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ABSTRACT 

One of the central puzzles in ecology is what determines the size of 

populations in nature. Strident debate between those claiming precedence 

of density-independent factors over density-dependent ones, and vice versa, 

has subsided with the realization that both may play a role in limiting 

population size of any species. Nevertheless, very few attempts have been 

made to directly assess the effect of density on population growth in 

nature. This is particularly disturbing, because theoretical ecology 1s 

largely based on the density-dependent population growth routinely 

documented in laboratory experiments. 

Similarly, explanations of the existence of variation in life history 

among and within species, in particular the weedy vs. non-weedy habit, have 

invoked density-dependent selection. Yet such selection has never been 

demonstrated in nature, and thus its efficacy in maintaining genetic 

variation is unknown. The experiments reported here were devised to 

determine the extent to which density limits growth of a population of 

Salvia lyrata L., an herbaceous perennial plant common in North Carolina 

grasslands, and whether density-dependent selection structures its genetic 

variation. 

The local density of Salvia was altered by sowing in seed at different 
. 

densities, and by transplanting or removing established individuals. In 

most cases, these manipulations elicited weak or conflicting responses; 

however density-dependent mortality and stunting of seedlings was evident 

at unnaturally high densities of sowing. Thus density is rarely sufficient 

to limit an individual's contribution to this population, but density 

effects can limit population size at extreme seedling densities. 
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In additional experiments, evidence of genetic variation in density 

response was sought by planting individuals of known genetic origin into 

arrangements of varying density. An experiment in protected conditions 

showed variation among families in the response of flowering probability to 

density, but not in survival nor in the number of seeds produced. A field 

experiment showed variation among families in the reponse of a size trait, 

number of leaves, to density. Given that survival and fecundity are size­

dependent, as documented in observations of the natural population, this 

result suggests the potential for density-dependent selection in nature. 
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DENSITY-DEPENDENCE IN SALVIA LYRATA 



CHAPTER I. OBSERVATION 

Introduction 

The direct effect of population density on an individual's 

contribution to population growth is considered fundamental to population 

dynamics, yet the experimental methods necessary for revealing it have 

rarely been applied in wild populations. Experimental studies of density 

effects in insects (e.g., in Drosophila, Pearl, 1927; Sang, 1950; Barker, 

1973; and in Tribolium, Sokal and Huber, 1963) and in plants (see 

Rarper,1977, for review) have demonstrated major effects of density on 

various components of individual fitness and on population productivity. 

Since these experiments are executed in the relatively uniform conditions 

of laboratory, greenhouse, or agricultural field, they reveal idealized 

forms of density response. From this empirical work, mathematical 

functions have been derived which fit the observed -density responses (e.g., 

May, et al., 1974; Rasse.ll, 1975; Watkinson, 1980; White, 1981, for review 

of the plant literature), and concomitant theoretical work (e.g., Hassell, 

1975) has employed these functions as the basis for predicting stability of 

population size. It remains unclear to what extent these findings apply to 

natural populations, because very few experimental studies of density­

dependence have been carried out on wild species in natural conditions; 

Antonovics and Levin (1980), however, discuss some exceptions (see also, 

Stiven and Kuenzler, 1979; Clay and Shaw, 1981; Wise, 1981). 
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The preponderance of work on natural populations of plants has 

consisted of demographic studies of unperturbed stands. From such 

observational data, inferences about the effects of density have in some 

cases been drawn (e.g., Sarukhan and Harper, 1973; Jefferies, et al., 1981; 

Klemow and Reynal, 1981; Matessi and Menozzi, 1979; Barkham, 1980; Silva, 

et al., 1982). Other attempts to discern density effects in natural plant 

populations have been based on observation of overdispersed spatial 

patterns and of positive correlations between individual size and distance 

to nearest neighbor (e.g., Phillips and MacMahon, 1981; Bell, 1981; Squiers 

and Klosterman, 1981; Wright, 1982). Earlier studies of this kind have 

been reviewed by Antonovics and Levin (1980), who point out that such 

studies fail to separate effects of density from the effects of 

microenvironmental variation, since the two are confounded in unmanipulated 

populations. 

Beyond the problem of how density effects are manifested in nature is 

the question of whether density-dependent selection occurs as a consequence 

of these density effects. Density-dependent selection is the mode of 

selection in which the genotype-specific fitness rankings vary with 

conspecific density, such that certain genotypes are favored at one density 

and alternative ones at different densities. Given the knowledge that 

increased population density frequently causes a decrease in the components 

of fitness of individuals, one might expect that there exists genetic 

variation in response of fitness traits to density. The occurrence of 

density-dependent selection is a possible, though not necessary, outcome of 

the existence of such genetically based variation. 

The assumption that density-dependent selection does indeed occur in 

natural populations has served as the basis for theories of life history 
3 



evolution (e.g., MacArthur and Wilson,1967; Gadgil and Solbrig, 1972; 

Clarke, 1972; Rougbgarden, 1971; Bulmer, 1974; Slatkin, 1979). Evidence of 

density-dependent selection is available from experiments on synthetic 

populations of Drosophila (e.g., Lewontin, 1955; Clark and Feldman, 1981; 

Marks, 1982). Moreover, variation among strains of crop plants for response 

to density of growth and yield characters bas frequently been reported 

(e.g., Stivers, et al., 1971; Rumbaugh, 1970). The extent to which density­

dependent selection occurs in wild species is, however, almost entirely 

unknown. Solbrig and Simpson (1974) and Law, et al. (1977) demonstrated 

genetic variation in life history traits among "biotypes" of Taraxacum 

officinale and among populations of Poa annua, respectively. It was 

suggested that density-dependent selection in the "closed'' habitats led to 

delayed reproduction and smaller proportional allocation to reproduction 

relative to the life history phenotypes which were more common in the 

"open" environments. No studies which directly assess the extent of 

genetic variation in density response in a natural population have been 

reported. Thus, despite keen interest in the theoretical consequences of 

density-dependent selection, we have no direct evidence regarding the 

prevalence of this mode of selection in natural populations. 

This dissertation addresses questions relevant to the issue of 

density-dependence, presenting information obtained by a variety of 

empirical methods applied to a population of Salvia lyrata. The primary 

aims of the work are 1) to assess the direct effects of density and from 

these results to infer their implications for population growth, using 

observations and experiments in the field and 2) to assess the extent of 

genetic variation for response to density and to infer the potential for 

density-dependent selection, using quantitative genetic techniques in both 

garden and field experiments. 

4 



The present chapter reports on the demography of a natural population 

of Salvia lyrata as a basis for comparison with the experimental work to 

be reported in subsequent chapters. Correlations of variation in life 

history traits with that of population density are indicated for comparison 

with previously reported observational studies of density effects. 
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METHODS 

Salvia lyrata (Lamiaceae) is a _perennial herb which is broadly 

distributed between east Texas, north Florida, Connecticut, and Illinois 

(Gleason and Cronquist, 1963). In the Piedmont of North Carolina, where 

this study was conducted, it is a common inhabitant of mown fields and 

roadside verges and is also found, though less frequently, in open woods. 

The species is apparent throughout the year as a rosette of purple-tinged 

leaves. In late May and rarely during the summer, the plants produce 

inflorescences bearing both lavender, chasmogamous and inconspicuous, 

cleistogamous flowers clustered in pairs of three-flowered cymules which 

are widely spaced along the stem. Seeds mature for approximately two weeks 

after anthesis and are then dispersed suddenly from the persistent, dried 

calyces when these are perturbed by animals or raindrops (Brodie, 1955). 

Seeds germinate primarily in the following March through early May; this 

delay in germination appears to be imposed through exogenously enforced 

dormancy, since the seeds germinate readily in the laboratory at all times. 

The study was conducted in a mown field, approximately 40 m x 70 m, on 

the campus of Duke University. The field is on a gently south-facing slope 

and is bordered by mixed pine and deciduous woods. - The University has 

maintained the field in its present condition for over 20 years, mowing it 

approximately every two weeks in the summer. The field supports a diverse 

assemblage of grasses and forbs, several of whose competitive interactions 

have been investigated in a nearby field (Fowler and Antonovics, 198la). 

The most common species are grasses of the genera Andropogon, Panicum, and 

Paspalum, and the perennial dicots, Plantago lanceolata and Salvia lyrata. 

Salvia lyrata is present throughout this field and, in some areas, is the 

dominant species. 
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In June of 1979, the positions of 11 permanent plots, 50 em x 100 em, 

were located by choosing random coordinates. Environmental differences 

among the plots were readily apparent in both physical (e.g., soil 

moisture, soil texture) and biotic (e.g., shading, Salvia density, presence 

and density of other species) properties. The minimum distance between two 

plots was 3.6 m and the maximum distance was 49 m. Using a plotting frame 

(described in Fowler, 1978) the coordinates within the site, size (number 

of leaves and length of longest leaf), and flowering condition were 

recorded for every individual of Salvia lyrata in each plot. Every plant 

was marked with a toothpick, in order to facilitate identification of 

individuals in future censuses. Subsequent censuses were made in the same 

way (newly appearing individuals being recorded) in December, 1980, and 

then in February, May, and October for each of three years (1981-1983), 

concluding in May, 1983. The February census was eliminated in 1983. Over 

the four year period (6/79-6/83), 3248 individuals were observed, with a 

minimum of 600 at the December, 1980 census. 

For certain statistical analyses, counts of total numbers in a plot 

and numbers surviving in a plot were transformed to logarithms. In these 

cases, tests compare proportional changes in numbers. Furthermore, in 

order to satisfy normality assumptions, arcsin square root transformation 

was used when dealing with proportions. Where comparisons of plots were of 

interest, replication within plots was obtained by considering the 

populations of the two 50 em x 50 em areas within plots as separate 

observations. 

Spatial autocorrelation analysis (Sokal and Oden, 1978) was used to 

examine in detail the spatial association of measures of growth within 

plots. In particular, this method was employed to show whether a negative 

correlation exists between size changes of near neighbors, as might be 
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expected if individual growth is negatively density-dependent. The paired 

coordinates of all the individuals present at the February, 1981 census 

were used to define for each individual its nearest three neighbors (within 

15 em) and their distances. The reciprocal of the distance between each 

pair was used to weight the product of their deviations from the mean, 

because effects of neighbors are expected to decline with distance. The 

sum of the weighted products is the statistic, Moran's I, which measures 

the magnitude of the spatial autocorrelation. 

All analyses, except for those of total population size and survival 

of established plants, employ data only from the 1980-1983 period, for 

which the census record is complete. 

RESULTS 

Population Size 

Total population size (Fig. 1.1) fluctuated seasonally with peaks in 

May, as a result of spring recruitment, and depressions in autumn and 

midwinter. In addition, population sizes increased in ten of the eleven 

sites between May, 1979 and May, 1981, and in nine of the sites between 

May, 1982 and May, 1983, suggesting that environmental conditions improved 

in those intervals. Conversely, eight sites declined in numbers between 

May, 1981 and May, 1982. The variation in population size among sites is 
2 

appreciable on all dates. The number of individuals in a .25m area ranges 

between 8 and 75 in February, 1982, for example. 

There is a weak inverse relationship between population size change 

and site density suggested by the striking decline of the most dense site 

between February, 1981 and February, 1982, while most of the remaining 

sites were increasing. However, the overall ranking of the sites by 
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Figure 1.1. Population size trajectories for each of the 11 plots over the 
three year period, 6/79 to 6/82, log scale for number of individuals. 
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density changed little over the whole period of observation, June, 1979 to 

May, 1983, with the exception that two sites, originally ranked seventh and 

eighth with 38 and 17 Salvia individuals respectively, were the two most 

populous with 351 and 239 individuals four years later. 

Survival 

Regressions of log numbers surviving from an initially observed group 

against time provide an estimate of depletion rate for the population. If 

the group is a single cohort, then these regressions are survivorship 

curves (Harper, 1977). The regressions (against time in months) were 

carried out for two separate groups of individuals: those observed at the 

second census (12/80) and those which appeared as seedlings in May, 1981 

(Figs. 1.2 and 1.3). Thus, these depletion curves pertain to a mixed age 

group and to a single cohort, respectively. The latter is, therefore, a 

survivorship curve, in the strict sense. The depletion rate was higher for 

seedlings (b= -0.07) than for the mixed group (b=-0.02), and thus their 

half-life, calculated on the basis of the linear regression, was lower (10 

and 35 months, respectively). In addition, when the factor, plot, is 
2 

included in the model, the quadratic term (time ) is positive for seedling 
2 

mortality (b=.003, improving the R from .865 to .891). For mortality of 

the mixed age group, the coefficient of the quadratic term is much smaller 
2 

(b=.0003, increasing R from .9401 to .9408. This suggests that the risk 

of mortality decreases more for seedlings with age or time of year than for 

adults; the effect of these factors can not be distinguished, since they 

are highly correlated in this study. 

Regression of numbers of individuals surviving to a given time period 

against numbers of individuals originally present (untransformed) provides 

an estimate of the density-independent mortality over a given time period. 
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Figure 1.2. Depletion curves for the individuals observed at the December, 
1980 census, log scale for number of individuals. 
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Figure 1.3. Survivorship curves for the seedlings which appeared in 1981, log scale 
for number of seedlings. 

I-' 
.!:'-



--
S9NI103 3S .:10 ~38WnN 

15 

z~ 
=>oo .., 

0 w­c<D 



For the 1981 seedling cohort, the estimate of density-independent mortality 

in the first year is 82%, whereas for the mixed age group, the value of 

density-independent mortality over the course of the three year period 

(6/79-6/82) is estimated as 36%; 235 individuals remained from the 608 

originally observed. Bellows (1981) has suggested plotting residuals from 

these regressions against initial number.s (untransformed), as a method of 

detecting density-dependence in mortality. In the present study, residuals 

from these regressions for the 1981 cohort and the mixed 1979 group display 

no relationship with density (Figs. 1.4a,b). 

Fecundity 

In all sites taken together, 90 plants were observed to flower in 

1979, 76 in 1981, 126 in 1982, and 101 in 1983. The variation among plots 

in the propensity of plants to flower was analysed in the following way. 

The number of plants flowering in May was expressed as a fraction of the 

total numbers of individuals present in the previous February. These 

values (ranging from 0 to 63%, with a mode of approximately 20%) were 

arcsin square root transformed and then subjected to 2-way analysis of 

variance with the factors, year and site, and the c~variate, density, 

included in the model. The proportion of plants flowering showed no 

eignificant variation among years or among plots, but the proportion of 

flowering declined significantly with plot density (slope=-.004) (Table 

1.1, Figure 1.5). 

In May of 1982, more complete flowering ' data were collected, including 

the numbers of seeds produced by each plant. For each plot, the average 

number of seeds produced by plants which flowered was calculated. These 

values, which ranged from 84 to 140 seeds per plant flowering, showed no 
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Figure 1.4a. Scatter plot of number of individuals remaining in June, 1982 from an 
original number present in December, 1980, untransformed. 
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Figure 1.4b. Scatter plot of number of individuals remaining in May, 1982 from an 
original number present in June, 1982, untransformed. 
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Table 1.1. Analysis of variance of (number of plants flowering in 
May/number of plants present ~be previous February) for two years 
(1981, 1982). 

2 
Source M ss !. Pr>F .! 

Model 12 0. 53 1.7 .11 .40 

Year 1 0.04 1.5 .23 
Density 1 0.17 6.6 .02 
Plot 10 0.32 1.3 .29 
Error 22 0.79 
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Figure 1.5. Scatter plot of proportion of plants flowering in May of those present in 
February vs. numbers present in February for two years, untransformed. The years are 
indicated by symbols, as follows: 

• 1981 

• 1982 

• 1983 
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significant variation among plots (p<.93), nor any trend with density. 

Recruitment 

The number of seedlings which emerged (that is, which germinated and 

bore cotyledons exposed above the soil surface on the dates of the 

censuses) varied among sites from 13 to 226 in 1981 and from 5 to 125 1n 

1982. The same plot gave the maximum number in both years. Overall, more 

seedlings emerged in 1981 (748) than 1n 1982 (414). This decline in 

seedling emergence may be due either to the overall reduction in the number 

of plants in flower the previous year, or to the fact that the spring 

census was taken several weeks later in the second year; by that time, 

recruitment had nearly ceased and mortality may have begun to depress 

aeedling numbers. 

The numbers of seedlings emerging was divided by the number of plants 

flowering in the previous year. These values were subjected to 2-way 

analysis of variance, with year and site and the covariate, density, in the 

model. There was significant variation between years in the number of 

aeedlings emerging per flowering individual (4.7 in 1982; 10.0 in 1983), 

but neither of the other factors was significant (Table 1.2), indicating 

that the number of seedlings per plant flowering is independent of density 

and other variation among plots. 

Growth . 

Two non-destructive measures of growth were used, namely, the change in 

number of leaves and the change in length of longest leaf (i.e., the 

difference between the measures on two different dates for plants which 

were present on both dates). Because growth of an individual may be 

correlated with that of its neighbors (see below), the assumption that each 
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Table 1.~. Analysis of variance of (number of seedlings emerged/number of 
lants in flower the previous year for two years (1982,1983). 

2 
Jource df ll. !. Pr>F ! 

Model 12 825.4 2.0 .066 .44 

Year 1 331.4 9.5 .005 
Density 1 0.2 0.01 .94 
Site 10 493.8 1.4 .22 
Error 30 1876.8 
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observation is independent would be violated in an analysis of variance 

~bich used every individual as a separate observation. For this reason, 

a atatistically conservative approach was taken, in which the growth values 

w re averaged separately to give pairs of growth measures for each plot for 

a given comparison of dates. Multivariate analysis of variance for the 

Comparison of February, 1981 with February, 1982 shows no signifLcant 

variation among plots for either growth measure nor for the two considered 

ogether (p<.31, Wilks' criterion). Furthermore, the relationshLp of the 

&rowth measures with density is only weakly negative (p<.33, Wilks' 

criterion). The mean change in leaf number and mean change in length of 

l ongest leaf are positively correlated within sites. 

Considering the time interval, February to May, for 1981 and 1982, 

owever, reveals significant variation among sites (p<.02) for the change 

i n length of longest leaf. Furthermore, this variation is significantly 
2 

lated to plot density (b=-0.14, p<.0013, R =.22). In a univariate 

nalysis, the change in leaf number does not show significant variation 

~ ong plots or with plot density, but the two growth measures are 

i gnificantly correlated within plots (r=.56, p<.OOS). Thus, these 

i ndings suggest that, although change in leaf size from one winter to the 

xt is not influenced by environmental variation among sites nor by 

naity, growth during the spring flush may indeed be affected by 

nvironmental variation, including density or factors correlated with 

d naity. 

The correlations among individuals' growth measures within each of the 

11 plots was investigated directly by the method of spatial autocorrelation 

nalysis (Sokal and Oden, 1979). This procedure was carried out separately 

for each site and for the two growth measures, defined above. Considering 

r owth between the two winter dates (2/81-2/82), there was only one case of 

26 



significant correlation for either growth measure: one plot of 

intermediate density (N=37) showed a significant positive spatial 

autocorrelation of change in length of longest leaf. This suggests that 

environmental variation within that plot causes neighbors' sizes to change 

in the same direction, rather than in opposition to one another, as one 

might expect if competition among individuals were a major factor 

determining the magnitude of individuals' size changes. For the remaining 

plots, the test statistic for spatial autocorrelation ranged over negative 

and positive values; no trends with plot density were apparent. 

In an additional set of analyses, the differences in number of leaves 

and in length of longest leaf were divided by initial leaf number and 

length, respectively, to give a measure of proportional change 1n the two 

measures. The results of the spatial autocorrelation of these values did 

not differ from those in the first group. Considering further the period 

of growth in the spri~g (2/81-5/81), a single plot (but a different one 

from before) revealed significant positive spatial autocorrelation of both 

growth measures. Otherwise no significant associations and no trends are 

revealed by this analysis. 

Interrelationships of individual plant ~easures 

The demographic data provided insight into the relationsh1ps among 

flowering, size, growth, and survival in the natural population. Larger 

plants were more likely to flower and to survive (p<.0001, both size 

measures; Kruskal-Wallis test). The mean size in winter of plants which 

flowered the following year was 8.9 leaves, 42.8 mm compared to that of 

non-flowering plants with 5.4 leaves, 24 mm. The mean size of those which 

survived to the following spring was 6.7 leaves, 31.4 mm; those which died 

in that interval averaged 5 leaves, 20.7 mm. These relationships held 
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true, regardless of whether the gmallest size classes (number of leaves<4; 

length of longest leaf<20) were included. Furthermore, those plants which 

flowered in May, 1981, were, on average, still the largest plants the 

following February (number of leaves= 6.7, length of leaf • 33.5 mm vs. 

4.8 leaves, 21.3 mm; p<.0001, both size measures, Kruskal-Wallis test). In 

spite of remaining the dominant plants in absolute size, those that 

flowered had an average of 1.5 fewer leaves, the longest of which was an 

average of 3.5 mm shorter at the end of the period, 2/81-2/82, (p<.0004, 

Kruskal-Wallis test), whereas those which failed to flower increased in 

both measures (+0.6 leaves, +4.6 mm). Nevertheless, plants which flowered 

one year were more likely to flower in a subsequent year than those which 

failed to flower (6/79-5/81, G=4.96, p<.05; 5/81-6/82, G=7.07, p<.01, G­

test) (Table 1.3). Flowering individuals suffered no increased risk of 

mortality in 1979 G=.ll, ns); however, in 1981, flowering individuals 

showed lower incidence of mortality than expected (Table 1.4) (5/81-6/82, 

G=3.98, p<.1, G-test). 

DISCUSSION 

The demographic and life history characteristics of the population of 

Salvia lyrata, detailed above, resemble those previously determined for 

other herbaceous perennials. The following encapsulates the salient 

features, while drawing comparisons with demographies known for other 

species. 

Superimposed on a relatively constant total population size are 

seasonal fluctuations which are the result of predominantly spring 

recruitment and summer mortality. Estimated population decay rates for 

established individuals indicate a half-life of approximately three years, 

which is somewhat longer than that of Anthoxanthum odoratum growing on mine 
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Table 1.3. Frequency table of flowering in one year vs. flowering in a 
subsequent year. In each cell observed values are above, expected values 
below. 

Flower in 1981 Flower in 1982 

No Yes No Yes 

Flower No 194 64 Flower No 231 77 
187 71 221 87 

in in 

1979 Yes 33 22 1981 Yes 49 33 
41 15 59 23 
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Table 1.4. Frequency table of flowering in one year vs. survival to a 
subsequent year. Arrangement as in Table 5. 

Survive to 1981 Survive to 1982 

No Yes No Yes 

Flower No 12 258 Flower No 111 308 
12 258 104 315 

in in 

1979 Yes 2 55 1981 Yes 17 82 
2 54 24 75 
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spoils (2 years, Antonovics, 1972) and within the range of Ranunculus acris 

populations (ca. 2 years and 4 years; Sarukhan and Harper, 1973). These 

grassland species show much higher turnover rates than woodland herbs, such 

as Narcissus pseudonarcissus (12-18 yr; Barkham, 1980) and Chamaelirium 

luteum (30-80 yr; Meagher, 1982). The survivorship curve for Salvia lyrata 

appears to asstime the form of Deevy's Type III curve, with risk of 

mortality higher for seedlings than for older individuals. Similar 

survivorship curves have been noted for both grassland species mentioned 

above. 

As a consequence of the high risk of seedling mortality, few new 

individuals are recruited into the flowering component of the population, 

and these only several years after their appearance as seedlings. No plant 

which was observed as a seedling flowered during the course of the study, 

nor did a large fraction of the total population flower in any year. Those 

that did flower and survived to the following spring appeared to persist as 

dominant individuals and flowered in subsequent years. There was, in one 

year, a higher chance of mortality or significant decreases in size for 

those plants that flowered compared with those that did not. In a study of 

longer duration, Antonovics (1972) similarly observed that a sizable 

fraction of the Anthoxanthum odoratum individuals growing on m1ne spoils 

persisted in the population for several years, failing to flower before 

their death. 

The visible environmental heterogeneity of the field is reflected 

in the variation in local Salvia abundance. For most sites, the population 

sizes were approximately constant for the duration of the study; however 

two sites showed striking increases in the period. The constancy of 

numbers observed in the majority of cases is generated by the approximate 
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equivalence of recruitment and mortality rates within plots. Moreover, 

' 
these rates of influx and loss of individuals show little variation among 

plots. This contrasts with the finding of Fowler and Antonovics (198lb) 

that survivorship of transplanted seedlings of ~ lyrata and of Plantago 

lanceolata varied significantly over ~all distances. Apparently, the 

differences in abundance of ~ lyrata observed in the present study were 

generated in the past as a consequence of intrinsic ecological differences 

among the site locations. Due to the persistence of the ecological 

differences, the spatial variation in density of ~ lyrata is maintained by 

roughly equal proportional fluxes, as a consequence of uniform proportional 

birth and death rates. The two exceptions cited above may exemplify 

populations the quality of whose locations has improved (or which have 

recently been colonized) and which now experience positive rates of 

increase. This must remain an untested hypothesis, since the history of 

the plots on a fine-scale is not known, and since isolation and measurement 

of the discriminating ecological variables is likely to be exceedingly 

difficult. 

The present study has revealed some circumstantial evidence of 

density-dependent regulation operating in this population. Trends toward 

reduction in proportional survival, in _proportion of plants flowering, and 

in average individual growth with increasing density suggest a tendency of 

population growth rate to decline with density. Comparable investigations 

have shown density inhibition in dry weight per bulb of Narcissus 

peeudonarcissus (Barkham, 1980) and in life expectancy of ramets of 

Janunculus repens (Sarukhan and Harper, 1973). Demographic studies of 

annuals have shown reduction in fecundity with density in Salicornia 

europaea (Jefferies, et al., 1981) and, in conjunction with field 

experiments, in Vulpia fasciculata (Watkinson and Harper, 1979) and 
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Diamorpba 6mallii (Clay and Shaw, 1981). Other investigators have 

discerned no density effects in Viola species (Waller, 1981), Maiantbemum 

canadense (Silva, et al., 1982) and Melilotus alba (Klemow and Reynal, 

1981). Circumstantial evidence for density-dependent mortality in~ 

lyrata was obtained by Fowler and Antonovics (198lb) in the study 

mentioned above. Seedlings transplanted into areas of high natural density 

bad significantly higher mortality than those planted into sites at low 

density. As these authors noted, because local density and site locations 

were confounded, however, the direct effect of density remains unproven. 

The present study produced conflicting findings with regard to the 

effect of density on individual growth. If local density, i.e., crowding 

by conspecific neighbors, is responsible for differences in growth among 

plots, as suggested by the regression of mean growth in a plot against 

density of the plot, this effect should be further manifested in negative 

spatial aurocorrelation of growth within plots. Such a finding would imply 

that individuals grow at the expense of their neighbors' growth. No 

evidence for this effect was found; instead, a few instances of positive 

spatial autocorrelation suggested that f1ne scale environmental variation 

bas stronger effects on individual growth than does- growth of neighbors. 

Waller (1981) suggested several explanations for his failure to detect 

evidence of density effects in a demographic study of natural populations . 

of Viola spp.: 1) lack of competition in the natural populations, 2) 

environmental heterogeneity (spatial or temporal), and 3) use of unreliable 

statistical methods (in this case, regression of number of leaves on 

measures of numbers, sizes, and dispersion of neighbors in observational 

data). But purely observational demographic methods, regardless of 

statistical methods, are inherently unreliable, due to their failure to 
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deconfound effects of density from those of other variables contributing to 

spatial and temporal heterogeneity in a natural population. Use of 

experimental alteration of field densities will lead to resolution of the 

questions of whether, how, and when density effects are manifested in 

nature. Experimental work devoted to discerning effects of density in the 

present population of Salvia lyrata will be reported in the subsequent 

chapters. 

The descriptive demography of a population of Salvia lyrata has 

revealed that it has a life history typical of several herbaceous 

perennials studied previously. The population numbers are relatively 

constant as a consequence of the balance between recruitment and mortality. 

The survivorship curve is concave (Deevey's Type III), and individuals 

flower only several years after their recruitment. Some of the evidence is 

suggestive of the operation of density effects regulating the population. 
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CHAPTER II. EXPERIMENTAL ALTERATION OF SEED DENSITIES 

INTRODUCTION 

A dependence of population growth on density is recognized as an 

essential element of population regulation (Murdoch 1970). Descriptive 

studies of natural populations (reviewed in Antonovics & Levin 1980 and 

Chapter I) provide only circumstantial evidence of density effects, because 

they fail to deconfound local density and other environmental 

characteristics. Only experimentation in natural populations can indicate 

the frequency and intensity of density effects in nature, from which 

predictions of the consequences of density responses can be made. Yet, 

despite the importance of the concept of density-dependence in 

understanding population regulation (see e.g., Roughgarden 1979), few 

studies of natural populations document direct effects of density (reviewed 

by Antonovics & Levin 1980). Watkinson & Harper (1978) estimated effects 

of density throughout the life cycle of a winter annual grass, Vulpia 
. 

fasciculata, and developed a model of its population dynamics. Clay and 

Shaw (1981) documented density-dependent reproduction in Diamorpha smallii 

and used a similar model to investigate its consequences. 

The present chapter reports a series of experiments designed to detect 

and quantify effects of conspecific density on seedling emergence and 

survival in the population of Salvia lyrata (Radford, et al. 1968) whose 
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characteristics were described ~n Chapter I. These experiments address the 

following questions: 

If so: 

1) Is seedling success -- either emergence, survival, or growth -­

affected by seed and seedling density? 

2) Over what range of densities are these effects perceptible? 

3) Do these responses vary spatially or temporally within the 

population? 

4) Do plants of different ages or sizes differ in their reponse to 

density? 

5) Do plants of different sizes elicit different responses 

from their neighbors? 

MATERIALS AND METHODS 

The experiments were conducted in a mown field on the campus of Duke 

University (Chapter I). The field is lnhabited by an association of 

numerous grass species and forbs, including Salvia, and is similar to a 

nearby field studied by Fowler (1978). For the pr~sent experiments, 

collections of naturally maturing seeds were made in June, 1980 and 1981, 

each seed lot being sown back in the year it was collected. 

In June, 1980, forty-eight 30 em x 30 em plots were laid out ~n each 

of two sites in the field. One site was on a gentle slope in an open area 

of the field; the other was ca. 20 m distant, at a lower elevation and 

under four white pines. The plots were allotted to four blocks in each 

site, and within each block, three factors were varied in a crossed design: 

1) Salvia which were already established were either removed or not, 2) 
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seeds were applied at three sowing densities, 0, 100, 500 seeds (by weight) 

per plot, 3) seedlings were either removed or not as they appeared. The 

twelve combinations of these factors were randomly applied within blocks. 

Because insufficient seed was available, the seedling removal treatment was 

el~inated at the highest sowing density in the second site. The plots 

were monitored every two weeks for germination and survival. Individuals 

which appeared were marked with a toothpick, and each toothpick was removed 

when the seedling it marked had died. 

In June, 1981, inflorescences of adult Salvia occupying the sites were 

clipped to min~ize natural seed input. The following October, the 

treatments were renewed as follows: pairs of adjacent blocks were 

aggregated such that there were twenty-four plots in each block. In the 

twelve plQts where seedlings were absent due to the seedling removal 

treatment, seeds were sown at 50, 200, and 500 seeds per plot onto the 

plots which had received 0, 100, and 500 seeds, respectively, in the 

previous year. In the remaining plots, addition of either no seeds or 200 

seeds was factorially crossed with the seed sowing densities of the 

previous year. The plots continued to be monitored for emergence and 

survival, as before. Analysis was based on counts of seedlings emerging 

and of seedlings which died, summed from June, 1980 to May, 1981, from May 

1981 to November, 1981, and from March, 1982 to November, 1982. 

In the second seed germination experiment, forty plots of 10 em x 10 

em were established in the field in four adjacent rectangular blocks. 

Spaces 5 em wide were left as guard areas between the plots (Fig. 2.1). All 
2 

four blocks occupied a total area less than 1.5 m • Seed lots were made up 

with the following seed quantities: 30, 60, 120, 240, 480, 720, 960, 1440 

(the latter six, by weight). The density treatments, including two control 

plots in which no seeds were sown, were assigned in four randomized blocks, 
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Figure 2.1. Plan for one replicate of Experiment 2. The dimensions are indicated in the 
diagram. 
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and the seeds were scattered within each plot in October, 1981. In March, 

1982, when emergence was beginning in Experiment 1, the newly emerged 

seedlings were counted and, in order to ensure accurate counts, were marked 

with a small dot of acrylic paint on each cotyledon. This procedure was 

carried out every two weeks in the spring and thereafter every six weeks 

until November. In addition, the individuals surviving from prior 

emergence were counted every four weeks through June and every twelve weeks 

thereafter until November. Analysis was based on counts of seedlings 

emerged and surviving, summed from March, 1982 to November, 1982, and 

recorded in April, 1983. 

In May, 1983, up to sixteen individuals were chosen in each plot in a 

rectangular grid of approximately 3 em spacing; their sizes (number of 

leaves and length of longest leaf) were recorded, and each was marked with 

a toothpick and ringed with plastic coated wire to identify them for 

subsequent measurement in August and October, 1982, and April, 1983. 

The statistical analyses were carried out using the Statistical 

Analysis System (Helwig & Council 1979). All percent values were 

transformed (arcsin square root). Other transformations are noted where 

they were necessary. Profile analysis (Timm 1975) of seedling size 

trajectories provided multivariate tests of variation among groups in 

growth and size. 

RESULTS 

EXPERIMENT 1: In both years, seedling emergence began the second week in 

March and peaked in mid-April; by early June, about 95% of the year's total 

seedlings had appeared. The mean number of seedlings which emerged from 
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plots in which no seeds were sown were 57 (Site 1) and 52 (Site 2) in 1981 

and 16 (Site 1) and 21 (Site 2) in 1982. These figures estimate the 

emergence from natural sowing in the previous year and from seed buried Ln 

prior years. 

The total number of seedlings emerging through September, 1981, varied 

significantly among blocks within sites and among seed density treatments 

(Table 2.1). Moreover, significantly more seedlings emerged in plots from 

which resident Salvia had been removed prior to seed sowing (105 vs. 88 

seedlings). This implies that the presence of adults reduces seedling 

emergence and early survival or that removal of adults created physically 

favorable sites. Removal of seedlings marginally reduced total emergence 

(91 vs. 102 seedlings), suggesting that the presence of seedlings enhances 

the probability of seedling emergence or survival to the time of the next 

census. Beyond these main effects, there was a significant two way 

interaction between the factors, removal of adults and seed density, such 

that adult removal enhanced emergence more at higher sowing densities 

(Table 2.1b). 

Seedling mortality through November, 1981, varied significantly among 

sites (68% in the sunny~· 48% in the shaded site). The number of seeds 

sown did not significantly affect the proportional mortality, but there was 

a very weak negative relationship with number of seedlings emerging (slopec 

-.000015, p<.97). There was significantly greater mortality in plots where 

Salvia was not removed prior to seed sowing (64% vs. 48%) (Table 2.2). 

Similarly, in 1982, mortality of individuals which had appeared and 

survived through August of the previous year was significantly increased 

only by the presence of resident Salvia (Table 2.3, 39% vs. 55%). Thus, as 

above, the principal effect of conspecifics was reduction of seedling 

survival by the presence of established individuals. 
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Table 2.la. Analysis of variance of total numbers of seedlings emerging in 
1980, Experiment 1. Type IV Sums of Squares are given in this and all the 
following tables. 

Source df 

Model 23 
Error 70 

Site 1 
Block (Site) 6 
Removal of adults 1 
Removal of seedlings 1 
I Seeds (1980) 2 
Removal of adults x 

# Seeds 2 
Removal of seedlings x 

# Seeds 2 
Removal of adults x 

Removal of sdlings 1 

Means: Site 

Removal of adults 

Number of seeds 

ll. 

27 2557 
65813 

6 
69466 

9715 
2702 

138141 

14982 

964 

659 

1 98.2 
2 95.0 

Yes 104.8 
No 88.4 

0 58.4 
100 70.0 
500 161.4 

I. 

12.6 

0.01 
12.3 
10.3 

2.9 
73.5 

8.0 

0.5 

0.7 

1?. 

.0001 

ns 
.0001 
.002 
.09 
.0001 

.0008 

ns 

ns 

Table 2.1b. Cell means for total emergence, Experiment 1. 

Seedlings: Removed Not removed 

Adult Salvia: Removed Not removed Removed Not removed 

# seeds 0 49 71 70 55 

1980 100 70 63 79 74 

500 185 124 204 151 
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Table 2.2. Analysis of variance of percent of seedlings which died , 
in the first year, Experiment 1. 

Source df ss I. ~ 

Model 10 .54 3.1 .01 
Error 35 .61 

Site 1 .31 23.5 .0001 
Block(Site) 6 .08 0.7 ns 
Removal of adults 1 .23 13.3 .005 
# Seeds (1980) 2 .07 2.1 ns 

Means: Site 1 .640 
2 .481 

Removal of adults Yes .484 
No .635 

Number of seeds 0 .582 
100 .598 
500 .472 
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Table 2.3. Analysis of variance of percent mortality of the 
previous year's seedlings in the second year of Experiment 1. 

Source df ss I. ~ 

Model 7 0.5 1.9 .09 
Error 45 1.7 

Site 1 0.09 3.3 OS 

Block(Site) 2 0.06 0.7 OS 

Removal of adults 1 0.25 6.5 .014 
# Seeds (1981) 2 0.08 1.1 OS 

# Seedlings (1981) 1 0.01 0.3 OS 

Means: Site 1 • 532 
2 .487 

Removal of adults Yes .395 
No .552 

Number of Seeds 0 .446 
200 .538 

Slope on Number of seedlings remaining 8/81= -0.0006 



Among the seedlings which emerged in 1982 where seedlings from the 

previous year were present, mortality was significantly higher in plots 

sown with more seeds ( 36% (0 seeds), 54% (200 seeds)). This density-

dependent mortality may have been induced by the presence of the prior 

year's seedlings; alternatively, the difference between years may reflect 

variation in density response attributable to extrinsic factors (~, soil 

moisture, · presence of pathogens). As in the previous year, the presence of 

resident Salvia significantly increased mortality (Table 2.4, 32% vs. 44%). 

Mortality of new seedlings was not significantly affected by the number of 

previous year's seedlings that were present; the slope of the ·regression 

was negative but small (-0.0004, p<.76). In the plots where the previous 

year's seedlings were removed, none of the factors significantly affected 

survival of new seedlings, but the trends were similar to those established 

above (Table 2.4b). 

EXPERIMENT 2: The number of seedlings which emerged from plots in 

which 0 seeds were sown, ranged from 3-5 in the first year, and from 1-7 in 

the second spring. When calculated on equivalent areas, these values are 

comparable to those recorded in Experiment 1. The average numbers emerging 

in plots where 1440 seeds were sown was 347, or about 1/4 of the number 

sown. 

Nonlinear regression provides a test for the null hypothesis that 

constant proportions of individuals germinated and emerged over the range 

of experimentally imposed initial densities. The model was 
b 

where N 

N •a(N +N ) , 
out 1n res 

Ktotal number of seedlings emerged in a plot and N 
out 

•number of 
1n 

seeds sown are known values, and a, N (=number of seeds residing in the 
res 
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Table 2.4. Analysis of variance of percent mortality of the second year's 
seedlings (1982), Experiment 1, a) in plots where the previous year's 
seedlings remained, b) in plots where the previous year's seedlings had 
been removed. 

a) 

Source df 

Model 7 
Error 47 

Site 1 
Block(Site) 2 
# Seedlings (1981) 1 
Removal of adults 1 
# Seeds (1981) 2 

Means: Site 1 
2 

Removal of adults Yes 
No 

Nwnber of seeds 0 
200 

b) 

Source df 

Site 1 
Block(Site) 2 
Removal of adults 1 
# Seeds (1981) 2 

Means: Site 1 
2 

Removal of adults Yes 
No 

Nwnber of seeds 50 
100 
500 

~ 

0.70 
1. 70 

0.14 
0.00 
0.01 
0.14 
0.47 

.366 

.491 

.325 

.437 

.361 

.537 

ss 

.114 

.094 

.103 

.131 

.327 

.443 

.335 

.434 

.342 

.327 

.487 
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2.8 .018 

62.0 .0001 
0.05 ns 
0.2 ns 
3.8 .06 
6.5 .003 

Slope on Number of seedlings 
remaining, 8/81= -0.0004 

!. ~ 

2.42 ns 
1.13 ns 
2.49 ns 
1.58 ns 



plot from natural dispersal), and bare parameters to be estimated. This 

model can not be transformed to one suited to the application of linear 

regression. Estimates of b significantly less than 1 refute the null 

hypothesis, implying that germination and early survival are negatively 

density-dependent. Nonlinear regression of total number of seedlings 

emerged (March through October, 1982) against the number of seeds sown 

reveals that seedling emergence is proportional to initial seed density 

throughout the range of experimental densities (slope=l.2, 95% CI=.40, 

2.02). The estimate of numbers of resident seed is 91 (95% CI=-132,315). 

The confidence intervals of the estimates of both these parameters are 

large, because the estimation spaces for the three parameters are not 

orthogonal; a change in one in the iterative fitting of the model can be 

compensated by a change in the others. There is significant variation 

among blocks in numbers emerging (ANOVA, p<.0001) but the responses to 

density are similar in each block (Fig. 2.2). In the second year, with no 

additional seed application, there was, similarly, no evidence of density-

dependent emergence (slope=.84, 95% CI=-2.2,3.9); an average of 3.9 

aeedlings emerged from plots where 0 seeds were sown, 47 where 1440 seeds 

were sown. 

A similar model, 
b 

N =aN 
surv germ 

where N =numbers surviving and N =totals numbers emerged, was log 
surv germ 

transformed and fitted by linear regression to test the hypothesis that 

constant proportions of individuals survived over the range of seedling 

densities. The transformed model was used in this case, because its 

reaiduals showed no trend whereas those of the untransformed model 

increased with the predicted value. The slope of the log regression of 
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Figure 2.2. Graph of the number of 
number of seeds sown (log scales). 
block; the dashed line has slope=!, 

seedlings which emerged in Experiment 2 against the 
The solid lines indicate the observed values, by 
corresponding to the null hypothesis. 
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seedlings surviving in October, 1982, on total number of seedlings observed 

is significantly less than 1 (b=.71, 95% Cl=.56,.87), indicating that 

seedling survival is reduced at high density. The response of mortality to 

density varies among blocks (block x density, ~<.026)(Fig. 2.3a). By 

April, 1983, proportional survival reflected a stronger dependence on 

seedling density (b=.57, 95% CI=.39,.74) (Fig. 2.3b). This relationship 

was, however, uniform over blocks (block x density, ~<.6). Inspection of 

Figure 3.3b reveals that the relationship of log (numbers surviving) to log 

(initial density) is not linear. Mortality was so severe in the four 

highest densities that nearly half of those plots had fewer survivors than 

plots in the same block at lower densities. 

The changes in seedling size (log(number of leaves x length of leaf)) 

from May, 1982 through October, 1982, reflect suppression of growth at high 

seedling densities (Fig. 2.4) Profile analysis indicates significant 

differences in growth rates among seed densities (parallelism test, Table 

Sb. seed sowing treatment effect, p<.OOOl). Regression analysis reveals a 

significant negative relationship between size in October, 1982 and initial 

seed density (both log transformed, b=-.33, 95% Cl=-.46,-.20; Fig. 2.5a), 

as do the Scheff~ confidence intervals of the mean~ for each treatment 

(Fig. 2.4). In general, neither growth nor absolute size varied 

significantly among blocks, and th~re was no block x density interaction 

(Table 2.5a,b). There was a significantly negative error correlation 

between growth in successive intervals (r =-0.32, p<.0004 and r =-0.21, 
12 23 

p<.025), indicating that individuals which grew more in one interval were 

likely to increase proportionally less in the second interval. 
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Figure 2.3a. Graph of the number of seedlings which survived until October, 1982 against 
the number of seeds sown (log scales). Each panel represents a different block; solid 
lines are the fitted regression lines, and dashed lines have slope=!, as in Fig. 2.2. 
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Figure 2.3b. The number of seedlings which survived until April, 1983 
against the number of seeds sown. 
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Figure 2.4. Graph of the s1ze of the seedlings measured in Experiment 2 
(log scale) against time. The vertical bars indicate homogeneous groups 
according to the Bonferroni simultaneous comparison procedure. 
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Figure 2.5. Graph of the size of seedlings in October against a) initial 
seed input b) total seedling emergence. 
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Table 2.5a. Profile analysis of the size of seedlings measured in 
Experiment 2.: test for differences in elevation. Size is the product of 
number of leaves and length of longest leaf; these values are log 
transformed for the analysis. 

Multi-
May August October April variate 

~ource M. I. I. I. I. Q 
Model 31 1.5* 1.5* 2.4 ** 1.6 * 

Block 3 1.8 0.9 1.7 0.2 ns 
I Seeds 9 1.2 2.3 * 3.1 ** 3.2 ** ** 
Block x 19 1.4 0.6 1.5 1.1 ns 

I Seeds 

Table 2.5b. Profile analysis of the size of seedlings measured in 
Experiment 2: test for parallelism. Growth is the difference between s~zes 
at the beginning and end of a given interval (both log transformed). 

Multi-
May-August August-Oct Oct-April variate 

Source df I. I. I. Q 

Model 31 1.7 1.8* 0.9 

Block 3 0.0 2.6 * 0.7 OS 
I Seeds 9 2.8 ** 1.5 1.0 ** Block x 19 1.2 1.4 1.0 ns 

# Seeds 

•, p<.05; ** p<.005 ' 
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DISCUSSION 

The present experiments examine the response of three traits in Salvia 

lyrata, germination, growth, and survival of seedlings, to variation 1n 

seed density and to the presence of established individuals. For the first 

trait, there is no evidence of density-dependent suppression (or 

enhancement) of seed germination (including seedling emergence), since the 

proportion of seedlings emerging is constant throughout the range of seeds 

sown even at densities a hundred times those of naturally emerging 

seedlings (Chapter I). The "sa£ e site" hypothesis (Harper 1977), which 

posits that the number of sites suitable for germination and emergence is 

l~ited and predicts that these can become saturated at a high density of 

leeds, therefore does not apply to Salvia in this environment. Likewise, 

there 1s no indication of seed-derived chemical or physiological inhibition 

of germination in Salvia. Linhart (1976) has reported laboratory assays 

for density-dependent germination in a variety of species. On the basis of 

these experiments and a review of the literature, he suggested that 

germination in species of closed communitites is positively density­

dependent and in weedy species is negatively density-dependent. However, 

no reports of germination responses to seed density evaluated in natural 

conditions are available in the literature. Consequently, the general 

ecological relevance of the documented germination responses to density is 

unknown, and the present study suggests that they may well be artifacts of 

the laboratory conditions in which previous studies were conducted. 

Similarly, Experiment 1 produced no evidence that Salvia seedlings 

established earlier in the season affected the probability of germination 

of remaining seeds. Conversely, Inouye (1980) reported a study of desert 

annuals in which fewer seedlings emerged in undisturbed plots than in plots 
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where seedlings were removed as they emerged. However, since his data 

included several species lumped together (the number of species and their 

identities were not reported), it is unclear whether that result indicates 

intra- or interspecific suppression of emergence. 

The local density of established Salvia seedlings did however strongly 

affect subsequent survival of seedlings; this effect was weak and not 

significant over the narrower range of densities spanned in Experiment 1, 

but was evident at the high densities of Experiment 2. The threshold above 
2 

which density-dependent mortality occurred was about 240 seeds per dm (ca. 
2 

10 seedlings per dm )(Fig. 2.3b). This exceeds the maximum natural 

seedling densities eighteen times (Chapter I) and the maximum seed density 

of Experiment 1 four-fold. 

In the October, 1982 census of Experiment 2, there was evidence of 

spatial variation in response of mortality to density. In other words, the 

density at which mortality is induced differs among sites. Thus, control 

of population growth is localized, not only because of the sedentary habit 

of plants, which restricts the number of individuals each contacts, but 

also because of intrinsic variation among sites in characteristics such as 

availability of resources, abundance of predators, _or presence of 

pathogens, any of which might alter density responses. 

Density had the greatest effect on the size of seedlings. Suppression 

of plant size was evident at moderate densities by October (Figs. 2.4, 2.5) 

and became more severe by the following April (Fig. 2.6). Size traits are 

known to be highly plastic in many plant species, and responses in size are 

expected to precede -mortality responses (Harper 1977), which ultimately 

reflect the loss of stunted individuals. In Experiment 2, the severity of 

density-dependent stunting and mortality increased with time, a phenomenon 
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Figure 2.6. Graph of the size of seedlings against number of surv1.v1.ng 
seedlings at each of four censuses, May, August, October, and April. The 
lines join observations for a given treatment through time, the arrows 
being directed toward the April observation. The treatments are designated 
by the symbols, as follows: 

l:l. - 0 seeds 

0 - 30 seeds 

[J - 60 seeds 

• - 120 seeds 

• - 240 seeds 

• - 480 seeds 

• - 720 seeds 

.. - 960 seeds 

• - 1440 seeds 
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first noted by Yoda, et al. (1963). The self-thinning rule which they 

propounded implies that individual size increases as numbers decline, such 

that total yield per plot increases despite decreasing density (see White 

1981 for review). In the present experiments with Salvia, this is not 

case in the highest densities (number of seeds sown=l20-1440) where 

density-dependent mortality is demonstrable (Fig. 2.6). In other words, 

the stunting suffered at originally high seedling densities persists after 

a substantial fraction of individuals has died leaving space to those 

remaining. 

Aside from the effect of seedling density on seedling success in 

Salvia, Experiment 1 indicated that presence of conspecific adults reduced 

seedling emergence and survival. May, et al. (1974), in a model of 

population growth which incorporates interactions among two age classes, 

have shown that a strong negative effect of adults on juveniles tends to 

destabilize population size. However, in their model stability depends on 

the relationship between effects of adults and juveniles on individual 

fecundity and the effects of adults and juveniles on juvenile survival. 

Because of its restriction to two age classes, the model does not strictly 

apply to perennial species such as Salvia; however, assuming that 

individual fecundity is density-independent, it would predict that a 

hypothetical biennial Salvia population would be stable as long as the 

density effect of adults on seedling survival were less than that of 

seedlings on seedling survival. May, et al. (1974) defined the density 

effect as the regression of the change in the log of one age class on the 

log of another: The regression coefficient for the effect of adults on 

seedlings is not obtainable, since adult densities were not varied over a 

wide range. To ascertain to what extent interactions among age classes 

destabilize population size in perennial plant species will require further 
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experimental work and models which consider size, as well as age. 

In contrast to the present study, the descriptive demography of this 

population of Salvia lyrata (Chapter 1) produced no evidence suggesting 

that survival of seedlings is density-dependent. On the basis of the 

experimental results, it is clear that the natural range of average 

densities is too low to influence these seedling traits directly. However, 

assuming seed is dispersed at random, clumping will occasionally produce 

patches of locally high densities in which density effects such as those 

documented may occur. 

Comparison of these results wi~h those of experiments with Salvia 

conducted in controlled conditions indicates that the density responses are 

far weaker in nature than in cultivation. In monospecific stands of 

hexagonal fan design, severe density-dependent mortality and fecundity were 

evident throughout a twenty-five fold range of densities whose maximum (385 
2 2 

plants per m ) was less than the minimum density (500 plants per m ) in the 

present experiments (Chapter 4). The intensity of these effects, as well 

as their early appearance, are certainly a result of the rapid growth rates 

in the fertile, protected conditions of cultivation. Differences between 

density responses as a consequence of variation in -soil fertility (e.g., 

Sukatschew 1928), light (e.g., Hiroi & Monsi 1966; Lonsdale & Watkinson 

1982), drought (Watkinson 1982) and association with heterospecifics 

(Watkinson 1981) are well documented (Harper 1977). 

The two prior experimental studies of density responses in natural 

plant populations have employed winter annual species which naturally grow 

in association with few other species (Watkinson & Harper 1978; Clay & Shaw 

1981). Both studies documented significant negative effects of density on 

fecundity. No relationship of mortality to density was observed up to 320 
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2 
plants per dm in the study on Vulpia fasciculata, a grass, and in 

2 
Diamorpha smallii (Crassulaceae), maximum densities of 400 plants per dm 

produced a weak mortality response. In the present study however, a 

similar range of densities of Salvia caused a striking mortality response 

within approximately the same time. This variation among species in 

mortality responses may be attributable, in part, to differences in plant 

form, the erect form of the grass minimizing the potential for interference 

by shading (see also Lonsdale & Watkinson 1983) and to the fact that the 

maximum sowing densities, while numerically comparable for the three 

species, are unnaturally high for Salvia, a larger herb than either of the 

other two. 

The present experiments unequivocally demonstrate density-dependent 

reduction in individual size and survival in natural populations of 

seedlings, albeit at extraordinarily high densities. Thus, at the usual 

densities of Salvia in this field, population size at the seedling stage 

can vary widely without apparent internal control. Yet, regardless of the 

proximate mechanism inducing the density responses, whether competition for 

resources or light or density-dependent infestation by pathogens, these 

experiments clearly indicate that at extreme densities biotic effects come 

into play limiting population size. 
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CHAPTER III. EXPERIMENTAL ALTERATION OF DENSITIES OF 

ESTABLISHED PLANTS 

INTRODUCTION 

The extent to which local population density influences the tendency 

of natural populations to increase is known for only a few plant species 

(Antonovics & Levin 1980), despite the central importance of density­

dependent population growth in ecological theory. In particular, the study 

of density effects in natural populations of perennial species has been 

neglected, primarily because of the difficulties of experimenting with 

species having extended life spans and, often, delayed reproduction 

(Watkinson & Harper 1978). Moreover, because of the complexity of 

populations of perennial species, which are composed of several age and/or 

size classes, an understanding of their population regulation requires 

knowledge of the density responses of these different groups. The present 

chapter reports two experiments devoted to elucidating the density 

responses of the established members of a natural population of a perennial 

herb, Salvia lyrata (Lamiaceae) (Radford, et al., 1968). Here "established 

individual" refers to plants which have been alive for at least one year. 

In particular, these experiments address the following questions: 

1) Do nearby conspecific neighbors affect the fitness (survival, 

fecundity, or size) of established Salvia individuals? 

If so, 
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2) Over what distances are effects of neighbors manifested? 

3) Do these effects vary spatially? 

4) Do responses to neighbors vary with the size of individuals? 

In order to answer these questions, the density of Salvia was altered 

in naturally established populations. In this way, present density is 

deconfounded from other environmental variables including previously 

existing density. The method of removing individuals and following the 

consequences for the remainder of the population was pioneered in the study 

of interspecific competition of sessile marine invertebrates (Connell 

1961, Paine 1969, Dayton 1971) and has been extended to the study of 

interspecific competition in plant communities (Sagar & Harper 1961, 

Putwain & Harper 1970, Silander & Aotonovics 1982, Fowler 1978). More 

recently, the method has been applied to the study of intraspecific 

interactions (Watson 1974, Watkinson & Harper 1978, Fonteyn & Mahall 1978, 

Clay & Shaw 1981). 

MATERIALS AND METHODS 

The two experiments were conducted in a field on the campus of Duke 

University, Durham, N.C., and both employed Salvia lyrata as the 

experimental organism. The species and site were described in Chapter I. 

Experiment X: In February, 1980, twenty-three transects approximately 30m 

long were laid such that they spanned the field, running north to south and 

east to west. Experimental individuals were chosen at 2m intervals along 

them such that three size classes (5<150, 150<8<350, 350<8, where 8=(number 

of leaves) x (length of longest leaf (mm)), were represented in random 

sequence in each successive group of three individuals; a total of three 
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hundred individuals was chosen. The location and size of neighboring 

conspecifics (within 30 em) was mapped on a plate of clear plexiglass 

overlain by tracing paper. Then one of the following density manipulations 

was applied to each series of three plants in random sequence. In the 

southern, lower half of the field, surrounding Salvia individuals were 

removed to a distance of 10, 20 or 30 em, or the neighborhoods were left 

undisturbed as controls. In the remaining half of the field, a series of 

addition treatments was established in which Salvia individuals which had 

been dug from the removal series were planted in as neighbors to the mapped 

individuals. In each case, six individuals were evenly spaced around the 

central plant at ·either 5, 10 or 20 em; a fourth series where neighborhoods 

were left undisturbed or where soil was dug but no plants were added served 

as controls. The removal treatments were maintained by thinning on 

subsequent census dates. Transplanted individuals which died in the 

addition treatments were replaced once in spring, 1981. Sizes of plants 

(number of leaves and length of longest leaf) were recorded initially and 

in May, 1980, August, 1980, and May, 1981, when survival, whether the plant 

was flowering, and the number of seeds it was maturing were also recorded. 

Experiment 1: A similar experiment was established in November, 1981-

January, 1982. Eight new transects were laid in the part of the field Ln 

which removals were executed in the first experiment. The transects were 

deliberately placed such that the density of Salvia was uniform within 

transects, but a wide range of densities was sampled among transects. In 

rows placed 60 em apart and perpendicular to the transect, individuals Ln 

the three size classes were chosen at distances of approximately 30 em. Up 

to twelve rows of three plants were established along each transect (Fig. 

3. 1). Two hundred seventy plants were chosen in all. Maps of neighboring 

Salvia plants were drawn, as before. In two rows of every three, all 
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Figure 3.1. Diagram of part of Experiment 2. Each dot represents an 
individual chosen for the experiment. The arrow indicates the continuation 
of the transect, of which 1 1/3 replicates (i.e., four rows of a maximum 
twelve (= 4 replicates) in each transect) are shown. 



- -

I. Choice of plants 
by size class 

Size class 
definitions: 

A: S < 150 
B: 150 C S < 350 
C: 350 < S 

where S=( # leaves) x 
(length of 
longest leaf) 
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Salvia neighbors within 20 em were removed, and the perimeters of the 

removed plants were marked with plastic covered wire anchored by staples. 

The remaining individuals were left undisturbed as controls. In May, 1982, 

the removal treatment group was further divided into two groups: one in 

which all plants invading the marked areas previously occupied by Salvia 

were removed, and the other in which only Salvia individuals invading those 

areas were removed. In this way, the effects of Salvia's presence could be 

distinguished from the effects of other species replacing Salvia where it 

was removed. 

This experiment employed a split plot design with initial size as the 

splot plot factor and removal treatment as the whole plot factor within 

each replicate containing nine plants. The appropriate error term for 

tests of treatment effects in the analysis of variance is therefore the 

treatment x replicate interaction, where replicates are nested within 

transects. The statistical analyses were carried out using a program for 

the G test, written by T.R. ·Meagher, and the Statistical Analysis System 

(Helwig & Council 1979) supported by the Triangle Universities Computation 

Center, Research Triangle Park, N.C. 

RESULTS 

Experiment ~: For the duration of the experiment (February, 1980 to 

October, 1981), 217 out of 300 individuals survived. In the addition 

series, the larger two size classes exhibited the expected decrease in 

survival at higher densities (Fig. 3.2b). In the removal series, there was 

no trend or the opposite trend (Fig. 3.2a). The variation in survival was 
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Figure 3.2. Frequency of surviving plants against size class and treatment, 
Experiment 1. a) Removal series. b) Addition series. The labels on the 
abscissa indicate treatment levels (i.e., removal of all Salvia at 5, 10, 
or 20 em, or no plarits removed; addition of six Salvia at 5, 10, or 20 em, 
or no plants added. Each of the three panels refers to a different size 
class, as defin.ed in "Materials and Methods". 
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statistically significant only for the treatment x size class x survival 

interaction in the addition series (Table 3.1). 

In the first year, 1980, flowering was greatest among individuals 

which were largest initially in both removal and addition series (Table 

3.1). In general, the proportion of plants flowering increased slightly 

with increasing distance of removal of surrounding conspecifics (Fig. 3.3); 

however the effect was not significant. In the second year, 1981, the 

probability of a plant flowering did not vary with the two experimentally 

altered factors. 

Effects on the number of seeds produced, given that a plant flowered, 

differed between the removal and addition series. In the removal series, 

none of the effects were significant, but the trend was toward larger 

plants and reduced density yielding more seeds per individual. In the 

addition series, larger plants produced more seeds, but there was a 

marginally significant treatment x size interaction. Largest and smallest 

individuals tended to . produce more seeds at lower density (largest, at 10 

em and 20 em spacing; smallest in 20 em spacing and no addition), but the 

intermediate size class produced most seeds in the lowest (no addition) and 

highest (5 em distance) densities (Fig. 3.4, Table 3.2). In 1981, the 

trends of fecunditiy with density were very weak (p<.5), and no other 

effects were significant. 

Individual growth was analysed as the change in size (log (number of 

leaves x length of longest leaf)) between two times. For the interval of 

May, 1980, to May, 1981, larger plants grew significantly less than smaller 

ones in both series (Fig. 3.5). The treatment effect was not significant. 

Growth patterns in the overlapping interval, October, 1980-0ctober, 1981, 

showed the reverse trend in the addition series. The treatment effect was 

not significant, and the trends went opposite to expectation, with plants 
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Table 3.1. G test for the effects of density manipulation and initial size 
on survival and on flowering, Experiment 1. 

Removal Series 

Survival Flowering 

Interaction effect df g_ g_ 

Removal x Size 6 7.9 9.3 

Removal 9 8.5 14.9 + 

Size 8 8.8 89.0 ** 

Addition Series 

Addition x Size 6 11.3 + 9.8 

Addition 9 12.03 13.4 

Size 8 12.03 98.2 ** 

+, p<.l; ** p<.OOS. 
' 
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Figure 3.3. Frequency of plants flowering against size class and treatment, 
Experiment 1. a) Removal series. b) Addition series. Panels are labeled at 
in Fig. 2. 
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Figure 3.4. Number of seeds produced per individual which flowered (log 
scale) against treatment. The responses for the different initial size 
classes (SC) are plotted separately. a) Removal series. b) Addition 
series. Treatments are labeled as in Fig. 2. 
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Table 3.2. Analysis of variance of number of seeds produced per plant ~n 
1980, expt 1. The values were log transformed. 

Removal Series 

Source df ..§.§. I. 

Model 41 26.3 1.2 
Error 31 15.8 

Transect 10 8.2 1.3 
Initial Size 2 0.3 0.2 
Removal 3 0.8 0.4 
Transect x Removal 23 15.4 1.0 
Removal x Size 3 1.8 0.9 

Addition Series 

Model 47 46.2 1.5 . .025 
Error 41 27.6 

Transect 11 7.2 2.0 .1 
Initial Size 2 10.5 8.5 .001 
Addition 3 1.2 1.2 
Transect x Addition 25 8.5 0.5 
Addition x Size 6 5.3 2.2 .1 
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Figure 3.5. Change in size from May, 1980 to May, 1981, calculated as S1-
SO, where Si=log( number of leaves at time i x length of longest leaf at 
time i), plotted against treatment. The responses for the different size 
classes are plotted separately. a) Removal series. b) Addition series. 
Treatments are labeled as in Fig. 2. 
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at lower density growing least. 

Measures of local density prior to its manipulation were taken from 

the maps and used as covariate& in additional analyses of the two 

response variables, number of seeds and growth. The summed areas of plants 

whose centers lay within 10 em of the experimental plant measured close 

crowding. Similarly, the summed areas of plants occupying two larger 

concentric rings (10-20 em and 20-30 em) measured more distant crowding. 

None of these variables had a significant effect on the responses, nor did 

their inclusion in the models reveal significance of any effect which was 

not previously significant. 

Experiment ~ Of the marked individuals, 91% survived for eighteen months 

(November, 1981-April, 1983). The response to the two removal and 

exclusion treatments differed among the size classes (removal x size class 

X survival G=9.3, 4 df, p<.06), but one or the other removal did improve 

aurvival over the control in each size class (Fig. 3.6). The overall effect 

of removal on survival was not significant (Removal x survival, G=4.15, 3 

df, p>.1). 

The probability of a plant flowering (Fig. 3.7) and the number of 

leeds produced, given that a plant flowered (Fig. 3.8, Table 3.3), both 

depended principally on initial size in the first year (1982) (G=69.1, 3 

df; p<.0001), although ther~ appeared to be a slight enhancement of 

f lowering and, for the mid-size class, number of seeds produced in the two 

removal treatments. In the second year, the largest size class was more 

likely to flower in both removal treatments than in the control. 

Conversely, the smallest size class had a decreasing tendency to flower in 

removal treatments (Fig. 3.7). These trends were not significant (Removal x 

lize class x flowering, Gc6.6, 6 df). Moreover, the proportion of plants 
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Figure 3.6. Frequency of plants surv1v1ng plotted against treatment and 
size class, Experiment 2. Removal 1 refers to the removal treatment in 
which reinvasion by Salvia was prevented. Removal 2 refers to the . removal 
treatment in which no invasion into the cleared areas was allowed. 

Figure 3.7. Frequency of plants flowering plotted against ·treatment and 
size class, Experiment 2. The solid lines refer to flowering condition in 
May, 1982; the dotted lines refer to flowering condition in May, 1983. 
Removal treatments are as defined in Fig. 6. 
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Table 3.3. Analysis of variance of number of seeds per plant in 1982, 
Experiment 2. The values were log transformed. 

Source df .§..§. .r 

Model 26 61085 1.5 
Error 47 74638 

Transect 7 15054 1.4 
Removal 2 6989 2.3 
Initial Size 1 23333 15.7 
Transect x Removal 14 29918 1.4 
Size x Removal 2 7015 2.3 
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flowering in the second year did not depend significantly on their size at 

the beginning of the experiment. Of those plants that flowered there were 

no trends with removal treatment in the number of seeds produced (Fig. 3.8). 

Individual size at four times (November, 1981, August, 1982, November, 

1982, and April, 1983) and growth over the corresponding intervals (Fig. 3.9) 

were subjected to profile analysis (Timm, 1975). Only initial size 

significantly influenced size on subsequent dates and growth in the first 

interval (Table 3.4 a,b). The multivariate tests for effect of initial 

aize on growth (slope) and size (elevation) of the plants were highly 

significant. No other effects were significant in either univariate or 

~ultivariate tests, although the effect of removal treatment on size at 

November, 1982, approached significance (p<.06). 

The design of this experiment permitted tests of whether the growth 

and fecundity, as well as the response of these traits to the density 

manipulation, varied spatially. No substantial differences were found 

among the transects in plant size, growth, or fecundity (transect main 

effect), nor in the response of the traits to the density alterations 

(transect x removal interaction)(Tables 3.3 and 3.4). 

DISCUSSION 

The present experiments were designed to show to what extent 

conspecific neighbors interfere with established Salvia individuals in a 

natural population. Evidently, interference at natural densities is very 

alight. The clearest evidence that individuals ~be suppressed by 

neighbors was found in the addition series of Experiment 1. Although 

individuals of the smallest size class were more successful with the 

addition of near neighbors, those of the two larger size classes suffered 
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Figure 3.8. The number of seeds produced per flowering individual plotted 
against treatment by size class, Experiment 2. a) 1982. b) 1983. Removal 
treatments are as defined in Fig. 6. Size classes are as follows: 
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Figure 3.9. Size of individuals (log(number of leaves x length of longest 
leaf)) plotted against time by treatment, Experiment 2. Removal treatments as in 
Fig. 6. 
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Table 3.4a. Profile analysis of size (log transformed) from November, 1981 to 
April, 1983-Experiment 2. 

Multi-
Nov, 81 Aug, 82 Nov, 82 Apr,83 variate 

Source df !. !. !. !. 

Transect 7 1.4 1.2 2.3 1.1 
Replicate 

(Transect) 22 0.9 1.0 0.7 1.5 
Removal 2 1.1 1.0 2.7 + 1.5 
Initial Size 2 652.0 *** 12.0 *** 8.4 *** 12.0 *** *** 
Transect x 

Removal 14 1.7 1.0 1.3 0.8 
Removal x 
Initial Size 4 1.6 1.9 1.0 0.6 

+ J p<.06; ***, p<.005. 

Table 3.4b. Profile analysis of change in size (growth) (log transformed) 
from November, 1981 to April, 1983 J Experiment 2. 

Aug, 82- Nov,82- Apr, 83-
Nov, 81 Aug, 82 Nov, 82 Multivariate 

Source df !. !. !. 

Transect 7 1.6 1.2 2.0 
Replicate 

(Transect) 22 0.9 0.6 0.9 
Removal 2 1.0 1.5 0.3 
Initial Size 2 17.7 *** 0.2 4.4 * *** 
Transect * 

Removal 14 0.9 0.3 0.2 
Removal * 

Initial Size 4 1.6 0.9 1.5 

* p<.025; *** p<.OOOl J ' 
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higher mortality and reduced fecundity with the addition of neighbora. 

This suggests that small plants gain some advantage, perhaps amel i or tion 

of the microclimate, from the proximity of conspecifics, whereas, for 1 

plants, that advantage is negligible and is offset by concomitant 

interference by those neighbors. Moreover, the distance at which 

interference ceases to occur differs between the middle and large aiz 

classes. This difference can be easily understood; a large rosett t ha 

has neighbors centered 10 em from its center is more likely to be 

overlapped than if it were smaller and had neighbors at the same distance . 

In other words, neighbors at a given distance crowd a larger plant mor 

than a smaller plant. This somewhat counter-intuitive result -- one might 

have expected that a more robust individual would be comparatively 

insensitive to neighbors -- is a direct consequence of the sessile habit of 

plants. 

The removal series (Experiment 1) gave some evidence of release from 

interference in the fraction of plants flowering (size class 1 and 2) and 

the number of seeds produced. Surprisingly, the response of the small size 

class was apparent only in extreme removal (30 em), and, unlike the outcome 

of the addition series, the small plants did not pe_rform better at higher 

densities. This disparity may be caused by differences between the two 

areas of the field in which the removal and addition series were conducted. 

Although Experiment 2 was conducted at a level of replication double 

that of Experiment 1 and the compact layout of the transects allowed more 

precise assessment of spatial variation, responses to removal appeared 

weaker than in the previous experiment. This may reflect year to year 

variation but also strongly supports the impression that the responses of 

established individuals to density are, in general, very weak. 
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Given the weakness of the responses to removal in Experiment 2, it is 

not surprising that differences between the two maintenance or exclusion 

treatments (continued exclusion of Salvia only, compared with removal of 

any invading vegetation) were not apparent. If a substantial response had 

indicated that Salvia affect one another's growth, then responses of the 

same magnitude to the two treatments would suggest that invading 

heterospecifics do not impose an equivalent effect. Conversely, a large 

response in removal treatment 2 and no response in removal treatment 1 

would imply that the invasion of other species imposes a competitive effect 

equivalent to that of Salvia. The greatest disparity between the two 

removal treatments was in the size of individuals in size class 3: plants 

in removal treatment 2 were largest, suggesting an additional competitive 

effect from heterospecifics. This effect was not evident in the other two 

size classes. The importance of the effect of heterospecifics relative to 

that of Salvia remains undetermined at present. 

The weakness of the responses in general could be due to any one or a 

combination of four causes. The existing densities in nature (and even the 

increased densities of the addition series-Experiment 1) may be below the 

threshold at which individuals strongly interfere with one another. The 

naturally occurring range of average seedling densities falls below the 

range of demonstrable reduction in survival and growth of seedlings in 

natural conditions (Chapter II). Yet one would expect interference to occur 

at those densities as plants grow larger (Shinozaki & Kira 1956, Yoda, gt 

~., 1963, Hiroi & Monsi 1966). However, if density declines constantly as 

a result of mortality, then the population may remain below the threshold 

densities thoughout the life cycle. The difficulties of acquiring, 

transplanting, and maintaining large numbers of mature individuals for the 

addition series (Experiment 1) precluded extensive testing at a wide range 
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of densities above those existing. But if the established population of 

Salvia grows at densities lower than those which cause interference, as it 

appears, then that threshold can only be determined by experimentally 

increasing density over a wide range. This has been accomplished by sowing 

seeds at a range of densities (Watkinson & Harper 1978; Oxley, cited 1n 

Harper 1977; Ogden, cited in Harper 1977; Chapter II), a technique which 1s 

suitable for studying density effects in seedlings and in short-lived 

species. Transplanting mature individuals of perennial species is a more 

appropriate technique for estimating density effects in populations of 

established perennials; however, this has apparently not been attempted, 

probably because of the difficulties noted above. 

Salvia individuals may be rather insensitive to sudden changes in 

their ~ediate environment. The persistence of all of the vegetative 

parts (leaves, rhizome, roots) from year to year may buffer individuals 

against rapid decline in suddenly adverse (~, increased density) 

conditions. Failure to respond to newly available space would suggest, 1n 

addition, a delay in growth responses. Both of these are physiological 

mechanisms leading to "population inertia" (Murdoch 1970); the plant 

responses would then have been determined by condi~ions which prevailed 

prior to the manipulations. If such historical effects are prevalent, 

assessment of density reponses of mature individuals may require 

establishment of seedlings at a wide range of densities and following them 

to maturity. However this method measures the effect of density integrated 

over the whole life cycle, rather than at a particular time as the 

method of abruptly changing density can do. 

The alterations of Salvia density may have produced concomitant alterations 

of local conditions which would not usually be related to density but which 
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counteracted its effects. For instance, water loss by evaporation from the 

exposed soil surface could exceed that which was lost from areas where 

vegetation remained. The problem of correlated effects of a treatment is a 

hazard in any experiment, but especially so when existing conditions are 

altered rather drastically. 

Although the experiments were designed to account for "background" 

variation and thereby to improve the chances of detecting responses, two 

principal sources of variation could not be eliminated: a)spatial variation 

which significantly affects growth of Salvia seedlings has been documented 

in this field at scales finer then those spanning the replicates in these 

experiments (Chapter V) and b) plants within size groups varied in size over a 

fairly narrow range, and in other characteristics (~, age, flowering 

history) probably over a much wider range. Thus the efforts to account for 

variation may have been insufficient, and the weak observed responses, 

though not statistically significant may be of biological interest. 

Few experimental studies of density responses in nature are available 

for comparison with the present study. Studies entailing density 

perturbations of annual (Watkinson & Harper 1978; Clay & Shaw 1981) and 

perennial (cited in Harper 1977; Chapter II) species have almost exclusively 

followed populations established from different deliberately sown densities 

of seeds and have reported striking density-dependent reduction in 

individual success. In addition, Watson (1974) removed all Plantago 

lanceolata from a strip of dune pasture and found lower mortality rates 

among naturally recruited seedlings in that area relative to those in the 

control strip. The consequences of altering existing densities by removing 

conspecifics from around established individuals has been reported only for 

Larrea tridentata and Ambrosia dumosa in the Mojave desert (Fonteyn & 

Mahall 1981). The response measured was pre-dawn water potential. For 

102 



Larrea, water potential was found to be significantly higher when either 

Larrea or Ambrosia was removed than in controls; however, only removal of 

Larrea caused a significant increase in water potential of Ambrosia. 

Unfortunately, no other response measures were reported, and drawing 

inferences regarding demographic consequences of the removals is difficult. 

The use of removals has more often been applied to the study of 

interspecific interference in natural communities (Connell 1961, Sagar & 

Harper 1961, Colwell & Fuentes 1975, Putwain & Harper 1971, Silander & 

Antonovics 1982, Fowler 1978). Although intraspecific effects cannot be 

inferred from such studies, it is worth noting that Fowler (1978) 

demonstrated weak responses in per cent cover of various species to removal 

of individual dominant species in a field near and similar -to that of the 

present study. She found that removal of Paspalum laeve alone or removal 

of all grasses caused an increase in the per cent cover of Salvia. Her 

general conclusion was that diffuse competition prevailed among the 

principal species. Conversely, in a simpler dune community, Silander and 

Antonovics (1982) demonstrated striking responses in per cent cover of 

various species to removals of individual species. The evidence of the 

present study indicates that intraspecific interac~ion of Salvia at the 

natural densities is also weak and, in conjunction with Fowler's work, that 

the diffuse competition imposed by the various grass species and Paspalum 

laeve in particular may be the principal determinant of individual Salvia 

phenotypes and, hence, the demography of the species. 

Experimentalists investigating density response in nature have, to 

date, chosen to study simple communities and their members. In such 

situations the focal species are the dominant members of their communities, 

a fact that may enhance the chances of detecting density reponses. 
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Experiments conducted in artificial conditions have demonstrated that the 

density reponse of a given species is stronger when its own frequency is 

high than when a second species is present at high frequency (Harper & 

McNaughton 1962, Watkinson 1981, Antonovics, gt al. 1983); thus, the 

existing literature of density responses in nature is biased toward 

detection of severe density effects more frequently than they actually 

occur. 

The responses of mature individuals documented here are far weaker 

than those manifested in an experiment in which densities were established 

at the seedling stage 1n garden conditions (high soil fertility, regular 

spacing, pure culture). Density-dependent reduction in fecundity and 

survival was apparent at spacings as great as 15 em (Chapter IV). As 

mentioned above, this discrepancy may be due, in part, to persisting 

effects of earlier conditions in the present experiments; obviously, effects 

of previous conditioning by density and of present density can not be 

disentangled from the. garden experiment. The discrepancy is due also, 

almost certainly, to the difference between rates of individual growth and 

limits to maximum size in field and garden conditions, such that, at a 

given spacing, individuals grow large enough to interfere with one another 

at wider spacings. 

In summary, the two experiments presented here have revealed only 

slight, if any, suppression of established Salvia individuals by 

conspecific neighbors at naturally occurring densities. This finding 

implies that internal control of population growth at the adult stage, as 

at the seedling stage (Chapter II) is either very weak or quite delayed. 

In either case, population numbers may be expected to fluctuate without 

internal control. Thus, local extinctions followed by recruitment by seed 

from neighboring areas may be common in this field, whereas attainment of 
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very high densities at which self-regulation would occur appears to be 

precluded usually by density-independent effects. Since studies of density 

effects in nature have been restricted primarily to inhabitants of open 

communities, it is yet unclear whether density reponses should be expected 

to be weak in diverse communities or whether this is typical of perennial 

1pecies relative to annual. Generalities of this kind must await future 

ltudies. 
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CHAPTER IV. GENETIC EXPERIMENTS IN ARTIFICIAL CONDITIONS 

INTRODUCTION 

The realization in the middle of this century that genetic variation 

within species is the rule rather than the exception (Lewontin 1974), and 

that evolution is an ongoing process subject to experimental investigation 

(Antonovics 1976) motivated efforts to understand the maintenance of this 

variatLon. Among the many mechanisms, some were based on environmental 

effects, others on genetic effects, and still others were based on 

interactions between genetic and environmental effects. Density-dependent 

selection is an example of the latter. In density-dependent selection, the 

fitness rankings of genotypes in a population vary as population density 

varies. (Sometimes the term is used more loosely for any situation in 

which selection intensity varies with density). This mode of selection is 

of particular interest, because it is driven by variation in the biotic 

environment, and because it is thought to be particularly powerful in 

maintaining genetic variation in life history traits (MacArthur and Wilson 

1967; Roughgarden 1979; Stearns 1976). 

The occurrence of density-dependent selection depends on the existence 

of genetLc variation for response to density, as would be indicated by a 

statLstical interaction of genotype x density in fitness or its component 

traits. Such evidence was first detected in DrosophilA by Timofeev-
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Ressovsky (1934) and by Dobzhansky and Spassky (1944) and then more fully 

investigated by Lewontin (1955). Since then, numerous examples of genetic 

variat1on in sensitivity to density have been documented for a variety of 

fitness traits in laboratory populations of insects (e.g., Birch 1955; 

Sokal and Sullivan 1963; Sokal and Huber 1963; Sokal and Karten 1964; 

DeBenedictis 1977; Marks 1982) and for yield characters in populations of 

crop species (Baker and Briggs 1982; Campbell and Kern 1982; Talukdar and 

Bains 1982). 

Given the amount of effort that has been applied to the experimental 

study of genotype x density interactions and to the theoretical 

investigation of their consequences in natural populations, it is 

surprising that very little information is available which bears directly 

on whether density-dependent selection occurs in natural populations. 

Previous studies fail to address this point on two accounts. First, with 

the exception of Marks (1982), all the studies have compared strains which 

were previously subjected to artificial selection. The variation detected 

in any trait is, thus, unlikely to resemble that of any wild population. 

Second, these studies have all been conducted in artificial conditions. As 

a result, the responses measured may differ from those that would be 

displayed in a natural background environment. Because of these 

l~itat1ons in the previous work, and because prior work on natural 

populations has merely correlated life history characteristics of species 

with the densities of the environments they occupy (e.g, Gadgil and Solbrig 

1972), we remain ignorant of the process of density-dependent selection in 

nature, even though its significance has been repeatedly emphasized. 

In view of this, the exper~ents of the present chapter were designed 

to reveal genetic variation in density response in a wild population of 
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Salvia lyrata. The experiments were conducted under somewhat artificial 

conditions (i.e., high soil fertility, low background species diversity) 

with the intention that these would most clearly reveal the variation in 

the w1ld collected population of Salvia. The experiment described 1n the 

final chapter was similar in design but was conducted in the field which 

was the source of the experimental population. This last experiment thus 

reveals the density responses evinced in the natural environment. 

MATERIALS AND METHODS 

Experiment ±: In May, 1979, seeds of Salvia lyrata were collected in lots 

according to common female parent from plants growing in a wild population 

on the campus of Duke University (for description of the field site, see 

Chapter 1). Flowering plants were chosen at 2m intervals along a 50 m 

transect running from west to east and a 70 m transect running from north 

to south. The plants were visited on several occasions during one week in 

order to provide as many mature seeds as possible from each parent plant. 

Since Salvia is self-compatible, and cross-pollination is apparently 

infrequent in nature, each seed collection should be considered more nearly 

a self-sibship than a half-sibship. 

On November 21, 1979, twelve sibships having at least 35 seeds were 

planted at even spacing into soil in flats in the Duke University Botany 

Department Greenhouses and raised for four weeks. The seedlings were then 

planted into cold frames in a fan-shaped array (Fig. 4.1), in which spacing 

between plants varied in a geometric series from 1 em to 18 em. The 

fami11es were randomized into the six postions of the 16 arcs (=spacings) 

such that each family occurred in each successive pair of arcs within each 

fan. One row of extra individuals was planted along the edge but were 
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Figure 4.1. Planting design for Experiment I. Each circle represents an 
individual plant. Only eight arcs (spacings) are shown; sixteen were used 
in the experiment. 
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analysis. The fan design was replicated four times with 

the fan randomly determined for each replicate. Every 

i n every spacing twice over the whole experiment. 

winter, the cold frames were covered at night and during 

ic stretched across a wooden frame. The plants flowered ~n 

time and in each subsequent month through November, and 

May, data on survival and flowering, including whether 

d and the number of maturing seeds, were recorded. 

eix densities were excluded from the analysis, because 

to allow certain identification of individuals, very 

for the duration of the experiment. The arcs were 

t he design balanced. Thus, all subsequent references to 

ne ity" indicate pairs of spacing treatments in each of 

l y occurs once in every replicate. 

May, 1980, seeds were collected by maternal parent from 

same field referred to above. The plants were chosen 

a long a series of twenty-three transects which spanned the 

40 m long. Twenty families from among those obtained 

of the twenty families, five seeds were 

the greenhouse in November, 1980. The plants flowered 

At that time, one plant from as many of the twenty 

was chosen for a series of crosses, according to 

ring was synchronized with ot~er individuals. This 

the maximum number of crossed seeds. Half the plants 

I to serve as egg parents and half as pollen parents to yield 

1111 i ng design. 

was effected in the following way. Prior to 
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hiscence, anthers were removed from large, closed buds by piercing the 

the attachment of the filament. The stigma was then exposed 

from a dehisced anther of the designated male parent was 

its surface. For each combination of male and female, nine 

pollinated in order to provide a maximum number of thirty-six 

eds per cross. 

Asynchrony in flowering time limited the number of crossed progenies 

o forty-one from eight male and eight female parents. Seeds produced by 

elfing were also collected from each individual. The seeds obtained in 

this way were weighed individually on a Cahn microbalance and then planted 

individually in soil into compartments of "Rootrainer" inserts in July, 

1981, in a randomized block design. The date of emergence was recorded 

for each of the seedlings during the emergence period which lasted six 

months. 

Following their emergence and early growth in the greenhouse, the 

progeny were transplanted outside to an experimental garden in the "Duke 

University Botany Experimental Plot". The area had previously been cleared 

of vegetat1on by treatment with methyl bromide. Stolons of reinvading 

Cynodon dactylon were removed during planting, and afterwards Poa pratensis 

was sown to produce conditions of interspecific competition somewhat 

resembling those in the field. Regular hexagonal arrays of two different 

spacings (7.5 em and 15 em between neighbors) were established in eight 

replicate blocks with each individual of known parentage surrounded by six 

Salvia plants obtained from a random seed collection from the field. These 

latter were measured to permit a nearest neighbor analysis, but are not 

considered in the present paper. Because emergence was protracted, 

individuals representing each family were chosen according to their date of 

emergence, such that all individuals within a block were, as nearly as 
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possible, the same age and, hence, the same size. Each family was 

represented once in each plot (=block x spacing combination). Full-sib 

families in which too few seeds or seedlings were available were eliminated 

from the experiment. Thus, a total of twenty-three families from five male 

and five female parents (two crosses m1ssing from the factorial), as well 

as selfed progeny of each parent were planted in split plot design. 

Spacing was the whole plot factor and full-sib family was the split plot 

factor. Individuals were transplanted by block from September through 

November, 1981. The last three blocks planted were eliminated from the 

analysis due to severe mortality. 

The size of each individual (number of leaves and length of longest 

leaf) was measured in October, 1981, and in May, 1982, when the height of 

inflorescence, number of flowering nodes, number of mature flowers and 

number of seeds maturing were also recorded. 

The data were analysed using the GLM procedure of the Statistical 

Analysis System (Helwig and Council, 1979) and using programs for the G 

test (Fienberg 1970), written by Dr. T.~. Meagher for a Hewlett-Packard 

9820 and for an IBM 5100. Variance component correlations and mean square 

correlations among full-sib families were calculated from hypothesis and 

error matrices obtained in multivariate analysis of variance. The former 

were occasionally undefined due to estimates of negative variance 

components, and since significance tests are not at present available for 

them (Tallis 1959), the discussion of correlations employs the values 

obtained by both methods. 
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RESULTS 

Initial survival of seedlings in Experiment I was high. After one 

month, 369 remained from 384 seedlings planted. In the first growing 

season, through September, 1980, the probability of survival depended 

significantly on an individual's family identity (G=28.4, df=11, p<.005) 

and on the density in which it grew (G=l9.8, df=4, p<.005). The mortality 

which occurred in the ensuing eight months was more highly dependent on 

density (G=69.4, df=4, p<.OOl) and less so on family identity (G=22.7, 

df=11, p<.025). In both intervals, the interaction of family x density x 

survival was not significant (G=42.5, G=45.0, df=44, p<.5), indicating that 

the density response of mortality was similar for all twelve families (Fig. 

4.2). 

In May, 1980, the fraction of plants flowering at each density varied 

among families (G=67.13, df=44, p<.05) (Fig. 4.3). Two-way G tests of 

family x flowering considering each density separately and of density x 

flowering considering each family separately revealed the sources of this 

interaction (Tables 4.1 and 4.2). At the three lowest densities, the 

fraction of plants flowering was uniform among the ·families. Disparities 

among the families appeared only at the two highest densities. Five of the 

twelve families declined significantly in fraction of plants flowering with 

increasing density (Table 4.2, Fig. 4.3), whereas the remaining seven 

showed less (Families 9 and 10) or no (Families 4 and 6) variation among 

dens1ties. 

The number of seeds produced per plant in the initial flowering 

episode, May, 1980, was much higher in comparison with plants growing in 

the natural population and, in the low densities, fecundity remained very 
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Figure 4.2. Histograms of numbers of individuals surviving in each densi 
for each family. The initial number of individuals in every family x 
density combination was four. 
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Figure 4.2. continued. 
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Figure 4.3. Histograms of numbers of individuals flowering in each densi y 
for each family. 
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Figure 4.3. continued. 
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Table 4.1. Tests of heterogeneity among families in flowering reapoQI by density, Expt I. 

Density Family ~ Flowering ~ plants/m2 Q. 

35 16.1 ns 
64 6.9 ns 

116 12.2 ns 
211 20.8 .05 
383 29.4 .005 
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Table 4.2. Tests of heterogeneity among densities 1n flowering response by 
family, Expt I. 

Family Density ~ Flowering l!.S 
G 

1 17.3 .005 
2 14.6 .01 
3 12.5 .025 
4 1.6 ns 
5 12.4 .025 
6 3.8 ns 
7 4.7 ns 
8 12.6 .025 
9 6.5 ns 

10 5.2 ns 
11 8.4 ns 
12 10.2 ns 
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high throughout the experiment. For individuals growing at the lowest four 

densities, the average seed output in the first flowering episode (May, 

1980) was 283, compared with 110 for comparably sparse areas in the natural 

population, in which a far lower proportion of plants flowered. 

The number of seeds produced per planted individual varied 

significantly among densities in May 1980 (Table 4.3). At that time, there 

was no significant variation among famil1es in seed number nor in the 

response of that trait to density. The total seed output per individual 

summed from May, 1980, through May, 1981, varied among densities and 

famil1es lFig. 4.4, Table 4.4), but there was no significant interaction. 

Virtually all individuals planted into the earlier five blocks of 

Experiment II survived. Four size traits (number of leaves and length of 

longest leaf, measured in October, 1981 and in May, 1982) and one fecundity 

measure lnumber of seeds produced in May, 1982) were analysed. 

Comparison of individuals produced by selfing with those derived from 

crosses revealed substantial differences between them (Table 4.5). The 

mean for crossed plants was higher for each of the five traits, regardless 

of dens1ty. There was significant variation among densities in the number 

of leaves per plant in May, 1982. For that and every other trait the 

plants were smaller and less productive at high densities. The 

interactions of breeding type with density and with block were not 

significant. 

Within the class of plants produced by selfing, there was signif1cant 

variat1on among the progenies in the two early size traits (number of 

leaves and length of longest leaf in October, 1981) and also in the number 

of seeds produced (Table 4.6). For this group as well, a density effect 

was apparent only in the number of leaves in May, 1982, but there was a 

cons1stent tendency toward reduction in size and fecundity with increasing 
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Table 4.3. Analysis of variance of number of seeds borne in May, 1980 (log 
transformed), Expt I. 

Source df M I. 

Block 3 21.5 1.5 
Density 2 129.8 7.6 p<.05 
Family 11 37.3 0.7 
Family x Block 33 158.9 0.9 
Family x Density 22 137.9 1.2 
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Figure 4.4. The number of seeds produced per planted individual over the 
period, May, 1980 - May, 1981 plotted against density by family. The 
dashed lines indicate families with significantly lower average seed outpu 
relative to the families shown in dotted lines, according to Bonferroni 
coniiaence intervals. 
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Table 4.4. Analysis of variance of total seed output over one year (May, 
1980-May 1981), (log transformed), Expt I. 

Source df ss !. 
Block 3 1.3 .1 
Density 3 678.6 70.1 p<.OOOl 
Family 11 194.9 4.0 p<.OOl 
Family X Block 33 145.9 0.9 
Family x Density 33 106.9 0.7 
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Table 4.5. Comparison of progeny resulting from selfing and outcrossing in 
two densities for each of five traits. Values sharing the same letter 
horizontally are not significantly different between densities; values 
sharing the same letter vertically are not significantly different between 
breeding systems. 

Low Density High Density 

Number of Selfed 11.0 a 10.0 
Leaves 10/81 a a 

Crossed 11.3 a 10.1 

Length of Selfed 60.4 a 59.5 
Leaf 10/81 a a 

Crossed 62.7 a 62.4 

Number of Selfed 15.7 a 9.8 
Leaves 5/82 a b 

Crossed 18.8 b 11.8 

Length of Selfed 66.3 a 62.7 
Leaf 5/82 a a 

Crossed 74.8 b 67.2 

Number of Selfed 126.8 a 88.2 
Seeds 5/82 a a 

Crossed 163.6 a 106.4 
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Table 4.6. Multivariate analysis of variance of size and fecundity, selfed 
progeny alone, Experiment II. The factor, Mother, is considered random. 
Tests are based on Type IV Sums of Squares. 

Number of Length of Number of Length of Number of Multi-
Leaves 10/81 Leaf 10/81 

Source df F F 

Block 4 1.10 7. 7 5 * 
Density 1 4.09 0.64 
Mother 8 8.80 *** 3.56 ** 
B x M 31 1.64 1.35 
D x M 8 1.95 0.31 

+, p<.07; *, p<.OS; **, p<.01; ***p<.0001 

Leaves 5/82 

F 

6.51 * 
30.86 *** 

0.99 
0.68 
0.58 

Leaf 5/82 

F 

3.90 
2.19 
1.01 
0.80 
0.96 

Seeds 5/82 variate 

F 

6.06 + 
2.09 
5.37 ** 
0.70 
0.69 



density. There were no significant interactions of family x density or 

family x block. Thus, among the inbred individuals, the responses to 

environmental variation, both in density and among blocks, were relatively 

uniform. 

The size and growth of outbred individuals were analysed with two 

measures of size prior to planting (number of leaves and length of longest 

leaf in August, 1981) included in the model. A reduction in size and 

fecundity with increasing density was observed, though this effect was not, 

in general, significant {Table 4.7). There was no other signif1cant 

variat1on among maternal half-sibships, nor any among paternal halt­

sibships when individual size prior to planting was included in the model. 

Graphs of the traits against density by half-sibship and by full­

sibship (Figs. 4.5-4.9) reveal that the density responses are not uniform 

and that the response lines cross. The shifts in rankings are slight, 

however, and the interactions are not statistically significant. The 

interaction of full-sibship x density (father x mother x density) is 

marginally significant for the trait, length of longest leaf in May, 1982 

(Fig. 8b). Extreme shifts in ranking are apparent, although signif1cance 

tests for the shifts of rank are not available. This three-way interaction 

in the absence of father x density and mother x density interactions 

implies that dominance or epistatic effects, rather than additive genetic 

effects, influence the response of this size trait to density. Tests for 

overall significance of the effects in the model in the multivariate sense 

are all non-significant. 

Differences in individual growth due to the factors in the experiment 

were investigated using the parallelism test of profile analysis (Timm 

1975). The difference between size in May, 1982 and size in October, 1981 
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Table 4.7. Multivariate analysis of variance of size and fecundity, outbred individuals 
alone, Experiment II. The factors, Father and Mother, were considered as random effects. 
Tests are based on Type IV Sums of Squares. +, p<.1; *, p<.05; **• p<.01. 

Source df 

Block 4 
Density 1 
Father 4 
Mother 4 
Number of 

Lvs 8/81 1 
Length of 

Lf 8/81 1 
B x F 15 
B x M 16 
D x F 4 
D x M 4 
NL x D 1 
LL x D 1 
M X F 13 
D F M 13 
B F M 33 

Number of 
Leaves 10/81 

F 

2.17 
0.12 
2.65 + 
4.22 * 
0.50 

11.34 ** 
0.68 
0.87 
1.52 
0.59 
0.26 
0.38 
1.26 
1.20 
1.85 * 

Length of 
Leaf 10/81 

F 

19.97 ** 
10.13 * 

1.46 
4.56 * 
3.22 + 

1.02 
1.42 
1.33 
0.05 
0.93 
1.64 
0.96 
0.87 
1.39 
0.84 

Number of 
Leaves 5/82 

F 

2.50 
0.33 
1.89 
0.51 

0.91 

0.73 
1.22 
0.91 
2.55 
2.59 + 
0.36 
5.49 * 
2.00 * 
0.54 

. 1.81 * 

Length of 
Leaf 5/82 

F 

13.91 * 
0.68 
0.45 
0.83 

0.00 

0.51 
0.98 
1.33 
0.50 
0.47 
0.42 
2.13 
1.13 
1. 75 
1.32 

Number of Multi-
Seeds 5/82 variate 

F 

3.57 
0.01 
1.58 
0. 78 

0.34 

1.47 
0.66 
0.44 
0.48 
0.85 
0.52 
0.02 
1.36 
1.30 
1.40 
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Figure 4.5. Number of leaves, 10/81, vs. density. a) by half-sibship. Maternal families 
are indicate~ by an asterisk on the right margin. Paternal families are unmarked. b) by 
full-sibship. 
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Figure 4.6. Length of longest, leaf 10/81, vs. density. a) by half-sibship. Maternal 
families identified as in Fig. 5. b) by full-sibship. 
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Figure 4.7. Number of leaves, 5/82, vs. density. a)by half-sibship. Maternal families 
identified as in Fig. 5. b) by full-sibship. 
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Figure 4.8. Length of longest leaf, 5/82, vs. density. a)by half-sibship. Maternal 
families indicated as in Fig. 5. b) by full-sibship. 
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Figure 4.9. Number of seeds, 5/82, vs. density. a) by half-sibship. Maternal families 
identified as in Fig. 5. b) by full-sibship. 



both in number of leaves and in length of longest leaf were the response 

variables in the multivariate analysis of variance (Table 4.8). There was 

a significant effect of the interaction, density x mother, both on the 

univariate analysis of change in leaf number and in the overall 

multivariate test. Thus the response of that growth trait to density 

varies among maternal half-sib families. In addition, the three way 

interaction, block x mother x father is significant for the change in leaf 

number, implying that variation exists among full-sibships in the response 

of this growth trait to background environmental variation. 

The correlations among full-sib famil1es for eight traits related to 

size and fecundity are presented for the two density treatments (Table 

4.9a,b). The causes of these correlations include genetic ones (i.e, 

pleiotropy and linkage) and environmental ones (i.e, maternal effects). 

Statistical tests for comparing whole correlation matrices are not 

available, nor are tests for the significance of individual variance 

component correlations. However, element by element comparison, 

considering variance component and mean square correlations together, can 

reveal differences among matrices which are of interest. 

There are conspicuous similarities in correlations of the traits of 

plants grown at different densities. Among these are the strong positive 

correlations with number of flowers (with number of seeds, inflorescence 

height, number of leaves in October and May and length of leaf in May). 

Strong negative genetic correlations at the low density (for example, 

length of leaf in October with number of leaves in October, inflorescence 

height, number of flowers, and number of seeds; seed weight with number of 

flowers; and number of seeds with inflorescence height) are not apparent in 

the high density. The negative correlations suggest a genetically based 

constraint, either through pleiotropy or linkage, to increasing both of 
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Table 4.8. Multivariate analysis of variance of two growth traits, change in 
number of leaves 10/81-5/82 (DNL) and change in length of longest leaf 
10/81-5/82 (DLL). The effects, Father and Mother, are considered random. 
Tests are based on Type IV Sums of Squares. 

DNL DLL Multivariate 

Source df F F 

Block 4 1.19 4.22 + 
Density 1 0.14 2.70 
Father 4 1.61 0.59 
Mother 4 0.32 1.99 
Number of 

Lvs 8/81 1 0.39 1.85 
Length of 

Lf 8/81 1 0.31 0.03 
B X F 15 1.34 o. 77 
B X M 16 0.69 0.99 
D X F 4 3.32 0.57 
D x M 4 5.09 1.45 * NL 8/81 X D 1 0.61 2.29 
LL 8/82 x D 1 3.98 + 0.91 
M x F 13 1.35 0.91 
D X F x M 13 0.34 1.07 
B x F X M 33 1.69 * 1.51 + 

+, p<.07; * p<.05. ' 
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Table 4.9. Genetic correlations based on full-sibships, Experiment II. The 
top value, where present, is the variance component correlation; the lower 
value is the correlation of family means, for which significance tests can 
be made. The variance component correlation is occasionally undefined, 
because negative values for the variance components are estimated. a) 
Correlations in low density. 

a) 

Seed 
weight 

Leaf number 
10/81 

Leaf length 
10/81 

Leaf number 
5/82 

Leaf length 
5/82 

Inflorescence 
height 

Number of 
flowers 

Number of 
seeds 

Seed Leaf 
weight # 

10/81 

-.22 
-.13 

.27 

.14 

-.28 

-.30 

-.71 
-.23 

-1.01 
-.54** 

-.23 
-.09 

-.22 
-.13 

-.98 
-.19 

.31 

.28 

.27 

.34 

.49 

.51* 

-.03 
.30 

Leaf 
Length 
10/81 

.27 

.14 

-.98 
-.19 

-.10 

.03 

-1.48 
-.26 

-2.06 
-.46 

-3.09 
-.42+ 
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Leaf 
# 

5/82 

-.28 

.31 

-.10 

-.02 

.oo 

.51* 

Leaf Infl. 
Length height 

5/82 

-.30 

.28 

.03 

-.02 

.28 

.53* 

-.71 
-.23 

.27 

.34 

-1.48 
-.26 

.oo 

.28 

-.07 
.42+ 

.56** .34 
-1.68 

.29 

# of # of 
Flowers Seeds 

-1.01 -.23 
-.54** -.09 

.49 

.51* 

-2.06 
-.46* 

.51* 

.53* 

-.07 
.42+ 

.22 

.75** 

-.03 
.30 

-3.09 
-.42 

.56** 

.34 

-1.68 
.29 

.22 
• 7 5** 



Table 4.9b. Genetic correlations based on full-sibships, Experiment II. 
Correlations in high density. 

Seed Leaf Leaf Leaf Leaf lnfl. I of I of 
weight I Length I Length height Flowers Seeds 

10/81 10/81 5/82 5/82 

Seed -.91 -.03 -.44 -.20 -.32 .52 
weight -.34 -.07 -.31 -.05 -.32 -.17 -.27 

Leaf number -.91 -.41 1.95 1.20 1.47 .66 
10/81 -.34 -.32 .65** .23 .14 .56** .27 

Leaf length -.03 -.41 .08 2.88 -.34 -.04 
10/81 -.07 -.32 -.04 .57** -.10 -.15 -.06 

Leaf number -.44 1.95 .08 1.05 .91 -.12 
5/82 -.31 .65** -.04 .38 -.28 .36 -.09 

Leaf length -.20 1.20 2.88 1.05 1.07 2.00 
5/82 -.05 .23 .57** .38 -.40 .05 .04 

Inflorescence 
height -.32 .14 -.10 -.28 -.40 .43* .43* 

Number of -.32 1.47 -.34 .91 1.07 • 78 
flowers -.17 .56** -.15 .36 .05 .43* .76** 

Number of .52 .66 -.04 -.12 2.00 • 78 
seeds .27 .27 -.06 -.09 .04 .43* .76** 
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the traits or of their density responses, in the strict sense, because the 

design employed field collected maternal sibships, probably largely selfed 

seed. The differences among sibships revealed by the experiment are 

attributable to environmentally induced variation among the collections, 

maternal genetic effects, dominance and epistasis, as well as additive 

genetic effects. If there is a negligible contribution of the former 

effects to the density responses however, the experiment suggests that 

under the environmental conditions employed density-dependent selection on 

the basis of these fitness traits fails to maintain genetic variation in 

the population. 

The planting design of Experiment I is an efficient one for estimating 

responses over a wide range of densities, since far fewer individuals are 

required to establish the array of densities than in a split plot design in 

which each plot is established at a different uniform density 

(see Antonovics, et al. 1983 for full discussion). The condensed form of 

the fan design may, however, be a drawback, when the density response of a 

large number of groups (genotypes or families) is to be assayed. The number 

of positions in an arc is fixed by the size of the interior angles, which 

in turn determines the factor of the geometric series by which the spacing 
0 

increases, and by the angle including the whole fan (here 90 , but may be 
0 

up to 360 ). If the number of genotypes to be tested exceeds the number of 

positions per arc, then an incomplete design must be used. The compact 

design precludes replication of genotypes within density x fan 

combinations, reducing statistical power and rendering mortality a severe 

problem. Thus, the fan is most appropriate for ascertaining average and 

genotype-specific responses of a limited number of genotypes (e.g., 

Antonovics, et al. 1983)~ 
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Several flaws in Experiment II preclude making any but weak inferences 

from it. The major problem of small sample size was a consequence of 1) 

Salvia's floral structure which sets a strict limit of four seeds per 

flower (i.e. per pollen transfer), 2) the failure of all individuals to 

flower simultaneously and to continue flowering until all proposed crosses 

were completed, and 3) germination delay and failure. Had the latter 

problem been anticipated, it could almost certainly have been m~nim~zed by 

germinat~ng seeds in water ~n individual vials and then transplanting the 

seedlings to soil. In a more recent experiment using this method (Chapter 

5), germination was nearly synchronous and exceeded 95%. The lack of 

synchrony in germinat~on and emergence led to large variance in the size of 

plants at the start of the experiment. Moreover, blocks planted with the 

latest emerging seedlings had to be eliminated due to severe mortality, 

presumably because winter weather began before the plants had acclimated 

sufficiently. In addition to the problem of sample size, the two spacings 

which were chosen on 'the basis of Experiment I were not sufficiently 

extreme to produce a strong main effect of density. Apparently, in the 

conditions of the Botany Plot, somewhat h~gher densities are necessary to 

cause a reduction in fecundity. This is certainly due to the poorer soil, 

lack of protection, and the deliberately sown background of Poa pratensis. 

These characteristics of the Botany Plot reduced growth relative to that in 

the cold frame and therefore retarded expression of density effects. 

These flaws severely weaken the conclusions that can be drawn from 

this experiment. The graphs of family-specific density responses of size 

and fecundity traits {Figs. 4.5-4.9) show some variation in slopes. The 

genotype x density interactions are, however, not statistically 

significant. The significant mother x density effect on change in leaf 

number is suggestive of the potential for density-dependent selection, if 
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differences in growth rate are eventually converted into differences in 

survival or fecundity. An experiment of longer duration might reveal 

variation among families in response of fecundity and survival to density 

as a consequence of this interaction in growth. However, the interaction 

appears to be exclusively a maternal effect and, as such, may or may not be 

heritable. 

Thus, in the background of the Botany Plot, given the two spacings 

chosen, the genotypes employed, and the size of the experiment, density­

dependent selection may occur, though interactions in fitness traits appear 

slow to develop. However, since statistical interactions reflect the 

extent to which the effects of the particular levels of the main effects 

are non-additive, inferences must be limited to the density levels as well 

as to the genoypes used in the experiment. Moreover, even with these 

restrictions, extrapolation of these results to inference of the prevalence 

of genotype x density interaction in the wild population is inappropriate, 

since the extent to which differences between the field and the Botany Plot 

alter density responses is unknown. 

The experiment did yield evidence that the density of the Salvia 

population can influence the genetic correlations of a set of traits. 

This bad been shown previously by Khan, et al. (1976) for crosses of 

cultivars of Linum usitatissimum. In a different context, Lanza, et al. 

(1982) demonstrated the effect of environment on genetic correlations in 

that inclusion of aflatoxin in the diet of chickens altered the genetic 

correlations between body size and blood characters, relative to controls. 

Since prediction of correlated responses to selection depend on 

heritabilities of the traits and their genetic correlations (Falconer 

1976), and all these can vary with environment, clearly such predictions 
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will apply only in the environment in which the genetic parameters are 

estimated. Thus, Lande's (1975) model of multivariate response to 

selection, which assumes that the matrix of genetic variances and 

covariances is independent of environment, is likely to be overly simplistic 

in a large number of cases. Heritability estimates have long been known to 

be very sensitive to environmental conditions, however, this has apparently 

not been widely noted for genetic correlations. 

The present experiments were conducted in relatively controlled and, 

hence, artificial conditions in the belief that the uniformity of the background 

environment, against which density was deliberately varied, would render 

genetic and genotype x environment effects more prominent. Expe: ~: en t I 

may have accomplished this aim, but the initial variability in the 

experimental material in Experiment II, due to the causes named above, 

almost certainly masked genetic variation. Moreover, Travis (1980) 

previously noted that, contrary to intuition, genetic variance may be 

greater and, hence, more easily detected in natural environments than in 

artificial ones. In addition, the responses in the natural environment are 

of principal interest in the present case. It is therefore appropriate to 

seek evidence of density-dependent selection employing experimental designs 

similar to the present ones in the natural population itself, as reported 

in the following chapter. 
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CHAPTER V. GENETIC EXPERIMENTS IN THE FIELD 

INTRODUCTION 

The discovery of genetic variation in response to conspecific density 

~n laboratory populations of Drosoph~la (Timofeev-Ressovsky, 1934; 

Dobzhansky and Spassky, 1944) led to the recognition that density-dependent 

selection (that is, selection of different genotypes as density varies) 

could be a powerful force maintaining the observed diversity of life 

history phenotypes in nature (see Roughgarden, 1979, for review). More 

recent experimental work (e.g., insects, Lewontin, 1955; Bentvelzen, 1963; 

Sokal and Huber, 1963; Sokal and Karten, 1963; Clark and Feldman, 1981; 

Marks, 1982; in crop species, Stivers, et al., 1971; Khan, et al., 1976; 

Baker and Briggs, 1982) has confirmed the existence of genetic variation in 

density response, and theoretical work (Slatkin, 1979; Turelli and Petry, 

1980; Asmusson, 1983) has examined its evolutionary consequences. However, 

despite keen interest in causes maintaining life history variation in 

nature (Stearns, 1976), we as yet lack direct evidence of density-dependent 

selection in wild species. 

Evidence from experiments conducted in artificial conditions cannot 

bridge this gap for two reasons. 1) Frequently, such experiments seek 

genet~c variation in density response among artificially selected strains 

(e.g., Khan, et al. 1976); therefore the genotypes do not represent a 
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random collection from a wild population. 2) The studies are executed Ln 

artificial background environments; to the extent that the background 

environment influences both general (e.g., Watkinson, 1981,1982) and 

genotype specific responses to density, that is, to the extent that 

etaistical interactions of environment x density and genotype x environment 

x density exist, results of these studies may not apply to populations in 

nature. 

Moreover, as has been pointed out (Wilbur, et al., 1974; Stearns, 

1976; Law, et al., 1977), correlation of life history attributes with 

habitat characteristics cannot be taken as evidence that these 

characteristics were the selective cause of the presently observed life 

history phenotypes. 

Direct evidence of the potential for density-dependent selection 

consists of a shift in the fitness rankings (to the extent that these can 

be evaluated) of genotypes with densities or, in the statistical sense, a 

genotype x density interaction in fitness. Although this criterion bas 

frequently been applied in studies of evolution in laboratory populations 

of insects and in studies of yield in crop species, it has not been applied 

to document the potential for density-dependent selection in a wild 

species. Moreover, only a few studies have directly demonstrated effects 

of density on components of individual fitness in a wild population (in 

plants, Watkinson and Harper, 1978; Clay and Shaw, 1981; Chapters II and 

III; Antonovics, in prep.; in an~als, Brockelman, 1969; Wilbur, 1972, 

1976). 

In view of this gap, the present study was designed to provide 

evidence regarding the extent to which the potential for density-dependent 

selection (and also density-dependent regulation) exists in a wild 
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population of Salvia lyrata (hereafter, "Salvia") growing in its natural 

circumstances. The study was conducted 1n the field from which the source 

population was collected. By experiments carried out using transplants 

directly into the field, it was intended to gain more realistic estimates 

of the density response and of its variation. Experiments which were 

conducted under more controlled conditions (Chapter III) suggested the 

potential for density-dependent selection with regard to one trait, 

flowering tendency, but not for the traits, probability of survival and 

number of seeds. 

METHODS 

The field collections used in Experiment 2 of Chapter IV provided 

seeds for the present experiment. A subsample of field-collected 

individuals was raised in the Duke University Department of Botany 

Greenhouses (see Chapter IV). In May, 1981, the plants were allowed to 

self. The resulting seeds were collected according to maternal parent. 

Salvia selfs readily, and, moreover, emasculation experiments demonstrated 

that pollen transfer between flowers was not occurring in the greenhouse. 

Theretore, the progeny of each individual was a set of self-sibs (Fig. 5.1). 

Thus, to the extent that the original collections differed genetically, the 

famil1es of the next generation differed to approximatedly the same extent. 

Moreover, because the second generation was obtained from parents grown in 

common conditions, environmentally induced differences among the progenies 

are expected to be somewhat reduced compared to those among the first 

generation collections. Although "grandmother" effects, i.e., carryover of 

environmental effects to the second generation, are known (citations in Van 

Vleck, 1976), these are expected to be weaker than effects induced on the 

first generation. The second generation families were two orders of 
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Figure 5.1. Design for collecting and culturing individuals for 
the experiment. The circles denote flowering plants from which 
seeds were collected. The boxes denote seed collections. Panel 
I, Field; Panel II, Greenhouse; Panel III, Field. 
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magnitude larger than the families collected in the field, and this was a 

cons~derable advantage in the design of the field experiment. Of the seeds 

obtained in this way, 30 from each of 20 unrelated families were watered 

and germinated in Petri dishes under 12 hours of light per day (Sears' 

Easy-gro plant light, 40 W) in the laboratory. Eleven such germination 

blocks were established at approximately 4 day intervals. At the time of 

planting into the field (see Chapter I for description of the site) 

approximately 3 weeks later, the seedlings bore fully expanded cotyledons 

and radicles between 5 and 10 em long. 

Planting Design and Procedure 

The field study was partitioned into two experiments to reveal trends 

over a wide range of spacings, while providing sufficient statistical power 

at a few spacings to make significance tests reliable. Experiment A 

employed three planting densities with 35 individuals in each combination 

of density and family, whereas Experiment B employed 5 planting densities, 

with 12 individuals per combination. With a few exceptions, the same seed 

famil~es were used in both experiments; when insufficient seed was 

available to complete the design, seed from plants which were sibs of the 

intended parent (see Fig. 5.1) were used. These substitutions were made only 

in Experiment B. 

For Experiment A, 7 blocks were laid out in the field in an area which 

was chosen for its apparent uniformity and which was the minimum size to 

accomodate both experiments. The site was on a gentle, south-facing slope 

in full sun throughout the summer. Within the blocks, locations were 

randomly allotted to each spacing treatment plot. From these plots, 

resident Salvia individuals were removed, and other vegetation was clipped 

to within 1/2 inch of the soil surface. One hundred points were arrayed in 
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each plot in uniform hexagonal design; the spacing treatments were 1 em, 2 

em, and 8 em between individuals, corresponding to densities of 11765, 
2 

2940, and 184 plants perm , respectively. The family identities were 

assigned to these points with an additional level of blocking: there were 

5 subblocks of 20 individuals each (one from each family) in each plot, the 

20 points were grouped to occupy minimum areas. This lower level of 

blocking was used to preclude effects of differences in planting time 

biasing the results. Thus, the experiment was designed as a split plot, 

with spacing treatment as the whole plot factor and family as the split 

plot factor. 

Experiment B was executed similarly: 5 spacings were used, these being 

3 em, 4 em, 6 em, 12 em, and 16 em between individuals (equivalently, 1307, 
2 

735, 327, 82, and 46 individuals perm, respectively). These were planted 

in 4 out of the 7 blocks allotted to Experiment A. In each plot, 60 

seedlings were planted; they were randomized in three strips of 20 points 

hexagonally arranged (i.e., 1 row of 6 flanked by 2 rows of 7 points). 

The planting of the seedlings which was done in April and May, 1982 

required six weeks. A plastic toothpick marked the location of each individual 

and indicated its family identity, according to a color and symbol code. 

Individuals which died before June were replaced with their respective sibs 

remaining in the Petri dishes from the same germination group. During this 

period, the plots were watered about once a week if they appeared dry, and 

this combined with an unusually wet spring was responsible for high 

survival. After mid-May, supplemental watering ceased. Twice during the 

summer, the plots were mown with a Stihl FS80 Brush Cutter, rather than a 

rotary mower, in order to minimize damage to the toothpicks. No other care 

was applied. In September, 1982, the survival and size (number of leaves 
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and length of longest leaf) of each individual, except those in the 1 em 

spacing treatment, were recorded. Due to the difficulty of working at the 

most extreme density, the plants in the 1 em spacing were not measured, but 

were reserved for destructive sampling at a later time. 

Data Analysis 

Experiment A and Experiment B were analysed separately using programs 

for conducting G tests, written by T. R. Meagher and M.D. Rausher and using 

the Statistical Analysis System (Helwig and Council, 1979), maintained at 

Triangle Universities Computation Center, Research Triangle Park, N.C. 

Plants which died were included in the analysis of size. This practice 

preserves the near balance in the design and permits one to draw 

unconditional conclusions. When this might obscure trends among the 

survivors, the results of analyses from which dead plants were excluded are 

also reported. Because computer funds were limited, these latter analyses 

were carried out on cell means, a procedure which is not strictly valid, 

since it artificially imposes balance and homogeneity of variance. For 

this reason, the p-values of the reported analyses of unbalanced data 

should be taken as a rough guide to the actual significance levels. This 

caution also applies to analyses where edge plants were eliminated. 

The factors, blocks, families, and subblocks within plots, were 

considered random effects and spacings as fixed in a mixed model analysis 

of variance. Thus, the inferences can be extended to a wider population of 

families and areas in the field, and components of variance attributable to 

each factor can be calculated. However, neither the field locations nor 

the timing of planting the blocks were randomly chosen. The effect this 

model has on the hypothesis tests, relative to considering blocks fixed, 

will be noted and discussed. 
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Genet1c correlations of the two traits within each spacing (e.g., 

length of leaf in 2 em with number of leaves in 2 em) were carried out 

using the Nested procedure of SAS. Correlations of traits between spacings 

(e.g., length of leaf in 2 em with length of leaf in 8 em, or with number 

of leaves in 8 em) were obtained by considering each trait, measured in 

different spacings as ·different traits, and by calculating correlations of 

family means tor each experiment. Falconer (1952) originally suggested this 

approach, but it bas been used little (for an exception see, Khan, et al., 

1976). 

RESULTS 

Mortality 

For both experiments taken together, the survival of plants during the 

first month's establishment was 97% (2701/2795). Of the 94 dead individuals 

which were replaced, only 16 survived to the September census, probably 

because the individuals held over for replacement were weaker than those 

planted in the normal sequence. 

In Experiment A, four months later, 87% (1196/1376 plants) survived. 

The mortality was distributed randomly among the families (G test, p<.9~). 

The overall trend was toward higher mortality in the 2 em spacing than in 

the 8 em spacing (Fig. 5.2a), but this trend was dependent on the 

part1cular block (block X spacing X mortality, G test, p<.OS). Three of 

the blocks showed far higher mortality than the remaining four (G test, 

p<.0001>; these were the three earliest planted blocks, and, hence, their 

high mortality may be due to environmental factors confounded with 

earl1ness (e.g., occasional frost, relative drought at that time, the 

inexperience of the investigator in the early stages of the planting 

procedure) or to spatial variation. 
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Figure 5.2. Number of plants whlch died by September, 1982, plotted 
against spacing and block treatment. a, Experiment A; b, 
Experiment B. 
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In Experiment B, 76% llOBl/1419) survived to September. The 

variation in this mortality is confined to a single aberrant plot (Fig. 

5.2b; Block 5, Spacing=4 em), whose unusually high mortal1ty appeared to be 

due to disturbance by moles, rather than to density or block dependent 

effects. This mortality renders the block x spacing x mortality 

interaction significant lG test, p<.OOOl). Neither the heterogeneity among 

fami11es lp<.l), nor that of any other h1gher order interaction was 

significant lp<.5). 

Size Distributions 

The size distributions of surviving plants were similar for all 

spacings. They all differed significantly from a normal distribution 

(Kolmogorov-Smirnov test, p<.Ol) with positive coefticients of skewness and 

frequently positive coefficients of kurtosis. The variance of number of 

leaves per plant ranged from 1.6 in the 2 em spacing to a maximum of 2.6 1n 

the 3 em spacing, that of length of longest leaf from 11.6 in the 6 em 

spacing to 21.7 in the 8 em spacing. In summary, the variances were 

relatively homogeneous across spacings; most of the distributions were more 

peaked and with more individuals in the smaller classes than is expected 

of a normal distribution. 

Effects on mean size 

In Experiment A, there was significant variation among the blocks, the 

spacings, and the subblocks within plots (Table 5.la, Figs. 5.3a, 5.4a in 

leaf number and length). The estimated components of variance (Table 5.2a) 

indicate the relative magnitudes of these effects. The means for the 

blocks somewhat reflect their spatial and temporal arrangement (Table 

5.3a); Blocks 1-3 have plants with smaller leaves and 1 and 3 have plants 

with fewer leaves; these observations partially reflect the higher 
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Table 5.1a. Analysis of variance of number of leaves in September, 1982, 
Experiment A. The F ratios are calculated according to a mixed model with 
block, family, and subblock random and spacing fixed. 

Source 

Model 
Error 

df 

335 
1040 

Block 6 
Spacing 1 
Block*Spacing 6 
Subblock 56 

(Block*Spacing) 
Family 19 
Block*Family 114 
Spacing*Family 19 
Block*Space*Family 114 

ss 

1833.9 
2676.0 

398.5 
298.5 

21.6 
328.6 

117.3 
363.9 

70.8 
234.7 

F 

2.13 

14.04 
56.7 5 

.67 

1.93 
1.55 
1.81 
0.8 

Pr>F 

.0001 

.0001 

.0001 
ns 

.05 

.025 

.05 
ns 

2 
R 

.407 

Analysis of variance of length of longest leaf in September, 1982, 
Experiment A. 

Model 335 24866.8 1. 72 .0001 .356 
Error 1040 44969.5 

Block 6 37 87 .1 19.05 .0001 
Spacing 1 1413.5 137.47 .0001 
Block*Spacing 6 127.0 .15 ns 
Sub block 56 8146.3 

(Block*Spacing) 
Family 19 1807.6 2.06 .05 
Block*Family 114 5253.2 1.35 .OS 
Spacing*Family 19 441.4 .68 ns 
Block*Space*Family 114 3890.5 • 79 ns 

Multivariate tests 

Source Wilks' L p 

Block .0093 .0015 
Spacing .1839 .0001 
Family .4665 .0001 
Block*Family • 7248 .012 
Spacing*F amily .6719 .12 
Block*Spacing*Family .8368 .945 
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Table S.lb. Analysis of variance of number of leaves in 
Experiment B, carried out as explained in Table S.la. 

September, 1982, 

2 
Source df ss F Pr>F R 

Model 439 1929.2 1.85 .0001 .518 
Error 7 51 1788.5 

Block 3 397.9 6.85 .01 
Spacing 4 12.4 .16 ns 
Block*Spacing 12 227.5 4.96 .001 
Sub block 

(Block*Spacing) 
40 146.6 

Family 19 224.8 4.01 .001 
Block*Family 57 168.1 1.15 ns 
Spacing*Family 76 17 2.1 .88 ns 
Block*Space*Family 228 579.6 1.07 ns 

Analysis of variance of length of longest leaf, in September, 1982, 
Experiment B. 

Model 439 20556.8 1.66 .0001 .493 
Error 751 21158 .o 
Block 3 1995.8 2.43 .1 
Spacing 4 819.9 .81 ns 
Block*Spacing 12 3001.7 7.57 .0001 
Subblock 40 1441.1 

(Block*Spacing) 
Family 19 2725.9 2.94 .005 
Block*Family 57 27 84.9 1.94 .001 
Spacing*Family 76 2051.5 1.07 ns 
Block*Space*Family 228 5736.0 .89 ns 

Multivariate tests 

Source Wilks' L p 

Block .2500 .0112 
Spacing .6380 .694 
Family .1976 .0001 
Block*Family .5603 .02 
Spacing*F amily .5748 .63 
Block*Spacing*Family .5466 .023 
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Table 5.lc. Analysis of variance of number of leaves in April, 1983, 
Experiment A. 

2 
Source df ss F Pr>F R 

Model 335 4150.8 2.03 .0001 .395 
Error 1040 6351.1 

Block 6 912.2 6.88 .025 
Spacing 1 537.6 24.32 .0001 
Block*Spacing 6 132.7 1.59 ns 
Sub block 56 780.2 

(Block*Spacing) 
Family 19 337.1 2.77 .0001 
Block*Family 114 732.2 1.05 ns 
Spacing*Family 19 132.1 1.35 ns 
Block*Space*Family 114 586.7 0.84 ns 

Analysis of variance of length of longest leaf, in April, 1982, 
Experiment A. 

Model 335 83923.7 1.91 .0001 .380 
Error 1040 136421.6 

Block 6 13069.7 5.05 .05 
Spacing 1 12036.0 27.89 .0001 
Block*Spacing 6 2591.8 1.21 ns 
Sub block 56 19907.0 

(Block*Spacing) 
Family 19 7715.5 3.07 .0001 
Block*Family 114 15110.8 1.01 ns 
Spacing*Family 19 2347.7 1.25 ns 
Block*Space*Family 114 11144.8 • 7 5 ns 

Multivariate tests 

Source Wilks' L p< 

Block .00008 .001 
Spacing .00733 .002 
Family .23507 .0001 
Block*Family .61919 .02 
Spacing*Family .51392 .34 
Spacing*Block*Family .68940 .95 
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Table 5.ld. Analysis of variance of number of leaves in April, 1982, 
Experiment B, carried out as explained in Table 5.1a. 

Source df 

Model 439 
Error 7 51 

Block 3 
Spacing 4 
Block*Spacing 12 
Sub block 40 

(Block*Spacing) 
Family 19 
Block*Family 57 
Spacing*Family 76 
Block*Space*Family 228 

Analysis of variance 
Experiment B. 

Model 439 
Error 

Block 
Spacing 
Block*Spacing 
Subblock 

(Block*Spacing) 
Family 
Block*Family 
Spacing*Family 
Block*Space*Family 

Source 

Block 
Spacing 
Family 
Block*Family 
Spacing*F amily 
Spacing*Block*Family 

7 51 

3 
4 

12 
40 

19 
57 
76 

228 

2 
ss F Pr>F R 

4856.1 1.71 .0001 .499 
4868.7 

1038.5 15.43 .0001 
173.6 1.94 ns 
268.9 1.70 ns 
525.9 

437.5 2. 79 .001 
468.7 1.27 ns 
460.2 .93 ns 

1482.6 1.00 ns 

of length of longest leaf, in April, 1983, 

101229.2 1.79 
96534.3 

19533.4 12.14 
3875.3 1.80 
6430.3 1.90 

11219.9 

9740.4 3.00 
977 9 .o 1.33 
8969.2 0.85 

31681.6 1.08 

Multivariate tests 

Wilks' L 

.0219 

.1823 

.0831 

.6805 

.3057 

.3185 

172 

.0001 

.0001 
ns 

.1 

.0001 

.054 
ns 
ns 

p< 

.0001 

.26 

.0001 

.001 

.39 

.056 

.512 
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Figure 5.3a. Length of longest leaf plotted against block for each fam i 
Experiment A. The blocks are plotted along the abscissa in order of 
increasing block mean. 



74 

22 

20 
u. 
<( 
w __. 
1--en 
w 
(!' 
z 
0 15 __. 
u. 
0 
::c 
1--
(!' 
z 
w __. 

10 

3 1 2 7 4 5 6 

BLOCK 



175 

Figure 5.3b. 
Experiment B. 

Length of longest leaf plotted against block for each family, 
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Table 5.2a. Estimates of the variance components from the analyses 
of variance, September, 1982 data, Experiment A. 

Number of Leaves Length of Leaf 

Source df Variance Standard Variance Standard 
Component Error Component Error 

Block 6 .327 .166 3.168 3.159 
Spacing 1 .446 .348 2.12 1.649 
Subblock 56 .165 .055 5.112 1.35 
B*S 6 -.019 .021 -1.21 0.294 
Family 19 .043 .033 0.701 0.445 
B*F 114 .119 .050 1.259 0. 7 53 
S*F 19 .050 .033 -0.330 0.241 
B*S*F 114 -.108 .059 -1.93 0.973 
Error 1040 2.57 43.24 

Table 5.2b. Estimates of the variance components from the analyses 
of variance, Experiment B. 

Number of Leaves Length of Leaf 

Source df Variance Standard Variance Standard 
Component Error Component Error 

Block 3 .378 .281 1.305 1.438 
Spacing 4 -.065 .031 -0.196 0.631 
Sub block 40 .427 .040 2.617 2.66 
B*S 12 .25 .120 3.61 1.582 
Family . 19 .173 .062 1.98 0. 7 57 
B*F 57 .054 .039 1.58 0.617 
S*F 76 -.046 .036 0.153 0.409 
S*B*F 228 .053 .089 -1.003 0.919 
Error 7 51 2.38 28.173 
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Table 5.3a. Means by block, spacing, and family for Experiment A, 
September,l982. Values followed by the same letter are not significantly 
different (p<.05), according to the Bonferroni criterion. 

Mean Number Block Mean Length Block 
of Leaves of Leaf 

3.7 6 A 16.0 6 A 
3.5 7 A 16.0 5 A 
3.3 2 A 15.9 4 A 
3.2 4 AB 15.7 7 A 
3.2 5 AB 15.2 2 A 
2.6 1 BC 13.1 1 B 
2.0 3 c 11.4 3 c 

Spacing Spacing 

3.6 8 A 15.8 8 A 
2.6 2 B 13.7 2 B 

Family Family 

3.6 6 A 17.4 15 A 
3.5 15 A 16.4 16 AB 
3.5 8 A 16.3 12 AB 
3.4 19 A 15.7 4 ABC 
3.4 17 A 15.6 18 ABC 
3.3 5 A 15.3 20 ABCD 
3.3 12 A 15.2 8 ABCD 
3.2 20 A 14.9 6 ABCD 
3.1 16 A 14.9 17 ABCD 
3.1 11 A 14.9 10 ABCD 
3.0 18 A 14.8 3 ABCD 
2.9 3 A 14.6 5 BCD 
2.9 1 A 14.5 13 BCD 
2.9 4 A 14.5 7 BCD 
2.9 2 A 13.7 9 BCD 
2.8 14 A 13.7 19 BCD 
2.8 9 A 13.5 14 CD 
2.8 13 A 13.4 1 CD 
2.7 10 A 13.3 2 CD 
2.6 7 A 12.6 11 D 
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morta11ty in those blocks, as noted above. 

There is far less variation among families, and, iD u v 

it is significant only for the trait, length of longest leaf (p<,O 

Tables 5.1a, 5.3a); the multivariate test, however, indicated that th 

of traits varies significantly among families (p<.OOOl). The variance 

component tor the family effect on length of leaf is the same order of 

magnitude as those of the environmental causes, whereas the family 

component tor number of leaves is approximately an order of magnitude 

smaller. 

• 

p 

The effects of these factors are not purely additive, as reflected by 

their statistical interactions. There was no evidence that the effect of 

spacing on size varied from block to block, but a significant block x 

family interaction {multivariate test, p<.003) indicates that the relative 

mean sizes for the families differed among blocks (Fig. 5.3b). The 

variance components for this interaction are larger than the components due 

to families. This effect is particularly dramatic in comparisons of Blocks 

4-7, whose means and variances are homogeneous. 

In addition to the block x family interaction, there was a significant 

spacing x family interaction for number of leaves (p<.05, Table la. Fig. 

5.4a); this interaction was not significant for the trait, length of 

longest leaf, and its variance component was negative, probably due to 

sampling error. There was no evidence of three-way interactions, and their 

variance components were negative. 

The auxiliary analysis from which dead plants were eliminated gave 

similar results to those reported. The main exception was that the family 

and block x spacing effects were highly significant for both traits. A 

further analysis showed a significant interaction between spacing and the 

location of an individual in the plot (i.e. edge vs. interior; p<.Oll). 
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Figure S.4a. Number of leaves plotted against spacing treatment for 
each family, Experiment A. 
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Figure 5.4b. Number of leaves plotted against spacing treatment for each family, 
Experiment B. 
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When edge plants were consequently eliminated from the ma~n analysis, 

the conclusions were not substantially altered, although the spacing x 

family interaction was stronger in the multivariate sense (p<.02). 

The results based on the April, 1983 census were similar to those from 

the September, 1982 census (Table S.lc), with the exception that, in the 

univariate tests, the main effect of families was stronger and the two way 

interactions were no longer significant. In the multivariate test, the 

block x family interaction was significant. The spacing x family 

interaction was marginally significant (p<.06) for number of leaves in the 

auxiliary analysis of means with edge plants and dead plants excluded. 

The results of Experiment B differ from those of Experiment A in one 

notable respect. The variation due to environmental factors is apportioned 

principally to the spacing x block interaction (Tables S.lb, 5.2b); the blocks 

(Table 5.3b) and subblocks varied in mean number of leaves per plant, but 

there is no evidence of variation among the spacing treatments. Note that 

the variance components for block, block x spacing, and subblock are 

comparable, whereas those for spacing are negative (Table 5.2b). 

The family main effect (Tables S.lb, 5.3b) and the block x family 

interaction (Fig. 5.3b) account for most of the remaining variation. There 

is no evidence that the families differ in their response to the range of 

spacings employed in Experiment B (Fig. 5.4b). Surprisingly, the block· x 

spacing x family interaction, however, is significant in the multivariate 

test (p<.028). The conclusions based on the April, 1983 census do not 

substantially differ from those of the September, 1982 census (Table S.ld), 

with the exception that the block x spacing effect is not significant at 

the later date. 

To summarize the effects on size, the effects of spacing are only 
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Table 5.3b. Means by block, spacing, and family for Experiment B. 

Mean Number Block Mean Length Block 

of Leaves of Leaf 

4.2 7 A 16.3 4 A 

3.9 4 AB 15.9 7 A 

3.0 2 B 13.7 2 A 

2.8 5 B 13.4 5 A 

Spacing (em) Spacing (em) 

3.6 16 A 15.6 3 A 

3.6 12 A 15.5 12 A 

3.5 3 A 15.4 16 A 

3.4 6 A 15.9 4 A 

3.4 4 A 15.7 6 A 

Family Family 

4.5 15 A 18.4 15 A 

4.1 17 AB 17.3 10 AB 

4.0 8 ABC 16.6 8 ABC 

3.9 6 ABCD 16.5 12 ABC 

3.8 1 ABCD 15.9 17 ABCD 

3.7 19 ABCDE 15.9 20 ABCD 

3. 7 12 BCDEF 15.5 18 ABCDE 

3.5 3 BCDEF 15.2 9 ABC DE 

3.5 11 BCDEF 14.5 3 BCDE 

3.5 5 BCDEF 14.5 14 BCDE 

3.5 20 BCDEF 14.3 16 BCDE 

3.4 10 BCDEF 14.2 6 BCDE 

3.4 14 BCDEF 14.2 13 BCDE 

3.4 9 CDEFG 14.1 5 BCDE 

3.3 13 DEFG 14.0 19 CDE 

3.2 18 DEFG 14.0 1 CDE 

3.0 2 EFG 13.4 7 CDE 

2.9 7 FG 13.4 11 CDE 

2.9 16 FG 12.7 2 DE 

2.6 4 G 12.2 4 E 



apparent in comparisons with the most extreme treatment. No trend of the 

means with spacing is revealed by the graph of size against spacing for 

Experiment B (Fig. 5.4b). Moreover, variation among families in their 

performance at particular spacings is discernible only in Experiment A. 

Conversely, other environmental effects are considerable in both 

experiments, and variation among families in their performance in different 

blocks or plots is evident. 

' Heritabilities and Family Correlations 

The broad sense heritabilities of the two size measures and their 

variance component correlation attributable to covariation among families 

were calculated from the full analysis (Table 5.4). The heritabilities are 

generally low as might be expected of size traits in a field experiment. 

The family correlation of the two traits calculated for Experiment A is 

also ~all, whereas that for Experiment B is large. 

The family component correlations between the two size traits within 

spacing treatments and within dates, computed separately for the two 

experiments (Table 5.5a,b), are significantly positive in most of the 

spacing treatments. Frequently, the correlations within spacings and 

between dates are still larger, indicating a strong influence of family 

identity on both size traits through time in the first year. Similarly, 

the correlation of the same trait measured in two different spacings is 

frequently positive and significant, while the correlations of the opposite 

traits in different spacings are positive but less often significant. 

There is no evidence of negative genetic correlations between traits, 

whether within or between spacings and within or between dates. 

DISCUSSION 

These experiments have revealed the relative magnitudes of 
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Table 5.4. Family variance component correlations of number of 
leaves and length of longest leaf, based on estimates from 
multivariate analysis of the full model (see Tables 5.la,b). 
Diagonal elements are the heritabilities of the traits. 

Ex per imen t A Experiment !!. 

NL LL NL LL 

NL .024 .062 NL .096 .659 

LL .027 LL .105 
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Table 5.5a. Correlations among families of the two traits within and between spacing treatments 
and census dates, Experiment A. Where two correlation coefficients are reported, the variance 
component correlation is above and the mean square correlation is below. Where one coefficient 
is given, it is the correlation of family means. 

September, 1982 

NL2 

NL 2 .100 

LL 2 

NL2 

LL 2 

NL8 

LL 8 

NL8 

LL 8 

.676 

.555 * 

1.081 
• 703 ** 
,685 
.570 * 
.355 

.273 

.316 

.311 

LL 2 

.116 

.903 

.633 * 

.891 

.750 ** 

.023 

.687 ** 

.131 

.495 * 

+, p<.07; *, p<.05; **, p<.OOl. 

April, 1983 

NL2 LL 2 

.080 

.891 .096 
• 770 ** 
.164 .157 

.262 .428 + 

.144 .067 

.034 .417 + 

September, 1982 

NL 8 

.120 

-.640 
-.172 

.654 

.504 * 

.360 

.447 * 

LL 8 

.086 

-.733 
-.040 

.317 

.461 * 

April, 1983 

NL 8 

.027 

.033 

.502 * 

LL 8 

.026 



Table 5.5b. Correlations among families of the two size traits within and between spacing 
treatments and census dates, Experiment B. The organization is as in Table 5.5a. 

9/82 4/83 9/82 4/83 9/82 

NL3 LL 3 NL 3 LL 3 NL4 LL 4 NL 4 LL 4 NL 6 LL 6 

N 3 .073 

L 3 -.073 .114 
.398 

N 3 -.259 .504 .111 
.264 .537 * 

L 3 .775 1.282 -.384 .018 
....... 

.673 ** • 739 ** .498 * 00 
\0 

N 4 .490 * .382 .470 * .259 .198 

L 4 .337 .385 .563 ** .386 1.203 .024 
.495 * 

N 4 .231 .317 .563 ** .385 .803 .826 .156 
.602 ** .459 * 

L 4 .446 * .511 * .563 ** .617 ** .839 1.106 .783 .120 
.656 ** • 7 21 ** • 7 27 ** 

N 6 .223 .384 .365 .085 .579 ** .359 .614 ** .512 * .207 

L 6 .27 5 .546 * .637 ** .312 .579 ** .712 ** .519 * .647 ** .842 .334 
.623 ** 



N 6 -.000 .193 .324 .122 .400 .139 .395 .499 * 1.097 .871 
• 789 *** .661 ** 

L 6 .098 .437 + .368 .254 .462 * .414 + .315 .578 ** .919 1.027 
• 739 ** .822 *** 

Nl2 .494 * .580 ** .613 ** .439 + .672 ** .573 ** .856 *** • 715 ** .601 ** .550 * 

Ll2 .210 .630 ** .758 ** .459 * .350 .459 * .635 ** .574 ** .560 * .765 ** 

N12 .004 .125 .497 * .449 * .470 * .386 • 779 *** .497 * .478 * .414 + 

Ll2 .274 .500 * .480 * .709 ** .404 .398 .611 ** .648 ** .470 * .566 ** 

1--' 
\0 
0 

N16 .345 .247 .270 .236 .355 .063 .342 .342 .530 * .439 + 

L16 -.097 .359 .229 .363 -.218 -.091 .240 .208 .411 .320 

N16 .216 .323 .478 * .766 *** .462 * .413 + .516 * .528 * .J-7 5 .320 

L16 .335 .466 .335 .665 ** .369 .528 * .477 * .625** .336 .446 * 



4/83 9/82 4/83 9/82 4/83 

NL6 LL 6 NL12 LL12 NL12 LL12 NL16 LL16 NL16 LL16 

N 6 .190 

L 6 .974 .170 
.796 *** 

N12 .272 .285 .160 

Ll2 .217 .396 .603 .374 
.497 * 

1--' N12 .313 .265 .917 .587 .280 
\0 
1--' • 732 ** • 568 ** 

L12 .428 + . .532 * .834 .956 .812 .136 
.690 ** • 778 ** .735 ** 

N16 .358 .222 .309 .353 .250 .436 * .037 

L16 .271 .372 .168 .495 * .17 9 .457 * -.268 .190 
.188 

N16 .154 .173 .621 ** .550 * .638 ** .534 * 
.518 * .367 

L16 .198 .363 .548 * .456 * .350 .507 * 
.465 * .485 * .626 

+, p<.07; *, p<.05; **, p<.01; ***p<.0001 



environmental and genetic effects on several measures of individual success 

in a natural population of Salvia lyrata. Although interest in the 

combined effects of genotype and density provided motivation for the pair 

of experiments, the effect of blocks, that is, patches of approximately 6 
2 

m , or its interaction with spacing by far outweighed those of the 

remaining factors. The block x spacing interaction (which might be 

interpreted as variation in response to spacing among blocks) can not be 

distinguished from a simple reflection of environmental differences among 

plots, since each spacing treatment is represented by only a single plot in 

each block. Furthermore, because the decision to employ a balanced design 

dictated the use of plots of varying area, the spatial scale of Experiment 

A is small relative to that of Experiment B; this fact could easily account 

for the significant spacing x block interactions in the latter. In other 

words, the spatial scale which reflects variation among blocks in 

Experiment A is that which yields significant plot effects (=space x block 

interactions) in Experiment B. Indeed, since there is no space x block 

interaction in Experiment A, indicating neither environmental variation 

among plots nor in density response (or that these two effects, if present, 

cancel each other, an unlikely event), consideration of the spacing x block 

interaction in Experiment B as a plot effect most simply explains these 

findings. 

Thus, 1n both experiments, the greatest contribution to variance in 

size was spatial heterogeneity on a moderate scale of a few meters. In 

addition, spatial heterogeneity on the smaller scale of subblocks within 

plots contributed to variation in size, the effect being stronger in 

Experiment A, possibly because more compact areas served as subblocks 

compared to the strips used in Experiment B. Together, heterogeneity on 
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these two spatial scales far surpasses that of spacing or family in th 

magnitude of its effect on the individual plant's phenotype. The whole 

experiment occupied a minimum area chosen for its apparent homogeneity. 

For this reason, the finding of large block and subblock differences was 

unexpected. 

In an experiment where plots were chosen to represent biotically 

different backgrounds, Fowler and Antonovics (1981) also found significant 

differences among plots in survival and leaf number for both Salvia lyrata 

and Plantago lanceolata in a field near and similar to that of the present 

study; on the smaller spatial scale of replicates within plots, no 

significant variation was detected. On a larger scale, Antonovics and 

Primack (1982), demonstrated significant variation among widely separated 

sites in their effects on life history characteristics of ~ lanceolata. 

Experimentally using the response of the organism itself as a measure of 

general environmental heterogeneity, as the latter authors advocated, bas 

not found wide application. Therefore assessing the commonness of spatial 

heterogeneity as it affects plants in natural populations is difficult. 

The effects of crowding on size were perceptible only in comparisons 

of the closest spacing (2 em) with a wide spacing (8 em). It is perhaps 

remarkable that any effect of spacing appeared at the stage of growth 

presently being considered; at the September census, four months after 

planting, the average size of the plants was 3.25 leaves with the longest 

leaf measuring 1.48 em; Assuming a uniform size distribution and that the 

leaves lie flat on the ground (as they normally do), then in the 2 em 

spacing there is potential for pairs of adjacent plants to overlap leaves 

by 7 mm, roughly one third their length; conversely, such overlap is not 

possible for the average plant at any wider spacing. As the plants grow 

larger, however, one would expect the area of overlap to increase, with a 
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resulting manifestation of competition at wider spacings. This phenomenon, 

already amply demonstrated in experiments under controlled conditions (see 

Harper, 1977, for review), illustrates the observation that the number of 

individuals per unit area is an inadequate measure of density in plants, 

due to their plasticity in size. Effective plant population densities vary 

with plant age and size and, hence, with time, even when the number of 

individuals does not change. Thus, the expectation that density effects 

may, with time, become evident in the wider spacings hinges on the notion 

that effective density increases as the plants grow. Verification of this 

trend awaits future censuses. 

In spite of major effects of environmental variation, family 

differences were nevertheless apparent. The difficulty of obtaining 

sufficient seed from formal genetic crosses dictated the use of self­

sibsbips in these experiments. As a result, components of genetic variance 

are confounded with maternal effects to make up variation among families; 

precautions to minimize the contribution of environmental effects to seed 

quality were noted above. The broad sense heritabilities, which represent 

upper bounds to the proportional genetic determination of traits, indicate 

that small but significant proportions of the phenotypic variation in early 

size are attributable to family effects. Since growth is a multiplicative 

process, small differences in size at early stages become augmented in 

later stages, as bas often been shown in controlled experiments (Harper, 

1977). Density can increase this effect still further (Koyama and 

Kira, 1956; Ford, 1975). Thus, one might expect that the small size 

differences observed at the early stage of the present study are likely to 

be compounded in the future and thus lead to differential success. 

The establishment and consequences of size hierarchies have rarely 
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been documented experimentally in natural plant populations. Fowler and 

Antonovics (1981) showed that size (i.e., leaf number) of Salvia and~ 

lanceolata on certain dates was significantly positively correlated with 

size and fecundity as much as six months later. Clay (1982) reported that 

the initial weight of tillers of Danthonia spicata planted into the field 

was a highly significant determinant of certain flowering characteristics a 

year later. But, in general, the relevance of the phenomenon of 

compounding of size advantage in natural populations is not ~nown. To the 

extent that this effect can be observed in later censuses, the family based 

size differences may ultimately confer differences in fitness in this 

experimental population. 

Both experiments uncovered block x family interactions. Their 

variance components were, in some cases, equal in magnitude to those of the 

environmental ma~n effects and appreciably larger than those for the family 

main effect. This finding indicates that the response to the spatial and 

temporal heterogeneity varies among famil~es. Moreover, the block x 

spacing x family interaction in Experiment B, for which the multivariate 

test was significant, can be considered a plot x family interaction by the 

argument given above (first paragraph, Discussion). This may be taken as 

further evidence of family differences in response to the spatial 

heterogeneity of the field. If the size measures are correlated with 

fitness, such variation may provide the potential for differential success 

of individuals depending on whether their genotype '~atches" the patch in 

which they become established. 

Dickinson and Antonovics (1973) showed theoretically that, even with a 

large number of niche types in the environment and random fluctuation in 

the selection pressure in each niche, variation in the environment can 

greatly influence the genetic structure of the population it supports. Few 
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experiments have been designed to reveal such potential for multiple niche 

selection in natural populations, but those mentioned earlier (Fowler and 

Antonovics, 1981; Antonovics and Primack, 1982) gave ev1dence in~ 

lanceolata that survival and size were significantly affected by either 

plot x family or site x population effects. On the other hand, Clay (1982) 

demonstrated no significant family x block interactions in the study 

ment1oned above. In each of these examples, including the present one, the 

relationship of the measured traits with fitness remains to be determined. 

But the studies suggest the occurrence of multiple niche selection and 

exemplify approaches to its further study. 

The experiment revealed weak differences among the families in their 

response to the range of spacings (number of leaves in Experiment A) and, 

hence, only slight potential for density-dependent selection. Density­

dependent selection, for which genotype x density interaction in fitness is 

a necessary condition, can be viewed as a special case of multiple niche 

selection, which depends on genotype x niche interactions. The two modes 

of selection are driven by variation 1n the environment: in the first case, 

by variat1on in conspecific density and in the second, more generally, by 

any variat1on to which genotypes respond differently. The expected outcome 

of density-dependent selection is that populations growing at different 

densities will favor different genotypes with distinct life h1stories. This 

process would maintain genetic variation among populations. This result 

depends on the existence of "tradeoffs", or negative genetic correlations 

between fitness 1n the different densities, a condition which has often 

been assumed (e.g., Gadgil & Solbrig 1972), but not demonstrated. 

From the present study, only suggestive evidence of the potential for 

density-dependent selection is available in the genotype x density 
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interactions for number of leaves per individual. The genetic correlations 

of the size traits between densities are occasionally significantly 

positive; in particular, the size traits in the 12 em spacing are 

significantly correlated with those in each other spacing treatment. 

Correlations of size between the remaining densities are, in general, not 

significant, suggesting genetic independence of size in these different 

densities. In neither experiment is there any evidence of genetically 

based tradeoffs between growth in one density and growth in another. More 

definitive evidence on this phenomenon must await later censuses when 1) 

the density effect may be anticipated to spread to more of the spacing 

levels (see above) and 2) more reliable fitness traits, such as seed 

number, may be measurable, or selective mortality may have occurred. 

It is of interest to consider how the inferences from this pair of 

experiments would differ if the block factor were considered fixed and only 

the families were random. Accordingly, instead of referring our 

conclusions to the population of patches similar to the ones used, we 

restrict them to the finite population of patches actually used in the 

experiment. The hypothesis mean squares for the within plot effects and 

their interactions are then tested over the residual mean square rather 

than a linear combination of interactions. We find that for the present 

experiment, the family effect is in every case highly significant, whereas 

the first and second order interactions are not, as a rule; only the block 

x family interaction is significant for length of leaves in Experiment B. 

Thus, when the hypotheses are restricted, we find differences among 

families in their average size, but little indication that they differ in 

their response to environment. These two sets of conclusions can be 

reconciled by noting that the residual mean square is that of the 

interaction of subblocks and famil1es, because each family is represented 
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once in a single subblock. If the families show significant variation in 

response to small scale spatial variation, then the subblock x family 

effect does not estimate the true error, and the latter tests are vitiated. 

The general conclusions about block and spacing effects are not altered 

when blocks are considered fixed. 

The overall conclusions from this pair of experiments are that 

naturally occuring spatial heterogeneity on at least two scales strongly 

influences the size of individuals within their first four months of 

growth. Moreover, the imposed variation in density also has a 

detectable effect on size, albeit only at the highest measured density 
2 

(2940 plants/m ). Variation among famil1es in average size and in their 

site specific size rankings, while substantial, accounts for much less of 

the total phenotypic variance than does spatial heterogeneity. The 

indication that families perform differently at different densities is also, 

very weak. Assessment of future survival and reproduction of the 

experimental individuals will provide stronger evidence of whether natural 

selection {density-dependent, niche-dependent, or independent of 

environmental influences) molds the observed variation among families. To 

date, however, the experiment reveals environmentally and genetically 

induced variation in a natural population grown in the field and 

exemplifies approaches to ascertaining the evolutionary significance of 

this variation. 
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CONCLUDING REMARKS 

The results of the experiments reported here indicate that density has 

only a weak or delayed effect in limiting population growth in this natural 

population of Salvia lyrata. Manipulation of seed densities to extreme 

levels, nearly forty times the natural level of seed input, revealed the 

only striking evidence of density-dependent limitation at the seedling 

level. The awkwardness of enhancing population density of mature 

individuals to such extremes precluded determination of whether similarly 

striking responses occur among larger individuals. However, at densities 

similar to those found in the natural population, density responses are 

weak and frequently undetectable. Thus, the population of this moderately 

long-lived perennial is not self-regulated, as one might have expected on 

the basis of traditional concepts of ecology. It persists with little 

change from year to year at numbers well below its "carrying capacity". It 

seems likely that addition of individuals or change in environment could 

boost the population to higher densities and still no limitation by density 

would curtail growth or reduce numbers. Therefore, the population is 

limited by low seed input or by high density-independent mortality of 

seedlings and juveniles. At presently observed densities, this population 

is governed by inertia (sensu Murdoch, 1970), rather than self-regulation. 

The extent to which this view of dynamics may apply to other natural 

populations, especially of perennials growing in mixtures, is unknown. 

However, it suggests that traditional views of population growth warrant 

revision. In particular, if few plant populations persist at an 

experimentally definable carrying capacity, and do not appear to exhibit 

dynamics dictated by it, then that parameter is of little value as an 

indicator of the degree to which density influences the trajectory of the 
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population. More useful in prediction of population change would be a 

measure of a population's location along an input/output curve 

experimentally determined over a wide range of densities. For perennial 

species, such a representation is not a trivial matter, since the frequency 

of different size classes, all of which differ in survival, fecundity, 

sensitivity to density, and force of density they impose, must be taken 

into account. Nevertheless, evaluation of density responses in this way 

would represent more realistically the force of density effects in 

populations such as this one. 

The slow growth rate of seedlings in natural conditions impeded 

definitive assessment of the efficacy of density-dependent selection in the 

field population of Salvia lyrata. However, the initial results ~uggest 

the potential for density-dependent selection on the basis of variation 

among families in response of one size trait to density·. Information from 

future censuses will more definitively address this issue. Perhaps most 

critical in the theoretical discussions of density-dependent selection and 

its consequences for life history evolution is the assumption that 

genetically based tradeoffs impose conflicts between fecundity in low 

density and competitive ability 1n high density. If this is true, then 

alternative genotypes should be selected in densities at the opposite 

extremes. It is hoped that forthcoming information will provide a test of 

this assumption. 
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