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ABSTRACT

Morphologically complex lakes usually have a siguaint water quality heterogeneity
and hydrodynamic gradients that require a threeedsional (3D) model to accurately
capture their temporal and spatial dynamics. Tjeatives of this research were to
evaluate and apply a 3D coupled hydrodynamic antbgical model to a
morphologically complex lake and to investigate éfffects of a changing climate on the
lake ecosystem. The research was conducted ines & four separate studies including
modeling investigations and laboratory experimefisst, a 3D hydrodynamic model
(ELCOM ) coupled with an ecological model (CAEDYMas applied to three bays of
the morphologically complex Lake Minnetonka, MN simulate water temperature,
dissolved oxygen, total phosphorus, and algal aunagons. The 3D model was
calibrated and validated in two different years] amodel results compared well with
extensive field data. Lake hydrodynamic and edokdgrocesses were discovered to be
sensitive to mixing due to inflow and wind variatyilover seasonal stratification. In the
second study, two sensitivity and uncertainty asialynethods were applied to the model
to evaluate uncertainties in the model predictiofi$ie contributions of predicted water
temperature, dissolved oxygen, total phosphorus$asgal biomass contributed 3, 13, 26,
and 58% of total model output variance, respectiveh laboratory experiment was
conducted to measure the influence of fluid motargrowth and vertical distribution of
Microcystisin a Plankton Tower bioreactor. The laboratosutes indicated that a
depth-averaged energy dissipation rate in the rémoge 3 x 10 to 3 x 10°m? s®
facilitatedMicrocystis growth. Fourth, the applied calibrated and vaéde8D model
revealed the influence of local meteorological ghlabal climate conditions on key water
quality parameters and fish habitat in 3 bays &eLlinnetonka. The research was
conducted by simulating the model and analyzinghbeel output results under three
climate scenarios of historical normal (HN), fut@FJ)), and future extreme (FE). Water
temperature (T) and dissolved oxygen (DO) concéatra were used to investigate the
temporal and spatial variability of fish habitain@ynics. The epilimnetic water

temperature of the FU and FE climate scenarios wete 4 °C warmer than the HN



scenario during ice-free seasons, stratificatiamoge were predicated to expand up to
23% (46 days), and thermocline depth to increa% df8der the FE climate scenario. In
all cases hypolimnion was mostly anoxic by Juneblf started by April 15, May 1, and
May 15, under the three climate scenarios of HN, &tdl FE respectively. Under future
scenarios the good growth, restricted growth atithlecoolwater fish habitats that were
based on T and DO thresholds changed +16%, -1886t8%5%%6 compared to the HN
scenario. A modest change (8% of total lake voluofigood growth and restricted
growth into lethal habitat separated the summedgpowth coolwater fish habitat by
over 3 weeks. The research brought out the neeal 3® analysis in capturing the
significant water quality heterogeneities and tb@@gical hot spots in a morphologically
complex lake.
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CHAPTER 1:

Introduction

1.1. Research significance

Water quality models are essential tools that enafalter resource researchers to study
and extend the understanding of physical, chemaral,biological processes of the
ecological systems (Li and Wu, 2006; Gal et al,900rhese models enhance the
interpretation of available data, and allow evatrabf potential impacts of various lake
restoration alternatives (Louks and Beek, 2005ataiquality models play an
increasingly larger role in water resources managertErturk, 2010) and the results of
such models are commonly integrated into a decsuport system to meet water
quality regulatory requirements (Lung, 2001; Rometral., 2006; Trolle et al., 2008).
Water quality and ecological models also help tonfenvironmental policies and create

consensus in managing water resources.

Water quality models could be classified, basetheir dimensionality, as well mix box
models considered as zero-dimension, horizontaédrcal mixing as one-dimensional
(1D), lateral and longitudinal with average depshwo-dimensional (2D), and a three-
dimensional (3D) models. Hydrodynamic and ecolalgicocesses of natural water
bodies and reservoirs may well be captured by 1D0etso(Riley and Stefan, 1988;
Imberger et al., 1978). However, the interactiam®ong aquatic physical, chemical, and
biological processes are nonlinear and dynamicfantlom equilibrium (Hondzo and
Warnaars, 2008; Leon et al., 2011). Additionalhg impact of interactions of lake
morphometry and hydrodynamics on ecological praeasd their complexity is further
expanded in morphologically complex lake ecosystéfadf, 2002; Wetzel, 2001). For
example, the water quality parameters and the geoidal cycles of the morphologically
complex aquatic ecosystems are influenced by datchtemporal hydrodynamic

processes that are affected by multiple flow dymammnorphometry, and metrological
1



parameters that increase water quality heterogenAjuatic systems reflect the effect
of 3D hydrodynamic processes and therefore 3D ldyadramic and water quality models
are needed to capture spatial and temporal biogeaichl distributions within these
complex systems. 3D models provide resolutionsdapture individual morphological

features such as bays and intra-lake circulatibiasl§es et al, 2000).

Lake Minnetonka (60 kfn 4454’ N; 9341’ W) with its 23 bays, 200 km of shoreline,
and 24 krf littoral zone, is considered a very morphologigatbmplex lake (Wetzel,
2001). The lake has been regularly sampled faouawater quality parameters since
1968, with greater intensity since 2000. The amd data facilitates model calibration
and verification which makes the lake a good caatgidor water quality modeling
investigation. The lake has strong water qualé@iehogeneity with each bay having a
specific water quality characteristic or grade egicted in Fig. 1.1a. The grade of each
bay is based on the average grades of three waaditygvariables of total phosphorus
(mg L), algae biomass (mg), and water clarity (Secchi disk, m) (MCWD, 2000
2008). Temperature measurements of surface wafed (m) taken in the month of June
(1999-2009) showed an averaged range (maximum—mmjpnof 5°C throughout the

surface of the lake.

The rapidly advancing computing power and improvetsién 3D water quality models

in the past two decades have provided researchpmtonites to use 3D models of lakes
and reservoirs. However, the sensitivity and utacety methods of these complex 3D
models have not advanced at the same pace (Raeakdg 2005). To have confidence
in the results, models need to be calibrated, atdidl, and their predicted outputs
investigated by sensitivity and uncertainty anaty@ehonditsis and Brett, 200&altelli

et al., 2006; Salacinska et al., 2009).

Well documented, transparent sensitivity and uaggy analyses minimize skepticism

and raise confidence among scientists and the@fdslthe use of complex 3D
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ecological models (Radcliffe et al., 2009). Thisra need for more flexible sensitivity

and uncertainty analyses methods for 3D ecolognalels.

The physical processes in 3D hydrodynamic modelganerally well defined and tend
to require minimal calibrations. On the other hahe biological processes in water
guality models are less defined and it is moradift to simulate their field conditions.
For example, algae biomass model predicted outmutally contribute the largest degree
of model output variance of the total model outgariance and uncertainty. The
influence of hydrodynamics on algae, such as lhpatehiness, vertical distributions,
temporal variations (blooming), and the evolvinglerstanding of algae biological
dynamics each contribute to the uncertainty of@lgedicted model output (Hipsey et
al., 2006; Reynolds, 2006). In Lake Minnetonkasemal algae succession begins with
diatoms during the Spring bloom followed by a Copggtytes and Chlorophytes in early
summer and then fully dominated by Cynobacteridherrest of the season (PhycoTech,
2007). A greater understanding of the interactibthe hydrodynamic processes with

algae and defining their regionally suited biol@jimodel parameters are needed.

Against the background of uncertainty, climate gehas added more uncertainty to
water quality modelingpy altering the frame of reference used to evaltieavater
resources (Fig. 1.1b) (Kling et al., 2003). Reskimg the interactions and influences of
anthropogenic pollution, ecological processes,@mplex morphometry, climate
change requires a vast amount and diverse setafAlgent and Houghton, 2001).
Furthermore, my water quality research must adjust simultangotesthese various
factors and drivers of ecosystem in temporal amdigpsmall scales that are useful to
investigators (Power et al., 2005). Models camnged to synthesize and integrate the
information needed and have beenrian tool in analyzing the impact of climate
change on lake ecosystems (Milly et al., 2008; Meatisn, Rukhovets & Filatov, 2014).
Three dimensional models, in particular, have hessd in climate change assessment of

lakes (Cline, Bennington & Kitchell, 2013). Threenensional computer models have

3



the feature of reproducing the ecological proces$#ise lake in fine temporal and spa
scales thiacan enhance our understanding ofinteractive feedbacks among physic
chemical, and biological processes in morpholotycamplex lake:

Fig. 1.1. Map of Lake Minnetonka and the study area (cirgle@juding West Upper Bay (WB
Cooks Bay (CB)Priest Bay (PB), Halsted Bay (HB), Six Mile Crd&C), and Langdon Lat
Creek (LC). The water quality heterogeneity of lddee is shown by the -yr (199-2009)
average of water quality indicators (pie charts)siame of the bays. Water quality inctors are
from clear water (blue) with total phosphorus (K23 mg L-1, algal biomass (Chla) <10 r
L-1, and Secchi disk (clarity) >3 m, to poor watealty (green) with TP >152 mg L-1, Cfr
>77 mg L1, and clarity <0.7 m; therefore, the greateratez of the blue/white the clearer t
water; and b) predicted 2095 sumnred and winter (blue) geographical climate shift 8tate
of Minnesot-a', USA.
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1.2. Objectives

The purpose of this research was to evaluate golgg al8D coupled hydrodynamic and
ecological model to a morphologically complex lake to investigate the effects of a
changing climate on the lake ecosystem. The redeamework and approach can be
summarized by four objectives:

1. Evaluation and application of a 3D model to acalyatapture the spatial and
temporal variability of lake water quality paranrsten a shallow lake with complex
morphometry;

2. Conduct a detailed sensitivity and uncertainty gsialto evaluate uncertainties in the
model predictions;

3. Quantify the influence of fluid motion on spatiasiibution and growth of
Microcystis under controlled laboratory conditions, and

4. Evaluate the key water quality parameters thataitely determine fish habitat under
changing climate.

Each of the above objectives was independenthareBed and investigated and forms a

chapter (2-5) of this thesis. Each study has Ipeepared as a separate manuscript that is

published or prepared for publication in a spe@&er-reviewed journal.

1.3. Overview of dissertation

Along with the introduction (Chapter 1), this thesonsists of four chapters that each
have been prepared as independent manuscriptaibmdted for publication in peer-
reviewed journals. Each chapter is, thereforéhénstyle of a manuscript published or
prepared for the specific journal. The four chep{@-5) provide research methods and
results of the investigation on the evaluation application of the 3D model and the
implications for Lake Minnetonka under a changifigpate. The lake’s measured data
reflect a system with large spatial and tempordkewguality and fish habitat
heterogeneities which necessitated the use of 3@etado capture its biogeochemical

changes and dynamics.



Input data sources, study area, and model desurjEiong with model setup,
configuration, parameterization, simulations, aalilon, validatation, and model
performance and fit are provided in Chapter 2 stthAng agreement between simulated
and measured lake water levels and seasonal eviapditax suggested an accurate
water balance. Comparison of 12 biweekly measfietdi data from three different
locations within the study area against the moelgllts agreed very well. The simulated
water temperature (T) and dissolved oxygen (DOJilprooncentrations compared well
with that of the measured profiles. The model pbxobust enough to capture the
system’s physical, chemical, and biological sealsand short term (intera-seasonal)
spatial and temporal variations. However, simdatigae biomass concentrations were
moderately in agreement with the measured dat&. niddeling efforts brought out the
need for a greater understanding of biological @sses in the ecosystem and the need for

optimization of the biological module of the model.

Chapter 3 lays out a detailed process of modehpetexr estimation, calibrations, and the
application of two model sensitivity and uncertgintethods. The top ten influential
model parameters in the simulation of the modgbwaiwariables were ranked by two
independent methods. The study also focused o8Dispatial and temporal variabilities
of model predictions. Model performance was messgive in the epilimnion and
thermocline to changes in parameter values withattgest sensitivity during the
streamflow events. The model outputs of T, disstlexygen, total phosphorus, and
algae biomass contributed 3, 13, 26, and 58% ttotiaémodel variance, respectively.
The analysis reiterated the need for a greaterrstataling of biological model

parameters.

Consequently, Chapter 4 is focused on investigdhiagactors influencing the spatial
and temporal variabilities dflicrocystis in order to enhance the model prediction and
ultimately the management of aquatic ecosystenie study explored quantification of

the influence of fluid motion on spatial distribari and growth oMicrocystis under
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controlled laboratory conditions in a Plankton Towm®reactor. The effects of fluid
motion onMicrocystis vertical distribution and cell growth were invegstied under
different fluid motion (turbulence). The generatetbulence levels were measured by
2D particle image velocimetry. The results indéchthat a depth-averaged energy
dissipation rate in the range of 3 X1 3 x 10° m’s* generated the largest values for
both vertical distribution and cell growtt Microcystis. The findings were quantified by
fluid flow property-energy dissipation rate-thapiedictable in most computational
models for water quality modeling in lakes. Thiegration of influence of fluid motion
on growth and distribution dflicrocystis in water quality models has the potential to

significantly enhance the model algae predictahilit

In Chapter 5, the well calibrated and validated etaslultimately applied to test the
specific and combined changes of the metrologmaliig data on key water quality
parameters and cool-water fish habitat under osiitical and two future climatic
scenarios. The climate scenarios were based anadkerecent climate normal and the
application of Change Fields to predict future scegrs. The modeled climate scenarios
presented three hydrologically and climaticallytidist years. Lake thermal structure
under the future scenarios reflected the influermé@swarmer air temperature that along
with decreased dissolved oxygen concentration patieontrolled the boundaries of fish
habitats. The lethal cool-water fish habitat hadaest increase (8 percentage points of
total lake volume from historical normal) under th@rmest future scenario. However,
the small increase had a significant spatial angptgal pattern that squeezed feasible
good growth fish habitats to the point of separatroJuly for over 3 weeks. Results
showed that using 3D water quality model can capimportant temporal and spatial
consequences of changes in key water quality paessieThe findings reported in
Chapters 2-5 have advanced the understanding afitdractions of hydrodynamics and

ecological processes of a morphologically compéke lunder a changing climate.



CHAPTER 2

Evaluation and Application of a Three-Dimensional Water Quality

Model in a Shallow Lake with Complex Morphometry

Published as. Missaghi, S. and Hondzo, M., 2010. Evaluatiod application of a three-
dimensional water quality model in a shallow lakéhveomplex morphometry. Ecol.
Model. 221, 1512-1525.

Fundamental hydrodynamic and ecological processasake or reservoir could be
adequately depicted by one-dimensional (1D) nuraksienulation models. Whereas,
lakes with significant horizontal water quality amgdrodynamic gradients due to their
complex morphometry, inflow or water level fluctigets require a three-dimensional
(3D) hydrodynamics and ecological analyses to ately simulate their temporal and
spatial dynamics. In this study, we applied a 30rbdynamic model (ELCOM )
coupled with an ecological model (CAEDYM) to sim@lavater quality parameters in
three bays of the morphologically complex Lake Mittmka. A considerable effort was
made in setting up the model and a systematic peteaipation approach was adopted to
estimate the value of parameters based on thelisped values. Model calibration
covered the entire length of the simulation periivdsn March 29 to Oct 20, 2000.
Sensitivity analysis identified the top parameteith the largest contributions to the
sensitivity of model results. The model was nestified with the same set up and
parameter values for the period of April 25 to @@t 2005 against field data. Spatial and
temporal dynamics were well simulated and modgbatutesults of water temperature
(T), dissolved oxygen (DO), total phosphorus (TiRJ ane group of algae
(Cyanobacteria) represented as chlorophgl(Chla) compared well with an extensive
field data in the bays. The results show thause of the model along with an accurate
bathymetry, a systematic calibration and corrobonajverification) process will help to

analyze the hydrodynamics and geochemical proce$tbe morphologically complex
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Lake Minnetonka. An example of an ecological agailon of the model for Lake
Minnetonka is presented by examining the effecpaftial heterogeneity on coolwater
fish habitat analysis in 3D and under a scenarierelnorizontal spatial heterogeneity
was eliminated (1D). Both analyses captured seddish habitat changes and the total
seasonal averages differed moderately. Howewver]Ehanalysis did not capture local
and short duration variabilities and missed sugdish habitat variations of as much as
20%. The experiment highlighted the need for aaBBlysis in depicting ecological hot

spots such as unsuitable fish habitats in Lake Btiomka.



2.1. Introduction

The continuous improvements in numerical waterigualodels and computer
computing power have increased reliability and afsedvanced ecological models.
Ecological models extend the understanding of gstesns, give meaning to our
observations and enhance the interpretation ofabtaidata. The results of such models
are also commonly integrated into a decision supp@tem to meet regulatory
requirements (Lung, 2001; Romero et al. 2006; €retlal., 2008). One approach of
distinguishing ecological models, specially theevajuality models, is based on their
dimensionality (Henderson-Seller, 1989). With welk box models considered as zero-
dimension, horizontal or vertical mixing as one-dimional (1D), lateral and
longitudinal with average depth as two-dimensid2&l) and a system discretisized into
a three- dimensional mesh with finite cells allogvior temporal and spatial analysis as
three- dimensional (3D) models. Hydrodynamic atml@yical processes for a number
of natural water bodies and reservoirs have bediceygtured by 1D models such as
MINLAKE (Riley and Stefan, 1988) or DYRESM (Imberget al., 1978).
However, the impact of interaction of lake morphtnpand hydrodynamics on
ecological processes (Kalff, 2002; Wetzel, 200Ense to be magnified in
morphologically complex lakes. Morphometry maydéa regions of different water
quality levels within a lake. This water qualitgterogeneity can be further increased by
the process of urban eutrophication where diffestigams transport varying nutrient
loads into a lake reflecting the landscape and tesgdof their individual watersheds
(Wetzel, 2001). Total phosphorus and sedimenteanations, two of the nutrient loads’
components, are considered strong lake water gumétrics and their impacts on water
quality is well described (Wetzel, 2001; Brett &whjamin, 2008; Gachter and Miiller,
2003; Jones and Bachmann, 1976). However, thengeucal cycles of these
parameters are influenced by spatial and tempaguibldynamic processes that are
affected by flow dynamics, morphometry, and megalal parameters. The
geochemical cycles are also impacted by interrebfa such as sediment composition,
sediment oxygen demand (SOD), entrainment by bebthindary layers (BBL) and
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other transport mechanisms that can contributafgignt nutrient loadings to their
systems (Sgndergaard et al., 2003; Hondzo and Haid@4; Marti and Imberger. 2008).
Collectively, these factors increase both the lange the small localized scale changes
that increase water quality heterogeneity. Aqusygtems reflect the effect of 3D
hydrodynamics processes and therefore a 3D hydewdignmodel is needed to capture
spatial and temporal biogeochemical distributiothiw these systems. 3D models
provide resolutions that can capture individual pmaiogical features such as bays and

intra-lake circulations (Hodges et al, 2000).

The cultural eutrophication impact on Lake Minndtaifrom developments in its
watershed (319 km2) has been typical of the midsvadtnites States urbanization
pattern ( Ramstack et al., 2003; Murchie, 1988)e hotels and resorts constructed on
the lake in late 1860’s were replaced by large oaral estates in the 1890’s and by the
1930’s most of the 175 km of the lake’s shorelireswvell developed followed by an
increased regional urbanization after 1940’s (StE@Y8). The lake is composed of so
many bays and coves that Wetzel (2001) classifé® IMinnetonka as an extremely
complex lake. Because of its complex morphoméiagke Minnetonka has been
described as a lake with three main water quahtysediment types (Murchie, 1984), 12
small and 3 large basins (Megard 1972), 16 disdrasins (Engstrom and Swain, 1986),
or by 23 named bays (Hennepin, 2003). NonethédssMinnetonka is currently
described by 26 bays (MCWD, 2007). The lake’s v&ted has a precipitation average
of 0.75 meter, delivering 10.8 tons (2006) of TRQWID, 2008) into the lake through
five creeks. The lake discharges at the eastatnirgnough a controlled outlet dam
structure. The upland watershed hydrology of #ke land its discharge regime have
been studied (Army Corps, 2008); however, a whalke lanalysis including its internal
loading, and intra lake water circulation has bleeking due to the lake’s complex
morphology (MCWD, 2003; MCWD, 2008). Review of watjuality data collected

since 1968 show areas of various degrees of watditgidegradation within the lake.
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The purpose of this study was to corroborate (a#difithe 3D hydrodynamic model
ELCOM coupled with an ecological model CAEDYM facsions of Lake Minnetonka
(60 knt), west of Minneapolis-St. Paul, MN, USA. Spatiadter quality gradients and
varying inflow loading distribution into Lake Mintenka have created a mosaic of water
quality areas within this morphologically compleké. We demonstrate the application
of a 3D hydrodynamic model with a detailed ecolagjimodel to accurately predict
spatial and temporal variability of lake water tergiure (T), dissolved oxygen (DO),
total phosphorus (TP), and chlorophyll-a ( Chl@paentrations in a shallow lake with
complex morphometry. The results show that the lakdrodynamic and ecological
processes are sensitive to mixing due to inflowamdi variabilities over the seasonal
stratification. Additionally, the results illusteathe need of 3D fish habitat ecological
modeling where spatial heterogeneity and shorttdurdgemporal variations are
preserved. In particular, the experiment highkghthe need for a 3D analysis in

capturing ecological hot spots such as unsuitasieHabitats in Lake Minnetonka.

2.2. Study Site

West Upper Bay (WB), Cooks Bay (CB) and Halsted B4B) were selected for model
set-up and parameter calibrations (Fig. 1). Cé&isnected to HB through a smaller bay
on the east and on the south end it opens into Ne@Bl@ads into the lower bays of Lake
Minnetonka. Six Mile Creek (SC), the largest scefavater contributor to the lake,
discharges into HB on the west and on the northré&Bives water from the small
Langdon Lake Creek (LC). Basic physical, chemiaal] biological characteristics are
listed in Table 1.

Table 1. Major physical, chemical and biologidah@cteristics of the three bays in the study
area.

Bays Area Max. Depth Secchi Disk @hl TP

kn?” m. m ugL* upgl?t
Cooks 1.465 13.1 1.6 15.3 34.1
Halsted 2.202 10 0.5 77.4 92.7
West Upper 3.557 25.6 1.8 13.1 30.6

12



2.3. Methods

2.3.1. Models Description

We used the 3D hydrodynamic model Estuary and IGkemputer Model (ELCOM)
maintained by Centre for Water Research (CWR) afélsity of Western Australia.
ELCOM uses hydrodynamic and thermodynamic modessnballate spatial and temporal
water temperature and velocity distribution. ELC@gs dynamically coupled with
Computational Aquatic Ecosystem Dynamics Model (OAM1), an ecological model,
to simulate three dimensional biogeochemical preees ELCOM and CAEDYM are
well described by Hamilton and Schladow (1997) Hiedges (2000). Schematic
representations of the modeled processes and synaofndifferential equations for
nitrogen, phosphorous, dissolved oxygen and aligahéss in CAEDYM are also
provided by Romero et al. (2004).

2.3.2. Model Setup

Lake Minnetonka topographical maps (LakeMaster520@:re used to manually
discretize the study area (8.01%rimto 200 m surface grids with a uniform 0.5 mtep
layer resolutions to create the 3D Cartesian mésbroputational cells used by
ELCOM. Boundary conditions such as locations afér release, sampling stations,
inflows, outflows and open water cells boundariesendentified in the bathymetry file.
The time step was set to 120 seconds with outpatréaorded at every four hour
intervals. Model output files were regularly maméd to insure that the model time step

(temporal) and grid sizes (spatial) were adequatelgcted.

2.3.3. Data Sources

ELCOM-CAEDYM is driven by inputs from inflow, wateality parameters, initial

conditions, and metrological or forcing data. Ai@age stream flow was calculated

based on the periodic stream flow data recordecka® field data including flow, T,

DO, Chhk, TP and soluble reactive phosphorus (PO4) were fsgenflow scalar values.
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Streams were monitored biweekly at both Six Mild aangdon Lake Creeks. No
stream flows were detected and recorded for thalatimon period (2000). However, an
extensive hydrological study and modeling of theéenshed (Army Corp, 2008) had
predicted an average flow of 0.3s1 in year 2000 for SC which was equivalent to some
of the highest annual average flows since 199 I@tge discrepancy between the
modeled stream flow (0.3381") and the recorded data (0.6s1) could not be explained
and ultimately a stream flow with flow patterns stang the predicted output and with
an averaged flow of 0.135" was adopted. Stream water temperatures wereastim
using available data from area streams and comsgitdreir stream water temperature
patterns in a ten year period. Lake water quaditprds were provided by the
Minnehaha Creek Watershed District organizatioamfes were from three stations
located at the deepest point of HB (10 m), CB (8)5and WU (24 m). Each station had
been sampled biweekly for T, DO, conductivity, quitl profiles (1 m interval), surface
and bottom TP, PO4, total nitrogen and a compdsgéwo meter sample for Ghl
Meteorological data (Fig. 2.2) included hourly read of air temperature, relative
humidity, atmospheric pressure, cloud cover, winelesl, and wind direction which were
obtained from the Flying Cloud Airport (44 50 N; 23 W) about 14.5 km SE of the
lake. Precipitation data were obtained from Mouwdather station (44 56 N; 93 39 W)
0.5 km NE of the study area. Hourly solar radiaticas obtained from Rosemount
Experimental Station (44 45 N; 93 04 W) 45 km SHkheflake. Air Temperature,
relative humidity, wind direction and short wavdasaadiations units required no unit
conversions. No factors were used on any of theonelogical data and none of the
values were changed or modified. Except all argeratures of less than 7 C° in the

month of April were kept at 7 C° to increase masiability.
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Fig. 2.2. Year 2000 metrological Data
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2.3.4. Model Simulations

Examination of the measured water quality dataakaekthat reliable measured DO was
only available prior to year 2005. However, adutitil field measured T and DO profiles
were available for most of year 2000. Therefdne,feriod of year 2000 was selected for
model simulation and parameter calibration and 2885 for model corroboration or
verification (EPA, 2009). The 2000 simulation perincluded 205 days from March 29
to Oct 20, 2000. The same period was also use@ARDYM parameters calibration.
CAEDYM was configured to model phosphorus, nitrqgad, DO, organic carbon, and
one algae groupgCyanobacteria). The corroboration period included 168 days from
April 25 to October 10, 2005. Measured field datae used to establish the model

initial conditions.

2.4. Results and Discussion

2.4.1. Calibration, Sensitivity Analysis and Corroboration

The ELCOM-CAEDYM model was calibrated for the eatsimulation period where
model results were compared against field dataC@\ does not use many variable
parameters and its processes are well defined @todgd Dallimore, 2008). ELCOM
parameters used in the simulations had fixed cahstdues and required no calibrations.
On the other hand, the complexity of CAEDYM nectedss the use of a large number of
model parameters (Hipsey, 2008) which can geneballglassified into biological,

chemical, sediment process, and fixed parametdisted in Table 2.
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Table 2.2. A partial list of the model parametgged in model calibration and sensitivity and
uncertainty analysis with their symbols , unitsininer of samples (n), minimum (min),
maximum (max), mean value (ave), standard devisititmived from literature review, and their
assigned or best fit values (Val.) in the modebb#reviations are: carbon (C), oxygen)O
ammonium (NH), filterable reactive phosphorus, FRP (R@issolved oxygen (DO),
phosphorus (P), labile (L), dissolved organic caridOC), particulate organic matter (POM),
dissolved organic phosphorus (DOP), and dissolvgdroc nitrogen (DON).

Parameters Symbol  Units n Min Max Ave Stdev Val.
Biological Parameters
Average ratio of C to chlorophyll a Ycc mgC(mgQHla 7 0.3 90.00 3145 30 80.00
Algal constant settling velocity Ws mday 6 -0.1 0.3 0.04 0.16 -0.035
Fraction of respiration relative to total FRML - 6 0.14 0.80 0.33 0.250 0.50
metabolic loss
Half saturation constant for N uptake yK mgL* 17 0.00 30.0 4.9 10.8 0.07
Half saturation constant for P pK mgL* 23 0.001 6 0.65 1.78 0.02
Maximum internal P concentration R mgP(mgChlaj 12 0.08 3.00 1.18 0.87 2.40
Maximum potential growth rate of Prax - 29 0.70 4.66 1.98 1.00 1.20
phytoplankton
Maximum rate of N uptake UM {Egl\_ll(mgChla’) 14 0.12 6.48 1.93 1.82 3.50
a
Maximum rate of P uptake W {ng)lgl(mgChla) 12 0.08 1.00 0.37 0.29 1.00
day
Maximum temperature mhx C ¢ 7 28.3 39.0 35.2 3.6 28.0
Minimum internal P concentration R mgP(mgChlaj 12 0.008 1.00 0.27 0.28 0.02
Optimum temperature ot C 7 23.4 30.0 26.9 25 21.0
Respiration mortality and excretion Kr day 18 0.001 0.28 0.10 0.065 0.11
Standard growth temperature stal C 7 19.0 20.8 19.8 0.64 16.0
Temperature multiplier for respiration 6T, - 8 1.03 1.13 1.07 0.031 1.05
Temperature multiplier for 0Ty - 6 1.02 1.14 1.07 0.043 1.06
phytoplankton growth.
Chemical Parameters
Density of POM particles POy  kgm® 9 1218 2600 1010 518 1040
Half sat constant for nitrification KOn mgL 13 0.081 4.00 1.82 1.405 0.75
Half saturation constant for KN2 mgL* 9 0.01 2.00 0.57 0.562 0.44
denitrification dependence or, O
Max mineralization of DOCL to DIC DO« day* 6 0.001 0.15 0.07 0.047 0.01
Max mineralization of DONL to NH4 DON« day* 14 0.003 1.00 0.12 0.263 0.08
Max mineralization of DOPL to PO4 DOP day 17 0.002 1.00 0.19 0.291 0.25
Max transfer of POCL to DOCL PQfx day* 6 0.001 0.07 0.03 0.032 0.07
Maximum internal N concentration N8 mgN(mgChla} 11 0.06 15.00 7.37 5.008 9.00
Nitrification rate coefficient koNH day 13 0.005 0.20 0.06 0.073 0.25
Sediment Related Parameters
Controls sediment release of P@da KOXxS- gm? 5 0.05 3.00 1.32 1.55 1.00
0, PO,
Half saturation constant for DO KSOs mgoOL! 10 0.40 5.00 2.23 1.815 1.25
sediment flux
Sediment, Release rate of PO SmpPQ gm?day* 28 0.000 49.00 5.14 0.110 0.04
5
Static sediment exchange rate of O rSOs gritday* 10 0.20 3.95 1.00 1121  1.30
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The model calibration began with simulating the imum processes and state variables,
and expanded gradually in a step wise processs fgrbcess proved to be very time and
effort intensive. However, the process does pwadjreater depth of understanding of
the system (Hipsey et al., 2006). By focusing pecsfic parameters and processes it
allowed to recognize any potential errors in theasa model setup. Through this
iteratively process and using the available pubklisharameter values (Bruce et al. 2006,
Hamilton 1997, Romero et al., 2004, Hipsey et28(6), a reasonable range of
parameter values were established. These setarhpters were used to develop a
reference model simulation for the calibration gssc Simulated T, DO, TP and &hl
were used to calibrate the model by comparing tteef®? biweekly measured data from
WB water quality station using the minimum weighseoin of squares (WSS) parameter
estimation procedure (Omlin et al., 2001). Phyaogton growth rate and patterns were
visually inspected and evaluated against measuatedtd further evaluate calibration fit
(Robson and Hamilton, 2004; Bruce et al., 2006 ;sEypet al., 2006). The model was
then run with the same configuration, parametenesbnd set up for the period of April
25 to October 10 of 2005 for corroboration. A sevity analysis was performed that
included over 40 major of the model parameterse fiean value first-order reliability
analysis method (Melching and Bauwens, 2001) wed ts evaluate and rank the top
dominant CAEDYM parameters. The top ranking patanseprovided the most
significant sources of uncertainty affecting thereation of model output of DO and
Chla. The top four ranking parameters and theictfon of the total variance of model
outputs (values in parenthesis) were: BRE4A5%), IR\ (23%), tcpy (7%) and sSOs
(5%).

2.4.2. Model fit

The iterative parameter estimation and calibrapiatess of the model yielded a base or
a final set of model parameters and simulationigonétions. Model outputs of
calibration and corroboration periods were measagainst the base model output for
fithess of the model. Data from the vertical gexfiof all sampling events and locations

throughout the simulated period for each of T, D®, and Chd were plotted against
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each of their corresponding model control volummpio time and place on a scatter
plot with y-intercept set at zero. Model fithesasaimeasured by evaluating the R
(coefficient of determination) using EzyFit toolbokMATLAB software. Additional
insights were gained by examining and evaluatimdiles of each parameter against
meteorological data, stream flows and other pararsetConcentration profiles for
soluble reactive phosphorus (SRP) were not cortsluas its epilimnion and

metalimnion values were in general below detection levelsrr&aponding model SRP
output values were belowgL™ in the first half of the simulation period as well
indicating that the system is phosphorus limitédrthermore, profiles of all parameters
were also qualitatively examined by “eye” for pateand times of peaks and minimums.

This review was patrticularly valuable in evaluatthg simulated algae growth.

2.4.3. Lake Water Elevation

The model calibration (2000) and corroboration qasi(2005) presented two
hydrologically distinct years and the model acalsasimulated the lake water levels for
both periods (Fig. 2.3). The mean difference ofewkevel between the simulated and
measured water levels (n=151) during the perioddairtth 29 to September 30 of 2000
and 2005 was 0.05 m (standard deviation = 0.0Gange = -0.26-+0.15 m). Analyses of
the modeled evaporation volumetric flux (2000) gexl an average daily and seasonal
rate of 0.64 m. The seasonal evaporation rate caxdpeell with the known area rate of
0.77 m (MCWD-2000 Hydro report). The good agreenbetween simulated and
measured lake water levels and seasonal evapofatosuggest an accurate water
balance. However, review of the measured stream fhises concerns about their
accuracy and that the measured inflows do not appeaflect the actual field conditions

or precipitation rates
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Fig. 2.3 Simulated (lines) and field data for lake wadkvations above mean sea water level for
year 2000 (solid) and 2005 (blank), lake runoutaien (dashed line) and average lake
discharge (Qe)-

283.4 +

283.3

283.2 4

283.1 4

283.0 5

282.9 +

Elevation above msl, (m)

282.8

282.7 4

| | | | | | | | | | | | |
3/25 4/8 4/22 5/6 5720 6/3 6/17 7/1 7/15 7/29 8/12 8/26 9/9 9/23

Dates

2.4.4. Simulated and measured data

Twelve biweekly measured field data from threekelavater quality monitoring stations
(Fig. 1.1) were used to evaluate the model simdl&teDO, TP and Chl profiles.

Water quality field samples had been collectedaaious times of day from 9:00 am to
8:00 pm. Simulated data matching the verticalifg®ffor T and DO and epliminic and
hypolimnic depths for TP and Ghivere extracted from the model output corresponding
to the specific dates of the measured data anexaet location of each of the water

guality monitoring stations. Temperature and dis=mb oxygen profiles compared best
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Depth (m)

Depth (m)

with the measured data (Fig. 2.4). TP anda@re reasonably well simulated and had

the same generakasonal variation patterns as the measured dgt&(5). The model

managed to capture the diurnal cycle of stratificet and changes. Anoxic conditions in

hypolimnion are observed starting early June ane \&ecurately simulated at all three

water quality stations in both 2000 and 2005.

Fig. 2.4. Comparison of selected days of simulated (ling) @vserved water temperature

(triangle) and dissolved oxygen (circles) at Wegpél Bay in 2000.
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Fig. 2.5 Comparison of 2000 simulated (lines) and measayepilimnion and b) hypolimnion
TP concentration and composite top 2 meter caChl
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2.4.5. Temperature Profiles
Water temperature profiles had the best fit inghantitative comparison of the model

output with the measured data. Without adjustireginitial model parameters, the model
was able to explain 98% of the observed temperatniability in the calibration year of
2000 (R = 0.98, Fig. 2.6). The measured lake water teatpeg profiles from the water
quality stations represented three different distoarts (bays) of the lake. The model
was successful in accurately capturing the threrdnt mixing depths and thermoclines
at each of these locations. Most lake water teatpez discrepancies between the model
output and the observed data occurred in the epitimwith the maximum difference in
order of 4 °C in CB in May. Solar radiation is thajor source of lake’s heat budget and
surface water temperatures are more directly rateveather whereas hypolimnion

water temperature is impacted more by lake morplgyni@obertson and Imberger,
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1994; Hondzo and Stefan, 1996a). The meteorolbgipat data, including wind data

that is used in the model to determine evapordtion were acquired from a weather
station 14.5 km SE of the lake.

Fig. 2.6 Comparison of West Upper Bay (WU), Cooks Bay Y@Bd Halsted Bay (HB)

simulated and data for a) T, b) DO, c) TP, and ldp@nd their respective’Ralues for the years
2000 (calibration) and 2005 (corroboration).
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2.4.6. Dissolved Oxygen Profiles

The simulated DO profile concentrations comparell wi¢h that of the measured
profiles (R =0.67-0.92; Fig. 2.6). The model was able towapthe DO concentrations
at the lake surface and the onset of the hypolimamoxic conditions at each of the
water quality stations (Fig. 2.4). The hypolimnimmoxic conditions started at WB in
early June followed by CB and finally HB by earlyyl The simulated DO, similar to
the measured data, decreased sharply from theimetah reflecting the rapid DO
depletion. A gentle metalimnic oxygen peak dualt@me oxygen production (Wetzel,
2001) is observed in 2000 at the deeper WB watalitgstation (Fig.2.4). The model
was only able to simulate this during a very siperiod with minimal but detectable
peaks and 4 m deeper than the measured datawasislentified during the calibration
process by adjusting the algae settling velocirethe oxidation processes. However,
changes also altered the epilimnion algae growék pienes to an unacceptable levels
which then limited the ability to calibrate the lepnic DO concentrations. The model
can simulate up to five different algae groups. sifoplify the calibration and
parameterization process only one algae group (Gacteria) was configured for this
simulation. But when four algae groups were sitaadathe model was able to simulate
the metalimnic oxygen peak well, particularly iray2005 which had a more pronounced

peak.

The hypolimnitic DO concentration depletion ratéaigely determined by sediment
oxygen demand (SOD) which model simulated it wé&lhe DO concentrations were also
impacted by large storms, wind or inflow inducedimj events. Two large storm events
occurred (July 18 and August 8) in-between the maality sampling collection events
during the simulation period (Fig. 2.2). Both etgecreated a mixing that drastically
changed the DO concentrations profiles, specifiaaitoughout HB. The changes were
not detected in the measured DO concentrationlpsdfiecause the events lasted from
few hours to less than 3 days, whereas the watditgjsampling took place more than a

week after these events. However, the model ssftdBscaptured these mixings and
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their consequences on DO concentrations. The gimiithe events corresponds well
with the rain events dates. Furthermore, the figsliwere also verified by the additional
water quality monitoring data gathered by ThreeeiRWPark District using a Remote
Underwater Sampling Station (RUSS unit) in 2000e RUSS unit on HB had operated
for much of the 2000 with a four hour sampling m&ds. The model simulated DO
compared very well with the RUSS unit measured (Fita 2.7). The additional data
confirmed the model simulations that during theésens events the water column was
well mixed at HB, less at CB and with minimal migiat WB. A similar scenario was
observed in 1999 (EPA, 1999)

Fig. 2.7. Qualitative comparison of short term durationattons of DO concentration (with few
points of interest marked by solid circles) as dated by (a) model and (b) measured by RUSS
unit at Halsted Bay in a two month period in 2000.
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2.4.7. Total Phosphorus Concentrations

Model simulated total phosphorus concentrationewenerally in good agreements with
the measured data (Fig. 2.5 and Fig. 2.6). MedsliRevalues show that the three
sampling locations have distinct localized TP comiaions indicating TP heterogeneity
with HB having the largest values followed by WRIdDB. Data analysis also indicated
that the short duration variations of hypolimnitié in HB were more likely the
consequences of storm events. CAEDYM allows foraghyic sediment diagenesis model
configuration but it was not simulated in ordestmplify the calibration process and to
keep the computing time manageable. There wasadksck of measured field sediment
data and associated parameters that are requirée ldlynamic sediment diagenesis.
The static sediment model simulated TP is largehtmwlled by bottom T, DO, and the
sediment phosphorus release rate. Given the \aarit the sediment characteristics, the
selection of sediment phosphorus release rate ba@came a balance between capturing
the short term TP variations in as many locatiespassible, capturing the general TP
seasonal variations and keeping it within the knoggional values.

Simulated eplimnic and hypolimnic TP values hattarg fit in the first half of the
simulation period at all three sampling sites. el captured many of the short term
TP variations at the two shallower HB and CB, bggenerally over predicted the TP
values for WB site. The TP short term variatiorsrbt correspond to the measured
wind data of those periods but they closely folldviee inflow and precipitation events.
The simulated inflows showed a clear sinking ofebeler inflows from SC through HB,
suggesting that storm event mixing could have leéunced by inflow plunge. Further
investigation with finer bathymetry grids of 100successfully showed the inflow plunge
and mixing. These results along with simulated medsured DO supports the notion
that physical perturbations by inflows at HB and &B causing the water column
mixing and that the hydrodynamics are responsini¢hfe spatial and temporal variations
of state variables (Romero et al., 2004) . Thestigation also led to discovery of a few

deep isolated non-active control volumes that veéireinated by minor changes to
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bathymetry. The bathymetry changes improved théainperformance under both 200
and 100 meter grids configurations.

2.4.8. Chla Concentrations

Simulated Chd concentrations were moderately in agreement \Wwghmeasured data
(Fig. 2.5.C). The measured Chla data was colleaseal composite sample of the top 2
meter of water column while the simulated &€talues represented the average of top 2
meters. The model overestimated theaCidncentrations at WU and CB, missed the
early summer algae bloom but did captured thef&dtdloom. The model also missed to
capture any of the seasonal peaks and under prddine Chd concentrations at HB,
however the values stayed within range. The géfieeayear (1996-2000) algae growth
cycle at the study area begins with a peak inN&ech during the turnover followed by a
rapid decline after complete stratification by efidday. Summer bloom peaks in June,
followed by another late season (Aug-Oct) bloorkiBtand then at WB. On average in
2000, HB was 10 times more productive than therdihgs and it has historically been
an extremely productive basin in compare to otbgranal basins (Megard, 1970). The
unusual high productivity at HB created a largeshegeneity that exasperated the
calibration efforts.

Modeling biological biomass concentrations suchlgae are inherently difficult because
of their lateral patchiness, vertical distributigiemporal variations (blooming) and the
still evolving understanding of algae biologicahdynics (Hipsey et al., 2006; Reynolds,
2006). Typical seasonal algae dominant successidrake Minnetonka begins with
diatoms during the Spring bloom followed by a Copgtytes and Chlorophytes in early
summer and then fully dominated by Cynobacteriaterrest of the season (PhycoTech,
2007). The difficulty of simulating the algae biags was more likely compounded by
the fact that only the dominant group of algae @acteria) was configured in the
simulations. Measured Ghtoncentration was limited to one composite saraptae

top 2 meters that didn’t allow creating verticahcentration profiles. However, DO

profiles suggested an increase in algae biomassbejow the water surface where algae
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is more sheltered and a peak at metalimnion wineralgae gain access to additional
nutrients from hypolimnion while still exposed tmited light. The algae biomass then
declines rapidly as it reaches hypolimnion. Thgsger and lower boundaries form an
algae growth favorable layer with seasonal thicknesiations reflecting nutrient and
light availability, turbulence, microbial loop imections and hydrodynamic affects
(Chen, et al., 2002; Scavia and Fahnenstiel, 188Bson and Hamilton, 2002; Hondzo
and Warnaars, 2008). Measured&lofiles would have provided a valuable
opportunity to further investigate the algae grovavorable layer in the study area.
There were no measured zooplanktons data for tioly site. Zooplanktons were not
simulated and the model did not include zooplankp@zing on phytoplankton.

However, algae mortality rate was assumed to cosgierfor it.

2.5. Example of a 3D Model Application for Lake Minnetorka

Simulations showed that the 3D ELCOM-CAEDYM modelswrobust enough to capture
the system’s physical, chemical and biological seakand short term duration (intera-
seasonal) spatial and temporal variations. Thaapariation of our study area requires
an accurate bathymetry and a detailed 3D hydrodigsato capture its large
heterogeneity. The simulated surface water tenperdor each model output shows
temperature range (maximum-minimum) of 1 °C to A&a?C with a seasonal average of
5°C (Fig. 2.8).
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Fig. 2.8 Range (max-min) of simulated surface water teatpee at each model output (4 hrs.)
over the entire simulation period (2000) with therage seasonal range shown in dash line and
the expanded map illustrating the range (6.5 °Gudiace water temperature at 7/23/00 13:00,
model output.
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Some of the surface temperature variations aréyldkee to the temperature fluctuations
in the shallow areas or the areas near the infldM@netheless, each of the three bays
still show distinct water temperature ranges. Spatial variations may have significant
impacts on ecological systems and need to be cenesidn any ecological modeling
efforts. The question was how would the eliminaid T and DO spatial heterogeneity
impact the analysis of coolwater fish habitat. illicstrate this idea, we examined the
variability of suitable coolwater fish habitat inrostudy area under two different
scenarios. In the first scenario, we analyzeditiehabitats by the 3D model. In the
second scenario (averaged), the spatial heteragemas eliminated by horizontally
averaging the two state variables T and DO. Tladyais can be also considered as an
example of an engineering application of such a&8&logical model for Lake
Minnetonka. Fifteen fish species are found in LEkenetonka dominated, as defined
by mass per gillnet, with northern pikespx lucius), walleye &izostedion vitreum), and
bluegill (Lepomis macrochirus) (MNDNR, 2007). Walleye abundance as measured by
number of fish caught per gillnet, has been lows ldhan 4 catch per gillnet, since 1970,
with a general decline since 1999. In 2007, 99%hefWalleye population was found to
be sustained by annual stocking. Walleye populdtims remained steady regardless of
increase of stocking rate as much as 100% in 20@4lleye grow to 33.0 cm by age 3, a
rate slower compared to the regional lakes. Wallalte-wide average catch was 45.5
cm. Within the lake, the walleye catch in the tstocked bays were 43 and 45.7 cm.
However, those that had migrated into the northwags had a catch average of 55.4 cm
(MNDNR, 2007), indicating the presence of distifish habitats within the lake.

Suitable fish habitat is determined by a large neindb environmental factors. T and DO
are recognized as the two most significant watatityyparameters that shape fish habitat
(Hondzo and Stefan, 1996b; Coutant, 1985; Chrastek Regier, 1988). Different fish
habitat criteria have been established using ttvesg@arameters (Stefan et al., 1995;
Stefan et al., 2001). For the purpose of thisymmswe adopted the mean coolwater fish
thermal and dissolved oxygen criteria establishe8tiefan et al. 2001 (Table 2.3) which

includes both walleye and northern pike.
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Table 2.3.The three types of coolwater fish habitats and tssociated T (C°) and DO (mgL
criteria.

Habitat Criteria Abbreviations Conditions

Good Growth GG (16.3<T <28.2) AND (DO > 3)
Restricted Growth RG (28.2 <T < 30.4) OR (T< 168MADO > 3)
Uninhabitable ul (T >30.4) OR (DO < 3)

The model was configured to generate the simulatadd DO of 12 depth layers at 2
meter intervals (0-22 m). These outputs were thexried for coolwater fish T and DO
criteria. To represent the spatial heterogeneitymized scenario, the T and DO values
of each depth layer was first averaged horizon{@dlly) for each time step and then
gueried same as in the 3D analysis. The numbeordfol volumes (cells) of each type
of habitat was normalized by the total volume & kike (V/\). Sum of each of the
three types of fish habitats were plotted at eanb step for all depth layers over time
and the mean integrated value (average) for egehwys computed and plotted (Fig.
2.9). The process was completed for both calinat2000) and corroboration (2005)
periods which also presented an opportunity to @mmghe coolwater fish habitats under
two different climate scenarios. The summers (2ug.) of 2000 and 2005 were ranked
the 16" and the 5 warmest summers on the records (NOAA, 2009) mattirge two
seasons significantly different.
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Fig. 2.9 Comparison of 3D (black lines) and 1D (red ljnesalysis of the three coolwater fish
habitats: a) GG, b) RG, and c) Ul for all deptheliesyover time with inset showing the magnitude
of short duration variations and d) is the maxinm(aivs) of the difference between 3D and 1D
analysis of GG, RG, and Ul at each depth layerautgut.
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Initially, the 3D and the 1D analysis of coolwafish habitats were conducted for the full
simulation periods of 2000 and 2005. Both analysesirately captured major seasonal
changes (Fig. 2.9). Minimal changes in the fishitaés are expected early in the season
with cooler water temperatures and before the watkeimns stratify. During this period
the fish habitat is dominated by RG. This was wagat in both years by both analysis as
indicated by the straight lines at the start ofgbasons. The GG begins to increase as
the season progresses and the temperature issadraad is minimized again towards
the end of season. RG and GG show large fluctusiiolate Spring of 2000 which
corresponds to the upper water column temperalwecauiition (Fig. 2.9.a-c), a reflection

of the changing weather patterns. The air tempegatas 2 °C and the average wind
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speed was 10% less in May of 2000 than in 200% Ulhincrease coincides with the
onset of hypolimnic anoxic conditions in both yeansl its small values reflect the
smaller hypolimnic volume. GG showed stronger@atron with RG and less with Ul.
The coolwater fish habitats seasonal (May 1-Sepa@@rages for the 3D and the 1D

analyses methods were similar (Table 2.4).

Table 2.4 3D and 1D analysis of GG, RG, and Ul of seasonal (4&8gep. 30) coolwater fish
habitats average values (\{J\¥or 2000 and 2005.

Simulation scenarios GG RG Ul

2000, 3D 0.70 0.15 0.15
2000, 1D 0.68 0.17 0.16
2005, 3D 0.61 0.25 0.14
2005, 1D 0.61 0.24 0.15

This may have been driven by the large seasonauitions of the state variables and
their seasonal dependencies. Percent changes3fdaim 1D analysis were grater in
2000, where the difference of RG in 3D and averagedysis was more than 11%. The
2000 GG habitat bias (3D-averaged) showed thatri&lysis was leading and was able
to capture the changes faster early in the seabda temperature was generally
increasing and later in the season when temperatasedecreasing. The averaged
analysis did not capture short term duration vemet The 2000, GG averaged analysis
missed to capture variations as large as 20%woameek period (Inset Fig. 2.9)
whereas the 3D analysis exhibited greater locaakdity. The maximum bias (absolute
values) of the three habitats (GG, RG, Ul) at edaghth layer and output was calculated
as percent change of volume and plotted for eaah (f&g. 2.9,d). The patterns are
similar for both 2000 and 2005. The averaged amglywhere heterogeneity has been
minimized by horizontally averaging the state Valea, shows the largest differences (up
to 20%) from the 3D occurring at surface layer.e3dchanges are localized in early,
mid, and late season where T and DO may be changmdly. Some moderate
differences (2-8%) between 3D coolwater fish halaited the averaged analysis are also
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seen at 6 to 10 m depth. To demonstrate the TDé&htieterogeneity in the lake, the
range (max-min) of their values for each depthiageach model output was measured
and plotted for all of 2000 season (Fig. 2.10) e Tdrgest ranges of T values were
detected on the surface layer and at the deptesmonding to thermocline and shallow
areas (6-10 m). The largest ranges of DO values @also concentrated at these depths
during the early and late season with smaller coimagons in the deepest areas. The
results correspond well to our earlier findings timanimizing heterogeneity of state
variables in coolwater fish habitat analysis ha&sgtreatest impact at surface layer and at
6 to 10 m depth.

The 2000 to 2005, 3D analysis compression of caefesh habitat, showed a 12%
reduction in GG, 62% increase in RG and 5% rednahdJl. These variations could be
explained in parts by marked changes of the siradl@tand DO values and patterns at
WB from year 2000 to 2005 (Fig. 2.11). In 2005tibontally averaged values for water
temperature in the top 10 m where temperature re ingpacted by weather was about 2
°C warmer and the DO concentrations were aboutl1’nhess than 2000. Based on our
defined coolwater fish habitat T and DO critertayould be expected that an increase in
T and a decrease in DO would yield less GG andgr&G conditions as shown by the

3D analysis.
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Fig. 2.10. Range (max-min) of simulated T and DO valuesaahalepth layer and model output
over the entire year 2000 season, with a lake velplot showing the accumulative volume at
each depth.
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Fig. 2.11 Contour plots of simulated T and DO, at WB shayheir values and patterns for
both year 2000 and 2005.
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2.6. Conclusions

We successfully validated and applied a coupledhg@yodynamic and ecological model
to a morphologically complex lake. Measured daftect a system with large spatial and
temporal water quality and fish habitat heteroggn&hich necessitated the use of 3D
models to capture its biogeochemical changes. BME@AEDYM models were
selected and configured for this analysis througimgensive calibration and validation
process. Simulated and biweekly measured datawse to evaluate model fit. T
profiles had a remarkable fit {R 0.98) with DO profiles agreeing very well at theee
water quality locations (Rof 0.67 to 0.92) but missing gentle metalimnic gty peaks.
TP (R of 0.44 to 0.92) and Cal(R? of 0.3 to 0.48) agreed reasonably well. The model
was able to capture the spatial and temporal bidggistry variations including the
short duration variations that were not detectethieyregular biweekly measured data.
The modeling efforts brought out the need for lqghlity input measured data. Input
data are used as boundary conditions in model garaiion, in evaluation against
simulated data to measure model fit and in seitgitanalysis. High integrity input data
are essential in establishing reliable models. 20@) measured stream flows proved
guestionable and failed to reflect field conditiomMdeasured Clal profiles would have
offered a rare opportunity to examine the algaevtjtdavorable layer as well as aid in
model calibration. The apparent large variatiosediment phosphorous flux in each
bay, as indicated by their TP, also requires furitneestigation. The model captured the
heterogeneity of the system and showed that a 3lysia was needed to adequately gain
insight into its spatial and temporal biogeochemnjidistribution. An example of an
ecological application is provided by examining aodparing the coolwater fish habitat
analysis in 3D and under a scenario where spatiarbgeneity was eliminated by
horizontally averaging T and DO. The 2000 and 288€4&s0ons also represented two
climatologically distinct years. The seasonally@&aged GG habitat for coolwater of 3D
and that of 1D analyses agreed well in both yeBi®wever, the averaged analysis failed
to capture short term duration variations of as imag 20% of the lake volume during a
two week period. The largest (20%) differencesveen 3D and 1D analysis were
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located in the surface layer with a modest (2-8%6¢mnce around thermocline depth.
The simulated fish habitat changes from 2000 tdb208re supported by a 2 °C warmer
water temperatures and 1 myglower DO levels of measured data in 2005.
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CHAPTER 3

Three-Dimensional Lake Water Quality Modeling: Sengivity and

Uncertainty Analyses

Published as. Missaghi, S., Hondzo, M., Melching, C., (2013) “€arDimensional Lake
Water Quality Modeling: Sensitivity and Uncertaiitgpalyses”; Journal of
Environmental Quality 2013 42:1684-1698.

Two sensitivity and uncertainty analysis methodsapplied to a three-dimensional (3D)
coupled hydrodynamic-ecological model (ELCOM-CAEDYdf a morphologically
complex lake. The primary goals of the analysed@increase confidence in the model
predictions, identify influential model parametegaantify the uncertainty of model
prediction, and explore the spatial and temporabbdities of model predictions. The
influence of model parameters on four model-prediatariables (model output) and the
contributions of each of the model-predicted vdaalio the total variations in model
output are presented. The contributions of predigtater temperature, dissolved
oxygen, total phosphorus, and algal biomass can#t3, 13, 26, and 58% of total
model output variance, respectively. The fractbrariance resulting from model
parameter uncertainty was calculated by two metlandsused for evaluation and
ranking of the most influential model parametdxine out of the top ten parameters
identified by each method agreed, but their rankeewvdifferent. Spatial and temporal
changes of model uncertainty were investigatedvaswhlized. Model uncertainty
appeared to be concentrated around specific watghsg and dates that corresponded to
significant storm events. The results suggestgpatial and temporal variations in the
predicted water quality variables are sensitivehtohydrodynamics of physical
perturbations such as those caused by stream mfj@werated by storm events. The
sensitivity and uncertainty analyses identifiedtiaeralization of dissolved organic
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carbon, sediment phosphorus release rate, algabwiet loss rate, internal phosphorus

concentration, and phosphorus uptake rate as teeinfluential model parameters.
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3.1. Introduction

Water quality in lakes and reservoirs is subje¢htotemporal and spatial variabilities of
climatic and hydrologic processes which, in conjiorcwith the lake morphometry and
aguatic basin setting in the watershed, drive waierents. The resulting water currents,
temperature (T), dissolved oxygen (DO), algal bissw@hla), and nutrient
concentrations, such as phosphorus (P) and nitr@djeihave inherent spatial and
temporal variabilities over the lake basin. Intti@s and interactive feedback among
physical, chemical, and biological processes ardimear, dynamic, and far from
equilibrium (Shigesada and Okubo, 1981; HondzoWiadnaars, 2008; Sejnohova, 2008;
Leon et al., 2011; Makler-Pick et al., 2011). Thaus advanced three-dimensional (3D)
representation of physical, chemical, and bioldgicacesses of ecosystems is needed to
capture ecological heterogeneity of ecosystems as¢hkes and reservoirs, particularly

those with complex morphometery (Hodges et al. 02@G@wer et al., 2005).

The concept of 3D hydrodynamic modeling implieg tha fundamental description of
physical processes would minimize the calibratioocpss. 3D water temperature
prediction models of lakes and reservoirs haveessfally proven this concept in a
variety of water bodies and associated climaticlaydtologic conditions (Hodges, 2000;
Hodges et al., 2000; Romero and Imberger, 2003;dRoret al., 2004; Komatsu et al.,
2006; Spillman et al., 2007; Leon et al., 2011) hade become an essential tool in
research and resource management (LiMand2006). Aquatic environments include
multiple, complex processes that depend on numetepsndent and independent
variables across a wide range of scales. ThisiHheuk| scale variability engenders a
greater variability in the numerical 3D modelingagfuatic systems. On the one hand,
3D models are needed to capture the complex aactortnected physical, chemical, and
biological processes in the aquatic systems (Arhsiscand Brett, 2005), and on the
other hand, the 3D depiction and correspondingigtied of state variables such as DO,
N, P, and Chla generate a substantial number ilifraibn parameters needed to
accurately describe the ecological processes dithelated system. Additionally, some
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of these models use appropriate calibration paremmébd address subgrid processes that
are not necessarily resolved or captured at tlgetarequired computational grid scale
(Passalacqua et al., 2006), which further increttsesomplexity of the models and their
dependence on more parameters. Therefore, theetfiwvedhbility of these models may
depend upon numerous calibration parameters whick against the fundamental

concept of minimal calibration needed by 3D modglin

The purpose of sensitivity and uncertainty analygesscomplex, nonlinear, temporally
and spatially variable and configurable ecologmablel is to gain insight about the
impact of the model parameters on model outputtatichd a reasonable or best fit set of
parameters that best respond to available datan(&ral., 2001). Sensitivity and
uncertainty analyses are the appropriate toolsdoh an exercise and can also be used as
screening tools to set up the initial simulatiorieeve information on model parameter
values is limited (Arhonditsis and Brett, 2005urthermore, well-designed sensitivity
and uncertainty analyses of complex models cail yeportant information about the
key processes of the systems under study (Moal; ,€2009: Makler-Pick et al., 2011)
and about their spatial and temporal variationsnsg&ivity and uncertainty analyses of
water quality prediction models have been effetyivsed to quantify how sensitive the
prediction variables are to changes in correspandatibration parameters and how
uncertain the model prediction is due to the valitstof the calibration parameters
(Melching and Bauwens, 2001; Saltelli, 2002; CacR@03; Arhonditsignd Brett, 2004;
Saltelli et al., 2006; Manache and Melching, 200Bhe results of sensitivity analysis
enhance the understanding of the model, increasielmaliability, identify influential
model parameters, and confirm if the model resesnthle system under study (Saltelli et
al., 2000; Saloranta and Andersen, 2007; ZhangAanonditsis, 2009). Sensitivity and
uncertainty analyses guide which model input rezgifurther investigation in order to
reduce the uncertainty in model prediction andetaise stage for future research and
model improvement (Beck, 1987; Burs and Jansen;2d@o et al., 2004; Loucks and
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van Beek, 2005; Saltelli et al., 2006; Munoz-Cagesgt al., 2010; Salacinska et al.,
2010).

Sensitivity and uncertainty analysis are considessgntial components of model
evaluations (Gaber et al., 2009; Schmolke et @lL02, but were reported in less than half
of the modeling investigations published in the@ 892002 (Arhonditsis and Brett,
2004). However, many strides have been made ipaketwo decades in conducting of
sensitivity and uncertainty analyses for 1D, 20J arfew other complex ecological
models. They have included new definitions andudation processes (Turley and Ford,
2009) and in depth descriptiah uncertainty and sensitivity analyses for a raydéar
simulation model (Saloranta and Andersen, 200&hsd et al. (2010), analyzed
uncertainties of the phosphorus loading paramefkreincing the clear and turbid
equilibrium state in shallow lakes, and Makler-Patlal. (2011) have conducted a
detailed sensitivity analyses and have proposezhaapproach to screen subsets of
significance parameters. A good list of models #adstatus of their sensitivity and
uncertainly analyses is provided by Mooij et aD1@), including static, minimal, and
complex dynamic lake ecosystem models. Nonethetessy of the methods used in

these investigations are not readily applicabl@@anodels due to the intense

computational cost of ecologically complex 3D mad&Vhereasthe increased

computing power and improvements in numerical motalve advanced and increased
the use of complex 3D ecological models, the seitgiaind uncertainty methods have
not kept up with that pace (Ravalico et al., 200B)ere is a need for more flexible
sensitivity and uncertainty analyses methods foe88logical models where these
methods can become an integral part of models snckadily available to modelers.
Finally, transparent sensitivity and uncertaintglgges can minimize skepticism and
raise confidence among scientists and the publithiouse of complex 3D ecological
models (Radcliffe et al., 2009).
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Sensitivity analysis is generally classified intolgal and local analyses. In global
sensitivity analysis, model parameters are chamgguh a particular region (space) and
their influence on the model output variabilityaisalyzed. In local sensitivity analysis,
the changes in model parameter values are limitedfixed point in space. Depending
on the study’s approach and available data, trelfpoint in space can be the first
statistical moment (mean) from the available lit@ra parameter values, creating a
reasonable “operating point” (Brun et al., 200T)from a “best fit” set of parameters
obtained from the best calibrated model fit agamstasured data. In either case, a one-
factor-at-a-time (OAT) approach is employed by diag the value of one parameter
while the values of all other parameters are kefiter central or best fit values and the
model output is evaluated against that of the bb@ssimulations (Van Griensven et al.,
2006; Gaber, 2009).

A detailed application of two local sensitivity andcertainty analyses methods is
explored in this paper. Both methods employ thefT@fAproach and have been applied
to a coupled 3D hydrodynamic and ecological mooheukating a morphologically
complex lake. The results of each method are dgarialong with a comparison of the
two methods. The model predictions were compardlld measured seasonal patterns of
the predicted variables in the study ar8aecial attention is given to model performance
during physical perturbations caused by streanowslgenerated by storm events. The
primary goals of the analyses were to improve tideustanding of the complex 3D
model, gain insight into the ecological procesdab® simulated system, increase
confidence in the model predictions, identify irgfhtial model parameters, quantify the
uncertainty of the model prediction, and exploratsh and temporal model output

variabilities.
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3.2. Materials and Methods

3.2.1. Analysis Framework and Setup

The application of the 3D coupled ELCOM-CAEDYM eagical modeling for Lake
Minnetonka consisted of many steps. A detailedietson of modeling evaluation and
application of ELCOM-CAEDYM to Lake Minnetonka inding model description,
configuration, set up is provided by Missaghi armhHizo (2010) and as described in
chapter one. The analyses presented in this ahiaptede the implementation of: a)
parameterization, calibration, confirmation, andd@gerformance (fit), b) sensitivity

and uncertainty analyses by two different methads, c) the process of model parameter

ranking by importance and their influence on thedeigrediction.

Sensitivity analysis could be conducted for anyo$éhe model inputs, such as the model
boundary conditions (Trolle et al., 2008), meteogiatal (Hondzo and Stefan, 1992;
Arhonditsis and Brett, 2005; Leon et al., 2005 dogynamic (Romero et al., 2004;
Hurtado, 2007), and field measured data. In previwork, the boundary conditions used
for this study were carefully reviewed, correctathview modifications, and proved
accurate. However, the predicted biological vdealproved to have the greatest spatial
and temporal variabilities similar to the field isaeed data and representative of the
system. The objectives of sensitivity and uncatjaanalyses conducted in this study
were focused on the variability of model parameters parameters’ influence on model
output variance, and ranking the influence of tlestsignificant parameters on model

predictions.

3.2.2. Model calibration and confirmation

Over 750 values of 80 model parameters were olttdnoen their published values
(Hamilton and Schladow, 1997; Schladow and Hamjli®®7; Romero et al., 2004;
Bruce et al., 2006; Hipsey et al., 2006; HipseW&0Gal et al., 2009). Minimum,

maximum, mean, number of samples (n), and stardfanation ¢) of published values
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of each of the parameters were determined (TaB)e Zhe averaged values of each of
the 80 model parameters, or the most appropridtesaised in similar studies, were
used to form a reasonable operating set of paramaiiges as a starting point for model

parameterization and calibration.

The entire simulation period from Mar. 29 to O@, 2000, (205 days) was used for
model calibration. The model calibration procesgdn with the minimal number of
model processes and model state variables simul&eatlually and iteratively,
additional model processes and predicted varialéze included in model simulations.
This step wise approach proved very time and eifibensive. But, by focusing on
specific parameters and processes the approachatezaleany potential errors in the data
and model setup as well as provided a greater ddpthderstanding of the system
(Hipsey et al., 2006).

At the end of each simulation, 12 biweekly meastiedd data of T, DO, TP, and Chla
from the vertical profiles of the deepest samplowation (WB) were evaluated against
their corresponding model control volume pointime and space. The weighted square
sum (WSS) parameter estimation procedure, deschip&inlin et al. (2001), was used
for model parameter calibration. The WSS is tha sfithe squares of the residuals

divided by a scale:

. 2
SN N N D Ymeask 1l = Yk )52y »0)
WSS@)= D 120D ( sy, 1)
where the index represents the spatial (vertical) locations froto the total number

(Zyk) of depth field sampling locations for model preel'd:variables(yk) wherek

represents T, DO, TP, and Chla model outputs. tGta¢vertical profile points

represented by, is not the same number for all model predictedaégs, as some
variables are sampled at different water depthrvats. Index;j is time (t;) from 1 to

the total number of datg$) where measured profiles were used. Model pretlicte

variables calculated with the parameter valdg are represented by, (Zyk{ ot ,6’) and
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corresponds to the same location and time of tressored datdy, ..., J,i ) . Different
scale factors, or the standard deviation of thesweal variablgo, ) with the same

units as the model output, can be used to make #ifS&nsionless and to give all model
predicted variables similar influence in the par@mestimation. The WSS was used to
assign optimal estimates of the 80 model paramefdnisse sets of parameters were used
to create the assigned values for the best fivfsghrameters (Table 2.2) and to develop a

reference model output used for calibration andicoation.

From this set of parameters, the calibrated parermetith the smallest values of WSS
were selected for the sensitivity and uncertaimigigses. To strengthen the analyses, all
simulations of evaluated parameters with less fivenprior data points (i.enin Table

2.2) were excluded from consideration in the sesigitand uncertainty analyses. A total
of 29 parameters remained that are listed in TAlde The values for the biological
parameters of standards(], maximum (Tnay, and optimum (d,) temperature
representations were assigned considering regabin@dte conditions and field data. The
published values reported for these three paramassociated with CAEDYM are from
studies conducted in relatively much warmer clinaatd water temperature than the
current study area. Consequently the assigne@sdtu Tsia Tmax and Tp: parameters

are lower than their reported ranges. Particuldidywas set at a lower value to initiate
early season Cyanobacteria growth and to captersrttaller portion of diatom growth,

i.e. the algal group that grows first in the eadyason but were not included in the model.

The agreement between prediction and measuremenjueantified by using the
coefficient of determination @ras computed by the Ezyfit Toolbox in Matlab saftev
(The MathWorks, Inc., R2008b). The measured diifg DO, TP, and Chla from the
vertical profiles of the three different samplimgations (bays) within the study area
were plotted against each of their correspondindehoontrol volume point in time and
space on a scatter plot and thefrd@mputed. Additional insights were gained by

examining and evaluating profiles of each modetijgtéeon against meteorological data
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and stream inflows to the lake. The profiles d¥aliables were also qualitatively
examined by eye for patterns and times of maximadmainimum. This review was
particularly valuable in evaluating the simulatégbagrowth (Robson and Hamilton,
2004; Bruce et al., 2006; Hipsey et al., 2006)e model was then run with the same
configuration, parameter values, and setup ford®®& of confirmation period (Apr. 25-
Oct. 10, 2005). Evaluation of agreement (goodoéi$) between model predictions and
field measured data as measured byoRboth the calibration and confirmation periods

from all three water quality stations are listedFkig. 2.6).

The model accurately simulated lake water leveleurtide two hydrologically distinct
periods of calibration (2000) and confirmation (8D@ears. The mean difference of
water level between the simulated and measured Veatels (n = 151) for both years
was 0.05 m with a standard deviation of 0.06 manahge of -0.26 to +0.15 m. The
simulated (2000) seasonal average of evaporatitimairic flux (0.64 m) agreed very
well with the reported field value (0.77 m) (MCWD@B). Both results indicated an

accurate modeled water balance.

The model reference simulaticg*(,@m), for the calibration period, predicted the spatial

and temporal variabilities of T, DO, TP, and Chleemperature predictions were
excellent (R =0.98). DO profiles agreed well at all of thesameasuring locations
(0.67-0.92) but missed gentle metalimnic oxygerkpe®P (0.46—0.83) and Chla (0.38-
0.48) agreed reasonably well (Fig. 2.6). The megs able to capture the spatial and
temporal variations of the physical, chemical, bradogical processes of the system.
Specifically, the model was able to capture thestitashort duration (less than 1 week)
variations of the system that were not detectethbyegular biweekly measured data but

were well documented by simulated DO changes in HB.

3.2.3. Model sensitivity and uncertainty analyses
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The 3D hydrodynamic model, ELCOM, uses physicatpsses that are well defined
(Hodges and Dallimore, 2008) and it requires minicadibration with most of its model
parameters set at fixed values. However, the fottisis study was to evaluate the
model output sensitivity to model parameters of@belogical model, CAEDYM, which
relies on numerous model parameters (Hipsey, 2@@®ending on model configuration
and model processes invoked during the model s€fbp.large number of parameters
and the simulation computation cost (24 h per satnah for the full calibration period,
using 2526 Mhz X86-based PC) were also a few ofrthgr criteria for selection of the
sensitivity analysis methods and only a few mettamgd realistically be considered
(Melching and Bauwens, 2001; Ravalico et al., 2004 Griensven et al., 2006; Van
Griensven and Meixner, 2007; Salacinska et al.020The Mean Value First-Order
Reliability (MFOR) method described by Melching @auwens (2001), and the Mean
Square Root (MSQR) method described by Omlin €28I01) were selected to address
the research objectives. Both methods assume lnoeeelation between the changes in
model parameters and model predictions, use diffideand correlation analyses, and
the OAT approach (local sensitivity) to measuredfiect of variability in the model
parameters on the uncertainty of the model prexidiiBrun et al., 2001; Melching and
Bauwens, 2001; Omlin et al., 2001).

Initially, the top 40 calibrated parameters witk thast values of WSS were selected and

a total of 40 model simulation rung,(, ), were conducted for the sensitivity and

uncertainty analyses. However, 11 simulation tesuére excluded due to lack of
sufficient prior parameter data points or unrekasiimulation results. All further
sensitivity and parameter ranking evaluations aradyais are based on the remaining 29

parameters (Table 2.2). No other modificationseneade to the data.

Although 29 parameters were included in these aealyonly a few were expected to

contribute significantly to the uncertainty in ttmodel prediction. It is clear for example,

that if 5 parameters out of a list of 100 paransetegre to contribute more than 50% of
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the total model variance, then the average indalidontribution of all of the remaining

parameters would be drastically less (Saltelli,&00

3.2.4. Mean Value First-Order Reliability (MFOR) method
The MFOR method (Burges and Lettenmaier, 1975; i8chal., 1981a, b; Chadderton
et al., 1982; Melching and Bauwens, 2001) relieshernstatistical moments of the

estimated model parametgi@®) and the model sensitivity to yield the variancenafdel

prediction variables (model outpuyg,). The model sensitivity is evaluated about the

(4)

og( o
best fit values of model paramete(@ﬂ) and is represented by%T’ whereg(0) is

the function representing the model predictionalales and is computed by the forward

6)-9(6
difference numerical approa{hw j with @ as the [*™ parameter. All

I m

parameters are perturbed uniformly using@ of 10%, (€ =6,,+Ad,), except for

parameters of the temperature multipliers whenggaof 1% was used instead.
The MFOR method implies (Melching and Bauwens, 2@0first-order truncated Taylor

series expansion of, :

Y, = g(Hm)Jer:(Hl—é’m)(%;’)J @)

where the: index represents the number of model paramefgfsom 1 to p, and the
expected (mean) valug)and variancec(rykz) , given the case of statistically
independent model parameters, can be approximated b

E(y)~9(6h) 3)

And




whereo, is the standard deviation of , and o, is that of model parametets

(derived from literature values, Table 2.2).

The fraction of variance resulting from each parmfor each model prediction variable

FOV, (yk) was calculated by dividing the variance contrilduby that parameter,

var () , by the total variance contributed by all parametear (Yi):

FOV, (Yi)= ua%(;)lm GIJ (5)

var (yy)

The dimensionles&0V, (y,) was used to evaluate the influence of each paear(®)
within each of the model outputg (T, DO, TP, and Chla). The average of the

FOV, (yk)m of all four model outputs was calculated for eparameter and used in

ranking the influence of model parameters on mpdadictions.

3.2.5. The Mean Square Root (MSQR) method
The MSQR method (Omlin et al., 2001) is based enctincept developed by Brun et al.
(2001) stating that the uncertainty (variance) dboted by a model parameted)(is
defined as:

; 1
" (0)=—=5(0) (6)

Jn

wheren is the number of total sampled da{ﬁ%(ﬁ)” is the norm (positive values) of the

dimensionless sensitivity measuse( &), defined as:

a6, o9(4)
v A 7
oY, 06, t, Z 0) (7)

Yig !

S{j,k,i},z(g):
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The uncertainty(c) contribution of each parametgf)) to the uncertainty results of the

simulated model predicted variablg,, is expressed as:

ag( 4,
O-yksimI,H, = 6'9, a(g )(Z’t) (8)

and is made dimensionless by division with the ddaeh deviation of the measured

variable (o, ). This allows a measure of sensitivity gf,, as influenced by, by

averaging the squares of the dimensionless errgribations of all corresponding model

state and measured variables for all points in tme all sampling locations:

o (0 \/ ZZZ( 0. %9 )(j,zyh,e)jz ©)

Nig i\ oY, 00,

msqr

The FOV, ( ) , was used to evaluate the influence of each patem(@)

Z 5
within each of the model outputy, (T, DO, TP, and Chla). The sum BOV, (y, ) of

the four model outputs (T, DO, TP, and Chla) wamjgoted for each parameter and used
in ranking the influence of model parameters on ehpdedictions. The dimensionless
5, () is a global sensitivity (across all model outputisjotal model outputs to each
model parameter. This made it possible to caleulaFOV contributed by each model

output (y,) to the total model variance, by:

P s mear
Fov Z_

DY N
k=1 119

The FOV, was used to compare the influence of each modplibto the total model

(10)

variance and to identify the most influential modetput.
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3.3. Results and discussion

3.3.1. Influence of model parameters on model predicted véables
The FQV, in each individual model output (T, DO, TP, and&Jhvere computed by the

MFOR and MSQR methods and the most influential ppatars for each model output
were selected for analysis (Fig. 3.1).

Fig. 3.1. Percent of fraction of variance (FOV) contributgdthe top ranking parameters within
each of the four temperature (T), dissolved oxy@®), total phosphorus (TP), and algal
biomass (Chla) model outputs as analyzed by a) MWedure First-Order Reliability, and b) the
Mean Square Root methods.
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Modeled temperature output

The three biological model parameters — minimurarimal P concentration (}R), half
saturation constant for phosphorus)kand maximum mineralization of dissolved
organic carbon to dissolved inorganic carbon (@G- were rated as the highly
influential parameters but ranked differently bg ttvo methods. Cumulatively, 4R
(38%-average of the two methods), (81%), and DOGax (6%) together explained 75%
of the total variance of model temperature oututicbuted by the 29 tested parameters
(Fig. 3.1). In the CAEDYM model temperature preidic is impacted by light (I,

umol photons i 'S attenuation that penetrates into the water acogrii Beer’'s Law
o 2) = Toar [0 € (12)

where in the case of the photosynthetically aatacgation (PAR) fraction,l(qPAsz) is the

intensity of PAR at depth Z, anldis the incident shortwave intensity(”PAR’Z) is

influenced by the PAR extinction coefficiend,;) which in turn is dynamically
calculated at each time step depending on condemtseof algal biomassA,) ,

suspended particle concentratidsb( ), particulate organic carborPQC), and

dissolved organic carbon (DOC) concentration.

Mear = Tyt ZUA Aa + Zﬁss SSS + ZUPOC POC + ZUDOC DOC (13)
a S

POC DOC
The higher ranking parameters ofJPand Ksinfluence algal biomass whelkéicrocystis
relies on the stored internal P to grow when thalalile P becomes scarce in the water
column. Therefore, in a P limited systawicrocyctis growth is influenced by the level
of the minimum internal P concentration and itsnégs ultimately influences the
extinction coefficient (Eg. 13). The sensitivitiytbe extinction coefficient variability to
IPmin reflects a P limited system. Similarly, the DQ&influences the dissolved organic
carbon (DOC) concentration in the water column Wwhipacts the extinction

coefficient. All three parameters ultimately irdhce temperature.
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Modeled dissolved oxygen output

The oxygen rate equation in the DO module as carddin CAEDYM included
atmospheric fluxATM), algal group photosynthetic oxygen productiBrlY) and
respiration consumption (R), oxidation throughifidation (OXD), sediment oxygen

demand $ED), and oxygen uptake through organic matter decaitipo (BOD).
AR A Sl Sl (14)

The sensitivity analyses showed that the threenpetiers of DOGayx Kp, and density of
particulate organic matter particles (P@dMi,) were most influential and they were
ranked in the same order by both methods (Fig. 3The three parameters explained
about 65% of the total variance observed in DO rhodput. The DOG.x parameter is
most dominant in the BOD processes and specifigaltige utilization (oc) of oxygen

through mineralization of organic matter (Eg. 15)
Uyoc = DOC_, f (DO) f (T) DOC Yo, ¢ (15)
whereY, . is the conversion of carbon to DO. The rate efdfssolved inorganic (DI)

nutrients (C, N, and P) that is available to algaetrols algal biomass and in turn the DO
production. Bacteria, responsible for mineralizatof dissolved organic carbon to
dissolved inorganic carbon, were not simulated; éxaw, their nutrient uptake was
considered as part of the DQgparameter. Similarly, Chen et al. (2002) demotestra
that the maximum dissolved organic P uptake rateduyeria in Lake Michigan was the
top ranking parameter in the sensitivity analysie model parametershs used by
CAEDYM to model the algae internal phosphorus dyieanwhich directly impacts algal
growth and, consequently, DO concentrations. TO®R.nsity determines the availability
and the rate of dissolved organic matter minerabnravhere heavier particulate organic
matter would settle faster and minimize their aaaiity for mineralization. Bruce et al.
(2006) suggested PQivhsiyas the parameter to which CAEDYM was most seresitiv
the prediction of DO dynamics in Lake Kinneretaklr and Romero et al. (2004)
identified particle settling and resuspension patams as essential in improving the algal

growth component of the model.
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Modeled total phosphorus output
The phosphorus rate equation in CAEDYM as configuneludes PQ as simulated in
the model and reported as the filterable (solutdagtive phosphoru$RP), dissolved
organic phosphoru®Q©P), and particulate organic phosphorB©P).

Total Phosphorus]P=FRP+ DOP + POP (16)
The model parameters of the sediment release rateosphorus (SmpPH POMensity
and DOG,ax explained about 85% of the variance for TP modégbat. The FOV of
SmpPQcalculated by the MFOR method (82%) was near tagtarge as that estimated
by the MSQR method (45%). However, all three patans were ranked in the same
order by the two methods (Fig. 3.1). The paramnse®enpPQ along with the parameter
of the sensitivity of P@flux to the overlaying concentration of DO (KOx®#$ are used

in the CAEDYM static sediment model to determine tblease of FRP from sediment
fee = SMPPQ f (DO) f (T) ( }/z j (17)
bot

where Z,, is the layer above the sediment-water interface &(DO) is defined as:

~ (KOxs-PO9
f(bO)= (KOXxS- PO4+ DQ,,

(18)

The hypoliminic TP concentrations are negativelyeated (B= -0.86) with the
depletion of overlaying DO concentrations that ee@noxic early in the season (Fig.
3.2). Therefore, SmpR®ecomes an influential parameter as it regulatesdlease rate
of PQ, from sediment into the water column (internal iogdl where it is readily taken
up by algae and directly impacts biological compuis@nd geochemical cycles
(Christophoridis and Fytianos, 2006; Belmont et2009; Radcliffe et al., 2009). The
timing and the degree of hypoliminic anoxic corahtidetermines the magnititute of the

internal loading and its consequences on watettgual
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Fig. 3.2. Simulated time series of dissolved oxygen (DOt@ua) and total phosphorus (TP
Bottom) at 1 m above the sediment bed, and TPhab&low the water surface (TP Surface).
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Modeled algal biomass output

The three most influential model parameters RECthe respiration rate coefficient
(respiration and metabolic loss, kr), and the temajoee multiplier function €T,))

explained 55% of the observed variance within tlogleh predicted Chla. The high
ranking of the DOG.x parameter represents the cycle of mineralizatidd@C to
dissolved inorganic carbon (DIC) and eventual laal uptake and it relates to bacteria
responsible for mineralization of DOC to DIC. P@Miyregulates the availability of

DOC mineralization and is essential in providingriants in the algal growth model.
The respiration rate coefficient influences thetplgnthetic oxygen production:
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for = (P F(T)ymin[ £(N),f (P P(1)]- k)Y ¢ Yooua A (19)
where Y., » IS the stoichiometric factor that converts chjggll ato carbon. The
respiration rate coefficient (kr), also influendke general loss ternh) used in the
model

L= kT "2+ K4, (20)
where 4, is algal growth rateg represents Cyanobacteria, the phytoplankton group

configured in the simulations, arlg, is the fraction of production lost during

photosynthesis. Together, the components of tia lttss term include the constant loss
fractions such as respiration, excretion, partteutaatter (detritus), and settling. Loss
rate is then multiplied by the dynamic internalrrarit concentrations to determine
metabolic loss due to mortality and exudation. g, parameter itself did not rank as
high as expected but it does influence the loss tehich was ranked high. Grazing by
zooplankton was not specifically configured in thedel, but was lumped into the loss
termkr. The sensitivity of the model to the loss ternmgortant because it shows that
predation could be an important factor and necaesitthe modeling of zooplankton
which may also better highlight the influence of;Hon algal biomass.

Algal growth depends on availability and rate oharalization (DOGay and its

magnitude is determined I8y, where z,is modeled by maximum potential growth rate
(P, ) at 20°C multiplied by dT,, and the minimum value of expressions for limdati
by light, phosphorus, and nitrogen.

o= Py min[ £(1), T (N), F(B] () (21)

The maximum growth is achieved at the optimum tewtpee (Tp) with zero growth

over the maximum temperature.J).

It is worth mentioning that the other temperatwiated parametersIx and T were

ranked as the Mand 12 highest ranking parameters by both methods (rmvsh The
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model sets the growth rate to zero for any tempegaibove Fax and for any
temperature below, it follows an exponential relation similar to tless term with
temperature multipliers determining the slope efdghowth rate. The sensitivity of the
model outputs to algae temperature related parasate a consequence of the
dependencies of algal biomass on temperature. i higportant because the study area
has a large horizontal (spatial) temperature hgeereity that may lead to increased algal
biomass within different bays with similar geocheaticoncentrations; therefore, algal
spatial distribution has significant ecological mn@ance (Robson and Hamilton, 2004;
Salacinska et al., 2010; Wu et al., 2010).

The total influence of the three highest rankingleigarameters on the total model
variance is less for Chla than for the other madéputs. This result indicates that
model predicted Chla sensitivity is spread oveargdr number of biological model
parameters. A process that further exacerbatgsrtidem is the model configuration
setup where different sets of model routines ougsoof phytoplankton can be
configured simultaneously, leading to an increasset] for an additional number of
parameters and expanded parameter intra-dependeipcio seven groups of
phytoplankton may be configured in CAEDYM, and egobup has its own set of
biological model parameters which multiplies thentner of total model parameters.
There is also a large interdependence betweenffeeedt functional groups (Mieleitner
and Reichert, 2008) which compounds the complexitye biological parameter
identifiability also involves neighboring paramesats where the value of one parameter
depends on and can influence the values of othanpeters and different sets of values
of parameters may lead to similar simulation res(Beck, 1987; Mieleitner and
Reichert, 2008). Therefore, a universal set of pagameter values may not be
identified. For that reason, the Cyanobacteriaignas the only algae group configured
in the simulations in order to keep the numberasbmeters manageable. Furthermore,

the Cyanobacteria group constitutes of nearly 80%eototal algae in the system.
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3.3.2.  Model parameter ranking

The fraction of variance of every parameteQV, ) was calculated by the MFOR

and MSQR methods and used for evaluation and mgrddi the most influential model
parameters. The results of the two methods agresdwell (Fig. 3.3). On average, the
MFOR ranking method had a 30% larger slope (fasteumulation of the proportion of
the total variance for the highest ranking paransg¢tdan for the MSQR method. In the
MFOR method the first four highly ranked parame{@©C. ., SMpPQ, IPyin, and Ko)
explained over 70% of the total variance of modebtions. However, the MSQR
method required the contribution of seven paramd@OGa, SMpPQ, kr, Kp,

POMbpensity 0Tb, and IRyin) to reach the same level. The ranking of the &rsl second
most influential parameters (DQ& SMpPQ) were the same for both methods, but the
ranking order of the other top ranked parametere diferent. Nonetheless, nine out of
the top ten parameters were identified by both oagh{Fig. 3.3). The four parameters
related to sediment nutrient and DO flux (SmpPE30s, KOxS-PL and KSOs) were

all in the top 10 ranking model parameters (Fig,3a3act that reflects the system’s
potential sensitivity to internal loading.
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Fig. 3.3. Model parameter ranking measured by the fraaforariance (FOV) contribution by
each parameter (values in parenthesis) and evdlbgitthe Mean Value First-Order Reliability
(dark line) and the Mean Square Root (gray linelhods.
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3.3.3.  Contributions of model predicted variables to totalvariance

The dimensionless sensitivity measua?gl’fqr (6?) derived by the MSQR sensitivity and
uncertainty method created a gauge for the gladradisvity of total model outputs to
each model parameter (Omlin et al., 2001) that nitguiessible to calculate the
contributions of each of the model predicted vdealfFOV, ) to the total model output
variation. The results showed that the model ptedibiological component (Chla) had

the greatest contribution to the total model vareafollowed by TP, DO, and T output

with FOV contributions of 58, 26, 13, and 3%, regpely. This corresponds well with

60



the results of the model goodness of fif)(fRom the model calibration process where T
had the best fit and the biological component efrtiodel (Chla) had the poorest fit
between the measured data and simulated modetfeddiariable (Fig. 2.6). In this
case, th&OV of each model output was defined as their contihwariability (1-K)
divided by the total of the four model output vaiidies. The FOV of model predicted
variables derived from calibration process corezlatery well with those derived from
the MSQR method (Fig. 3.4).

Fig. 3.4 Comparison of the fraction of variance (FOV) tilnuted by each model predicted
variable of temperature (T), dissolved oxygen (Di©fal phosphorus (TP), and algal biomass
(Chla) to the total model variance as derived byaM8quare Root (MSQR) method and model
calibration process for West Upper Bay location.

7 chla [ ]JTP [ ]DO | W

100+

80

FOV (%)
3
|

40-

20

Calibration Method MSQR Method

61



The relative parameter contributions to each mpdadicted variable and the relative
variability contributed by each model predictediahle to total model variability is
shown in Figure 3.5. The analysis confirms thdéi&aobservation that Chla output
sensitivity is spread over a larger number of patans, with almost 40% of the variance
depending on all other lower ranking parameterse fesults show that there are model
outputs (T, DO, TP, Chla) of specific influentianameters which reflect the design of
rate equations and their sensitivity to these patara. However, there are also
parameters that influence multiple model predistadables reflecting the interaction of
various processes. The analyses of these paranagigtheir related processes have
yielded a greater understanding of ecological pses of the system (Makler-Pick et al.,
2011).

Fig. 3.5. Contributions of model predicted variables t@tohodel variance measured by
percent fraction of variance (FOV) of each outgytlO, TP, and Chla) to the total model
variance. The contributions of model parametetliwieach of the model output variables also
are shown.
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3.3.4. Spatial and temporal visualization of model uncertanty

The average model predicted variables (model osif@bng with their standard
deviation 6) and coefficient of variation (COV) were plotted contour maps to
visualize the spatial and temporal variabilitiesraidel uncertainty (variances) (Fig. 3.6).
Starting mid-June, the concentration of DO is rppitepleted at depths below 9 m and
its value in the control volume approaches zerbis Treates a situation where the COV

(o/average) becomes infinity; therefore, the DO plaése not included in the analyses.

The impact of seasonal meteorological forces omtbdel outputs are readily observed
(Fig. 3.6). The water temperature gradually insesarom £C at the start of the season
in April to 26°C in July, and gradually decreases down t&8Q4t the end of the
simulation period in October. Whereas, for the sg@@riods, DO (not shown) starts at
about 14 mgL*, then gradually declines to 5 migland gradually rises again to about 10
mgL™. On the other hand, TP stays below 0.03 thghtil July " (the largest rainstorm
and stream inflow event), and then steadily inaeds near 0.12 mgL. The influence

of Chla on DO and TP concentrations also is evidémthe hypolimnion, a steady

increase of TP, initiated by anoxia, is observedel.

Model uncertainty appeared to be concentrated aroartain depths and dates (e.qg.,
April 26; July 6-22; and August 12-17) (Fig. 3.6n analysis of these dates revealed
that they closely corresponded to stream inflow the lake generated from rainstorm
events. Previous investigations of lake modelltediad indicated that the lake
hydrodynamic and ecological processes area aréigerte mixing due to inflow and
wind variabilities as observed in similar investigas (Scavia and Fahnenstiel, 1987;
Asaeda, et al., 200Chen et al., 2002; Robson and Hamilton, 2004; Horadxl
Warnaars, 2008 It was also observed that periods with extremédsn, and short term
duration of varying DO concentrations in the wat@lumn were driven by stream inflow

events
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Fig. 3.6 Contour plots of spatial and temporal variaieiit a) average model output (T, TP,
Chla), b) standard deviation)(of the model outputs from the sensitivity anadysi the 29 model
parameters; and c) coefficient of variatiefai/erage).
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The spatial and temporal model uncertainties werhér evaluated by analyzing the
COV of model outputs at three different fixed watelumn layers. These values were
plotted against the flow of a major stream (SixeMilreek) that contributes 25% of the
total inflow to the lake. The COV in each of thidepth averaged layers of top (top 8
m,), middle (8.5-10 m), and bottom (10.5-25 m) sadwa distinct pattern and behavior.
The impacts of spring and late season water colmming, summer stratification, and
stream event inflows on model outputs are readeoved (Fig. 3.7). In the top layer,
DO correlated best (Rralues in parenthesis) with Chla (0.88) and TBZPoutputs.
The rapid rise of the COV (greater model outputeutasnty) for both DO and Chla are

preceded by the largest streamflow event. In thialia layer the COV of T correlated
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best with that of Chla (0.77) and DO (0.41), folEnhby correlation between Chla and
TP (0.32). Rapid COV fluctuations of DO are foalge periods of the largest inflows.
The largest COV values of Chla are observed laténe season in the same period of the
largest streamflow events and the largest COV wahiid are during the spring
streamflow events. In the bottom layer, the CO\Chbfa correlated best with T (0.7) and
TP (0.61) followed by the correlation between T d(0.45).

Generally, the largest values of COV coincide wiith stream inflow to the lake
generated from rainstorm events in the top and lmildgers and it appears that model
performance is most sensitive to changes of paematues during these periods.
These findings are supported by the authors’ ptes/fndings that the greatest range
(max-min) of model output values in each contrduwee were near the thermocline and
on the surface (Missaghi and Hondzo, 2010). Thelt®suggest that spatial and
temporal variations of the model outputs are se#esib the hydrodynamics of physical

perturbations such as stream inflows.
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Fig. 3.7. Comparison of the stream flow {&1) with the coefficient of variation (COV) of the
model output temperature (T), dissolved oxygen (D&l phosphorus (TP), and algal biomass
(Chla) in a) upper, b) middle, and c) bottom wédgers where multiplication factors for the right
hand side Y axis are (0.00125, 0.033, 0.05, 029033, 1, 0.05, 0.1), and (0.0009, --, 0.02, 0.1),

respectively.
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3.4. Conclusions

A 3D coupled hydrodynamic and ecologic model wadiad in a morphologically
complex shallow lake. The model parameter estomasgensitivity and uncertainty
analyses by two methods, and parameter sensitauitying were presented. The most
influential model parameters in the simulation afdal output variables T, DO, TP, and
Chla were successfully ranked by the MFOR and M$®@@®ods and the results agreed

very well. Seventy percent of the total model otiyncertainty (variance) was
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explained by the four highest ranked model parare€@R2OGnhax, SMPPQ, [Pnin, and ko)
using the MFOR method and the seven highest rap&eimeters (DOgax, SMpPQ, kr,
Kp, POMpensity 0Tp, and IRqin) using the MSQR method. However, the parameters
influenced the variance of each model output céffiely based on model equations and

the ecological processes of the system.

The three model parameters of,iP Kp, and DOG,ax €xplained 75% of model predicted

T variance. DOGayx Kp, and POMensity contributed 65% of the variance observed in DO
model output with DOGax as the most prominent parameter. SmpM®Mpensity and
DOCaxexplained 85% of the variance of model predicted/afable. Model

simulations suggest that the lake is strongly seedio internal loading, a fact that

should be considered in any future management sehiem

The model outputs of T, DO, TP, and Chla contridi8el3, 26, and 58% to the total
model variance, respectively. This correspondedd thie model performance (fit) (Fig.
2.6). The Chla output sensitivity was spread @/krger number of parameters, with
almost 40% of the variance depending on all otbeel ranking parameters. The
analysis highlighted the need for a greater undedshg and number of field
measurements of biological model parameters andsion of zooplankton in the model.
The sensitivity and uncertainty analyses were &ohiib model predictions at only one
location in the study area. Future work shouldweat@ model sensitivity at more than
one location (bays) to aid in establishing a stewrsgt of best fit model parameter values
with greater transferability (universality).

Contour maps of COV of the model predictions shotirad COV values were the
greatest around specific depths and time peritghe epilimnion and thermocline the
largest values of COV coincided with streamflowr@gevhere model performance is
most sensitive to changes in parameter valuesreidre, simulation periods selected for

3D sensitivity and uncertainty analyses must inelpdriods with appreciable rainstorm
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events and corresponding inflows to the lake. Suchpproach may also improve the
water quality monitoring plans and regimes to etépture the system processes that
happen at different scales and during the growaagasn, and to reveal any needs for
additional field data. The application of the taensitivity and uncertainty analyses have
expanded the understanding of a 3D coupled hydiardymand ecological model
sensitivity to its parameters and the interactibmasious ecological processes within a
morphologically complex system.
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CHAPTER 4

Influence of fluid motion on growth and vertical distribution of

Cyanobacterium Microcystis aeruginosa

Microcystis aeruginosa (Microcystis) is rapidly becoming one of the dominant alga in
lakes surrounded by urban and agriculture dominlatedscapes. We conducted
laboratory study by measuring the population groawttl vertical distribution of
Microcystisin a Plankton Tower bioreactor. An oscillatingdgwas installed on the top

of one of the columns in the Plankton Tower andaigel at selected frequencies of 0.5,
1, 1.5, 2, and 3 Hz to generate turbulence witHigibte time-averaged fluid flow. The
effects of fluid motion oMicrocystis growth rate and vertical variations were evident by

a 32% and 246% increase in growth rate and vertelatoncentration corresponding to

a depth-averaged energy dissipation rate X of 1.3 x 10° m’s* in the Plankton Tower.
Turbulent conditions generated (@} >3 x 10°m” s® suppressed the growth of
Microcystis and for(e) < 3 x 10" the fluid flow had a minimal impact on growth. &h

laboratory results indicated thét) in the range from 3 x 10to 3 x 10°m? s® facilitated

Microcystis growth. Findings from this study can facilitatgr@ater understanding of
physiology and spatial distribution bficrocystis in aquatic ecosystems. The results will
be instrumental in developing mechanistic modelspaitial and temporal variabilities of

Microcystis that can enhance management of aquatic ecosystems.
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4.1. Introduction

The cyanobacteriunMicrocystis aeruginosa (Microcystis), is one of the algae groups that
is rapidly exploiting a growing number of eutropka&es that are fed by excessive urban
and agricultural runoff (Kearns and Hunter, 200Gyanobacteria are remarkably well
adapted to live in a wide array of ecosystems wutieme physical and chemical
conditions (Ferris and Hirsch, 1991; Whitton andt$®000; Visser et al., 2005).
Microcystis naturally form mucilaginous colonies or coenol#@-¢00 pm) and can gain
positive buoyancy by regulating their gas vacualed through synthesis of their
carbohydrate content (Reynolds, 2006; Hunter e28D8; Sejnohova, 2008; Wang et al.,
2010). Under certain environmental conditidisr ocystis population may bloom,

which is to grow at a very rapid rate and reacheewely high cell densities. It is
suggested that in the absence of a critical wirgdgsuch as >3 nisthe colonies in a
bloom float to the water surface and form a deagerlcalled scum (Wu and Kong,
2009).

TheMicrocystis blooms and its associated scums may create fous @ohal tastes, shade
other organisms, severely alter the flow of food aarbon, and deplete oxygen from
bottom waters through their decomposition afteraffeand cause fish kill, (Paerl et al.,
2001; Haven, 2008)Microcystis are the leading producers of the toxin microcyénd
are a serious health hazard to wildlife and huneaith globally (Dokulil and Tebner,
2000; Efteland, 2004; Zurawell et al., 2005; Heisé al., 2008; Herrero, et al., 2008;
Lopez et al., 2008)Harmful algae blooms are becoming rapidly more @&t due to a
combination of eutrophication and climate changeiglér, et al., 2008; Paerl and
Huisman, 2009; O’Neil et al., 2012; Ekvall et 2013).

Microcystis scums are commonly associated with warm, calmpamagent rich waters
(Reynolds, 2006; Carraro et al., 2012). Algae fstis at times incorrectly perceived as
being caused by a large algal population growtheurface of water; however, algal
scum is merely the accumulation of the algae blabthe surface of the water in the
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absence of sufficient wind energy to keep it distied within the water column. Algae
may have a considerable vertical structure withhilgeest concentration of algae, such
as Cyanobacteria, growing at 2-9 m, depth (Woj@adk et al, 2004; Maier et al., 2008;
unpublished data). The deep chlorophyll maximuwmdists and modeling efforts (Cullen,
1982; Robson and Hamilton, 2004; Leon et al, 2@dlyaro et al., 2012; Fernand et al.,
2013; Painting and Foster, 2013) recognize the teadegrate physical processes to
better understand algal uptake of nutrients, groaiad population density in the water

column (Varela et al., 1992).

Microcystis horizontal distribution and patchiness within aevdody is driven by
advective flow generated by inflow (Qin, 2013) amdd (Hunter et al., 2008; Wu et al.,
2010; Carraro et al., 2012; Yajima and Choi, 201Bjjcrocystis vertical distribution
appears to be influenced by mixing conditions mwater column. Depth integrated
populations oMicrocystis, unlike that of the temporary visible surface e have
smooth, slow, seasonal (temporal) dynamics, byt shew frequent vertical changes that
are influenced by local fluid flow conditions (Adib et al., 1984; Wallace et al., 2000;
Pasztaleniec, 2004; Johnk et al., 2008; Moreno<at@al., 2009; Wu and Kong, 2009).
Various wind speeds (3-6 Mshave been suggested as the critical wind speediedeto
generate enough fluid motion to drivBcrocystis away from the water surface (Wu et
al., 2013). On the other hand, in the case ofisgh&lgae, a critical turbulence range, or
window, within the water column appears to exisevehalgae can overcome both mixing

and sinking rates and flourish prior to algal blo@tiuisman et al., 1999).

Several experimental studies have demonstratedidgidhiimotion has effects on algal
growth and nutrient uptake rates (e.g. Sullivaalet2003; Xiao-li et al., 2004; Peters et
al., 2006; Hondzo and Warnaars, 2008).]Bbdien et al., (2004) demonstrated the
influence of turbulence levels dicrocystis colony size. Process-based and three-
dimensional (3-D) lake water quality models, haeendnstrated that cyanobacteria,

Planktothrix rubescens, has distinct spatial and temporal distributioret tire strongly
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influenced by the lake hydrodynamics (Carraro €t28112). The current understanding
of Microcystis bloom formation is limited, and there is a neetdétter describe and
identify the forcing factors and processes influeg®licrocystis growth and spatial
distribution (Regel et al., 2004; Sharma et alJ20Nu et al., 2010; Wu et al., 2013).

The motivation for this study was to quantify théluence of fluid motion and
corresponding rate of energy dissipation levelshengrowth and vertical variability of

Microcystis under controlled laboratory conditions.

4.2. Materials and methods

4.2.1. Species and cultivation

TheMicrocystis strain was provided by the Department of Fisheaies Allied
Aquacultures, Auburn University, Alabama (Wilso0,12, personal communication).
Ten healthyMicrocystis colonies from original cultures were transfernetbisterile
culture tubes with 15 mL of modified BG-11 mediuredia (Sigma -C3061, Sigma-
Aldrich, MO) and Milli-Q water (Renaud et al., 2Q11All colony transfers were
performed under laminar flow hood and sterilizeddibons. Culture tubes were
incubated at 20 °C, with an average 140 photostingiy active radiation (PAR)
downwelling cool white fluorescent light on a 14light-dark cycle. After an
acclimation period of three weeks, colonies weaagferred into stock cultures in 1000
mL Erlenmeyer flasks containing 250 mL of modifid@-11 medium, covered with
loose aluminum foil, and incubated under the saomelitions. Two weeks prior to each
experiment, stock cultures were transferred irB@0 mL Erlenmeyer flask batch
culture containing 2000 mL of modified BG-11 mediuithese actively growing batch
cultures were used to seed the Plankton Tower aiduwantaining modified BG-11
medium to a cell concentration of about 5 % ¢élls mL*. Frequently, samples from all
cultures were inspected microscopically to detegt@ntaminations and only healthy

cultures were used in the experiments (Fig. 4.1).
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Fig. 4.1 Microscopic images (Microcystis aeruginosa a) large colonies, )} cell aggregate:
and d) unicellular culture (cell diameter about +8)ithat was used for the experiment

4.2.2. The Plankton Tower bioreactor
The Plankton Tower (P bioreactor (1.5 m x 0.6 m x 0.2 m) is a two coluf@r2 x 0.2
m) Plexiglass towethat was designed the SaintAnthony Falls Laboratory, Universi
of Minnesota (Spitael, 2007 The PT has two independent columns that are en
separated from each other, filled with the samiel fland are exposed to similar exter
environmental factors such as teerature and PAR. One of the columns was ust
experimental control with no fluid motion in thelemn and in the second column, flt
motion was systematically controlled. computer controlledscillating gridwith
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variable oscillating frequency was installed attibye of the second column to generate
vertical distributed turbulence. The PT was plaicea dark room with controlled air
temperature and was illuminated at an averaged 6fARO0 umol photon ifs?, using
cool fluorescent lights on a 14:10 light-dark cy@g. 4.2). The lights were vertically
oriented and mounted at the side of the PT sudhatbal cells experience uniform
exposure to PAR over the entire column. Water tmatpre was maintained at 21.5 °C
with negligible stratification effects (temperatwiéferences in each column, at different
heights, were within 1 °C). THdicrocystis cultures were grown in the PT under
specified conditions including a control column tfvaut fluid motion) and the column
with a variety of turbulence levels that were gaied by the oscillating grid setup
operated at selected frequencigs Therefore, the only experimental variable ie Bil
was fluid motion. All the other environmental catrehs (temperature, light, initial
nutrient concentrations) that could possibly infiae the growth oMicrocystis in the

columns were controlled.
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Fig. 4.2 Photograph of the experimental bioreactor (RlamR ower; 1.5 m x 0.6 m x 0.2 m)
with two independent sealed columns that were fealgal growth experiments with one
column used as (a) control column without fluid motand b) turbulent column with fluid
motion generated by the oscillating grid. Locatad the oscillating grid along with the
horizontal (x) and vertical (z) axes are also shown

Oscillating
Grid
Y

Plankton Tower

75



4.2.3. Laboratory measurements
Microcystis cell count (cells mLt) was conducted using a haemocytometer and
chlorophylla (Chl-a ) concentration was determined spectrophetacally using 90%

acetone extraction (Clesceri et al., 1995). Valtoell concentration profiles;; (cells

mL™), of each PT columns (stagnant and turbulent) wktained using a Turner Designs
Cyclops-7, ann vivo fluorescence cyanobacteria sensor (Sunnyvale, CAglopes-7

was connected to a computer controlled mechamaatising system ensuring that
profile measurements were taken at specific tinmelsvartical locations with predefined

acquisition frequencies and measurement periods.

Microcystis cell concentration is doubled at a constant ratend the exponential phase
of its growth cycle where the values of cell cortcations plotted on a natural log scale

will produce a straight line. The slope of thigdiis the algae growth ratkgo based on

the changes of cell concentrations (cells thtluring the exponential growth period and

is determined as:

In

9 t,—t, 1)
where <Cf >1 and <Cf >2 are the column depth-averaged concentrations gltin

exponential growth phase, ahs$ the time. Samples and data measurements frerRT
were taken daily during 13:00 and 16:00 hours.oAdness of fit &), with a minimum

value of 0.98, was calculated for each set of daptiraged concentrationéC(f >)

selected from the exponential growth period (stralime) for each oMicrocystis

experimental runs.
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4.2.4. Calibration of fluorescence sensor

The Cyclops-7 fluorescence sensor was calibratied) tise manufacturer recommended
setup, by measuring sensor’s signal output volfagé) in a dilution series of
Microcystis with known cell (cells mt* ) and Chl-a (ugt') concentrations (Fig. 4.3a).
The Cyclops-7 measurements\difcrocystis were confirmed @= 0.99) by comparing the
random measurements of Cyclops-7 against the @efitof the same samples using
haemocytometer cell count (Fig. 4.3b). The repeodallity of the vertical cell
concentrations profiles measured by Cyclops-7 wested by taking repeated profiles
and evaluating the changes in the cell concentrai@ each depth. Three profiles were
repeated every six minutes and six profiles evérynihutes with an averaged coefficient

of variation (CV) of 4.2% with CV =/ X whereX is the time average cell
concentration at each depth asdis their standard deviation. Culture samples flath
the control and column with fluid motion were takegularly throughout the

experiments for cell counts to monitor and confihe measurements of Cyclops-7.
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Fig. 4.3 Measurements by the fluorescence sensor, Cydlapa series of a) known
Microcystis sample concentrations that were evaluated agdiesheasured Chl-a (diamonds,
L% r*= 0.95), and haemocytometer cell counts (trianggéismL™; = 0.99) for sensor
calibrations, and b) of 15 randdviicrocystis samples evaluated for sensor verificatior(©.99)
against cell counts of the same samples obtainetsing haemocytometer (cells ML

s}
A —
IN
|
|
N
o

C'
] @ <v> Chl-a
O

Cyclops-7 —

w
o

<O

S ]
& i

Od
1- \V4

!
= N
o o

1 1

C, x 10 (cellsmL™) / Chl-a (igL™)

Cyclops-7 (mV)
N
|
&

v/
[l
< Y

1<Kp
cH

T T T
Blank

‘ ‘ ‘
1.0 0.8 0.6 0.4 0.2 Sample
Dilution Factors

l 2_
7.5x10 r=0.99

Cyclops-7 (cellsmL)

I I I |
2.5x10 5.0x10 7.5x10 1.0x10

Haemocytometer (cellsnii).

4.2.5. Turbulence generation

In the control column, fluid was stagnant withontascillating grid setupgf € 0 Hz). In
the second column, an oscillating grid with thelgnesh (0.05 m) was set to oscillate at
0.05-0.1 m below the water surface with the sti@ef 0.03 m (Fig. 4.2). The

oscillating grid was operated at selected frequenoif = 0.5, 1, 1.5,2, and 3 Hz.
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4.2.6. Turbulence measurements and Particle Image Velocinegy

In the experimental set-up, fluid flow velocitieere measured using 2-D particle image
velocimetry (PIV). PIV is a non-intrusive imagesed technique able to estimate the
change of positions of tracer particles in thedfluiluminated by a laser sheet, within a
prescribed, small, time interval (Adrian 2005).eTRIV (TSI, Inc., St. Paul, MN)

system consisted of a monochrome CMOS camera, 5.5 um pixel size, able to
capture more than 2000 images (at a rate up tdpK)0n a field of view of 0.1 x 0.1 ™
illuminated by a Litron dual cavity laser (LPY 7080; Rugby, England, capable to
deliver up 100mjoule per pulse). The Insight 61jE8ftware was used to synchronize
the laser pulse and the camera acquisition asasét process the images and compute
the instantaneous velocity vectots ¢nd w). Measurements were taken at two vertical
locations, ranging 10-20 mm and 20-30 mm belowotingin position of the oscillating
grid, respectively.The PIV experiment was conducted with the PT filled with pure
water and seeded with hollaylass coated spheres (1.05 g cm™ density). PIV was
performed in a baseline set of experiments conducted under the same

geometrical, mechanical and environmental conditions of the experiments
performed with the algae. PIV measurements were used to describe the turtelle
characteristics in the PT experiments and to catetthe energy dissipation rategn’s

% using a 2-D approximation (O’Connor and Hond220)&):

[aujz [awjz 3[8ujz 3(8Wj2 ou oW 3(auawj
e=v|| — |+ — |+ —= | +=| — | +——+=| ——— (2)
OoX 0z 4\ oz 4\ ox OX 0z 2\ 0z ox

4.2.7. Statistical analysis

Two-sample Studentistest was performed, comparing the average coratérirof the
daily cell concentration profiles (n=400, wheresrihe total number of data points)
during the exponential growth period from each expental (= 0.5, 1, 1.5, 2, and 3 Hz)
and its corresponding control condition. In eaxst tthe null hypothesis was that there
was no difference in the meanMfcrocystis daily concentrations between the control
and turbulent experimental conditions. Analysivafiance (ANOVA) was preformed to
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test the difference between the two groupbladfrocystis cell concentration profiles
selected from the experimental treatments and tdoeresponding control conditions
during their exponential growth period. A two-waNOVA was also performed with

Microcystis growth period (8 days) and the dafy; from each experimental and control

conditions as the two factors. The measWct ocystis growth period (8 days) was set
as the first factor (n=3280, 2 levels) with turmtlexperimental condition and the control
condition, each as one level. All ANOVA tests weosducted at 95% probabilitp €
0.05) followed by Tukey’s multiple comparison teisexamine the significance of their
differences. We also implemented the Studdriest to evaluate the differences
between the daily cell concentration profiles frerperimental treatments and its
corresponding control condition. All statisticaledyses were performed using
OriginPro9 software (Northampton, MA).

4.3. Results and discussion

4.3.1. Cultures

Every experimental run was started witNlecrocystis cultures cell concentration of
about 7.5 x 1bcells mL*. A uniform initial Microcystis cell concentration among
different experimental runs was obtained by stgréach experiment with clearly
countable single cells (Fig. 4.1d). Howewdricrocystis cultures grow to include double
cell and small colonies during the experiment. &keonential growth period (9.0 x 40
1.2 x 16 cells mLY) generally established within two days and lastedo 8 days,
followed by the stationary period (1.2 x®1@ x 10 cells mL?).

4.3.2. Turbulence characteristics

The generated turbulence levels in the PT produtiddanges of about 16 m?s™>,

Mean energy dissipation contours, interpreted measure of spatial statistical
variability of the turbulent flow in the experimahsetup, were estimated for each of 1,
1.5, and 2 Hz oscillating grid frequencies. The & energy dissipation is observed to

be fairly uniform in the horizontal (x-direction)hile exhibiting the expected spatial
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decay in the vertical (z-direction) (Fig. 4.4a)gute 4.4b, provides a spatial sample of
the instantaneous velocity vectors showing theisgstthat are generated by the

oscillating grid, gently propagating in the PT.

Fig. 4.4 Data from 2-D Particle Image Velocimetry werediso estimate a) energy dissipation
rate, & (m’s®), contours at 2 Hz oscillating grid frequency, &)dhe instantaneous 2-D velocity
vectors over the marked square area (40 x 40 mm).
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A functional relationship betweemnat specified vertical distance from the grid (ajla
oscillating grid frequency was proposed by Brien et al. (2004), using known
oscillating grid turbulence scaling laws (Long 19& Silva and Fernando 1991)
combined with a typical expression for energy gigson in homogeneous turbulence
u®/ 1, with u and | representing the velocity and kegth scales of the energy containing

eddies. Specifically,
3 39
1(2cf+ cg—’}z M2s2f® f°

SZE 3 Z 97

®3)

where £ is 0.1,M is grid mesh size (m)$ is stroke length (m), z is distance from the

grid (m), f is frequency (Hz) of the oscillating grid, amds the coefficient (). The

values forC,,C, were calculated by, =CS"”"M"*fz ' andw,_=C,S"’"M"*fz*

(Long, 1978; De Silva and Fernando, 1994). Theamed value fowx , specific to
experimental setup, was estimated to be 2.11%(i) and equation (3) was used to
estimates profiles at the selected oscillating grid freques®f 0.5, 1, 1.5, 2, and 3 Hz.
The power law expressing the decreasewith vertical distance from the grid (Eg. 3)
was verified by direct estimates of the dissipapoofiles (Fig. 4.5). The proposed

power law depicted fairly well the decrease af the experimental setup.
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Fig. 4.5 Averaged energy dissipation rateprofiles created by using the data generated from
the 2-D Particle Image Velocimetry for 1 Hz (sqQafe5 Hz (triangle), and 2 Hz (circle)
oscillating grid frequency experimental conditiorihe solid lines represent the estimated
using the power-law equation (3).
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The measured for the 2 Hz experiment ranged from 2 x*18°s® on the top of the first
PIV field of view (z =10 to 20 mm in Fig. 4.5) tox110° m’s™ at the bottom of the
second PIV field of view (z = 20 to 30 mm}he calculated for f = 1.5 Hz experiment
was similar to its measured values at thebtapgbecame smaller towards large depth with
the largest difference (6 x on?s®) at z= 30 mm. The measuretifor the 1.5 Hz
experiment ranged from 6 x 1@ 5 x 10’ m’s®, and the calculateglvalues were very
similar in the upper window (z = 10 to 20 mm) betame larger than the measuged
the lower half about 1 x 19 n?s® at z= 30 mm. The measured and calculatéor f = 1
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Hz experiment were very similar and both rangethffox 10° to 2 x 10’ m’s®, except

for some deviation in the lower part of the top &ow (z = 10 to 20 mm) (Fig. 4.5). The
minimal deviations between the measured and caemlikafor all three experiments may
have been contributed by slow recirculating flogioas, also known as secondary flows
in oscillating grid turbulence, that have been obese in this and other experiments
(DeSilva and Fernando), 1994. Note that thesedlame not accounted for in the grid
parameterization scaling laws (thus in equatios @ell), which assumes turbulence to
be statistically homogeneous in the planes paralléie grid with zero mean flow and
zero mean shear. In addition, since those secypffidars are slow as compared to
turbulent fluctuating velocities, their effect dretstatistical convergence of the
dissipation estimate is not negligible, especiallthe deep layers far from the grid where

dissipation values are very low.

4.3.3. Effects of fluid motion on Microcyctis growth rate

Microcystis cell concentration profiles&; ) were measured daily in the PT under both

the control (stagnant fluid) and the turbulent dbads such as thke= 2 Hz vertical
concentration profiles (Fig. 4.6). TMicrocystis cells experienced appreciable growth
in the control column and under turbulent condgiamthe setup and with their
populations significantlyp=0.05) different in each column under each expeniale
conditions. A two-way ANOVA also revealepg=0.05) that the population means of the
experimental conditions$< 1, 1.5, 2, and 3 Hz) were significantly differ¢iman their
corresponding control conditions (Table 4.1). Bfere, the null hypothesis was rejected
and the alternative hypothesis was accepted tbed there significant differences

betweerMicrocystis population in the experimental and the controldibons. ANOVA

tests revealed that the major source of variakdlibong theC; was due to the different

turbulent conditions.
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Fig.4. 6 Examples of th#licrocystis cell concentration profilesQf ) measured in the Plankton

Tower over eight days withas timen as the day of sampling from the start of the expent.
a) control column (without fluid motion), b) columvith oscillating grid af = 2 Hz, and c) the
vertical distribution of energy dissipatiog) {n the column with oscillating grid dt=2 Hz. The
amplitudes of the oscillating grid and stroke dis&a ) within the column with oscillating grid
are also shown in b).
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Table 4.1.Results from the experimental conditions in thenRian Tower wheréis the
oscillating grid frequency, is the algal growth ratég.onq iS the algal growth rate in the control
tower (without fluid motion) ¢ is the rate of energy dissipation averaged oved#pth of tower

with oscillating grid setuf?; is Microcystis cell concentration profile, arélf /éfo is the
dimensionless time-averaged cell concentrationilpr(ff ) normalized by the their
concentration close to the air-water interfacehmeéxperimental columnﬁ_(m) with the

coefficient of variation (CV) listed for each ofetprofiles Cf /Cfo ). For ANOVA results: MS

is mean square with a degree of freedom of 1 & $Bobability £<0.05), and * indicates F
value with statistically significant difference teten the groups oF ; selected during the

exponential growth period from the experimentabtdent and their corresponding control
conditions.

o ANOVA kT K £ Ky /Kgaa  CV0f C; /Cpq

(H2) (day) (day)  (mS?) (%)
0.5 7e-16 3e-12 0.57 0.60 3.6 X410 0.95 2.4
1 5.02 2325.0* 0.58 0.60 1.5x10 0.97 2.4
1.5 1.27 936.3* 0.68 0.59 5.5x10 1.15 4.2
30.43 6337.2* 0.75 0.57 1.3x790 1.32 59

3 30.90 11758.4* 0.47 0.64 4.4x90 0.73 3.6

To evaluate the effects of fluid motion bhcrocystis growth rate, the vertical

concentration profiles from all experimental coradis were first depth-average(atf >

and then normalized by the depth-averaged cellargration of the beginning of each

experiment,(C, ). These normalized concentrati0l<|s,f >/<Cf0> , depicted that fluid

flow in general facilitated the growth (Fig. 4.7fhe normalized concentrations,

(C¢)/{Cy), atf = 0.5 Hz was similar to that 6F 1 Hz and is not shown in Fig. 4.7.

However,<cf >/<Cfo> atf = 1 Hz experiment had the longest lag time of tteevth cycle

whereas the shortest time-lag was evident for thst trurbulent conditions &t 3 Hz.

The concentration profiles &t 1.5 and 2 Hz, had similar mid-range time-lag pasi
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Fig.4.7. Semi-logarithmic plots of normalized concentrati®f theMicrocystis for the
corresponding control columfi#£ 0, filled symbols) and the column with oscillagigrid atf = 1,

1.5, 2, and 3 Hz, witlﬁCf >as the depth-averaged concentration @mg > as the depth-averaged
concentration at the beginning (t=0) of each expenit

f=1Hz f=15Hz

f

<C. >/<C. >

1.04

f=2Hz f=3Hz

fo

7.4

2.7
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1.0
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The exponential growth periods for each experimamaditions with oscillating grid
operated atf = 0.5, 1, 1.5, 2, and 3 Hz were identified anddusecalculate their growth
rates kg, and their corresponding growth rate under cormwoldition,Kyconrol. The depth-

averaged concentrationéc(f >) selected from the exponential growth period aheaf

Microcystis experimental run, experienced at minimum a goosinéit of ¥ = 0.98.

This implies that at least 98% variability of contrations was explained by the model

(Eqg. 1) that was used to estimate the growth ratmg the exponential growth phase.

The measured growth rates were all within the regglorange (Shi et al, 2004; Wilson et

al., 2006; Park et al., 2009) and were normalizetirmaade dimensionless by taking the
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ratio of growth rates under turbulekg, over the control conditiork, / K, (Table
4.1). Energy dissipation profiles from each expemtal turbulent condition, such fas2
Hz shown in Fig.4.6, were also depth averaded, (Table 4.1), and evaluated against
the normalized growth rates (Fig. 4.8). There wasinimal (<-5%) change in growth

rate forf = 0.5 and 1 Hz conditiong ) ~ 1.5 x 10/-3.5 x 10°m’s®), with a modest
increase (15%) fof= 1.5 Hz (&) = 5.5 x 10'm’s®) and a large increase (32%} at 2
Hz ((¢) = 1.3 x 10 m’s®). A rapid decrease (-27%) in growth raté at3 Hz ((¢) =

4.4 x 10°m?s®) was evident, which is in agreement with the repfirom other studies on
Microcystis growth rate under turbulent conditions similathat of 3 Hz but with a
stimulated metabolic activity at small scale tugnde generated at 1 and 2 Hz (Regel et
al., 2004). The influence of fluid motion dficrocystis growth rate is evident by it

responses under different experimental turbulentitmns and with a facilitated growth
rate corresponding t¢e) values in a range between 3 x"lnd 3 x 16 m’s* (Fig. 4.8).

The fluid motions that were measured in the expenial setup encompassed the rate of
energy dissipation levels)(that were reported in lakes and were similahtorange of

¢ levels that had corresponded to the Chl-a conataitr maximum (Hondzo and
Warnaars, 2008).
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Fig. 4.8 NormalizedMicrocystis growth rates,kg / kgmrd at the corresponding depth-averaged

energy dissipation rateéa} (m28_3) , in the experimental column with oscillating gatf = 0.5,

1, 1.5, 2, and 3 Hz. The graph depicts three drawhes including the non-facilitated,
facilitated, and reduced growth regions.
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4.3.4. Effects of fluid motion on Microcyctis vertical distribution

A time-averagedlicrocystis cell concentration profile(ff ) was developed by time
averaging vertical cell concentrations from onlg #xponential growth periods of each
experimental condition withf =0, 0.5, 1, 1.5, 2, and 3 Hz. The time-averagsd

concentration profiles were made dimensionlessitagidg the concentrations at each

depth by their concentration close to the air-wattrface in the experimental columns,

C; /éfo . The normalized time-averaged cell concentragpiaiiles were smoothed by
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averaging each profile in 25 mm windows and themdyared to quantify the influence of
fluid motion onMicrocystis vertical cell concentration variability in the etqpmental

setup.

The fluid motion had a strong influence Mcrocystis vertical cell concentration profiles

(Fig. 4.9). A value oC_f /Cfo =1 indicates no change in cell concentration betvibat

depth and the initial depth of the profile and wattvariation in vertical cell
concentration. All profiles from the turbulent aoin §= 0.5, 1, 1.5, 2, and 3 Hz)
showed a decrease in cell concentration in theimitxof oscillating grid (depth < 50
mm), reflecting the mechanical influence of thelgrOn the other hand, the contrb¥(

0 Hz) column showed negligible vertical cell conttation variability. The experimental
designed was focused on isolating the influendetiulence oMicrocystis vertical cell
concentration profiles and growth. Each experininet a controlled and equal size,
geometry, nutrient concentration, and exposuregtd hs the turbulent water column.
The negligible vertical cell concentration variaiin the control column is an
experimental indication that indeed the potentittbator variables were equally

distributed over the experimental control column.

Profiles from the experiments under turbulent cbods showed very different
responses. The profiles fof 0.5 and 1 Hz, were mainly uniform throughout weger

column with minor change<; /Cfo ~ 0.5) at 200 mm depth. However, profilesffer

1.5 and 2 Hz had significantly larger maxin@(/C, = 1.2 and 1.23, respectively) at

250 mm depth. At the highest turbulence levdl-of8 Hz the profile shows a peak at
about the same depth as thaf ef1.5 and 2 Hz but less pronouncé®} (C, =1.12).
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Fig. 4.9 Microcystis vertical distribution of time-averaged profile cemtrations éf ) from the

exponential growth periods and normalized by th&ceatration at the initial deptl@o, with z=

0) in the control column wheffe= 0 Hz, and in the experimental turbulent columthwi
oscillating grid af=0.5, 1, 1.5, 2, and 3 Hz.
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The vertical cell concentration variability is @ftrted toMicrocystis response under

different experimental turbulent conditions. Indeehile a vertically homogeneous

profile is observed in the control column (stagrfantd), a depth-dependeMicrocystis

concentration profile is measured for differentgrscillation frequencies. As both

levels of turbulent kinetic energy and dissipatiamny with the grid frequency and,

locally, with the distance from the grid, a vertigariation in cell concentration indicates
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thatMicrocystis statistically respond to turbulence adjustingrtipeisition within the
water column. In order to statistically quantifetvertical cell concentration variability,
data points of all profiled € 0, 0.5, 1, 1.5, 2, and 3 Hz) along with theipitieaveraged

mean value (X)) and standard deviation)(were analyzed (Fig. 4.10). The data points
from the control experiment had the smallest mednermean and standard deviation of

vertical cell concentrationG; /Cy, ) followed by the 0.5 and 1 Hz data points. Irsthe

three instances the range(of) + o is less than 5%G; /Cy, < 0.05) from the top to the

bottom of the column, indicating minimal verticalnation of cell concentration.
However, vertical variability of cell concentratiarcreased rapidly dt= 1.5 Hz and
continued to increase &t 2 Hz, followed by a decreasefat 3 Hz under experimental

turbulent conditions (Fig. 4.10).

Fig. 4.10 NormalizedVicrocystis time-averaged vertical concentratior® (/éfo) along with

their depth-averagedX) , filled square) and standard deviatiaf, @nd the range of eadiX) +

o (offset bars) in the control column whére 0 Hz, and in the experimental turbulent column
with the oscillating grid operating &t 0.5, 1, 1.5, 2, and 3 Hz.
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To better focus on the vertical cell concentrafiontuations under each experimental

conditions, the coefficient of variatioG{ = ¢/ <X>) of each respective profile was

calculated and evaluated against their correspgn(cﬁh (Fig. 4.11). Smaller CV

implies that there was not significant variabilitythe vertical distribution of algae
(homogeneous concentration). Larger CV implies dhgae were preferentially

concentrated in horizontal layers with the corresjiog <5> that facilitated the growth.
Microcystis responses, as measured by the CpfCy, , were similar to that of growth

rates to(e) but with different magnitudes. The CV changedydh®s fromf = 0.5 tof =
1 Hz, but increase 75% Bt 1.5 Hz. Aff = 2 Hz experimental conditidvicrocystis
growth rates is increased 31% but CV@f/C;,, is increased 246%, andfat 3 Hz, CV
and K, /K, are both reduced by 55% and 61% respectively ftwin values at thé

= 2 Hz experimental condition. These findings sarpgd our earlier observations that
Microcystis growth rate and vertical cell concentrations aduced at f > 2 Hz, remained
steady at f = 0.5 and 1 Hz, and were facilitateid=al.5 and 2 Hz experimental turbulent

conditions. TheMicrocystis vertical cell concentration variability had a stger
response tcia} as compared to the growth rate, suggesting aerased sensitivity to
turbulence. For our experiments, if thiécrocystis growth rates K, / K, ) valueswith
change®ver 10% are treated as significant, then thereagpto be a region of optimal
turbulence levels that yields a facilitated growtime corresponding t) = 3 x 10° to

3 x10"m’ s® (Fig. 4.8). Regions witle) < 3 x 10’m? s° had non-facilitated growth
and regions of higher turbulence with) > 3 x 10° 7 s° showed significant reduction

in growth.We acknowledge that CV is a rather simple estimataertical variability of
the cell concentration profile. CV emphasizes degon from homogeneous conditions
without specifically distinguishing between the ogence of marked concentration
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layers and gradual variations in the vertical peofHowever, it provides a robust

measure to associate with depth average dissipadioes.

Fig. 4.11 Coefficient of variationCV = a/<X> where<X> is depth-averaged amdstandard
deviation of normalizedlicrocystis time-averaged vertical concentratiméf(/(_?fo ), at the

corresponding depth-averaged energy dissipatim,réﬁ) (m25_3) , in the control column

wheref = 0 Hz, and in the experimental turbulent columthwie oscillating grid operating Bt
0.5,1, 1.5, 2, and 3 Hz.
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4.4. Conclusions

Laboratory experiments were conducted under cdatt@nd repeatable turbulence

conditions to evaluate the effect of fluid motiamthe growth and vertical distribution of

Microcystis. The experiment was designed to quantify theierfte of fluid motion on
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progressively increasing or decreasing spatiafidigion density and growth rate of
Microcystis from the source of turbulence. A rapid and veltrafile measurement of
Microcystis cell count was required by the experimental desdgnConsequently, we
started each experiment with clearly countableealhitar Microcystis culture that later in
the experiments grow into double cell and smalbo@s. Nonetheless, this does not
change the issue that how the unicellular cultesaty in the experiment responded to
turbulence is likely to be different than how nafuand very large colony forming
cultures would. The generated turbulence levalsne@asured by 2D PI1V, produced
midrange rate of energy dissipatian) ©f about 10 m’s® and had negligible mean flow

and mean shear, with vortices generated by théaisty grid and gently propagating in

the column. The growth ratek(/ K 4 ) of Microcystisin cultures grown witKe)
from 3.6 x 1¢ to 1.5 x 10’ m’s®, displayed a minimal change (2%), had a modest
increase (15%) at) = 5.5 x 10’ m’s®, depicted the largest increase (32%jat= 1.3 X
10° m’s®, and followed by a 27% decline @) = 4.4 x 10° m’s® (Fig. 4.8). The fluid
motion and corresponding turbulence levels alsoahsitiong influence oklicrocystis
vertical distribution where time-averaged verticall concentration profilesC, / Cro»

showed marked individual patterns in response tginvg levels of turbulence (Fig. 4.9).

Coefficient of variation (CV) of each respectivefie was calculated and evaluated

against their corresponding ) with the highest increase correspondingp = 1.3 x

10° m’s® (Fig. 4.11). At(e) = 4.4 x 10 m’s®, fluid motion had a significant effect on
both K, / Kyayq @nd CV ofC; /Cy, , where it reduced their values by 61% and 55%,
respectively (Fig. 4.8 and Fig. 4.11). The resultkcate that(s) in a range of 3 x I0to

3 x 10° m’s® generated the largest values for both C\Cef/Cy, andk, /K g . The

observed energy dissipation rateg (vere similar to the reported field measurements a
to the range ot that had corresponded to the Chl-a concentratiaxmum (Hondzo

and Warnaars, 2008). The growth and verticalibistion of Microcystis are quantified
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by fluid flow property €) that is predictable in most computational modetsvater
guality modeling in lakes. The results demonsttiagesignificance and necessity of
integration of fluid motion in the models of growahd distribution oMicrocystis in

aguatic environments.
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CHAPTER 5

Three Dimensional Prediction of Lake Water Temperaiire, Dissolved
Oxygen, and Fish Habitat under Changing Climate

We applied a three-dimensional model to revealrifieence of local meteorological and
global climate conditions on water quality and fiebitat. Water temperature (T) and
dissolved oxygen (DO) concentrations were usecegsmMater quality parameters to
investigate the temporal and spatial variabilityisii habitat dynamics under three
climate scenarios of historical normal (HN), fut¢F&J), and future extreme (FE). The
analysis demonstrated that the averaged epilimiiaticthe FU and FE climate scenarios
were up to 4 °C warmer than the HN scenario dudegree seasons. The top 0.5 m
surface T increased the most and the fastest wheéE scenario. Stratification periods
were predicated to expand up to 23% (46 days) lsernocline depth to increase 49%
under the FE climate scenario. The averaged D@erurations were 1 mglless in the
FU and FE climate scenarios than the HN scenarimglice-free seasons. However, the
onset of anoxia, the depleted DO concentration, avbech had started by May 15 under
the HN climate scenario was four and two weekdexarhder the FU and FE climate
scenarios respectively. In all cases, hypolimm@s mostly anoxic by June 15 and DO
concentrations were restored to their maximum &ebglfall turnover starting November
10. The good growth, restricted growth and letwallwater fish habitats that were based
on T and DO thresholds, changed from 2 to 14% @tdkal lake volume under the three
climate scenarios. Compared to the historical mbsuoenario, the averaged good
growth, restricted growth and lethal habitats a@ifa scenarios changed +16%, -18%,
and +85% respectively. The majority (70%) of chesmffom good and restricted growth
to lethal habitat took place in the upper 5 m efwater column with significant spatial
and temporal consequences. A modest change (88tabfake volume) of good growth
and restricted growth into lethal habitat separ#tedsummer good growth coolwater fish

habitat by over 3 weeks.
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5.1. Introduction

Local meteorological variables and global climatersgly mediate physical, chemical,
and biological conditions in the aquatic ecosystéAmdzo & Stefan 1993; MacKay et
al., 2009; Whitehead et al., 2009). The interaxtiamong aquatic physical, chemical,
and biological processes are nonlinear and dynaantt far from equilibrium. Spatially
distributed and dynamic water quality predictors aecessary in order to accurately
evaluate the response of aquatic ecosystem undeguty climate and corresponding

local meteorological conditions (De Stasio et E96; Milly et al., 2008).

A significant effort has been devoted to the prealicof the impact of climate change on
fresh water lakes in the past four decades. Céroaange is expected to alter lake water
temperature (T), increase summer stratificatioorgase temperature-mediated sediment
phosphorus flux, alter dissolved oxygen (DO) dyramand expand anoxic (DO
depleted) zones, and change aquatic habitats suttateof fish (Stefan, Fang & Eaton,
2001; Kling et al 2003; Adrian et al., 2009). Flsbitat regimes are predicted to change
their temporal and spatial distributions (Mooij, Benerpont & Janse 2009; Foley et al.,
2012) driven partly by the mixing regime alteredebghanging thermal structure.

Climate change is also expected to increase stiieanfluctuations leading to lake water

level changes and shifting ecosystem states (C&mgidioglue & Crisman 2003).

Computer models have been the main tool in analyttia impact of climate change on
lake ecosystems (Menshutkin, Rukhovets & Filat®4,4). Three dimensional (3D)
computer models have the feature of reproducing@tioéogical processes of the lake in
fine temporal and spatial (horizontal and verticzidles that can enhance our
understanding of the interactive feedbacks amorygipal, chemical, and biological
processes. Three dimensional models have beeriruskohate change assessment of
large lakes (Cline, Bennington & Kitchell, 2013)he models are also a good prediction
tool for morphologically complex smaller lakes waignificant water quality
heterogeneity responding dynamically to multipleneltic forces.
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We employed a 3D lake water quality model to evigltiae influence of local
meteorological and global climate conditions on kayironmental parameters that
ultimately determine fish habitat and to investigtite temporal and spatial (vertical and
horizontal) variability of fish habitat dynamicsVater temperature and DO are
considered the most significant water quality pagsars that influence fresh water fish
habitat (Stefan et al., 2001). Several meteoroklgarameters can potentially influence
lake water quality and fish habitat. Precipitatomer a watershed and corresponding
surface water runoff to the lake are susceptibleitiare climatic changes that can
significantly alter lake water quality (Coops et 2003). Furthermore, wind speed and
its pattern above the lake surface generate tloe for water column mixing that
influence T, DO, primary production, and food weblimate change is expected to alter
the frequency of extreme wind events (Jeppeseh, @009) which may increase
frequency of sudden episodic water quality changasnsequently, we selected T, DO,
P, and wind speed as the key water quality parastieevaluate and test them under
different climatic scenarios in this study.

The first step of modeling and evaluating the ptiééclimate change impacts on water
guality was to select and create a set of histbaied future climatic model scenarios. A
hybrid of new and existing methods allowed the&aa of one climatic historical
scenario based on measured meteorological datewangrojected future scenarios. We
extended a similar approach adopted by Stefan & E&894) and Fang et al. (2012) to
investigate the individual and combined influenoéselect lake water quality
parameters on fish habitat by using a 3D modelnmogphologically complex lake. We
report the findings of historic and climate chasgenarios for T and DO, and fish habitat

dynamic in a shallow and morphologically complexela
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5.2. Methods

5.2.1. Study site

Lake Minnetonka (60 kA), located at 454’ N; 9341’ W, is a morphologically complex
lake (Wetzel, 2001). The lake has 23 bays, 20@kshoreline, 24 khof littoral area, a
maximum depth of 34 m, with a watershed size of @9(Fig. 1.1). Lake Minnetonka
was inhabited pre European settlement and haséesgional destination offering
swimming, boating, and fishing. At least 15 figiesies are found in Lake Minnetonka
dominated with northern piké&gox lucius), walleye &izostedion vitreum), and bluegill
(Lepomis macrochirus). The walleye population is sustained by anntedisng at two
bays. However, fish population assessment stuglyteeshowed different catch average
sizes (length) among different bays of the lakedatihg the presence of distinct fish
habitats within the lake (MNDNR, 2007). The congiidnal domain of the study area
included four bays and two stream inflows intolddee. Each bay has a specific
individual water quality characteristic represegtihe strong water quality heterogeneity

throughout the whole lake.

5.2.2. Field data

Measured stream and lake water quality data wereiged by the Water Quality
Department of Minnehaha Creek Watershed Distriganization (MCWD, MN). All

field lake water quality samples were collectedrfrihe deepest point of the three bays of
Halsted Bay (HB, 10 m), Cooks Bay (CB, 8.5 m), &vest Upper Bay (WU, 24 m)

within the study area (Fig. 1.1). Each station s@spled biweekly and analyzed for T,
DO, conductivity, pH profiles, surface and bottartat phosphorus (TP), soluble reactive
phosphorus (PO4), total nitrogen (TN), and a com@asp 2-m sample for algae
biomass as measured by chloroplayChla). Stream inflow (fis™) data were based on
the correlation between daily averaged availablasueed outflow and precipitation data
(1997-2011; R= 0.82) where the correlation was then appliedotarly precipitation data
of each scenario to generate outflow data. Infiiata from the two creeks were set to
equal outflow. The biweekly sampling from Six Mdead Langdon creeks (Fig. 1.1)
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included flow, T, DO, Chla, TP, and PO4. Streantewgemperatures from nearby (<5
km) streams were used for missing stream watereesyre data. Meteorological data,
including hourly readings of air temperaturg)(Telative humidity (RH), atmospheric
pressure (AP), cloud cover (CC), wind speed (W&, wind direction (WD), were
obtained from the Flying Cloud Airport (4458, 93°27 W) about 14.5 km southeast of
the lake. Precipitation data were obtained from Mbs weather station (44°56" N,
93°39” W) at the northeast of the study area andllyrgolar radiation was obtained from

Rosemount Experimental Station (44°#8593°04 W) 45 km southeast of the lake.

5.2.3. Historical and future climate scenarios

Three different types of climate scenarios weredet for the study and designated as
historical normal (HN), future (FU), and future ethe (FE) scenarios. The scenarios
were based on the, &nd P because they are the two most influentisgmeuality
parameters for fresh water fish habitat. The ahfigaverage (x axis) of 30 historical
years (1981-2010) were plotted against the avesagaal P (y axis) with the intersection
of the axes representing the climate normals=(T.78°C and P = 0.78 m) reported for
the study area by the National Oceanic and AtmaspAeministration (NOAA, 2012)
(Fig. 5.1a). The distance from each of the 30 fsdim the center was evaluated to
identify the year nearest to the climate normah{eg as a surrogate for HN scenario and

to identify the year farthest from the center agxineme year.

To generate future meteorological climate scenafddU and FE, we applied the
projected mean monthly meteorological change figddbe two sets of base scenarios of
HN and extreme year. The change fields methodhigad between Global Climate
Model (GCM) predicted outputs and the local histalriobserved metrological data
(Smith & Tirpak, 1989). The resolution of the GG@Mtputs is generally not sufficient to
generate locally specific forecasts that refleetrsgional dynamics (IPCC, 2008).
Various strategies such as statistical down scalimthange field are adopted to

transform the available global scale GCM prediaetputs into locally relevant
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meteorological data (Fowler, Blenkinsop & Tebal@DZ). In statistical down scaling a
statistical relation between local climate variable.g. T, P) and large scale predicators
(e.g. pressure fields) is established and appig@M outputs to generate finer
resolution local outputs. In the change factorsh@mnge fields (CFs) method, the
differences (or ratio for P) between the GCM ougpafta control period (predicted
historical climate) and future period (predictetufe normal climate) is then applied to
the local historical observed metrological datée TFs (e.g. 2040-2069 minus 1961-
1990) selected for this study (Table 5.1) wereiokthfrom International Panel on
Climate Change Data Distribution Centre (IPCC DRQ12) for the grid point (45° 42’
N; 93° 38’ W) nearest to the study area. The $ete€CFs were based on the output of
the high resolution Model for Interdisciplinary Resch on Climate (MIROC3.2), a
Couple General Circulation Model (CGCM), approgifdr use in the study area region
(Jiang et al., 2012).

Table 5.1. The set of monthly Change Fields agpbethe meteorological data of the normal
climate and the extreme climate year within thenalie normal period (1981-2010) in order to
create the future and future extreme meteorologitakte scenarios.

Air Relative Cloud Atmospheric  Wind Solar
temperature Humidity*  Cover* Pressure Speed Radiation Precipitation

(G % (0-1) (pa) (ms) (Wm? (mmd)
Jan 4.21 -0.47 -0.07 -40.53 0.16 16.53 0.57
Feb 4.61 -4.07 -0.09 50.14 0.22 14.15 0.06
Mar 4.47 -6.94 -0.06 42.03 0.34 16.13 0.10
Apr 3.54 -1.47 -0.02 44.09 0.16 18.64 0.33
May 4.67 0.94 -0.03 -53.70 0.20 31.30 0.04
Jun 3.75 -3.14 -0.04 99.25 0.09 22.88 -0.48
Jul 3.63 -4.17 -0.05 2.12 0.16 23.10 -1.05
Aug 3.52 -2.34 -0.04 7.62 0.10 23.86 -0.20
Sep 3.88 -2.50 -0.06 167.24 0.08 22.71 -0.05
Oct 4.43 -0.77 -0.05 128.29 0.20 22.98 0.82
Nov 4.71 -4.31 -0.09 -7.66 0.43 17.85 0.52
Dec 4.08 -3.83 -0.08 43.47 0.22 14.54 0.11

*calculated values (differences between averagd®-2069 and averaged 1961-1990)
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The year 2000 with the nearest annual average ahd P to climate normals {¥ 7.78

°C and P = 0.78 m) was designated as the HN scefoarour study (Fig. 5.1a) and was
used as a base year to construct FU scenariosétled CFs (Table 5.1) were applied to
the meteorological data of the HN scenario to gatledhe FU scenario. Extreme climate
events, defined as those greater than 90th peles(fowler et al., 2007) could havg T
and P values that may place them in any of thedoadrants in Fig. 5.1a. We
investigated the predicted trend gfand P by plotting their bias corrected model
(MIROCS3.2) historical (1981-2000) and future (202a70) annual averages around the
climate normals (Fig. 5.1b). The predicted futlig@and P annual averages were
generally in the direction of warmer and wetterw@adraverages, similar to the results of
other investigations (ICAT, 2013). Based on thas#ings, year 2005 which had the
longest distance from the climate normals (Figchahd also resided in the warmer and
wetter quadrant was considered as the historide¢ere year. Year 2005 was then used
as a base for future extreme case. The same swirdhly CFs used for developing FU
scenario (Table 5.1) was also applied to the magroal data of year 2005 to generate
the FE scenario. A drawback of using the CFs ntkibthat it relies on the observed
and historical statistical relationships and patehat may not continue to hold true
under future scenarios. The CFs method shifthigterical data into predicted future
data. The dynamic Regional Climate Models, onativer hand, generate locally specific
predictions that reflect the regional climate dymainfluenced by regional small scale

features.
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5.2.4. Model description

We used the 3D hydrodynamic model ELCOM coupletthéoecological model

CAEDYM. ELCOM uses hydrodynamic and thermodynamaels to simulate spatial

and temporal variabilities of T and velocity dibtitions and CAEDYM simulates

biogeochemical and chemical water quality variabBstailed schematic representations

of the model processes and descriptions of difteakaquations are provided by Hodges
et al. (2000) for ELCOM and Romero and Imberged0@ for CAEDYM. Descriptions

of the complete model structure, operations, araiah@ntations are freely available

online from the Center for Water Research, Universi Western Australia.
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5.2.5. Model setup, calibration and validation

The computation domain of the study area was digekinto 200 x 200 x 0.5 m
bathymetry grids of 3D Cartesian mesh of computaticells. The model was
configured to simulate T, velocities, TP, TN, D@ganic carbon, and one algal group
(Cyanobacteriaicrocystis aeruginosa). Each simulation began on March 1 and ended
on November 30 with time step set to 100 s andutwtpta recorded at 4-h intervals.
The period of March 29 to October 20, 2000 and I&&ito October 10 2005 were used
for model calibration and validation respectiveljhe mean difference of water level
between the simulated and measured water levethdanodel calibration and
corroboration periods was mere 0.05m indicating i model had captured an accurate
water budget. Evaluation of agreement (goodnefif) @fas conducted by comparing
between model predictions and twelve biweekly messuertical profiles of T and DO
from the three sampling locations as measured4§fig. 1.6). The model was able to
accurately capture the seasonal changes of botld D® (Fig. 2.4) and it proved that it

can reliably be applied to the study area.

A detailed description of evaluation and applicatod ELCOM-CAEDYM to the study
area including model setup, configuration, paraneggon, calibration, validatation, and
model performance is provided by Missaghi and Hon@910). The details of
implementation of sensitivity and uncertainty asely by two different methods, and the
process of model parameter ranking by importandetfagir influence on the model
prediction are provided by Missaghi, Hondzo & Metch2013. The analyses
highlighted the contributions of simulated T, D@, Tand Chla that resulted in 3, 13, 26,

and 58% of total model output variance, respedtivel

5.2.6. Model simulations for past and future climate scenaos

The model simulation for the HN scenario was basethe observed reference year
2000 meteorological, stream inflow, and in-lake sugad water quality data. To
simulate the FU scenario the in-lake water qualiltgial conditions, and wind direction

were kept the same as in the HN scenario but tiyrgenerated FU metrological data
105



were used. The stream temperatures time seriestire HN scenario were transformed
into FU and FE scenarios using their appropriatéeanperature. All other inflow scalar
variables were kept the same as the reference29@ér, the HN scenario. The same
procedure was then applied to create the FE seemiept year 2005 (historically
extreme year) was used as the reference yearinilake water quality initial conditions

were selected based on the available data anduméoem for all scenarios.

5.2.7. Fish habitat criteria

Suitable fish habitat is determined by a large neindf environmental factors. However,
T and DO are recognized as the two most signifieaater quality parameters that
influence fish habitat (Hondzo & Stefan, 1996; €liet al., 2013). For this study, we
adopted the mean coolwater fish thermal and D@raitestablished by Stefan, Fang &
Eaton (2001) (Table 2.3) which includes fish spesiech as walleye and northern pike.
The model was configured to generate the simul@f€al0 and other model output state
variables in 27 depth layers at 1 m intervals. sEheutputs were then queried to evaluate
each control volume (cell) for the three coolwdighn habitat types of good growth,

restricted growth, and lethal.

5.3. Results

The HN, FU, and FE climate model scenarios restuiftetistinct T and DO predicted
model outputs, reflecting the individual metrolagiforcing data. Each simulated
scenario generated unique thermal structures angdd@rns that ultimately formed
varying fish habitats. The 3D modeling analysigesded both the specific individual and
the combined influences of T and DO on the tempamal spatial (horizontal and

vertical) distribution of good growth, restrictetbgith, and lethal habitats.

5.3.1. Model simulations for past and future climate scenaos

The measured meteorological data for the HN (y880p, and the projected
meteorological data of the FU (year 2000 with C&rg) the FE (year 2005 with CFs)
scenarios were used as inputs (Fig. 5.2) for treethimulations and the evaluations in
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the study. The modeled climate scenarios presehted hydrologically and climatically
distinct years as shown by the simulated lake watels (Fig. 5.3).

Fig. 5.2 Examples of measured and projected (using chiglgs) air temperature, wind speed,
and precipitation time series used for the preglictf ecological changes in the study area as

historical normal (HN, black), future (FU, darkagj, and future extreme (FE, light gray) climate
scenarios.
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Fig. 5.3 Comparison of lake water levels simulated urddstiorical normal, historical extreme
(2005), future, and future extreme climate scersdido the study area with their monthly total
precipitation shown on top.
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Under all three simulated scenarios, T emergedtmithroughout the water column

after spring turnover and followed by surfaced arues reflecting seasonal pattern of T

(Fig. 5.4a). A warmer Jin March and stronger winds in April of FU scenaffrig. 5.2)

caused an increased in hypolimnion T that madeutrver than the other two scenarios

throughout the simulation periods (Fig. 5.4b). iBagqg November 1, T decreased

rapidly followed by fall turnover and water colummxing that yielded a uniform T

throughout the water column again in all scenarios.
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Fig. 5.4 Comparison of modeled water temperatt® and dissolved oxygen (mg).in the
study area under a) historical normal , b) futare c) future extreme climate scenarios.
Horizontal and vertical axes of contour plots reprd time and depth (m), receptively.
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The simulated DO concentrations were at their marinseasonal concentrations and
were uniform throughout the water column immediatdter spring turnover under all
three scenarios (Fig. 5.4). A warmer hypolimniorhe FU scenario kept the DO
concentrations less than in the HN scenario. Téener FU hypolimnion promoted the
onset of anoxia as early as in April 15, a full nfoearlier than HN and two weeks
sooner than the FE scenarios. Nonetheless, hypimimwas mostly anoxic in all three
scenarios by June 15 before the DO concentrati@ns vestored to their maximum

levels by fall turnover starting November 10. Heasonally averaged DO profiles of the

FU and FE scenarios mimicked each other (Fig. 370). the study area, a season was

109



defined from the start of the average ice-out daypfil 13) to the end of water quality
sampling period marked by fall turnover (Novemi@CWD 2009; MCWG, 2013,).
For our purposes, we defined the season from Aprtb November 1. The HN
seasonally averaged DO profile was generally 1 Tngiore than both the FU and FE
scenarios throughout the water column. The sedlgaweraged T in the future
scenarios were 4 °C in the eplimnion and 2 °C entiermocline warmer than in the HN
scenario, but the FE scenario had the coldest hgpadn T. The seasonally averaged
DO and T profiles showed a marked increase in Tdawdease in DO in the FU and FE

scenarios as compared against HN scenario.

Fig. 5.5 Comparison of modeled seasonally averaged afntiatmperature’C) and dissolved
oxygen (mglL?") profiles at West Upper Bay of the study area umitorical normal , future, and
future extreme climate scenarios.
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However, each of the HN, FU, and FE scenarios aygal their own distinct maximum
(top 0.5 m surface water) and minimum (bottom leptd layer) water temperature (Fig.
5.6). The FE scenario had both the coolest T miminand highest T maximum. The
onset of stratification initiated the formationtbérmocline which was calculated by
finding the depth layer with the maximum changd aff at least 1C per 1 m (Wetzel,
2001). A well-defined thermocline started formingooth the HN and FU scenarios by
April 26 and followed similar patterns through simulation periods, except in the
months of April and May where the FU scenario thechme averaged 14% shallower
(Table 5.2 and Fig. 5.4). The FE scenario thermeakas formed 3 weeks earlier (April
4) than the HN scenario and had the largest dépthuitions among all scenario
throughout the simulation periods (Fig. 5.4). Hiethermocline was 49% deeper in the
months of April and May but was an average of 1 lewer than the HN thermocline

for the rest of the simulation period.

Table 5.2. Simulated monthly averaged thermodligygth (m) under historical normal (HN),
future (FU), and future extreme (FE) climate scesar

historical normal future future extreme

(m) (m) (m)
April 55 4.8 8.8
May 8.9 7.7 12.2
June 10.8 10.0 7.2
July 10.6 10.1 8.6
August 10.7 10.5 9.5
September 12.7 12.4 11.2
October 16.2 15.4 13.8
November 19.2 17.8 17.1
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Fig. 5.6 Comparison of the surface T, bottom T, and gtantles), end (squares), and duration
(vertical lines) of stratification at West UppernBaodeled under historical normal , future, and

future extreme climate scenarios.

35
] Surface T:
30 - 4 f Future
1 IR WYAY, \ Future Extreme
i Y A \Y 9 /Historical Normal
1 Y Y AN VA \
25— AR U AYA \
— . { 7 -
o [V /
o [ Y - i A v
() . Iy YV
= 204 i1 1 I\/
=) 4 Tal i | -
e ] vy I}
S ] AN
Q 5] AW ’
— ' i \'Avl
£ h/ .
o 7 [P \
I_ n X
104 Bottom T:
7 Future\'_ . | AL
: .--o'jiosotgtieceg!g’}loql:mg!»-oo-coocoon..o-o-o."------o-- soee®® .e'"
5- Al
T Future Extreme— " by
] ’.!.4"
O _|
] 4120| 4122 1177 1122
\ \ \ \ \ \ \ 1
Mar May Jun Jul Aug Sep Oct NJV*? Dec
5.3.2. Fish habitat evaluation

Every control volume (cell) of each depth layer mloolutputs was queried for coolwater
fish T and DO criteria for good growth, restricgwth, and lethal habitat under the

three HN, FU, and FE scenarios. The number of ofleach type of habitat was

computed and normalized by the total volume ofitke and reported as the percentage

of the lake volume. The changes in the annuala@esr within the three fish habitats and

between the three scenarios ranged from 2 to 14%edbtal lake volume with

significant spatial and temporal redistribution lflea5.
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Table 5.3. The annual total (percent of the lake volume o¥good growth, restricted growth,
and lethal fish habitats evaluated under simulatstbrical normal , future, and future extreme
climate scenarios in the study area.

Climate Scenarios Good Growth Restricted Growth Lethal
(%) (%) (%)
Historical normal 33.3 60.0 6.7
Future 42.4 47.0 10.6
Future extreme 34.8 51.2 14.0

Daily, weekly, and monthly averages of fish habatatieria of T and DO of every cell for
all depth layers were calculated, their fish hdlitpe evaluated, their sum of percent of
the total lake volume computed, and plotted oversiimulation periods of the HN, FU,
and FE scenarios (Fig. 5.7). The larger time sohfeonthly averaged results supported
the earlier general findings that under future sces the annual percentage of the lake
volumes of good growth was increased, restricteavtir decreased, and lethal habitat
significantly increased. The daily averaged ptdtish habitats with the finest temporal
resolution of one day time step, depicted many sndd-3 days) episodic fish habitat
changes with as much as 80% change in the totaMakime (Fig. 5.7, Jul. 23, lethal
habitat in the FE scenario). The impact of un@dd& habitat on fish depends on its
severity and the duration that fish are exposetl tBish may find temporary refuge or
survive the stress during the very short and suthi@éitat changes. For our purposes, we
used a 7-day long (weekly) averaged fish habiitra to evaluate the changes in fish
habitat. A week long exposure to restricted groarttethal habitat was deemed

sufficient time to use as a metric for our evalorasi and to show stress or harm to fish, as
used in studies in the US (Fang & Stefan, 2012)W@ikd(Elliott & Bell, 2011). Based

on the daily and weekly averaged results, we salieftte one-week periods to compare
the spatial (vertical and horizontal) fish habgh&inges under the HN, FU, and FE
scenarios. The five periods (shown as thick bafsg. 5.7) included four different

weeks (June 3-9, June 20-27, July 3-10, and Julflust 3) with significant (>10

percentage points) and one week (September 1-f)mitimal fish habitat changes.
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Fig. 5.7. Percentage of the total lake volume for a) gomavth, b) restricted growth, and c)
lethal fish habitats based on predicted model b&sthat are averaged daily, weekly, and
monthly modeled under simulated historical nornfatyre, and future extreme climate scenarios
in Lake Minnetonka.
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A vertical fish habitat distribution was made byrgauting the cumulative volume of all
depth layers along with the percent of each typesbfhabitats within every depth layer
and plotting them over depth for all scenarios (Bi§). Almost all of the cells with
lethal habitat in the HN scenario were located Wwdlze 10 m depth. Fish habitat
changes in the future scenarios from the HN scewegre calculated (Fig. 5.8, Inset) for
each depth layers. Under future scenario restrigtewth decreased 13, good growth
and lethal habitat increased 9 and 14 percentaigé @icthe total lake volume. In the

case of the future extreme, good growth changte but restricted growth decreased 8.8
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percentage points, and lethal habitat expanded tharetwo times (increased from 6.7%

to 14%) with 70% of those changes taking placéétop 5 m depth layers.

Fig. 5.8.Hypsographic curves, showing the percentage of lata volume (x axis) over depth (y
axis) for the averaged good growth, restricted ginpwnd lethal fish habitats under simulated a)
historical normal , b) future, and c) future exteeatimate scenarios, with the insets showing the
changes in percentage points from the historicahab
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We next focused on the deepest point of the stuely @VU) to investigate the fish
habitat changes within the water column and througkhe simulation period. Contour
plots of the three fish habitats simulated underftistorical normal, future, and future
extreme scenarios (Fig. 5.9) clearly depicted thanges in fish habitat and correlated
well with the findings of the whole lake volume &rsis (Fig. 5.8). The period of
restricted growth habitat from June 1, to the beigig of the simulation was shortened in
both the FU and FE scenarios and replaced by aease in good growth habitat which
expanded earlier into the season by 2 and 3 weetk®iFE and FU respectively. The
lethal habitat started on May 12 in the HN, two keeafter (May 26) in the FE scenario,
and in both cases quickly expands from the bottmd0tm depth by June 10. The lethal
habitat started earliest in the FU scenario andad® m depth two weeks earlier than
both the FE and HN scenarios. Similarly to the iwhake volume analysis (Fig. 5.8)
and as depicted in the Fig. 5.9, the majority @frdes took place in the upper 5 m of the
water column. The timing of changes correlatedhthe four significant periods
identified earlier.
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Fig. 5.9 Contour plots of good growth (GG), restrictedwth (RG), and lethal (L) fish habitats
based on the predicted model variables averageklyveeder simulated a) historical normal , b)
future, and c) future extreme climate scenarigh@teepest point (West Upper Bay) of the study
area.
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We used the 3D feature of the model to investigatespatial (horizontal) fish habitat
heterogeneity in each of the three different climatenarios. We first depth averaged
the T and DO of the depth layers covering the ersiudy area in the top 5 m (depth with
most fish habitat changes). The T and DO of edc¢heocells of this averaged depth
layer were then averaged weekly over the entirellsiion period and finally evaluated
accordingly for the three fish habitat types. Thelparison of the surface areas for each
of the selected five periods under the simulated Al and FE scenarios depicted the
expansion of lethal habitat in July 7-14 and exmanef good growth habitat earlier in
the season in both the FU and FE scenarios (Fi§).5Under the HN scenario the entire

surface area (of the top 5 m) of the study areaevatuated as restricted growth habitat
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in June 2-7, where average T <°TBbut is entirely changed to good growth habitat
under the FU and FE scenarios. The lethal hagka@nded in the FE scenario from the
month of July into earlier in the season (throughel20-27) (Fig. 5.10).

Fig. 5.10 Comparison of the areas of the study area vatidgrowth (blue), restricted growth
(green), and lethal (red) coolwater fish habitatsdal on the predicted model variables averaged
weekly for the top 5 meters of water column undieusated a) historical normal, b) future, and
c) future extreme scenarios covering the entirdyseirea with all horizontal and vertical axes as
distance in km.
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5.4. Discussion

We used a 3D coupled hydrodynamic and ecologicaah@reviously successfully
applied to our morphologically complex lake, to slate one historical and two future
climatic scenarios. The results revealed the @nfae of the specific and combined
changes of the metrological forcing data on thewater quality parameters that form

the coolwater fish habitat. The selection of tistdrical normal (HN) scenario based on
the most recent climate normals forand P, and the application of CF’s to the measured
metrological data provided reliable variables fmtdrical and climate change scenarios
(Carter, Hulme & Lal, 1999). We were able to gatethree hydrologically and
climatically distinct and reliable scenarios to @isethe simulations where each result

showed the influence of their distinct individuatt®orological forcing data.

The water level results along with the result & thodel goodness of fit,2&Fig. 2.6)
proved that the model could reliably be applieth study area under different climatic
scenarios. The measured lake water temperatufiégepr(vertical) evaluated for the
model goodness of fit represented three differestimtt bays (horizontal) of the lake and
the model was successful in accurately capturiedake’s three dimensional thermo
structure and heterogeneity. An extensive seftsitand uncertainty analysis of the
calibrated (year 2000, base reference for FU) atidated (year 2005, used as base
reference for FE) simulation results had providatliable insights in investigating the
predicted model outputs (Missaghi et al, 2013) Wwhignimized the model output

uncertainty.

Model simulations for past and future climate scersa
The specific and combined influences of the metiokal forcing data of each climatic
scenario were well evidenced in the simulation ltssuVith the benefit of the ice-cover
during winter, all three scenarios started withikinmnitial conditions and a uniform T
and DO throughout the water column after springauer. The water column in the FU
scenario began warming up the earliest in the se@#arch 20) followed by the FE
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scenario (April. 1) with the HN scenario at las@pril 15. The FE scenario T increased
at the fastest rate (6.3 °C per month) before iegamaximum T in July similar to HN
and FU scenarios. Considering that the FU fordiaign were generated by applying CFs
to the HN forcing data, the FU scenario T generfalpwed similar pattern of that of

HN scenario. However, coincidently, the maximurilydsurface water temperature for
all three scenarios was on July 15 (Fig. 5.6). Oiget of stratification also followed
similar pattern to T, with the onset of stratificat taking place in the FU two days and in
the FE a full month earlier than the HN scenaripr{i®22) (Fig. 5.6). At the end of the
season, the stratification periods ended on Novemli@ the HN scenario (199 days),
lasted to November 12 for the FU scenario (206 Jaysl ended on Nov. 22 for the FE
scenario with 46 days (23% increase) longer tharHiN stratification period.

In both future scenarios the epliminion T mimickkd predicted warmer;nd

followed the T, seasonal changes. The hypolimnion T changeslesseesponsive to,T
(Fig. 5.6). Our findings were in agreement wite\pous studies (Trolle et al., 2011;
Bayer, Burns & Schallenberg, 2013) and originafigarted by Hondzo and Stefan
(1993) that T in the epiliminion is very responstegoredicted T but not in the
hypolimnion. The warmer epilimnion T increaseswaer column stability which

resists mixing and can create cooling of hypolimnibivingstone, 2003, Trolle et al.,
2011), as observed in the FE scenario which hadiémmest eplimnion T and the coolest
hypolimnion T. The combined influence of highendispeed (ave. WS >4.5 )sand
rising T in the FE scenario early in the year fardee thermocline deeper than in HN and
FU scenarios (Fig. 5.2 and 5.4). But, the thermedllepth rapidly decreased after June
where a warmer eplimnion had stabilized the wabérman (less mixing) followed by
persistent low wind conditions (ave. WS <4hsThe predicted thermocline changes in
the FE scenario were similar to other studies itepoBayer et al., 2013). The predicted
extended and stronger stratification has signiticaplications as it can influence timing

of fish spawning, reduce the exchange of nutribeteieen the stratums and interrupt the
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transfer of energy and food supply to fish, infloe>O concentration dynamics, and
alter fish habitats (MacKay et al 2009).

Except with a few deviations, the DO depletion ar@moxic zone) closely followed the
mixing boundaries delineated by thermocline (Fig)5We had defined thermocline as
the maximum T change in areas with of at leg€ thange of T per m. However, the
DO vertical transport has been shown to be suppdesgh as little as 0.8C change in T
per m (Foley et al., 2012) which may explain sorhthe deviations. The epilimnion DO
concentrations were episodic and reflected the@mites of physical forcing data of T
and wind speed. For example, under the FE scerarimcreased in a 10 day average
wind speed from 3.5 rifsin the 10 days prior to June 24 to an average2 ms' in 10
days after (48% increase) caused a sudden deeparid(g rich epliminion and a
decrease in the anoxic area (Fig. 5.4c). The D€bdjr changes were magnified in the
shallow bays (<10 m) where the intermittently mgiof the larger anoxic layer with the
epliminion caused DO concentrations of less thargB' in the whole water column for
short durations (<2 weeks) (not shown here). THuetduration changes of DO
concentrations in the HN scenario were investigatetishown to be driven in parts by
the stream inflow mixing regimes (Missaghi and Homd2010). Force (inflow and
wind) induced mixing of anoxic bottom layers canguce major ecological

consequences such as fish kill (Jeppesen et 4i0)20

The thermal structure also plays a major role engtankton community by shaping
plankton species succession dynamics, algae bighnsssabitat (Elliott & Bell, 2011),
and ultimately the aquatic food web (Wetzel 20065t8 et al., 2014). The model
sensitivity and uncertainty analysis had previossligwn that over half (58%) of model
output variance was contributed by the algae biemasdel predicted variable (Missaghi
et al, 2013). The challenge is first to reduceutheertainty of algae group model output
through better field data and greater understandiiige ecological processes that

influence algae biomass. The second challengedsrifigure algae groups in
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simulations not as how they are currently descrilpeadel parameters) but how they
may adapt and function under future climate scesarDne potential method of
configuring the algae groups would be to includdtiple sets of the same algae groups
but with varying model parameter values so a prajgae group is provided under each

scenario condition.

5.5. Fish habitat evaluation

We used T values and DO concentrations (Tablet@.8¢lineate and evaluate coolwater
fish habitats as previously established by Stefa. €001 and used by others (e.g. Fang
et al., 2012). This and similar approaches (Dikom@l., 2003) have been reliable,
effective, and useful in analyzing fish habitat endifferent climatic scenarios. The
influence of T and DO on fish habitat among thenac®s evaluated was significant
(Table. 5.3). Under the HN scenario the fish hab#tio of good growth:restricted
growth:lethal equaled to 5:9:1. However, the vadsmf good growth habitat increased
9, restricted growth decreased 13, and that o&ldthbitat volume increased 4
percentage points under the FU scenario changa@igh habitat ratio to 4:4:1. The
volume of lethal habitat more than doubled, butdggmowth increasing only 1.5 points
and restricted growth decreasing 8.8 points yigl@iriish habitat ratio of 2:4:1 in the FE
scenario. Clearly, the lethal habitat grew torgéa fraction of the total available fish
habitat under the FU, and FE scenarios. We wdestalanalyze the temporal and spatial

shift and displacement of fish habitats under fittlimate change scenarios.

The daily averaged fish habitat time series (Fig) With the finest temporal resolution
allowed us to identify the important temporal psiof environmental stress due to
restricted growth or lethal fish habitats. The kig@veraged fish habitat time series
offered a time scale with sufficient length to eaptthe potential stress or harm posed by
both restricted growth or lethal habitats and smadugh time scale to capture fish
habitat dynamics. Most of fish habitat shifts ahdnges (70%) were concentrated in the
top 5 m of the water column (Fig. 5.8) with 5 t@d 5f the fish habitats changing within
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each depth layer. Only 5% and 1% of fish habith&nged in each depth layer below 5
and 10 m depth, respectively. The climatic chamgese FU and FE scenarios widen
the monthly averaged good growth and restrictetvtiraurves and decreased their
amplitude (Fig. 5.7). Consequently, the periothefgood growth fish habitats was
expanded within the simulation period under futsgenarios (Fig. 5.9). But the changes
in the lethal habitat were focused in one temppoale (mid Jul.) and their peaks
increased significantly under the FU and FE scesari

The 3D feature of our model allowed us to analyeedpatial (horizontal) expansion of
lethal habitat starting from the mid-season andctiréracting good growth fish habitat
from the edges (Fig. 5.10). Other studies have sti®wn that under a warming climate
change scenario a reduction of favorable lakeHadbitat takes place in edges and near
shore habitat (Cline et al., 2013). Areas of Hielwith depths shallower than the
mixing depth (thermocline) were susceptible torarease in T and a shift from good
growth to restricted growth and lethal habitat (Fd.0). The combination of the lethal
habitat increasing in one time period and the ggragvth fish habitat receding earlier in
the year squeezed the good growth area apart ésrdweeks in July (Fig. 5.9). With
good growth fish habitat contracted and separaiedcoolwater fish had no potential
refuge during the three weeks of good growth fighitat separation (Fig. 5.10). In our
analysis we did not consider fish migration outref study area and assumed that our
study area was physically enclosed similar to ameetake basin. In case of an enclosed
basin with lack of a refuge during the good growditat separation, fish cannot
physiologically change quick enough to adapt tostiéing and changing of their
habitats. Therefore, providing permanent or teraporefuge during good growth
habitat separation becomes an important consider&dr lake managers. Fish are living
organism with an array of behavioral dynamics thay manifest many unknown
attributes and establish their own ecological cqnsaces when faced with ecological
stresses (Britton et al., 2010), such as develojarging forays into anoxic zones (James

et al., 2012). However, a complete separatioroofiggrowth habitat with no refuge for

123



coolwater fish will lead to summer fish kill. lish cannot adopt new territory by moving
outside of their stressed basin then they may bedooally extinct and their population
shifting to other area lakes or towards highetdde and altitudes (Jeppesen et al., 2010).
The shift and changes of coolwater fish habitak wiluence specie competition and

prey interactions (Cline et al., 2013) affecting #xisting stress of competition or the
stress of a newly introduced and better suitedisgedhe new habitat (Britton et al.,
2010).

We successfully applied a 3D coupled hydrodynamda ecological model to a
morphologically complex lake. The success of tloeleh results were supported by
prediction of calibration (2000) and validation y€2005) output that accurately
captured the thermal structure and DO dynamich@tystem. The method of selection
of one climatic historical scenario based on mea$30 year normal meteorological data
and using two measured historical metrological yé2000 and 2005) as base for
predicted future scenarios proved reliable andeiaeed our confidence in the model
predicted output results. The results predictesharease in T values and decrease in
DO concentration levels with negative impact onleater fish habitat. The results
showed that the changes in the lake thermal streicioder the future scenarios reflected
the influences of a warmer air temperature that@leith decreased DO concentration
patterns controlled the boundaries of fish hahitdtise results of the predicted impact of
climate change on fresh-water lakes reported herswpported by other scientific
investigations that show, as we found, habitath skat of fish are not stationary (Milly
et al., 2008; Fang & Stefan, 2012; Cline et al130 The total change in volume of
uninhabitable fish habitat was modest (8 percenpagets of total lake volume increase
from historical normal to future extreme scenarim)t with significant spatial and
temporal changes that squeezed feasible good gfhthabitats to the point of
separation in July for over 3 weeks. Investigatimgpotential changes of climate
change on fish habitats by solely relying on eviadueof change in volume may miss

important temporal and spatial consequences.
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