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INTRODUCTION 

Understanding the consequences of management on forest productivity, structure, 

diversity, composition, and function is increasingly important considering projected 

increases in both natural and anthropogenic disturbance severity and frequency with 

global environmental change (Dale et al. 2001).  Increasing widespread adoption of 

practices aimed at emulating natural disturbance processes and resulting structures in 

order to maintain structural complexity, sustain diversity, and increase resilience in 

forests is coinciding with a worldwide rise in demand for forest-derived bioenergy 

feedstocks (Franklin et al. 1997, Fischer et al. 2006, Janowiak and Webster 2010, 

Lindenmayer et al. 2012).  In the temperate and boreal forests of North America, harvest 

residues constitute a significant source of such feedstocks.  Utilizing harvest residues for 

bioenergy production may help reduce greenhouse gas emissions and mitigate climate 

change impacts (Millar et al. 2007), but removing these post-harvest legacies could 

reduce forest complexity (Berger et al. 2013, Littlefield and Keeton 2013), productivity 

(Walmsley et al. 2009, Helmisaari et al. 2011, Wall 2012), and diversity (Riffel et al. 

2010, Bouget et al. 2012).     

The research presented in this dissertation examined both short- and medium-term 

impacts of removing harvest residues on several components of aspen-dominated forests 

in the upper Lake States region, USA. Chapter 1 examines the medium-term response of 

standing biomass and forest structure to the combined effects of organic matter removal 

and soil compaction 15 years after harvest.  Chapter 2 evaluates changes in composition, 

species diversity, functional diversity, and trait expression in response to organic matter 

removal and soil compaction over a 15-year period.  Additionally, this chapter bridges 
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the largely theoretical fields of functional and community ecology with silviculture by 

comparing a variety of diversity-related indices in an applied setting.  Lastly, with states 

like Minnesota developing guidelines to address the concerns about residue removal 

listed above, the effects of integrating aggregated overstory retention with bioenergy 

harvests were investigated in Chapter 3.  Both the effectiveness of aggregates in 

achieving ecological objectives and potential trade-offs with traditional forest 

management goals were assessed.   

Data from the Long-Term Soil Productivity Study (LTSP) provided the 

opportunity to explore 15 year impacts from organic matter removal combined with 

different levels of soil disturbance on regeneration across a range of soil textures.  Results 

presented in Chapter 1 demonstrate that regeneration, above-ground biomass production, 

and structural development at different sites vary in response to different disturbance 

severities.  At the Huron National Forest (sandy soils), the removal of harvest residues 

reduced above-ground biomass production, but no negative effect was observed 

following whole-tree harvest (WTH) compared to stem-only harvest (SOH) at Ottawa or 

Chippewa National Forests (clayey and silty loam soils, respectively).  Maximum 

diameter and the density of stems greater than 5 cm diameter (at breast height, 1.4 m) 

exhibited negative responses to increased disturbance severity at two sites, indicating 

potential for slowed structural development.  

Chapter 2 examines the response of community composition, species diversity, 

and functional diversity to disturbance severity at the LTSP sites.  As with standing 

biomass results presented in Chapter 1, diversity and composition responses to 

disturbance varied by site. On silty loam soils, removing the forest floor (FFR) increased 
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species richness over WTH alone whereas FFR resulted in the lowest species richness on 

clayey soils and no differences occurred on sandy soils. Although several metrics were 

used to assess community response to disturbance, only indicator species analysis 

detected a shift in composition and structure that occurred following the most severe 

harvest treatment combination at the silty loam site. Building off Chapter 1, these results 

show that a combination of approaches to quantifying community and diversity dynamics 

is necessary to capture shifts in function and structure that were evident in analyses of 

standing biomass. 

Given the medium-term impacts of harvest residue removal observed with the 

LTSP study, Chapter 3 focuses more narrowly on the short-term effects of this 

management practice on the structure and composition of tree regeneration and the 

herbaceous community when combined with aggregated overstory retention, a method 

designed to mitigate potentially detrimental impacts of clearcut harvesting on 

biodiversity.  Species richness, evenness, diversity (H’), and aspen sucker density did not 

differ between SOH and WTH, but ordination with non-metric multidimensional scaling 

(NMS) and indicator species analysis revealed compositional differences between the 

resulting communities. Aspen emerged as a significant indicator species for SOH when 

abundance (based on cover) was relativized by treatment. This trend may have occurred 

because WTH favored abundance of species that can compete with aspen, also suggested 

by indicator species analysis.  

Examination of aggregated overstory retention was two-pronged. First, the 

effectiveness of small aggregates (0.1 ha) at providing refugia for interior forest species 

was assessed by comparing species diversity measures and understory community 
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composition between aggregates and intact forest controls. Composition of the aggregate 

understory community was intermediate between intact forest and harvested areas as 

expected.  Some interior forest species such as Trientalis borealis showed preference for 

the conditions present in aggregates based on indicator species analysis. Aggregates also 

affected surrounding harvested areas. Aspen densities were significantly different 

between aggregate interiors and harvested areas, but contrary to expectations, differences 

did not exist between plots located near aggregate edges and plots 20 m out from 

aggregates. At least in the short-term, ecological objectives aimed at providing refugia 

and complexity were achieved with no apparent trade-off in regeneration densities. 

Overall, results indicate that responses to the level of disturbance occurring as a 

result of harvest residue removal differ among sites, even when dominated by the same 

overstory species, but there is potential for severe harvest disturbance to reduce standing 

biomass and favor shrub species over trees.  Also, when evaluating disturbance impacts, 

it is important to avoid relying on a single measure of diversity or composition because 

potential impacts could be obscured.  Lastly, retaining small aggregates of overstory 

reserves may provide refugia for some interior plant species without compromising 

regeneration objectives, at least in the short term. 
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CHAPTER 1 

Harvest residue removal and soil compaction impact forest productivity and 

recovery: potential implications for bioenergy harvests 
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Introduction 

Forests have been suggested as a supply of alternative sources of energy 

feedstocks for offsetting fossil fuel consumption (Millar et al. 2007, Becker et al. 2009, 

Aguilar and Saunders 2010, Buford and Neary 2010); however, increases in demand for 

forest-derived bioenergy feedstocks could translate to an increase in harvest-related 

disturbance severity and frequency with associated ecological impacts (Berger et al. 

2013). At the same time natural disturbance events (windthrow, fire, etc.) and stressors 

(e.g. drought) may also increase in frequency and severity as climate change progresses 

(Dale et al. 2001, Turner et al. 2010). Uncertainty regarding how ecosystems will respond 

to changes in disturbance, both natural and anthropogenic, poses a serious challenge to 

the development of long-term sustainable forest management and conservation strategies 

(Dale et al. 2001, Joyce et al. 2009). 

Given the uncertainty surrounding ecosystem responses to potential increases in 

disturbance, sustainable forest management requires a better understanding of how 

disturbance severity affects forest productivity and successional development. Generally, 

forest development occurs more quickly on more fertile sites (Franklin et al. 2002, 

Larson et al. 2008, Ryan et al. 2008, Hardiman et al. 2011), but disturbance itself can 

degrade site quality through depletion of nutrients and changes in the understory 

environment (Stoeckeler 1948, Thiffault et al. 2011). Also, increased disturbance severity 

or compound disturbance events may push ecosystems outside the range of natural 

variation (Paine et al. 1998, Lindenmayer et al. 2004).  These changes in disturbance 

severity may favor the establishment and growth of dense understory layers (Royo and 

Carson 2006) as has been observed in white spruce forests (Eis 1981) and, to some 
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extent, with trembling aspen (Populus tremuloides Michx.; Landhausser and Lieffers 

1998) in boreal regions. Such an understory can interfere with the establishment of tree 

species historically adapted to a site, thus slowing or changing forest developmental 

trajectories (Royo and Carson 2006).   

Results from studies examining the effects of harvest residue removal to date have 

varied depending on site quality, time since disturbance, and forest type. In nutrient-poor 

forests, removal of harvest residues (i.e., slash) can reduce nutrient availability and tree 

growth (Walmsley et al. 2009, Helmisaari et al. 2011, Morris et al. 2014); however, 

negative effects may not be detected in some cases until 10-20 years following harvest 

(Egnell and Valinger 2003, Helmisaari et al. 2011, Mason et al. 2012, Vanguelova et al. 

2010). Findings from Long Term Soil Productivity (LTSP) study sites in boreal aspen 

and black spruce forests suggest that while tree densities may not respond negatively to 

the removal of harvest residues, tree height can be detrimentally impacted (Kabzems 

2012, Morris et al. 2014). Even where site productivity appears to recover, the reduction 

in above-ground biomass caused by initial post-harvest declines in site productivity can 

persist for over 30 years (Egnell 2011). On richer sites the effects are more difficult to 

discern (Smolander et al. 2008, Smolander et al. 2010, Roxby and Howard 2013).  Fully 

assessing ecosystem response to disturbance requires quantifying severity in terms of not 

only the death or removal of biomass, but also impacts to soil given the pervasive 

influence harvest-related soil disturbance may have on forest community development 

(Halpern 1988, Roberts 2007).  The design of the LTSP study network allows assessing 

these different effects in a way applicable to bioenergy harvests. 
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Studies that consider impacts to soil, herbaceous biomass, shrub biomass, and 

other ecological response variables, will increase understanding of the potential long-

term impacts that increased levels of feedstock harvests may have on ecosystem structure 

and function. For example, quantifying productivity in non-tree plant species 

concurrently with tree species can elucidate competitive interactions among different 

guilds and the processes behind community disturbance responses (Grewal 1995, Royo 

and Carson 2006). Additionally, the rate of post-disturbance structural development gives 

an indication of engineering resilience (hereafter ‘resilience’; Larson et al. 2008), which 

represents the length of time required for a system to return to its pre-disturbance state 

(Holling 1996). If disturbance severity influences species composition (e.g. Halpern 

1988), structural development, and resilience, then anticipated impacts on future 

functions will vary similarly, as will the degree to which forest stands accommodate 

different management objectives (Schwenk et al. 2012). 

We examined how aspen-dominated forests growing on three different soil 

textures across the northern Lake States region respond to a gradient of disturbance 

severity created through different combinations of biomass removal and soil compaction. 

We show how above-ground productivity and structure respond to experimentally-

controlled variations of stand-replacing disturbance and that responses vary across a 

range of sites. The responses to differing disturbance severities are used to demonstrate 

how forests may respond to bioenergy feedstock procurement of differing severity and 

whether some sites may be more resilient to such practices. Because of potential nutrient 

losses and greater departure from natural disturbance, we hypothesized that above-ground 

productivity would decrease with increasing disturbance severity across all sites. We also 
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expected that structural development following the most severe disturbance would lag 

behind less severely impacted stands because of lowered site quality, which is known to 

be directly tied to the rate of structural development (Franklin et al. 2002, Ryan et al. 

2008). These hypotheses were tested using experimental sites associated with the LTSP 

network, established in the early 1990s. Three LTSP installations in the Lake States 

located within the Chippewa, Ottawa, and Huron-Manistee National Forests, provide the 

opportunity to assess how forests dominated by the same species but distributed across a 

landscape respond to different levels of disturbance severity over 15 years.   

Methods 

 Study Sites 

The study includes three sites within the Laurentian Mixed Forest Province 

extending from northern Minnesota, USA to Lower Michigan, USA.  Each site was 

dominated by aspen (P. tremuloides Michx.) prior to harvest.  The Chippewa National 

Forest (Chippewa) installation (47° 18’ N, 94° 31’ W) occurs on silty loam Frigid Haplic 

Glossudalfs, receives approximately 64 cm precipitation each year, and is the most 

productive of the three sites (site index 23 m height at age 50 (SI50) for aspen; Voldseth et 

al. 2011). Important species prior to harvest included aspen (Curtis Importance 

Value=58%), sugar maple (Acer saccharum  Marshall, 11%) and basswood (Tilia 

americana  L., 9%). In terms of relative biomass, aspen maintained a similar dominance 

15 years after harvest (52.0%). The Huron-Manistee site (Huron ; 44° 38’ N, 83° 31’ W) 

has a SI50 of 19 m for aspen (Stone 2001). Soils are sandy, classified as Frigid Entic 

Haplorthods and Frigid Typic Udipsamments and annual precipitation is approximately 

75 cm (Voldseth et al. 2011). Before harvest important species in addition to aspen (57%) 
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included big-toothed aspen (P. grandidentata Michx. 31%) and white pine (Pinus strobus 

L., 4%). Site-wide species composition was similar 15 years post-harvest with aspen 

(41.8%) and big-toothed aspen (34.1%) dominating, followed by red oak (11%). The 

Ottawa National Forest installation (Ottawa ; 46° 37’ N, 89° 12’ W) occurs on clayey 

Frigid Vertic Glossudalfs. This site receives approximately 77 cm precipitation annually 

and has a SI50 of 17-18 m for aspen (Voldseth et al. 2011, Stone 2001). Following aspen 

(50%), balsam fir (Abies balsamea [L.] Mill., 33%) and white spruce (Picea glauca 

[Moench] Voss, 14%) dominated prior to harvest.  Aspen abundance was comparatively 

greater 15 years post-harvest (87.5%) with balsam fir (4.7%) and white spruce (0.01%) 

making up smaller components than pre-harvest levels. 

Experimental Design 

The severity of disturbance has been quantified in terms of organic matter 

removal and soil compaction, two factors likely affected during the procurement of 

biofuel feedstocks from forests.  These two factors, each with three levels, were crossed 

using a factorial design resulting in nine unique treatments examined over time (Fig. 1.1).  

The three organic matter removal levels are named according to the traditional 

harvest method they most closely resemble. These levels included: 1) stem-only harvest 

(SOH), in which shrubs and merchantable tree boles were removed leaving behind 

harvest residues (branches and non-merchantable tops); 2) whole-tree harvest (WTH) in 

which all aboveground portions of trees and shrubs were removed; and 3) whole-tree 

harvest plus forest floor removal (FFR) in which the forest floor was removed in addition 

to all above-ground woody biomass. Shrubs such as hazel (Corylus cornuta Marshall and 

C. americana Walter) often grow densely in this region and can inhibit tree regeneration, 
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so they were removed from all treated plots at the time of harvest. WTH is a best 

approximation of the harvest practices associated with biomass feedstock procurement, 

given the focus of these harvests on removing materials, such as tree tops, and tree limbs 

which normally would be left on site after traditional harvests. Some states and countries 

have developed guidelines that recommend removal of only a portion of harvest residues 

for use in bioenergy production (i.e. MFRC 2007); this study, as it was originally 

designed in the 1990s, only allows assessment of extremes within the range of residue 

levels that might be removed as bioenergy feedstocks.  

The compaction levels included no additional compaction above normal levels 

associated with conventional harvesting (C0), moderate compaction (C1), and heavy 

compaction (C2). Moderate compaction and heavy compaction were intended to increase 

soil bulk density by 15% and 30%, respectively, over levels normally associated with 

harvesting (Stone 2001).  Actual results varied slightly by soil texture and depth 

(Voldseth et al. 2011).  Plots at the Ottawa, Chippewa, and Huron National Forests were 

harvested during winter in 1991, 1992, and 1993, respectively. Stands regenerated 

naturally, mostly through root suckers and stump sprouts. At the Chippewa installation, 

late season snow delayed the compaction application for 10 plots, so aspen seedlings 

were planted to compensate for any suckers damaged during treatment. The majority of 

these seedlings died due to the high level of compaction. Harvest operations are described 

in detail by Stone (2001). 

Treatments were applied to 0.16 ha plots (40 m x 40 m) as well as to 5 m buffers 

surrounding these plots (0.25 ha total area) and generally replicated three times at each 

location. Treatment implementation at the Ottawa differed slightly from the other sites 
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with five replicates of the WTH/C0 treatment, two replicates of SOH/C1, and only one 

replicate with SOH/C2. Woody vegetation was sampled in four 1.26 m radius (5 m
2
)
 

circular subplots per plot at Chippewa and Ottawa 5 years following harvest.  During the 

10 and 15 year sampling periods at these sites and all three sampling periods at the Huron 

NF, nine 1.78 m radius (10 m
2
) circular subplots per plot were sampled.  For each 

individual stem at least 15 cm tall, species and diameter at 15 cm were recorded. In each 

measurement year, a random azimuth and distance (range of 1 to 3 m) from a permanent 

sample point center was used to determine the location of five 1 m
2
 clip-plots per treated 

plot for sampling above-ground herbaceous vegetation. Clip-plot locations in subsequent 

years were constrained to be at least 1 m from the previous sample location. Herbaceous 

vegetation was clipped at the peak of the growing season (late July or early August), 

oven-dried at 60° C for 48 hours, and weighed to determine biomass.   

Analysis 

Above-ground biomass of woody species was calculated 5, 10, and 15 years post-

harvest with species-specific allometric equations developed using material from several 

locations across the Lake States, including the Chippewa and Ottawa National Forests 

(Perala and Alban 1994).  Woody species that can occupy dominant canopy positions in 

closed canopy conditions at some stage of development in these forests were classified as 

‘trees’. The ‘shrubs’ category comprised all remaining woody species except for the 

genus Rubus which was included with herbaceous plants during sampling.  Live standing 

biomass at each measurement period was used as a surrogate for net aboveground 

productivity in our analyses. 
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Three structural attributes were used to assess forest structural development in 

response to organic matter removal and compaction over time.  These included density of 

stems and quadratic mean diameter, two conventional measures of forest structure.  

Additionally, we analyzed the maximum basal diameter (maxBD) as a response variable.  

Larger diameter trees and greater variability in tree diameter are both commonly used to 

describe structural development, particularly when comparing the structure of managed 

forests to that of old-growth (i.e. Larson et al. 2008. Silver et al. 2013).  The forests 

sampled for the present study are young, so “large” trees are absent, but the diameter of 

the largest trees present in each stand provides some indication of structural development 

at this early stage. 

Diameter was measured at a height of 15 cm (basal diameter, BD) in the field 

with diameter at breast height (DBH, 1.4 m) measured for only a subset of stems. To 

enable comparison with other studies DBH was estimated using the following equation: 

 

DBH = 0.88 * BD – 0.254 (r
2 

= 0.9476, p<0.0001)      

 

where DBH is diameter at breast height (cm) and BD is basal diameter (cm). 

The influence of organic matter removal and compaction on productivity and 

structure was assessed with mixed-model repeated measures ANOVA using the SAS 

MIXED procedure (SAS Institute, Inc. 2010). The statistical model used was as follows: 

 

Yijkl = OMR + CPT + TIME + (OMR * CPT) + (OMR * TIME) + (CPT * TIME) + 

(OMR * CPT * TIME) + eijkl         
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where OMR is organic matter removal, CPT is compaction, TIME is the number of years 

since harvest, and Yijkl is above-ground biomass, stem density, or diameter at the ith level 

of OMR, the jth level of CPT, the kth level of time, and the lth level of plot. Plots were 

included as random effects while OMR, CPT, and TIME were treated as fixed effects. 

Type III sums of squares were used for all analyses to account for the unbalanced design 

at the Ottawa NF. Each site was analyzed separately because soil texture, the main 

characteristic distinguishing them, was not replicated. Some response variables required 

power transformations to meet ANOVA assumptions for equal variances among groups 

and normally distributed residuals. Tukey-adjusted multiple comparisons were used to 

distinguish among effects of factor levels where warranted.   

Results 

Biomass Production 

Both main factors and their interaction (OMR * CPT) resulted in significant 

differences in total above-ground biomass at all three sites (Table 1.1). Removing harvest 

residues did not negatively affect total standing biomass at the Chippewa or Ottawa sites 

(Fig. 1.2). In fact, with the addition of light compaction (C1) both WTH (23.894    4.367 

Mg/ha) and FFR (24.329   5.498 Mg/ha) yielded higher total above-ground biomass at 

Chippewa compared with SOH (11.426   2.360 Mg/ha; Fig. 1.2).  Similarly at Ottawa, 

WTH resulted in higher biomass when combined with C1 (23.183  6.525 Mg/ha) or C2 

(14.867    3.801) compared to FFR (9.402    3,235 and 10.554    3.520 Mg/ha, 

respectively) with SOH intermediate (Fig. 1.2). In contrast, removing residues did result 

in decreased total above-ground biomass at the Huron site (sandy soils) except when 
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compaction was most severe (C2) in which case the biomass among OMR severity levels 

did not differ (Fig. 1.2, Appendix A).  

With respect to compaction, no trends in total standing biomass were consistent 

among the sites. Total biomass declined with increasing CPT at Chippewa (Fig. 1.2). At 

Ottawa, the intermediate compaction level (C1) appears to increase total biomass, but 

only when combined with SOH or WTH (Fig. 1). At Huron, there were no significant 

differences among CPT levels when OMR was held constant even though CPT was a 

significant factor by itself (Table 1.1, Appendix A) and biomass appears to increase with 

an increase in compaction above C0 (Fig. 1.2). 

 When total biomass is divided into its component guilds, responses to disturbance 

again varied by site. Trees consistently dominated the biomass pools. Accordingly, trends 

in tree biomass followed those reported above for total above-ground biomass (Fig. 1.2). 

Shrub biomass increased with increasing disturbance at Chippewa. Shrub biomass at this 

site was greatest following FFR (FFR > SOH, WTH; p=0.0397, 0.0004).  Increasing 

compaction also resulted in greater shrub biomass (Fig. 1.2), but the CPT factor was not 

significant by itself. Because of the TIME*CPT interaction, we analyzed shrub biomass 

independently for the 15 year sampling period, and compaction did have a significant 

effect (F=5.54, p=0.0133) with shrub biomass greater following C2 than C0 (p=0.0126).  

In contrast, shrubs exhibited a negative response to greater disturbance at Ottawa.  Where 

heavy compaction occurred shrub biomass decreased with increasing organic matter 

removal (SOH >WTH, FFR; p=0.0404, 0.0533).  When combined with WTH, increasing 

compaction also decreased shrub biomass (C0 > C1, p=0.0301).  At Huron, WTH may 

have favored shrub biomass (Fig. 1.2), but the effects were not significant.  Likewise, 
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herbaceous biomass showed no relationship to the disturbance severity associated with 

either factor.  However, at both the Chippewa and Ottawa locations, increasing 

compaction increased the proportion of biomass allocated to herbaceous plants (C1, C2 > 

C0 at both sites; Fig. 1.2, Appendix A).At Ottawa, FFR increased herbaceous biomass 

over WTH when in combination with increased compaction (C1 or C2, Appendix A).  

 Most biomass measures varied significantly with time (Table 1.1, Appendix B). 

The only exception was shrub biomass at the Huron site which constituted a very small 

proportion of total aboveground biomass (Fig.1.1). Tree biomass increased over time at 

all three sites. At the Chippewa site, in particular, shrub biomass was greater where 

severe compaction decreased tree biomass at the 15 year sampling period (Fig.1.1). 

Herbaceous biomass decreased over time at Chippewa NF, but continued to increase up 

to 15 years after harvest at Ottawa NF. 

Structure 

Both main factors and their interaction significantly influenced diameter at the 

Chippewa and Ottawa sites (fine-textured soils) whereas at Huron (sandy soils) only 

OMR and the OMR*CPT interaction were significant effects (Table 1.2). Holding OMR 

constant at SOH, increasing compaction (C1 or C2) reduced the mean for the largest 

diameter trees (maxBD) at Chippewa (Fig.1.3). Increased compaction also reduced max 

diameter when combined with FFR (Fig.1.3, Appendix A). Maximum diameter increased 

at Chippewa following WTH compared to SOH, but only in combination with 

intermediate compaction (C1; Fig.1.3, Appendix A).  Similarly, at Huron maxBD was 

greater following SOH compared with WTH and FFR when combined with C1 

(p=0.0396, p<0.0001; Appendix A). At the Ottawa site, pairwise comparisons yielded no 
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significant differences in diameter attributable to OMR severity levels even though the 

main effect was significant in the model (Table 1.2).  

At Chippewa NF, both the CPT factor and CPT * TIME interaction significantly 

affected stem density.  Holding TIME constant, density decreased with increasing 

compaction (C0>C1>C2, p<0.05) during each time period. At the Ottawa site, both OMR 

and the OMR * CPT interaction showed a significant effect on tree stem density over 

time (Table 1.2), but no pairwise comparisons between OMR levels emerged as 

significant. An assessment of trees > 5 cm DBH in the last sampling period alone (15 

years post-harvest) confirms the significant effect of OMR on density (F=6.12, 

p=0.0106). The greatest stem densities occurred following WTH, but significant 

differences only emerge when that treatment is combined with intermediate compaction 

(C1: WTH > FFR, p=0.0077; Fig. 1.3). At the Huron NF, neither main factor affected 

tree stem densities over time when all diameters are considered (Table 1.2). However, if 

analysis is limited to stems ≥ 5.0 cm DBH 15 years post-harvest, OMR does have an 

effect (F=5.30, p=0.0163) with densities significantly greater when harvest residues are 

retained (SOH > WTH, FFR; p=0.0380, 0.0245). 

As would be expected, tree diameter and stem density changed significantly over 

time at all three sites. At Chippewa stem density did not differ significantly between 

years 5 and 10, but did decrease substantially by year 15 (Y5, Y10 > Y15; p= 0.0068, 

0.0325). At Ottawa NF, OMR * TIME was significant, so changes over time were 

assessed while holding OMR constant.  Only with WTH did densities differ among years 

(5 > 15, p=0.0089). At Huron NF, stem density decreased between 5 and 10 years post-

harvest, but year 15 did not differ from year 10 (5 > 10, 15; p<0.0001). Both measures of 
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diameter (QMD and maxBD) increased over time at all sites (Y15 > Y10 > Y5, 

p<0.0001). 

Discussion 

Across sites, standing biomass was generally greatest where both diameter (QMD 

and maxBD) and density were also greatest (Fig. 1.4).  Treatment effects varied among 

sites, but within sites these three aspects of structure responded to disturbance severity in 

concert. At Chippewa and Ottawa, the removal of harvest residues did not detrimentally 

impact total above-ground standing biomass or diameter growth.  At the Huron 

installation, however, standing biomass, diameter growth, and tree density all declined 

with increasing organic matter removal.  

The short period of time (15 years) since stand-replacing disturbance somewhat 

limits assessment of structural development, but even at this early stage, severe 

compaction at Chippewa and Ottawa and severe organic matter removal (FFR) at all 

three sites appeared to delay the accumulation of larger trees (Appendix B). At the 

Ottawa NF, the temporal trend in stem density gives some indication of structural 

development. In contrast to the other two sites, stem density declined little over time at 

this site except where WTH occurred (Appendix B).  As a stand develops, there is 

generally a predictable decline in stem densities due to self-thinning processes, so a delay 

in decreasing densities may indicate slower structural development in general compared 

to the other sites.  While removing harvest residues (WTH) may improve growing 

conditions for species (like aspen) that regenerate through root suckers and hasten 

development compared with SOH, the additional loss of nutrients associated with 

removing the forest floor (FFR) may have had a negative effect. 
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One advantage of looking at the effects of soil compaction and harvest removal 

over time rather than exclusively at an ‘endpoint’ is a greater ability to discern the 

processes affecting changes in the main variables of interest, such as above-ground 

biomass.  At the Chippewa, those stands most severely impacted in terms of soil 

compaction showed an increase in shrub biomass 15 years post-harvest that coincided 

with decreased tree biomass relative to other treatments.  Because the shrub response to 

compaction did not emerge until 15 years had passed (Fig. 1.2), we can infer that the 

original disturbance negatively impacted tree regeneration in a direct way, possibly 

through damage to aspen root systems because of rutting (Bates et al. 1993). Shrubs have 

likely increased over time in response to that original impact on trees rather than directly 

outcompeting trees because of some advantage conferred immediately following the 

disturbance (Royo and Carson 2006).  It should cause concern that the most severe 

disturbance treatment (FFR/C2) results in a community dominated by shrubs 15 years 

after harvest with no indication of return to the pre-disturbance composition or structure 

(Fig. 1.2). 

While the lack of replication prevents statistical comparisons among soil textures 

in our analysis, other studies have observed different responses depending on soil texture 

(Powers et al. 2005, Morris et al. 2014) or general site quality (Page-Dumroese et al. 

2000, Thiffault et al. 2011) and this may contribute to the differences we observed.  With 

the addition of compaction (C1 or C2), removing harvest residues resulted in higher 

aboveground biomass at the Chippewa and Ottawa sites despite evidence that K 

decreased with increasing organic matter removal at Chippewa (Voldseth et al. 2011). 

The soils at Chippewa and Ottawa are considered more nutrient-rich than at Huron, so it 
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may be that where nutrients are not already limiting, the effect of retained harvest 

residues on the microenvironment can hinder tree establishment and growth. In other 

regions where forest regeneration depends more on sexual reproduction or planting than 

the aspen-dominated forests discussed here, harvest residues and litter tend to benefit 

seedling germination and growth by decreasing soil moisture loss and mitigating extreme 

conditions in the microenvironment (Gray and Spies 1997, Roberts et al. 2005, Walmsley 

et al. 2009, Thiffault et al. 2011) or by reducing competing vegetation (Stevens and 

Hornung 1990, Roberts et al. 2005).  Additionally, harvest residues eventually provide 

valuable substrate for species that require decaying woody debris for seedling 

germination (Shields et al. 2007, Marx and Roberts 2008, Cornett et al. 2001).  When the 

dominant species can regenerate vegetatively through root suckering and is managed 

using a coppice system, as with aspen in this study, these effects may not prove beneficial 

for total aboveground biomass production.  Instead, the decrease in soil surface 

temperatures that results from shading by woody debris or dense understory cover 

(Zabowski et al. 2000) can potentially shorten the growing season and decrease annual 

growth rates in aspen (Zasada and Schier 1973, Grewal 1995, Landhausser and Lieffers 

1998, Fraser et al. 2002).  

Forest regrowth and productivity at Huron was negatively impacted by increasing 

severity of residue removal even though only the two extremes (SOH and FFR) differed 

significantly once the interaction of main effects was considered. Because sandy soils 

tend to be of poorer nutrient quality, the detrimental impact of residue removal might be 

explained by an associated loss of nutrients (Federer et al. 1989, Thiffault et al. 2011). 

While mineral soil C and N pools have not exhibited a response to OMR over 15 years at 
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this site (Kurth et al. 2014) an analysis of soil cations 10 years after harvest indicated a 

significantly lower concentration of Ca associated with FFR when compared to SOH 10-

20 cm below the surface (Voldseth et al. 2011). This supports concerns expressed in other 

studies about the potential for Ca losses with residue removal following harvest of aspen 

and other species that store large amounts of Ca in their tissue (Alban 1982, Silkworth 

and Grigal 1982, Federer et al. 1989). Additionally, the higher levels of fine and coarse 

woody debris following SOH may alter the microenvironment by reducing exposure and 

increasing soil moisture (Gray et al. 2002, Roberts et al. 2005, Walmsley et al. 2009), 

thus increasing biomass production compared to FFR. Leaving residues on site (SOH) 

increased total above-ground biomass over other OMR treatments except when the most 

severe compaction treatment (C2) was held constant (Fig. 1.2, Appendix A).  The 

increase in compaction resulting from C2 would be expected to decrease soil pore space 

and increase water-holding capacity (Greacen and Sands 1980, Powers et al. 1999, Stone 

et al. 2001), which may have equalized the moisture-retaining effects of SOH relative to 

WTH and FFR.  The positive (but insignificant) relationship between greater biomass 

production and increasing compaction (Fig. 1.2) indicates that water may be limiting as 

has been observed in other LTSP studies on sandy soils (Powers et al. 1999, Powers et al. 

2005), providing some support for this hypothesis.   

 An analysis of bulk density 10 years after harvest at each site indicates that the 

soils at Huron and Chippewa had started to recover from the compaction treatments 

(Voldseth et al. 2011).  However, no significant differences in bulk density at the Ottawa 

site (clay soils) were observed between sampling periods immediately following harvest 

and 10 years post-harvest (Voldseth et al. 2011).  Based on these trends, we suspect that 
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the responses to compaction observed in biomass production and structure at the 

Chippewa site, even 15 years post-harvest, were largely realized immediately after 

treatment. Wet conditions were present when compaction was applied, so damage to 

aspen root systems may have occurred, which combined with effects of compaction on 

conditions for seedlings and sprouts during their first growing season, may have 

generated differences that are still evident 15 years later.  At the Ottawa site, however, it 

is not possible to distinguish between these effects and how continued compaction might 

affect hydrology, gas exchange, or other processes that influence forest growth. 

Some studies have concluded that richer sites should not experience nutrient 

deficiencies that limit regeneration following WTH (Boyle et al. 1973, Silkworth and 

Grigal 1982) with any nutrients lost via harvesting having little noticeable effect on 

productivity. Recent research indicates that soil disturbance has greater potential to 

negatively impact net primary productivity than stand mortality or dead wood removal 

(Peters et al. 2013). Our results at the Chippewa and Ottawa sites align with these 

findings at present, but as has occurred in other studies, negative effects on productivity 

may manifest later in stand development (Egnell and Valinger 2003, Mason et al. 2012).  

Conclusions 

The LTSP network provides a unique opportunity to study the medium-term 

ecological effects of removing harvest residues. This is particularly important as interest 

in using those residues for bioenergy production increases and organizations develop 

management guidelines in anticipation of potential impacts. Our results demonstrate that 

increased disturbance severity resulting from the removal of harvest residues for 

bioenergy feedstocks may have a negative effect on structural development and, at least 
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on some sites, above-ground biomass production. While no intermediate levels of harvest 

residue removal were tested, this study does affirm the need for management guidelines 

that include provisions for retaining living and dead tree biomass following harvest and 

for minimizing soil disturbance. Further research should investigate the effects of 

retaining a portion of residues across a range of sites.  

Additionally, our results highlight the importance of accounting for site 

differences when developing guidelines intended to mitigate impacts from bioenergy 

feedstock procurement.  Such considerations have been integrated by some regional site-

level guidelines (Herrick et al. 2009); however, most recommendations generically apply 

to all site types (e.g., MFRC 2007).  While removing residues may improve the growing 

environment on fine-textured soils for species that regenerate vegetatively as occurred at 

the Chippewa and Ottawa sites, care should be taken to minimize soil disturbance as 

reductions in tree biomass may occur and, if the disturbance is severe enough, shrubs 

may increase in dominance.  On poorer, sandy soils such as those at the Huron NF, the 

removal of harvest residues may not be appropriate both because of potential for nutrient 

losses as well as reductions in moisture availability, particularly in light of projections for 

more severe and more frequent drought conditions in the future. 
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Table 1.1 Summary of type III tests of fixed effects for aboveground biomass in different pools over 15 years following biomass 

harvest.  Abbreviations for the factors are as follows: organic matter removal, OMR; compaction, CPT. Results are reported for LTSP 

installations at the Chippewa National Forest, Minnesota (CH), the Huron-Manistee National Forest, Michigan (HM), and the Ottawa 

National Forest, Michigan (OT).  Effects with p ≤ 0.05 are shown in bold. 
                            

   

Above-ground biomass 
 

Tree biomass 

 

Shrub biomass 

 

Herbaceous biomass 

CH 

(loamy) 

Source df F P-value   F p-value   F P-value   F P-value 

OMR 2 3.86 0.0272 

 
8.73 0.0005 

 
8.95 0.0004 

 

0.61 0.5496 

CPT 2 45.92 <0.0001 

 
131.92 <0.0001 

 

0.83 0.4404 

 
89.81 <0.0001 

TIME 2 154.97 <0.0001 

 
148.56 <0.0001 

 
58.73 <0.0001 

 
72.94 <0.0001 

OMR*CPT 4 2.49 0.0543 

 
4.15 0.0053 

 

2.41 0.0605 

 
3.17 0.0209 

OMR*TIME 4 1.17 0.3338 

 

0.19 0.9418 

 

0.19 0.9423 

 

0.17 0.9516 

CPT*TIME 4 1.81 0.1409 

 

2.01 0.1063 

 
5.62 0.0008 

 

2.04 0.1019 

CPT*OMR*TIME 8 0.47 0.8728 

 
0.28 0.971 

 
0.33 0.9514 

 
0.33 0.9514 

              

HM 

(sandy) 

OMR 2 7.59 0.0013 

 
6.94 0.0021 

 
11.58 <0.0001 

 

2.45 0.0961 

CPT 2 3.51 0.037 

 
3.22 0.0478 

 

1.34 0.2701 

 

2.58 0.0856 

TIME 2 83.94 <0.0001 

 
67.17 <0.0001 

 

1.24 0.2976 

 
23.14 <0.0001 

OMR*CPT 4 2.71 0.0395 

 

2.3 0.0707 

 

1.2 0.3199 

 

1.64 0.1767 

OMR*TIME 4 0.09 0.9857 

 

0.05 0.9946 

 

0.1 0.9805 

 

0.33 0.8551 

CPT*TIME 4 0.03 0.9985 

 

0.05 0.9945 

 

0.1 0.9819 

 

0.2 0.9377 

CPT*OMR*TIME 8 0.07 0.9997 

 
0.04 1 

 
0.17 0.9938 

 
0.12 0.9983 

              

OT 

(clay) 

OMR 2 12.12 <0.0001 

 
10.06 0.0002 

 
5.16 0.0091 

 
11.14 <0.0001 

CPT 2 5.51 0.0069 

 
3.56 0.0358 

 
4.27 0.0195 

 
8.23 0.0008 

TIME 2 144.53 <0.0001 

 
79.41 <0.0001 

 
10.71 0.0001 

 
9.16 0.0004 

OMR*CPT 4 5.18 0.0014 

 
6.06 0.0005 

 
3.16 0.0215 

 
7.73 <0.0001 

OMR*TIME 4 0.77 0.5519 

 

0.65 0.6281 

 

0.78 0.542 

 

1.47 0.2243 

CPT*TIME 4 0.17 0.9518 

 

0.03 0.9987 

 

0.42 0.7938 

 

0.08 0.9885 

CPT*OMR*TIME 8 1.26 0.2839   0.94 0.4956   2.03 0.0617   1.87 0.0863 
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Table 1.2 Summary of type III tests of fixed effects for forest structural attributes following biomass harvest.  Abbreviations are as 

follows: organic matter removal, OMR; compaction, CPT; maximum basal diameter (99
th

 percentile), BDmax; quadratic mean 

diameter, QMD. Results are reported for LTSP installations at the Chippewa National Forest, Minnesota (CH), the Huron-Manistee 

National Forest, Michigan (HM), and the Ottawa National Forest, Michigan (OT).  Effects with p ≤ 0.05 are shown in bold. 
                      

   

BDmax 
 

QMD 
 

Stem density 

CH 

(loamy) 

Source df F P-value   F P-value   F P-value 

OMR 2 5.04 0.01 
 

11.4 <0.0001   3.67 0.032 

CPT 2 23.76 <0.0001 
 

9.99 0.0002 
 

53.55 <0.0001 

TIME 2 205.1 <0.0001 
 

150 <0.0001 
 

21.22 <0.0001 

OMR*CPT 4 3.18 0.0204 
 

2.34 0.067 
 

0.17 0.9521 

OMR*TIME 4 0.71 0.5878 
 

2.44 0.0585 
 

0.22 0.9267 

CPT*TIME 4 0.83 0.5117 
 

0.92 0.4612 
 

0.46 0.766 

OMR*CPT*TIME 8 0.23 0.9834 
 

0.33 0.9509 
 

0.23 0.9828 

           

HM 

(sandy) 

OMR 2 8.86 0.0005 
 

3.43 0.0398 
 

0.95 0.3934 

CPT 2 0.1 0.2571 
 

1.73 0.1871 
 

0.61 0.549 

TIME 2 216.2 <0.0001 
 

53.4 <0.0001 
 

10.57 0.0001 

OMR*CPT 4 3.77 0.0091 
 

0.86 0.4953 
 

2.6 0.0858 

OMR*TIME 4 0.64 0.6372 
 

0.02 0.9994 
 

0.08 0.9874 

CPT*TIME 4 0.09 0.9842 
 

0.14 0.9685 
 

0.15 0.9628 

OMR*CPT*TIME 8 0.08 0.9997 
 

0.06 0.9999 
 

0.09 0.9994 

           

OT (clay) 

OMR 2 6.51 0.0031 
 

12.7 <0.0001 
 

3.56 0.036 

CPT 2 9.03 0.0004 
 

2.83 0.0685 
 

0.79 0.4579 

TIME 2 259.8 <0.0001 
 

231 <0.0001 
 

71.92 <0.0001 

OMR*CPT 4 3.88 0.0081 
 

4.56 0.0032 
 

2.59 0.0481 

OMR*TIME 4 0.37 0.8281 
 

0.96 0.4368 
 

0.67 0.6165 

CPT*TIME 4 0.31 0.8686 
 

1 0.419 
 

3.44 0.0147 

OMR*CPT*TIME 8 0.78 0.6223   1.08 0.3983   1.83 0.0941 
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Figure 1.1 Experimental design for the Long-Term Soil Productivity Study. 
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Figure 1.2 Total above-ground biomass including trees, shrubs, and herbaceous plants at 

Chippewa (panel A), Huron (panel C), and Ottawa (panel E). Panels on the right (B,D,F) 

show corresponding trends in above-ground biomass across treatments over time. 

Treatments are abbreviated as follows: C0, no compaction; C1, minimal compaction; C2, 

moderate compaction. Bars indicate standard error. No standard error or significance is 

shown for the SOH/C2 treatment at Ottawa because this treatment was not replicated. 
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Figure 1.3 Density of trees greater than 5 cm DBH 15 years following harvest.  For the 

Chippewa and Huron National Forests, there was no significant effect of OMR * CPT, so 

means are presented for each factor individually.  Panels A and B shows mean density 

according to levels of compaction and organic matter removal, respectively, at Chippewa 

NF. Panels C and D show mean density by levels of compaction and organic matter 

removal, respectively, at Huron NF.  A significant OMR * CPT interaction was observed 

at Ottawa NF, so means are presented for each individual factorial combination for this 

site in panel E. Bars indicate standard error and letters indicate where significant 

differences among treatments occur.  No standard error or significance is shown for the 

SOH/C2 treatment in Panel E because there was no replication for this treatment. 
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Figure 1.4 The relationships among tree biomass, tree stem density, and diameter 15 

years following harvest at Chippewa (panels A and B), Huron (panels C and D), and 

Ottawa (panels E and F) study sites.  A tree was defined as having diameter at breast 

height > 5.0 cm.  Symbol shape (circle, square, triangle) corresponds to the OMR factor 

(SOH, stem-only harvest, WTH, whole-tree harvest, FFR, forest floor removal). Symbol 

color (white, grey, black) indicates the CPT factor level (C0, no compaction; C1, minimal 

compaction; C2, moderate compaction).
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CHAPTER 2 

Functional diversity measures respond to increasing disturbance severity, but fail to 

capture a compositional and structural shift in managed forests 
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Introduction 

Species diversity has long been associated with the provision of ecosystem 

services and with ecosystem resilience (Tilman et al. 1996, Loreau et al. 2001, Elmqvist 

et al. 2003, Folke et al. 2004, Lavorel et al. 2013), although the strength of those 

relationships varies with scale, interactions with other species, and species-specific 

qualities (Tilman et al. 1997, Hooper and Vitousek 1997, Loreau et al. 2001). 

Increasingly, functional diversity is emphasized as a valuable and potentially more useful 

tool for assessing ecosystem health and restoration success relative to traditional species 

identity-based approaches (Tilman et al. 1997, Folke et al. 2004, Suding et al. 2008, 

Mayfield et al. 2010, Laughlin 2014). Functional diversity indices enable a more direct 

assessment of potential disturbance impacts on ecosystem processes without making 

assumptions about the consequences of diminished species diversity (Mason et al. 2005, 

Petchey and Gaston 2008, Mouillot et al. 2013). 

Community assembly rules describe how the environment filters species, 

determining composition and ultimately function, through its effect on plant traits (Keddy 

1992). The degree to which the resulting functional diversity affects ecosystem services 

may also depend on the environment and associated stresses (Loreau et al. 2001, Paquette 

and Messier 2011, Lienin and Kleyer 2012, Laliberte and Tylianakis 2013). At both 

broad, biome scales and finer, ecosystem scales the availability of resources can influence 

the direction and magnitude of functional diversity effects on productivity (Paquette and  

Messier 2011, Laliberte and Tylianakis 2013). In anticipation of projected changes in 

disturbance severity and frequency with global environmental change, it may be valuable 

to increase the research focus on ‘response rules’ and the implications they have for 
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functional diversity (Keddy 1992). This entails investigating how disturbance (rather than 

ambient environmental conditions) influences community composition by filtering 

species according to their ability to persist or recolonize (i.e. Chillo et al. 2011, Maeshiro 

et al. 2013, Niell and Puettmann 2013). The resulting species composition then 

determines function through the representation of “effect traits” that influence ecosystem 

processes like productivity and nutrient cycling (Diaz and Cabido 2001, Suding et al. 

2008). Such an investigation requires not only some quantification of function and 

structure (e.g. Mouillot et al. 2013), but also a framework for quantifying disturbance 

severity (Roberts 2007).  

Many studies have examined species diversity-ecosystem function relationships 

along disturbance severity or stress gradients, but those gradients are usually linear and 

often based on a single variable (i.e. Wilson and Tilman 2002, Chillo et al. 2011) whereas 

the effects of disturbance may be more complex (Townsend et al. 1997, Roberts 2007). 

Disturbance severity in forests, specifically, is often quantified in terms of overstory tree 

mortality (i.e. Oliver and Larson 1990, Frelich and Reich 1998); however, these events 

may also impact understory vegetation and soil conditions. Accounting for the 

multidimensional nature of disturbance impacts enables comparisons across both natural 

and anthropogenic disturbance types and increases the likelihood that more subtle 

changes to composition and diversity will be observed (Roberts 2007). For example, 

comparisons among plant functional group responses to thinning treatments versus 

various levels of comparable canopy cover in unharvested forest demonstrated that 

ancillary disturbance caused by harvest operations might drive functional change (Niell 

and Puettman 2013). Nevertheless, the utility of quantifying functional diversity to assess 
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disturbance impacts that accompany forest management treatments related to resource 

procurement, restoration, or the achievement of other objectives remains largely untested 

at operational scales.  

Removal of harvest residues for bioenergy production has been proposed around 

the globe as a potential mitigation strategy for reducing greenhouse gas emissions (Millar 

et al. 2007, Aguilar and Saunders 2010, Buford and Neary 2010), but it increases 

management-related disturbance severity and has potential to alter functional diversity in 

forests. This change in land-use practice affects above-ground biomass production, forest 

structure, and nutrient cycling to varying degrees depending on site characteristics, land-

use history, and time since harvest (Helmisaari et al. 2011, Mason et al. 2012, Berger et 

al. 2013, Curzon et al. 2014). While many reviews stress the importance of potential 

changes to species richness that may result (e.g. Riffel et al. 2011, Berger et al. 2013, 

Janowiak and Webster 2010) far less is known about impacts to function. The increase in 

anthropogenic disturbance frequency and severity that may occur in response to higher 

demand for forest-derived bioenergy feedstocks will shape the composition, structure, 

and function of resulting forest communities (Turner et al. 1998, Bernhardt-Romermann 

et al. 2011), as well as their ability to respond to future disturbances (Costa et al. 2012). 

Accordingly, understanding those effects and how they vary with disturbance severity 

and abiotic site conditions is imperative for informing future forest policy and 

management decisions that maintain critical forest functions in the face of change. 

In this study we tested the applicability of a suite of established methods for 

quantifying diversity and functional responses to disturbances associated with removing 

harvest residues for bioenergy, an emerging issue in sustainable forest management. We 



42 
 

addressed the following questions: (1) Do measures of functional diversity and measures 

of species diversity exhibit the same response to disturbance severity? (2) Does the 

increase in disturbance associated with harvest residue removal reduce functional 

diversity in forest systems dominated by vegetative reproduction? (3) What particular 

traits differ among the communities that reassemble following disturbances with different 

severities? (4) Do these responses indicate whether the resilience of forests managed for 

bioenergy feedstocks and other products might be impaired in light of projected changes 

to natural disturbance regimes?  We examined community composition, species diversity, 

functional diversity, and individual plant traits in response to harvest-related disturbance 

severity using data from three Long Term Soil Productivity (LTSP) study installations 

distributed across the Laurentian Mixed Forest Province in the northern U.S. This long-

term dataset provided a novel and valuable opportunity to address the above questions 

across a range of conditions over time.   

Methods 

Study Sites 

This study utilizes data from the Lake States installations of the Long-Term Soil 

Productivity (LTSP) Study established by the USDA Forest Service in the early 1990s 

(Table 2.1; Powers et al. 2005). Together, the three sites represent a range of habitat 

conditions for aspen (Populus tremuloides, Michx.) across the upper Lake States region 

in the northern U.S. Aspen dominated all forest stands prior to treatment (Curtis 

Importance Value ≥ 50%), but the sites differ in terms of soil texture. Site locations and 

descriptions are provided in Table 2.1.  

Experimental Design 
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We quantified disturbance severity in terms of organic matter removal and soil 

compaction, two factors related to removing residues following conventional harvest for 

use as biofuel feedstocks. Three levels for each factor were crossed using a factorial 

design resulting in nine treatment combinations (Fig. 1.1). The three organic matter 

removal levels included stem only harvest (SOH), in which shrubs and merchantable tree 

stems were removed leaving behind harvest residues, whole tree harvest (WTH) in which 

all aboveground portions of trees and shrubs were removed, and whole tree harvest plus 

forest floor removal (FFR) in which the forest floor was removed in addition to all above-

ground woody biomass. The compaction levels included no additional compaction above 

normal levels associated with conventional harvesting (C0), moderate compaction (C1), 

and heavy compaction (C2). Moderate and heavy compaction were intended to increase 

soil bulk density by 15% and 30%, respectively, over C0 (Stone 2001), but results varied 

by soil texture and depth (Voldseth et al. 2011). Stands regenerated naturally and mostly 

vegetatively through root suckers or stump sprouts. Harvest operations occurred in winter 

and are described in detail by Stone (2001). 

Treatments were applied to 40 m x 40 m (0.16 ha) plots as well as to 5 m buffers 

surrounding these plots (0.25 ha total area) and generally replicated three times at each 

location. Due to operational difficulties, treatment implementation at Ottawa differed 

with five replicates of the WTH/C0 treatment, two replicates of SOH/C1, and only one 

replicate with SOH/C2.  

Field Sampling 

Prior to harvest, all trees > 10 cm diameter at breast height (DBH, 1.4 m) in each 

0.16 ha plot were identified and measured. Additionally, woody species < 10 cm DBH 
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and at least 15 cm tall were measured in four 1.13 m radius (4 m
2
) subplots per plot. 

Biomass was estimated per unit area for both trees and the woody understory using 

allometric equations (Jenkins et al. 2003) and summed on each plot.  

During the first post-harvest sampling period (5 years), tree and shrub 

regeneration was measured in four systematically located 1.26 m radius (5 m
2
) circular 

subplots per plot at Chippewa and Ottawa. For the first post-harvest sampling period at 

Huron and in all remaining periods at all sites, nine systematically located 1.78 m radius 

(10 m
2
) subplots were sampled. Diameter at 15 cm and species were recorded for each 

woody stem at least 15 cm tall. Species abundance is quantified with above-ground 

biomass estimated using allometric equations for each post-harvest sampling year (Perala 

and Alban 1994). These equations were developed using material from several locations 

across the Lake States, including the Chippewa and Ottawa National Forests where two 

of our sites occur (Perala and Alban 1994).  

Data Summary and Analysis 

This experiment is based on an ANOVA design with two three-leveled factors 

fully crossed and replicated (in most cases); however, we also used empirical data from 

these treatments that quantified disturbance severity to examine responses over a 

continuum of management disturbance. Specifically, for assessment using fourth corner 

analysis (described in detail below), compaction was quantified continuously as the 

difference between pre- and immediately post-treatment bulk density. For this same 

analysis, we used estimates of the amount of live biomass in the form of merchantable 

stems or whole trees removed from each plot based on the harvest factor (SOH or WTH). 

We assumed that all material was effectively removed from the site and that no additional 
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material (from breakage or poorly formed stems) was left behind on those plots treated 

with SOH. 

Community composition 

 Patterns in the composition of the tree and shrub community 15 years post-harvest 

were examined using non-metric multidimensional scaling (NMS; Kruskal 1964, Mather 

1976, McCune and Grace 2002). Species abundance, based on above-ground biomass 

estimates, was relativized across plots such that analysis revealed which conditions most 

affected individual species (McCune and Grace 2002). Species occurring in fewer than 

three of the plots at each site were removed to reduce noise (McCune and Grace 2002). 

However, these species were not excluded from analyses described below that focused on 

diversity rather than community structure. Dissimilarity matrices were calculated using 

Sorensen distances.  

Differences in community composition between treatment factors and their 

interactions were also assessed using perMANOVA (Anderson 2001). Where 

perMANOVA indicated significant differences between factors (p < 0.05), Indicator 

Species Analysis was used to identify species strongly associated with individual 

treatments based on the frequency of their occurrence, abundance, and exclusiveness to 

each treatment (Dufendre and Legendre 1997). Designation as an indicator species 

required an indicator value > 25 (p < 0.05). NMS and indicator species analysis were all 

conducted using PC-Ord 6.0 (McCune and Mefford 2011).  Analyses of treatment effects 

on community composition were conducted using the vegan package (Oksanen et al. 

2013) in R (R Core Team 2013, v 3.0.2). 

Species traits 
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We focused on continuously measured (rather than qualitative) plant traits relating 

most closely to function in terms of response to disturbance and effects on ecosystem 

processes (Cornelisson et al. 2003, Lavorel. et al. 2007, Suding et al. 2008). Values for 

these traits were collected from the literature with preference given to studies in the Lake 

States region with replication to better capture the range of potential values for each trait 

(Appendix A). Prior to analysis, values for each trait were standardized to the standard 

deviate (z-score) across all species observed within the study (Villeger et al. 2008, Dray 

and Legendre 2008). This may prevent comparison of raw functional diversity indices 

reported here to other studies, but it does allow comparison among treatments and sites 

while equalizing the weight given to each trait and meeting statistical assumptions 

(Villeger et al. 2008). 

Functional diversity indices 

 To date, there is no single, all-encompassing index for effectively quantifying the 

complexity of functional diversity (Mason et al. 2005, Mouillot et al. 2013). Instead, 

similarly to species diversity, multiple indices that describe different aspects of function 

complement one another when analyzed and interpreted together (Mouillot et al. 2013). 

We selected functional evenness (FEve), functional richness (FRic), functional 

divergence (FDiv), and functional dispersion (FDis) to collectively assess the effect of 

biomass harvest disturbance on functional diversity. These indices are all fairly well 

established in the literature and, while not sufficient individually, offer insight into 

community change when interpreted in sum (Mouillot et al. 2013). Briefly, FEve 

parallels species evenness in that greater evenness corresponds to greater equity in the 

distribution and abundance of species in multi-dimensional functional trait space (Mason 
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et al. 2005, Villeger et al. 2008). Functional richness describes the relative volume of 

functional trait space that is occupied, given the species composition and abundance of a 

particular community (Mason et al. 2005, Villeger et al. 2008). Functional divergence 

quantifies the representation of extreme versus moderate trait values in a community 

(Mason et al. 2005, Villeger et al. 2009). Higher functional divergence indicates that a 

greater abundance of species express extreme (high or low) rather than moderate values 

for traits. Lastly, functional dispersion (FDis) describes both the volume of trait space 

occupied by a community and the spread of species within that space (Laliberte and 

Legendre 2010, Mouillot et al. 2013). Unlike the other indices, FDis is independent of 

species richness. It is comparable to Rao’s Q (Botta-Dukat 2005), and the two are often 

strongly correlated (Laliberte and Legendre 2010). Each functional diversity index was 

calculated for the tree and shrub component of forest communities in each plot prior to 

treatment as well as 5, 10, and 15 years post-harvest. The change that occurred in each 

index value between pre-treatment sampling and each post-harvest sampling year was 

calculated and used as our unit for analysis. Indices were estimated with the FD package 

(Laliberte and Shipley 2011) in R (R Core Team 2013, v 3.0.2). 

Statistical analysis 

 The response to treatments of species richness (change since pre-treatment in the 

number of tree and shrub species present, ΔSR), species evenness (change in the relative 

abundance of those species), diversity (change in the Shannon Diversity Index, H’), 

community composition (NMS axis scores), ΔFEve, ΔFRic, ΔFDiv, and ΔFDis was 

assessed with mixed-model repeated measures ANOVA using the SAS MIXED 

procedure (SAS Institute, Inc. 2012). The statistical model was as follows: 
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Yijkl = OMR + CPT + TIME + (OMR X CPT) + (OMR X TIME) + (CPT X 

TIME) + (OMR X CPT X TIME) + eijkl 

where OMR is organic matter removal, CPT is compaction, TIME is the number of years 

since harvest, and Yijkl is one of the response variables listed above at the ith level of 

OMR, the jth level of CPT, the kth level of time, and the lth level of plot. Plots were 

included as random effects while OMR, CPT, and TIME were treated as fixed effects. 

Type III sums of squares were used for all analyses to account for the unbalanced design 

at Ottawa. Tukey-adjusted post-hoc pairwise comparisons were used to distinguish factor 

levels where warranted. 

Fourth corner analysis 

 A direct relationship between disturbance severity and the expression of 

functional traits across each site was established using the fourth corner method 

(Legendre et al. 1997, Dray et al. 2014). This analysis relates a matrix of environmental 

variables to a matrix of species traits via a matrix of species abundance in sampled, 

treated plots (Legendre and Legendre 2012). In this study, the environmental variables 

consisted of three measures for disturbance severity associated with the removal of 

harvest residues: bulk density increase, pre-treatment coarse woody debris retention, and 

live biomass removed at harvest. Because data were not available for estimating the 

amount of biomass removed with FFR, we excluded plots receiving this treatment from 

this portion of the analysis. Species abundance was quantified in terms of above-ground 

biomass, relativized by plot. We examined only continuously measured variables, so a 

Pearson’s correlation coefficient (r) was calculated for each pair of environmental 

(disturbance severity) variables and traits. The significance of those relationships was 
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then determined by comparing the statistics to those generated using 49000 random 

permutations (Dray et al. 2014). Additionally, the False Discovery Rate (FDR)-

adjustment was used to protect against potential inflation of Type I error with multiple 

tests (Benjamini and Hochberg 1995, Dray et al. 2014). 

 The methods by which rows and columns are randomized for permutations 

determine exactly which hypotheses are being tested (Dray and Legendre 2008). For this 

study, we used a simultaneous combination of models 2 and 4 such that both entire rows 

(plots) and entire columns (species) were permuted (Legendre and Legendre 2012, ter 

Braak et al. 2012, Dray et al. 2014). Fourth corner analysis was conducted using the ade4 

package (Dray and Dufour 2007, v. 1.6-2) in R (R Core Team 2013, v 3.0.2). 

Results 

Community composition  

 Harvest impacts significantly affected community composition at two (CH, OT) 

of the three sites. In both cases, soil compaction appears to have had a stronger influence 

than the level of organic matter removal (Table 2.2). On sandy soils (HM), perMANOVA 

did not indicate a significant response of community composition to either disturbance 

factor (Table 2.2).  

On silty loam soils (Chippewa), compaction significantly affected community 

composition as represented by NMS axes 1 and 2, but not axis 3 (Table 2.2). Based on 

species correlations with these axes (Table 2.3) Betula papyrifera Marsh., Salix sp., 

Quercus macrocarpa, Michx., Amelanchier sp., and Corylus sp. were associated with 

more heavily compacted soils while Populus tremuloides Michx. was associated with less 

compaction (Fig. 2.1). Analysis with perMANOVA confirmed the compositional 
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differences among communities treated with different levels of compaction (p <0.05). 

Indicator species analysis identified Acer spicatum Lam., Cornus sericea L., Dirca 

palustris L, Ostrya virginiana Mill., and P. tremuloides as indicative of the least severe 

compaction treatment (C0). Salix sp. and Rosa sp. both indicated severe compaction (C2). 

On clayey soils (Ottawa), compaction significantly affected patterns in 

community composition, particularly along NMS Axis 1, where Prunus serotina Ehrh. 

and Amelanchier spp. were associated with plots receiving less compaction (Fig. 2.1, 

Table 3). Although OMR*CPT was a significant effect for Axis 2, neither main factor 

was significant (Table 2.2). Again, perMANOVA confirmed the influence of compaction 

indicated by the response of Axis 1 to treatments (p<0.05). Only two species emerged as 

significant indicators, Abies balsamea and Prunus serotina, both associated with the least 

severe compaction treatment (C0).  

Tree and shrub species diversity 

Species richness and composition varied across the study with only 23.5% of all 

34 tree and shrub species observed occurring at all sites. Both soil compaction and 

organic matter removal had significant effects on species richness, species evenness, and 

diversity (H’), but those effects were often complicated by interactions, and few 

consistent trends emerged across sites (Table 2.4).  

On silty loam soils FFR resulted in greater species richness than WTH (Table 

2.4). On clayey soils the opposite trend emerged with SOH and WTH both resulting in 

greater species richness than FFR (Table 2.4). The severity of organic matter removal did 

not significantly influence change in species richness on sandy soils. On the finer-

textured, silty loam and clayey soils severe compaction increased species richness over 
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C0. CPT*TIME was not significant (p=0.0604), but closer examination of means 

suggests that the relationship between CPT and species richness may diminish over time 

(Table 2.4). Species richness also varied with time on both clayey and silty loam soils 

with means greater 10 and 15 years post-harvest when compared to the 5-year sampling 

period. Mean richness at both sites was greater in year 15 than in year 10, but not 

significantly, potentially suggesting an asymptote in this response. Species evenness 

consistently increased over time at all three sites although responses to disturbance 

severity varied (Table 2.4). SOH resulted in greater species evenness on both sandy and 

clayey soils, but only in combination with intermediate compaction (C1) at the latter site.  

Organic matter removal did not directly influence species evenness on silty loam soils, 

but increased compaction (C1 and C2) did result in greater species evenness than C0, 

depending on the organic matter removal treatment (Table 4). 

Species diversity (H’) only responded to disturbance severity on silty loam and 

clayey soils. On silty loam, greater H’ occurred following C1 compared with C0, but only 

in combination with SOH. On clayey soils, the opposite response to compaction 

occurred. When combined with WTH, C0 increased H’ compared to C1. Also on clayey 

soils, both SOH and WTH resulted in greater diversity than FFR in the absence of 

compaction (Table 2.4). 

Functional diversity measures 

 Change in functional dispersion (ΔFDis) following disturbance varied widely 

among sites. On silty loam soils, ΔFDis positively increased with C1 when in 

combination with SOH and FFR. When combined with WTH, however, C1 decreased 

ΔFDis and resulted in lower FDis than occurred pre-treatment (Fig. 2.2). On sandy soils, 
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there was no effect of disturbance severity on ΔFDis . On clayey soils, ΔFDis was 

negative across all treatments. Increased compaction (C1 and C2) on clayey soils resulted 

in a greater reduction in FDis than C0 when combined with SOH or WTH but no effect 

when applied in combination with FFR.  

 Change in functional evenness (ΔFEve) from pre-harvest values was positive 

across all sites. Additionally, ΔFEve showed no response to compaction at any site. On 

sandy soils WTH resulted in greater positive ΔFEve than FFR. On clayey soils, SOH led 

to a greater increase in ΔFEve than either WTH or FFR (Fig. 2.2). 

 The change in functional richness from pre-harvest conditions (ΔFRic) was 

significantly affected by the organic matter removal treatment on both silty loam and 

sandy soils. On silty loam, both SOH and FFR resulted in a greater increase in FRic than 

WTH (Fig. 2.2). On sandy soils, ΔFRic was greater following FFR than WTH. Also on 

these soils, any additional compaction (C1 or C2) diminished the increase in FRic 

compared to C0 (Fig. 2.2). While there was a significant OMR*CPT on ΔFRic on clayey 

soils, neither main factor was significant by itself (Table 5). 

 Mean functional divergence (FDiv) declined following harvest at all three sites; 

however it showed little sensitivity to disturbance severity. On silty loam soils, the 

removal of harvest residues lessened the reduction in FDiv compared with SOH (Fig. 2.2. 

2). No other significant effects were observed for this response. 

Direct effect of harvest impacts on functional traits 

 Fourth corner analysis yielded weak associations between harvest impacts and 

functional traits. Following an adjustment for multiple testing, only one relationship 

remained significant at p < 0.1; at Huron there was a positive correlation (r=0.24, p=0.08) 



53 
 

between the amount of biomass removed at harvest and the specific gravity of woody 

species that were present 15 years following harvest (Fig. 2.2).  

 Without correcting for multiple testing, a few additional relationships emerge 

(Fig. 2.3). Coincident with specific gravity, shade tolerance was positively correlated 

with the amount of biomass removed at Huron. At Ottawa, a negative correlation existed 

between leaf P concentration (P mass) and the amount of pre-harvest coarse woody 

debris retained. There was also a negative correlation between compaction in the upper 

10 cm of mineral soil and drought tolerance at this site. At Chippewa no significant 

associations between harvest disturbance and plant traits were observed. 

Discussion 

Multiple studies examining functional diversity and species diversity relationships 

have concluded that land-use change may have greater impacts on function (as quantified 

through changes in functional traits) than might be inferred from species richness alone 

(Flynn et al. 2009, Chillo et al. 2011,  Ziter et al. 2013). However, in other cases species 

richness has better predicted productivity than measures of functional richness (Vila et al. 

2007). Our study demonstrates variable diversity responses to disturbance severity across 

a range of soil textures that cannot be adequately described or quantified with any single 

index or metric. Rather, each measure of functional diversity, species diversity, and 

community composition offers complementary information about ecosystem response, 

and might best be interpreted in combination to more fully understand forest response to 

disturbance.  

According to the intermediate disturbance hypothesis (IDH), species richness 

should assume a unimodal distribution along disturbance frequency and severity 
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gradients (Connel 1978), although empirical studies have produced mixed results relative 

to this prediction (Floder and Sommer 1999, Mackey and Currie 2001, Shea et al. 2004). 

Patterns in species richness response to disturbance severity varied among our sites as 

well. No interactions between organic matter removal and soil compaction occurred, so 

species richness was essentially evaluated along two gradients of disturbance severity 

relating to organic matter removal and compaction. On silty loam soils the two extreme 

harvest treatments, SOH (ΔSR =0.703) and FFR (ΔSR =1.07), increased mean species 

richness over pretreatment means whereas WTH reduced species richness (ΔSR=-0.85), a 

completely opposite trend from what might be expected based on the IDH. Means for 

ΔSR increased (but not significantly) with disturbance severity on sandy soils and 

decreased with increasing severity on clayey soils (SOH (ΔSR = 0.61), WTH (ΔSR = 

0.24) > FFR (ΔSR=-1.37; Table 2.4). Overall, species richness response differed greatly 

among sites and did not peak at intermediate levels of the disturbance effects tested in 

this study.  

In contrast with predictions for species richness, FRic is expected to 

monotonically decrease as disturbance severity increases and resulting conditions filter 

species by their traits (Cornwell et al. 2006, Flynn et al. 2009, Mouillot et al. 2013). With 

respect to compaction, we did see a decrease in FRic with increasing disturbance severity 

on sandy soils. Otherwise, our results do not support this expectation. Instead, FRic 

showed no response to compaction on silty loam soils or to any level of disturbance 

severity on clayey soils. On sandy soils, the additional removal of the forest floor actually 

resulted in an increase in FRic over WTH. On silty loam soils, FFR also led to higher 

FRic than WTH, as did SOH.  These patterns are all directly opposite of that observed for 
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above-ground standing tree biomass (Curzon et al. 2014). We suspect that FRic 

responded to changes in competition from P. tremuloides, the dominant overstory tree 

species, rather than directly to the filtering effect of greater disturbance severity.  

Based on our results, the effect of removing harvest residues for bioenergy 

production on functional diversity likely varies depending on site conditions. In the case 

of FDiv, all harvest treatments appear to have a negative effect across sites. On silty loam 

soils, the retention of residues with SOH decreased FDiv the most, meaning that the mean 

representation of extreme trait values was less across those plots. Neither compaction nor 

the level of organic matter removal significantly affected FDiv at the other sites. FDis, 

the most holistic of the functional diversity measures we tested (Laliberte and Legendre 

2008), increased with the removal of harvest residues on silty loam soils but only in 

combination with compaction. As discussed above, this result may speak more to the 

response of P. tremuloides to treatments than to any direct response of FDis to harvest 

residue removal. This suggests that measures of functional diversity, even FDis which is 

independent of species richness, may also be regulated by productivity and its indirect 

effect on resource availability (Reich et al. 2012). 

Our results do not indicate a consistent response of functional diversity to harvest-

related disturbance severity, but, as mentioned above, we did observe what may be a 

trade-off between maximizing above-ground productivity and maintaining species and 

functional diversity. Several measures of both species and functional diversity occur at 

their lowest mean value where standing tree biomass was observed at its maximum 

(Curzon et al. 2014). Examples for organic matter removal include species richness, 

species evenness, H’, FRic, and FDs on silty loam soils and species richness and H’ on 
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sandy soils. With respect to compaction, FRic, FEve, FDis, species evenness, and H’ on 

silty loam, and FDis, species richness, species evennness, and H’ on sandy soils were at 

their minimum where tree biomass was maximized. (On clayey soils most measures of 

both functional and species diversity paralleled those observed for tree biomass.) The 

ability of P. tremuloides to reproduce vigorously from root suckers makes it highly 

competitive following disturbance (Frey et al. 2003), and the increase in a dominant 

species is known to potentially decrease species diversity through competitive exclusion 

(Grime 1973, Reich et al. 2012). So, those conditions (i.e. severe compaction on silty 

loam or clayey soils) that impair or slow the regeneration of P. tremuloides (i.e. Bates et 

al. 1993) may indirectly increase different aspects of diversity by reducing competition 

and site occupancy by this species. Our results support those reported by other studies 

that show negative relationships between biomass production or C storage and species 

richness in boreal forest (Reich et al. 2012), FDis in boreal forest (Ziter et al. 2013), FDiv 

in grasslands (Grigulis et al. 2013) and FDiv in semi-arid forest (Conti and Diaz 2013).  

The distribution of response traits in a community prior to disturbance, 

particularly those related to regeneration strategies and dispersal, will influence 

ecosystem processes after disturbance due to their influence on expression of effect traits 

(e.g., characteristics relating to nutrient cycling and storage) through post-disturbance 

filtering (Diaz and Cabido 2001, Suding et al. 2008). Of the 11 traits evaluated in our 

study, only 4 responded directly to the continuously measured proxies for our disturbance 

severity treatments. Shade tolerance and specific gravity (wood density) both correlated 

positively with the amount of biomass removed during harvest at our poorest site, on 

sandy soils. It is intuitive that these two traits exhibited the same response as they tend to 
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correlate positively to one another, but whereas shade tolerance might be considered a 

response trait, specific gravity has more direct implications for nutrient and carbon 

cycling as it influences decay rates and above-ground carbon storage (Cornelissen et al. 

2003). The negative association between the amount of pre-treatment coarse woody 

debris retained and leaf P concentration observed on clayey soils may also have 

implications for nutrient cycling, although P does not tend to be a limiting nutrient in the 

forests we examined (but see Naples and Fisk 2010). Perhaps most interesting, results 

from the clayey site indicated that increasing mineral soil bulk density may decrease 

mean drought tolerance at the plot scale (0.16 ha). This is a rough measure of stress 

response, and the statistical significance of the test was weak, but this association may 

merit further investigation. The resilience of forest ecosystems to drought is of particular 

concern given projections for potential increases in future drought frequency and severity 

in this region (Bachelet et al. 2001). 

Of the two disturbance factors examined, only compaction had a significant effect 

on community composition. This result is important to highlight because it indicates a 

shift in community structure that was not captured by any of the other response variables 

quantifying diversity or function reported here. On silty loam soils (CH) two shrubs, 

Salix sp. and Rosa sp., were identified as indicator species for the most severe 

compaction treatment. This is in contrast to P. tremuloides, the dominant overstory tree, 

which was indicative of minimal compaction (C0). At this site, increased compaction had 

a significant negative effect on total above-ground biomass, specifically on tree biomass, 

especially when combined with FFR (Curzon et al. 2014). In fact, over the course of 15 

years after harvest those plots receiving the most severe disturbance treatment (FFR/C2) 
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were increasingly dominated by shrub species (Curzon et al. 2014). While not captured 

by any of the functional diversity indices or the trait analysis, this change in community 

composition and structure will undoubtedly affect the provision of ecosystem services, 

particularly if current conditions persist. This suggests that in some cases even a 

combination of functional and species diversity measures may fail to detect changes in 

important ecosystem processes such as above-ground biomass production. Thus, we 

argue for the use of a suite of indicators to assess the impacts of a given management 

practice on ecosystem structure and function versus focusing on single metrics that, 

although designed to describe common relationships, may not fully capture potential 

impacts. 

Conclusions 

Rather than following predictions based on the IDH, the response of species and 

functional diversity along the disturbance severity gradient tested in this study appears to 

be more consistently influenced by the abundance of (and competition from) P. 

tremuloides, the dominant species in these ecosystems, as it is affected by disturbance. 

Conditions that favored P. tremuloides regeneration and growth led to greater mean 

standing biomass, at least up to 15 years following harvest, but this maximization of 

biomass coincided in most cases with a reduction in species richness, FDis, and FRic 

except where disturbance severity was greatest (as with FFR) in which case both 

productivity and diversity tended to decline. Thus, short-term maximization of standing 

biomass may mean a sacrifice in species and functional diversity in a system dominated 

by species regenerating vegetatively (i.e., coppice systems). 
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Despite exhibiting sensitivity to disturbance severity across sites, measures of 

species and functional diversity did not capture the shift in dominance from tree to shrub 

species that occurred following the most severe disturbance treatment on silty loam soils. 

This finding highlights the need for further work in refining methods for quantifying 

function. It also reinforces previous suggestions that no single index or measure fully 

captures the complexity of ecosystem functional change, but that multiple approaches 

used in combination may be worthwhile and most effective. 

While consistent trends did not emerge among the three sites in this study, our 

results do show that the removal of harvest residues for use as bioenergy feedstocks and 

the potential for associated soil disturbance may affect functional diversity, species 

diversity, community composition, and specific plant traits. Thus, guidelines aimed at 

mitigating impacts from management related to the procurement of bioenergy feedstocks 

from forests should take site differences into account and strive to minimize soil 

disturbance during harvest entries. 
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Table 2.1 Site locations and descriptions. 

Study Site Harvest Year Location 
Aspen  (% pre-

harvest biomass) 

Site index
a 

(m) 

Precipitation 

(cm/year) 
Soils Soil texture 

Chippewa (CH) 1991 
47° 18’ N, 

94° 31’ W 
58 23 64 Frigid Haplic Glossudalfs silty loam 

Huron (HM) 1992 
44° 38’ N, 

83° 31’ W 
57 19 75 

Frigid Entic Haplorthods, 

Frigid Typic Udipsammentss 
sandy 

Ottawa (OT) 1993 
46° 37’ N, 

89° 12’ W 
50 17-28 77 Frigid Vertic Glossudalfs clayey 

 aAspen, age 50
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Table 2.2 Treatment effects on woody species composition 15 years after harvest based 

on analysis using perMANOVA. Abbreviations are as follows: CH, Chippewa; HM, 

Huron; OT, Ottawa; OMR, organic matter removal; CPT, compaction.  

 Site Source df F p-value 

CH (silty 

loam) 

OMR 2 1,36 0.0776 

CPT 2 2.26 0.0004 

OMR*CPT 4 0.85 0.7954 

          

HM 

(sandy) 

OMR 2 1.33 0.1292 

CPT 2 0.98 0.4834 

OMR*CPT 4 0.71 0.9404 

          

OT 

(clay) 

OMR 2 1.44 0.0686 

CPT 2 1.65 0.0196 

OMR*CPT 4 1.15 0.2170 
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Table 2.3 Kendall's τ correlations between the relative abundance (above-ground 

biomass) of shrub and tree species and NMS axes. Species in bold correlate with at least 

one NMS axis (p < 0.05). If a species was a significant indicator (indicator value > 25, p 

< 0.05), the max group (treatment) is listed in the Indicator Species Analysis (ISA) 

column. Treatment abbreviations are as follows: A1, NMS axis 1; A2, NMS Axis 2; C0, 

light compaction; C2, heavy compaction. 

    Chippewa NF     Huron-Manistee NF    Ottawa NF   

Species   
A1 A2 ISA   A1 A1 ISA   A1 A2 ISA  

Abies balsamea   n/a n/a     -0.15 -0.13     0.35 0.07 C0 

Acer rubrum   -0.13 0.28     -0.29 -0.49     0.02 0.50   

A. saccharum   0.16 -0.32     n/a n/a     n/a n/a   

A. spicatum   -0.35 -0.16 C0   n/a n/a     n/a n/a   

Alnus sp.   n/a n/a     n/a n/a     0.09 -0.41   

Amelanchier sp.   -0.11 0.55     -0.30 0.21     0.53 0.17 

 Betula papyrifera   0.55 -0.04     n/a n/a     n/a n/a   

Carpinus caroliniana   n/a n/a     0.15 -0.03     n/a n/a   

Corylus sp.   -0.37 0.44     -0.44 -0.12     0.18 0.37   

Cornus drummondii   -0.42 -0.02     n/a n/a     n/a n/a   

C. sericea   -0.24 0.04 C0   n/a n/a     0.17 -0.06   

Crataegus sp.   -0.22 0.25     n/a n/a     n/a n/a   

Diervilla lonicera   0.24 0.42     0.14 -0.19     0.15 0.32   

Dirca palustris   -0.11 -0.43 C0   n/a n/a     n/a n/a   

Fraxinus americana   n/a n/a     0.35 -0.23     n/a n/a   

F. nigra   -0.09 -0.24     n/a n/a     n/a n/a   

Lonicera canadensis   0.23 0.35     n/a n/a     0.12 -0.39   

Ostrya virginiana   -0.28 -0.21 C0   n/a n/a     n/a n/a   

Picea glauca   n/a n/a     n/a n/a     -0.08 -0.06   

Pinus strobus   n/a n/a     0.55 -0.03     n/a n/a   

Populus balsmifera   0.48 -0.05     n/a n/a     n/a n/a   

P. grandidentata   -0.35 -0.23     0.23 -0.30     n/a n/a   

P. tremuloides   -0.46 -0.24 C0   -0.37 0.16     0.16 -0.41   

Prunus serotina   -0.20 0.26     -0.36 -0.34     0.47 0.37 C0 

P. virginiana   -0.33 -0.03     0.21 -0.28     0.26 0.35   

Quercus alba   n/a n/a     -0.52 -0.08     n/a n/a   

Q. macrocarpa   -0.10 0.55     n/a n/a     n/a n/a   

Q. rubra   0.09 0.12     -0.30 -0.12     n/a n/a   

Ribes sp.   0.15 0.08     n/a n/a     0.40 0.15   

Rosa sp.   -0.08 0.42 C2   n/a n/a     -0.16 -0.08   

Salix sp.   0.71 0.07 C2   n/a n/a     -0.24 0.21   

Tilia americana   -0.07 -0.34     n/a n/a     n/a n/a   

Ulmus sp.   -0.29 -0.33     n/a n/a     n/a n/a   

Viburnum sp.   n/a n/a     0.29 -0.44     -0.36 0.10   
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Table 2.4 Repeated measures results for measures of species diversity. Abbreviated as follows: OMR, organic matter removal; CPT, 

compaction; C0, no compaction; C1, minimal compaction; C2, moderate compaction; SOH, stem-only harvest; WTH, whole-tree 

harvest; FFR, forest floor removal; CH, Chippewa; HM, Huron; OT, Ottawa. 

Site Source   Δ Species richness 
  

Δ Species evenness 
  

    df F p-value pairwise comparisons 

p-value 

(adjusted)   F p-value 

pairwise 

comparisons 

p-value 

(adjusted) 

CH (silty 

loam) 

OMR 2 3.78 0.0293 FFR > WTH 0.0323   1.32 0.2752     

CPT 2 11.7 <0.0001 C0 > C1,C2 0.0101, 0.0001   13.12 <0.0001 SOH: C1 > C0 0.0026 

TIME 2 13.6 <0.0001 Y10, Y15 > Y5 

0.0010, < 

0.0001   0.43 0.6506     

OMR*CPT 4 2.41 0.0604       2.96 0.028     

OMR*TIME 4 2 0.0604       0.37 0.8259     

CPT*TIME 4 2.33 0.0674       0.82 0.5174     

OMR*CPT*TIME 8 0.49 0.8584       0.32 0.9552     

                       

HM 

(sandy) 

OMR 2 0.28 0.7542       4.5 0.0157 CO: WTH > FFR 0.0194 

CPT 2 0.76 0.4739       6.44 0.0031 WTH: C0 > C2 0.0204 

TIME 2 1.6 0.2116       0.43 0.6512     

OMR*CPT 4 2.49 0.0545       3.28 0.0177     

OMR*TIME 4 0.26 0.9012       0.14 0.9645     

CPT*TIME 4 0.37 0.8311       0.31 0.8702     

OMR*CPT*TIME 8 0.33 0.9527       0.17 0.9939     

 
                      

OT (clay) 

OMR 2 6.39 0.0034 SOH, WTH > FFR 0.0121, 0.0096   4.51 0.0159 SOH > FFR 0.0118 

CPT 2 0.86 0.4278       6.97 0.0021 C0 > C1,C2 0.0009, 0.0009 

TIME 2 28 <0.0001 Y10, Y15 > Y5 <0.0001   0.79 0.4573     

OMR*CPT 4 2.03 0.1045       2.01 0.1073     

OMR*TIME 4 0.76 0.5595       0.46 0.7646     

CPT*TIME 4 0.29 0.883       0.21 0.9316     

OMR*CPT*TIME 8 1.22 0.3063       0.54 0.8207     
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Table 2.4, continued 

 

Site Source   Species diversity (H')   

  
  df F p-value pairwise comparisons 

p-value 

(adjusted) 

CH (silty 

loam) 

OMR 2 2.2 0.1204     

CPT 2 10.05 0.0002 SOH: C1 > C0 0.0041 

TIME 2 0.04 0.9654     

OMR*CPT 4 3 0.0263     

OMR*TIME 4 0.41 0.801     

CPT*TIME 4 0.29 0.8852     

OMR*CPT*TIME 8 0.36 0.9349     

              

HM 

(sandy) 

OMR 2 3.52 0.0367     

CPT 2 6.47 0.0031     

TIME 2 0.13 0.8814     

OMR*CPT 4 2.96 0.0281     

OMR*TIME 4 0.09 0.986     

CPT*TIME 4 0.16 0.9577     

OMR*CPT*TIME 8 0.16 0.9954     

              

OT (clay) 

OMR 2 7.07 0.002 WTH: C0 > C1 0.0057 

CPT 2 5.07 0.0099 C0: SOH, WTH > FFR 
0.0027, 

0.0009 

TIME 2 0.18 0.8354     

OMR*CPT 4 2.37 0.0653     

OMR*TIME 4 0.76 0.5562     

CPT*TIME 4 0.25 0.9109     

OMR*CPT*TIME 8 0.53 0.8283     
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Table 2.5 Repeated Measures ANOVA results showing how different functional diversity indices responded to treatment. 

Abbreviations are as follows: FEve, functional evenness; FDiv, functional divergence; FDis, functional dispersion; Rao’s Q, 

functional entropy. 

 

Site Source   ΔFEve    ΔFDiv   ΔFDis   ΔFRic 

  
  df F 

p-

value 
  F p-value   F p-value   F p-value 

CH (silty 

loam) 

OMR 2 0.25 0.7811   9.38 0.0003   2.16 0.1249   8.3 0.0007 

CPT 2 1.2 0.3094   2.27 0.1133   12.25 <0.0001   0.05 0.9541 

TIME 2 3.92 0.0259   32.53 <0.0001   0.07 0.9347   11.12 <0.0001 

OMR*CPT 4 1.44 0.2334   0.52 0.7204   3.33 0.0165   0.97 0.4335 

OMR*TIME 4 0.44 0.7774   0.24 0.9169   1.07 0.3829   2.38 0.0629 

CPT*TIME 4 0.61 0.6553   5.55 0.0008   0.75 0.5655   1.21 0.3177 

OMR*CPT*TIME 8 0.42 0.9011   0.33 0.8255   0.22 0.9862   0.33 0.9501 

                            

HM 

(sandy) 

OMR 2 3.3 0.0446   0.08 0.9199   2.23 0.1175   3.66 0.0323 

CPT 2 0.11 0.8965   0.76 0.4729   0.79 0.4579   8.01 0.0009 

TIME 2 0.23 0.7938   10.19 0.0002   0.07 0.93   6.82 0.0023 

OMR*CPT 4 1.99 0.1094   1.6 0.1885   1.07 0.382   0.91 0.4674 

OMR*TIME 4 0.45 0.7688   0.55 0.7016   0.03 0.9985   0.14 0.9682 

CPT*TIME 4 0.38 0.8241   0.68 0.6084   0.38 0.8215   0.51 0.7251 

OMR*CPT*TIME 8 0.52 0.8347   0.27 0.972   0.13 0.9979   0.16 0.9955 

                            

OT (clay) 

OMR 2 10.3 0.0002   3.78 0.0295   3.29 0.0454   1.69 0.1944 

CPT 2 0.76 0.4738   1.62 0.209   6.43 0.0033   0.96 0.3887 

TIME 2 0.09 0.9109   4.8 0.0124   0.09 0.9171   2.35 0.1054 

OMR*CPT 4 0.99 0.4226   2.24 0.0775   2.58 0.0488   2.62 0.0461 

OMR*TIME 4 1.38 0.2535   0.47 0.7567   0.49 0.7394   0.51 0.7264 

CPT*TIME 4 0.12 0.9766   1.83 0.1384   0.23 0.922   0.19 0.9413 

OMR*CPT*TIME 8 0.86 0.5547   2.36 0.0307   0.4 0.9179   0.69 0.6976 
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Figure 2.1 Non-metric multidimensional scaling (NMS) ordination of treated plots in 

woody species space. Each site is presented separately with the Chippewa National 

Forest in panel (a), the Huron National Forest in panel (b), and the Ottawa National 

Forest in panel (c). The legend in panel (c) applies to all. Treatment abbreviations are as 

follows: SOH, stem only harvest; WTH, whole tree harvest; FFR, forest floor removal; 

C0, no additional compaction; C1, moderate compaction; C2, heavy compaction. Species 

pictured are significantly correlated (p<0.05) with one of the two axes shown. All species 

correlations are listed in Table 2.3. 
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Figure 2.2 Change in functional diversity from pre-harvest to 15 years post-harvest by treatment. Lower-case letters indicate 

significant differences (p<0.05) where they occur. Four panels show means for each of the nine factorial combinations because of a 

significant OMR*CPT interaction. Otherwise, mean change is presented by factor. Panels are organized by site (indicated across the 

top) and by functional diversity index (indicated along the left). Abbreviations for the indices are as follows: FDiv, functional 

divergence; FRic, functional richness; FEve, functional evenness; and FDis, functional dispersion.
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Figure 2.3 Results of the fourth-corner tests. Light grey cells indicate negative 

correlations and dark grey cells indicate positive correlations between functional traits 

and treatment conditions. White cells indicate an absence of significant association. Sites 

are abbreviated as follows: CH, Chippewa NF (silty loam soils); HM, Huron-Manistee 

NF (sandy soils); OT, Ottawa NF (clayey soils). Traits with significant relationships (p ≤ 

0.05, without adjustment for multiple testing) are shown. * indicates significance with p 

< 0.1 after adjustment for multiple testing with the Benjamini and Hochberg method 

(Benjamini and Hochberg 1995, Dray et al. 2014).  
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CHAPTER 3 

Early understory response to aggregated overstory retention and removal of harvest 

residues in aspen-dominated forests 
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Introduction 

In recent decades, a paradigm shift in forest management has led to greater 

emphasis on practices that increase structural and compositional complexity both to 

maintain ecosystem services under current conditions as well as to best ensure ecosystem 

resilience given uncertainty about future disturbance regimes and climate (Franklin et al. 

1997, Fischer et al. 2006, Lindenmayer et al. 2012).  Retention of reserve trees following 

harvest is one method for maintaining structural complexity in managed forests.  

Aggregated reserve trees, in particular, have been promoted because of value they 

provide in terms of ’lifeboating‘ interior forest species in areas being managed using 

clearcutting-based regeneration methods (Franklin et al. 1997).  As such, much research 

has focused on the effectiveness of aggregates on maintaining pre-harvest understory 

species richness and community composition with particular focus on interior edge 

effects (e.g. Nelson and Halpern 2005, Aubrey et al. 2009).  Aggregated reserve trees 

have also been recognized for their influences on surrounding disturbed areas by altering 

the microclimate, providing habitat for both flora and fauna, supplying seed, and 

enriching fine and coarse woody debris pools, key components for maintaining forest 

structural complexity and species diversity (Bradshaw 1992, Franklin et al. 1997, Baker 

et al. 2013).   

  The retention of woody debris following harvests is also recognized as an 

important component of prescriptions aimed at achieving complexity-based objectives 

(Harmon 2001). Utilization of harvest residues as bioenergy feedstocks may reduce the 

levels of post-harvest woody debris on site creating a greater need to better understand 

the influence of these legacies on regeneration, biodiversity, and other forest ecosystem 
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processes.  Many regions of the globe are developing and implementing guidelines aimed 

specifically at ‘biomass harvests’ in response to higher demand for bioenergy feedstocks 

(Stupak et al. 2007, Evans et al. 2010).  These guidelines have in common 

recommendations for some overstory retention as well as some retention of harvest 

residues (e.g. MFRC 2007, Herrick et al. 2007, PA DCNR 2008, MI DNRE 2010), and 

they have been developed based on the best scientific data available, but in many cases 

those data have been limited (Janowiak et al. 2010, Berger et al. 2013). 

Concerns that removing harvest residues for use as bioenergy feedstocks may 

negatively impact future productivity and native biodiversity have prompted renewed 

interest in research examining whole-tree harvesting and residue removal impacts on 

forests. Studies in Europe (e.g., Helmisaari et al. 2011, Bouget et al. 2012, Mason et al. 

2012), Canada (Haeussler and Kabzems 2005, Morris et al. 2014) and across the United 

States (Riffel et al. 2011), including the Southeast (Huntington et al. 2000), the Northeast 

(Mika and Keeton 2012, Littlefield and Keeton 2012, Roxby and Howard 2013), the 

West (Page-Dumrose et al. 2010), and the Lake States (Peckham and Gower 2011, 

Klockow et al. 2012, Curzon et al. 2014) have reported varying results depending on 

harvest disturbance severity, forest type, and site quality.  Research exploring impacts of 

whole-tree harvesting on species diversity have demonstrated reductions in abundance 

and diversity of birds and invertebrates (Riffel et al. 2011) as well as saproxylic species 

(Bouget et al. 2012) and bryophytes (Dynesius et al. 2008), but surprisingly little is 

known about potential impacts to vascular plant species composition and diversity (but 

see Haeussler and Kabzems 2005).  
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In ecosystems dominated by trees relying primarily on vegetative reproduction 

where nutrients are not limiting, the removal of residues may provide at least initial 

benefit to tree regeneration by improving microsite conditions for root sucker growth 

(Bella 1986, Fraser et al. 2002, Curzon et al. 2014). On the other hand, many studies 

indicate negative effects on nutrient availability and tree growth (Walmsley et al. 2009, 

Helmisaari et al. 2011, Wall 2012), and any initial reductions in stocking or growth 

caused by post-harvest declines in nutrient availability may persist even if site 

productivity recovers over time (Egnell 2011).  

Similarly, if removal of residues causes short-term impacts on understory species 

composition, diversity, and abundance it may have long-term effects on function as this 

community can influence forest stand development and succession (Lorimer et al. 1994, 

Landhauser and Lieffers 1998, Royo and Carson 2006). Existing studies provide valuable 

information about responses to whole-tree harvesting, a practice closely related to 

procuring bioenergy feedstocks from forests, but they generally were not designed to 

examine the continuum along which residues are likely to influence ecosystem processes.  

Moreover, there has been little focus on the potential impacts of these practices on 

understory plant community structure and function (Lamers et al. 2013, Riffel et al. 

2011), despite the potential for alteration of this critical ecosystem component under 

increasing harvest severities 

While the ecological benefits of reserve trees have been demonstrated for multiple 

systems (Aubrey et al. 2009, Gustafson et al. 2012, Baker et al. 2013, Fedrowitz et al. 

2014, Palik et al. 2014), important tradeoffs may exist in the growth of developing 

regeneration due to the influence of retained trees on understory resource availability 
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(Bradshaw 1992, Mitchell et al. 2007, Urgenson et al. 2013, Bose et al. 2014).  This may 

be particularly important in in coppice-systems such as those dominated by aspen 

(Populus tremuloides Michx.; Brais et al. 2004, Gradowski et al. 2010) where auxin 

inhibition by reserved mature trees may limit regeneration density.  For example, 

dispersed retention of reserve trees has been shown to reduce aspen sucker densities, 

particularly when the retained overstory trees are themselves aspen, presumably because 

of hormone inhibition of sprouting (Frey et al. 2003, Gradowski et al. 2010).  

Additionally, many studies assessing the effectiveness of reserves at providing habitat 

and lifeboat services compare composition and diversity between those reserves and old-

growth forests, but there is value in learning more about how community composition, 

structure and diversity in reserves compare to managed, but intact and mature forest.  

We investigated whether aggregated overstory retention currently recommended 

for harvest in aspen-dominated forests effectively provides refugia for interior forest 

species. Additionally, we determined how those aggregates influenced species 

composition and abundance of regeneration in the surrounding harvested areas (c.f. 

Bradshaw 1992) in combination with different levels of harvest residue (slash) removal 

associated with the procurement of feedstocks for bioenergy production.  We 

hypothesized the understory community composition of aggregates would be 

intermediate between intact forest and clearcuts, and that those intermediate conditions 

would result in the highest species richness and diversity. We also expected greater 

graminoid cover in harvested areas relative to aggregates and controls, particularly where 

slash was removed and woody debris levels were lower.  In terms of seedling densities, 

we hypothesized that more shade-tolerant tree species would dominate regeneration in 
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the aggregate understory compared to dominance by shade-intolerant, early successional 

species outside of the aggregates.  Additionally, we expected the aggregates to exert an 

effect on regeneration at the edge of the harvested areas through shading, seed provision 

and, potentially, through regulation of auxin levels from retained aspen stems and 

suppression of suckering response (Frey et al. 2003). Lastly, based on other studies of 

aspen sucker response, we expected lower abundance of aspen regeneration in association 

with greater retention of woody debris (Bella 1986, Fraser et al. 2002, Curzon et al. 

2014). 

Methods 

 Study sites 

Sampling occurred at the following four sites in northern Minnesota, USA: 

Independence (IN; 47.01 N, 92.59 W), Melrude (MR; 47.25 N, 92.32 W), Pelican Lake 

(PL; 48.01 N, 92.98 W), and Lost River (LR; 48.14 N, 92.97 W).  Aspen dominated at all 

locations, having regenerated following clearcut harvests in the 1940s and 1950s.  Other 

important species prior to harvest included black ash (Fraxinus nigra Marshall), red 

maple (Acer rubrum L.), balsam fir (Abies balsamea L.) and paper birch (Betula 

papyrifera Marshall) with minor components of white pine (Pinus strobus L.), white 

spruce (Picea glauca Moench.), sugar maple (Acer saccharum Marshall), and American 

basswood (Tilia americana L.). Each site included over 40 ha such that treatments could 

be implemented at an operational scale on 10 stands, each 4 ha in size. The four sites 

ranged in elevation between 395 to 428 m asl with slopes less than 8%.  At IN soils were 

predominantly Inceptisols. Otherwise, soils belonged to the Alfisol order, all ranging in 
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texture from silty loam to stony loam.  Mean annual precipitation is approximately 66 

cm. Harvest occurred in winter, 2010 (Klockow et al. 2013). 

Experimental design 

This study is part of a larger experiment designed to assess the ecological impacts 

of removing harvest residues for use as bioenergy feedstocks and of retaining overstory 

reserve trees (see Klockow et al. 2013 for more detail on study design).  Within that 

larger experiment, we focused on the effects of aggregated overstory reserves and slash 

retention. In particular, the following subset of treatments was examined in the current 

study: 1) the interior of aggregated overstory reserves (“aggregates”), 2) stem only 

harvest (SOH), 3) whole tree harvest (WTH), and 4) intact forest (controls).  Treatments 

with aggregated overstory reserves followed recommendations made by the Minnesota 

Forest Resources Council with 5% of canopy trees retained in aggregates (determined by 

area).  This was accomplished by reserving overstory aggregates approximately 0.1 ha in 

size (18 m radius). Stem only harvests involved the removal of only the merchantable 

bole portion of harvested trees with all other materials retained on site, whereas whole 

tree harvests removed entire harvested trees from the stand. Given the operational nature 

of this study, actual woody debris levels varied following treatment due to breakage, so 

they were measured continuously across the SOH and WTH treatments. 

Field sampling 

 Transects, oriented north-south, were centered on one randomly selected 

overstory retention aggregate for each of the above-mentioned slash retention treatments 

at each site.  Identical transects were also placed in the center of intact forest control 

stands.  Each transect was 84 meters in length such that plots located at each transect end 
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were located approximately one tree height away from the aggregate edge.  Rectangular 

understory plots (1 x 3 m) were placed 2 m, 7 m, 22 m, and 42 m from each aggregate 

center along the north-south transect such that a range of conditions relative to the 

aggregate interior and edge were represented.  The distance from center of the 2 m plots 

was determined randomly and intended to capture interior aggregate conditions. 

Subsequent plots were placed to represent interior edge conditions (7 m from center), 

exterior edge conditions (22 m from center), and open conditions (42 m from center). 

Within each plot percent cover was estimated for all vascular species less than 1 m tall 

during June and July, 2012.  Additionally, all woody stems < 2.5 cm diameter at breast 

height (1.37 m) were counted so that regeneration densities could be estimated.  Each 

rectangular plot was bisected by a woody debris transect. Where coarse woody debris 

(CWD) intersected the transect, diameter at the point of intersection was recorded if ≥ 7.5 

cm.  CWD was also identified to species when possible, and decay was estimated using a 

five-class system (Sollins 1982).  In a similar fashion, fine woody debris (FWD, 7.5 cm > 

diameter > 0.5 cm) was tallied and measured in three randomly selected 0.4 m 

subsections of the woody debris transect. Each piece was classified as either decayed or 

not decayed. 

 Soil moisture was measured at the corner of each plot closest to aggregate center 

using a TDR probe (ML2x ThetaProbe Soil Moisture Sensor; Dynamax, Houston, TX) . 

Three moisture readings were collected and averaged for each point.  All soil moisture 

measurements were collected on one of two consecutive days in mid-August, 2012 so 

only late season moisture is represented. Leaf area index (LAI) was estimated with 

FV2200 (Li-COR Biosciences, Inc. 2010) using light readings collected with a Licor 
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LAI-2000 Plant Canopy Analyzer (LiCor, Inc., Lincoln Nebraska), also at the point 

where each plot intersected the transect.  If understory shrubs obscured readings taken at 

1.0 m above the ground, an additional reading was taken at a higher level to better 

capture overstory conditions and prevent overestimation of LAI.  The latter readings were 

used for analysis. In 2012, sampling occurred at dusk, at dawn, or under cloudy skies to 

ensure continuous, diffuse sky conditions. Because the canopy within and near 

aggregates is not continuous, no view restrictor was used. In 2013, additional readings 

were necessary for some plots due to technical issues the previous year.  These readings 

were either collected at dawn without a view restrictor as described above, or two 

readings were collected for each plot on a clear day in the morning and in the afternoon 

with the unit facing east or west, respectively, and using a 180° view restrictor to block 

the sun (Comeau et al. 2006).  Calculation of LAI required “above-canopy” readings of 

light interceptance sampled at the same time as understory readings. These were collected 

every 15 s using a second unit stationed in a nearby clearing. Sampling occurred in late 

July and early August when foliage was at its peak. 

Analysis 

 The structure of community composition among plots was determined using non-

metric multi-dimensional scaling (NMS; Kruskal 1964, Mather 1976, McCune and Grace 

2002). Abundance, based on percent cover estimates, was relativized across plots such 

that analysis revealed which conditions most affected individual species (McCune and 

Grace 2002). Species occurring in fewer than five plots (5%) across the study were 

removed to reduce noise (McCune and Grace 2002). These species were not excluded 
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from estimates of species evenness, richness, and diversity (H’).  Dissimilarity matrices 

used for NMS were calculated using Sørensen distances. 

 Differences in community composition among treatments were analyzed using 

multi-response permutation procedures (MRPP, McCune and Grace 2002). Where MRPP 

indicated significant differences among groups (p < 0.05), Indicator Species Analysis was 

used to identify species strongly associated with treatments based on the frequency of 

their occurrence, abundance, and exclusiveness to particular treatments (Dufendre and 

Legendre 1997).  Designation as an indicator species required an indicator value > 25 (p 

<0.05).  NMS, MRPP, and indicator species analysis were all conducted using PC-Ord 

6.0 (McCune and Mefford 2011). 

 Analysis of Variance (ANOVA) was used to determine the influence of 

treatments on understory species richness, species diversity, species evenness and 

seedling densities using the SAS MIXED procedure (SAS Institute, Inc. 2012).  Site and 

stand were included as random effects while treatment (control, aggregate, WTH, SOH) 

was a fixed effect.  Tukey-adjusted post-hoc pairwise comparisons were used to compare 

means between individual treatments. Some response variables required a log- or power-

transformation to meet ANOVA assumptions for homoscedasticity. Abundance of non-

native species was highly skewed, so a non-parametric rank-transformation was used 

prior to ANOVA for assessment of treatment effects on this species group (Sokal and 

Rohlf 1995, Fawcett and Salter 1984). Differences in abiotic and response variables were 

assessed between transects oriented north and south of the aggregates using t-tests or 

Wilcoxon rank-sum tests where normality assumptions could not be met.  Because no 

differences were observed, all transects were treated equally and grouped in analysis. 
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Environmental characteristics related to treatments varied continuously across this 

operational study (Klockow et al. 2013, Fig. 3.1), so we also assessed the relationship 

between response variables and a suite of treatment effects (soil moisture, LAI, CWD, 

and FWD) using Pearson’s R correlation coefficient.  

Results 

 As expected, aggregated reserves generally exhibited understory characteristics 

intermediate between those observed in intact forest controls and harvested areas. 

Seedling densities and plant cover responded most strongly to overstory treatment, 

species diversity measures generally indicated disturbed versus undisturbed (control) 

conditions, and community composition responded to both overstory treatment and 

harvest residue removal.   

Relationships between treatments and environmental variables 

The variables measured to quantify disturbance effects from treatments (soil 

moisture, LAI, CWD, and FWD) varied widely across the study (Fig. 3.1).  Soil moisture 

was greatest and LAI least in harvested areas, with aggregates containing conditions 

between those plots and controls. Neither CWD nor FWD volume differed between SOH 

and WTH (Fig. 3.1).  In fact, CWD levels were statistically indistinguishable among all 

four treatment conditions.  

Understory community composition 

Ordination of relative species abundance demonstrated that both overstory 

reserves and slash retention influenced the composition of the understory plant 

community. As expected, the composition of aggregated reserves was intermediate in 

ordination space between control and harvested plots (Fig. 3.2). The SOH treatment 
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showed the greatest compositional dissimilarity from intact forest controls (Fig. 3.2).  

Axis 1 (20.8% of variance explained) ranged from clearcut treatments in the negative 

portion to intact forest controls in the positive portion. Soil moisture, LAI, and FWD 

were significantly correlated with Axis 1 with LAI positively correlated (greater for 

control stands) and soil moisture and FWD negatively correlated (generally greater for 

harvested stands) with this axis. Species positively correlated with Axis 1 included 

interior species such as Clintonia borealis, Dryopteris carthusiana, Lycopodium 

clavatum, L. dendroideum, Maianthemum canadense and Streptopus roseus whereas 

aspen, Rubus pubescens, R. idaeaus., and many graminoids had significant negative 

correlations (Table 3.1). While Axis 2 and Axis 3 do not explain compositional 

differences attributable to harvest (Fig. 3.2), soil moisture had a significant, negative 

correlation with both suggesting that moisture gradients may contribute to the variability 

observed within treatments along these axes. 

MRPP significantly distinguished the four treatment groups (aggregate, SOH, 

WTH, and control; p < 0.05), but the test statistics provided only weak evidence of 

differences and suggested wide variability within each treatment group.  The comparison 

of communities within aggregates and control plots yielded an agreement statistic (A) of 

0.016, and the heterogeneity within the two slash retention treatments was only just less 

than expected by chance (A=0.007, p=0.0355).  The greatest distinction was between 

control plots and SOH (A=0.0297).  Differences among sites and the large number of 

plots (96) may have contributed to the relatively high stress in the NMS ordination 

(20.9%) and variability within groups (McCune and Grace 2002).  Given this relatively 
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high stress value, we treated this analysis as exploratory and used it primarily to inform 

interpretation of other results. 

Indicator species analysis identified three sedge species, Carex deweyanna, C. 

intumescens, and C. leptonerva, and one grass species (Poa pratensis) as well as 

Petasides frigidus and Rubus pubescens as indicative of WTH (Table 3.1).  In contrast, 

aspen, B. papyrifera, Asarum canadense, and a suite of other forbs showed preference for 

SOH (Table 3.1). The aggregates appeared to provide refugia habitat for balsam fir, the 

most shade-tolerant tree species forming a significant component of these communities.  

Additionally, Cornus cornuta and Aster cilolatus were indicative of the aggregates (Table 

3.1).  Trientalis borealis was not identified as a significant indicator species, but it did 

occur most prevalently in aggregates relative to other treatments.  Both Lycopodium 

dendroideum and L. clavatum occurred almost exclusively in control plots and were 

indicator species for this condition.  Clintonia borealis also strongly associated with 

intact forest in the controls (Table 3.1). 

As expected, graminoid cover was significantly greater in harvested plots than in 

either aggregates or controls (Table 3.2). Even though total graminoid cover did not 

differ between the two slash retention treatments (Table 3.2), indicator species analysis 

suggested preference of some graminoid species for WTH. Cover of nonnative species 

was also greater in harvested areas than in aggregates and controls.  Mean nonnative 

cover increased from control plots at the low extreme to WTH although only those two 

treatments differed significantly from one another due to high variability (Table 3.2).  

Poa pratensis, identified as an indicator for WTH, constituted a large portion of the 

nonnative cover for this condition. 
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Species diversity 

 A total of 118 species was identified across the study.  Of those species that 

occurred in at least two stands, 2 occurred exclusively in control plots (L. clavatum and L. 

uniflora), 1 with SOH (Geranium bicknellii), and 1 with WTH (Spirea alba). We 

assessed three standard metrics for estimating species diversity: richness, evenness, and 

the Shannon index (H’).  Species richness and H’ were both lowest in the control plots 

which differed significantly from the other three treatments.  No differences in richness 

or H’ were observed among aggregates, WTH, and SOH.  Species evenness followed a 

similar trend except that mean values for aggregates were intermediate between (and 

statistically indistinguishable from) controls and the two harvested treatments (Table 3.2). 

Species richness had significant positive correlations with FWD volume, soil moisture 

availability, and aspen density and a negative correlation with LAI (Fig. 3.3).    

Seedling densities 

As predicted, abundance of balsam fir (the most shade-tolerant tree common on 

these sites) was greatest in the aggregated reserves (Fig. 3.4).  Also as predicted, aspen 

density (the most shade-intolerant species in the study) was greater in harvested plots 

than either aggregates or controls (Table 3.2, Fig. 3.4) and negatively correlated with LAI 

(Fig. 3.3).  However, densities of aspen did not differ between harvested edge plots and 

those plots > 20 m from aggregate edges (Fig. 3.4).  Contrary to expectations, the density 

of Acer rubrum and Fraxinus nigra stems did not differ with respect to location within or 

outside of aggregates.  Instead, those densities remained relatively constant with distance 

from aggregate center (Fig. 3.4).  
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Although indicator species analysis indicated a preference of aspen for the SOH 

condition and aspen densities correlated positively with FWD volume, post-hoc 

comparisons did not distinguish means between the two slash treatments. Instead, 

differences were only detected between harvested (SOH and WTH) and unharvested 

(controls and aggregates) areas.  

Discussion 

 This study assessed the combined effects of aggregated overstory retention for 

achievement of ecological objectives and the removal of harvest residues to meet rising 

demand for bioenergy feedstocks at an operational scale. While larger reserves may be 

desirable, our results show that small aggregates (0.1 ha) maintain conditions 

intermediate between harvested areas and intact forest that allow provision of at least 

short-term refugia for a limited number of interior forest plant species. These aggregated 

reserves will likely enhance the structural and compositional complexity of the 

regenerating forest over time.  The effects of residue removal are less clear and reflect the 

wide variability of harvest effects that might be expected at this scale. 

Relationships between treatments and environmental variables 

 Canopy cover varied widely across the study and even within treatments as 

indicated by LAI, however the trends observed follow what would be expected given 

levels of overstory retention.  Some retained trees in many of the aggregates had already 

snapped or uprooted during severe storms occurring during the first and second growing 

season following harvest, contributing to lower LAI even in the interior of those reserves.  

Also, whereas other studies have reported comparable light environments between 

interior aggregates and intact forest, the radii of the aggregates studied here 
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(approximately 18 m) are well within the range of edge effects reported elsewhere 

(Fraver 1994, Heithecker and Halpern 2007).  Trends in our instantaneous measures of 

soil moisture are consistent with those collected continuously over the growing season in 

another study conducted in these areas with no differences observed in soil moisture 

between residue removal treatments (Kurth et al. 2014).  Our failure to detect any 

ameliorating effects from retained woody debris that might be expected with SOH 

(Zabowski et al. 2000, Heithecker and Halpern 2006) is likely due to the comparable 

levels of woody debris associated with WTH (Fig. 3.1).  As this was an operational study, 

significant breakage did occur during the winter harvest, and woody debris levels likely 

varied spatially across the stands, potentially leading to less distinction between residue 

removal treatments (Klockow et al. 2013).  Late summer soil moisture varied between 

harvested areas and controls with aggregates intermediate.  This is in contrast to soil 

moisture trends observed in other studies of aggregated retention where aggregates have 

not differed from harvested or control areas (Heithecker and Halpern 2007), but is 

consistent with other observations on these sites (Kurth et al. 2014).     

Understory community composition 

Our results support other findings that indicate a generally positive relationship 

between decreased overstory cover and an increase in both species richness and 

graminoid cover (Astrom et al. 2005, Craig and MacDonald 2009).  Graminoids, in 

general, indicated harvest treatments in this study versus the reserves or intact forest 

conditions. While total cover did not differ between slash treatments, Carex sp., P. 

pratensis, and other graminoid species were indicators for WTH, the most severe 

treatment.  Also, S. alba occurred exclusively in plots treated with WTH. While not a 
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competitive species, S. alba commonly occurs in grass- and sedge- dominated 

communities and is considered opportunistic when disturbance disrupting dominance by 

other woody species occurs (Smith 2008). These shifts in understory community structure 

in response to residue removals may have important consequences in relation to 

regeneration densities on these sites given the documented impacts of graminoid 

competition on regeneration and growth of tree species such as aspen in these systems 

(Lieffers and Statdt 1994, Landhausser and Lieffers 1998).  Similarly, Pteridium 

aquilinum, another species capable of inhibiting seedling growth both through direct 

competition for resources and allelopathy (Haeussler et al. 1990), also indicated WTH.  

The success of these and other competitive species in WTH sites may explain why aspen 

associated most strongly with SOH, contrary to expectations and observations in other 

studies (i.e. Bella 1986, Haeussler and Kabzems 2005, Curzon et al. 2014).  

Research on the ecological impacts of green tree retention in various levels and 

spatial configurations has concluded that retention levels should equal or exceed 15% in 

order to effectively lifeboat species and enable recolonization of surrounding disturbed 

areas (Aubrey et al. 2009).  Our study used Minnesota Forest Resources Council (MFRC 

2007) guidelines as a basis for retention levels in order to test their effectiveness at 

achieving biodiversity and structural complexity objectives.  While differences certainly 

exist between intact forest and aggregates in this study and the majority of habitat within 

the aggregates is likely edge (Fraver 1994, Heithecker and Halpern 2007), they did confer 

some benefit in terms of providing refugia for a limited number of understory species.  At 

least in the short-term (two growing seasons after harvest) 5% retention in the form of 

aggregates (0.1 ha) provided habitat for some species typically identified as interior forest 
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obligates (e.g. T. borealis, Lieffers 1995). Aggregates may have also contributed to 

greater A. balsamea regeneration near the edge compared to open conditions (42 m from 

aggregate center).  This is in contrast to findings related to much smaller aggregated 

reserves with an average radius of only 5 m (0.007 ha) which exhibited little difference in 

diversity or composition when compared to surrounding clearcuts (Lachance et al. 2013).  

Long-term monitoring of the aggregates examined in this study will be critical to 

determine if benefits to certain interior species are transient or if in fact smaller 

aggregates can sustain these populations over the long term. 

Species diversity 

 Aspen-dominated ecosystems are the most floristically rich upland forests in this 

region, with greater richness occurring in younger stands (Reich et al. 2001). As 

expected, disturbance related to harvest operations increased all measures of species 

diversity over that observed in the intact forest controls.  This is due in part to an increase 

in the number of graminoid and ruderal, nonnative species (Table 3.2). However, while 

community composition differed between aggregates and the two harvest treatments 

(WTH, SOH), species richness, H’, and species evenness did not.  Instead, the number 

and abundance of interior forest species that occurred in aggregates appears to have been 

balanced by the increase in graminoid and ruderal species associated with WTH and 

SOH.   

Regeneration 

Although other research in the region and elsewhere within the range of aspen has 

demonstrated potential for reduced sucker growth in association with more abundant 

woody debris (Bella 1986, Curzon et al. 2014), such a trend was not observed here.  This 



97 
 

may be in part due to the variability in woody debris levels across the study that did not 

correspond with slash retention treatment as closely as expected (Table 3.1, Klockow et 

al. 2013).  We also suspect that FWD levels may influence the presence and abundance 

of competitive species, including P. pratensis and P.aquilinum, and thus provide a 

potential release effect for aspen regeneration in SOH-treated stands. 

Concerns have been expressed about the potential for overstory retention to 

diminish productivity in surrounding regenerating stands (Gradowski et al. 2010, Bose et 

al. 2014, Palik et al. 2014), despite the other potential ecological benefits discussed here 

and elsewhere (Gustafson et al. 2012, Palik et al. 2014).  Our findings indicate that 

aggregated retention at least in the short-term does not appear to have reduced aspen 

sucker densities in the immediately adjacent harvested areas, contrary to expectations. 

Moreover, the combined density of seedlings and suckers did not differ significantly 

between aggregates and harvested areas although species composition and associated 

shade tolerances for plant cover varied as expected.  This supports the notion that, while 

providing some level of interior forest conditions for maintenance of understory forbs, 

the aggregates primarily provide edge habitat (Palik and Murphy 1990), but will likely 

enrich the diversity of the overstory over time by maintaining more shade-tolerant, less 

competitive species. 

Conclusions 

With this study, we examined the impacts of aggregated overstory retention, a 

method promoted to maintain diversity and structural complexity, combined with harvest 

residue removal, a practice expected to increase as demand for forest-derived bioenergy 

feedstocks rises.  Our results suggest that aggregated reserves benefit biodiversity 



98 
 

through provision of short-term habitat for a small number of interior forest species while 

also contributing greater compositional diversity at the stand scale.  These ecological 

objectives were achieved without any apparent trade-off in initial regeneration densities 

in adjacent harvested areas.  While the removal of harvest residues may result in highly 

variable levels of woody debris, operationally, this practice has potential to influence 

community composition. Whole tree harvest may indirectly decrease relative aspen cover 

and the regeneration of other tree species by creating favorable conditions for competing 

species such as Carex sp., P. pratensis, and P. aquilinum. Overall, the retention of 

biological legacies both in the overstory (live trees) and on the forest floor (dead wood) 

provided ecological benefits without reducing regeneration and should be incorporated 

into guidelines developed for biomass harvests. 
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Table 3.1 Species correlations with NMS axes from Fig.1. Species shown correlate with at least one axis (p < 0.05). The “ISA” 

column indicates species emerged as indicators of specified treatments with an Indicator Value > 25 (p < 0.05). Abbreviations: 

aggregate, aggregated overstory reserves; SOH, stem only harvest; WTH, whole tree harvest. 

Species   A1 A2 A3 ISA    Species   A1 A2 A3 ISA 

Abies balsamea   - - -0.38 aggregate   Lathyrus ochroleucus   - -0.40 -   

Acer spicatum   - 0.37 -     Lonicera canadensis   - - -0.33   

Actea rubra   - - - SOH    Lycopodium clavatum   0.33 - - control 

Arisaema triphyllum   - 0.29 -     L. dendroideum   0.32 - - control 

Asarum canadensis   - - - SOH    Lycopus uniflorus   - - -0.34   

Aster macrophyllus   - -0.43 -     Maianthemum canadense   0.26 - -   

A. ciliolatus   - - - aggregate   Millium effusum   -0.30 - -   

Athyrium filix-femina   - - 0.26     Mitella nuda   - 0.33 -0.36   

Betula papyrifera   - -   SOH    Petasides frigidus   -0.36 - - WTH 

Brachyelytrum aristosum   - - - SOH   Poa pratensis   - - - WTH 

Carex deweyana   -0.31 - - WTH   Populus tremuloides   -0.43 - - SOH  

C. gracilima   -0.34 0.21 -     Pteridium aquilinum  - - - WTH 

C. intumescens   -0.51 0.27 - WTH  Pyrola elliptica   - -0.34 -   

C. leptonerva   - - - WTH   Rosa sp.   - -0.35 -   

Carex sp. (Ovales group)   -0.29 - -     Rubus idaeus   -0.30 - 0.28   

Clintonia borealis   0.37 - - control   R. pubescens   -0.32 0.27 - WTH 

Corylus cornuta   -0.30 - - aggregate   Sanicula marilandica   -0.31 -0.29 -   

Diervilla lonicera   -0.47 - -     Solidago sp.   - - 0.32   

Dryopteris carthusiana   0.37 - -     Streptopus roseus   0.28 - -   

Equisetum sp.   -0.40 - -     Trillium cernuum   - - - SOH  

Fraxinus nigra   - - -0.33     Ulmus sp.   - 0.36 -   

Fragaria virginiana   -0.40 - -     Other graminoids   -0.40 - -   

Geranium bicknellii   - - - SOH    Viburnum rafinesquianum   - -0.43 -   

Hepatica americana   - - 0.42 SOH   Viola sp.   - 0.30 -   
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Lactuca canadensis   -0.37 - - SOH   Vicia sp.   -0.35 -0.31 - SOH  

Impatiens capensis    -0.45 - - SOH         
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Table 3.2 Vascular plant cover, seedling density, and species diversity metrics by treatment. Values are based on mean cover and 

frequency of all vascular species sampled in understory plots (3m
2
) across all four sites with the standard error given in parentheses.  

The treatments are as follows: “controls”, intact forest; “aggregate”, aggregated overstory reserves; “SOH”, harvested plots with all 

slash retained; “WTH”, harvested plots with no intentionally slash retained. Lower-case letters indicate significant differences (p < 

0.05, Tukey-adjusted pairwise comparisons).  

Variable   
Control (n=32) 

Aggregate 

(n=32) 
SOH (n=16) WTH (n=16) 

Total cover (%/m
2
)   119.33 (7.65)a 127.65 (6.82)a 

198.49 

(11.75)b 204.45 (12.2)b 

Graminoid cover 

(%/m
2
)   7.16 (1.25)a 9.97 (1.10)a 37.36 (9.80)b 39.55 (8.34)b 

Nonnative cover (%)   0.08 (0.05)a 0.25 (0.09)ab 2.64 (1.33)bc 5.87 (3.27)c 

Species richness   24.59 (0.80)a 29.06(0.64)b 31.56 (1.16)b 31.19 (1.34)b 

Species evenness   0.62 (0.01)a 0.66 (0.01)ab 0.69 (0.01)b 0.70 (0.01)b 

Species diversity (H')   1.99 (0.05)a 2.24 (0.04)b 2.37 (0.07)b 2.40 (0.05)b 

Seedling density (all)   7.13 (0.75)a 11.82 (1.24)b 11.92 (1.60)b 13.94 (1.70)b 

Sucker density (aspen)   0.57 (0.16)a 1.28 (0.31)a 4.79 (0.91)b 4.88 (0.56)b 
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Figure 3.1 Means for coarse woody debris volume (CWD), fine woody debris volume (FWD), leaf area index (LAI) and soil moisture 

for each treatment across the study. Bars indicate standard error. Lower-case letters indicate significant differences where they occur 

as determined with post-hoc Tukey-adjusted pairwise comparisons (p<0.05).
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Figure 3.2 Ordination results from non-metric multidimensional scaling (NMS). 

Axis 1 is rotated to be parallel with leaf area index (LAI), the environmental 

variable that showed the strongest correlation (Kendall’s τ = 0.32) with 

community composition.  Species shown arecorrelated significantly with one of 

the three axes (Table 3.1, p < 0.05.)
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Figure 3.3 Scatterplots illustrating how species richness (a-e) and aspen density (f-j), relate to fine woody debris (FWD), leaf area 

index (LAI), soil moisture, coarse woody debris (CWD), herbaceous plant cover (aspen density only).The Pearson correlation 

coefficient, R, and mean functions are displayed where statistically significant (p < 0.05).
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Figure 3.4 Density of seedlings at increasing distances from the center of aggregated 

overstory reserves (“aggregates”). Aggregates generally have radii of 18 m, so plots at 2 

m and 7 m are within the aggregate, plots at 22 m are outside but near the edge, and plots 

at 42 m are in the open.  Only those species making up > 1% of all seedlings are shown. 

Abbreviations are as follows: ABBA, Abies balsamea; FRsp, Fraxinus nigra or F. 

pensylvanica; ACRU, Acer rubrum; POTR, Populus tremuloides. The grey bars in the 

background represent total seedling densities. Error bars indicate standard error and 

lower-case letters indicate where significant differences in seedling densities (within the 

same species) exist between different distances (p < 0.05, ANOVA).  
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CHAPTER 4: CONCLUSIONS  

 

Balancing objectives that include continuing to provide current forest products, 

meeting future resource demands, and maintaining ecosystem services given uncertainty 

surrounding future climate and disturbance regimes presents a formidable challenge to 

forest managers. In light of that challenge, the primary objective of this dissertation was 

to examine the ecological impacts of removing harvest residues for bioenergy production, 

an emerging management practice, in order to inform the development and refinement of 

related guidelines. Recognizing a disconnect between applied forest ecology and research 

conducted in more theoretical contexts, a secondary goal was to apply and evaluate 

proposed methods for quantifying and assessing functional diversity.  The results 

presented here can inform future decision-making, regardless of objectives, particularly 

in forest ecosystems dominated by species that reproduce vegetatively.  Additionally, 

while conclusions about direct impacts of residue removal on function are limited, this 

research highlights areas where further study is needed to improve quantification and 

interpretation of functional diversity while also providing a foundation on which further 

work can be based. 

This research affirmed some broad concerns for productivity associated with 

removal of harvest residues like the importance of limiting soil disturbance (Chapter 1), 

but many impacts appeared to be specific to site conditions. Both Chapter 1 (15-year 

results) and Chapter 3 (2-year results) indicate that stem densities may not differ 

significantly between stem-only harvest (SOH) and whole-tree harvest (WTH) on fine-

textured soils, although relativized 2-year aspen cover was greater for SOH.  In contrast, 

density and standing biomass reductions did occur in association with WTH and the 
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additional removal of the forest floor (FFR) on sandy soils. For this latter finding, the 

mechanism behind biomass reductions cannot be definitively determined, but results 

indicate that residues should be retained following harvest on similar sites.  

Responses of species diversity and functional diversity to harvest-related 

disturbance severity varied widely (Chapters 2 and 3). The only common finding was no 

discernible difference in woody species richness over time (Chapter 2) or understory 

plant species richness shortly after harvest (Chapter 3) between SOH and WTH, 

regardless of site. The most interesting trends emerged from analyses of community 

composition.  Short-term (2-year) results indicate the composition of regenerating 

communities diverged between SOH and WTH treatments, if only slightly (Chapter 3). 

Indicator species analysis suggested that WTH may favor species with potential to 

compete with aspen, the dominant overstory species. Additionally, many forbs also 

associated with SOH. These results suggest that it may be important for future 

productivity and diversity to retain at least a portion of residues following harvest. On 

both clayey and silty loam soils, compaction severity was the strongest driver of 15-year 

woody species composition (Chapter 2). Severe compaction combined with FFR on silty 

loam soils resulted in greater biomass allocation to the shrub community than to trees 

(Chapter 1) and indicator species analysis associated Salix sp. and Rosa sp. with severe 

compaction whereas aspen associated with C0 (Chapter 2).   

A common theme in all three chapters and in ecosystem management, generally, 

is that of trade-offs: Regeneration or wood production versus biodiversity and structural 

complexity (Bradshaw 1992, Bradford and D’Amato 2012, Palik et al. 2014, Chapter 1, 

Chapter 2), and climate change mitigation versus adaptation (Millar et al. 2009, D’Amato 
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et al. 2011, Chapter 2, Chapter 3).  Results in Chapter 1 suggest that procuring bioenergy 

feedstocks from aspen forests on sandy soils might come at the expense of above-ground 

biomass production.  On silty loam and clayey soils such a trade-off is not necessary as 

removing residues led to an increase in tree biomass; however, Chapter 2 indicates that 

residue removal and maximum stem production on finer-textured soils may coincide with 

reductions in species and functional diversity.  In Chapter 3, retention aggregates 

increased structural and compositional complexity at the stand scale and appear to serve 

as refugia for some interior forest species, at least in the short term. These services were 

provided without any apparent trade-off in regeneration, although continued observations 

will be needed to confirm this finding over time.  Recognizing, quantifying, interpreting, 

and communicating these sometimes nuanced trade-offs will better equip practitioners 

making management decisions. 

Results in Chapter 2 indicate what might be a trade-off between maximized 

above-ground productivity and functional diversity.  However, given that functional 

diversity increased in response to severe disturbance in some cases and that the increase 

might be attributed to an increased abundance in shrub species, it is possible that greater 

functional diversity is not always desirable.  Just as it is imperative to discuss changes in 

species composition alongside species richness measures in order to account for any 

inflation in richness values due to an increase in non-native or invasive species, it is also 

key to accompany evaluations of functional diversity indices with some description of the 

specific species or traits that are contributing to changes in index values. Functional 

diversity may, in theory, increase ecosystem resilience in many cases (Folke et al. 2004), 

but only if that diversity is representative of the functions that have previously occurred 
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within the ecosystem of study. Future work might use modeling techniques and other 

datasets associated with the LTSP study to more formally integrate findings from 

Chapters 1 and 2 and to better describe the relationships among disturbance severity, 

species diversity, functional diversity, community composition, structure, above-ground 

biomass, resilience and other attributes. 

The LTSP study provides a rich dataset for exploring questions related to 

bioenergy feedstock removal and soil disturbance effects, and further work will more 

completely answer some of the questions still remaining. For example, understanding the 

mechanism behind the negative impacts of WTH and FFR to above-ground biomass and 

structural development on sandy soils is important for making appropriate management 

recommendations.  While some level of calcium depletion was evident at 10 years post-

harvest (Voldseth et al. 2011), it remains unclear whether productivity declines were in 

response to nutrient availability or moisture stress. If the retention of harvest residues 

with SOH benefited regeneration by ameliorating microenvironmental conditions, then 

supplementing soil nutrients would not be a viable option for preventing declines in 

above-ground productivity following WTH. The data collected so far only allow 

inference about the mechanisms driving reduced above-ground biomass at this site, but 

future work could use the existing study areas to explore this question further.  

Additionally, assessment of disturbance effects on species diversity and composition was 

limited to shrubs and trees. Woody species constitute the bulk of above-ground biomass 

in aspen-dominated forest and are thus expected to drive the majority of function per the 

biomass-ratio hypothesis (Grime 1998), but herbaceous plants in the understory also form 
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an important component of these ecosystems.  Composition and diversity of these species 

was not examined here, but could provide valuable information if studied in the future.  

Current inferences from the short-term responses to harvest-related disturbance 

severity described in Chapter 3 are somewhat limited, given the variability observed and 

brief time since disturbance. The scale of this study (49 ha) was an advantage in the sense 

that it allowed the experiment to address questions relevant to management, but more 

subtle responses may have been lost due to increased variability.  Many plant species 

occurred in fewer than 5% of plots which meant that they were necessarily excluded from 

analyses of composition to reduce noise. Additionally, while intact forest provided a 

control for comparison, the analyses of short-term understory response would be stronger 

if pre-treatment composition and abundance for the understory had been sampled. 

Despite these shortcomings, the changes in observed composition merit further 

investigation over time as they could result in future changes in function.  Additionally, 

while the treatments implemented in the LTSP study do not represent the continuum of 

disturbance severity between SOH and WTH that is likely given variability in harvest 

operations and current recommendations for retaining at least some slash on site, the 

design of the study described in Chapter 3 will help fill this gap in knowledge over time.   

A number of studies have compared the effectiveness of using species richness 

versus functional richness (or other functional diversity measures) at predicting above-

ground biomass with varying results (Vila et al. 2007, Flynn et al. 2009, Chillo et al. 

2011, and Ziter et al. 2013). While the predictive power of species and functional 

diversity indices were not evaluated here, neither group of metrics called attention to a 

shift in community composition and structure (and reduction in above-ground biomass) 
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that occurred with FFR and C2 on silty loam soils. The indices available for measuring 

and assessing functional diversity continue to evolve, and they are only as reliable as the 

data used to calculate them.  The findings reported here for functional diversity and trait 

responses were influenced by the suite of traits selected for analyses.  While decisions 

were based on the best information available, these methods will become more exacting 

as additional data for traits are compiled and further research demonstrates which traits 

are most important to quantify and monitor.   

As objectives and methods for managing forests evolve, it will be valuable to 

return to these studies and continue evaluating ecosystem health and response to 

disturbance. Species richness is a common and easily compared metric, but it does not 

account for abundance which is important for community development and dynamics as 

well as function (Grime 1998), nor does it capture potentially undesirable changes in 

composition (i.e. increases in invasive species or shifts in dominant species or guilds).  

While functional diversity metrics have their own drawbacks, they offer a different 

approach for quantifying, evaluating, and comparing communities. Much work at 

refining these techniques and building trait databases to widen their applicability remains, 

but this research demonstrated both their utility in an applied setting as well as some 

shortcomings. Future work could build off findings from the functional diversity and 

functional trait analyses presented here and relate them to specific ecosystem services 

that interest landowners, managers, policy-makers, conservationists, and other 

practitioners.  For example, findings presented in Chapter 2 suggest that harvest 

operations that increase soil compaction may decrease the drought tolerance of a 

regenerating forest stand on clayey soils.  Empirical evidence that demonstrates whether 
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compaction levels correspond to drought response (potentially quantified with annual 

growth in overstory trees) would be a logical future direction for research in these areas 

and would provide practical information for practitioners and other stakeholders.  At the 

same time, such a study would further demonstrate the utility behind using analyses like 

the fourth corner method that relate management actions to functional trait expression. 

Management implications 

Overall, results indicate that productivity, diversity, and functional responses to 

varying disturbance severities associated with harvest residue removal differ among sites, 

even when dominated by the same overstory species.  On fine-textured soils, removal of 

residues does not appear to reduce aspen densities or total above-ground biomass, but 

there is potential for changes in species diversity and composition even when some 

incidental woody debris remains.  Additionally, care should be taken to avoid soil 

disturbance on these soils as it could prompt a shift to shrub-dominated communities.  On 

sandy soils, observed reductions in above-ground biomass suggest that WTH should be 

avoided and harvest residues retained on site.  Lastly, initial results suggest that small 

aggregates of overstory reserves (0.1 ha) may accomplish ecological objectives such as 

‘lifeboating’ some interior forest species and increasing structural complexity without 

compromising regeneration objectives. 
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APPENDIX A: RESULTS FROM POST-HOC COMPARISONS OF FACTOR COMBINATIONS 

Table A.1 Tukey-adjusted pairwise comparisons that correspond to interactions between to the two main factors (OMR X CPT) for 

those variables where OMR X CPT was a significant effect (p<0.05; Tables 3.1, 3.2) at the Chippewa (CH), Huron-Manistee (HM), 

and Ottawa (OT) National Forests, USA.  Values in bold are significant with p< 0.05. 

Factor 

held 

constant 

Total above-ground biomass (CH)   Total above-ground biomass (HM)   Total above-ground biomass (OT) 

Comparison p-value   Comparison p-value   Comparison p-value 

SOH 

SOH/C0 > SOH/C1 p<0.0001   SOH/C0 = SOH/C1 p=0.4442   SOH/C0 = SOH/C1 p=0.9899 

SOH/C0 > SOH/C2 p<0.0001   SOH/C0 = SOH/C2 p=0.9984   SOH/C0 > SOH/C2 p=0.0762 

SOH/C1 = SOH/C2 p=0.999   SOH/C1 = SOH/C2 p=0.8715   SOH/C1 = SOH/C2 p=0.4443 

WTH 

WTH/C0 > WTH/C1 p=0.0453   WTH/C0 = WTH/C1 p=0.8588   WTH/C0 = WTH/C1 p=0.7532 

WTH/C0 > WTH/C2 p<0.0001   WTH/C0 = WTH/C2 p=0.2357   WTH/C0 = WTH/C2 p=0.9734 

WTH/C1 > WTH/C2 p=0.1137   WTH/C1 = WTH/C2 p=0.9775   WTH/C1 = WTH/C2 p=0.9998 

FFR 

FFR/C0 = FFR/C1 p=0.9322   FFR/C0 = FFR/C1 p=0.9504   FFR/C0 > FFR/C1 p=0.0487 

FFR/C0 > FFR/C2 p=0.0017   FFR/C0 = FFR/C1 p=0.9167   FFR/C0 > FFR/C2 p=0.0775 

FFR/C1 = FFR/C2 p=0.1337   FFR/C1 = FFR/C2 p=0.2344   FFR/C1 = FFR/C2 p=1.000 

C0 

SOH/C0 = WTH/C0 p=0.9946   SOH/C0 = WTH/C0 p=0.8035   SOH/C0 = WTH/C0 p=1.000 

SOH/C0 = FFR/C0 p=0.9938   SOH/C0 = FFR/C0 p=0.9172   SOH/C0 = FFR/C0 p=0.9906 

WTH/C0 = FFR/C0 p=0.7350   WTH/C0 = FFR/C0 p=1.000   WTH/C0 = FFR/C0 p=0.9965 

C1 

SOH/C1 < WTH/C1 p=0.0720   SOH/C1 = WTH/C1 p=0.3738   SOH/C1 = WTH/C1 p=0.2794 

SOH/C1 < FFR/C1 p=0.0354   SOH/C1 > FFR/C1 p=0.0006   SOH/C1 = FFR/C1 p=0.9965 

WTH/C1 = FFR/C1 p=1.000   WTH/C1 = FFR/C1 p=0.2886   WTH/C1 > FFR/C1 p=0.0053 

C2 

SOH/C2 = WTH/C2 p=0.9975   SOH/C2 = WTH/C2 p=1.000   SOH/C2 na WTH/C2 na 

SOH/C2 = FFR/C2 p=0.9976   SOH/C2 = FFR/C2 p=0.9984   SOH/C2 na FFR/C2 na 

WTH/C2 = FFR/C2 p=1.000   WTH/C2 = FFR/C2 p=0.9889   WTH/C2 > FFR/C2 p=0.0401 
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Table A.1, continued 

Factor 

held 

constant 

maxBD (CH)   maxBD (OT) 
  

maxBD (HM) 

Comparison p-value   Comparison p-value   Comparison p-value 

SOH 

SOH/C0 > SOH/C1 p=0.0006   SOH/C0 = SOH/C1 p=0.9996   SOH/C0 = SOH/C1 p=0.4714 

SOH/C0 > SOH/C2 p=0.0006   SOH/C0 = SOH/C2 na   SOH/C0 = SOH/C2 p=1.000 

SOH/C1 = SOH/C2 p=1.000   SOH/C1 = SOH/C2 na   SOH/C1 = SOH/C2 p=0.5275 

WTH 

WTH/C0 = WTH/C1 p=1.000   WTH/C0 = WTH/C1 p=1.000   WTH/C0 = WTH/C1 p=1.000 

WTH/C0 = WTH/C2 p=0.1211   WTH/C0 = WTH/C2 p=0.9993   WTH/C0 = WTH/C2 p=1.000 

WTH/C1 = WTH/C2 p=0.2010   WTH/C1 = WTH/C2 p=1.000   WTH/C1 = WTH/C2 p=1.000 

FFR 

FFR/C0 = FFR/C1 p=0.9751   FFR/C0 = FFR/C1 p=0.3194   FFR/C0 = FFR/C1 p=0.1378 

FFR/C0 > FFR/C2 p=0.0017   FFR/C0 = FFR/C2 p=0.7393   FFR/C0 = FFR/C2 p=1.000 

FFR/C1 > FFR/C2 p=0.0414   FFR/C1 = FFR/C2 p=0.9990   FFR/C1 = FFR/C2 p=0.2801 

C0 

SOH/C0 = WTH/C0 p=0.9992   SOH/C0 = WTH/C0 p=0.9924   SOH/C0 = WTH/C0 p=0.9529 

SOH/C0 = FFR/C0 p=0.8124   SOH/C0 = FFR/C0 p=1.000   SOH/C0 = FFR/C0 p=1.000 

WTH/C0 = FFR/C0 p=0.9903   WTH/C0 = FFR/C0 p=0.9808   WTH/C0 = FFR/C0 p=0.9954 

C1 

SOH/C1 < WTH/C1 p=0.0109   SOH/C1 = WTH/C1 p=1.000   SOH/C1 > WTH/C1 p=0.0396 

SOH/C1 = FFR/C1 p=0.5307   SOH/C1 = FFR/C1 p=0.1462   SOH/C1 > FFR/C1 p<0.0001 

WTH/C1 = FFR/C1 p=0.7048   WTH/C1 > FFR/C1 p=0.0622   WTH/C1 = FFR/C1 p=0.5640 

C2 

SOH/C2 = WTH/C2 p=0.9564   SOH/C2 na WTH/C2 na   SOH/C2 = WTH/C2 p=0.7814 

SOH/C2 = FFR/C2 p=0.9384   SOH/C2 na FFR/C2 na   SOH/C2 = FFR/C2 p=0.9958 

WTH/C2 = FFR/C2 p=0.2834   WTH/C2 = FFR/C2 p=0.5099   WTH/C2 = FFR/C2 p=0.9958 
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Table A.1, continued 

Factor 

held 

constant 

Diameter, QMD (OT) 

 

Stem density (OT) 

 

Herbaceous biomass (CH) 

Comparison p-value   Comparison p-value   Comparison p-value 

SOH 

SOH/C0 = SOH/C1 p=0.9999   SOH/C0 = SOH/C1 p=0.9998   SOH/C0 < SOH/C1 p<0.0001 

SOH/C0 = SOH/C2 p=0.3054   SOH/C0 = SOH/C2 p=0.9011   SOH/C0 < SOH/C2 p<0.0001 

SOH/C1 = SOH/C2 p=0.9980   SOH/C1 = SOH/C2 p=0.7443   SOH/C1 = SOH/C2 p=0.8671 

WTH 

WTH/C0 = WTH/C1 p=0.9406   WTH/C0 = WTH/C1 p=0.5654   WTH/C0 < WTH/C1 p<0.0001 

WTH/C0 = WTH/C2 p=0.9937   WTH/C0 = WTH/C2 p=0.6322   WTH/C0 < WTH/C2 p<0.0001 

WTH/C1 = WTH/C2 p=1.000   WTH/C1 = WTH/C2 p=1.000   WTH/C1 = WTH/C2 p=0.2996 

FFR 

FFR/C0 > FFR/C1 p=0.0436   FFR/C0 = FFR/C1 p=0.5927   FFR/C0 < FFR/C1 p=0.0593 

FFR/C0 > FFR/C2 p=0.9523   FFR/C0 = FFR/C2 p=0.9999   FFR/C0 < FFR/C2 p=0.0002 

FFR/C1 = FFR/C2 p=0.9353   FFR/C1 = FFR/C2 p=0.5813   FFR/C1 = FFR/C2 p=0.99989 

C0 

SOH/C0 = WTH/C0 p=0.9980   SOH/C0 = WTH/C0 p=1.000   SOH/C0 = WTH/C0 p=1.000 

SOH/C0 = FFR/C0 p=1.000   SOH/C0 = FFR/C0 p=0.2491   SOH/C0 = FFR/C0 p=0.4143 

WTH/C0 = FFR/C0 p=1.000   WTH/C0 = FFR/C0 p=0.1455   WTH/C0 = FFR/C0 p=0.3872 

C1 

SOH/C1 = WTH/C1 p=0.9736   SOH/C1 = WTH/C1 p=0.4405   SOH/C1 = WTH/C1 p=0.9151 

SOH/C1 > FFR/C1 p=0.0883   SOH/C1 < FFR/C1 p=0.0503   SOH/C1 = FFR/C1 p=0.5442 

WTH/C1 > FFR/C1 p=0.0007   WTH/C1 = FFR/C1 p=0.9523   WTH/C1 = FFR/C1 p=0.9990 

C2 

SOH/C2 na WTH/C2 na   SOH/C2 na WTH/C2 na   SOH/C2 = WTH/C2 p=1.000 

SOH/C2 na FFR/C2 na   SOH/C2 na FFR/C2 na   SOH/C2 = FFR/C2 p=0.7675 

WTH/C2 > FFR/C2 p=0.0782   WTH/C2 = FFR/C2 p=0.9991   WTH/C2 = FFR/C2 p=0.9379 
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APPENDIX B  

MEANS FOR STEM DENSITY AND DIAMETER OVER TIME 

Table B.1 Treatment means for structural attributes by organic matter removal and compaction treatment at sampling periods 5, 10, 

and 15 years following disturbance at the Chippewa (CH), Huron-Manistee (HM), and Ottawa (OT) National Forests, USA. Standard 

error is indicated in parentheses. BD indicates basal diameter, measured at 15 cm height. All stems > 15 cm in height are included. 

  Structural attributes 

Treatment 

Stem density (no./ha)   QMD (cm)   BD (cm, 99th percentile) 

5 years 10 years 15 years   5 years 10 years 15 years   5 years 10 years 15 years 

CH (loamy)                       

SOH 25750 (8067) 14506 (4089) 9555 (2891)   1.268 (0.171) 2.777 (0.244) 4.942 (0.332)   2.789 (0.518) 6.778 (0.552) 11.667 (0.877) 

TTH 33750 (7666) 14703 (4306) 10913 (3269)   1.550 (0.137) 3.501 (0.338) 4.993 (0.381)   3.411 (0.366) 8.011 (0.621) 12.533 (0.823) 

FFR 36361 (9020) 18679 (4290) 13555 (2932)   1.219 (0.129) 2.562 (0.169) 3.717 (0.279)   2.844 (0.340) 6.333 (0.377) 10.078 (0.514) 

C0 60222 (6306) 28913 (4069) 19172 (3351)   1.821 (0.076) 3.468 (0.259) 4.695 (0.417)   4.322 (0.226) 8.111 (0.369) 11.667 (0.884) 

C1 23444 (2703) 13172 (1805) 10197 (1924)   1.240 (0.123) 3.066 (0.226) 4.754 (0.321)   2.711 (0.343) 7.189 (0.519) 12.000 (0.933) 

C2 12194 (2836) 5802 (637) 4654 (573)   0.975 (0.070) 2.307 (0.239) 4.202 (0.404)   2.011 (0.167) 5.822 (0.534) 10.611 (0.561) 

                        

HM (sandy)                       

SOH 79580 (12347) 47172 (7757) 53049 (8715)   1.298 (0.096) 2.104 (0.196) 2.637 (0.317)   3.711 (0.186) 6.678 (0.254) 9.322 (0.549) 

TTH 95185 (14586) 61135 (11629) 53790 (7805)   1.087 (0.121) 1.721 (0.215) 5.822 (0.438)   3.133 (0.243)  5.822 (0.438) 8.394 (0.694) 

FFR 84703 (15517) 48160 (8221) 49802 (9136)   1.118 (0.107) 1.786 (0.188) 2.316 (0.303)   3.200 (0.220) 5.944 (0.432) 8.406 (0.574) 

C0 89987 (15598) 45654 (6567) 48172 (7790)   1.103 (0.147) 1.841 (0.259) 2.394 (0.377)   3.322 (0.283) 6.200 (0.438) 8.906 (0.796) 

C1 91790 (12305) 55864 (8975) 57172 (9735)   1.137 (0.087) 1.802 (0.162) 2.394 (0.377)   3.200 (0.174) 5.789 (0.303) 8.422 (0.466) 

C2 77691 (14573) 54950 (12105) 51296 (7797)   1.263 (0.087) 1.969 (0.187) 2.479 (0.287)   3.522 (0.222) 6.456 (0.430) 8.794 (0.564) 

                        

OT (clay)                       

SOH 21166 (4482) 10833 (1257) 7907 (1881)   1.088 (0.109) 2.120 (0.235) 3.860 (0.416)   2.200 (0.286) 4.783 (0.533) 8.558 (0.775) 

TTH 26500 (2977) 11232 (1473) 9373 (1036)   1.180 (0.071) 2.549 (0.175) 3.877 (0.268)   2.491 (0.184) 5.545 (0.231) 8.664 (0.251) 

FFR 32555 (3304) 15851 (1240) 8814 (1251)   0.925 (0.079) 1.854 (0.217) 3.485 (0.283)   2.033 (0.243) 4.256 (0.308) 7.911 (0.414) 

C0 22181 (3156) 12545 (1457) 10020 (947)   1.165 (0.080) 2.303 (0.179) 3.636 (0.219)   2.454 (0.221) 5.218 (0.179) 8.805 (0.380) 

C1 31750 (3585) 12819 (1541) 8236 (1183)   1.013 (0.085) 2.302 (0.286) 4.013 (0.409)   2.225 (0.210) 4.913 (0.447) 8.425 (0.501) 

C2 30500 (3489) 12952 (1974) 7682 (1829)   0.990 (0.098) 1.957 (0.227) 3.582 (0.317)   2.014 (0.257) 4.471 (0.457) 7.657 (0.334) 
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APPENDIX C: SPECIES TRAITS 

Table C.1 Raw trait values used for functional diversity analyses in Chapter 2. For those plants only identified to genus, values for the 

species most likely to occur at the sites were averaged. Values in bold are based on a closely related species within the same genus. 

 

 Traits 

Species 
Drought 

tolerance 

Flood 

tolerance 

Shade 

tolerancee 

Rooting 

depth 

(cm) 

Seed 

mass 

(mg) 

Height 

(m) 

Leaf 

lifespan 

(months) 

Specific 

gravity 

Leaf 

mass per 

area 

N 

mass 

P 

mass 

Abies balsamea 1.00 2.00 5.01 50.80 8.60 18.28 109.95 0.34 151.00 1.66 0.17 

Acer rubrum 1.84 3.08 3.44 76.20 21.01 27.43 5.57 0.49 71.09 1.91 0.30 

Acer saccharum 2.25 1.09 4.76 101.60 66.02 30.48 5.50 0.56 70.63 1.83 0.30 

Acer spicatum 2.00 2.00 3.31 81.28 21.01 9.14 5.00 0.44 27.11 2.23 0.34 

Alnus sp. 2.00 2.85 1.00 60.96 1.42 7.62 4.80 0.37 67.14 2.98 0.21 

Amelanchier sp. 2.38 3.50 4.33 50.80 6.50 15.24 5.00 0.66 78.86 1.82 0.32 

Betula alleghaniensis 3.00 2.00 3.17 76.20 1.02 30.48 5.50 0.58 46.08 2.20 0.24 

Betula papyrifera 2.02 1.25 1.54 60.96 1.33 21.34 3.60 0.48 77.88 2.31 0.24 

Carpinus carolinia 2.02 2.30 4.58 50.80 14.00 12.19 7.70 0.58 49.05 2.15 0.18 

Corylus sp. 2.88 1.27 3.00 40.64 14.01 3.65 5.00 0.50 27.20 2.01 0.27 

Cornus sericea 2.48 2.12 2.86 50.80 1.00 3.65 5.00 0.61 81.45 1.94 0.32 

Diervilla lonicera 4.00 0.00 2.50 40.60 19.30 0.73 5.00 0.46 87.35 1.89 0.22 

Dirca palustris 1.00 1.00 4.00 50.00 23.34 1.70 5.00 0.33 60.00 1.88 0.34 

Fraxinus nigra 2.00 3.50 2.96 101.60 59.03 24.38 5.00 0.45 71.94 2.10 0.34 

Fraxinus 

pensylvanica 

3.85 2.98 3.11 101.60 31.68 21.34 5.00 0.53 87.72 1.90 0.34 

Ostrya virginiana 3.25 1.07 4.58 40.60 16.01 13.71 5.00 0.63 37.04 2.20 0.23 

Picea glauca 2.88 1.02 4.15 76.00 3.15 30.48 50.00 0.35 302.86 1.28 0.18 

Pinus strobus 2.29 1.03 3.21 101.00 17.99 45.72 20.01 0.36 121.92 1.42 0.16 
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 Traits 

Species 
Drought 

tolerance 

Flood 

tolerance 

Shade 

tolerancee 

Rooting 

depth 

(cm) 

Seed 

mass 

(mg) 

Height 

(m) 

Leaf 

lifespan 

(months) 

Specific 

gravity 

Leaf 

mass per 

area 

N 

mass 

P 

mass 

Populus balsamifera 1.77 2.63 1.27 76.00 1.30 24.38 3.60 0.37 83.46 1.95 0.29 

Populus 

grandidentata 

2.50 2.00 1.21 50.00 1.18 19.80 5.00 0.39 70.45 2.50 0.26 

Populus tremuloides 1.77 1.77 1.21 81.00 1.15 19.80 4.86 0.37 82.02 2.16 0.43 

Prunus pensylvanica 1.50 1.50 1.00 50.00 33.02 7.62 5.00 0.36 50.00 2.40 0.37 

Prunus serotina 2.50 0.00 1.00 91.00 95.01 24.30 5.50 0.47 72.30 2.48 0.31 

Prunus virginiana 2.80 1.11 2.59 50.00 92.02 7.62 5.00 0.36 84.03 2.80 0.37 

Quercus alba 3.56 1.43 2.85 121.00 3540.42 30.40 5.00 0.60 81.21 2.39 0.18 

Quercus macrocarpa 3.85 1.82 2.71 71.00 6051.13 30.40 6.00 0.58 92.74 2.27 0.27 

Quercus rubra 2.88 1.12 2.75 91.00 3630.04 30.40 6.00 0.56 84.20 2.06 0.23 

Ribes sp. 2.50 2.00 2.00 35.00 27.94 1.52 4.96 0.50 58.80 1.59 0.33 

Rosa sp. 2.50 2.50 1.50 15.00 4.14 1.21 5.00 0.43 84.70 1.81 0.31 

Salix sp. 1.50 3.50 1.25 40.00 1.20 3.65 4.20 0.36 83.10 2.50 0.18 

Tilia americana 2.88 1.26 3.98 76.00 16.01 39.60 5.00 0.32 60.81 2.94 0.31 

Viburnum sp. 2.00 2.50 4.00 35.50 7.92 1.82 5.00 0.73 52.60 1.19 0.25 

Crataegus sp. 4.98 1.27 1.67 76.20 92.02 7.62 5.00 0.53 96.34 1.70 0.11 

Cornus drummondii 1.77 1.02 4.00 50.80 28.89 14.63 5.00 0.64 39.81 1.93 0.32 

Lonicera canadensis 1.00 2.00 4.00 50.00 24.60 0.61 5.00 0.48 62.63 1.68 0.28 

Fraxinus americana 2.38 2.59 2.46 101.60 45.35 27.43 5.70 0.55 76.75 2.12 0.34 

Cornus alternifolia 1.77 1.02 4.00 50.80 56.69 7.50 5.00 0.64 39.81 1.90 0.33 

Pinus resinosa 3.00 1.00 1.89 152.40 9.70 24.38 36.02 0.39 294.12 1.13 0.15 

Pinus banksiana 4.00 1.00 1.36 88.90 4.50 24.38 27.00 0.42 243.90 1.19 0.12 

Ulmus americana 2.92 2.46 3.14 106.68 6.67 36.58 5.90 0.46 79.47 2.56 0.41 
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Table C.2 Sources for species trait values. 

Trait Main Source Additional sources 

Drought tolerance Niinemets et al. (2009) USDA Plant Atlas 

Flood tolerance Niinemets et al. (2009) USDA Plant Atlas 

Shade tolerance Niinemets et al. (2009) USDA Plant Atlas 

Rooting depth USDA Plant Atlas Schulz (pers. Comm.) 

Seed mass Paquette and Messier (2011) USDA, Waller (unpublished data), Burns and Honkala (1990) 

Height at maturity USDA Plant Atlas Smith 2008 

Leaf longevity Reich et al. (1998), Niinemets 

and Lukjanova (2003) 

When not available, 5 months was used following Paquette 

and Messier (2011) 

Specific gravity Miles et al. (2009) Waller (unpublished data) 

N mass Paquette and Messier (2011) Henry (1973), Waller (unpublished data) 

P mass Henry (1973) Niinemets and Kull (2003), Waller (unpublished data) 
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