Searching for pairing interactions with coherent charge fluctuations spectroscopy

J. Lorenzana

ISC-CNR, Sapienza, University of Rome B. Mansart, A. Mann, A. Odeh, M. Scarongella, M. Chergui, F. Carbone EPFL, Lausanne

Consiglio Nazionale delle Ricerche

Outline

• Raman scattering

Coherent Lattice Fluctuation Spectroscopy

- Coherent Charge Fluctuation Spectroscopy
- Coherent oscillations in a superconductor
- NMR in charge space
- Condensate coupling with a high-energy mode

Raman Scattering

Spontaneous Raman Scattering

$$H = H_{ph} - \frac{1}{2}\mathbf{E}(t) \cdot \frac{\partial \chi(\omega_L)}{\partial \xi} \cdot \mathbf{E}(t)\hat{\xi}$$

$$\hat{\mathbf{\rho}} = \frac{\partial \boldsymbol{\chi}}{\partial \boldsymbol{\xi}} (\boldsymbol{\omega}_L) \hat{\boldsymbol{\xi}}$$

$$\frac{d\sigma}{d\Omega d\omega} = \frac{\omega_s^4 V^2}{(4\pi)^2 c^4} \sum_{\nu} |\langle 0|\hat{e}_s.\hat{\rho}.\hat{e}_l|\nu\rangle|^2 \delta(\omega - \omega_{\nu})$$

Sugai PRB '89

FIG. 10. Incident wavelength dependence of the Raman spectra in La_2CuO_4 at 30 K.

Impulsive Stimulated Raman Scattering and Coherent Lattice Fluctuation Spectroscopy

Detection of Excitations

Swiss Knife Matrix Element

A new coherent excitation

Coherent generation of excitations

Charge Fluctuations Phonons $H = H_{ph} - \frac{1}{2} \mathbf{E}(t) \cdot \frac{\partial \chi(\omega_L)}{\partial \xi} \cdot \mathbf{E}(t) \hat{\xi} \qquad H = H_{BCS} - \frac{1}{2} \mathbf{E}(t) \cdot \frac{\partial \chi(\omega_L)}{\partial N_X} \cdot \mathbf{E}(t) \hat{N}_X$ $= H_{BCS} + v_X(t)\hat{N}_X$ $=H_{ph}-F(t)\hat{\xi}$ $\delta N_X(t) =$ $\xi(t) = \int_{-\infty}^{t} dt' \frac{\sin[\omega_{ph}(t-t')]}{\omega_{ph}} F(t)$ $-i \int_{-\infty}^{t} dt' \langle [\hat{N}_X(t), \hat{N}_X(t')] \rangle v_X(t)$

Magnetism and Superconductivity

Anderson Phys. Rev 1958

Magnetism and Superconductivity

Anderson Phys. Rev 1958

$$H_{BCS} = \sum_{k} \xi_{k} c_{k\sigma}^{\dagger} c_{k\sigma} - \sum_{k} (\Delta_{k}^{*} c_{-k\downarrow}^{\dagger} c_{k\uparrow}^{\dagger} + h.c.)$$

$$H_{BCS} = -\sum_{k} [\mathbf{b}_{k}^{0} + \delta \mathbf{b}_{k}(t)] \cdot \boldsymbol{\sigma}_{k} \cdot \mathbf{50}$$

$$\mathbf{b}_{k}^{0} = (\Delta_{k}, 0, \xi_{k})$$

$$\mathbf{b}_{k}^{0} = (0, 0, v_{k}^{X}(t))$$

$$\mathbf{b}_{k}^{0} = -2[\mathbf{b}_{k}^{0} + \delta \mathbf{b}_{k}(t)] \times \boldsymbol{\sigma}_{k} \cdot \mathbf{NMR} \text{ like } !$$

$$\text{Larmor at Ef } \boldsymbol{\omega}_{k} = 2\Delta_{k}$$

NMR in Charge Space

Coherent Charge Fluctuation Spectroscopy

Anderson, Scalapino, Science 2007

Scalapino: Numerics support a retarded interaction scenario. Paramagnons are the glue. Anderson: RVB is the true. Do not search for phonons, magnons, etc.

There is no need to be a glue-sniffer.

"We have a mammoth and an elephant in our refrigerator do we care much if there is also a mouse?"

Glue debate

~20% of the attraction from coupling to high energy states

Maier, Poilblanc, D. J. Scalapino, PRL 2008

Conclusions

- Superconducting charge fluctuations generated and detected by light pulses for the first time.
- Strong analogy with NMR opens the possibility of coherent control of the superconducting wave function.
- Raman profiles carry precious information on the coupling between low energy excitations and high energy excitations.
- Enables Coherent Charge Fluctuation Spectroscopy, a new technique that allows to answer the question: Which excitations are coupled to the superconducting quasiparticles?. High specificity like Isotope effect.
- In our system: Excitations at the scale of the Hubbard U are coupled to low energy charge fluctuations. Signature of Mottness in the superconducting wave function.

Ref: Mansart et al. PNAS 110, 4539 (2013).

Lorenzana et al. EPJ ST, **222**, 1223 (2013).

Polarization Analysis

B1g Symmetry and Fluency Dependence

NMR in Charge Space

Raman profile as a fingerprint of excitations $\delta \epsilon_{xx}(\omega, t) = -4\pi \frac{\partial \chi_{xx}}{\partial n_{CT}}(\omega) \delta n_{CT}(t)$

Real time Raman vs Frequency Domain

- Phase sensitive information
- Raman profile in one shot
- Coherent control of excitations

FIG. 10. Incident wavelength dependence of the Raman spectra in La_2CuO_4 at 30 K.

Real time Raman vs Frequency Domain

Example: Two magnon oscillations in an AF system

FIG. 9. (Color online) Pump-probe data showing two-magnon oscillations in MnF_2 at 4 K after removal of the phonon oscillation with the linear prediction method. The red line is the linear prediction (LP) model fit.

Zhao, Bragas, Merlin, Lockwood PRB 2006

Resonant Effects in Electronic Raman Scattering

NMR in Charge Space

Raman Scattering

 $\omega_L \pm \omega_{ph}$ ω_L

Raman Scattering

$$\begin{split} \boldsymbol{\xi}(t) &= \boldsymbol{\xi} e^{-i\omega_{ph}t} \\ \boldsymbol{\sqrt{M}_{i}} \mathbf{u}_{i} &= \mathbf{e}_{i} \boldsymbol{\xi} e^{-i\omega_{ph}t} + \mathbf{e}_{i}^{*} \boldsymbol{\xi}^{*} e^{i\omega_{ph}t} \\ \boldsymbol{\alpha} &= \frac{e^{2}}{m} \frac{\mathbf{F}}{\omega_{0f}^{2} - \omega^{2} - i\omega\gamma} \\ \boldsymbol{\alpha} &= \boldsymbol{\alpha}_{0} + \frac{\partial \boldsymbol{\alpha}}{\partial \boldsymbol{\xi}} \boldsymbol{\xi} e^{-i\omega_{ph}t} + \frac{\partial \boldsymbol{\alpha}}{\partial \boldsymbol{\xi}^{*}} \boldsymbol{\xi}^{*} e^{i\omega_{ph}t} \\ \mathbf{p} &= \boldsymbol{\alpha}. \mathbf{E} \\ \mathbf{E} &= \mathbf{E}_{0} e^{-i\omega_{L}t} \\ \mathbf{p} &= \begin{pmatrix} \boldsymbol{\alpha}_{0} e^{-i\omega_{L}t} + \frac{\partial \boldsymbol{\alpha}}{\partial \boldsymbol{\xi}} \boldsymbol{\xi} e^{-i(\omega_{L} + \omega_{ph})t} + \frac{\partial \boldsymbol{\alpha}}{\partial \boldsymbol{\xi}^{*}} \boldsymbol{\xi}^{*} e^{-i(\omega_{L} - \omega_{ph})t} \end{pmatrix} \mathbf{E}_{0} \end{split}$$

Conventional Superconductors

High-Tc Cuprates

Conservative/Reformist View

$$V_{\text{tot}}(\mathbf{r},t) = V_{\text{dir}}(\mathbf{r},t) + V_{\text{ind}}(\mathbf{r},t)$$

$$V_{\rm ind}({\bf r},t) = -e \ e' \ g_n^2 \ \chi_n({\bf r},t) - {\bf s} \cdot {\bf s}' \ g_m^2 \ \chi_m({\bf r},t)$$

³He: Leggett, RMP 1975 Superconductors: Monthoux, Pines, Lonzarich, Nature 2007

"Left Revolutionary"

PW Anderson

RVB Scales U and J Important No retardation

Raman in Solids

 $\mathbf{P} = n\mathbf{p}$ $\chi = n\mathbf{\alpha}$ $\mathbf{P} = \chi \cdot \mathbf{E}$ $\varepsilon = 1 - 4\pi\chi$ $\chi = \frac{\sigma}{i\omega}$

$$\chi = \chi_0 + \frac{\partial \chi}{\partial \xi} \,\xi e^{-i\omega_{ph}t} + \frac{\partial \chi}{\partial \xi^*} \,\xi^* e^{i\omega_{ph}t}$$

$$\hat{\partial}_{\mu\nu} = \sum_{yX} \frac{\partial \chi_{\mu\nu}}{\partial N_{yX}} (\omega_L) \hat{N}_{yX}$$

 $\omega_R = \omega_L - \omega_s$

 $\Pi(\omega) = i \int dt' e^{i\omega t'} \left\langle \left[\hat{e}_L \cdot \hat{\rho}(t) \cdot \hat{e}_s, \hat{e}_L \cdot \hat{\rho}(t') \cdot \hat{e}_s \right] \right\rangle$

Heavy Fermions

Coherent Excitation of charge fluctuations by Impulsive Stimulated Raman Scattering

$$H_R(t) = -\frac{1}{2} \sum_k \mathbf{E}(t) \cdot \chi_{el}^R \cdot \mathbf{E}(t) f_k^X (n_{k\uparrow} + n_{-k\downarrow})$$

$$H_R(t) = \sum_k v_k^X(t)(n_{k\uparrow} + n_{-k\downarrow})$$

$$v_k^X(t) = -\frac{1}{2} \mathbf{E}(t) \cdot \chi_{el}^R \cdot \mathbf{E}(t) f_k^X$$

Optical Conductivity and Fluctuations

Ð

Unconventional Superconductors

$$V_{\rm ind}({\bf r},t) = -e e' g_n^2 \chi_n({\bf r},t) - {\bf s} \cdot {\bf s}' g_m^2 \chi_m({\bf r},t)$$

Close to instabilities the susceptibility is large at small energies (long times)

Raman Scattering

$$H = H_{ph} - \frac{1}{2}\mathbf{E}(t) \cdot \frac{\partial \chi(\omega_L)}{\partial \xi} \cdot \mathbf{E}(t)\hat{\xi} = H_{ph} - F(t)\hat{\xi}$$

$$\frac{d\sigma}{d\Omega d\omega} = \frac{\omega_s^4 V^2}{(4\pi)^2 c^4} \sum_{\nu} |\langle 0|\hat{e}_s.\hat{\rho}.\hat{e}_l|\nu\rangle|^2 \delta(\omega_R - \omega_\nu)$$
$$\hat{\rho} = \frac{\partial \chi}{\partial \xi} (\omega_L) \xi \qquad \frac{1}{\pi} \operatorname{Im} \Pi(\omega_R)$$
$$\Pi(\omega) = i \int_{-\infty}^{t} dt' e^{i\omega t'} \langle [\hat{e}_L.\hat{\rho}(t).\hat{e}_s, \hat{e}_L.\hat{\rho}(t').\hat{e}_s] \rangle$$

FIG. 10. Incident wavelength dependence of the Raman spectra in La_2CuO_4 at 30 K.