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Thesis Statement 

Prostate cancer (PCa) is a prevalent disease which affects 1 in 6 men in the 

United States and has overtaken lung cancer as the leading cause of cancer 

related deaths in American men and number two worldwide (1). While diagnosis 

and treatment options are improving, there is still a fundamental problem with its 

management. It is unclear which PCa is aggressive (life- threatening) and which 

is non-aggressive (non-life threatening). As a result, overtreatment of PCa results 

from the absence of tools that can properly differentiate between the two. While 

magnetic resonance imaging has become an increasingly valuable tool in the 

management of men with PCa, its use to identify aggressive disease and 

characterize extent have yet to be developed. The ability to identify the extent of 

significant disease would increase the effectiveness of focal therapy including 

cryosurgery and RF ablation which are currently hampered by the absence of 

good information for targeting treatment. Currently available treatments such as 

radiation therapy and surgery address the whole gland, while focal therapies 

treat part of the gland and can more effectively avoid damaging critical 

structures. Improved detection and evaluation of extent will impact areas of 

prostate cancer management by improving biopsy yield especially with the 

growth of MRI targeted biopsies both in the gantry and fused with real-time 

Ultrasound(2).   

Among several diagnostic imaging tests that are available for detection of 

PCa in the market today, Magnetic Resonance Imaging (MRI) occupies a unique 

position due to its excellent soft tissue contrast and its ability to generate tissue 

property dependent multi-parametric data (3). Multi-parametric MRI (MP-MRI) 

refers to the combination of multiple imaging methods and their associated 
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quantitative maps such as apparent diffusion coefficient (ADC) maps from 

diffusion weighted imaging (DWI), pharmacokinetic maps from dynamic contrast 

enhanced MRI (DCE-MRI) and metabolite ratio maps from three dimensional MR 

spectroscopic imaging (3D-MRSI). With DWI, MP-MRI can help in tumor 

identification by mapping areas of restricted diffusion of water molecules that 

indicate micro-structural changes in cellular density. Angiogenesis, the growth of 

new blood vessels, is an indicator of cancerous tissue. Using DCE-MRI, we can 

probe heterogeneous neovascular structure and abnormal vessel permeability 

that is indicative of cancer. 3D-MRSI is another MR technique that detects 

cancer by mapping the chemical composition of the prostate (2,3). MP-MRI has 

been shown to increase sensitivity and specificity compared to any single MRI 

dataset. 

The ability to develop and evaluate MP-MRI to prospectively detect 

disease, assess aggressiveness and delineate extent, first requires the 

retrospective validation against post-surgical pathology sections. Despite the 

large effort made by many groups in this area of research, the correlation of in 

vivo MP-MRI with pathology is still a challenge and to date is insufficient to 

develop highly accurate models of disease. To address this problem this thesis 

showcases: 

1. A novel registration approach called LATIS (Local Affine Transformation

assisted by Internal Structures) for co-registering post prostatectomy

pseudo-whole mount (PWM) pathological sections with in vivo MRI

images. This work is presented in Chapter 3.

2. A MP-MRI based predictive model for disease detection using a

composite biomarker score based on a unique database of pathology co-

registered MR data sets. This work is presented in Chapter 4.
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Chapter 2 details the clinical characteristics of the patient cohort and the MP-

MRI acquisition methods and post processing used to generate the data used in 

chapters 3 and 4. Chapter 5 reports on a study where the r1 and r2* relaxivities of 

a common paramagnetic contrast agent are measured in blood and saline at 

both 3T and 7T.  This is important information to have when attempting to 

perform DCE-MRI studies as part of a MP-MRI protocol.  Previous studies done 

by Metzger et al. (4) have shown that, R2* effects of typical paramagnetic 

contrast agents make the determination of subject dependent arterial input 

functions impossible at 7T and results in an underestimation of pharmacokinetic 

parameters even if a model based function is used. Similar effects are expected 

to negatively impact other contrast enhanced studies when performed at 7T such 

as first pass perfusion and angiography exams relying on T1-weighted 

enhancement (5). Finally, Chapter 6 reports on some initial studies comparing 

MP-MRI with quantitative pathology while also highlighting future directions for 

the work contained in this thesis.  
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Chapter 1  Introduction 

1.1 Prostate Cancer 

According to the GLOBOCAN (Global Burden of Cancer Study) project, which 

provides contemporary estimates of the incidence, mortality and prevalence from 

major types of cancer at the national level, for 184 countries of the world, 

Prostate Cancer (PCa) was the second most common cancer among men 

worldwide (1) as of 2012. It is estimated that in 2014, 233,000 new cases of PCa 

will be diagnosed and 29,480 men will die of this disease in the United States 

alone(6). According to the American Cancer Society, 98.9% of men survive for 

five years or more after being diagnosed with all stages of PCa (local, regional or 

distant) (6). The increase of this 5-year survival percentage from 98.9 to 100% 

for men diagnosed with localized and regional PCa is attributed to early 

diagnosis of disease (7). 

1.2 Prostate Anatomy 

The prostate is a walnut-sized gland (Figure 1.1) located inferior to the bladder, 

superior to the penis and anterior to the rectum. A healthy prostate weighs 

around 20 to 25 grams, has a volume around 20 cc and measures around 3 cm x 

4cm x 2cm. The prostate consists of a base, an apex, anterior, posterior and two 

lateral surfaces and has the urine in the bladder run through its center via the 

urethra. The main function of the prostate is to produce a thin, milky fluid 

containing citric acid and acid phosphatase that is added to the seminal fluid at 

the time of ejaculation. Also seen in Figure 1.1 are the seminal vesicles, which 

are a pair of small tubular glands that are attached to the vas deferens (carrying-

away vessels) at the base of the bladder. The seminal vesicles produce fructose 
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that helps with the sperm motility. The fluid from the seminal vesicles makes up 

most of the volume of the ejaculatory fluid (8-13). 

Figure 1.1 shows the anatomy of the prostate in relation to other pelvic structures. Inset 
figure shows an enlarged view along with the base and apex. This image is provided 
courtesy of the National Cancer Institute website (http://www.cancer.gov). 

The prostate gland is divided into three distinct glandular regions each 

distinguishable from the other on the basis of histology, anatomical landmarks 

and susceptibility to pathologic disorders (14). These are the peripheral zone 

(PZ), which covers 70% of the prostate, central zone (25%), transition zone (TZ) 

(5%) and anterior Fibromuscular Stroma (5%). Figures 1.2 and 1.3 show these 

glandular zones in the form of a diagram and as seen on a T2-weighted MRI 

image respectively.  

Base 

Apex
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Figure 1.2 shows an axial view of the prostate showing zonal anatomy. The central 
gland (CG) as defined in this thesis (not shown in figure) is composed of everything 
other than PZ (i.e. TZ, CZ, Fibromuscular stroma). This image has been provided 
courtesy of SEER Prostate Cancer Training Module, U.S. National Institutes of Health, 
National Cancer Institute (http://training.seer.cancer.gov/). 

Figure 1.3 shows the zonal anatomy of the prostate as seen on a T2-weighted MRI.  The 
axial (a) and sagittal (b) images were obtained on a 3T Siemens Magnet using an 
endorectal coil (ERC). The center of the urethra is depicted by the yellow line.  

ERC 

ERC 

Bladder

L R 
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1.3 Cancer Diagnosis 

Adenocarcinomas (cancerous tumors) that arise from the glandular tissue make 

up 95% of PCa tumors. 75% of all PCa arises in the PZ, 20% in the TZ and about 

5-10% in the CZ while local extension of disease tends to be into capsule, 

bladder base and the seminal vesicles. PCa usually does not present any 

symptoms unless it reaches a very advanced stage. Most common local 

symptoms present themselves are urinary outflow obstruction and back pain 

(15). The serum PSA (Prostate Specific Antigen) level test, DRE (Digital Rectum 

Examination) and TRUS (Transrectal Ultrasound) guided biopsy are the three 

clinical examinations used for early diagnosis of PCa. A prostate biopsy is 

recommended to patients with an elevated PSA level (> 4 ng/mL) in their blood 

and a suspicious induration on DRE. TRUS guided biopsy is the current gold-

standard for prostate biopsies. While a prostate biopsy may be performed to 

confirm the presence of tumor at the location of a positive DRE and detect the 

cause of the elevated PSA, TRUS guided biopsies have shown low sensitivity 

(23-42%) (16,17).  

Biopsy results are graded with a Gleason Score (GS) which is based on 

the glandular pattern description of the tumor. The GS is a two part sum of the 

primary (predominant) and secondary (second most prevalent) grades, each on a 

scale of 1 (well differentiated) to 5 (least differentiated). Well-differentiated cancer 

cells resemble normal cells and are inclined to grow and spread at a slower rate 

than un-differentiated cancer cells that may lack normal tissue architecture 

(Figure 1.4). The GS score ranges from 2 to 10 and indicates the likeliness of a 

tumor to spread. A GS of 7 (3+4 or 4+3) is considered clinically significant with a 

worse prognosis than a GS of 6 (i.e. 3+3) (18-22).    
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Figure 1.4 Gleason Scale (image courtesy – Wikimedia.org). 

 

1.4 Multiparametric MRI in the detection of 
Prostate Cancer 

Among several diagnostic imaging modalities that are available for detection of 

PCa, Magnetic Resonance Imaging (MRI) occupies a unique position due to its 

excellent soft tissue contrast and its ability to generate tissue property dependent 

multi-parametric data (3). Conventional imaging techniques like CT have found 

limited use in PCa detection because of insufficient spatial and contrast 

resolution (23-25).  PET/CT is currently used for detection of post-treatment 

recurrence and has not shown conclusive detection capabilities for primary PCa 

diagnosis (26-28). MP-MRI is currently one of the most promising tools for PCa 

detection and staging with the potential to further impact disease management by 

characterizing disease aggressiveness and extent (12,29-34). MP-MRI refers to 
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the combination of multiple imaging methods and their associated quantitative 

maps such as T2 maps associated with T2-weighted imaging, ADC maps from 

diffusion weighted imaging (DWI), pharmacokinetic maps from dynamic contrast 

enhanced MRI (DCE-MRI) and metabolite ratio maps from three dimensional MR 

spectroscopic imaging (3D-MRSI). Quantitative MRI (qMR) parameters like T2, 

ADC, Ktrans, Kep, Ve, AUGC and those derived from MRS (Magnetic Resonance 

Spectroscopy) acquisitions have been shown to detect PCa and correlate with 

tumor grade (35-38). MP-MRI guided biopsy has shown good results in detecting 

significant disease and could reduce unnecessary biopsies (39,40). 

1.5 Multiparametric MRI based Predictive Models 
in the Detection of Prostate Cancer 

The ground truth in PCa detection is given by pathology. One way to achieve 

pathology comparable detection using MP-MRI is by the construction of a model 

that accurately predicts disease as defined on pathology. An MP-MRI model 

provides a standardized approach of combining multiple datasets for maximizing 

the predictive power of MP-MRI. A vast body of literature exists in the prediction 

of PCa using MP-MRI models and there are new studies being added every day 

(18-24). The process of assessing MP-MRI’s ability to predict what is currently 

only obtained through post prostatectomy pathology (PPP), involves correlating 

MP-MRI obtained in-vivo (inMR) with post-surgical specimens. This correlation 

with the pathologic Gold Standard involves the transfer of information obtained 

from pathology (i.e. grade and location of identified disease). This mapping has 

been accomplished through a variety of methods in the literature:  manual 

mapping of regions of interest (ROIs) (41); visual mapping of sextants (42) or 

octants (43,44); mapping locations of graded MR guided biopsy specimens (45) 

or calculated Gleason scores (43,46,47). The process of correlating manually 



7 

drawn regions of interest (ROIs) (41) on the MRI corresponding to identified 

areas of disease on pathology introduces potential biases of ROI drawing and 

placement used to generate predictive models. On the other hand using 

pathologically correlated slice sections (sextants (42), octants (43,44)) on MP-

MRI is prone to data averaging when a section contains a mix of cancer and non-

cancer tissue. These issues are addressed in this thesis (Chapter 4) where 

global anatomic features are used to guide a deformable registration method 

(LATIS) which is then used to map pathologist annotated regions of cancer 

directly to endorectal coil obtained in-vivo MRI images (48). The location size and 

extent are defined by global anatomic features. While an assumption is made 

about coincident slice locations and there is user interaction involved in defining 

internal structures for guiding the deformable registration methods, these are 

arguably less biased than other proposed methods. This image registration 

method is used to generate co-registered datasets which are then used in the 

development of MP-MRI based predictive models for the detection of PCa 

(Chapter 4).   
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Chapter 2 Materials and Methods 

2.1 Patient Population 

The patient cohort used in this thesis consisted of those who had biopsy 

confirmed PCa and were scheduled to undergo prostatectomy (46 men, age 

range 47 to 76 years with a median age of 63 years). All patients underwent 

imaging at the Center of Magnetic Resonance Research between November 

2009 and August 2012 after biopsy and before surgery after providing written 

consent under an Institutional Review Board approved protocol. The exclusion 

criteria included contraindications to endorectal coil placement including severe 

hemorrhoids, latex allergy, surgically absent rectum, severe inflammatory bowel 

disease; contraindications for MRI including ferromagnetic implants, history to 

shrapnel or shot gun injury, body mass index ≥ 40, cardiac pacemakers, 

claustrophobia, large tattoos, hip replacement and penile implants; 

contraindications to contrast agents including strong history of asthma and 

allergies, colostomy, kidney disease and Glomerular Filtration Rate (GFR)  < 30 

ml/min and prior treatment or procedures to treat PCa. Men received radical 

prostatectomy (RP) after an average gap of 27 days post MRI (range: 0-385 

days). The maximum gap of 385 days corresponds to a patient who was initially 

on active surveillance but underwent RP later. Quarter mounted histopathological 

sections were generated from the surgical prostate specimens. Table 2.1 shows 

the clinical characteristics summary of the patient population. 
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Table 2.1 Patient Population Clinical Characteristics 

2.2 MRI acquisition and Parametric Mapping 

2.2.1  Imaging Setup 

Patients were imaged on a 3T scanner (Siemens Healthcare, Erlangen 

Germany) transmitting with the whole body coil and receiving with a balloon-type 

endorectal coil (ERC) combined with an external surface array. The surface array 

consisted of two rows of 3 elements anteriorly from a flexible body coil and two 

rows of 3 elements posteriorly from a spine coil. The ERC was inserted after the 

patient assumed the left lateral decubitus position and inflated with 60 ml of 
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perfluorocarbon to reduce air induced susceptibility artifacts. Rotating back into 

the supine position, the anterior surface array was positioned with the coil 

centered at the level of the greater trochanter in the foot-head direction. In later 

studies, a urethral catheter (Bard, Latex radiopaque urethral catheter, Robinson 

model, 18Ch/ french-6.0mm) was inserted with the ERC to provide a pathway to 

release gas from the rectum which otherwise would build up behind the 

endorectal coil.  While not explicitly quantified, the use of the urethral catheter 

appeared to relieve the issue of gas in the bowel. In addition, it was inexpensive 

and did not affect study workflow or patient comfort as an endorectal coil was 

already being inserted. Other than instructing subjects to be nil per os (ingesting 

no fluids or solids) 4 hours prior to the study, no additional anti-peristaltic or 

preparation measures were taken. 

2.2.2 MRI Acquisitions Overview 
Scout images of the prostate in the sagittal, axial and coronal planes were 

acquired initially to check the depth and rotation of the ERC. After confirming the 

adequate positioning of the ERC, the rest of the MRI study proceeded and 

included the following acquisitions. 

1. Anatomic imaging using a T2-weighted (T2w) Turbo Spin Echo (T2-TSE)

sequence in the axial, sagittal and coronal planes.

2. Additional TSE datasets acquired in the axial plane at different echo times for

calculating T2 maps (T2-TSE).

3. T1-weighted Turbo Spin Echo (T1-TSE) imaging for the detection of post-

biopsy hemorrhage.

4. Multi Echo Spin Echo imaging as an alternative method for calculating T2

maps (T2-SEMC).

5. Single Shot Echo Planar Imaging (EPI) diffusion weighted imaging (DWI) for

calculation of Apparent Diffusion Coefficient (ADC) maps.
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6. 3D gradient echo data sets for calculating T1 maps using DESPOT1 (Driven 

Equilibrium Single Pulse Observation of T1). 

7. Dynamic Contrast Enhanced MRI (DCE-MRI) using 3D Flash VIBE (Volume 

Interpolated Breathold Examination (T1w3D-GRE). 

 

Acquisition parameters are tabulated in Table 2.2. All studies were run in the 

first-level control mode with prostate specific power and B0 adjustment. Further 

details for each acquisition and the calculation of parametric maps used for 

subsequent modeling are detailed below. 

 

 
 

  Table 2.2 MP-MRI study acquisition parameters 
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2.2.3  T2w Anatomic imaging 

Figure 2.1 T2-weighted image of the prostate. Hypointense region (arrow) indicates 
cancer. The units of the scale bar are in ms. 

T2-weighted (T2w) MRI is the traditional method of imaging the prostate and 

determining the location of PCa. On T2w sequences, in general, normal prostate 

PZ areas show high signal intensity owing to high water content whereas the CG 

areas (comprising of central and transition zones) show lower signal intensities. 

While PCa is frequently seen as a hypointense region in the PZ, some cancers 

are isointense and therefore cannot be seen on T2w images. T2w sequences 

show low specificity due to the high frequency of low intensity regions due to 

prostatitis, atrophy and calcifications (32). Hypointense regions can also be seen 

with areas of hemorrhage (post-biopsy or otherwise) infection and as a result of 

radiation or hormonal treatment. For this reason a gap of at least six to eight 

weeks post-biopsy is suggested prior to performing MRI. 

After confirming accurate endorectal coil placement, anatomic images 

were acquired using a T2-weighted (T2w) fast spin echo or Turbo Spin Echo (T2-

TSE) sequence in the transverse plane. The initial axial T2-TSE acquisition was 
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acquired with a left-right phase encoding and no parallel imaging acceleration. In 

cases where the predicted specific absorption rate (SAR) was too high, the 

repetition time (TR) of the transverse scan was increased accordingly resulting in 

a nominal repetition time of 6 s. All axial images were positioned such that the 

slice plane passed perpendicular to the posterior surface of the prostate. Coronal 

and sagittal T2w-TSE anatomic scans were acquired in orthogonal planes with 

respect to the transverse acquisitions with a TE of 107 ms and an acceleration 

factor of 2 with right-left and foot-head phase encoding directions, respectively. 

No SAR issues were present in these other orientations as fewer slices were 

acquired. 

2.2.4  T2 mapping 

Figure 2.2 T2-maps of the prostate using (a) T2-TSE (Turbo Spin Echo) (b) T2-SEMC 
(Spin Echo Multi Contrast) methods. Hypointense region (arrow) indicates area of 
cancer. The units of the scale bars are in ms.  

While T2w anatomic imaging provides the best anatomic detail of the prostate’s 

zonal anatomy and margins, there is evidence that there may be an advantage to 

calculating T2 maps (49,50). T2 mapping provides a measure of the apparent 

transverse relaxation time in milliseconds (ms) on a voxel by voxel basis. 

Measuring relaxation times instead of relying of image intensities as in T2w 
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imaging, is an ideal way to parameterize the anatomic images. The potential 

advantages result from the ability to use an absolute value for differentiating 

tissue and observing therapeutic effect.  When there is little normal tissue within 

a given image it becomes difficult to interpret abnormal regions based solely on 

signal intensity. Figure 2.2 shows two ways of achieving T2-maps of the prostate 

used in this research.  

The first method involved acquiring additional axial TSE data sets with 

echo times of 30, 74 and 144 ms. To accelerate acquisitions of these additional 

series, parallel imaging with an acceleration factor of 2 was used resulting in a 

scan time of 2:28s per series.  The mapping of T2 from these data was 

accomplished by methods previously described and validated by Liney et al. (51) 

and Gibbs et al.(52). Transverse relaxation rates were calculated through a semi-

logarithmic linear least squares fit to the signal intensity equation,  

 S = S0e
-TE
T2 (2.1) 

where S0 represents the signal at TE=0 ms (the proton density signal) and S is 

the signal intensity at a given TE from the multiple TSE datasets acquired at 

different echo times. The function LINFIT in IDL (ITT Boulder, CO) was used to 

compute this value. The T2-TSE mapping approach was chosen due to its 

acquisition and hence anatomical similarity to the T2-weighted acquisition. This is 

especially important during the transfer of pathology registered tumor regions 

from the T2-weighted image to the T2 map. The T2-TSE approach is also more 

time-efficient compared to the multiecho approach and as a result is less prone 

to motion artifacts. 

As an alternative to the T2 maps generated by the multiple TSE 

acquisitions described above, a spin echo multi-contrast (SEMC) acquisition was 

also obtained. In this type of sequence, the echoes of the spin echo train each 

contribute to a different image with varying T2-weighting. A total of 11 echoes 

were acquired thus giving rise to 11 images with echo times ranging from 13.3 to 
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154.1 ms. The disadvantage of this acquisition compared to the multiple TSE 

imaging series for generating T2 maps was a decrease in resolution and increase 

in scan time while the advantage was the freedom from motion artifacts between 

images of each echo time and the availability of more datasets for T2 

quantification. Because of the presence of more points along the T2 decay curve, 

a non-linear fit using the function CURVEFIT in IDL was used. It was important to 

remove the image generated from the first echo of the series as this first point 

exhibited non-monoexponential characteristics. The signal of the first point is a 

pure echo whereas signals acquired at subsequent TEs are composed of primary 

and stimulated echoes as the refocusing pulse flip angles are not exactly 180˚ 

due to B1 field inhomogeneities. This first point was not included as it would have 

led to an overestimation of T2 (53).  

2.2.5  T1-weighted imaging and mapping 

Figure 2.3 (a) T1-weighted image and T1 map (DESPOT1) (54) of the prostate. The units 
of the scale bars in are SI units (a) and ms (b).  

In this work, a T1-weighted Turbo Spin Echo (T1-TSE) sequence was used 

for the qualitative assessment of post-biopsy hemorrhage. While an effective 

means to avoid misreading the associated T2-weighted images, the use of the 

qualitative T1-weighted images, especially in the presence of an uncorrected 

sensitivity profile of the endorectal coil, are not reliable for use in the multi-
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parametric model development, therefore the generation of T1 maps was 

desired. T1 maps were generated using the 3D DESPOT1 (Driven Equilibrium 

Single Pulse Observation of T1) method (54). The data acquired was the same 

used for the DCE-MRI studies detailed below but with 4 averages and varying flip 

angles of 2, 5 10 and 12 degrees. In DESPOT1, the T1 is calculated by fitting the 

signal intensities obtained from the multiple flip angle images using the LINFIT 

function in IDL (ITT Boulder, CO). 

2.2.6  Maps of Apparent Diffusion Coefficient (ADC) 

Figure 2.4  Apparent Diffusion Coefficient (ADC) map of the prostate. This image was 
obtained with a diffusion weights (b) of 50, 400 and 800 s/mm2. Hypointense region 
(arrow) is indicative of restricted diffusion (cancer). Units of scale bar are in 10-6 mm2s-1. 

Diffusion Weighted Imaging (DWI) sequences are useful in measuring the 

restriction of diffusion in biological tissues and properties such as cellular density, 

membrane permeability and space between cells and thus can aid in 

distinguishing benign from malignant tissues. They have the combined 

advantages of short acquisition times and low technical demand for image post-

processing in comparison to DCE and MRS acquisitions. DWI images are 



17 

generally post-processed to obtain Apparent Diffusion Coefficient (ADC) maps 

(55) which are used to characterize the Brownian motion of water primarily from 

the extracellular and fluid filled compartments in tissue (56). Diffusion is more 

restricted in conditions of high cellular density. Tumor ADC values have been 

shown to be significantly lower than those found in normal prostate gland (57) 

due to the denser packing of cells and the loss of the normal ductal architecture 

in the prostate.  

ADC maps were generated from single shot EPI acquisitions with different 

diffusion weights characterized by their b values of 50, 400 and 800 s/mm2. 

These b values were chosen as there is historical precedence with the 

advantage of reducing the confounding effects of perfusion by avoiding b = 0 

s/mm2 (58,59) and the promise of adequate SNR by restricting the upper b-value 

to 800 s/mm2. ADC was calculated by linear fitting the data using the equation,  

 S(b) = S0e-b∙ADC (2.2) 

where the ADC is determined by finding the slope of the line fit to the natural log 

of the DWI signal intensities versus b-values. The ADC map was generated in 

the Siemens Trio Platform using the “3-Scan Trace” method. 

2.2.7  Dynamic Contrast Enhanced (DCE) Imaging 
The Dynamic Contrast Enhanced MRI (DCE-MRI) protocol involves the 

acquisition of images before and after the intravenous injection of the exogenous 

contrast agent. DCE-MRI provides information about neo-angiogenesis where 

cancer is typically found to have a faster uptake and higher permeability than 

healthy tissues (22). Angiogenesis is known to lead to varying combinations of 

increased blood flow, microvascular density and capillary leakiness in malignant 

lesions. Quantitative interpretation of DCE-MRI data, involves first converting the 

acquired dynamic signal intensity curves obtained during the typical dynamic 

acquisition into the gadolinium concentration curves. This method of assessing 
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microvascular changes in tumors employs pharmacokinetic models to determine 

the rate of exchange of contrast between plasma and the extravascular, 

extracellular space and allows specific quantitative vascular parameters, such as 

Ktrans, Kep, Ve and AUGC can be estimated. 

Ktrans (transfer constant) describes the diffusion of contrast agent from the 

intravascular space to the extravascular (interstitial) space and depends on the 

flow rate per unit volume, the permeability and the surface area of the tissue 

capillaries. This can be characterized by the wash-in of contrast to the tissue. Kep 

(rate constant) represents the leakage of contrast from the extravascular space 

to the blood plasma. Ve is an estimate of the extravascular extracellular volume 

also referred as the EES or interstitial space. AUGC stands for the Area Under 

the Gadolinium concentration curve (22). All of these parameters have been 

shown to be elevated in tumors. This quantitative approach has also been 

proposed to be more reproducible, enabling serial measurements of perfusion 

parameters over time to facilitate evaluation of treatment response (60). Figure 

2.5 shows the DCE-MRI maps for a prostate with tumor in right peripheral zone. 
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Figure 2.5 DCE-MRI maps of the prostate. Units of the scale bar are 10-3 × min-1 (Ktrans), 
10-3 × min-1(Kep) and 10-3 (Ve). Increased Ktrans (wash-in), Kep (wash-out) and AUGC (Area 
Under Gadolinium Concentration Curve) identifies area of cancer in these maps. 

The DCE-MRI data were acquired with a 3D T1-weighted gradient echo 

acquisition (i.e. 3D VIBE - Volume Interpolated Breathold Examination in the 

manufacturers’ lexicon). This sequence is referred to as T1w3D-GRE in Table 

2.2. In summary, the acquisition has a temporal resolution of 6 s and spatial 

resolution of 1x1x4 mm3. A total of 50 dynamics were acquired for a total 

acquisition time of 5 min. In the case that the calculated power deposition was 

too high for the acquisition, a slightly lower flip angle was prescribed until the 

sequence could run. Pharmacokinetic maps were generated by using a modified 

Tofts model (61) with a population averaged arterial input function (AIF) (62). The 

10-3min-1 10-3min-1 

10-3
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fitted model provided the following pharmacokinetic parameters: Ktrans (Forward 

Volume Transfer Constant, min-1), Kep (Reflux Rate between the Extracellular 

Space and the Plasma, min-1), Ve (Fractional Extravascular Extracellular Space, 

Ve = Ktrans/Kep) and AUGC (Area Under Gadolinium Curve). All analyses were 

carried out in IDL (ITT Boulder, CO) (63-65). 

2.3 Histopathology 

2.3.1  Surgical to Pathology Workflow 

After removal from the patient, the prostate is fixed with formalin and then gross 

sectioned to match, as close as possible, the MR imaging planes. For this 

purpose, a special sectioning box (Figure 2.6) was constructed and a sectioning 

protocol established (Figure 2.7 a, b).  After amputation of the seminal vesicles 

and vasa deferentia at the base and shaving off 1mm of the proximal urethral 

margin, the prostate was placed in the sectioning box so that the posterior 

surface of the prostate was approximately parallel to the bottom and the long axis 

of the box.  Vertical slits in the box, 3 mm apart, allowed the consistent parallel 

sections to be cut perpendicular to the posterior surface of the prostate with a 

thickness of 3 mm to match the orientation and thickness of the axial MRI slices.   
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Figure 2.6 Prostate sectioning box made of Acrylic and Teflon. The box is shown with a 
spherical prostate model and the movable walls on the left (WL) right (WR) and base 
(WB) are pushed in to hold the model securely. Each moveable wall is held in place with 
a locking screws SL, SR and SB, respectively. A standard pathology blade is inserted 
through the milled slits in the acrylic pieces that make up the left and right walls. Each 
successive axial cut through the prostate requires passing through the next slit in the 
side walls. The tolerance is such that the blade can only traverse through the 
corresponding slit on the opposite side. 
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Figure 2.7 Diagrams of pathologic sectioning protocol overlaid on a coronal (a) and axial 
(b) T2w image. After placing the prostate in the sectioning box, the first cut made is 
approximately 0.6 mm from the apex of the gland to create the apical section, with 
successive axial cuts 3mm apart moving towards the base. The axial cross-sections are 
designated by letters “A”, “B”, “C”, etc., depending on the size of the prostate, with “A” 
being the most apical slice.  Slices are divided into four quarters (b). Each quarter is 
labeled based on the letter of the slice from which it comes and its position in the slice 
(e.g. anterior/posterior = A/P and right/left = R/L). After removal from the box, the apical 
portion is sectioned in 2mm intervals with parallel cuts emanating from the urethra.  The 
sections near the urethra are labeled “RDUMA” (right distal urethral margin A) and 
“LDUMA” (left distal urethral margin A). The next two sections from the center are then 
labeled “RDUMB” and “LDUMB”, etc. This process continues out to the lateral margins 
of the apical section. Each slice section is then embedded in a paraffin block and one 4-
micrometer H&E-stained slide is prepared from each section and digitized. A pathologist 
then digitally annotates the prostate capsule (red contour) and cancer regions (brown 
contour) on each slide. 

2.3.2  Digitization 

Gross sectioned prostates were subjected to quarter mount histological section 

(QMHS) pathologic processing. Sections were paraffin embedded, Hematoxylin 
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and Eosin (H&E) stained, and cut at 4 μm thickness. H&E stained slides were 

digitized using a whole slide scanner (ScanScope CS, Aperio, Vista, CA). 

2.3.3  Annotation 
The prostate pseudo-capsule and tumor regions within the digitized sections 

were annotated by a board certified pathologist with 15 years’ experience, at 20X 

magnification (resolution 0.58μm per pixel) using a pen tablet screen (Cintiq 

21UX, Wacom, Kazo-shi, Saitama, Japan). 

2.3.4  Data Assembly 
Digitally annotated QMHS slides were then manually assembled into PWM by 

aligning the capsule annotations of the quartered pathology sections to form a 

continuous capsule while minimizing overlap of tissues between the combined 

sections.  Anatomic features in the pathology sections being assembled also 

aided in aligning the QMHS images (Figure 2.8 a, b).   

Figure 2.8 (a) Slides from a complete axial slice are then manually assembled into a 
PWM by aligning the capsule annotations of the quartered pathology sections to form a 
continuous capsule while minimizing the overlap of tissues between the combined 
sections (b). 
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Chapter 3 LATIS Registration 

This chapter is adapted with permission from the following publication: 

Kalavagunta, C., Zhou, X., Schmechel, S. C. and Metzger, G. J. (2014), 

Registration of in vivo prostate MRI and pseudo-whole mount histology using 

Local Affine Transformations guided by Internal Structures (LATIS). J. Magn. 

Reson. Imaging. doi: 10.1002/jmri.24629 

This was a collaborative project between Dr Greg Metzger, Dr. Xiangmin Zhou, 

Dr. Stephen Schmechel and me. My primary role in this project was the 

development of the Matlab software tools to obtain the necessary inputs for the 

registration process, perform the registration procedures, visualize the results, 

validate registration performance and enable the application of all registration 

results to pathologist annotated cancer regions. Implementation of these 

procedures and validation was a critical component of the MP-MRI model 

generation process discussed in Chapter 4. 
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3.1 Synopsis 

A novel registration approach called LATIS (Local Affine Transformation assisted 

by Internal Structures) for co-registering post prostatectomy pseudo-whole mount 

(PWM) pathological sections with in vivo MRI (Magnetic Resonance Imaging) 

images is presented. This study included thirty-five patients with biopsy-proven 

PCa that were imaged at 3T with an endorectal coil. Excised prostate specimens 

underwent quarter mount step-section pathologic processing, digitization, 

annotation and assembly into a PWM. Manually annotated macro-structures on 

both pathology and MRI were used to assist registration using a relaxed local 

affine transformation approximation. Registration accuracy was assessed by 

calculation of the dice similarity coefficient (DSC) between transformed and 

target capsule masks and least square distance between transformed and target 

landmark positions. LATIS registration resulted in a DSC value of 0.991±0.004 

and registration accuracy of 1.54±0.64 mm based on identified landmarks 

common to both datasets. Image registration performed without the use of 

internal structures led to an 87% increase in landmark based registration error. 

Derived transformation matrices were used to map regions of pathologically 

defined disease to MRI.LATIS was used to successfully co-register digital 

pathology with in vivo MRI to facilitate improved correlative studies between 

pathologically identified features of PCa and MP-MRI.  

3.2 Introduction 

Multi-parametric maps of anatomic, vascular and metabolic data of the prostate 

acquired using MP-MRI can yield improved discrimination of the extent and 

aggressiveness of PCa (66-68). An important step in developing and validating 

MP-MRI biomarkers to detect the extent and aggressiveness of PCa is the 

registration of in vivo MR images with histopathological sections obtained from 
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prostatectomy. This multi-modal registration would enable correlation of MRI with 

postoperative histopathological determination of extent and tumor grade, and 

ultimately the molecular assessment of aggressiveness.  

There has been much interest in the multi-modal co-registration of 

prostate MRI with other imaging modalities such as CT for treatment planning 

(69-72), ultrasound for guiding biopsies (73), and pathology for validation of 

cancer detection (74). With each combination of source and target data come 

unique challenges for the registration procedure.  In this work, the goal was to 

register in vivo MRI data obtained with a balloon-type endorectal coil (ERCinMR) 

with images of pseudo-whole mounts (PWM) constructed from quarter mount 

histologic sections.  

The prostate images from in vivo MRI and pathology possess different 

amounts of deformation/distortion with respect to each other.  For example, after 

digitally assembling quarter mount histological sections into a PWM, the resulting 

PWM is different from a true whole mount image in multiple ways, including: (a) 

the boundary shape of the prostate, (b) the unfilled space or gaps between the 

quarter mount histological sections, and (c) deformation/distortion of each 

individual quarter. Additionally, the difference between the ERCinMR and the 

tissue observed on pathology is a result of multiple factors, including:  (a) 

physical distortion of the prostate due to the presence of the inflated endorectal 

coil, (b) deformation of the tissue after excision and (c) shrinking of the tissue due 

to fixation. Without completely characterizing all the intermediate deformations, 

the registration procedure described in this work focuses on directly registering 

ERCinMR with PWM images due to the fact that both data sets are readily 

available, and characterization of the intermediate deformations are not easily 

obtainable. 

 LATIS is a technique that uses a relaxed Local Affine Transformation 

approximation assisted by the identification of large Internal Structures. In LATIS, 

the prostate capsule and large internal anatomic structures are used as 
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constraints for registration. This technique does not require the accurate 

definition of a set of multiple paired landmarks between the source and target 

data which are difficult to obtain in general and the basis for leading registration 

methods tackling similar problems. The large structures are, arguably, easier to 

manually identify on both pathology and MRI and provide a larger continuum of 

spatial information to guide the registration procedure. In this study, the ability of 

LATIS to co-register PWM and ERCinMR images is evaluated, and the use of 

this registration to map regions of pathologically identified cancer onto the in vivo 

MRI is demonstrated.   

3.3 Methods 

Data used in this study was obtained from patients with biopsy-proven prostate 

cancer (35 men, age range 50-73 years, mean age 62 years) after obtaining 

written signed consent for a study reviewed and approved by the local 

Institutional Review Board.  

3.3.1  In Vivo MR Data 
In vivo MR data was obtained from the T2-weighted (T2w) axial MR images. The 

axial images were positioned such that the slice plane passed perpendicular to 

the posterior surface of the prostate (See Chapter 2 Sections 2.2.1 to 2.2.3). 
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Figure 3.1 A schematic demonstrating the procedure to co-register pathology to T2w 
MRI using LATIS. First, the source (a) and target (b) images are segmented, scaled and 
translated. Second, the prostate capsule and internal structure masks are identified to 
constrain the pathology transformation. The source and target masks (d and e) are 
registered and a transformation matrix is obtained. Images (c) and (d) show the 
transformation flow matrix and applied deformation field respectively. Third, the 
transformation matrix is applied (red arrow) to the pathology (f) which places it in spatial 
correspondence to the T2w MRI resulting in (g).Lastly, applying the transformation matrix 
to each one of the annotated cancer regions (i) places them in the spatial framework of 
the anatomic T2w images (j).  

3.3.2  Pathology Data 
Excised prostates were formalin fixed, gross sectioned, paraffin embedded, cut 

at 3 μm, H&E  stained, digitized, annotated by  an  experienced  pathologist and 

assembled into a PWM. The sectioning protocol is shown in Figure 2.7 a and b. 
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based on a special sectioning box (Figure 2.6). Vertical slits in the box, 3 mm 

apart, allowed the consistent parallel sections to be cut perpendicular to the 

posterior surface of the prostate with a thickness of 3 mm to match the 

orientation and thickness of the axial ERCinMR slices. Positioning both the 

imaging and sectioning planes perpendicular to the posterior surface of the 

prostate was the method we used to get slices which matched as closely as 

possible. From the assembled PWM, binary masks of both annotated tumor 

regions and the prostate capsule were generated (Figure 3.1). For each patient, 

a single PWM at the center of the index lesion was chosen for registration 

(Chapter 2 Section 2.3). 

3.3.3  Image Registration 

In order to register the PWM (source image) to the ERCinMR (target image) 

(Figure 3.1), a transformation that can map the source image to the target image 

must be found. Since the source and target image belong to two completely 

different imaging modalities, a direct mapping relationship between these two 

images cannot be readily established without additional inputs or modifications. 

The first step in the process involved manually converting the source and target 

into tri-intensity grayscale images (Figure 3.1) such that the internal structures 

had a grayscale value of 128 and the rest of the prostate has a value of 255. This 

created the potential for developing a direct mapping between the two datasets. 

To register the two tri-intensity grayscale images, some assumptions are 

introduced:  

1. The 2-dimensional source and target images correspond to the same

cross-section of the prostate in terms of the position and the outward

normal direction.
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2. There exists a path-independent, unique mapping between the source and

the target image.

3. The image intensity between the source and target image is conserved.

These three assumptions are reasonable and can be easily satisfied in 

most cases. The first assumption is met by the standard data collection and 

sectioning protocols employed in this study. This condition is of the upmost 

importance because, as the source and target images diverge in terms of their 

spatial correspondence, there is decreasing benefit to perform the registration 

since the cancer region annotated in the source image cannot be guaranteed to 

exist in the target image. 

The second assumption establishes that the problem is well-posed. 

Supposing assumption No.1 holds, there exists a mapping relation between the 

source and target images as they both represent different realizations of the 

same cross-section of the prostate. Employing a linear approximation for the 

mapping will guarantee a unique and path-independent solution. The existence 

of a solution and its uniqueness establish that the problem is well-posed (75), 

hence the solution is guaranteed. 

The third assumption forms the basis for the image registration procedure. 

With assumption No. 1, both the source and the target images are referring to the 

same cross-section of the prostate but differ due to in-plane deformation. After 

converting the source and target images to the tri-grayscale-images, the intensity 

conservation principle (76) is readily applicable and a relationship can be 

established between the source and target images. With this established 

relationship, the mapping relation between the source and target image can 

subsequently be derived with the help of assumption No. 2. The derivation is 

shown in next section. In summary, although three assumptions were introduced, 

assumption No. 1 is the most fundamental. If assumption No. 1 is achievable, 
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assumptions No. 2 and 3 are imposed, both of which serve as a foundation for 

the following registration derivation.   

3.3.4  Theory 

Let I(x, y, t) be the intensity of an image, which is a function of space and time. 

When the source and the target tri-grayscale-images are treated as the images 

of a deforming prostate at two different time points, time is involved. Therefore, 

one can assign the source image at t1 and assign the target image at t2.  

Following assumption No.1, assumption No. 3 imposes the intensity conservation 

principle which implies that the total derivative of the intensity is invariant, i.e. 

 
(3.1) 

Expanding the left hand side (LHS) of the equation, it becomes 

 

(3.2) 

According to assumption No. 2, there exists a transformation such that the 

above equation (3.2) is satisfied. Since this exact transformation is unknown, the 

assumption of a local affine transformation is made between the source and 

target image, which is, 

 
(3.3) 

where  represents the source image at t1,  represents the target image 

at t2,  is the translation, and  is the rotational angle. And since the local 
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affine transformation is a proposed approximation, a more relaxed linear 

approximation can be adopted, namely, 

 
(3.4) 

which relaxes the  constraint between the transformation parameters 

. This linear approximation satisfies assumption No. 2. With 

respect to the approximation, there is no qualitative difference between equation 

(3.3) and equation (3.1) since they are both linear functions but, as shown in a 

later part of this section, it is desirable to select equation (3.1) over equation (3.3) 

to reduce the correlation between the transformation parameters resulting in a 

simpler solution procedure.  Substituting equation (3.1) into equation (3.2) leads 

to the LHS not being equal to zero because equation (3.1) is an approximation 

and an approximations result in errors. Therefore, locally, we have an error 

function in terms of  where , , and  are functions of , which  states 

that 

 (3.5) 

Now the objective of the registration process is to find a set of transformation 

parameters  such that error function e is equal to or is 

minimal with respect to zero. In order to seek the solution for the transformation 

parameters, a quadric error functional is constructed as  

 (3.6) 
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Further taking the variation of the quadratic functional, yields, 

(3.7) 

Since the transformation parameters are constants, the higher order terms 

vanish after taking the first variation of the  quadratic functional, i.e. , for all 

i > 1. And according to the Ekeland’s variational principle (77), there exist a 

solution for  such that  which corresponding to the minimization of the 

error function e. Since   is arbitrary and is not always equal to zero, the only 

possibility to yield  is that the following equation is always satisfied, 

 
(3.8) 

Where 

 (3.9) 

 (3.10) 

Therefore, the transformation parameters can be solved from the following 

equation 

 (3.11) 

where the resulting transformation parameters are the optimal solution satisfying 

equation (3.2) and subsequently, provides the transformation satisfying equation 

(3.1).  
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A pixel by pixel solution of the transformation parameters is 

computationally expensive and may be ill-posed in the sense of Hadamard(75). 

For reducing the computational cost, the transformation parameters can be 

solved weakly, i.e., for a neighborhood of n by n pixels,  

(3.12) 

where  represents the domain of the image and i and j are referring to the index 

of the pixels in the x and y directions, respectively. The image is broken up into a 

grid of these neighborhoods such that the larger the neighborhood, the coarser 

the grid. However, due to the properties of the tri-intensity grayscale images, 

equation (3.12) is ill-posed (non-invertible). This is because for the entire 

neighborhood of n by n pixels located within the same intensity grayscale region, 

we have 

 (3.13) 

and,  

 (3.14) 

In order to achieve a solution for equation (3.12), the matrix of the left hand side 

needs to be diagonally dominant. Thus, the following modifications can be made 

in equation (3.11) to add a diagonal matrix on both the left hand side and right 

hand side: 
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 (3.15) 

where  is a diagonal constant matrix with a reasonably large positive number for 

the diagonal elements and zeroes for the off-diagonals. Based on our 

experience, a kk=1010 is chosen. Since the same quantities are added equally 

on both side of the equation, it does not change or affect the solution of the 

original equation but makes it always solvable. Thus equation (3.11) becomes 

 (3.16) 

The fixed-point iteration method can now be readily employed for solving 

equation (3.16). Employing the fixed-point iteration method (49),  can be solved 

iteratively from 

 (3.17) 

with an initial guess of  when m=0 for the initial step. ` 

3.3.5  Multi-Resolution Optimization 

Two principle causes of potentially large deformations in local regions of the 

prostate between the PWM and ERCinMR images result from the sectioning and 

reassembly of the pathology specimens and the use of an ERC. The optimal 

neighborhood size, n x n, over which  needs to be solved is unknown. For 

neighborhoods too large, the accuracy of the registration would be insufficient, 

and for neighborhoods to small, the registration method would be ill-posed in the 
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sense of Hadamard (75). Therefore, instead of choosing a fixed neighborhood 

size, a multi-resolution optimization strategy is employed. 

The idea behind the method of multi-resolution optimization for registration 

is that the starting grid of neighborhoods covering the image is small (low 

resolution) while as the optimization progresses the resolution of the grid 

increases (i.e. decreasing neighborhood size).  The solution in each step in the 

progression of the grid refinement provides an improved initial guess for the 

subsequent higher resolution grid. In the course of registering PWM to the 

ERCinMR image, a sequence of 2n grids are used, where n is equal to 0, 1, 2 ... 

etc. The final transformation is the accumulated transformation of the multiple 

steps with the criteria to stop the refinement of the grid mesh being when the L2-

norm of the displacement between step n and step n+1 is less than 0.1 pixels. 

3.3.6  Registration Procedure 

The image registration workflow for a sample case is shown in the Figure 3.1. 

After choosing the assembled pathology PWM slice, the corresponding target 

T2w ERCinMR slice was identified by choosing a slice at the same approximate 

position from the apex and verifying the existence of similar anatomic features. 

The source (PWM) is shown in Figure 3.1.1a. The target (ERCinMR, T2w) is 

shown in Figure 3.1.1b. The prostate region in the ERCinMR image was 

extracted masking with capsule contours drawn in a semi-automated 

segmentation program (Segasist, Ontario, Canada) by an experienced prostate 

MRI researcher (GJM). The PWM images were also masked by the combined 

capsule annotations defined by the study pathologist (SCS).  The masked 

ERCinMR image was upsampled to 512×512, to match the matrix size of the 

PWM, and translated to achieve a greater than 50% overlap with the masked 

PWM.  New annotation regions defining the easily identifiable large internal 
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structures for the PWM data were generated while simultaneously annotating 

similar structures on the ERCinMR. These internal structures were defined by a 

number of identifiable features including the central gland-peripheral zone 

boundary, transition zone, apex-semicircular sphincter and bilateral nodules of 

benign prostatic hypertrophy.  These images were converted into tri-intensity 

(White = 255, Black = 0, Gray = 128) grayscale source and target images 

(Figures 3.2a and 3.2b) where the white regions delineate the internal structures. 

Using the pre-defined controls (large internal structures and prostate boundary) 

found in the source and target, LATIS was used to register the two images. The 

local affine transformation component of the registration procedure was adapted 

from methods originally published by Periaswamy and Farid (78-80). The 

application of the final transformation matrix to the masked grayscale PWM 

image (Figure 3.1.3a) and the resulting warped source image (Figure 3.1.3b) is 

shown.  The application of the final transformation matrix warping the tumor 

region masks from the PWM to the ERCinMR can be seen in Figures 3.1.4 a and 

b. Other than where specifically stated, the registration steps and the

visualization of results were performed in Matlab (MathWorks, MA, USA) running 

on a Windows 2.80 GHz Intel i5 CPU machine with 12 GB RAM. 

3.3.7  Analysis 

Two metrics were used to evaluate the accuracy of the registration methods. The 

first method was the Dice similarity coefficient (DSC) which measures the overlap 

between the target and registered source. The DSC for two images A and B is 

defined as the intersection of the two images divided by the mean sum of the 

images 
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Dice Similarity Coefficient = (3.18) 

The second validation method involved identifying identical landmarks by visual 

inspection on both the native PWM and ERCinMR images. The process of 

identifying landmarks was independently performed by two experienced prostate 

researchers with four (CK) and eleven years (GJM) experience. The landmarks 

selected were also done so independently from the large internal structures used 

for registration. Landmark positions on the PWM were masked using circular 

ROIs (radius, 8 pixels, pixel size = 0.54 mm) to give a feature marked PWM 

(fmPWM) image. A circular area of this magnitude was chosen to easily identify 

the feature in the downscaled registered source. The transformation matrix, 

obtained earlier for this case, was applied to the fmPWM image and transformed 

pixel positions were obtained from the registered fmPWM image. Target 

registration error (TRE) in mm was calculated using the root mean squared 

distance between the transformed pixel positions from the fmPWM and the target 

pixel position on the ERCinMR. For the thirty five cases, landmarks for the 

registration accuracy calculation were drawn and a total of 103 such landmarks 

were identified by the two observers for error analysis.  To ascertain the impact 

of the internal structures as a guide for image registration, these thirty five cases 

were again registered without using internal structures and the registration 

accuracy assessed. The source and target images in this case were the masked 

PWM and ERCinMR capsule masks.  

3.3.8  Statistical Analysis 

The average TRE and DSC are reported as the mean ± standard deviation and 

were calculated using Matlab (MathWorks, MA, USA). A p-value <0.005 was 
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considered statistically significant when evaluating the difference in registration 

accuracy with and without the use of internal structures. The p-value analysis 

was performed in OriginLab 9.0 (Origin Lab Corporation, USA).  

3.4 Results 

Five representative cases are provided in Figure 3.2. The assembled PWM 

images are shown with the annotated tumor regions and cropped to the capsule 

borders by using the combined capsule annotations created by the study 

pathologist. LATIS was used to register the PWM data to the ERCinMR. The 

transformation  was then used to warp all annotated cancer regions from the 

assembled pathology to MRI (Figure 3.2 Column b).  The registration calculation 

per case took on the order of 11 minutes. 

The mean DSC after registration was 0.991±0.004 which represents 

nearly total correspondence by this metric after registration. The mean, minimum, 

maximum and standard deviation of the registration error based on the landmark 

method are given in Table 3.1. The average overall registration error was 

1.54±0.64 mm when using internal structures and 2.92±1.76 mm without internal 

structures, a statistically significant increase in registration error of 87% in the 

absence of additional information to guide registration (p < 0.0001). An example 

of the landmark registration accuracy assessment is shown in Figure 3.3. 



40 

Figure 3.2 Registration results. Column ‘a’ shows the masked PWM with annotated 
tumor regions. Column ‘b’ shows the registered tumor regions overlaid on the ERCinMR. 
Column ‘c’ shows the original ERCinMR. 
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Figure 3.3  Registration accuracy metric calculation workflow - (a) Feature marked 
masked PWM. (b) Corresponding features on ERCinMR. (c) Warped feature embedded 
masked PWM. (d) Feature embedded masked ERCinMR. 
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Table 3.1 Multi–user registration accuracy metric statistics 

3.5 Discussion 

A registration approach using a relaxed local affine transformation approximation, 

assisted by large internal structures as constraints to improve registration 

accuracy, has been  presented for co-registering post prostatectomy pseudo-

whole mount pathological sections with T2-weighted in vivo MRI images obtained 

with an ERC. In this study, slides made from quarter mount histologic sections 

were used to generate the PWM images as the ability to section, store and 

digitize whole mount data does not exist at our institution. Many institutions find 

themselves with similar limitations in terms of processing the excised prostate, 

therefore the methods presented here are very relevant for MRI studies wanting 

to use correlative pathology for identifying and validating MRI biomarkers for 

prostate cancer detection and grading.  

3.5.1  Registration Methods 

The registration between prostate histopathology and MRI images belongs to the 

category of multi-modal registration. Previous work in this area has investigated 

registering whole mount pathology (WM) to in vivo MRI  (inMR) acquired without 

an ERC (74), in vivo MRI  acquired with an ERC (ERCinMR) (81-86) and ex vivo 
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MRI (exMR, paraformaldehyde fixed prostatectomy specimen)  (86-88). While 

less prevalent in the literature, registration with PWM pathology has also been 

performed with exMR (81,89-91), inMR acquired without an ERC and inMR (85) 

acquired with an ERC (92).  

Two dominant approaches exist in published literature addressing the 

registration of pathology to MRI; the thin plate spline (TPS)-based (74,81,83-

86,89,90,93) and B-spline (BSp)-based (87,94,95) methods. The TPS approach 

utilizes pre-defined control point pairs identified from different images to warp the 

source image to the target image using a multidimensional interpolation method 

(93). The result of the TPS-based methods is highly dependent on the manual 

selection of the control point pairs, which requires knowledge of the control point 

locations and distributions in both images. Such information may not be readily 

available in all the cases within the ERCinMR and PWM images.  Also, since 

each pair of control points in the TPS method influences the entire image, this 

method assumes continuous source and target images, smooth deformation and 

distribution of control points over the entire image. Such assumptions are not 

valid for the PWM images used in this study. 

In contrast to the TPS-based approach, the influence of the control points 

for the BSp-based approach is localized especially when it is combined with free 

form deformation (FFD) (94). With the FFD BSp approach, each control point is 

predominately influenced by the neighboring grid tiles. This feature makes it 

suitable for registering the WM to both exMR and inMR images as well as the 

WM to the ERCinMR images. The BSp approach however, provides a smooth 

and continuous deformation field and thus is far from ideal for directly registering 

PWM to ERCinMR.  

Some studies have used mutual information (MI) as an alignment 

measure (82,91,92,96-100). MI has been specifically designed to address 

registration of multi-modal data (100) and is based on information theory (99). 

The robustness of the MI approach for dissimilar modalities can be enhanced via 
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the combined feature ensemble mutual information (COFEMI) technique which 

incorporates additional information for one of the modalities in the form of image 

features (91). The robustness and the results of this technique are highly 

dependent on the selection of the image features. The MI-based approach 

incorporated by the COFEMI technique has been used for registering WM to both 

exMR and inMR images (91) while the Spatial Weighting Mutual Information 

(SWMI) technique has been used for registering PWM to ERCinMR images (92), 

addressing the same problem focused on in the current study. While the SWMI 

work addressed the same challenging problem of registering in vivo MRI with 

PWM data presented in this work, only a limited number of cases were 

demonstrated.  While the SWMI method doesn’t require the identification of the 

capsule border it also demonstrated lower registration accuracy compared to 

LATIS with a DSC of 0.83 on average. 

Given the scope of registration problems best handled by the previously 

described methods, we desired a new approach which was more appropriate to 

register PWM and ERCinMR and required a minimum amount of a priori 

information. First of all, the existing methods available in the literature required 

an investigator, or sometimes feature recognition software, to identify sufficient 

numbers and distributions of control points to guide the registration between the 

histopathological and MRI images. Recognizing the fact that registration between 

two images requires some pre-defined controls, we observed that there were 

clearly some features that could be defined with reasonable precision. One 

feature was the prostate boundary and the others were larger internal structures 

like the central gland-peripheral zone boundary, transition zone, apex-

semicircular sphincter and bilateral nodules of benign prostatic hypertrophy. This 

addressed the challenge of identifying numerous control points with exact spatial 

correspondence between the source and target images as required by the BSp 

and TPS methods. Identification of landmarks was often difficult and the number 

of points would have been insufficient for guiding registration. The difficulty of 
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selecting spatially corresponding control points is evidenced by the large 

discrepancy between the number of points the two researchers selected for 

determination of registration accuracy. However, the identification of larger 

anatomic structures was always possible in our test cases. 

The second issue with the aforementioned methods was the underlying 

assumption of a continuous deformation field which is less appropriate when 

registration involves PWM data. Therefore, we developed a method based on the 

invariance of the image intensity function, which does not require the assumption 

of continuous deformation fields. This feature makes the resulting method 

suitable to handle the local distortions that lie within the PWM images such as 

the unfilled space or gaps between the QMHS. 

To address the discontinuous nature of the reassembled PWM images 

and to overcome the overall challenge of multi-modal registration, tri-intensity 

masks of both datasets taking into account the prostate border and large internal 

structures were used as the source and target images for registration.  While not 

the focus of this work, it could easily be envisioned that BSp and TPS could be 

used for registering the tri-intensity images in place of the local affine 

transformation chosen here however, the identification and selection of control 

points would still be necessary and a limiting factor to their successful 

implementation.  

3.5.2  Registration and Pathology Limitations 

Both LATIS, and the other referenced registration studies, have addressed a two-

dimensional registration problem. Therefore, an important requirement (i.e. the 

first assumption in LATIS) is that the source and target images originate from the 

same plane through the prostate. Even with careful attention to the sectioning 

protocol multiple factors can lead to axial planes which do not match between the 
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MRI and pathology, including non-linear shrinking of the tissue during fixation. 

This lack of correspondence would further complicate, if not eliminate, the 

possibility to find features for guiding registration.  The selection of control points 

used by TPS and BSp based on small structural features would arguably be the 

most affected. However, LATIS may be less sensitive to the same offsets due to 

the persistence of larger structural features through plane. The influence of both 

through-plane offsets and in-plane registration errors must be considered when 

evaluating the registration accuracy of annotated cancer regions from pathology 

to imaging.  The relative impact of any error would be greater for smaller areas of 

disease. 

 Additional limitations exist in the most apical and basal regions. As 

described in the sectioning protocol, the most apical section of the prostate is 

removed and cut in the sagittal orientation. Using LATIS in this orientation has 

not been explored to date. One obvious limitation is the absence of a complete 

capsule contour. In the base, several aspects of the sectioning protocol and the 

anatomy make identification of the prostatic capsule and assembly of the PWM 

difficult including, the ambiguous prostate-bladder border, amputation of the 

seminal vesicles and vasa deferentia at the base and shaving of the proximal 

urethral margin to a thickness prior to placement in the sectioning box. The end 

result is the absence of a well-defined capsule in the most basal slices which 

makes them difficult to handle with the proposed methods. 

Despite the previously described limitations, the sectioning protocol and 

registration methods have proven to be relatively robust in the cases studied to 

date.  In general, less than 15% of cases handled in our lab needed to be 

excluded from registration due to mismatches in slice orientation (i.e. an obvious 

violation of assumption No. 1) and  less than 3% of cases had to be excluded 

due to index lesions too for inferior or superior in the prostate. 
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3.5.3  Assessment of Registration Error 

The assessment of image registration accuracy in literature has been has been 

accomplished using a variety of error metrics. In the present study registration 

accuracy was calculated using 1) the dice similarity as a “global” metric for 

characterizing the registration of the tri-intensity images (i.e. capsule and large 

internal structures) and 2) corresponding landmarks identified manually in both 

source and target images to characterize registration accuracy of internal 

features of the prostate. Similar methods have been used in the literature to 

assess registration accuracy (101-109). 

The need to perform accurate registration between PWM and ERCinMR 

stems from the desire to use pathological results as the ground truth for 

interpreting the MRI results for determining the extent and aggressiveness of 

disease. A “perfect” registration would permit a reliable pixel–wise analysis of 

MRI with  respect to histopathology however, the ability to approach this ideal 

correspondence is difficult due to the complexity of the distortions and the limited 

information available to correct for them. To improve our registration method, 

future implementations could incorporate other MRI visible structures like the 

urethra.  The LATIS approach could also serve as a baseline method in a 

cascaded registration procedure, where additional registration steps 

incorporating other previously proposed strategies and information may be used 

to further improve the correspondence of salient features between the datasets. 

Using LATIS would be a valuable first step for the reasons stated above, 

including that 1) it relies on the selection of large structures rather than specific 

points which makes it more robust in cases where the prostate slicing and MRI 

imaging plane are not exactly the same, 2) it does not rely on image intensity 

from the multi-modal data and 3) it does not assume a smooth continuous 

deformation field, an assumption, which is violated in the case of the PWM data. 
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In the future improved error metrics for assessing registration accuracy 

would also be desired in order to compare LATIS with other registration methods 

and potentially cascaded approaches. Potentially this is possible by acquiring 

additional information in the process of generating the PWM and acquiring the 

ERCinMR data such as images of the gross pathology sections cut into quarters 

prior to paraffin embedding and imaging of the prostate after excision and before 

sectioning (exMR). The intermediate exMR acquisition step is useful because of 

similarity of MR signal intensities between exMR and ERCinMR images and 

superior axial resolution of the exMR scan excision of the tumor enabling 

accurate registration with PWM. This information may help elucidate the 

deformations present between the source PWM data and the target ERCinMR 

and provide a more complete characterization of the deformations to better 

evaluate other strategies which do not require the labor and time to acquire the 

additional data.  

In conclusion, the main geometric issues in histopathology-MR image 

registration are the distortions resulting from the use of an endorectal coil when 

acquiring the inMR data, the deformation due to removal, and fixation and 

distortion of individual QMHS which result in discontinuities in the final 

assembled PWM. In this work, this registration problem is addressed by using 

LATIS which involves identifying large internal structures along with the prostate 

boundary to guide registration. While the method to assess the registration 

accuracy was subjective, it is an important first step in the validation of the 

technique.   
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Chapter 4 Developing MP-MRI Cancer 
Predictive Models using Co-registered 
regions of Defined Disease  
This was a collaborative project primarily between Dr. Greg Metzger, Dr. Joseph 

Koopmeiners, Dr. Stephen Schmechel and me. My contribution consisted of 

assisting in scanning 70 clinical subjects and developing the analysis workflow 

which involves coordination, analysis and manipulation of: 

1. MRI DICOM images obtained on the scanner.

2. Anatomic and molecular digital pathology data stored on Aperio Servers at

the hospital.

3. Intermediate data generated within Matlab.

I incorporated a unified visualization environment based on OsiriX into the 

workflow as current analysis and visualization tools were found insufficient to 

handle the types of data required for MP-MRI model generation. This enabled 

simultaneous visualization of all derived MRI datasets, import and manipulation 

of registered areas of annotated cancer and generation of ROI location reports 

for subsequent analysis against co-registered pathologic markers. I generated all 

co-registered pathology cancer and non-cancer data used in the MP-MRI model 

and manipulated the statistical processing code in R statistical environment (110) 

to generate the different MP-MRI model results. 

4.1 Introduction 

In this chapter, the development of multiparametric models will be addressed for 

cancer detection from the quantitative data described in Chapter 2. Compared to 

the use of individual MRI datasets, multiparametric MRI (MP-MRI) models have 

also shown promise for improving PCa detection (41-47). The most relevant 
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previous studies are summarized in Table 4.1 and characterized by the following: 

the types of MRI datasets used, whether these were qualitatively or quantitatively 

evaluated, identifies which were region or voxel based, the type of pathologic 

“Gold Standard” used (i.e. biopsy or post-prostatectomy) and the target outcome 

(i.e. detection or grade). Langer et al. (41) constructed a 3 parameter logistic 

regression based model for mapping peripheral zone (PZ) tumors using ADC 

(Apparent Diffusion Coefficient), T2 and Ktrans at 1.5T. Matulewicz et al. (42) used 

an artificial neural network (ANN) model for automatic detection of cancerous 

voxels in the prostate from 1H-MRSI datasets at 1.5T. Poulakis et al. (46) 

developed an ANN model for predicting biochemical recurrence based on the 

pelvic coil MRI, PSA measurement, and biopsy Gleason score, after radical 

prostatectomy at 1T. Puech et al. (47) used generalized estimating equations 

(GEEs) to construct a computer assisted diagnosis (CAD) software capable of 

generating a standardized cancer suspicion score for suspicious foci detected in 

DCE-MRI T1-w images obtained at 1.5T. Anderson et al. (43) combined logistic 

regression and nearest neighbor classification to generate an  augmented model 

using DCE, DW (Diffusion Weighted) and MRSI (Magnetic Resonance 

Spectroscopy Imaging) datasets to predict PCa in the whole prostate. Litjens et 

al. (45) developed a Random Forest Classifier based CAD system to detect PCa 

in the whole prostate at 3T. Finally, Delongchamps et al. (44) used combinations 

of T2-weighted imaging, DCE and DWI for the detection of PCa in the whole 

prostate at 1.5T.  

The process of assessing -MP-MRI’s ability to predict disease is 

determined through correlation with a pathologic Gold Standard. This correlation 

involves mapping the information from pathology (i.e. grade and location of 

identified disease) onto the MRI data and has been accomplished through a 

variety of methods in the literature:  manual mapping of regions of interest (ROIs) 

(41); visual mapping of sextants (42) or octants (43,44); mapping locations of 

graded MR guided biopsy specimens (45) or calculated Gleason scores 
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(43,46,47). The process of correlating manually drawn regions of interest (ROIs) 

(41) on the MRI corresponding to identified areas of disease on pathology 

introduces potential biases of both ROI drawing and placement.  Studies that use 

pathology mapped regions  in the form of sextants(42) or octants (43,44) are 

limited due to the loss of underlying voxel heterogeneity. The limitations of these 

methods are addressed in the current methods where a direct mapping of 

digitally annotated regions of graded disease are mapped to the MRI image 

using LATIS, detailed in Chapter 3 (48).  
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In comparison to the studies mentioned in Table 4.1, this chapter presents a 

predictive model building approach that offers the following distinct advantages 

that stem from the use of co-registered pathology data. 

1. Reduce pathology correlation bias: The use of directly mapped co-registered

regions of Post PPP onto in-vivo MP-MRI images is free from biases outlined

above.

2. A pixel-wise analysis approach that allows investigation of apparent non-

coincidence of quantitative MR (qMR) parameters.

3.  All data use in the modeling is quantitative with the potential to apply

prospectively to MP-MRI data acquired without any quantitative assessment 

or interaction. 

4. All lesions with volumes greater than 0.19 cc (maximum volume 17cc) were

included in the modeling thus not limiting the results to the detection of large

volumes of disease.

5. A separate model is presented for discriminating cancer from non-cancerous

central gland tissue.

6. Inclusion of all pixels from the prostate – both from cancer and non-cancer

allows this model to approach an ideal situation where all available input data

is used for model generation. This also allows the full heterogeneity of both

cancerous and non-cancerous regions to be accommodated in the model and

more closely represent the type of data a model would have to handle when

applied in a clinical setting.

In this chapter we develop and validate several models for MP-MRI PCa 

detection in the whole prostate, central gland (CG) and peripheral zone (PZ) 

using voxel-wise post prostatectomy pathology (PPP) registered cancer and non-

cancer data obtained zonally or from the whole prostate. 
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4.2 Methods 

Figure 4.1 Process of acquiring data for predictive model generation. 

From the patient studies defined in Chapter 3 Section 3.1, input data (i.e. 

MP-MRI data) and output data (i.e. pathology data) were defined for 

development of predictive models. This process is outlined in Figure 4.1 and 

provided below: 

1. Assemble the annotated PWM pathology data into volumes and combined

capsule annotations and cancer annotations into lesions.

2. Identify coincident slices between anatomic T2w MRI and pathology for

registration.
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3. Define the pseudo-capsule border and division between the PZ and CG on

the anatomic T2w Images.

4. For a given slice pair (i.e. MRI and pathology), perform LATIS deformable

registration using the capsules and large internal structures defined on both

pathology and T2w images.

5. Map areas of cancer from pathology onto anatomic MRI.

6. Using the mapped areas of disease classify all voxels in the anatomic T2w

MRI slice as non-cancer PZ, non-cancer CG or PCa.

7. Map this voxel classification from the T2w anatomic MRI to the interpolated

quantitative MRI (qMR) datasets accounting for any motion either through-

plane or in-plane using a manual rigid body approximation within OsiriX.

8. Extract all qMR from non-cancer and cancer regions for use in developing the

predictive models.

9. Perform LASSO regression on subsets of the data to develop regions specific

or whole organ predictors for prostate cancer detection.

4.2.1 Data for Model Development 
Annotations of cancer were defined by a study pathologist on the digitized 

pathology as detailed in Chapter 2 Section 2.3.3.  The annotated slides were 

assembled into pseudo-whole mounts and then into complete prostates.  This 

volumetric reassembly allowed continuous volumes of cancer to be linked 

together and defined as lesions. A given lesion can be characterized by its size 

given in units of cm3 by standard methods knowing the resolution of the digitized 

pathology, knowledge of the pathologic block thickness and accounting for a 

shrinkage factor of 25% (111). For a given prostate, the lesion with the highest 

grade or largest volume was identified as an index lesion (IL). Any other 

significant volume of disease identified in the prostate were also identified as 

secondary (SL) or tertiary (TL) lesions based on decreasing grade/volume. 
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The MRI slice location corresponding to the center of the cancer lesion 

defined on pathology was determined by verifying the approximate distance from 

the apex and existence of similar anatomic features. Annotated regions of cancer 

from pathology were then registered to the corresponding anatomic T2w image 

using LATIS (Chapter 4(48)) which has been demonstrated to have a registration 

accuracy of 1.54±0.64mm and a Dice Similarity Coefficient of 0.991±0.004.  

The goal at this point is to define the following regions: non-cancer PZ 

(NCPZ), non-cancer CG (NCCG), cancer PZ (PCPZ) and cancer CG (PCCG). This 

process requires several steps.  First, the anatomic T2w images were further 

segmented into two regions (i.e. CG and PZ) using a semi-automated 

segmentation program (Segasist, Ontario, Canada). To generate the non-cancer 

regions, all registered cancer masks were first subtracted from the prostate’s 

pseudo-capsule mask determined from the anatomic T2w data.  The cancer 

masks were first dilated by 3 pixels (~1.5 mm) before subtraction to 

accommodate for mis-registration. The NCCG was then given as the intersection 

of the prostates pseudo-capsule (eroded by 1 pixel) minus the regions of cancer 

and the segmented CG region.  The NCPZ region was the remainder of the voxels 

from the eroded and cancer subtracted pseudo-capsule. Figure 4.2 (a, b, c) 

shows three examples of how these regions are defined in the prostate for 

various cases.  

Next, these regions, and the voxels within them, need to be identified on 

all the qMR datasets.  As there is a possibility of motion between scans during an 

MP-MRI study, accommodations had to be made to shift the regions detailed 

above. As methods to register between the MP-MRI datasets are not yet 

developed, a rigid body deformation was assumed to map the regions from the 

T2w anatomic series to the qMR data.  The through-plane (12/124) shifting and 

in-plane (35/124) translation  for qMR data sets was manually determined to 

correct for changes due to patient motion and EPI distortion. This was done 

using OsiriX (Pixmeo, Geneva, Switzerland) software, where all qMR data sets 
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along with the anatomic T2w data with registered cancer regions could be 

displayed simultaneously. Internal features and the borders of the prostate were 

used to determine proper adjustment on each qMR dataset. 

Figure 4.2 Visualization of cancer and non-cancer regions used in model generation 
from four patients on the un-interpolated T2w anatomic images. PCa is confined to (a) 
CG only (b) PZ only (c) both CG and PZ. (d) shows an example of a non-cancer user 
defined ROI in the CG (NCCG-ROI). PC stands for Pseudo Capsule. The CG (green) and 
PZ (yellow) annotations provided the original segmentation of the two prostatic regions. 
These annotations are mostly overlapped by the other annotation therefore they only 
appear as broken curves in this figure. 

4.2.2  Non-cancer from user defined ROIs 
Non-cancer regions determined from the process above included all non-

cancer pixels from the transverse slice of the prostate which intersected the 
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center of the lesion of interest.  Especially for CG, this presents a real challenge 

both because of the abundance of benign disease but also due to the inclusion of 

the urethra and the fibromuscular cap which have qMR characteristics similar to 

cancer even when healthy.  To explore the impact of non-cancer voxel selection 

on the predictive models, a separate set of non-cancer CG data was identified 

from user defined ROIs. These regions, referred to as NCCG-ROI, were at least 9 

mm away from cancer and avoided the urethra and fibromuscular cap.   

4.2.3  Predictive Modeling 

Table 4.2 Characteristics of data pool (number, name, origin and type of cancer and 
non-cancer data) used in model generation. 

Based on the different combinations of cancer and non-cancer ROIs 

available, four pools of data were generated as shown in Table 4.2. Pool I and II 

enabled detection of cancer from non-cancer in the PZ and CG, respectively. 

Pool III was created to predict cancer from non-cancer across the whole prostate 

irrespective of zone. Because the CG data in pools I through III were derived 

from all pixels outside the PZ but in the prostate, it included structures such as 

the urethra and anterior fibromuscular cap.  To investigate how the CG voxel 
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selection impacted the model development, another data pool (IV) was 

constructed using NCCG-ROI data.  

Data pools (I-IV) were filtered to exclude zero voxels from failed 

parametric mapping, primarily from the DCE-MRI and T2 mapping datasets. The 

remaining voxels were used to generate cancer and non-cancer median values 

for each qMR parameter, the correlation between qMR parameters, ROC 

analysis results for each parameter and ROC analysis results for models based 

on combinations of the parameters. A p-value comparing the composite marker 

to the single best marker was also calculated. One-sided p-values were reported 

instead of two-sided p-values to show the performance of multiple markers 

compared to a single marker. 

All predictive models were run on only those subjects with complete 

records for all the qMR parameters. The classification accuracy of various 

approaches (Logistic regression, Generalized Estimating Equations, Naive Bayes 

Classifier, Support Vector Machines and Least Absolute Shrinkage and Selection 

Operator (LASSO) (112) in PCa prediction was tested on Data Pool I and was 

compared with that obtained from an individual qMR parameter (ADC). This 

comparison was done for each approach using all 9 parameters (ADC, T2-TSE, 

T2-SEMC, T1-DESPOT1, T1-TSE, Ktrans, Kep and AUGC) and a 5 parameter 

subset comprised of (ADC, T2-TSE, Ktrans, Kep and AUGC). Receiver Operator 

Characteristic (ROC) based Area Under ROC curve (AUC) and ROC (0.1) 

(Sensitivity corresponding to 90% Specificity) statistics were calculated for each 

approach. Based on the results of this comparison we chose a LASSO method 

based modelling approach (112).  
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Table 4.3 Classification accuracy summaries for various modeling approaches used to 
develop a MP-MRI model for predicting PCa using cancer and non-cancer data in the 
peripheral zone only (Data Pool I). The LASSO 5 parameter approach was chosen 
based on these results. 

Feature selection and modeling was performed by logistic regression with 

the LASSO method run in RStudio (113) utilizing the R statistical environment 

(110) . All statistical analysis was done using standard R packages such MASS 
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(114), geepack (9,14,115), e1071 (22), kernlab (116), rje (117), pROC (13) and 

ROCR (10). After the initial training and validation sets were established forward 

stepwise selection was performed using leave one out cross validation to select 

the optimum subset of the 8 qMR parameters. The optimum subset LASSO 

model was applied to all the data pools (I-IV). For each pool, the corresponding 

best LASSO model was called L#P_PZ, L#P_ALL, L#P_CG, L#P_CGROI 

respectively where # is the optimum number of qMR parameters. Bootstrap 

methods were used in R for computing standard errors and confidence intervals.    

For each data pool, ROC curve plot showing the best LASSO model along 

with best performing single predictor was generated. The ROC0.1 (sensitivity 

corresponding to 90% specificity) cutoff value was also shown on the plot. Using 

the ROC0.1 cutoff, plots of sensitivity of each model for each cancer region versus 

the number of voxels in the cancer region were generated. A composite 

biomarker score (CBS) for each pixel in the cancer region was generated based 

on the linear regression coefficient output from the model, such that,  
  =  (4.1) 

Where ß0 and ßqMR are the LASSO model output linear regression coefficients for 

respective qMR parameters and n is the optimum number of qMR parameters 

needed to create the best performing model. The sensitivity of the model per 

cancer region was calculated by dividing the number of voxels whose CBS was 

greater than the ROC0.1 cutoff (model predicted cancer) by the total number of 

voxels (true positives) in the cancer region. The specificity of the model per non 

cancer region was calculated by dividing the number of voxels whose CBS was 

less than the ROC0.1 cutoff value (model predicted non-cancer) by the total 

number of voxels (true negatives) in the non-cancer region. This method of 

visualizing region-wise sensitivity and specificity was useful in assessing the 

performance of the model based on the size of the cancer/non-cancer region. 
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Image registration and qMR parameter dataset generation was done using 

the Matlab (MathWorks, Natick, MA). ROC Curves were plotted in Origin 

(OriginLab, Northampton, MA). Sensitivity per cancer region and specificity per 

non cancer region plots were generated in Microsoft Excel 2010. 

4.3 Results 

The total number of cancer and non-cancer voxels per data pool are tabulated in 

table 4.4. Median, maximum and minimum values of qMR data from the four data 

pools used for model generation are summarized in Table 4.5. Correlation 

between qMR parameters was, in general, weak, with the highest correlation 

seen between DCE-MRI parameters. Correlation coefficients among the DCE-

MRI ranged from r = 0.92 between Ktrans and AUGC, r = 0.68 between Kep and 

Ktrans (r = 0.68) and r = 0.52 between Kep and AUGC where r is the correlation 

coefficient. 

Table 4.4  Total number of cancer and non-cancer voxels from each data pool used for 
Single Predictor (SP) and Multi Predictor (MP) model generation. The difference in the 
number of initial and final cancer and non-cancer MP voxels in CG, ALL and CGROI pools 
is due to a sampling cutoff of 200 voxels from each region used in the R code for faster 
processing. A comparison of the results obtained using all voxels with those obtained 
using a 200 voxels cutoff showed no difference.  
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Table 4.5 Median, 95% confidence intervals for qMR cancer and non-cancer values 
from data pools used in 5 parameter model generation. Also shown are the p values 
showing whether cancer qMR values are statistically significant from non-cancer values.  

Figures 4.3,4.4,4.5 and 4.6 show the results for LASSO models applied to data 

pools I to IV respectively. Each figure includes:  

a) A Receiver Operator Characteristic (ROC) curve for the best performing

LASSO model and single predictor.

b) Table showing AUC and ROC0.1 values for each individual predictor and

optimum parameter subset based on stepwise addition of significant qMR

parameters for each LASSO model.

c) Sensitivity per cancer region plotted vs. number of pixels in each cancer

region.

d) Specificity per non-cancer region vs. number of pixels in each non-cancer

region.
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Figure 4.3 L5P_PZ model results. (a) ROC curve for L5P model and ADC showing the 
ROC0.1 cutoff (b) Table showing AUC and ROC0.1 values for each single predictor and 
L5P_PZ model. L5P_PZ results are shown in order of incremental addition of significant 
predictor to the model. Plots (c) and (d) show the L5P_PZ model’s performance for 
cancer and non-cancer regions of different size by the calculation of sensitivity per 
cancer region and specificity per non cancer region. 
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Figure 4.4 L4P_CG model results. (a) ROC curve for L4P_CG model and ADC showing 
the ROC0.1 cutoff (b) Table showing AUC and ROC0.1 values for each single predictor 
and L4P_CG model. L4P_CG results are shown in order of incremental addition of 
significant predictor to the model. Plots (c) and (d) show the L4P_CG model’s 
performance for cancer and non-cancer regions of different size by the calculation of 
sensitivity per cancer region and specificity per non cancer region. 
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Figure 4.5 L4P_ALL model results. (a) ROC curve for L4P_ALL model and ADC 
showing the ROC0.1 cutoff (b) Table showing AUC and ROC0.1 values for each single 
predictor and L4P_ALL model. L4P_ALL results are shown in order of incremental 
addition of significant predictor to the model. Plots (c) and (d) show the L4P_ALL 
model’s performance for cancer and non-cancer regions of different size by the 
calculation of sensitivity per cancer region and specificity per non cancer region. 
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Figure 4.6 L5P_CGROI model results. (a) ROC curve for L5P_CGROI model and ADC 
showing the ROC0.1 cutoff (b) Table showing AUC and ROC0.1 values for each single 
predictor and L5P_CGROI model. L5P_CGROI results are shown in order of incremental 
addition of significant predictor to the model. Plots (c) and (d) show the L5P_CGROI
model’s performance for cancer and non-cancer regions of different size by the 
calculation of sensitivity per cancer region and specificity per non cancer region. 
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Figure 4.7 72 year old man with biopsy-confirmed PCa with Gleason score, 6 on the 
right side PZ of the prostate. (a): PWM with tumor outlined in blue. (b)Corresponding T2-
weighted MRI with registered tumor region overlay, and (c) composite biomarker score 
(CBS) map acquired using a L5P_PZ model with registered tumor region outline in 
black. Associated CBS colorbar shows ROC0.1 cutoff. The PZ tumor region can be seen 
appreciated in against the background in the CBS map and is composed of pixels with 
CBS > cutoff. 

Generation of a CBS map using the L5P_PZ model for a representative case 

where the tumor is present in the right PZ is shown in Figure 4.7  

Based on AUC calculations, ADC was the best performing single 

parameter for detection of PCa in data pools PZ, CG and ALL.  T2-TSE was the 

best single predictor for CGROI. The best performing LASSO models for data 

pools I-IV based on AUC values in incremental order of significant qMR 

parameters were L5P_PZ (ADC, AUGC, Kep, T2-TSE and Ktrans), L4P_CG (Kep, 

ADC, T2-TSE, ,AUGC and Ktrans), L4P_ALL (ADC, Kep, T2-TSE and AUGC), 

L5P_CGROI (Kep, ,ADC, T2-TSE, AUGC and Ktrans).  

L5P_PZ was the best performing model among all the other LASSO 

models with the highest AUC (0.84(0.81, 0.90)) and ROC0.1 value (0.63(0.54, 

0.78)). Among individual predictors, ADC had the highest AUC (0.82(0.77, 0.87)) 

and ROC0.1 value (0.60 (0.47, 0.71)) for data pool I. Among all the models 

L5P_PZ shows the least variation in sensitivity per cancer region w.r.t. cancer 

region size whereas L4P_CG shows the least variation of specificity per non 

cancer region w.r.t non cancer region size. L4P_CGROI was not considered in the 
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specificity comparison as data pool IV includes annotated non-cancer regions 

that lack the heterogeneous makeup of non-cancer regions from data pools I-III. 

4.4 Discussion 

This chapter demonstrates the results of predictive MP-MRI models for PCa 

detection based on co-registered pathology as the gold standard for defining both 

regions of cancer and non-cancer. Manually transferring regions of cancer from 

pathology to imaging can bias the input data used to generate the predictive 

models. In this manual process, the features of the target image can’t help but 

greatly influence the manual interpretation of the pathologic ROI on the MRI. The 

first issue is, which MRI dataset should be used.  As the features of cancer on T2, 

ADC and DCE-MRI are not always co-incident or even present, the transferred 

pathologic ROI would necessarily be different dependent on the MRI dataset 

chosen as the basis for transference.  Second, it is not always clear where the 

cancer region is on the MRI especially in smaller volumes of disease or around 

the borders of disease where less distinct features are available due to partial 

voluming or lower grade disease.  In this case, how is the region of cancer 

transferred?  Most likely the process is different in this case where there are 

more distinct features of disease to assist in the region drawing on MRI.  Finally, 

in cases of distortion between MRI and pathology, the region drawing becomes 

even more user dependent as local landmarks, which are sometimes hard to 

find, are not clearly identifiable close to the region where the ROI is needed. The 

use of pathology co-registered regions used for model development as shown in 

this work reduces potential bias in the determination of the training data regions 

and more accurately represents the wide range of values and spatial 

correspondence encountered in a multi parametric image set, compared with the 

use of summary values. This non-biased selection of cancer and inclusion of all 

non-cancer pixels is unique in this work. 
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The developed LASSO models combine information from multiple qMR 

datasets to generate a composite predictor score (CBS) to assess the risk of 

malignancy, precluding review of each MRI scan separately. While Figure 4.7 

shows an example of a CBS map where a cutoff corresponding to the ROC0.1

was used, the determination of an appropriate cutoff is still required for the 

application of each model prospectively and most likely will depend on the clinical 

application.  

All the four multi-parametric LASSO models were able to better distinguish 

between voxels in normal and malignant prostate tissue, as determined 

quantitatively through the calculation of the mean area under the ROC curve, 

AUC compared to individual qMR parameters as shown in figures 4.3, 4.4, 4.5 

and 4.6. The AUC values of the single and MP-MRI models lies within the range 

of studies shown in Table 4.1 (AUC range: [0.692, 0.999]); however, is important 

to note that since these models predict cancerous voxels in the prostate the ROC 

statistics are calculated voxel-wise and not region-wise.  

The L4P_ALL and L4P_CG models show that four qMR parameters are 

most effective at detecting PCa in the whole prostate or CG alone however the 

best qMR parameters to use depends on the data pool. The plotted sensitivity 

per cancer region and specificity per non cancer region versus region size shows 

the performance of each model across regions of different sizes. It is important to 

note that these plots are based on ROC0.1 cutoff and therefore give an expected 

high specificity. It would be desirable to have a cancer detection model with 

consistent sensitivity irrespective of lesion size. Among the four models L5P_PZ 

shows the least sensitivity to lesion size. The most likely reason for this is the 

absence of CG data from the non-cancer pool greatly reducing variability of the 

non-cancer data used for model development. 

Training and test data for LASSO model generation used cancer data in 

combination with different pools of non-cancer voxels from CG and PZ tissue in 

the prostate. The different combinations were investigated because the 
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parameter values measured in the central gland differ from those measured in 

the peripheral zone and therefore, potentially, each zone may benefit from a 

different model. The limited number of CG lesions in the entire patient cohort (9 

in 46 patients) lead to development of models L4P_CG and L5P_CGROI based on 

all cancer data (i.e. both GZ and PZ cancers) but different types of non-cancer 

data obtained from the CG. In L4P_CG, non-cancer data was obtained from 

NCCG whereas L5P_CGROI had non-cancer data obtained from NCROI. In 

L4P_CG, the use of NCCG obtained from prostates with CG cancer annotations 

along with those from prostates with PZ cancers allowed the assessment of 

model performance in detecting PCa in CG using a larger non-cancer CG data 

pool. In L5P_CGROI, ROIs for ‘normal’ data were restricted to exclude periurethral 

and fibromuscular cap regions that exhibit cancer-like characteristics as seen on 

MRI. It is possible that these ROIs may also contain regions of benign disease 

(e.g. Benign Prostate Hyperplasia)..  

As seen from the difference between the initial and final number of cancer 

voxels in Table 4.4 in data pools II-IV 200 voxels were sampled from each cancer 

and non-cancer region. A comparison of all four model results obtained using all 

cancer & non cancer voxels versus a subset of 200 voxels showed no significant 

difference. This showed that after a certain point adding additional observations 

(voxels) from a single cluster (slice) provided essentially no information for 

estimating the predictive model other than slowing down the computer code used 

for fitting the model.   

4.5 Conclusion 

In this chapter the development of a multi-parametric MRI model to 

identify cancerous voxels in prostate tissue generated using pathology–MR 

coregistered datasets has been presented. Single and MP-MRI models for PCa 



73 

detection were obtained from pathology co-registered T2, ADC, and DCE-MRI 

datasets with the final MP-MRI model including ADC, T2-TSE, Ktrans, Kep and 

AUGC. These MP-MRI models can be used for the prediction of cancerous 

voxels in the peripheral zone, central gland or the whole prostate. 
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Chapter 5 Application of Methods to High 
and Ultra High-Field MP-MRI 

5.1 Context 

Multiparametric MRI studies of the prostate at ultra-high magnetic field(UHF) (i.e. 

7T)  carry with them the promise of improved disease characterization resulting 

from improvements in SNR, better parallel imaging performance and increased 

spectral resolution. This advancement to higher fields comes with its own 

disadvantages including higher motion sensitivity, increase in local specific 

absorption rates (SAR), B1 field inhomogeneities and susceptibility artifacts. 

While initial MRI studies at 7T have been performed to explore the potential for 

improved PCa detection using anatomical imaging (118) and functional imaging 

studies (4,119), much work is still needed. One of the challenges in conducting 

DCE-MRI studies on the prostate at 7T is a limited understanding of the 

increasing influence of T2* on T1w acquisitions. While r1 relaxivity has been 

shown to slightly decrease with increasing field strength, r2* relaxivity increases 

dramatically and can dominate signal changes especially at higher CA 

concentrations. The standard conversion of change in signal intensity to change 

in concentration is affected by R2* which is typically ignored as it is assumed that 

TE << T2*, however this is no longer the case at 7T. The increasing R2* with field 

strength has a significant effect on the enhancement curves in tissue and 

catastrophic effects on the signal in the vasculature (4). To understand both R1 

and R2* relaxivity, the following study was performed looking at both blood and 

saline at both 3T and 7T. The findings are relevant to paramagnetic contrast 

agent studies performed at UHF including DCE-MRI performed outside the 

prostate and vascular studies performed with contrast at throughout the body. 
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The rest of this chapter is adapted with permission from the following publication: 

Kalavagunta, C., Michaeli, S. and Metzger, G. J. (2014), In vitro Gd-DTPA 

relaxometry studies in oxygenated venous human blood and aqueous solution at 

3 and 7 T. Contrast Media Mol Imaging, 9: 169–176. doi: 10.1002/cmmi.1568   

This was a collaborative project between Dr Greg Metzger, Dr Shalom Michaeli 

and me. I devised a ways to obtain venous blood, oxygenate it, generate highly 

calibrated serial concentrations of Gd-DTPA and present the samples for 

experimentation in the MRI scanner while keeping everything at 37±2 °C. For 

post processing I performed relaxometry measurements calculations and fitted 

parameters accounting for propagated errors which greatly increased confidence 

in the final results. 
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5.2 Synopsis 

In-vitro T1 and T2
* relaxivities (r1 and r2

*) of Gd-DTPA (GaD) in oxygenated 

human venous blood (OVB) and aqueous solution (AS) at 3T and 7T were 

calculated. GaD concentrations ([GaD]) in OVB and AS were prepared in the 

range 0-5 mM. All measurements were acquired at 37±2 ºC. At both 3T and 7T, a 

linear relationship was observed between [GaD] and R1 in both AS and OVB. At 

7T, r1 in AS decreased by 7.5% (p = 0.045) while there was a negligible change 

in OVB. With respect to R2
*, a linear relationship with [GaD] was only observed in 

AS, while a more complex relationship was observed in OVB; quadratic below 

and linear above 2 mM at both field strengths. There was a significant increase of 

over four-fold in r2
* with GaD in OVB at 7T (for [GaD] above 2mM, p <<0.01) as 

compared to 3T. Furthermore, in comparison to r1, r2
* in AS was less than two-

fold higher at both field strengths while in OVB it was ~twenty-fold and ~ninety-

fold higher at 3T and 7T, respectively. This observation emphasizes the 

importance of r2
* knowledge at high magnetic fields, ≥3T.  The comparison 

between r1 and r2
* presented in this work is crucial in the design and optimization 

of high field MRI studies making use of paramagnetic contrast agents. This is 

especially true in multiple compartment systems such as blood where r2
* 

dramatically increases while r1 remains relatively constant with increasing 

magnetic field strength. 

5.3 Introduction 

The paramagnetic effectiveness of a contrast agent (CA) is measured by its 

relaxivity which is defined as the rate by which the relaxation rate changes per 

unit molar CA concentration. Typically the effect of clinically used paramagnetic 

gadolinium based contrast agents on the longitudinal relaxation rate constant 

R1≡1/T1 is of most interest. However, understanding CA based changes in 
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R2*≡1/T2*, a function of both spin-spin interactions and local magnetic field 

inhomogeneities, is becoming more important as clinical and research endeavors 

expand into ever increasing magnetic fields. The increasing R2* effect with 

gadolinium based CAs at higher fields compete with the T1-weighted signal 

increase relied upon in post-contrast anatomic imaging, contrast enhanced 

angiography studies and dynamic contrast enhanced MRI (DCE-MRI). Increasing 

concentrations of CA result in higher R1 values and increased signal on T1-

weighted acquisitions while also producing higher R2* which disproportionately 

decreases signal at higher concentrations. Based on the results determined in 

this study, sub-millisecond T2* relaxation times at 7T are possible with Gd-DTPA 

concentrations ([GaD]) of 5 mM in the blood.  Such concentrations can easily be 

reached in-vivo when high injection rates of 3 ml/s are used (120) such as in 

DCE-MRI studies of the prostate.  

Previous studies have shown that, without correcting for T2* signal 

attenuation, subject dependent determination of the arterial input function was 

impossible for such studies (4). Similar effects are expected to negatively impact 

other contrast enhanced studies when performed at 7T such as first pass 

perfusion and angiography exams relying on T1-weighted enhancement 

(5).Understanding the field dependent relationship between the two relaxation 

rate constants with respect to CA concentration in blood can be undertaken by 

defining both R1 and R2
* relaxivities, r1 and r2

* respectively, and will be necessary 

for understanding the tradeoffs of using gadolinium based CAs at high fields and 

in the optimization of both acquisition parameters and injection paradigms. While 

there is a wealth of information investigating the relaxivity of gadolinium based 

CA in the literature, there are also an equal number of varying acquisition 

methods and experimental conditions which can greatly vary the results. 

Therefore, the goal of this work was to use consistent experimental methods at 

both 3T and 7T to determine r1 and r2
*. For the paramagnetic CA, the relaxivity is 

a function of the motional correlation times, which includes several dynamic 
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components characterizing electron–proton dipolar coupling (121) and involving 

the magnetic moment of the metal ion. As the solvent of the CA has a 

tremendous effect on the relaxation properties, we investigated the relaxivity in 

both an aqueous solution (AS) and in fully oxygenated venous blood (OVB), both 

at physiological temperatures of 37±2°C. Because of its prominence in the 

literature and clinically use in our institution and elsewhere, Gadolinium-DTPA 

(MagnevistTM, Bayer, Germany) (GaD) was the CA used in this study.  

5.3.1  Theory 
The addition of a paramagnetic CA like GaD to a solution increases both 

relaxation rate constants R1 and R2. The observed R1,2(obs) after addition of GaD 

is the sum of the native relaxation rate of the solution R1,2(N) plus any contribution 

from GaD defined as R1,2(GaD). Thus R1,2(obs) = R1,2(N) + R1,2(GaD) (assuming 

independence of the relaxation pathways). In dilute solutions of GaD the 

observed relaxation rate constant R1 is assumed to be linearly dependent on 

[GaD]. The slope of the dependence is the relaxivity and the y-intercept is the 

native relaxation rate of the sample prior to the addition of GaD i.e. R1,2(obs) = 

r1,2(N)×[GaD] + R1,2(N), where r1,2(N) is the relaxivity defined as the incremental 

increase in the relaxation rate per unit concentration of GaD. The apparent 

transverse relaxation rate constant R2
* is defined as R2

* = R2 + R2’, where R2
* is 

the observed transverse relaxation rate. R2 is the spin–spin relaxation rate 

constant and characterizes fluctuating magnetic field inhomogeneity effects, and 

R2’ (R2’≡1/T2’) is that induced by the local magnetic field inhomogeneities within 

the voxel (122).   
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5.4 Methods 

Commercially available formulation of GaD, having a concentration of 0.5 M, was 

mixed with OVB and AS to obtain final concentrations in the range 0-5.18 

mM(OVB) and 0-4.83 mM(AS), respectively.  

5.4.1  OVB Sample Preparation 
Venous human blood for this study was collected in a Vacuette heparin 

vacutainer (Greiner, Monroe, NC) through venipuncture using a standard 23-

gauge butterfly needle from a healthy donor. A high gauge needle was used to 

minimize hemolysis during blood collection. The tube was then gently inverted six 

times to thoroughly mix the blood in the vacutainer with heparin. This was done 

to avoid blood clot formation which would have rendered the specimen 

unacceptable for use. The blood in each vacutainer was then collected in a 1L 

side arm conical flask by pouring it slowly along the wall. The blood was then 

exposed to moist O2 and air using an in-house oxygenation apparatus. In this 

setup, dry O2 from the cylinder was passed through a conical flask containing 

distilled water (Kandiyohi Bottled Water Co., Willmar, MN). The resulting moist O2 

was then passed through a pressure gauge before interacting with the venous 

blood in the conical flask. The moist O2 pressure was maintained at 5-10 SLPM 

(standard liters per minute) during oxygenation. The conical flask was stirred 

gently for 1.5 hours until the sO2 reached 100%. An iStat (Abbott Point of Care 

Inc., Princeton, NJ) portable clinical analyzer was used to measure hematocrit 

(Hct), sO2 and pO2. A blood gas analyzer (Rapidlab-248, Siemens, Deerfield, IL) 

was used to measure pO2. The final pO2 (293.8 mmHg) was much higher than 

that of arterial blood (95 mmHg)(123).  

A pO2 decrease in plastic tube stored blood samples due to metabolism 

has been reported (124). This drop in pO2 can be attributed to oxygen 

consumption by leucocytes in blood and diffusion of oxygen through the walls of 
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the plastic tube. While T1 is known to have a slight linear dependency on pO2 (6), 

a high pO2 (hyperbaric O2) was chosen to ensure that the blood sO2 stayed 

above arterial blood sO2 levels (>94%) through the duration of the MRI 

measurements.  

5.4.2  GaD Solution in AS and OVB Preparation 

A 0.1 M HEPES buffer solution was used to maintain the pH of distilled water at 

7. GaD samples in AS were made by adding [GaD] to this buffer solution. OVB

obtained earlier was used as the solvent for making the GaD arterial blood 

solutions. A Corning (Corning Inc., Corning, NY) 15mL clear polypropylene 

centrifuge tube was placed on a Mettler AM100 electronic balance (Mettler-

Toledo, Inc., Columbus, OH). Microscopic volumes of GaD were added to the 

tube using a micropipette and the weight was recorded. This was followed by 

adding OVB or 0.1M (pH-7) HEPES solution to the tube and the final weight of 

the solution was recorded. The concentration accuracy of the GaD samples was 

calculated based on the weight measurements. Using the recorded weights and 

densities of GaD, human blood and distilled water at 22°C the final [GaD] 

obtained were, GaD in OVB: 0.00, 0.58, 1.12, 1.79, 1.98, 2.36, 2.88, 3.70, 3.90, 

4.38, 5.18 mM. GaD in AS:  0.0, 0.43, 1.00, 1.48, 1.93, 2.42, 3.05, 3.42, 3.90, 

4.42, 4.83 mM. 

5.4.3  Phantom Setup 
For both OVB and AS studies a plastic holder was used to house the 5 ml 

polystyrene round bottom test tubes containing the various [GaD] solutions. The 

holder was placed in a perforated container and surrounded by water bath 

tubing. A larger container then housed the whole setup and was filled with 0.45% 

saline solution to facilitate B0 shimming over the phantom, to load the transmit 
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coil and provide efficient heat transfer from the water bath hose. All studies were 

performed at a temperature of 37±2 °C. This temperature was maintained by 

pumping heated water through the water bath tubing (Thermo Scientific Neslab 

RTE- 7 Digital One). MR images of the phantom setup are shown in Figure 5.1. 

The temperature was monitored using a thermistor (YSI 400 series) positioned in 

the water bath but away from the sample tubes and a DigiSense (Cole-Parmer, 

Chicago, IL) Temperature Controller. Blood oxygenation (sO2, pO2) and Hct were 

measured before and after each set of T1, T2
* experiments. Each blood phantom 

sample was gently turned upside down three times to ensure mixing before 

placement inside the scanner.  

5.4.4  MR Instrumentation 
All 3T measurements were performed on a Siemens Magnetom Trio scanner. 

Signal reception was achieved using a 12 channel head coil. RF transmission 

was performed using the scanner body coil. All 7T measurements were done on 

a Magnex 7T, 90 cm bore magnet with Siemens console and head gradients 

using a 16 channel transceive head coil.  
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Figure 5.1 (a) Axial and (b) sagittal scout images of the phantom setup. Legend: 1, 
water bath tubing; 2, outer plastic container; 3, 0.45% saline water; 4, vial; 5, vial holder; 
6, inner plastic container. Coronal view of the oxygenated venous blood (OVB) phantom 
from the first echo of the multi-echo acquisition used for calculating R2* for (c) 3 T and 
(d) 7 T. Coronal view of the OVB phantom from the TI = 20 ms, inversion recovery- turbo 
flash (IR-TFL) acquisition for (e) 3 T and (f) 7 T. The location of circular regions of 
interest used for data analysis within each acquisition for the zero GaD vial are shown in 
(c)–(f). 

5.4.5  T1 Measurement 
Multiple inversion recovery turbo flash (125) (IR-TFL) acquisitions were used to 

measure T1 by varying the inversion delay. The inversion pre-pulse was 

accomplished with a non-selective adiabatic inversion pulse.  Imaging 
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parameters for the IR-TFL sequence include: TR, 10 s; TE, 1.33 ms (3T), 1.05 

ms (7T); nominal flip angle, 6°; acquisition matrix, 128²; field of view, 190 mm; 

slice thickness, 3.5-5.0 mm; number of excitations NEX= 2; bandwidth per pixel, 

1000 Hz (3T), 1395 Hz (7T).  The inversion time (TI) was varied from 20 to 9000 

ms (20-30 TIs). A centrically ordered phase encode ordering allowed the short TI 

times to be achieved at the expense of spatial blurring especially for samples 

with higher [GaD]. Examples of the TI=20 ms for both 3T and 7T are shown in  

Figure 5.2e and 1f, respectively. The T1 measurement using the IR-TFL method 

was validated by using an inversion recovery spin echo acquisition with the AS 

phantom at 3T (IR-SE; TR, 3 s; TE, 11 ms; flip angle, 90°; acquisition matrix, 

256²; field of view, 300 mm2; slice thickness, 5mm; NEX= 1; TI, 23 ms). 

The average MR signal intensity (SI) and standard deviation for each 

region of interest (ROI) within each vial were obtained from the TFL images well 

within the vials to avoid partial volume effects with the wall of the container 

(Figure 5.1 e,f). For the inversion recovery sequence, the data was reconstructed 

in the real mode to allow negative signal intensities for fitting the T1 recovery 

curve. T2
* effects resulting from global field inhomogeneities were minimized by 

performing B0 shimming within a localized coronal slab which included all the 

vials used in the analysis. The T1 values were obtained by performing an 

instrumental fit on the ROI SIs versus their respective TIs. The equation used to 

fit the data was SI(ROI) = A[0] × (1-2×exp(-A[1]×TI)) + A[2], where A[0], A[1] and 

A[2] are fit parameters such that T1 = 1/A[1]. The equation was fit to the data 

using the LMFit function within IDL (ITT, Visual Information Solutions, Boulder, 

CO) which employs a Levenberg-Marquardt algorithm to find a solution to the 

fitted parameters. A linear relationship between R1 and [GaD] was assumed to 

calculate r1. The equation used to fit the data was R1= r1 ∙ [GaD] + Intercept 

where r1 is the slope. The R1 vs. [GaD] data was fit using a linear instrumental fit 

function in Origin 8.1(OriginLab Corp., Northampton, MA). 
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5.4.6  T2
* Measurement 

Multi-echo gradient echo acquisitions were performed to acquire the signal 

intensity data used to calculate T2
*.Solvent and field strength dependent 

acquisition parameters are given in Table 5.1.  Varying TE ranges and the gaps 

between successive echo times (ΔTE) were chosen to measure the relaxation 

characteristics of each sample. At 3T, measurements on both AS and OVB were 

acquired with two concatenated acquisitions while for OVB at 7T, 3 interleaved 

acquisitions were acquired with a minimum effective ΔTE (ΔTEeff)  of 0.81 ms to 

capture the potentially rapidly decaying signals for high [GaD]. Acquisition 

parameters common to all acquisitions included a 10 degree flip angle and 280 

mm field of view. Images from the first TE of the multi-echo gradient echo 

acquisition and representative ROIs used for analysis are shown from the OVB 

phantom for both field strengths in Figure 5.1c and 1d, respectively.  

T2
* values were obtained by performing a monoexponential instrumental fit 

of the ROI SIs versus their respective TEs using the function: SI(ROI) = 

A[0]×(exp(-A[1]×TE))+A[2], where A[0], A[1] and A[2] are fit parameters and A[1] 

= R2
*. The optimization routine LMFIT was used within IDL to fit the equation to 

the SI amplitudes. Parameter A[2] was set by identifying the SI mean magnitude 

of the background noise. The mean noise was also used as a threshold to limit 

the range of included echo times for R2* estimation. To determine r2
* relaxivity, 

the R2
* versus [GaD] data was characterized by both a quadratic and a 

combination of both quadratic and linear functions.  First, the full range of [GaD] 

was fit solely with the quadratic function (R2
* = A×[GaD]2 + B×[GaD] + C). 

Second, only lower [GaD] concentration were fit with the quadratic function while 

higher concentrations were fit with a linear relationship (R2
* = A×[GaD] + B).  The 

R2
* vs. [GaD] data was fit using the instrumental fit functions in Origin 8.1. The 

errors reported take into consideration the error propagation from volumetric 

analysis, nonlinear fit (T1 and T2
* calculation) and linear/nonlinear fits (r1 and r2

* 
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calculation). The standard errors of the fitting parameters were calculated from 

the square root of a main diagonal value of the variance-covariance matrix. 



86 

  T
ab

le
 5

.1
 A

cq
ui

si
tio

n 
pa

ra
m

et
er

s 
fo

r R
2 * c

al
cu

la
tio

ns
.



87 

5.5 Results 

The native R1 and R2
* values for OVB and AS have been summarized in Table 

5.2. The curve fits used to obtain r1 and r2
* relaxivities for [GaD] in AS and OVB 

are shown in Figure 5.2. The r1 relaxivities for GaD in AS and OVB are shown in 

Table 5.3. For an increase in field strength from 3T to 7T there was a small 

(7.5%), but statistically significant (p = 0.045), decrease of GaD r1 in AS with no 

observable change in OVB r1 with an increase in field strength. The relationship 

between R2
* and [GaD] for OVB and AS at 3T and 7T is shown in Figure 5.2. For 

an increase in field strength from 3T to 7T there was a 3% (p = 0.2) increase in 

GaD r2
* relaxivity in AS (Table 5.4). In blood, the data was best described by a 

combined quadratic-linear relationship where a quadratic function better 

described the experimental data up to 1.98 mM while a linear function best 

described the R2
* dependence on higher [GaD]. The most significant change in 

r2
* was observed in OVB which increased over four-fold (for [GaD] beyond 2mM, 

p <<0.01). 
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Table 5.2 R1 and R2
* values for Oxygenated Venous Blood (OVB) and Aqueous 

Solution (AS) at 3T and 7T at 37 ºC. 

Table 5.3 T1 relaxivities (r1) of Gd-DTPA in Oxygenated Venous Blood (OVB) and 
Aqueous Solution (AS) at 37 ºC for both 3 and 7T along with respective pO2, sO2 and 
Hematocrit (Hct) ranges used for the measurements. 
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Figure 5.2 Plots of R1 and R2* vs [GaD] for oxygenated venous blood (OVB) and 
aqueous solution (AS) at 3 and 7 T. Plots of relaxivity modeled with linear (red) and 
quadratic (blue) functions are shown. A linear model was used to calculate R1 relaxivity 
(r1) for 3 and 7 T in both AS (a, b) and OVB (c, d). A linear model was also used to 
calculate R2* relaxivity (r2*) in AS (e, f). To determine r2* in OVB, a quadratic function for 
[GaD] ≤ 2 mM and linear function for [GaD] ≥ 2 mM was found to characterize the data 
better than a quadratic fit alone over the whole range of [GaD] (g, h). 
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5.6 Discussion 

The r1 and r2
* relaxivities of GaD depend on R1 and R2

* which in turn depend on 

many factors such as macromolecular content, temperature, pH, magnetic field 

strength, acquisition parameters and oxygenation. To put the values obtained in 

this study in the context of previous work, r1 of GaD in water and blood obtained 

under similar experimental conditions are included in Tables 5.5 and 5.6, 

respectively. While previous studies investigating r2
* of GaD have not been 

performed to date, native R2
* in blood has been of great interest.  Values at 1.5T 

have shown arterial blood to have values  ranging from 3.94±0.50(126) to 

5.02±0.2(127) s-1. In the current study, large increases in native blood R2
* were 

measured at 3T and 7T; 9.94±0.56 and 28.50±1.15 s-1, respectively. 
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5.6.1  Dependence of R2
* on Oxygenation and GaD in 

Blood  
The characteristic linear relationship between R2

* and [GaD] observed in AS was 

not observed in OVB.  Blood has three major distinguishing characteristics from a 

homogenous sample such as AS. First, compared to saline, blood experiences 

longer motional correlation times (slow motion) resulting in increased proton-

electron dipolar coupling. Second, it is multi-compartmental, consisting of the 

plasma and red blood cells (RBCs), where GaD (only present in the plasma) 

affects magnetic susceptibility differences between RBC and plasma. Third, it 

contains hemoglobin, the oxygen saturation of which also impacts the 

susceptibility mismatch between the two compartments.  In the case of fully 

oxygenated blood, the multiple compartments, and the dynamic processes 

between them, most likely results in the complex relationships observed between 

R2
* and [GaD]. 

In the full range of physiological conditions, the oxygen dependence of 

blood R2
* is usually  attributed to oxygenation based susceptibility of red blood 

cells (RBCs) where oxyhemoglobin is diamagnetic and de-oxyhemoglobin is 

paramagnetic, relative to blood plasma. In OVB, microscopic magnetic field 

gradients are set up between RBCs  and  plasma resulting in static and dynamic 

dephasing  of spins that can result in an increase in R2
* (128). 

In deoxygenated blood, it was shown in a study by Blockley et al. that a 

quadratic behavior existed between R2
* and [CA] (ProHance) (128). In this 

previous study a parabolic curve was fit to the data with the inflection point 

occurring at increasing concentrations with increasing field strength (1.0 mM and 

1.3 mM at 3.0T and 7.0T, respectively). This relationship was described as 

originating from an initial susceptibility difference between the paramagnetic 

RBCs and the diamagnetic plasma in deoxygenated blood. As the [CA] increases 
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there is likely an increase in the net paramagnetism of blood plasma which could 

lead to an averaging of the RBC versus plasma susceptibility variations. The 

inflection point in the R2
* curve represented the point at which the CA increases 

the paramagnetism of the plasma to match that of the RBCs. Beyond this point, 

the susceptibility difference between plasma and blood again increased as did 

R2
*.  

In the current study, oxygenated blood is investigated where the RBC are 

diamagnetic with respect to the blood plasma.  While there is no inflection point 

observed in this data there is still an observed quadratic relationship between R2
* 

and [Gad] at lower concentrations from 0-2 mM, however a quadratic function did 

not sufficiently describe the data above this range.  The observed quadratic 

versus linear contributions was significantly different between 3T and 7T. This 

field dependence could be a result of varying contributions of susceptibility 

induced versus dipolar relaxation pathways further influenced by varying 

exchange and diffusion regimes with changes in [GaD]. 

While this study was not explicitly designed to elucidate the relaxation 

mechanisms involved, a brief discussion of factors that could contribute to the 

observed behavior follows. First, in the presence of GaD, which affects the 

relaxation rate constant of blood plasma predominantly, the regime of isothermal 

dynamics is shifted towards the intermediate motional regime (IMR) from the fast 

motional regime (FMR). In this study, because the apparent rate constants were 

altered by changing the concentration of GaD, and since GaD is only present in 

the plasma (site A) and not the RBC (site B), the “shutter speed”, i.e., |RA-RB|, of 

dynamic processes is varied. The dynamic processes which include exchange 

and diffusion which collectively result in dynamic averaging (DA) and are 

additionally characterized by the rate constant kDA  (129). In this particular case 

the regime of exchange or diffusion in local susceptibility gradients or 

intracellular-extracellular water transport are varied with the increase of the 

concentration of GaD (130). It appears that the presence of increasing GaD in 
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plasma shifts the regime of the dynamic process by modifying the intrinsic 

relaxation rate constants at specific magnetic sites A or B undergoing exchange 

or diffusion, as well as the apparent populations of sites A (i.e., plasma water 

protons interacting with GaD) or B (RBC water protons). Moving in this direction 

takes us from a quadratic to a linear relationship with increasing [GaD] where |RA 

– RB| >> kDA.

5.6.2  Effect of hyperoxygenation 
Based on initial in-house experiments, the OVB samples were necessarily 

hyperoxygenated in order to maintain the blood at arterial sO2 levels (sO2 > 94%) 

over the complete MR scan period. At our highest pO2 of 294 mmHg, Othee et al. 

have shown that the fraction of oxygen in the blood that is freely dissolved and 

not bound to hemoglobin is approximately 7% compared to 4% when exposed to 

room air (pO2 = 138 mmHg)(131). At 8.4T, the increase in dissolved oxygen from 

4% to7% would result in a minimal increase of 6% in blood T1 when measured at 

room temperature (131).  In another study, Blockley et al. reported R1 of whole 

blood versus (1-Y) at 3T and 7T, where ‘Y’ represents the fractional sO2 (128).  In 

our 3T studies where Y = 0.97 and 7T studies  where Y = 1, the predicted 

longitudinal relaxation times following Blockley’s relation would be 1730 ms and 

2041 ms, respectively. These values are in excellent agreement to our hyper-

oxygenated OVB T1 values of 1788.09±11.78 ms at 3T and 2055.43±14.00 ms at 

7T.  

The effect of hyperoxygenation on transverse relaxation is arguably much 

more complex. Molecular oxygen affects relaxation through paramagnetic 

interactions and, in addition, could influence magnetic susceptibility variations in 

the sample thus leading to different conditions of DA.  These mechanisms are 

challenging to characterize and beyond the scope of the presented work. While a 

potential limitation of the current study, hyperoxygenation was required to 

maintain arterial sO2 levels with the chosen experimental methods. 
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5.6.3  Acquisition Methods 
Alternative strategies, both in terms of the experimental setup and data 

acquisition were also considered for this study. However, the desire to obtain a 

wide distribution of concentrations at physiological temperature and sO2 led to 

the use of the IR-TFL sequence and rapidly imaging samples in an experimental 

setup with a concentration range from 0-5 mM. Determination of T1 values using 

the IR-TFL method was validated with those obtained using the IR-SE sequence 

with the final values only differing by 3%. 

As the Hct in the blood settles over the duration of the study, there is a 

change in the Hct content in the scanned MRI slice. An increase in Hct will lead 

to a higher value of r1. Using the IR-TFL sequence allowed the data to be 

acquired rapidly in comparison to the IR-SE method which decreased the total 

data acquisition time from 65 to 12 minutes. Secondly, the vials were positioned 

vertically to lengthen the distance over which settling would occur. The scan 

plane was also positioned through the center of the vials to minimize the pile up 

of Hct at the bottom or the absence of Hct at the top of the vile. Based on repeat 

data acquisitions, a 0.4% decrease in r1 per minute and a 0.3% increase in the 

slope of R2
* vs. [GaD] per minute was found. Thus, the effect due to settling was 

minimal in this study. 

The challenges with the chosen acquisition methods were T2
* blurring of 

the IR-TFL acquisition and the potential for a spatially varying B0 impacting 

primarily R1 and R2
* calculations, respectively. To minimize the effect of T2

* 

blurring, which increases with [GaD], ROIs well within each sample vial were 

used for R1 determination. Despite this strategy, slight variations from the linear 

relaxivity curve are still observed at the highest [GaD], (Figure 5.2 a-d). To 

address B0 homogeneity, a local B0 shim was used.  While a majority of the 

signal used for B0 shimming originated from the water bath, field perturbations 

from within and immediately around the samples had the potential of biasing the 
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global shim. For the AS samples, the expected linear relationship between R2
* 

and [Gad] is observed for both 3T and 7T indicating that a reasonably 

homogeneous B0 field was obtained with the chosen shimming methods. 

This study provides important information on the susceptibility effects on 

R2
* relaxation rate constants and their dependence on external static magnetic 

field in the presence of GaD. Importantly, because the susceptibility induced 

relaxation channel is one which significantly contributes to the free precession R2 

through its dependence on DA, our study indirectly provides insight into the free 

precession transverse relaxation of the blood in the presence of GaD as well. It 

should be emphasized that for accurate estimation of the intrinsic relaxation 

parameters from T2 measurements, the measurements of R2 relaxation 

dispersion using a Carr-Purcell-Meiboom-Gill (CPMG) acquisition is necessary.  

5.7 Conclusion 

The r1 of AS and OVB remained similar both between sample types and field 

strengths with only minor differences observed. The R2
* relaxivity of AS was also 

similar at both 3T and 7T with only a 3% increase at the higher field strength. 

Furthermore, in AS, r2
* values at 3T and 7T were only 22% and 36% higher than 

the respective r1 values. There was, on the other hand, a large effect of the multi-

compartmental nature of blood which resulted in an apparent nonlinear 

relationship between R2
* and [GaD] and tremendous increases in r2

* not 

observed the homogeneous AS phantom.  OVB r2
* exhibited a large field 

dependence with an approximate four-fold increase in R2
* relaxivity at 7T 

compared the 3T.  In addition, OVB r2
* was twenty-fold higher at 3T and ninety-

fold higher at 7T compared to their respective r1 values.  

Knowledge of r1 and r2
* relaxivities are paramount to using contrast agents 

at any field strength.  This study demonstrates sharply increasing r2
* in the multi-

compartment blood samples greatly outpaces the relatively static r1 
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characteristics with increasing field strengths. Unless accounted for, studies 

relying on the typical T1 based contrast enhancement typically afforded by 

paramagnetic contrast administration at lower field strengths may obtain 

erroneous results.  
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Chapter 6 Conclusions 

6.1 Summary and Significance of Findings 

The American Cancer Society estimates that as of January 1, 2014 there are 

currently three million men living with PCa in the US alone (132). An estimated 

11.9 billion is spent each year in the US on PCa treatment (133). Over the past 

two decades, MRI has emerged as the leading imaging modality in detection and 

localization of PCa detection due to its excellent soft tissue contrast and its ability 

to generate tissue property dependent multi-parametric data (3). The work 

presented in this thesis leverages these advantages of MP-MRI in both high field 

and ultra-high field imaging in the development of methods for PCa detection.  

6.1.1 LATIS Image Registration 

The LATIS image registration method as detailed in Chapter 3 occupies a unique 

spot among Pathology-MR registration approaches found in literature. In this 

work we tackle the challenging problem of registering non-whole mount 

pathology to in vivo MRI data acquired with an endorectal coil in 35 cases and 

achieve registration accuracy of 1.54±0.65 mm. This registration accuracy along 

with DICE coefficient value of 0.9911±0.004 allows the confident use of 

pathology as a gold standard in our setup for developing predictive MRI models 

of disease.  Since work began on this project in 2010 there have been other 

attempts in this area. Prabu et al. (134) used a free form deformation and 

statistical deformation model based regularizer to register six cases leading to a 

mean . Patel et al. (92) used spatial weighted mutual information to register 7 
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PWM slices and report a mean RMS error of 1.65 mm and mean DICE 

coefficient of 0.83.  

Compared to other methods that require manual identification of 

numerous control points to facilitate accurate registration, LATIS offers the 

advantage of manually identifying large structures which is less labor and time 

intensive. More importantly, in some cases, selecting a sufficient number of 

control points may not even be possible. Selecting large structures rather than 

specific points is advantageous as it is makes LATIS potentially more robust in 

cases where the slicing or imaging plane are close but not exactly the same. 

While potentially less restrictive than other methods, LATIS still assumes that 

both source and target are approximately in the same plane through the prostate 

and still requires user input of identification and marking of structures on both 

datasets. Another limitation is that the assembling the individual digitized 

pathology images which compose the PWMHS involves user interaction and is 

suspect to variability. 

6.1.2 MP-MRI Predictive Models 

Four MP-MRI models for the prediction of PCa based on co-registered Pathology 

has been shown in Chapter 4. These models can be used to detect large and 

small lesions in the PZ (L5P_PZ), all cancer throughout the entire prostate 

(L3P_ALL) and all cancer versus non-cancer in the CG (L4P_CG and 

L3P_CGROI). The second model is most unique and arguably the most useful 

prospectively as no segmentation of the prostate would be needed prior to 

applying the model. The third and fourth models are also unique as PCa is most 

prevalent in the PZ and there has been limited work done in using MP-MRI 

models for prediction of PCa in CG alone. 
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While more work still needs to be done in this area a possible application 

of these models could be the generation of CBS Maps on a voxel-wise basis. 

These maps would be very useful in guiding biopsies and improving cancer 

management decisions.  

The uniqueness of our approach lies in the use of Pathology-MR 

coregistered datasets, inclusion of all cancer volumes > 0.19 cc and the use of 

voxel-wise analysis. With the LATIS based deformable co-registration (Chapter 

4) we have  reduce the bias in assessing the location and extent of disease in the

MRI slice compared to previously proposed methods. While groups have 

presented similar models for cancer detection, the data imparted by pathology to 

the MRI has been done manually. In comparison to our modeling approach that 

uses mapped pathology regions, these other  approaches are  prone  to  biases 

in  ROI  definition  due  to  subjectivity  in  operator interpretation of data within 

MP-MRI and Pathology images. 

Future studies will incorporate a T1-DESPOT1 based cutoff for voxel filtering. 

The clinical application of these models would require validation of different scanners 

and acquisition methods. The use of non coregistered datasets in model development 

might limit the application of these models in the clinic where the goal is to minimize user 

interactions in data generation. Co-registered datasets are usually not required as 

long as there is no patient motion.  However, in the presence of patient motion 

and in the case of DWI where EPI-based field distortions are present, registration 

between the MP-MRI datasets would be necessary. Algorithms incorporating 

Dynamic Field Correction (DFC) (135) have been developed to account for EPI-

based field distortions between the diffusion images. Anti-peristaltic drugs can be 

used to minimize patient motion. While some studies recommend injection of 

drugs like glucagon or hyoscine-N-butyl-bromide (HBB, butylscopolamine) for 

MR studies done at 1.5T (136,137), Roethke et al.(138) demonstrated that there 

was no significant effect of HBB administration on image quality for MRI studies 

at 3T. Other options for patient motion correction include the use of motion 
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correction algorithms(139) and MR sequences like PROPELLER(140). MRI-MRI 

Co-registration is an active area of investigation (141) and future work can 

incorporate available methods for this purpose.  

These models can be applied at many points in the PCa management. 

The proposed user-independent generation of cancer biomarker score maps on 

a voxel-wise basis would assist in guiding biopsies, improve management 

decisions, increase clinician confidence with suggesting active surveillance rather 

than receive definitive therapy to their patients, improve monitoring of men over 

time either on active surveillance or post therapy and target focal therapies as 

they become used more prevalently used clinically. While a complete analysis 

has not been done to date, each of these applications could have a tremendous 

impact by reducing treatment costs, improving outcomes and increasing quality 

of life for patients by avoiding unnecessary treatment and the commonly 

occurring side effects of incontinence and impotence.   

6.1.3 T1 and T2* Relaxivities of Gd-DTPA in Oxygenated 
Venous Blood and Aqueous Solution at 3 and 7T. 

Gd-DTPA (Magnevist™) is one of the most widely used MRI contrast agents 

(CAs) today. The relaxation enhancement of Gd-DTPA depends on its relaxivity 

which in turn depends on factors like magnetic field strength, macromolecular 

content, pH and temperature (12,142-144). Chapter 5 details work done to 

calculate r1 and r2* relaxivities of Gd-DTPA in oxygenated venous blood (OVB) 

and aqueous solution. The results show that the R1 relaxivity (r1) was relatively 

constant from 3T to 7T in OVB while the R2* relaxivity (r2*) increased four-fold. 

Based on these results, it can be calculated that sub-millisecond T2* relaxation 

times at 7T are possible with in-vivo Gd-DTPA concentrations ([GaD]) of 5 mM in 
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the blood which can be reached with injection rates of 3 ml/s (62). These effects 

could negatively impact contrast enhanced studies when performed at 7T if not 

accounted for in the sequence optimization and/or injection strategies. In general, 

the results from this study has  multiple  potential  uses including 1) optimization 

of sequence parameters 2) development of contrast injection paradigms 3) 

calibration  curves  to  determine  [Gd]  from  changes  in  T1   and  T2*  

relaxation  rates  (R1   and R2*).  

6.2   Future Work 

6.2.1 Correlation of MRI with Quantitative Pathology 
In addition to providing information regarding disease location and grade, digital 

pathology can also be processed to provide valuable quantitative information like 

percentages of tissue components (like nuclei, stroma, lumen and cytoplasm). It 

is therefore possible to correlate individual qMR parameters with quantitative 

pathology to better understand the correspondence between in-vivo MR 

parameters and anatomic/molecular pathologic status of tissue. An initial 

exploratory analysis was performed on an eight patient cohort (48) where T2-

SEMC and ADC (cancer and non-cancer) values were correlated to 

corresponding nuclear density values and grade obtained from pathology. Both 

T2-SEMC and ADC values for cancer were found to be lower than normal values 

in the CG and PZ (p<  0.0625  &  p<0.003,  respectively)  while  cancer nuclear 

densities  were  significantly  higher  (CG:  p<0.003,  PZ:  p<  0.003). Negative 

correlations between nuclear density and ADC (r = -0.98) and ADC and T2-

SEMC(r = -0.65) were found for tumor data (145). This study, as well as others 

(48), demonstrates that there are discernible pathologic features which correlate 
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with quantitative MRI metrics of PCa thus providing insight into the microstructure 

of the tissue. While it has been shown that Gleason score correlates positively to 

increased cellularity (146) and that nuclear density correlates with tumor 

aggressiveness (147,148), it is unknown how well these microscopic findings 

correlate to the macroscopic scale we currently operate in when imaging  with 

MRI.  The correlation of quantitative histopathological and pre-therapeutic MR 

parameters using Pathology-MR co-registered data sets, will help address these 

questions. 

6.2.2 Variation of the L5P_CGROI Model  
NCCG-ROI regions used in the L5P_CGROI model are obtained from user defined 

ROIs drawn on slices at least 9 mm away from regions of annotated cancer 

(Section 4.2.2). A direct comparison cannot be made currently between the 

L4P_CG and L5P_CGROI models as the non-cancer data belongs to different 

slices. To compare these models, user defined non cancer ROIs would need to 

be drawn with in NCCG regions from Data Pool III. This would enable a 

comparison of cancer in CG with non-cancer CG data obtained from 1) NCCG and 

2) ROIs drawn with in NCCG regions excluding the urethra, areas of fibromuscular

cap and post-biopsy hemorrhage.  
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