional field data.  The application of the two sensitivity and uncertainty analyses have 

expanded the understanding of a 3D coupled hydrodynamic and ecological model 

sensitivity to its parameters and the interaction of various ecological processes within a 

morphologically complex system.  

 

 

  



 

 69 

4. CHAPTER 4 

Influence of fluid motion on growth and vertical distribution of 

Cyanobacterium Microcystis aeruginosa 

 

Microcystis aeruginosa (Microcystis) is rapidly becoming one of the dominant alga in 

lakes surrounded by urban and agriculture dominated landscapes.  We conducted 

laboratory study by measuring the population growth and vertical distribution of 

Microcystis in a Plankton Tower bioreactor.  An oscillating grid was installed on the top 

of one of the columns in the Plankton Tower and operated at selected frequencies of 0.5, 

1, 1.5, 2, and 3 Hz to generate turbulence with negligible time-averaged fluid flow.  The 

effects of fluid motion on Microcystis growth rate and vertical variations were evident by 

a 32% and 246% increase in growth rate and vertical cell concentration corresponding to 

a depth-averaged energy dissipation rate (ε ) of 1.3 x 10-6 m2s-3 in the Plankton Tower.  

Turbulent conditions generated at ε >3 x 10-6 m2 s-3 suppressed the growth of 

Microcystis and for ε < 3 x 10-7 the fluid flow had a minimal impact on growth.  The 

laboratory results indicated that ε  in the range from 3 x 10-7 to 3 x 10-6 m2 s-3 facilitated 

Microcystis growth.  Findings from this study can facilitate a greater understanding of 

physiology and spatial distribution of Microcystis in aquatic ecosystems.  The results will 

be instrumental in developing mechanistic models of spatial and temporal variabilities of 

Microcystis that can enhance management of aquatic ecosystems.   
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4.1. Introduction  

The cyanobacterium Microcystis aeruginosa (Microcystis), is one of the algae groups that 

is rapidly exploiting a growing number of eutrophic lakes that are fed by excessive urban 

and agricultural runoff (Kearns and Hunter, 2000).  Cyanobacteria are remarkably well 

adapted to live in a wide array of ecosystems with extreme physical and chemical 

conditions (Ferris and Hirsch, 1991; Whitton and Potts, 2000; Visser et al., 2005).  

Microcystis naturally form mucilaginous colonies or coenobia (20-400 µm) and can gain 

positive buoyancy by regulating their gas vacuoles and through synthesis of their 

carbohydrate content (Reynolds, 2006; Hunter et al., 2008; Šejnohová, 2008; Wang et al., 

2010).  Under certain environmental conditions Microcystis population may bloom, 

which is to grow at a very rapid rate and reach extremely high cell densities.  It is 

suggested that in the absence of a critical wind speed (such as >3 ms-1) the colonies in a 

bloom float to the water surface and form a dense layer called scum (Wu and Kong, 

2009).   

 

The Microcystis blooms and its associated scums may create foul odors and tastes, shade 

other organisms, severely alter the flow of food and carbon, and deplete oxygen from 

bottom waters through their decomposition after die-off and cause fish kill, (Paerl et al., 

2001; Haven, 2008).  Microcystis are the leading producers of the toxin microcytins and 

are a serious health hazard to wildlife and human health globally (Dokulil and Tebner, 

2000; Efteland, 2004; Zurawell et al., 2005; Heisler, et al., 2008; Herrero, et al., 2008; 

Lopez et al., 2008).  Harmful algae blooms are becoming rapidly more prevalent due to a 

combination of eutrophication and climate change (Heisler, et al., 2008; Paerl and 

Huisman, 2009; O’Neil et al., 2012; Ekvall et at., 2013). 

 

Microcystis scums are commonly associated with warm, calm, and nutrient rich waters 

(Reynolds, 2006; Carraro et al., 2012).  Algae “scum” is at times incorrectly perceived as 

being caused by a large algal population growth at the surface of water; however, algal 

scum is merely the accumulation of the algae bloom at the surface of the water in the 
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absence of sufficient wind energy to keep it distributed within the water column.  Algae 

may have a considerable vertical structure with the highest concentration of algae, such 

as Cyanobacteria, growing at 2-9 m, depth (Wojciechowsk et al, 2004; Maier et al., 2008; 

unpublished data).  The deep chlorophyll maximum studies and modeling efforts (Cullen, 

1982; Robson and Hamilton, 2004; Leon et al, 2011; Carraro et al., 2012; Fernand et al., 

2013; Painting and Foster, 2013) recognize the need to integrate physical processes to 

better understand algal uptake of nutrients, growth, and population density in the water 

column (Varela et al., 1992). 

 

Microcystis horizontal distribution and patchiness within a water body is driven by 

advective flow generated by inflow (Qin, 2013) and wind (Hunter et al., 2008; Wu et al., 

2010; Carraro et al., 2012; Yajima and Choi, 2013;).  Microcystis vertical distribution 

appears to be influenced by mixing conditions in the water column.  Depth integrated 

populations of Microcystis, unlike that of the temporary visible surface blooms, have 

smooth, slow, seasonal (temporal) dynamics, but they show frequent vertical changes that 

are influenced by local fluid flow conditions  (Abbott et al., 1984; Wallace et al., 2000; 

Pasztaleniec, 2004; Johnk et al., 2008; Moreno-Ostos et al., 2009; Wu and Kong, 2009).  

Various wind speeds (3-6 ms-1) have been suggested as the critical wind speed needed to 

generate enough fluid motion to drive Microcystis away from the water surface (Wu et 

al., 2013).  On the other hand, in the case of sinking algae, a critical turbulence range, or 

window, within the water column appears to exist where algae can overcome both mixing 

and sinking rates and flourish prior to algal bloom (Huisman et al., 1999).   

 

Several experimental studies have demonstrated that fluid motion has effects on algal 

growth and nutrient uptake rates (e.g. Sullivan et al., 2003; Xiao-li et al., 2004; Peters et 

al., 2006; Hondzo and Warnaars, 2008).  OꞌBrien et al., (2004) demonstrated the 

influence of turbulence levels on Microcystis colony size.  Process-based and three-

dimensional (3-D) lake water quality models, have demonstrated that cyanobacteria, 

Planktothrix rubescens, has distinct spatial and temporal distributions that are strongly 
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influenced by the lake hydrodynamics (Carraro et al., 2012).  The current understanding 

of Microcystis bloom formation is limited, and there is a need to better describe and 

identify the forcing factors and processes influencing Microcystis growth and spatial 

distribution (Regel et al., 2004; Sharma et al., 2009; Wu et al., 2010; Wu et al., 2013).  

 

The motivation for this study was to quantify the influence of fluid motion and 

corresponding rate of energy dissipation levels on the growth and vertical variability of 

Microcystis under controlled laboratory conditions.  

4.2. Materials and methods  

4.2.1. Species and cultivation 

The Microcystis strain was provided by the Department of Fisheries and Allied 

Aquacultures, Auburn University, Alabama (Wilson, 2011, personal communication).  

Ten healthy Microcystis colonies from original cultures were transferred into sterile 

culture tubes with 15 mL of modified BG-11 medium media (Sigma -C3061, Sigma-

Aldrich, MO) and Milli-Q water (Renaud et al., 2011).  All colony transfers were 

performed under laminar flow hood and sterilized conditions.  Culture tubes were 

incubated at 20 ºC, with an average 140 photosynthetically active radiation (PAR) 

downwelling cool white fluorescent light on a 14:10 light-dark cycle.  After an 

acclimation period of three weeks, colonies were transferred into stock cultures in 1000 

mL Erlenmeyer flasks containing 250 mL of modified BG-11 medium, covered with 

loose aluminum foil, and incubated under the same conditions.  Two weeks prior to each 

experiment, stock cultures were transferred into a 3000 mL Erlenmeyer flask batch 

culture containing 2000 mL of modified BG-11 medium.  These actively growing batch 

cultures were used to seed the Plankton Tower columns containing modified BG-11 

medium to a cell concentration of about 5 x 104 cells mL-1.  Frequently, samples from all 

cultures were inspected microscopically to detect any contaminations and only healthy 

cultures were used in the experiments (Fig. 4.1). 

  



 

 

Fig. 4.1.  Microscopic images of 
and d) unicellular culture (cell diameter about ~5 µm) that was used for the experiments.   
 

 
 

4.2.2. The Plankton Tower

The Plankton Tower (PT)

m) Plexiglass tower that was designed at 

of Minnesota (Spitael, 2007).  

separated from each other, filled with the same fluid, and are exposed to similar external 

environmental factors such as temp

experimental control with no fluid motion in the column and in the second column, fluid 

motion was systematically controlled.  A
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.  Microscopic images of Microcystis aeruginosa a) large colonies, b)-c) cell aggregates, 
nd d) unicellular culture (cell diameter about ~5 µm) that was used for the experiments.   

Tower bioreactor  

The Plankton Tower (PT) bioreactor (1.5 m x 0.6 m x 0.2 m) is a two column (0.2 x 0.2 

that was designed at the Saint Anthony Falls Laboratory, University 

of Minnesota (Spitael, 2007).  The PT has two independent columns that are entirely 

separated from each other, filled with the same fluid, and are exposed to similar external 

environmental factors such as temperature and PAR.  One of the columns was used as 

experimental control with no fluid motion in the column and in the second column, fluid 

motion was systematically controlled.  A computer controlled oscillating grid 

c) cell aggregates, 
nd d) unicellular culture (cell diameter about ~5 µm) that was used for the experiments.    

 

bioreactor (1.5 m x 0.6 m x 0.2 m) is a two column (0.2 x 0.2 

Anthony Falls Laboratory, University 

The PT has two independent columns that are entirely 

separated from each other, filled with the same fluid, and are exposed to similar external 

erature and PAR.  One of the columns was used as 

experimental control with no fluid motion in the column and in the second column, fluid 

oscillating grid with 
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variable oscillating frequency was installed at the top of the second column to generate 

vertical distributed turbulence.  The PT was placed in a dark room with controlled air 

temperature and was illuminated at an averaged PAR of 140 µmol photon m-2s-1, using 

cool fluorescent lights on a 14:10 light-dark cycle (Fig. 4.2).  The lights were vertically 

oriented and mounted at the side of the PT such that algal cells experience uniform 

exposure to PAR over the entire column.  Water temperature was maintained at 21.5 ºC 

with negligible stratification effects (temperature differences in each column, at different 

heights, were within 1 ºC).  The Microcystis cultures were grown in the PT under 

specified conditions including a control column (without fluid motion) and the column 

with a variety of turbulence levels that were generated by the oscillating grid setup 

operated at selected frequencies (f).  Therefore, the only experimental variable in the PT 

was fluid motion.  All the other environmental conditions (temperature, light, initial 

nutrient concentrations) that could possibly influence the growth of Microcystis in the 

columns were controlled. 
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Fig. 4.2.  Photograph of the experimental bioreactor (Plankton Tower; 1.5 m x 0.6 m x 0.2 m) 
with two independent sealed columns that were used for algal growth experiments with one 
column used as (a) control column without fluid motion and b) turbulent column with fluid 
motion generated by the oscillating grid.   Location of the oscillating grid along with the 
horizontal (x) and vertical (z) axes are also shown.  
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4.2.3. Laboratory measurements 

Microcystis cell count (cells mL-1) was conducted using a haemocytometer and 

chlorophyll a (Chl-a ) concentration was determined spectrophotometrically using 90% 

acetone extraction (Clesceri et al., 1995).  Vertical cell concentration profiles, fC  (cells 

mL-1), of each PT columns (stagnant and turbulent) were obtained using a Turner Designs 

Cyclops-7, an in vivo fluorescence cyanobacteria sensor (Sunnyvale, CA).  Cyclopes-7 

was connected to a computer controlled mechanical traversing system ensuring that 

profile measurements were taken at specific times and vertical locations with predefined 

acquisition frequencies and measurement periods. 

 

Microcystis cell concentration is doubled at a constant rate during the exponential phase 

of its growth cycle where the values of cell concentrations plotted on a natural log scale 

will produce a straight line.  The slope of this line is the algae growth rate (gk ) based on 

the changes of cell concentrations (cells mL-1) during the exponential growth period and 

is determined as: 

2 1
2 1

2

1

ln

 ;  

 
 
 
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−
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gk t

C

t
t t
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where 
1fC and 

2fC  are the column depth-averaged concentrations during the 

exponential growth phase, and t is the time.  Samples and data measurements from the PT 

were taken daily during 13:00 and 16:00 hours.  A goodness of fit (r2), with a minimum 

value of 0.98, was calculated for each set of depth-averaged concentrations ( fC ) 

selected from the exponential growth period (straight line) for each of Microcystis 

experimental runs. 
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4.2.4. Calibration of fluorescence sensor  

The Cyclops-7 fluorescence sensor was calibrated using the manufacturer recommended 

setup, by measuring sensor’s signal output voltage (mV) in a dilution series of 

Microcystis with known cell (cells mL-1 ) and Chl-a (µgL-1) concentrations (Fig. 4.3a).  

The Cyclops-7 measurements of Microcystis were confirmed (r2 = 0.99) by comparing the 

random measurements of Cyclops-7 against the cell count of the same samples using 

haemocytometer cell count (Fig. 4.3b).  The reproducibility of the vertical cell 

concentrations profiles measured by Cyclops-7 were tested by taking repeated profiles 

and evaluating the changes in the cell concentrations at each depth.  Three profiles were 

repeated every six minutes and six profiles every 30 minutes with an averaged coefficient 

of variation (CV) of 4.2% with CV = / Xσ  where X  is the time average cell 

concentration at each depth and σ  is their standard deviation.  Culture samples from both 

the control and column with fluid motion were taken regularly throughout the 

experiments for cell counts to monitor and confirm the measurements of Cyclops-7.  
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Fig. 4.3.  Measurements by the fluorescence sensor, Cyclops-7 of a series of a) known 
Microcystis sample concentrations that were evaluated against the measured Chl-a (diamonds, µ
L-1; r2 = 0.95), and haemocytometer cell counts (triangle, cellsmL-1; r2 = 0.99) for sensor 
calibrations, and b) of 15 random Microcystis samples evaluated for sensor verification (r2 = 0.99) 
against cell counts of the same samples obtained by using haemocytometer (cells mL-1). 

 
 
 
 

4.2.5. Turbulence generation 

In the control column, fluid was stagnant without an oscillating grid setup (f = 0 Hz).  In 

the second column, an oscillating grid with the grid mesh (0.05 m) was set to oscillate at 

0.05-0.1 m below the water surface with the stroke (S) of 0.03 m (Fig. 4.2).  The 

oscillating grid was operated at selected frequencies of f = 0.5, 1, 1.5,2, and 3 Hz.   
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4.2.6. Turbulence measurements and Particle Image Velocimetry  

In the experimental set-up, fluid flow velocities were measured using 2-D particle image 

velocimetry (PIV).  PIV is a non-intrusive image based technique able to estimate the 

change of positions of tracer particles in the fluid, illuminated by a laser sheet, within a 

prescribed, small, time interval (Adrian 2005).  The PIV (TSI, Inc., St. Paul, MN) 

system consisted of a monochrome CMOS camera, 5.5 µm pixel size, able to 

capture more than 2000 images (at a rate up to 100 fps) in a field of view of 0.1 x 0.1 m2 

illuminated by a Litron dual cavity laser (LPY 704-100; Rugby, England, capable to 

deliver up 100mjoule per pulse).  The Insight 6 (TSI) software was used to synchronize 

the laser pulse and the camera acquisition as well as to process the images and compute 

the instantaneous velocity vectors (u  and w ).  Measurements were taken at two vertical 

locations, ranging 10-20 mm and 20-30 mm below the origin position of the oscillating 

grid, respectively.  The PIV experiment was conducted with the PT filled with pure 

water and seeded with hollow glass coated spheres (1.05 g cm-3 density).  PIV was 

performed in a baseline set of experiments conducted under the same 

geometrical, mechanical and environmental conditions of the experiments 

performed with the algae.  PIV measurements were used to describe the turbulence 

characteristics in the PT experiments and to calculate the energy dissipation rates ε (m2s-

3) using a 2-D approximation (O’Connor and Hondzo, 2008):  

2 2 2 2
3 3 3

ε 4
4 4 2

ν
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u w u w u w u w

x z z x x z z x
                   (2) 

4.2.7. Statistical analysis  

Two-sample Student’s t-test was performed, comparing the average concentration of the 

daily cell concentration profiles (n=400, where n is the total number of data points) 

during the exponential growth period from each experimental (f= 0.5, 1, 1.5, 2, and 3 Hz) 

and its corresponding control condition.  In each test, the null hypothesis was that there 

was no difference in the mean of Microcystis daily concentrations between the control 

and turbulent experimental conditions.  Analysis of variance (ANOVA) was preformed to 
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test the difference between the two groups of Microcystis cell concentration profiles 

selected from the experimental treatments and their corresponding control conditions 

during their exponential growth period.  A two-way ANOVA was also performed with 

Microcystis growth period (8 days) and the daily fC  from each experimental and control 

conditions as the two factors.  The measured Microcystis growth period (8 days) was set 

as the first factor (n=3280, 2 levels) with turbulent experimental condition and the control 

condition, each as one level.  All ANOVA tests were conducted at 95% probability (p < 

0.05) followed by Tukey’s multiple comparison tests to examine the significance of their 

differences.  We also implemented the Student’s t-test to evaluate the differences 

between the daily cell concentration profiles from experimental treatments and its 

corresponding control condition.  All statistical analyses were performed using 

OriginPro9 software (Northampton, MA). 

4.3. Results and discussion   

4.3.1. Cultures  

Every experimental run was started with a Microcystis cultures cell concentration of 

about 7.5 x 104 cells mL-1.  A uniform initial Microcystis cell concentration among 

different experimental runs was obtained by starting each experiment with clearly 

countable single cells (Fig. 4.1d).  However, Microcystis cultures grow to include double 

cell and small colonies during the experiment.  The exponential growth period (9.0 x 104-

1.2 x 106 cells mL-1) generally established within two days and lasted up to 8 days, 

followed by the stationary period (1.2 x 106- 4 x 106 cells mL-1). 

 

4.3.2. Turbulence characteristics 

The generated turbulence levels in the PT produced midrange ε of about 10-6 m2s-3.  

Mean energy dissipation contours, interpreted as a measure of spatial statistical 

variability of the turbulent flow in the experimental setup, were estimated for each of 1, 

1.5, and 2 Hz oscillating grid frequencies.  The rate of energy dissipation is observed to 

be fairly uniform in the horizontal (x-direction) while exhibiting the expected spatial 
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decay in the vertical (z-direction) (Fig. 4.4a).  Figure 4.4b, provides a spatial sample of 

the instantaneous velocity vectors showing the vortices that are generated by the 

oscillating grid, gently propagating in the PT.   

 
Fig. 4.4.  Data from 2-D Particle Image Velocimetry were used to estimate a) energy dissipation 
rate, ε (m2s-3), contours at 2 Hz oscillating grid frequency, and b) the instantaneous 2-D  velocity 
vectors over the marked square area (40 x 40 mm). 
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A functional relationship between ε at specified vertical distance from the grid (z) and 

oscillating grid frequency was proposed by OꞌBrien et al. (2004), using known 

oscillating grid turbulence scaling laws (Long 1978, Da Silva and Fernando 1991) 

combined with a typical expression for energy dissipation in homogeneous turbulence ε ~ 

u3/ l, with u and l representing the velocity and the length scales of the energy containing 

eddies.  Specifically, 

3 93
2 2 3 32 22
1 2

4 4

2  1
ε    

3 z z
α

β
 +

= = 
 

C C M S f f

      (3) 

where β  is 0.1, M  is grid mesh size (m), S  is stroke length (m), z is distance from the 

grid (m), f  is frequency (Hz) of the oscillating grid, and α is the coefficient (m6).  The 

values for 1 2 , C C  were calculated by 3/2 1/2 1
1

−=rmsu C S M fz  and 3/2 1/2 1
2

−=rmsw C S M fz  

(Long, 1978; De Silva and Fernando, 1994).  The averaged value for α , specific to 

experimental setup, was estimated to be 2.11 x 10-9 (m6) and equation (3) was used to 

estimate ε  profiles at the selected oscillating grid frequencies of 0.5, 1, 1.5, 2, and 3 Hz.  

The power law expressing the decrease of ε with vertical distance from the grid (Eq. 3) 

was verified by direct estimates of the dissipation profiles (Fig. 4.5).  The proposed 

power law depicted fairly well the decrease of ε in the experimental setup.   
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Fig. 4.5.  Averaged energy dissipation rate, ε, profiles created by using the data generated from 
the 2-D Particle Image Velocimetry for 1 Hz (square), 1.5 Hz (triangle), and 2 Hz (circle) 
oscillating grid frequency experimental conditions.  The solid lines represent the estimated ε 
using the power-law equation (3). 

 
 
 
The measured ε for the 2 Hz experiment ranged from 2 x 10-3 m2s-3 on the top of the first 

PIV field of view (z =10 to 20 mm in Fig. 4.5) to 1 x 10-5 m2s-3 at the bottom of the 

second PIV field of view (z = 20 to 30 mm).  The calculated ε for f = 1.5 Hz experiment 
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Hz experiment were very similar and both ranged from 1 x 10-5 to 2 x 10-7 m2s-3, except 

for some deviation in the lower part of the top window (z = 10 to 20 mm) (Fig. 4.5).  The 

minimal deviations between the measured and calculated ε  for all three experiments may 

have been contributed by slow recirculating flow regions, also known as secondary flows 

in oscillating grid turbulence, that have been observed in this and other experiments 

(DeSilva and Fernando), 1994.  Note that these flows are not accounted for in the grid 

parameterization scaling laws (thus in equation 3 as well), which assumes turbulence to 

be statistically homogeneous in the planes parallel to the grid with zero mean flow and 

zero mean shear.  In addition, since those secondary flows are slow as compared to 

turbulent fluctuating velocities, their effect on the statistical convergence of the 

dissipation estimate is not negligible, especially in the deep layers far from the grid where 

dissipation values are very low. 

 

4.3.3. Effects of fluid motion on Microcyctis  growth rate 

Microcystis cell concentration profiles ( fC ) were measured daily in the PT under both 

the control (stagnant fluid) and the turbulent conditions such as the f = 2 Hz vertical 

concentration profiles (Fig. 4.6).  The Microcystis cells experienced appreciable growth 

in the control column and under turbulent conditions in the setup and with their 

populations significantly (p=0.05) different in each column under each experimental 

conditions.  A two-way ANOVA also revealed (p=0.05) that the population means of the 

experimental conditions (f= 1, 1.5, 2, and 3 Hz) were significantly different than their 

corresponding control conditions (Table 4.1).  Therefore, the null hypothesis was rejected 

and the alternative hypothesis was accepted that there were significant differences 

between Microcystis population in the experimental and the control conditions.  ANOVA 

tests revealed that the major source of variability among the fC  was due to the different 

turbulent conditions. 
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Fig.4. 6.  Examples of the Microcystis cell concentration profiles ( fC ) measured in the Plankton 

Tower over eight days with t as time, n as the day of sampling from the start of the experiment.  
a) control column (without fluid motion), b) column with oscillating grid at f = 2 Hz, and c) the 
vertical distribution of energy dissipation (ε) in the column with oscillating grid at  f = 2 Hz.  The 
amplitudes of the oscillating grid and stroke distance (S) within the column with oscillating grid 
are also shown in b).  
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Table 4.1.  Results from the experimental conditions in the Plankton Tower where f is the 
oscillating grid frequency, kg is the algal growth rate, kgcontrol is the algal growth rate in the control 
tower (without fluid motion), ε  is the rate of energy dissipation averaged over the depth of tower 

with oscillating grid setup, fC  is Microcystis cell concentration profile, andf f0C C   is the 

dimensionless time-averaged cell concentration profile ( fC ) normalized by the their 

concentration close to the air-water interface in the experimental columns (f 0C ) with the 

coefficient of variation (CV) listed for each of the profiles ( f f0C C ).  For ANOVA results: MS 

is mean square with a degree of freedom of 1 at 95 % probability (p<0.05), and * indicates F 
value with statistically significant difference between the groups of fC selected during the 

exponential growth period from the experimental turbulent and their corresponding control 
conditions. 
 

f  
(Hz) 

ANOVA 
MS F value gk

 
(day-1) 

gcontrolk
 

(day-1) 

ε
 

(m2s-3) 

/g gcontrolk k
 

CV of f f0C C  

(%) 

0.5 7e-16 3e-12 0.57 0.60 3.6 x 10-8 0.95 2.4 

1 5.02 2325.0* 0.58 0.60 1.5 x 10-7 0.97 2.4 

1.5 1.27 936.3* 0.68 0.59 5.5 x 10-7 1.15 4.2 

2 30.43 6337.2* 0.75 0.57 1.3 x 10-6 1.32 5.9 

3 30.90 11758.4* 0.47 0.64 4.4 x 10-6 0.73 3.6 

 
 

To evaluate the effects of fluid motion on Microcystis growth rate, the vertical 

concentration profiles from all experimental conditions were first depth-averaged fC  

and then normalized by the depth-averaged cell concentration of the beginning of each 

experiment, foC .  These normalized concentrations, fofC C , depicted that fluid 

flow in general facilitated the growth (Fig. 4.7).  The normalized concentrations, 

fofC C , at f = 0.5 Hz was similar to that of f = 1 Hz and is not shown in Fig. 4.7.  

However, fofC C at f = 1 Hz experiment had the longest lag time of the growth cycle 

whereas the shortest time-lag was evident for the most turbulent conditions at f = 3 Hz.  

The concentration profiles at f = 1.5 and 2 Hz, had similar mid-range time-lag periods.   
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Fig.4.7. Semi-logarithmic plots of normalized concentrations of the Microcystis for the 
corresponding control column (f = 0, filled symbols) and the column with oscillating grid at f = 1, 

1.5, 2, and 3 Hz, with fC as the depth-averaged concentration and foC as the depth-averaged 

concentration at the beginning (t=0) of each experiment 

 

 

 

The exponential growth periods for each experimental conditions with oscillating grid 
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rates, kg, and their corresponding growth rate under control condition, kgcontrol.  The depth-
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This implies that at least 98% variability of concentrations was explained by the model 
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ratio of growth rates under turbulent, kg, over the control condition, /g gcontrolk k  (Table 

4.1).  Energy dissipation profiles from each experimental turbulent condition, such as f =2 

Hz shown in Fig.4.6, were also depth averaged, ε  (Table 4.1), and evaluated against 

the normalized growth rates (Fig. 4.8).  There was a minimal (<-5%) change in growth 

rate for f = 0.5 and 1 Hz conditions (ε ~ 1.5 x 10-7-3.5 x 10-8 m2s-3), with a modest 

increase (15%) for f = 1.5 Hz ( ε  = 5.5 x 10-7 m2s-3) and a large increase (32%) at f = 2 

Hz ( ε  = 1.3 x 10-6 m2s-3).  A rapid decrease (-27%) in growth rate at f = 3 Hz ( ε  = 

4.4 x 10-6 m2s-3) was evident, which is in agreement with the reports from other studies on 

Microcystis growth rate under turbulent conditions similar to that of 3 Hz but with a 

stimulated metabolic activity at small scale turbulence generated at 1 and 2 Hz (Regel et 

al., 2004).  The influence of fluid motion on Microcystis growth rate is evident by it 

responses under different experimental turbulent conditions and with a facilitated growth 

rate corresponding to ε values in a range between 3 x 10-7 and 3 x 10-6  m2s-3 (Fig. 4.8).  

The fluid motions that were measured in the experimental setup encompassed the rate of 

energy dissipation levels (ε) that were reported in lakes and were similar to the range of 

ε  levels that had corresponded to the Chl-a concentration maximum (Hondzo and 

Warnaars, 2008). 
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Fig. 4.8.  Normalized Microcystis growth rates, /g gcontrolk k  at the corresponding depth-averaged 

energy dissipation rates, 2 3( )ε −m s , in the experimental column with oscillating grid at f = 0.5, 

1, 1.5, 2, and 3 Hz.  The graph depicts three growth zones including the non-facilitated, 
facilitated, and reduced growth regions. 
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averaging each profile in 25 mm windows and then analyzed to quantify the influence of 

fluid motion on Microcystis vertical cell concentration variability in the experimental 

setup. 

 

The fluid motion had a strong influence on Microcystis vertical cell concentration profiles 

(Fig. 4.9).  A value of f f0C C =1 indicates no change in cell concentration between that 

depth and the initial depth of the profile and with no variation in vertical cell 

concentration.  All profiles from the turbulent column (f = 0.5, 1, 1.5, 2, and 3 Hz) 

showed a decrease in cell concentration in the proximity of oscillating grid (depth < 50 

mm), reflecting the mechanical influence of the grid.  On the other hand, the control (f = 

0 Hz) column showed negligible vertical cell concentration variability.  The experimental 

designed was focused on isolating the influence of turbulence on Microcystis vertical cell 

concentration profiles and growth.  Each experiment had a controlled and equal size, 

geometry, nutrient concentration, and exposure to light as the turbulent water column.  

The negligible vertical cell concentration variability in the control column is an 

experimental indication that indeed the potential attractor variables were equally 

distributed over the experimental control column.  

 

Profiles from the experiments under turbulent conditions showed very different 

responses.  The profiles of f = 0.5 and 1 Hz, were mainly uniform throughout the water 

column with minor changes (f f0C C ~ 0.5) at 200 mm depth.  However, profiles for f = 

1.5 and 2 Hz had significantly larger maxima (f f0C C = 1.2 and 1.23, respectively) at 

250 mm depth.  At the highest turbulence level of f = 3 Hz the profile shows a peak at 

about the same depth as that of f = 1.5 and 2 Hz but less pronounced (f f0C C =1.12).   
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Fig. 4.9.  Microcystis vertical distribution of time-averaged profile concentrations ( fC ) from the 

exponential growth periods and normalized by the concentration at the initial depth (f0C , with z= 

0) in the control column where f = 0 Hz, and in the experimental turbulent column with 
oscillating grid at f = 0.5, 1, 1.5, 2, and 3 Hz.  

 

 

The vertical cell concentration variability is attributed to Microcystis’ response under 

different experimental turbulent conditions.  Indeed, while a vertically homogeneous 

profile is observed in the control column (stagnant fluid), a depth-dependent Microcystis 

concentration profile is measured for different grid oscillation frequencies.  As both 

levels of turbulent kinetic energy and dissipation vary with the grid frequency and, 

locally, with the distance from the grid, a vertical variation in cell concentration indicates 
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that Microcystis statistically respond to turbulence adjusting their position within the 

water column.  In order to statistically quantify the vertical cell concentration variability, 

data points of all profiles (f = 0, 0.5, 1, 1.5, 2, and 3 Hz) along with their depth-averaged 

mean value (X ) and standard deviation (σ) were analyzed (Fig. 4.10).  The data points 

from the control experiment had the smallest mean value mean and standard deviation of 

vertical cell concentration (f f0C C ) followed by the 0.5 and 1 Hz data points.  In these 

three instances the range of X + σ is less than 5% ( f f0C C < 0.05) from the top to the 

bottom of the column, indicating minimal vertical variation of cell concentration.  

However, vertical variability of cell concentration increased rapidly at f = 1.5 Hz and 

continued to increase at f = 2 Hz, followed by a decrease at f = 3 Hz under experimental 

turbulent conditions (Fig. 4.10). 

 

Fig. 4.10.  Normalized Microcystis time-averaged vertical concentrations (f f0C C ) along with 

their depth-averaged (X , filled square) and standard deviation (σ), and the range of each X + 

σ (offset bars) in the control column where f = 0 Hz, and in the experimental turbulent column 
with the oscillating grid operating at f = 0.5, 1, 1.5, 2, and 3 Hz. 

 

Control 0.5 Hz 1 Hz 1.5 Hz 2 Hz 3 Hz

1.0

1.1

1.2

σ+

σ−

X

Oscillating Grid Frequency (Hz)



 

 93 

To better focus on the vertical cell concentration fluctuations under each experimental 

conditions, the coefficient of variation (CV � � X⁄ ) of each respective profile was 

calculated and evaluated against their corresponding ε  (Fig. 4.11).  Smaller CV 

implies that there was not significant variability in the vertical distribution of algae 

(homogeneous concentration).  Larger CV implies that algae were preferentially 

concentrated in horizontal layers with the corresponding ε  that facilitated the growth.  

Microcystis responses, as measured by the CV of f f0C C , were similar to that of growth 

rates to ε  but with different magnitudes.  The CV changed only 2 % from f = 0.5 to f = 

1 Hz, but increase 75% at f = 1.5 Hz.  At f = 2 Hz experimental condition Microcystis 

growth rates is increased 31% but CV of 0f fC C  is increased 246%, and at f = 3 Hz, CV 

and /g gcontrolk k  are both reduced by 55% and 61% respectively from their values at the f 

= 2 Hz experimental condition.  These findings supported our earlier observations that 

Microcystis growth rate and vertical cell concentrations are reduced at f > 2 Hz, remained 

steady at f = 0.5 and 1 Hz, and were facilitated at f = 1.5 and 2 Hz experimental turbulent 

conditions.  The Microcystis vertical cell concentration variability had a stronger 

response to ε  as compared to the growth rate, suggesting an increased sensitivity to 

turbulence. For our experiments, if the Microcystis growth rates ( /g gcontrolk k ) values with 

changes over 10% are treated as significant, then there appears to be a region of optimal 

turbulence levels that yields a facilitated growth zone corresponding to ε  = 3 x 10-6 to 

3 x 10-7 m2 s-3 (Fig. 4.8).  Regions with ε < 3 x 10-7 m2 s-3 had non-facilitated growth 

and regions of higher turbulence with ε > 3 x 10-6 m2 s-3 showed significant reduction 

in growth. We acknowledge that CV is a rather simple estimator of vertical variability of 

the cell concentration profile.  CV emphasizes deviation from homogeneous conditions 

without specifically distinguishing between the occurrence of marked concentration 
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layers and gradual variations in the vertical profile. However, it provides a robust 

measure to associate with depth average dissipation values.   

 

Fig. 4.11.  Coefficient of variation, CV � � X⁄  where X  is depth-averaged and σ standard 

deviation of normalized Microcystis time-averaged vertical concentrations (f f0C C ), at the 

corresponding depth-averaged energy dissipation rates, 2 3( )ε −m s , in the control column 

where f = 0 Hz, and in the experimental turbulent column with the oscillating grid operating at f = 
0.5, 1, 1.5, 2, and 3 Hz. 
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progressively increasing or decreasing spatial distribution density and growth rate of 

Microcystis from the source of turbulence.  A rapid and vertical profile measurement of 

Microcystis cell count was required by the experimental designed.  Consequently, we 

started each experiment with clearly countable unicellular Microcystis culture that later in 

the experiments grow into double cell and small colonies.  Nonetheless, this does not 

change the issue that how the unicellular cultures early in the experiment responded to 

turbulence is likely to be different than how natural and very large colony forming 

cultures would.  The generated turbulence levels, as measured by 2D PIV, produced 

midrange rate of energy dissipation (ε ) of about 10-6 m2s-3 and had negligible mean flow 

and mean shear, with vortices generated by the oscillating grid and gently propagating in 

the column.  The growth rates (/g gcontrolk k ) of Microcystis in cultures grown with 〈ε〉 

from 3.6 x 10-8 to 1.5 x 10-7 m2s-3, displayed a minimal change (2%), had a modest 

increase (15%) at 〈ε〉 = 5.5 x 10-7 m2s-3, depicted the largest increase (32%) at ε = 1.3 x 

10-6 m2s-3, and followed by a 27% decline at ε = 4.4 x 10-6 m2s-3 (Fig. 4.8).  The fluid 

motion and corresponding turbulence levels also had a strong influence on Microcystis 

vertical distribution where time-averaged vertical cell concentration profiles, f f0C C , 

showed marked individual patterns in response to varying levels of turbulence (Fig. 4.9).  

Coefficient of variation (CV) of each respective profile was calculated and evaluated 

against their corresponding ε with the highest increase corresponding to ε  = 1.3 x 

10-6 m2s-3 (Fig. 4.11).  At ε  = 4.4 x 10-6 m2s-3, fluid motion had a significant effect on 

both /g gcontrolk k  and CV of f f0C C , where it reduced their values by 61% and 55%, 

respectively (Fig. 4.8 and Fig. 4.11).  The results indicate that ε in a range of 3 x 10-7 to 

3 x 10-6 m2s-3 generated the largest values for both CV of f f0C C  and /g gcontrolk k .  The 

observed energy dissipation rates (ε ) were similar to the reported field measurements and 

to the range of ε  that had corresponded to the Chl-a concentration maximum (Hondzo 

and Warnaars, 2008).  The growth and vertical distribution of Microcystis are quantified 



 

 96 

by fluid flow property (ε) that is predictable in most computational models for water 

quality modeling in lakes.  The results demonstrate the significance and necessity of 

integration of fluid motion in the models of growth and distribution of Microcystis in 

aquatic environments.  
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5. CHAPTER 5 

Three Dimensional Prediction of Lake Water Temperature, Dissolved 

Oxygen, and Fish Habitat under Changing Climate 

 

We applied a three-dimensional model to reveal the influence of local meteorological and 

global climate conditions on water quality and fish habitat.  Water temperature (T) and 

dissolved oxygen (DO) concentrations were used as key water quality parameters to 

investigate the temporal and spatial variability of fish habitat dynamics under three 

climate scenarios of historical normal (HN), future (FU), and future extreme (FE).  The 

analysis demonstrated that the averaged epilimnetic T of the FU and FE climate scenarios 

were up to 4 °C warmer than the HN scenario during ice-free seasons.  The top 0.5 m 

surface T increased the most and the fastest under the FE scenario.  Stratification periods 

were predicated to expand up to 23% (46 days) and thermocline depth to increase 49% 

under the FE climate scenario.  The averaged DO concentrations were 1 mgL-1 less in the 

FU and FE climate scenarios than the HN scenario during ice-free seasons.  However, the 

onset of anoxia, the depleted DO concentration area, which had started by May 15 under 

the HN climate scenario was four and two weeks earlier under the FU and FE climate 

scenarios respectively.  In all cases, hypolimnion was mostly anoxic by June 15 and DO 

concentrations were restored to their maximum levels by fall turnover starting November 

10.  The good growth, restricted growth and lethal coolwater fish habitats that were based 

on T and DO thresholds, changed from 2 to 14% of the total lake volume under the three 

climate scenarios.  Compared to the historical normal scenario, the averaged good 

growth, restricted growth and lethal habitats of future scenarios changed +16%, -18%, 

and +85% respectively.  The majority (70%) of changes from good and restricted growth 

to lethal habitat took place in the upper 5 m of the water column with significant spatial 

and temporal consequences.  A modest change (8% of total lake volume) of good growth 

and restricted growth into lethal habitat separated the summer good growth coolwater fish 

habitat by over 3 weeks.  
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5.1. Introduction 

Local meteorological variables and global climate strongly mediate physical, chemical, 

and biological conditions in the aquatic ecosystems (Hondzo & Stefan 1993; MacKay et 

al., 2009; Whitehead et al., 2009).  The interactions among aquatic physical, chemical, 

and biological processes are nonlinear and dynamic, and far from equilibrium.  Spatially 

distributed and dynamic water quality predictors are necessary in order to accurately 

evaluate the response of aquatic ecosystem under changing climate and corresponding 

local meteorological conditions (De Stasio et al., 1996; Milly et al., 2008). 

 

A significant effort has been devoted to the prediction of the impact of climate change on 

fresh water lakes in the past four decades.  Climate change is expected to alter lake water 

temperature (T), increase summer stratification, increase temperature-mediated sediment 

phosphorus flux, alter dissolved oxygen (DO) dynamics and expand anoxic (DO 

depleted) zones, and change aquatic habitats such as that of fish (Stefan, Fang & Eaton, 

2001; Kling et al 2003; Adrian et al., 2009).  Fish habitat regimes are predicted to change 

their temporal and spatial distributions (Mooij, De Senerpont & Janse 2009; Foley et al., 

2012) driven partly by the mixing regime altered by a changing thermal structure.  

Climate change is also expected to increase stream flow fluctuations leading to lake water 

level changes and shifting ecosystem states (Coops, Beklioglue & Crisman 2003).   

 

Computer models have been the main tool in analyzing the impact of climate change on 

lake ecosystems (Menshutkin, Rukhovets & Filatov, 2014).  Three dimensional (3D) 

computer models have the feature of reproducing the ecological processes of the lake in 

fine temporal and spatial (horizontal and vertical) scales that can enhance our 

understanding of the interactive feedbacks among physical, chemical, and biological 

processes.  Three dimensional models have been used in climate change assessment of 

large lakes (Cline, Bennington & Kitchell, 2013).  The models are also a good prediction 

tool for morphologically complex smaller lakes with significant water quality 

heterogeneity responding dynamically to multiple climatic forces.   
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We employed a 3D lake water quality model to evaluate the influence of local 

meteorological and global climate conditions on key environmental parameters that 

ultimately determine fish habitat and to investigate the temporal and spatial (vertical and 

horizontal) variability of fish habitat dynamics.  Water temperature and DO are 

considered the most significant water quality parameters that influence fresh water fish 

habitat (Stefan et al., 2001).  Several meteorological parameters can potentially influence 

lake water quality and fish habitat.  Precipitation over a watershed and corresponding 

surface water runoff to the lake are susceptible to future climatic changes that can 

significantly alter lake water quality (Coops et al., 2003).  Furthermore, wind speed and 

its pattern above the lake surface generate the force for water column mixing that 

influence T, DO, primary production, and food web.  Climate change is expected to alter 

the frequency of extreme wind events (Jeppesen et al., 2009) which may increase 

frequency of sudden episodic water quality changes.  Consequently, we selected T, DO, 

P, and wind speed as the key water quality parameters to evaluate and test them under 

different climatic scenarios in this study.   

The first step of modeling and evaluating the potential climate change impacts on water 

quality was to select and create a set of historical and future climatic model scenarios.  A 

hybrid of new and existing methods allowed the selection of one climatic historical 

scenario based on measured meteorological data and two projected future scenarios.  We 

extended a similar approach adopted by Stefan & Fang (1994) and Fang et al. (2012) to 

investigate the individual and combined influences of select lake water quality 

parameters on fish habitat by using a 3D model in a morphologically complex lake.  We 

report the findings of historic and climate change scenarios for T and DO, and fish habitat 

dynamic in a shallow and morphologically complex lake.  
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5.2. Methods 

5.2.1. Study site 

Lake Minnetonka (60 km2), located at 44◦54’ N; 93◦41’ W, is a morphologically complex 

lake (Wetzel, 2001).  The lake has 23 bays, 200 km of shoreline, 24 km2 of littoral area, a 

maximum depth of 34 m, with a watershed size of 319 km2 (Fig. 1.1).  Lake Minnetonka 

was inhabited pre European settlement and has been a regional destination offering 

swimming, boating, and fishing.  At least 15 fish species are found in Lake Minnetonka 

dominated with northern pike (Esox lucius), walleye (Stizostedion vitreum), and bluegill 

(Lepomis macrochirus).  The walleye population is sustained by annual stocking at two 

bays.  However, fish population assessment study results showed different catch average 

sizes (length) among different bays of the lake indicating the presence of distinct fish 

habitats within the lake (MNDNR, 2007).  The computational domain of the study area 

included four bays and two stream inflows into the lake.  Each bay has a specific 

individual water quality characteristic representing the strong water quality heterogeneity 

throughout the whole lake.   

5.2.2. Field data 

Measured stream and lake water quality data were provided by the Water Quality 

Department of Minnehaha Creek Watershed District organization (MCWD, MN).  All 

field lake water quality samples were collected from the deepest point of the three bays of 

Halsted Bay (HB, 10 m), Cooks Bay (CB, 8.5 m), and West Upper Bay (WU, 24 m) 

within the study area (Fig. 1.1).  Each station was sampled biweekly and analyzed for T, 

DO, conductivity, pH profiles, surface and bottom total phosphorus (TP), soluble reactive 

phosphorus (PO4), total nitrogen (TN), and a composite top 2-m sample for algae 

biomass as measured by chlorophyll a (Chla).  Stream inflow (m3s-1) data were based on 

the correlation between daily averaged available measured outflow and precipitation data 

(1997-2011; R2= 0.82) where the correlation was then applied to hourly precipitation data 

of each scenario to generate outflow data.  Inflow data from the two creeks were set to 

equal outflow.  The biweekly sampling from Six Mile and Langdon creeks (Fig. 1.1) 
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included flow, T, DO, Chla, TP, and PO4.  Stream water temperatures from nearby (<5 

km) streams were used for missing stream water temperature data.  Meteorological data, 

including hourly readings of air temperature (Ta), relative humidity (RH), atmospheric 

pressure (AP), cloud cover (CC), wind speed (WS), and wind direction (WD), were 

obtained from the Flying Cloud Airport (44°50ʹ N, 93°27ʹ W) about 14.5 km southeast of 

the lake. Precipitation data were obtained from Mound’s weather station (44°56´ N, 

93°39´ W) at the northeast of the study area and hourly solar radiation was obtained from 

Rosemount Experimental Station (44°45ʹ N,93°04ʹ W) 45 km southeast of the lake. 

5.2.3. Historical and future climate scenarios  

Three different types of climate scenarios were selected for the study and designated as 

historical normal (HN), future (FU), and future extreme (FE) scenarios.  The scenarios 

were based on the Ta and P because they are the two most influential water quality 

parameters for fresh water fish habitat.  The annual Ta average (x axis) of 30 historical 

years (1981-2010) were plotted against the average annual P (y axis) with the intersection 

of the axes representing the climate normals (Ta = 7.78 °C and P = 0.78 m) reported for 

the study area by the National Oceanic and Atmospheric Administration (NOAA, 2012) 

(Fig. 5.1a).  The distance from each of the 30 points to the center was evaluated to 

identify the year nearest to the climate normal (center) as a surrogate for HN scenario and 

to identify the year farthest from the center as an extreme year. 

 

To generate future meteorological climate scenarios of FU and FE, we applied the 

projected mean monthly meteorological change fields to the two sets of base scenarios of 

HN and extreme year.  The change fields method is a hybrid between Global Climate 

Model (GCM) predicted outputs and the local historical observed metrological data 

(Smith & Tirpak, 1989).  The resolution of the GCM outputs is generally not sufficient to 

generate locally specific forecasts that reflect the regional dynamics (IPCC, 2008).  

Various strategies such as statistical down scaling or change field are adopted to 

transform the available global scale GCM predicted outputs into locally relevant 
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meteorological data (Fowler, Blenkinsop & Tebaldi 2007).  In statistical down scaling a 

statistical relation between local climate variables (e.g. Ta, P) and large scale predicators 

(e.g. pressure fields) is established and applied to GCM outputs to generate finer 

resolution local outputs.  In the change factors or change fields (CFs) method, the 

differences (or ratio for P) between the GCM outputs of a control period (predicted 

historical climate) and future period (predicted future normal climate) is then applied to 

the local historical observed metrological data.  The CFs (e.g. 2040-2069 minus 1961-

1990) selected for this study (Table 5.1) were obtained from International Panel on 

Climate Change Data Distribution Centre (IPCC DDC, 2012) for the grid point (45° 42’ 

N; 93° 38’ W) nearest to the study area.  The selected CFs were based on the output of 

the high resolution Model for Interdisciplinary Research on Climate (MIROC3.2), a 

Couple General Circulation Model (CGCM), appropriate for use in the study area region 

(Jiang et al., 2012). 

 

Table 5.1.  The set of monthly Change Fields applied to the meteorological data of the normal 
climate and the extreme climate year within the climate normal period (1981-2010) in order to 
create the future and future extreme meteorological climate scenarios. 

  

Air 
temperature 

(°C) 

Relative 
Humidity* 

% 

Cloud 
Cover* 
(0-1) 

Atmospheric 
Pressure 

(pa) 

Wind 
Speed 
(ms-1) 

Solar 
Radiation 
(Wm-2) 

Precipitation  
(mm d-1) 

Jan 4.21 -0.47 -0.07 -40.53 0.16 16.53 0.57 
Feb 4.61 -4.07 -0.09 50.14 0.22 14.15 0.06 
Mar 4.47 -6.94 -0.06 42.03 0.34 16.13 0.10 
Apr 3.54 -1.47 -0.02 44.09 0.16 18.64 0.33 
May 4.67 0.94 -0.03 -53.70 0.20 31.30 0.04 
Jun 3.75 -3.14 -0.04 99.25 0.09 22.88 -0.48 
Jul 3.63 -4.17 -0.05 2.12 0.16 23.10 -1.05 
Aug 3.52 -2.34 -0.04 7.62 0.10 23.86 -0.20 
Sep 3.88 -2.50 -0.06 167.24 0.08 22.71 -0.05 
Oct 4.43 -0.77 -0.05 128.29 0.20 22.98 0.82 
Nov 4.71 -4.31 -0.09 -7.66 0.43 17.85 0.52 
Dec 4.08 -3.83 -0.08 43.47 0.22 14.54 0.11 
*calculated values (differences between averaged 2040-2069 and averaged 1961-1990) 
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The year 2000 with the nearest annual average of Ta and P to climate normals (Ta = 7.78 

°C and P = 0.78 m) was designated as the HN scenario for our study (Fig. 5.1a) and was 

used as a base year to construct FU scenario.  The set of CFs (Table 5.1) were applied to 

the meteorological data of the HN scenario to generate the FU scenario.  Extreme climate 

events, defined as those greater than 90th percentiles (Fowler et al., 2007) could have Ta, 

and P values that may place them in any of the four quadrants in Fig. 5.1a.  We 

investigated the predicted trend of Ta and P by plotting their bias corrected model 

(MIROC3.2) historical (1981-2000) and future (2041-2070) annual averages around the 

climate normals (Fig. 5.1b).  The predicted future Ta and P annual averages were 

generally in the direction of warmer and wetter annual averages, similar to the results of 

other investigations (ICAT, 2013).  Based on these findings, year 2005 which had the 

longest distance from the climate normals (Fig. 5.1c) and also resided in the warmer and 

wetter quadrant was considered as the historical extreme year.  Year 2005 was then used 

as a base for future extreme case.  The same set of monthly CFs used for developing FU 

scenario (Table 5.1) was also applied to the metrological data of year 2005 to generate 

the FE scenario.  A drawback of using the CFs method is that it relies on the observed 

and historical statistical relationships and patterns that may not continue to hold true 

under future scenarios.  The CFs method shifts the historical data into predicted future 

data.  The dynamic Regional Climate Models, on the other hand, generate locally specific 

predictions that reflect the regional climate dynamics influenced by regional small scale 

features.  
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5.2.4. Model description 

We used the 3D hydrodynamic model ELCOM coupled to the ecological model 

CAEDYM.  ELCOM uses hydrodynamic and thermodynamic models to simulate spatial 

and temporal variabilities of T and velocity distributions and CAEDYM simulates 

biogeochemical and chemical water quality variables.  Detailed schematic representations 

of the model processes and descriptions of differential equations are provided by Hodges 

et al. (2000) for ELCOM and Romero and Imberger, (2003) for CAEDYM.  Descriptions 

of the complete model structure, operations, and documentations are freely available 

online from the Center for Water Research, University of Western Australia. 
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Figure 5.1.  Average annual air temperature 
(Ta) and precipitation (P) for a) measured 
values for the 30 years of climate normals 
period (1981-2010), with intersection of axes 
representing the climate normals (Ta = 7.78 °C 
and P = 0.78 m); b) measured and MIROC3.2 
bias corrected modeled historical and future 
scenarios; and c) the 50th percentile of annual 
Ta and P averages with year 2000 and 2005 
(crosshair) shown as the nearest (normal) and 
the farthest (extreme) years from the center.  
Dash lines in c) show the year 2005 
percentile. 
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5.2.5. Model setup, calibration and validation 

The computation domain of the study area was discretized into 200 x 200 x 0.5 m 

bathymetry grids of 3D Cartesian mesh of computational cells.  The model was 

configured to simulate T, velocities, TP, TN, DO, organic carbon, and one algal group 

(Cyanobacteria-Microcystis aeruginosa).  Each simulation began on March 1 and ended 

on November 30 with time step set to 100 s and output data recorded at 4-h intervals.  

The period of March 29 to October 20, 2000 and April 25 to October 10 2005 were used 

for model calibration and validation respectively.  The mean difference of water level 

between the simulated and measured water levels for the model calibration and 

corroboration periods was mere 0.05m indicating that the model had captured an accurate 

water budget.  Evaluation of agreement (goodness of fit) was conducted by comparing 

between model predictions and twelve biweekly measured vertical profiles of T and DO 

from the three sampling locations as measured by R2 (Fig. 1.6).  The model was able to 

accurately capture the seasonal changes of both T and DO (Fig. 2.4) and it proved that it 

can reliably be applied to the study area. 

 

A detailed description of evaluation and application of ELCOM-CAEDYM to the study 

area including model setup, configuration, parameterization, calibration, validatation, and 

model performance is provided by Missaghi and Hondzo (2010).  The details of 

implementation of sensitivity and uncertainty analyses by two different methods, and the 

process of model parameter ranking by importance and their influence on the model 

prediction are provided by Missaghi, Hondzo & Melching 2013.  The analyses 

highlighted the contributions of simulated T, DO, TP, and Chla that resulted in 3, 13, 26, 

and 58% of total model output variance, respectively.  

5.2.6. Model simulations for past and future climate scenarios  

The model simulation for the HN scenario was based on the observed reference year 

2000 meteorological, stream inflow, and in-lake measured water quality data.  To 

simulate the FU scenario the in-lake water quality, initial conditions, and wind direction 

were kept the same as in the HN scenario but the newly generated FU metrological data 
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were used.  The stream temperatures time series from the HN scenario were transformed 

into FU and FE scenarios using their appropriate air temperature.  All other inflow scalar 

variables were kept the same as the reference year 2000, the HN scenario.  The same 

procedure was then applied to create the FE scenario, except year 2005 (historically 

extreme year) was used as the reference year.  The in-lake water quality initial conditions 

were selected based on the available data and were uniform for all scenarios.   

5.2.7. Fish habitat criteria 

Suitable fish habitat is determined by a large number of environmental factors.  However, 

T and DO are recognized as the two most significant water quality parameters that 

influence fish habitat (Hondzo & Stefan, 1996; Cline et al., 2013).  For this study, we 

adopted the mean coolwater fish thermal and DO criteria established by Stefan, Fang & 

Eaton (2001) (Table 2.3) which includes fish species such as walleye and northern pike.  

The model was configured to generate the simulated T, DO and other model output state 

variables in 27 depth layers at 1 m intervals.  These outputs were then queried to evaluate 

each control volume (cell) for the three coolwater fish habitat types of good growth, 

restricted growth, and lethal.   

5.3. Results 

The HN, FU, and FE climate model scenarios resulted in distinct T and DO predicted 

model outputs, reflecting the individual metrological forcing data.  Each simulated 

scenario generated unique thermal structures and DO patterns that ultimately formed 

varying fish habitats.  The 3D modeling analysis revealed both the specific individual and 

the combined influences of T and DO on the temporal and spatial (horizontal and 

vertical) distribution of good growth, restricted growth, and lethal habitats.   

5.3.1. Model simulations for past and future climate scenarios  

The measured meteorological data for the HN (year 2000), and the projected 

meteorological data of the FU (year 2000 with CFs) and the FE (year 2005 with CFs) 

scenarios were used as inputs (Fig. 5.2) for the three simulations and the evaluations in 
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the study. The modeled climate scenarios presented three hydrologically and climatically 

distinct years as shown by the simulated lake water levels (Fig. 5.3).   

 

Fig. 5.2.  Examples of measured and projected (using change fields) air temperature, wind speed, 
and precipitation time series used for the prediction of ecological changes in the study area as 
historical normal  (HN, black), future (FU, dark gray), and future extreme (FE, light gray) climate 
scenarios.  
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Fig. 5.3.  Comparison of lake water levels simulated under historical normal, historical extreme 
(2005), future, and future extreme climate scenarios for the study area with their monthly total 
precipitation shown on top. 

 

Under all three simulated scenarios, T emerged uniform throughout the water column 

after spring turnover and followed by surfaced T changes reflecting seasonal pattern of Ta 

(Fig. 5.4a).  A warmer Ta in March and stronger winds in April of FU scenario (Fig. 5.2) 

caused an increased in hypolimnion T that made it warmer than the other two scenarios 

throughout the simulation periods (Fig. 5.4b).  Beginning November 1, T decreased 

rapidly followed by fall turnover and water column mixing that yielded a uniform T 

throughout the water column again in all scenarios. 
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Fig. 5.4.  Comparison of modeled water temperature (°C) and dissolved oxygen (mgL-1) in the 
study area under a) historical normal , b) future, and c) future extreme climate scenarios.  
Horizontal and vertical axes of contour plots represent time and depth (m), receptively. 

 

The simulated DO concentrations were at their maximum seasonal concentrations and 

were uniform throughout the water column immediately after spring turnover under all 

three scenarios (Fig. 5.4).  A warmer hypolimnion in the FU scenario kept the DO 

concentrations less than in the HN scenario.  The warmer FU hypolimnion promoted the 

onset of anoxia as early as in April 15, a full month earlier than HN and two weeks 

sooner than the FE scenarios.  Nonetheless, hypolimnion was mostly anoxic in all three 

scenarios by June 15 before the DO concentrations were restored to their maximum 

levels by fall turnover starting November 10.  The seasonally averaged DO profiles of the 

FU and FE scenarios mimicked each other (Fig. 5.5).  For the study area, a season was 
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defined from the start of the average ice-out day (~April 13) to the end of water quality 

sampling period marked by fall turnover (November) (MCWD 2009; MCWG, 2013,).  

For our purposes, we defined the season from April 15 to November 1.  The HN 

seasonally averaged DO profile was generally 1 mgL-1 more than both the FU and FE 

scenarios throughout the water column.  The seasonally averaged T in the future 

scenarios were 4 °C in the eplimnion and 2 °C in the thermocline warmer than in the HN 

scenario, but the FE scenario had the coldest hypolimnion T.  The seasonally averaged 

DO and T profiles showed a marked increase in T and decrease in DO in the FU and FE 

scenarios as compared against HN scenario. 

 

Fig. 5.5.  Comparison of modeled seasonally averaged of water temperature (°C) and dissolved 
oxygen (mgL-1) profiles at West Upper Bay of the study area under historical normal , future, and 
future extreme climate scenarios. 
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However, each of the HN, FU, and FE scenarios displayed their own distinct maximum 

(top 0.5 m surface water) and minimum (bottom 1 m depth layer) water temperature (Fig. 

5.6).  The FE scenario had both the coolest T minimum and highest T maximum.  The 

onset of stratification initiated the formation of thermocline which was calculated by 

finding the depth layer with the maximum change of T of at least 1°C per 1 m (Wetzel, 

2001).  A well-defined thermocline started forming in both the HN and FU scenarios by 

April 26 and followed similar patterns through the simulation periods, except in the 

months of April and May where the FU scenario thermocline averaged 14% shallower 

(Table 5.2 and Fig. 5.4).  The FE scenario thermocline was formed 3 weeks earlier (April 

4) than the HN scenario and had the largest depth fluctuations among all scenario 

throughout the simulation periods (Fig. 5.4).  The FE thermocline was 49% deeper in the 

months of April and May but was an average of 17% shallower than the HN thermocline 

for the rest of the simulation period. 

 

Table 5.2.  Simulated monthly averaged thermocline depth (m) under historical normal (HN), 
future (FU), and future extreme (FE) climate scenarios. 

historical normal  
(m) 

future 
(m) 

future extreme 
(m) 

April 5.5 4.8 8.8 
May 8.9 7.7 12.2 
June 10.8 10.0 7.2 
July 10.6 10.1 8.6 
August 10.7 10.5 9.5 
September 12.7 12.4 11.2 
October 16.2 15.4 13.8 
November 19.2 17.8 17.1 
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Fig. 5.6.  Comparison of the surface T, bottom T, and start (circles), end (squares), and duration 
(vertical lines) of stratification at West Upper Bay modeled under historical normal , future, and 
future extreme climate scenarios.  

 

 

5.3.2. Fish habitat evaluation 

Every control volume (cell) of each depth layer model outputs was queried for coolwater 

fish T and DO criteria for good growth, restricted growth, and lethal habitat under the 

three HN, FU, and FE scenarios.  The number of cells of each type of habitat was 

computed and normalized by the total volume of the lake and reported as the percentage 

of the lake volume.  The changes in the annual averages within the three fish habitats and 

between the three scenarios ranged from 2 to 14% of the total lake volume with 

significant spatial and temporal redistribution (Table 5.3).   
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Table 5.3.  The annual total (percent of the lake volume, %) of good growth, restricted growth, 
and lethal fish habitats evaluated under simulated historical normal , future, and future extreme 
climate scenarios in the study area. 

Climate Scenarios Good Growth 
(%) 

Restricted Growth 
(%) 

Lethal 
(%) 

Historical normal 33.3 60.0 6.7 

Future 42.4 47.0 10.6 

Future extreme 34.8 51.2 14.0 

 

 

Daily, weekly, and monthly averages of fish habitat criteria of T and DO of every cell for 

all depth layers were calculated, their fish habitat type evaluated, their sum of percent of 

the total lake volume computed, and plotted over the simulation periods of the HN, FU, 

and FE scenarios (Fig. 5.7).  The larger time scale of monthly averaged results supported 

the earlier general findings that under future scenarios the annual percentage of the lake 

volumes of good growth was increased, restricted growth decreased, and lethal habitat 

significantly increased.  The daily averaged plots of fish habitats with the finest temporal 

resolution of one day time step, depicted many sudden (1-3 days) episodic fish habitat 

changes with as much as 80% change in the total lake volume (Fig. 5.7, Jul. 23, lethal 

habitat in the FE scenario).  The impact of undesirable habitat on fish depends on its 

severity and the duration that fish are exposed to it.  Fish may find temporary refuge or 

survive the stress during the very short and sudden habitat changes.  For our purposes, we 

used a 7-day long (weekly) averaged fish habitat criteria to evaluate the changes in fish 

habitat.  A week long exposure to restricted growth or lethal habitat was deemed 

sufficient time to use as a metric for our evaluations and to show stress or harm to fish, as 

used in studies in the US (Fang & Stefan, 2012) and UK, (Elliott & Bell, 2011).  Based 

on the daily and weekly averaged results, we selected five one-week periods to compare 

the spatial (vertical and horizontal) fish habitat changes under the HN, FU, and FE 

scenarios.  The five periods (shown as thick bars in Fig. 5.7) included four different 

weeks (June 3-9, June 20-27, July 3-10, and July 29-August 3) with significant (>10 

percentage points) and one week (September 1-7) with minimal fish habitat changes. 
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Fig. 5.7.  Percentage of the total lake volume for a) good growth, b) restricted growth, and c) 
lethal fish habitats based on predicted model variables that are averaged daily, weekly, and 
monthly modeled under simulated historical normal , future, and future extreme climate scenarios 
in Lake Minnetonka. 

 

 

 

A vertical fish habitat distribution was made by computing the cumulative volume of all 

depth layers along with the percent of each type of fish habitats within every depth layer 

and plotting them over depth for all scenarios (Fig. 5.8).  Almost all of the cells with 

lethal habitat in the HN scenario were located below the 10 m depth.  Fish habitat 

changes in the future scenarios from the HN scenario were calculated (Fig. 5.8, Inset) for 

each depth layers.  Under future scenario restricted growth decreased 13, good growth 

and lethal habitat increased 9 and 14 percentage point of the total lake volume.  In the 

case of the future extreme, good growth changed little but restricted growth decreased 8.8 
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percentage points, and lethal habitat expanded more than two times (increased from 6.7% 

to 14%) with 70% of those changes taking place in the top 5 m depth layers.   

 

Fig. 5.8. Hypsographic curves, showing the percentage of total lake volume (x axis) over depth (y 
axis) for the averaged good growth, restricted growth, and lethal fish habitats under simulated a) 
historical normal , b) future, and c) future extreme climate scenarios, with the insets showing the 
changes in percentage points from the historical normal. 
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We next focused on the deepest point of the study area (WU) to investigate the fish 

habitat changes within the water column and throughout the simulation period.  Contour 

plots of the three fish habitats simulated under the historical normal, future, and future 

extreme scenarios (Fig. 5.9) clearly depicted the changes in fish habitat and correlated 

well with the findings of the whole lake volume analysis (Fig. 5.8).  The period of 

restricted growth habitat from June 1, to the beginning of the simulation was shortened in 

both the FU and FE scenarios and replaced by an increase in good growth habitat which 

expanded earlier into the season by 2 and 3 weeks in the FE and FU respectively.  The 

lethal habitat started on May 12 in the HN, two weeks after (May 26) in the FE scenario, 

and in both cases quickly expands from the bottom to 10 m depth by June 10.  The lethal 

habitat started earliest in the FU scenario and was at 10 m depth two weeks earlier than 

both the FE and HN scenarios.  Similarly to the whole lake volume analysis (Fig. 5.8) 

and as depicted in the Fig. 5.9, the majority of changes took place in the upper 5 m of the 

water column.  The timing of changes correlated with the four significant periods 

identified earlier. 
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Fig. 5.9.  Contour plots of good growth (GG), restricted growth (RG), and lethal (L) fish habitats 
based on the predicted model variables averaged weekly under simulated a) historical normal , b) 
future, and c) future extreme climate scenarios at the deepest point (West Upper Bay) of the study 
area. 

 

 

We used the 3D feature of the model to investigate the spatial (horizontal) fish habitat 
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in June 2-7, where average T < 16 °C but is entirely changed to good growth habitat 

under the FU and FE scenarios.  The lethal habitat expanded in the FE scenario from the 

month of July into earlier in the season (through June 20-27) (Fig. 5.10).  

 

Fig. 5.10.  Comparison of the areas of the study area with good growth (blue), restricted growth 
(green), and lethal (red) coolwater fish habitats based on the predicted model variables averaged 
weekly for the top 5 meters of water column under simulated a) historical normal, b) future, and 
c) future extreme scenarios covering the entire study area with all horizontal and vertical axes as 
distance in km. 
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5.4. Discussion 

We used a 3D coupled hydrodynamic and ecological model, previously successfully 

applied to our morphologically complex lake, to simulate one historical and two future 

climatic scenarios.  The results revealed the influence of the specific and combined 

changes of the metrological forcing data on the key water quality parameters that form 

the coolwater fish habitat.  The selection of the historical normal (HN) scenario based on 

the most recent climate normals for Ta and P, and the application of CF’s to the measured 

metrological data provided reliable variables for historical and climate change scenarios 

(Carter, Hulme & Lal, 1999).  We were able to generate three hydrologically and 

climatically distinct and reliable scenarios to use for the simulations where each result 

showed the influence of their distinct individual meteorological forcing data.   

 

The water level results along with the result of the model goodness of fit, R2 (Fig. 2.6) 

proved that the model could reliably be applied to the study area under different climatic 

scenarios.  The measured lake water temperature profiles (vertical) evaluated for the 

model goodness of fit represented three different distinct bays (horizontal) of the lake and 

the model was successful in accurately capturing the lake’s three dimensional thermo 

structure and heterogeneity.  An extensive sensitivity and uncertainty analysis of the 

calibrated (year 2000, base reference for FU) and validated (year 2005, used as base 

reference for FE) simulation results had provided valuable insights in investigating the 

predicted model outputs (Missaghi et al, 2013) which minimized the model output 

uncertainty. 

 

Model simulations for past and future climate scenarios  

The specific and combined influences of the metrological forcing data of each climatic 

scenario were well evidenced in the simulation results.  With the benefit of the ice-cover 

during winter, all three scenarios started with similar initial conditions and a uniform T 

and DO throughout the water column after spring turnover.  The water column in the FU 

scenario began warming up the earliest in the season (March 20) followed by the FE 
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scenario (April. 1) with the HN scenario at last in April 15.  The FE scenario T increased 

at the fastest rate (6.3 °C per month) before reaching maximum T in July similar to HN 

and FU scenarios.  Considering that the FU forcing data were generated by applying CFs 

to the HN forcing data, the FU scenario T generally followed similar pattern of that of 

HN scenario.  However, coincidently, the maximum daily surface water temperature for 

all three scenarios was on July 15 (Fig. 5.6).  The onset of stratification also followed 

similar pattern to T, with the onset of stratification taking place in the FU two days and in 

the FE a full month earlier than the HN scenario (April 22) (Fig. 5.6).  At the end of the 

season, the stratification periods ended on November 7 for the HN scenario (199 days), 

lasted to November 12 for the FU scenario (206 days), and ended on Nov. 22 for the FE 

scenario with 46 days (23% increase) longer than the HN stratification period.   

 

In both future scenarios the epliminion T mimicked the predicted warmer Ta and 

followed the Ta seasonal changes.  The hypolimnion T changes were less responsive to Ta 

(Fig. 5.6).  Our findings were in agreement with previous studies (Trolle et al., 2011; 

Bayer, Burns & Schallenberg, 2013) and originally reported by Hondzo and Stefan 

(1993) that T in the epiliminion is very responsive to predicted Ta but not in the 

hypolimnion.  The warmer epilimnion T increases the water column stability which 

resists mixing and can create cooling of hypolimnion (Livingstone, 2003, Trolle et al., 

2011), as observed in the FE scenario which had the warmest eplimnion T and the coolest 

hypolimnion T.  The combined influence of higher wind speed (ave. WS >4.5 ms-1) and 

rising T in the FE scenario early in the year forced the thermocline deeper than in HN and 

FU scenarios (Fig. 5.2 and 5.4).  But, the thermocline depth rapidly decreased after June 

where a warmer eplimnion had stabilized the water column (less mixing) followed by 

persistent low wind conditions (ave. WS <4 ms-1).  The predicted thermocline changes in 

the FE scenario were similar to other studies reported (Bayer et al., 2013).  The predicted 

extended and stronger stratification has significant implications as it can influence timing 

of fish spawning, reduce the exchange of nutrients between the stratums and interrupt the 
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transfer of energy and food supply to fish, influence DO concentration dynamics, and 

alter fish habitats (MacKay et al 2009). 

 

Except with a few deviations, the DO depletion areas (anoxic zone) closely followed the 

mixing boundaries delineated by thermocline (Fig. 5.4).  We had defined thermocline as 

the maximum T change in areas with of at least 1 °C change of T per m.  However, the 

DO vertical transport has been shown to be suppressed with as little as 0.5 °C change in T 

per m (Foley et al., 2012) which may explain some of the deviations.  The epilimnion DO 

concentrations were episodic and reflected the influences of physical forcing data of T 

and wind speed.  For example, under the FE scenario, an increased in a 10 day average 

wind speed from 3.5 ms-1 in the 10 days prior to June 24 to an average of 5.23 ms-1 in 10 

days after (48% increase) caused a sudden deepening of DO rich epliminion and a 

decrease in the anoxic area (Fig. 5.4c).  The DO episodic changes were magnified in the 

shallow bays (<10 m) where the intermittently mixing of the larger anoxic layer with the 

epliminion caused DO concentrations of less than 3 mgl-1 in the whole water column for 

short durations (<2 weeks) (not shown here).  The short duration changes of DO 

concentrations in the HN scenario were investigated and shown to be driven in parts by 

the stream inflow mixing regimes (Missaghi and Hondzo, 2010).  Force (inflow and 

wind) induced mixing of anoxic bottom layers can produce major ecological 

consequences such as fish kill (Jeppesen et al., 2010). 

 

The thermal structure also plays a major role in the plankton community by shaping 

plankton species succession dynamics, algae biomass, fish habitat (Elliott & Bell, 2011), 

and ultimately the aquatic food web (Wetzel 2000; Sastri et al., 2014).  The model 

sensitivity and uncertainty analysis had previously shown that over half (58%) of model 

output variance was contributed by the algae biomass model predicted variable (Missaghi 

et al, 2013).  The challenge is first to reduce the uncertainty of algae group model output 

through better field data and greater understanding of the ecological processes that 

influence algae biomass.  The second challenge is to configure algae groups in 
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simulations not as how they are currently described (model parameters) but how they 

may adapt and function under future climate scenarios.  One potential method of 

configuring the algae groups would be to include multiple sets of the same algae groups 

but with varying model parameter values so a proper algae group is provided under each 

scenario condition.   

5.5. Fish habitat evaluation 

We used T values and DO concentrations (Table 2.3) to delineate and evaluate coolwater 

fish habitats as previously established by Stefan et al. 2001 and used by others (e.g. Fang 

et al., 2012).  This and similar approaches (Dillon et al., 2003) have been reliable, 

effective, and useful in analyzing fish habitat under different climatic scenarios.  The 

influence of T and DO on fish habitat among the scenarios evaluated was significant 

(Table. 5.3).  Under the HN scenario the fish habitat ratio of good growth:restricted 

growth:lethal equaled to 5:9:1.  However, the volumes of good growth habitat increased 

9, restricted growth decreased 13, and that of lethal habitat volume increased 4 

percentage points under the FU scenario changing the fish habitat ratio to 4:4:1.  The 

volume of lethal habitat more than doubled, but good growth increasing only 1.5 points 

and restricted growth decreasing 8.8 points yielding a fish habitat ratio of 2:4:1 in the FE 

scenario.  Clearly, the lethal habitat grew to a larger fraction of the total available fish 

habitat under the FU, and FE scenarios.  We were able to analyze the temporal and spatial 

shift and displacement of fish habitats under future climate change scenarios.   

 

The daily averaged fish habitat time series (Fig. 5.7) with the finest temporal resolution 

allowed us to identify the important temporal points of environmental stress due to 

restricted growth or lethal fish habitats.  The weekly averaged fish habitat time series 

offered a time scale with sufficient length to capture the potential stress or harm posed by 

both restricted growth or lethal habitats and small enough time scale to capture fish 

habitat dynamics.  Most of fish habitat shifts and changes (70%) were concentrated in the 

top 5 m of the water column (Fig. 5.8) with 5 to 15% of the fish habitats changing within 
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each depth layer.  Only 5% and 1% of fish habitats changed in each depth layer below 5 

and 10 m depth, respectively.  The climatic changes of the FU and FE scenarios widen 

the monthly averaged good growth and restricted growth curves and decreased their 

amplitude (Fig. 5.7).  Consequently, the period of the good growth fish habitats was 

expanded within the simulation period under future scenarios (Fig. 5.9).  But the changes 

in the lethal habitat were focused in one temporal zone (mid Jul.) and their peaks 

increased significantly under the FU and FE scenarios.   

 

The 3D feature of our model allowed us to analyze the spatial (horizontal) expansion of 

lethal habitat starting from the mid-season and the contracting good growth fish habitat 

from the edges (Fig. 5.10).  Other studies have also shown that under a warming climate 

change scenario a reduction of favorable lake fish habitat takes place in edges and near 

shore habitat (Cline et al., 2013).  Areas of the lake with depths shallower than the 

mixing depth (thermocline) were susceptible to an increase in T and a shift from good 

growth to restricted growth and lethal habitat (Fig. 5.10).  The combination of the lethal 

habitat increasing in one time period and the good growth fish habitat receding earlier in 

the year squeezed the good growth area apart for over 3 weeks in July (Fig. 5.9).  With 

good growth fish habitat contracted and separated, the coolwater fish had no potential 

refuge during the three weeks of good growth fish habitat separation (Fig. 5.10).  In our 

analysis we did not consider fish migration out of the study area and assumed that our 

study area was physically enclosed similar to an entire lake basin.  In case of an enclosed 

basin with lack of a refuge during the good growth habitat separation, fish cannot 

physiologically change quick enough to adapt to the shifting and changing of their 

habitats.  Therefore, providing permanent or temporary refuge during good growth 

habitat separation becomes an important consideration for lake managers.  Fish are living 

organism with an array of behavioral dynamics that may manifest many unknown 

attributes and establish their own ecological consequences when faced with ecological 

stresses (Britton et al., 2010), such as developing forging forays into anoxic zones (James 

et al., 2012).  However, a complete separation of good growth habitat with no refuge for 



 

 124 

coolwater fish will lead to summer fish kill.  If fish cannot adopt new territory by moving 

outside of their stressed basin then they may become locally extinct and their population 

shifting to other area lakes or towards higher latitude and altitudes (Jeppesen et al., 2010).  

The shift and changes of coolwater fish habitat will influence specie competition and 

prey interactions (Cline et al., 2013) affecting the existing stress of competition or the 

stress of a newly introduced and better suited specie to the new habitat (Britton et al., 

2010).   

 

We successfully applied a 3D coupled hydrodynamic and ecological model to a 

morphologically complex lake.  The success of the model results were supported by 

prediction of calibration (2000) and validation year (2005) output that accurately 

captured the thermal structure and DO dynamics of the system.  The method of selection 

of one climatic historical scenario based on measured 30 year normal meteorological data 

and using two measured historical metrological years (2000 and 2005) as base for 

predicted future scenarios proved reliable and increased our confidence in the model 

predicted output results.  The results predicted an increase in T values and decrease in 

DO concentration levels with negative impact on coolwater fish habitat.  The results 

showed that the changes in the lake thermal structure under the future scenarios reflected 

the influences of a warmer air temperature that along with decreased DO concentration 

patterns controlled the boundaries of fish habitats.  The results of the predicted impact of 

climate change on fresh-water lakes reported here are supported by other scientific 

investigations that show, as we found, habitats such that of fish are not stationary (Milly 

et al., 2008; Fang & Stefan, 2012; Cline et al., 2013).  The total change in volume of 

uninhabitable fish habitat was modest (8 percentage points of total lake volume increase 

from historical normal to future extreme scenario), but with significant spatial and 

temporal changes that squeezed feasible good growth fish habitats to the point of 

separation in July for over 3 weeks.  Investigating the potential changes of climate 

change on fish habitats by solely relying on evaluation of change in volume may miss 

important temporal and spatial consequences.    
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