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Abstract 

The production of dry-grind corn ethanol results in the generation of intermediate 

products, thin and whole stillage, which require energy-intensive downstream processing 

for conversion into commercial co-products. Alternative treatment methods, specifically 

hydrothermal carbonization of thin and whole stillage coupled with anaerobic digestion 

were investigated to determine if they provide an opportunity to recover some of this 

value. By substantially eliminating evaporation of water, reductions in downstream 

energy consumption from 65-73% were achieved, while hydrochar, fatty acids, treated 

process water, and biogas co-products were generated, providing new opportunities for 

the industry.  Processing whole stillage in this manner produced the four co-products, 

eliminated centrifugation and evaporation, and substantially reduced drying. With thin 

stillage, all co-products were again produced, as well as a high quality animal feed. 

Anaerobic digestion of the undiluted aqueous product stream from thin stillage 

hydrothermal carbonization reduced chemical oxygen demand (COD) in this product 

stream by more than 90% and converted 83% the initial COD to methane. Internal use of 

this biogas could entirely fuel the HTC process and reduce natural gas overall usage.
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Part I. Literature Review 

1.1 Hydrothermal Carbonization (HTC) 

1.1.1 Introduction and Origins 

 Hydrothermal carbonization (HTC) is a thermochemical process that utilizes 

temperature and pressure to increase the carbon content of an organic material in the 

presence of water. HTC is similar to naturally occurring geological processes that result 

in the formation of coal, and was first investigated in the early 1900’s. Modern HTC 

reactions occur at moderate temperatures of 180-250°C (Mumme et al., 2011) and 

autogenous pressures in a closed vessel. Reaction times vary substantially depending on 

the substrate and heating mechanism, but generally are on the order of a few hours. The 

process generates a carbonized (increased C:O ratio) coal-like material known as 

hydrochar along with an aqueous fraction containing soluble products that can easily be 

separated by filtration. Carbonization reactions at aforementioned conditions primarily 

occur through a dehydration mechanism, generating little gaseous products; nevertheless, 

decarboxylation resulting in CO2 production can contribute to carbonization as well.  

 Other thermochemical conversion technologies such as hydrothermal liquefaction, 

pyrolysis, and gasification employ higher temperatures, and as a result reaction products 

are substantially changed. Hydrothermal liquefaction, which produces a petroleum 

replacement bio-oil or bio-crude, utilizes a temperatures between 280-370°C with 

pressures of 10-25 MPa (Toor et al., 2011). Conversely, pyrolysis occurs above the 

supercritical point of water between 400-500°C in the absence of oxygen (Libra et al., 

2011). Pyrolysis produces a mixture of biochar, bio-oil, and gases; specific distribution of 
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these products depends on reaction conditions and substrate characteristics (Balat et al., 

2009). Gasification employs the highest temperatures ranging from 600-1000°C in the 

presence of an oxidizing agent (Kumar et al., 2009). Gaseous products from gasification 

known as syngas primarily consists of CO, H2, CO2, and CH4 (Wang et al., 2008). Syngas 

can be used directly for heat and power or upgraded catalytically to chemicals or liquid 

fuels. In general, pyrolysis and gasification are conducted on dry substrates. 

1.1.2. Hydrothermal Carbonization of Insoluble Biomass  

Early hydrothermal carbonization research was conducted with lignocellulosic 

materials to develop a better understanding of the natural coalification process. Bergius 

and Spect began heating peat and cellulose in water under pressure in the early 1900s. 

Bergius noted that many others had tried to heat cellulose or wood in order to make a 

product similar to coal; never, however, had reactions been conducted in liquid water 

under pressure. In his Nobel lecture of 1932, Bergius explained that at temperatures 

between 290-350°C an exothermic reaction of two parts cellulose would yield two parts 

CO2, five parts water, and a powdery substance that was essentially C10H8O (Bergius, 

1932). 

A 1960 research article summarized and built upon many of the early HTC 

findings (Schuhmacher et al., 1960). In the article it was reported that cellulose (44% 

carbon) was converted to a coal-like material that was 81% carbon in a 39% yield. This 

high level of carbonization was only achieved at severe conditions, i.e., 340°C for 3 

hours, and produced a 20% yield of CO2. At less extreme conditions, i.e., 225°C for 3 

hours, a 63% yield of 51% carbon material was produced yielding 1% CO2. Similar 
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carbonization of lignin and wood was achieved and the authors concluded that both 

cellulose and lignin could participate in coal formation. In addition, reactions with 

glucose generated a material very similar in composition to that created from cellulose, 

which supported the conclusion that cellulose was hydrolyzed to intermediate products.  

As hydrothermal carbonization research progressed, the focus shifted from 

understanding coalification to understanding and quantifying soluble intermediate 

products. Bobleter was a part of numerous studies that sought to answer these questions, 

and made use of a sophisticated continuous flow system (Bobleter et al., 1976). The 

optimum temperature and flow rate for cellulose degradation to glucose was shown to be 

265°C at 12 cm3/min, yielding 52% glucose. At flow rates below 11 cm3/min, glucose 

yields decreased whereas concentrations of 5-hydroxymethylfurfural and furfural 

increased (Bonn et al., 1983). Lignin and hemicellulose were degraded at 180°C. In order 

to overcome this temperature discrepancy a two-stage HTC process was investigated with 

aspen wood. In the first hydrolysis stage (180°C), 43% of the starting aspen wood was 

degraded to soluble products. The second stage (265°C) converted 52% of the remaining 

material to soluble products (Bonn et al., 1983). At the time, promising applications of 

this research included a method to pretreat lignocellulosic material for ethanol production 

(Hörmeyer et al.,1988). In contrast, recent efforts have revisited production of insoluble 

hydrochar from lignocellulosic materials for use as a carbon-neutral coal replacement in 

addition to numerous other applications (Titirici et al., 2007; Titirici & Antonietti, 2010; 

Funke et al., 2010). 
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1.1.3 Hydrothermal Carbonization of Soluble Biomass 

Considerable effort has been directed towards HTC research on soluble 

saccharides such as sucrose or glucose, both to investigate novel syntheses of carbon 

nanostructures and to determine HTC mechanisms. Hydrochar yields from glucose and 

sucrose are highly dependent on initial concentrations and reaction conditions, but in 

general, yields have been shown to be between 20-40% (w/w) (Sevilla & Fuertes, 2009). 

Saccharide hydrochars are made up of monodispersed microspheres. More specifically, 

glucose hydrochars contained 1-2 µm diameter microspheres (Mi et al., 2008), whereas 

sucrose hydrochars contained 1-5 µm diameter microspheres (Wang et al., 2001). The 

size of the microspheres within each respective range was dependent on HTC reaction 

conditions. Research areas that have expanded upon these observations include                

1) attachment and encapsulation of metal on the carbon network (Huang et al., 2007),     

2) carbon networks structured using sacrificial metal (Deng et al., 2006), and 

3) co-deposition of carbon and metal followed by oxidative removal of carbon generating 

hollow metal spheres (Yang et al., 2007). These specialized materials all produced via 

HTC of saccharides, have a multitude of commercial application as catalysts or 

electrodes.      

The vast amount of HTC research on simple saccharides in water has provided 

enough information to piece together a generally accepted mechanism for the 

carbonization and hydrochar building processes. The first step that occurs with insoluble 

polysaccharides is hydrolysis of glycosidic linkages, resulting in soluble oligo, di, and 

monosaccharides. Autoionization of water at hydrothermal conditions catalyzes initial 
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hydrolysis, and further hydrolysis is catalyzed by hydronium ions from organic acids 

(formed by fragmentation on saccharides) (Garrote et al., 1999). Monosaccharides that 

are not fragmented can be intramolecularly dehydrated, primarily forming furans, i.e, 

furfural and 5-hydroxymethylfurfural. Dehydration products and monomers then 

participate in condensation and polymerization reactions, which occur through 

intermolecular dehydration or aldol condensation, forming soluble polymers (Sevilla & 

Fuertes, 2009). The appearance of oxygen groups such as C=O can be attributed to 

intramolecular dehydration of vicinal hydroxyl groups forming enols that tautomerize 

into ketones and aldehydes. Intermolecular dehydration contributes to aromatization of 

soluble polymers, developing aromatic clusters. It has been suggested that the formation 

of hydrochar microspheres follows a nucleation growth mechanism consistent with the 

LaMer model (Sun & Li, 2004). Therefore, when aromatic clusters reach a saturation 

point, a burst nucleation occurs and the resulting particle grows outward by diffusion of 

reactive moieties. Species in the solution are linked to the growing microsphere through 

reactive oxygen functional groups present on both surfaces, i.e., hydroxyl, carbonyl, and 

carboxylic. This hypothesis is supported by the presence of stable ether and pyrone 

groups in the core of the resulting hydrochar microsphere (Sevilla & Fuertes, 2009). At 

the conclusion of HTC reactions two principle products remain: insoluble hydrochar 

microspheres, and a soluble fraction consisting of small organics such as organic acids, 

furans, and aldehydes.   
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1.1.4 Hydrothermal Carbonization of bioenergy feedstocks and liquid waste streams 

 The presence of water is vital for HTC reactions and this makes it uniquely suited 

for processing high moisture-content biomass or waste streams that also contain high 

levels of organic carbon. With increasing concerns about global warming, emphasis has 

been placed on moving away from fossil fuels to renewable energy sources. Energy or 

chemicals derived from renewable biomass have been projected to play a role in this 

transition (Perlack et al., 2005) , but the high water content in biomass presents a 

problem. Evaporation of water requires 1100 BTU/lb, and this can result in a negative 

energy balance for renewable biomass resources that require extensive drying. HTC 

processing eliminates all or much of the drying requirement by allowing reactions to 

occur with the material as received followed by the separation of hydrochar by filtration. 

A number of nonconventional low cellulosic materials have been investigated, including 

microalgae (Heilmann et al., 2010; Heilmann et al., 2011b), distillers grains (Heilmann et 

al., 2011a), manures and wastewater sludge (Libra et al., 2011), and anaerobically 

digested maize silage (Mumme et al., 2011). As previously mentioned HTC research on 

lignocellulosic materials is ongoing, but because of the relatively high temperatures 

needed to hydrolyze cellulose, other low-cellulose biomass feedstocks that carbonize at 

less severe reaction conditions may provide a more advantageous energy balance.   

 Complex substrates make it difficult to determine mechanistic details about 

hydrochar generation, but individual macromolecule components, i.e., carbohydrates, 

triglycerides, and proteins, have provided some insight. Carbohydrates are considered to 

be the primary reactant for HTC and are central to hydrochar formation. Proteins are 
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hydrolyzed into constituent peptide fragments and amino acid monomers. These protein 

fragments may undergo Maillard reactions with carbohydrates that contain a reactive 

aldehyde group, giving rise to a variety of small heterocyclic compounds that can be 

integrated into hydrochars through the mechanism described in section 1.1.3. 

Additionally, proteins add insoluble mass that is subsequently collected with hydrochar 

through denaturation and insolublization (Heilmann et al., 2011a). In contrast to both 

carbohydrates and proteins, triglycerides do not contribute to hydrochar formation. 

Instead, triglycerides are hydrolyzed, and the resulting fatty acids are sorbed to the 

insoluble hydrochar product. Although it remains unclear how fatty acids are sorbed to 

hydrochar, they have been shown to be readily extractable with an organic solvent 

(Heilmann et al., 2011b). It should be noted however, that even seemingly analogous 

substrates can have different HTC outcomes with respect to hydrochar composition and 

yield.  

  In order for HTC to be an industrially relevant bioprocessing or waste treatment 

operation, both the resulting hydrochar and aqueous product must be useful. Hydrochars, 

due to carbonization, have heating values on par with bituminous coal (Heilmann et al., 

2010), and have a default application as renewable solid fuel. Other higher value 

applications have been suggested for hydrochars, including use as a soil amendment, 

concrete or asphalt additive, activated carbon analog, and CO2 sorbent (Libra et al., 

2011). Structures of hydrochars derived from complex biomass or waste streams may not 

be as predictable as those from simple saccharides, yet these complex substrates, 
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particularly those containing proteins, could generate useful hydrochar products as a 

result of nitrogen functionalities incorporated into the resulting hydrochars.  

Aqueous products generated along with hydrochars have historically received less 

attention, but in the context of bioprocessing or waste treatment, equal emphasis must be 

placed on these products so one waste stream is not traded for another. Carbon contained 

in hydrochars is generally between 40-60% of that in the starting biomass, leaving most 

of the remaining carbon in the form of soluble products in the liquid fraction minus minor 

amounts of CO2 produced. Additionally, it has been shown that the majority of nitrogen 

and phosphorus in the system remains in the aqueous product (Heilmann et al., 2011a; 

Heilmann et al., 2011b). Direct uses of these liquid products have included water and 

nutrient recycle for algae growth and liquid fertilizer for terrestrial crop production. 

Another option is to anaerobically digest the liquid fraction, thereby treating the stream 

and generating biogas that could be used to run the HTC process. 

1.2 Anaerobic digestion 

1.2.1 Introduction 

 Anaerobic digestion is a process in which a community of microorganisms 

cooperatively breakdown organic material in the absence of oxygen, forming biogas 

primarily composed of methane and carbon dioxide. Industrially, anaerobic digestion is 

used as a method to reduce organic carbon levels in a range of wastewaters (e.g., sewage, 

manure, and brewery) while generating biogas fuel (i.e., methane). 

Conversion of soluble and insoluble organic molecules into biogas requires 

multiple organisms and metabolic steps. First, macromolecules are hydrolyzed into 
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simple soluble products by extracellular enzymes. For complex substrates, this can be a 

rate-limiting step (Li & Noike, 1992). Next, the products from the first step are fermented 

into short-chain organic acids, alcohols, CO2, and hydrogen. Specifically, production of 

short chain fatty acids is known as acidogenesis. Intermediate volatile fatty acids and 

alcohols are then converted by hydrogen- producing acetogenic bacteria into acetate, 

CO2, and hydrogen in a step called acetogenesis. Thermodynamically, acetogenesis is 

unfavorable if the partial pressure of hydrogen in the system is above 1 x 10-3 atm 

(Zinder, 1990). Additionally, a small amount of acetate is generated from CO2 and 

hydrogen by homoacetogens (Mackie & Bryant, 1981). Methanogenesis is the final step 

in the process, in which methanogenic Archaea convert acetate and CO2 and hydrogen 

into methane and CO2. Methane production is used as an indicator of overall system 

performance because methanogenesis is considered to be the major rate limiting step in 

digestion. Acetotrophic methanogens account for nearly three quarters of the total 

methane production The remaining methane is produced by hydrogenotrophic 

methanogens using CO2 as the electron acceptor and hydrogen or formate as the electron 

donor (Khanal, 2009).  

1.2.2 Environmental factors and operating conditions 

 Environmental factors play a critical role in the success or failure of anaerobic 

systems. Anaerobic systems, and specifically methanogens, are very sensitive to pH 

deviations from the optimum range of 6.8 – 7.4. Even a moderate change in pH can result 

in the failure of a reactor. A decrease in pH can occur from excessive CO2 production or 

volatile fatty acid accumulation. Low pH further contributes to the accumulation of 
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volatile fatty acids by lowering methanogenic activity, increasing the partial pressure of 

hydrogen and inhibiting acetogenesis (Khanal, 2009). Similarly, methanogenic activity is 

inhibited above pH 8 due to an increase in the free ammonia concentration (Chen et al., 

2008). Alkalinity mitigates pH fluctuations by buffering anaerobic systems. Most healthy 

reactors maintain an alkalinity capacity between 1000 – 5000 mg/L as CaCO3 

(Tchobanoglous et al., 2003), and a volatile fatty acid to alkalinity ratio of 0.1 – 0.25 

(Khanal, 2009). 

 Temperature is another environmental factor that influences the overall 

performance of anaerobic systems. Optimum temperature ranges for methanogens are of 

5 – 15°C, 35 – 40°C, and ~55°C for psychrophilic, mesophilic, and thermophilic 

methanogens respectively. Temperatures outside these optimal ranges are survivable but 

result in decreased methanogenic activity (Lettinga et al., 2001). Currently most 

commercial reactors are operated under mesophilic conditions. Mesophilic reactors are 

more stable and have shorter startup times than thermophilic reactors (Khanal 2009). 

Nevertheless, methane production rates are 25 – 50% higher in thermophilic reactors than 

those in mesophilic reactors. Thermophilic treatment also results in the destruction of  

pathogens (Smith et al., 2005) and antibiotic resistance genes (Ghosh, Ramsden, LaPara, 

2009). Nonetheless, additional heating requirements associated with maintaining 

thermophilic conditions can negate some of the energy benefits gained from increased 

methane production.   

Anaerobic digestion, similar to other biological processes, requires macro and 

micronutrients and is subject to inhibition or toxicity. The minimum ratio of nitrogen and 
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phosphorus related to chemical oxygen demand (COD) (COD:N:P) has been shown to be 

350:7:1 for high organic loading rates of 0.8-1.2 kg COD/kg VSS day and 1000:7:1 for 

organic loading rates of < 0.5 kg COD/kg VSS day (Henze, Harremos, 1983). Other 

important macronutrients include sulfur, potassium, calcium, magnesium, and iron. Small 

amounts of micronutrients (i.e., Cr, Co, Cu, Mn, Mo, Ni, Se, V, and Zn) and growth 

factors (i.e., vitamins, amino acids, purines, and pyrimidines) are also required for 

microbial growth (Angelidaki & Sanders 2004). Ammonia is beneficial at low levels, but 

has been shown to be inhibitory above free (unionized) ammonia concentrations of 700 

mg/L (I Angelidaki, Ahring, 1994). Likewise, heavy metals, short chain fatty acids (more 

inhibitory when unionized), and long chain fatty acids can become inhibitory or toxic if 

certain threshold concentrations are exceeded. Additional sources of toxicity include 

refractory or recalcitrant organic compounds and sulfide (again, more inhibitory when 

unionized). It should be noted, however, that the levels of certain compounds that are 

inhibitory to a given community depends largely on the degree of acclimation to that 

compound. Multiple studies have shown that with proper acclimation, anaerobic cultures 

can tolerate levels of various compounds (i.e., ammonia, sulfide, and recalcitrant organic 

compounds) previously thought to be toxic (Khanal 2009). 

1.2.3 Anaerobic digestion of Thin Stillage  

 Anaerobic digestion of thin stillage, a byproduct of the corn ethanol industry 

containing approximately 93% water, has attracted interest as a method to treat and 

recycle process water while generating renewable biogas. Thin stillage has a high organic 

content ranging between 50 – 100 g/L COD, a low pH of 4-5, and zero alkalinity. It does, 
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however, contain nearly all of the required nutrients for sustained anaerobic treatment. In 

the early 1980’s Seely and Spindler (1981) and Stover et al. (1983) studied the anaerobic 

digestion of thin stillage. These studies demonstrated the potential of thin stillage as a 

feedstock for digestion. One noteworthy finding of Stover et al. (1983) was that at higher 

thin stillage concentrations with less alkalinity added and influent pH values of (3-5), 

effluent alkalinity remained normal (4880 mg/L CaCO3). This phenomenon was later 

explained by Khanal (2009) as in situ alkalinity generation. When protein present in thin 

stillage is hydrolyzed, it gives rise to an organic acid and ammonia; the ammonia then 

reacts with CO2 to form ammonium bicarbonate, which acts as buffer.  

Changes in the corn ethanol process that have improved the biodegradability of thin 

stillage and advances in anaerobic technology have renewed interest in the digestion of 

thin stillage. A 2008 study by Schaefer and Sung achieved steady-state thermophilic 

digestion of undiluted thin stillage at hydraulic retention times (HRT) of 30, 20, and 15 

days using continuously stirred tank reactors (CSTR). The study indicated that by using 

biogas generated in digestion a typical 100 million gallon/year ethanol plant could reduce 

natural gas consumption by 43 – 59%, saving around $10 million/year in energy costs 

(Schaefer, Sung, 2008). Another 2008 study reported stable thermophilic digestion at a 

10 day HRT using anaerobic sequencing batch reactors (ASBR). The average total 

chemical oxygen demand (TCOD) reduction was 92.2% and a 51% reduction in natural 

gas requirements was predicted for a 100 million gallon/year ethanol plant. Cobalt 

supplementation was found to be necessary, however, for prolonged digestion (Agler et 

al. 2008). In 2012, Andalib et al. advanced the state of the art by successfully digesting 
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undiluted thin stillage with an HRT of 3.5 days and an organic loading rate of 29 kg 

COD/m3 day while reducing TCOD by as much as 88%. At steady state, this equated to 

the production of 40 L CH4/ L thin stillage. In order to achieve these results a high rate 

anaerobic fluidized bed reactor (AFBR) was utilized under mesophilic conditions.  

Most studies mentioned the potential benefits to the ethanol industry of recycling digester 

effluent as process water for fermentation, but little research has been done to support 

this hypothesis. One report analyzed thin stillage digester effluent with HPLC, observing 

that compounds known to inhibit yeast fermentation were either not present or at low 

enough levels not to inhibit fermentation, but no actual fermentation trials were 

performed (Alkan-Ozkaynak & Karthikeyan, 2011). Regardless of the potential energy or 

water consumption benefits, anaerobic digestion of thin stillage has not been broadly 

adopted. 

1.2.4 Thermal Hydrolysis 

 Thermal hydrolysis pretreatment, similar to hydrothermal carbonization, has been 

shown to improve anaerobic digestion. Thermal hydrolysis pretreatment improves 

digestion by increasing the rate of hydrolysis, which can be the rate-limiting step in the 

anaerobic digestion of complex organic matter, and by increasing the total amount of 

organic matter solubilized (Li, Noike, 1992). Both thermal hydrolysis and HTC employ 

temperature and autogenous pressure in the presence of water. Optimum temperatures for 

thermal hydrolysis are between 160 – 180°C (Wilson Novak, 2009), which just borders 

HTC conditions. Above pretreatment temperatures of 180°C, biodegradability has been 

shown to drop due to the production of recalcitrant Maillard compounds (Bougrier, 
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Delgenès, Carrère, 2008). The extent of this drop in biodegradation is not well 

understood, and merits further investigation, especially for substrates outside of 

wastewater sludge.  

1.3 Summary and Research Needs 

 Hydrothermal Carbonization is a technology uniquely suited for treating high moisture 

content biomass or waste. Little attention, however, has been paid to the aqueous 

products created. Coupling hydrothermal carbonization with anaerobic digestion is a 

novel research area that offers an advantageous way to generate beneficial products but it 

is untested in practice. With respect to HTC, designed experiments varying reaction 

conditions must be conducted on specific substrates of interest to accurately determine 

product yields, elemental distribution within those products, and effects on downstream 

processing. Thermal hydrolysis pretreatment research has provided some insight as to 

what might be expected upon the HTC of other wastes but the effect of production and 

separation of hydrochar on digestion is largely unknown.  

Part II. Research Paper 

Introduction 

Corn ethanol production in the U.S. has risen steadily, reaching 13.9 billion 

gallons in 2011 and rapidly approaching the amount mandated by the Energy 

Independence and Security Act (15 billion gallons by 2015). Use of corn in the 

production of ethanol has been controversial for a number of reasons, including energy 

and water consumption. Substantial improvements, however, have been achieved with 

the dry-grind ethanol process, which represents more than 80% of total US production 
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capacity (http://www.afdc.energy.gov/fuels/ethanol_production.html). Currently, net 

energy ratios, or energy output/energy input, of 1.61-1.64  have been reported (Liska et 

al., 2009), and water use has decreased to 3-4 gallons of water per gallon of ethanol 

produced (Aden, 2007). Nevertheless, further reductions in energy and water use should 

be possible through alternative downstream processing. 

When fermentation has finished and ethanol has been removed by distillation, the 

residue material is known as whole stillage. Whole stillage (WS) is centrifuged to 

generate thin stillage (TS) as the centrate and wet distillers grains as the centrifugate. 

Thin stillage has a high moisture content (>90%) and only a portion of it, 10-50% (Liu & 

Rosentrater, 2012), can be added back into fermentation as backset due to the buildup and 

subsequent toxicity of low molecular weight organic compounds, inorganic salts, and 

solids (Jacques K et al., 1999; Alkan-Ozkaynak & Karthikeyan, 2011). The remainder of 

thin stillage can be evaporated to obtain condensed distillers solubles, which is generally 

re-combined with wet distillers grains, dried to a moisture content of <10%, and sold as 

dried distillers grains with solubles (DDGS), a shelf-stable animal feed and an important 

co-product for the industry. Energy intensive evaporation and drying of these 

intermediate products has been estimated to account for 40-45% of the thermal energy 

and 30-40% of the electrical energy required in the dry grind ethanol production process 

(Meredith, 2003).  

Hydrothermal carbonization (HTC) is a thermochemical process that is especially 

well-suited for high moisture content biomass materials. Biomass is heated in water in a 

confined system at subcritical temperatures of generally < 250 oC. Two products are 
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created that are separated by filtration: a hydrochar and an aqueous filtrate containing 

dissolved products. The vast majority of water is removed from the system by filtration 

and not by high energy evaporation; therefore, net energy output is generally positive. 

Our recent efforts (Heilmann et al., 2011a) examining HTC of DDGS generated 

hydrochars with fuel value and other uses, as well as nutrient-rich aqueous filtrate 

streams. Carbohydrates and proteins were shown to be involved in the chemical 

formation of the hydrochar, while lipids were hydrolyzed to fatty acids that sorbed to the 

hydrochar. These fatty acids could be readily extracted from the hydrochar for 

subsequent use (Heilmann et al., 2011b). Despite these previous results, a lack of 

predictably exists in HTC reactions due to the complexity of substrates and chemistry. 

This makes extrapolation to other substrates, even seemingly analogous ones, difficult.  

Anaerobic digestion could improve the overall energetics of ethanol 

manufacturing by displacing a portion of natural gas with biogas and reducing water 

consumption by allowing recycle back into fermentation. Efficient digestion of undiluted 

thin stillage has been achieved by others (Schaefer & Sung, 2008; Agler et al., 2008; 

Andalib et al., 2012), with a hydraulic retention time (HRT) as brief as 3.5 days (Andalib 

et al., 2012). Furthermore, substitution of biogas could provide a 43-59% reduction in the 

natural gas requirement for an ethanol plant. It has also been suggested that the effluent 

from digested thin stillage could be employed as backset without disrupting ethanol 

production (Alkan-Ozkaynak & Karthikeyan, 2011). Because thin stillage contains 

diverse nutrients and minerals, only trace cobalt supplementation is likely to be required 
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for long term digestion (Agler et al., 2008). Despite potential benefits, anaerobic 

digestion of stillage intermediates has failed to gain traction in the industry.  

Integration of HTC and anaerobic digestion could allow for the generation of new 

products (hydrochar and fatty acids), while anaerobic digestion of the hydrochar filtrate 

stream could provide biogas and decreased water use. Even so, as determined by 

investigations of the thermal hydrolysis of wastewater sludge (Bougrier et al., 2008), 

treatment with temperatures above 190 °C decreased the subsequent digestibility due to  

formation of Maillard compounds. The extent of this decrease in biodegradability is 

largely unknown with thermal hydrolysis temperatures above 210 °C, especially for 

substrates other than wastewater sludge. Additionally, when wastewater sludge 

undergoes thermal hydrolysis, the entire stream is subjected to digestion, and thus it 

remains unclear what the effect of generating and removing the solid hydrochar product 

will have on digestion. 

The overall objective of this research was to determine if HTC and anaerobic 

digestion could be effectively integrated into the dry-grind corn ethanol process to 

provide hydrochar, fatty acids, biogas, and treated process water. Two separate scenarios 

are proposed (Figure 1b and Figure 1c) compared to the conventional dry-grind process 

(Figure 1a). The use of whole stillage for an HTC feed stream has the advantage of 

completely eliminating the need for centrifugation and evaporation; no animal feed 

product would remain, however. Compared to conventional processes, the use of thin 

stillage as an HTC feed stream eliminates evaporation and minimizes drying, while 

continuing to produce an animal feed product (DDG). Because the current market for 
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animal feed is strong, more emphasis was placed on the utilization of thin stillage. For 

this study, the specific objectives included: 1) establish alternative downstream 

processing methods for stillage intermediates that are less energy intensive, 2) determine 

if water consumption can be reduced by recycling more process water following HTC or 

anaerobic digestion, and 3) generate additional co-product options.  

 

 

 

Materials and Methods 

Hydrothermal Carbonization Procedure 

Figure 1. (A) Simplified schematic of a conventional dry-grind corn ethanol plant. (B) Whole stillage 
scenario wherein centrifugation, evaporation, and a majority of drying is eliminated. (C) Thin Stillage 
scenario wherein evaporation is eliminated and dry distillers grain can continue to be utilized as an animal 
feed. 
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Procedures for HTC of both whole stillage and thin stillage were the same, with 

the exception of cooling temperature. Samples of authentic whole stillage and thin 

stillage were obtained from Al-Corn Clean Fuels (Claremont, MN). All reactions were 

conducted in a 450 mL stirred stainless steel reactor available from Parr Instruments, Inc. 

(Moline, IL).  Heating was applied using an inductive heating system available from LC 

Miller, Co. (Monterey Park, CA). Thin or whole stillage were poured into the reactor, 

stirred at 88 rpm, and heated to 220 oC for 75 minutes. The pressure in the reactor after 

the reaction period was 2.34 MPa, and the apparatus was cooled using a fan. When the 

unit had cooled to at least 35 oC for thin stillage or 45°C for whole stillage, the reactor 

was disassembled, the contents were filtered, and the hydrochar was washed thoroughly 

with distilled water. The sterile filtrate was stored at 4°C, and moist hydrochar was 

freeze-dried to obtain dry hydrochar. Extraction of fatty acids from the hydrochar was 

accomplished using methyl t-butyl ether (MTBE). The extracted hydrochar was dried 

overnight at room temperature at 40 oC followed by additional drying at < 1 Torr. MTBE 

was removed from the extract using a rotary evaporator.   

Design of Experiments 

Reaction conditions examined with thin stillage were temperatures from 200 – 

240 oC, times from 0.5 – 2.0 h, and percent solids values from 5.3 – 9.1 (Table I). Whole 

stillage experiments were conducted with temperatures from 200 – 230 oC, times from 

0.5 – 2.0 h, and percent solids values from 10.0 – 14.0 (Table II). The three percent solids 

levels employed with thin stillage were obtained by atmospheric distillation of water 

from the as-received thin stillage (7.2% solids) until a percent solids level of 9.1% was 
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achieved.  The lowest concentration (5.3% solids) was obtained by dilution of the as-

received thin stillage with distilled water. In the course of conducting experiments with 

whole stillage and despite refrigerated storage, it was noted that percent solids values 

changed with time. Because of this, an additional sample of whole stillage was freeze-

dried, homogenized to a powder, and stored at -20 oC prior to use. This dry material was 

reconstituted to 10.0, 12.0, and 14.0% solids by the addition of distilled water and 

homogenization with a Waring blender.  

Hydrochar and Fatty Acid Analysis  

Elemental analyses, heats of combustion, and ash contents were determined by 

Huffman Laboratories, Inc. (Golden, CO).  Surface areas of hydrochars were determined 

by the Chemical Engineering Department, University of Minnesota. HPLC analyses of 

filtrates were conducted using an Agilent 1200 HPLC equipped with an Aminex-87H 

column (300 mm x 7.8 mm) at 50 oC using an isocratic program of 5 mM sulfuric acid 

and a flow rate of 0.5 mL/min, with 1% sodium propionate as an internal standard. Total 

fat, fatty acid profiles, and percent triglyceride values were determined by Medallion 

Labs Inc. (Minneapolis, MN). 

Data Analysis 

Results from designed experiments were analyzed using JMP Pro 9 software, and 

the full statistical analysis is available in the appendix A.1. 

Substrate and Inoculum Characterization 

Prior to digestion experiments, the total solids for the inoculum (see below) was 

determined gravimetrically at 103° C, while total solids for thin stillage and HTC filtrates 



   21 

 

were determined via freeze-drying due to their low initial pH (Angelidaki et al., 2009). 

Volatile solids levels were determined gravimetrically at 550 °C. Total chemical oxygen 

demand (TCOD) values were determined using Hach COD Test Kits (ultra-high range, 

Hach Co., Loveland, CO) according to the procedure of Jirka and Carter (1975). Samples 

were not blended prior to COD testing as a result of foaming. pH was measured before 

and after batch experiments using a Thermo Orion 330 pH meter. Alkalinity of substrates 

was determined by the Soil Sciences Analytical Laboratory at the University of 

Minnesota. 

Anaerobic Digestion Experiments 

Biochemical Methane Potential (BMP) assays were used as a test of 

biodegradability of the HTC filtrate streams and the initial thin stillage, according to the 

procedure of Owen et al. (1979). No additional nutrients or buffers were added, however. 

Three dilutions, 35%, 65%, and 100%, of untreated thin stillage and HTC filtrate (also 

called substrate below) were examined in triplicate. Triplicate controls consisted of 

inoculum only or 100% HTC filtrate without an inoculum added. An inoculum-to-

substrate ratio of 7:3 was employed in all experiments. Inoculum was removed from 

source reactors (description in A.2) anaerobically and allowed to degas for two days prior 

to use. Serum bottles (160 mL) were filled with 21 mL of inoculum and fed 9 mL of 

substrate. Millipore water was utilized in lieu of inoculum or the substrate in the two 

controls. Immediately after inoculation, bottles were purged with N2 for two minutes, 

sealed with butyl rubber stoppers, and allowed to equilibrate at the incubation 

temperature (37 °C) for one hour before being degassed to initiate the experiment. The 
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BMP assays were performed at 37 °C while mechanically shaken at 90 rpm. Biogas 

production and methane production were measured once a day for the first 8 days and 

another 7 times in the following 21 days (total experimental period of 30 days). Biogas 

production was measured by the volumetric displacement of the barrel of a wetted glass 

syringe. Biogas was subsequently exhausted from the assays to re-establish atmospheric 

pressure. The methane content of the biogas was measured via GC (see A.3) immediately 

after establishing atmospheric pressure in the bottles. After 30 days the bottles were 

opened and pH, total solids, volatile solids, and TCOD were measured. Details of the 

BMP analysis are given in A.4. 

Results 

HTC Experiments 

Hydrothermal carbonization and subsequent filtration of thin and whole stillage 

resulted in the production of solid carbonized hydrochars, sorbed fatty acids, and a filtrate 

stream (Tables I and II). The carbon content of thin stillage and whole stillage increased 

from 44.3% and 46% to center point averages of 63.9% and 65.15%, respectively. 

Unextracted hydrochars had high heats of combustion and lost ca. 13-15% on extraction, 

similar to what has been observed in the literature with DDGS as the HTC substrate 

(Heilmann et al., 2011a). Ash contents of hydrochars were reduced compared to starting 

stillages, and the ash of thin stillage hydrochar was about six times that of the whole 

stillage hydrochar. As with HTC of microalgae (Heilmann et. al., 2010) and DDGS 

(Heilmann et al., 2011a), phosphorus and nitrogen were primarily located in the filtrate 

streams.  
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Triglycerides present in thin and whole stillage were hydrolyzed and sorbed onto 

hydrochars as fatty acids (yields in Tables I and II). Total gravimetric fat values, percent 

triglyceride, and fatty acid contents measured by GC of digested freeze-dried thin stillage 

were 19.41%, 18.32%, and 17.52% and for whole stillage 14.81%, 13.42%, and 12.84%. 

Fatty acid components for both stillages were essentially the same, with palmitic (16:0), 

stearic (18:0), oleic (18:1), linoleic (18:2) and linolenic (18:3) acids comprising 14.5%, 

1.9 %, 25.3%, 55.0%, and 1.4% respectively, for a total of 98.1%. The weight-average 

molecular weight used for mass computations of fatty acids present in extracts was 276 

g/mole. HTC treatment had little effect on fatty acids in the system, as the fatty acid 

profile of the extract from the center point whole stillage hydrochar was essentially 

unchanged from the profile of starting whole stillage and contained the following fatty 

acids: 16:0, 13.9%; 18:0, 2.0%; 18:1, 25.6%; 18:2, 51.5%; and 18:3, 1.2% (97.0% of the 

fatty acids present). 

Batch Anaerobic Digestion 

Table III. Initial characteristics of inoculum and substrates 

  Total Solids  Volatile Solids pH Alkalinity           
  % w/w % w/w   mg CaCO3/L 

Thin Stillage 5.72 ± 0.003 4.99 ± 0.02 4.71 0 
HTC Filtrate 4.02 ± 0.02 3.36 ± 0.01 4.82 0 
Inoculum 3.47 ± 0.02 2.30 ± 0.02 8.16 9803.3 

 

Biochemical methane potential (BMP) assays established that undiluted HTC 

filtrate generated from thin stillage at 220°C could readily be digested. Substrate and 

inoculum characterization determined that HTC processing reduced total solids and 

TCOD of thin stillage by ca. 30% and 45%, respectively, while maintaining a volatile 
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solid to total solid ratio of 0.84 compared to 0.87 for thin stillage (Table III). Specific 

methane production, corrected at STP, from all the BMP assays is shown in Figure 2. 

Total inoculum methane production was low (18.5 mL at STP), which was subtracted 

from the values presented in Figure 2. Unaltered methane production data are given in 

A.5. Initially, none of the treatments appeared to go through an acclimation or lag phase 

prior to methane production. From Day 7 to Day 12, however, there was a notable lag in 

methane production in the 100% HTC treatment, with two of the three reactors producing 

methane at reduced rates and with increased standard deviations. All of the dilutions of 

either the thin stillage or HTC filtrate treatments (35%, 65%, and 100%) produced 

essentially the same quantity of total methane per gram of initial COD, indicating that the 

undiluted samples were not toxic. 

 

Furthermore, thin stillage and the HTC filtrates, again at all dilutions, proved to be highly 

biodegradable, as evidenced by greater than 90% reductions in total COD over the 

incubation period (Table IV).  
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Table IV. Total Chemical Oxygen Demand 

Treatment Initial mg/L Final mg/La % Removal 

35% HTC* 17547  ± 970 1600 ± 927 91 ± 5 
65% HTC* 32587  ± 970 2500 ± 894  92 ± 3 
100% HTC 50133  ± 970 4367 ± 702 91 ± 1 
        
35% TS* 31181 ± 484 1300 ± 707 96 ± 2 
65% TS* 57908 ± 484 1933 ± 976 97 ± 2 
100% TS 89089 ± 484 4633 ± 1978 95 ± 2 
        
Negative control* 15040 ± 970 13167 ± 115 12 ± 6 
Inoculum control* 24795 ± 342 20100 ± 436 19 ± 2 
* Initial COD values calculated using dilution factor  
a Values calculated by subtracting inoculum control   

 

In addition, 91% and 83% of the initial COD was converted into methane for the 100% 

thin stillage and 100% HTC filtrate samples, respectively (Figure 3). Multiple 

comparisons using a studentized range (α = 0.05) demonstrated that there were 

statistically significant differences between the HTC filtrates and the corresponding 

untreated thin stillage samples with respect to the percent of initial COD converted to 

methane (Figure 3). 
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Discussion  
 
Energy Analysis 

Energy analysis was conducted by comparing the requirements for HTC versus 

those of conventional downstream processing to generate a shelf stable product, defined 

as 90% solids. Conventional energy input values were obtained from a literature report 

(Rausch & Ronald, 2006), whereas HTC energy input values were computed from an 

enthalpy balance. A detailed set of assumptions and computations are available in A.6 

and A.7. The results showed that HTC processing would reduce energy consumption by 

73% for thin stillage and 65% for whole stillage compared to conventional downstream 

processing operations. For the thin stillage scenario, the preliminary evaluation of 

methane production rates indicated that the anaerobic digestion of HTC filtrate could 
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provide all of the energy needed to fuel the HTC process and displace additional natural 

gas requirements.  

Interestingly, initial rate constants of methane production were lowered by HTC 

processing at 220°C. Over the initial linear phase (5 days) of methane production, HTC 

filtrate had an initial rate constant of 38.00 mL CH4 gVS-1d-1 while thin stillage with a 

corresponding initial COD value had an initial rate of 44.66 mL CH4 gVS-1d-1 at STP 

(Thin stillage initial rate constant was calculated by using a polynomial fit model S.4). 

Consequently, HTC treatment generated organic compounds that were more difficult to 

degrade relative to initial compounds present in thin stillage. Thin stillage was readily 

digestible without pretreatment because it had undergone enzymatic hydrolysis prior to 

fermentation and contained acetic acid which provided acetate, the primary carbon and 

energy source for methanogenesis. Other pretreatment methods such as sonication 

offered little or no benefit to thin stillage digestion (Schaefer & Sung, 2008). In an effort 

to improve the rate of methane production, thermophilic digestion could be investigated 

since metabolic rates of methanogens can double (Khanal, 2009), and in this instance 

there would be no need to heat the influent HTC stream. 

HTC Process Water Backset 

Recycle of process water could occur with the filtrate directly after HTC or after 

anaerobic digestion of the filtrate. The choice of direct recycle versus digestion followed 

by recycle depends on a number of factors. Lactic acid, acetic acid and glycerol will be 

present in HTC filtrate streams and may negatively impact both the growth of yeast and 

the fermentation process. Indeed, the growth of yeast in fermentation can be inhibited 
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when lactic acid, acetic acid, and glycerol levels are present in excess of 0.80%, 0.05%, 

and 1.0%, respectively (Jacques K et al., 1999). In our experiments, lactic acid 

concentrations were well below the 0.80% limit, ranging from 0.16-0.23% with whole 

stillage and 0.18-0.32% with thin stillage. Acetic acid levels, however, exceeded 0.05% 

in some cases, with the whole stillage samples ranging from 0.07-1.0% and the thin 

stillage samples ranging from 0.02-0.07%. As anticipated, glycerol levels were high as a 

result of extensive hydrolysis of triacylglycerides, ranging from 0.84-1.03% with whole 

stillage samples and 0.96-1.50% with thin stillage samples. From this analysis there 

would seem to be little benefit in recycling HTC filtrates directly. After anaerobic 

digestion, however, it is likely that the filtrate will contain few if any of these compounds 

(Alkan-Ozkaynak & Karthikeyan, 2011) and may be effectively recycled. The possibility 

does exist that Maillard compounds or other inhibitory by-products may be formed in the 

HTC process as well; this could also cause toxicity in direct recycle applications and 

possibly in the recycle of digested filtrates as well. This requires additional research. 

Hydrochar and HTC Mechanism 

The mechanism of carbonization with thin stillage was explored via the 

construction of a Van Krevelen diagram (Van Krevelen, 1950) in which changes in H/C 

and O/C ratios are plotted for starting biomass and coalified products. With this 

technique, a slope of 2 indicates a dehydration process, while slopes < 2 provide evidence 

for decarboxylation. When the H/C versus O/C ratios were plotted for starting thin 

stillage and thin stillage derived hydrochars obtained at the various reaction conditions 

(data in Table I), all of the hydrochars were located within a relatively tight cluster and 
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the slope of the line (R2 = 0.98) between the starting thin stillage and the center of the 

cluster was 2.09, indicating that dehydration was the principal carbonization process 

occurring under the reaction conditions. Interestingly, decarboxylation was the principal 

mechanistic pathway identified in a related study of HTC of anaerobically digested maize 

silage (Mumme et.al, 2011). A slope of 0.90 supported the authors’ conclusion that 

substantial decarboxylation had occurred with that substrate during carbonization. 

Hydrochar having a significantly decreased O/C ratio relative to starting biomass 

can be utilized as a carbon-neutral fuel having a coal-like high heating value. Low 

extracted yields and relatively high nitrogen contents (Tables I and II), however, 

suggested that other applications may be more suitable. As with other hydrochars (Chen 

et al., 2011), the BET surface area of the thin stillage center point hydrochar was quite 

low (2.2 m2/g). In addition, virtually all of the hydrochars generated in this research 

possessed high nitrogen contents, especially one thin stillage hydrochar with N = 9.3% 

(Table I), derived from proteins, peptide fragments, and amino acids that participated in 

hydrochar formation by denaturation and precipitation (Heilmann et al., 2011a) and 

Maillard reactions (Zerong, 2010). In addition to carboxylic acid groups that are 

commonly present on hydrochar surfaces (Chen et al., 2011), a significant quantity of this 

nitrogen content may be present as basic amine groups on the surface of hydrochars, The 

presence of both  acidic and basic functional groups could provide for mixed bed ion 

exchange behaviors and unexpected utility for these materials.  Future research is needed 

to explore this and other options for hydrochar use. 
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Other Products 

HTC processing did not appreciably alter the composition of fatty acids present in 

either whole or thin stillage; notably, even the polyunsaturated acid, linoleic acid, 

underwent only a 1% change in concentration. Similar low conversions of fatty acids 

under HTC conditions have been reported (Wilson & Novak, 2009). Fatty acid yields, 

however, were markedly different with the two stillages. Thin stillage gave lower yields 

of fatty acids compared to whole stillage, which was largely attributed to the relatively 

small quantities of hydrochar formed from the thin stillage. Because hydrochar sorbs the 

fatty acids, hydrochar yields of only 4.2 – 7.1% for the thin stillage compared to 15.5 – 

20.8% for the whole stillage were believed to be partially responsible. This was 

apparently not the only explanation, however, as reproducibility of fatty acid yields in the 

replicate thin stillage center point experiments was poor, i.e., 47-59%, despite having the 

same quantity of sorbing hydrochars produced in all three experiments. This suggested 

that the reaction workup procedure may have been a factor, and variations in the cool-

down procedure, e.g., time and final temperature achieved, may have played roles in the 

fatty acid yield. It was determined that a final product mixture temperature of 45 oC 

provided an optimum fatty acid yield of 68% for thin stillage center point conditions. 

This modification was applied in the workup of the whole stillage materials in Table II, 

resulting in equivalent fatty acid yields in the four replicate center point experiments. A 

possible explanation of this phenomenon was that a ripening process may have occurred 

upon hydrochar cooling, involving both the sorption and desorption of fatty acids from 

the hydrochars. At temperatures below 45 oC, possible formation of relatively stable 
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micelles of fatty acids in the aqueous suspending medium may have competed with the 

collection of fatty acids on the hydrochars, causing a decrease in fatty acid yields.  

Corn oil from thin stillage or condensed distillers solubles has become a valuable 

co-product in the dry grind ethanol industry. One of the more prevalent technologies to 

remove the oil from condensed distillers solubles is centrifugation, with typical oil yields 

of ca. 30% (private communication from Randall Doyal of Al-Corn Clean Fuels). By 

contrast, fatty acids extracted from thin stillage and whole stillage hydrochars were 

obtained in 68% and 90% yields, respectively. These fatty acids can be converted directly 

into biodiesel or other liquid transportation fuels, providing yet another benefit of the 

HTC process.  

 The practicality of either HTC scenario depends to a considerable extent on the 

animal feed market. With HTC of thin stillage, an animal feed, DDG, is produced that is 

equivalent to or may actually exceed DDGS in feed quality as a result of its higher 

protein and lower lipid content (Dahlen et al., 2011).  

Linear Regression analysis 

The orthogonal design of these experiments facilitated a linear regression analysis 

that identified the significance of time, temperature, and concentration (percent solids) 

input variables on specific outputs.  Equations with an R2 of at least 0.95 are shown in 

Table V (full statistical analysis A.1).  
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Table V. Linear regression equations having R2 values > 0.95 that were obtained from designed stillage 
experiments of Tables I and II. 
             
Thin Stillage Equations a: 
 
Extracted Hydrochar % Yield: Y = 5.89 – 0.24 X1 + 0.42 X2 + 1.14 X3 – 0.37 X4  
 
Extracted Hydrochar % Nitrogen: Y = 6.56 – 1.38X1– 0.98X2  
             
Whole Stillage Equations b: 
 
Extracted Hydrochar % Yield:  Y = 17.76 – 1.43X1 – 0.33X2 + 0.80X3 – 0.17X5 

 
Fatty Acid % Yield: Y = 89.61 + 3.36X1 + 7.10X2 + 1.92X3– 1.07X6  
             
 
X1 = temperature, X2 = time, X3 = solids, X4 = temperature*time, X5 = temperature*solids, X6 = 
time*solids 
a,b = All variables have dimensionless units 
 

Thin stillage hydrochar yields decreased with temperature and temperature*time 

interaction, but increased with time and concentration. Similarly, whole stillage 

hydrochar yield decreased with temperature and temperature*concentration interaction, 

and increased with concentration. Whole stillage hydrochar yield, however, decreased 

with time. With both whole stillage and thin stillage, increased yields were obtained at 

higher solids input.  Although this value could be controlled to some extent for whole 

stillage by distillation conditions and for thin stillage by centrifuge conditions, it is 

impractical for manufacturers to attempt to control solids input substantially. The 

equation for percent nitrogen in the thin stillage hydrochar indicated that percent solids 

had no significant effect, while temperature and time had large negative effects. Whole 

stillage fatty acid yields were maximized by increasing temperature and time. Overall, 

lower temperatures and retention times are favored for continuous processing because 

they reduce the size and the pressure rating of the equipment required. 
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Conclusion 

Hydrothermal carbonization and subsequent anaerobic digestion of stillage 

intermediates can be successfully combined to generate biogas, treated process water, 

hydrochar, and fatty acids. The first objective of this study was to improve the overall 

energy balance of dry-grind corn ethanol production by modifying downstream 

processing of stillage intermediates. Eliminating the need for evaporation and some of the 

drying considerably reduced operational energy use; furthermore, on-site production of 

biogas would reduce natural gas requirements. Reducing water consumption was the 

second objective, and HPLC analysis indicated that HTC filtrates would require treatment 

in order to increase backset. Anaerobic digestion of the filtrate consumed greater than 

90% of the TCOD and converted more than 80% of that initial COD to methane. A final 

objective was to develop options with respect to new or improved co-products. Thin 

stillage fatty acid yields of 68% are a marked improved compared to the current industry 

average of 30%. Using thin stillage in such an HTC process would also provide an animal 

feed product higher in protein and lower in fat than DDGS. Hydrochar was shown to 

have a good fuel value, but due to surface functionality may be better suited for higher-

value applications such as a mixed bed ion exchange material. In closing, although a 

more detailed techno-economic analysis is necessary to determine the economic viability 

of the proposed model, this process appears promising for increasing the sustainability of 

the dry-grind corn ethanol industry. 

Part III. Recommendations 

3.1 Hydrothermal Carbonization 
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3.1.1 Optimal Reaction Conditions and Products 

 HTC reaction conditions dictate composition and thus function of the resulting 

hydrochar and aqueous product stream. Linear regression equations generated from the 

full factorial experiments are useful tools that can optimize reaction conditions, within 

the design parameters, to maximize beneficial characteristics and yields. Currently, there 

exists a level of uncertainty about the desired characteristics of hydrochar because the 

final application of the material remains unidentified. Until the most suitable application 

is determined, it seems logical to conduct reactions at or near the lowest temperatures 

evaluated for both thin and whole stillage as this will increase hydrochar yield and 

minimize recalcitrant compounds in the aqueous fraction. Reaction time is a variable that 

is less clearly defined, but it should be kept in mind that shorter reaction times benefit 

continuous or larger scale batch processing. Additionally, percent solids had a large effect 

on certain outputs; however, this factor cannot be easily manipulated and was included in 

designed experiments to represent normal fluctuations that appear in the ethanol industry. 

When HTC product applications are clear, an economic assessment will be needed in 

conjunction with linear regression equations to optimize product distributions based on 

market values.     

3.1.2 Future Research  

 Future research on HTC of stillage intermediates requires a focus on the utility of 

hydrochar, and the mechanism of triglyceride hydrolysis and sorption. Hydrochars 

generated from stillage intermediates must have high value due to relatively low yields; 

otherwise it becomes difficult to justify coupling HTC with anaerobic digestion instead of 
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anaerobic digestion independently. Nevertheless, there are a number of promising 

applications for stillage hydrochars such as a CO2 sorbent (Zhang et al., 2012) or as an 

electrode material for supercapacitors (Wei et al., 2011). Both of these applications 

require activation of the hydrochar to generate pore structure, and it seems increasingly 

likely that this will be a necessary step for high value applications. One property of 

stillage hydrochars that is beneficial in theory is the high nitrogen content. In the current 

study only gross nitrogen content was reported. To fully appreciate the material’s 

usefulness surface functional groups, including oxygen containing groups, need to be 

quantified. Another HTC research area that merits further investigation is the mechanism 

by which fatty acids are sorbed to hydrochar. Understanding this mechanism may help 

improve yields and further explain the cooling temperature phenomena observed at 45°C.  

3.2 Anaerobic Digestion  

3.2.1 Future Research 

  Anaerobic digestion of HTC filtrates is still a new area of research with many 

possibilities to explore. Although thermophilic digestion has the advantage of higher 

metabolic rates it is hindered by additional heating requirements. This is not the case with 

HTC filtrates. Even with heat exchanges, liquid products would leave the HTC system 

above 55°C, making thermophilic digestion a viable option. Biochemical Methane 

Potential (BMP) assays should be conducted with stillage filtrates at thermophilic 

conditions to determine methane production rates and any toxicity or inhibition effects. 

Once BMP assays are completed and compared, a decision can be made about the 

optimal temperature for larger scale digestion. With commercial application in mind, 
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moving to a high rate continuously fed system would be the next step in development. 

Since a short hydraulic retention time will be important to the ethanol industry, a high 

rate reaction design such as anaerobic fluidized bed reactor that can separate hydraulic 

retention time from solids retention time would be an appropriate choice. During the 

start-up phase microbes can be acclimated gradually, increasing the likelihood that 

recalcitrant compounds will be degraded. Another reason it is important to move to a 

continuously fed system is that representative digestate is essential for small scale 

fermentation trials. Fermentation trials will ascertain the amount of digestate that can be 

backset without effecting ethanol production. Many reports have suggested that 

digestates can be recycled to fermentation, but to my knowledge no experimental data has 

been published.  

3.3 Summary of Research Needs 

If HTC of whole or thin stillage is ever to be an industrially relevant process 

resulting hydrochars must have high value applications and subsequent anaerobic 

digestion of aqueous filtrates should produce recyclable or dischargeable process water 

instead of creating a new liquid waste stream. Thermally and or chemically activating 

hydrochar is a new and promising area of research for high value applications. In regards 

to digestion, high rate continuously fed reactor experiments are necessary to determine 

methane production rates and produce digestate for fermentation studies. Conducting 

larger scale anaerobic digestion research is the key to developing a sound energy and 

water balance for the overall process. In conclusion, the coupling of HTC and anaerobic 

digestion to treat downstream stillage intermediates has been proven as technically 
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feasible, but more investigation is required to decide if it is practical and economically 

beneficial.  

 



   40 

 

References 

Aden A. 2007. Water usage for current and future ethanol production. Southwest 

Hydrology (October):22–23. Retrieved from 

http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Water+Usage+

for+Current+and+Future+Ethanol+Production#0 

Agler MT, Garcia ML, Lee ES, Schlicher M, Angenent LT. 2008. Thermophilic 

anaerobic digestion to increase the net energy balance of corn grain ethanol. 

Environmental science & technology 42(17):6723–9. 

Alkan-Ozkaynak A, Karthikeyan KG. 2011. Anaerobic digestion of thin stillage for 

energy recovery and water reuse in corn-ethanol plants. Bioresource technology 

102(21):9891–6. doi:10.1016/j.biortech.2011.08.028 

Andalib M, Hafez H, Elbeshbishy E, Nakhla G, Zhu J. 2012. Treatment of thin stillage in 

a high-rate anaerobic fluidized bed bioreactor (AFBR). Bioresource Technology 

121C:411–418. doi:10.1016/j.biortech.2012.07.008 

Angelidaki I, Ahring B. 1994. Anaerobic thermophilic digestion of manure at different 

ammonia loads: Effect of temperature. Water Research 28(3):727–731. 

doi:10.1016/0043-1354(94)90153-8 

Angelidaki I, Sanders W. 2004. Assessment of the anaerobic biodegradability of 

macropollutants. Reviews in Environmental Science & Biotechnology 3(2):117–

129. doi:10.1007/s11157-004-2502-3 

Angelidaki I, Alves M, Bolzonella D, Borzacconi L, Campos JL, Guwy AJ, Kalyuzhnyi 

S, et al. 2009. Defining the biomethane potential (BMP) of solid organic wastes 



   41 

 

and energy crops: a proposed protocol for batch assays. Water science and 

technology : a journal of the International Association on Water Pollution 

Research 59(5):927–34. doi:10.2166/wst.2009.040 

Arora A, Dien BS, Belyea RL, Wang P, Singh V, Tumbleson ME, Rausch KD. 2011. 

Ultrafiltration of thin stillage from conventional and e-mill dry grind processes. 

Applied Biochemistry Biotechnology 164:58-67. 

Balat Mu, Balat Me, Kırtay E, Balat H. 2009. Main routes for the thermo-conversion of 

biomass into fuels and chemicals. Part 1: Pyrolysis systems. Energy Conversion 

and Management 50(12):3147–3157. doi:10.1016/j.enconman.2009.08.014 

Ben-Amotz A, Tornabene TG. 1985. Chemical profile of selected species of microalgae 

with emphasis on lipids. Journal of Phycology 21:72-81. 

Bergius F. 1932. Chemical Reactions Under High Pressure. Noble Lecture 

http://www.nobelprize.org/nobel_prizes/chemistry/laureates/1931/bergius-

lecture.pdf 

Bobleter O, Niesner R, Röhr M. 1976. The hydrothermal degradation of cellulosic matter 

to sugars and their fermentative conversion to protein. Journal of Applied 

Polymer Science 20:2083–2093. Retrieved from 

http://onlinelibrary.wiley.com/doi/10.1002/app.1976.070200805/abstract 

Bonn G, Concin R, Bobleter O. 1983. Hydrothermolysis - a new Process for the 

Utilization of Biomass, Wood Science Technology 17:195–202. 

Bougrier C, Delgenès JP, Carrère H. 2008. Effects of thermal treatments on five different 

waste activated sludge samples solubilisation, physical properties and anaerobic 



   42 

 

digestion. Chemical Engineering Journal 139(2):236–244. 

doi:10.1016/j.cej.2007.07.099 

Chen Y, Cheng JJ, Creamer KS. 2008. Inhibition of anaerobic digestion process: a 

review. Bioresource Technology 99(10):4044–64. 

doi:10.1016/j.biortech.2007.01.057 

Chen Z, Ma L, Li S, Geng J, Song Q, Liu J, Wang C, Wang H, Li J, Qin Z, Li S. 2011. 

Simple approach to carboxyl-rich materials through low-temperature heat 

treatment of hydrothermal carbon in air. Applied Surface Science 257:8686-8691. 

Dahlen RBA, Baidoo SK, Shurson GC, Anderson JE, Dahlen CR, Johnston LJ. 2011. 

Assessment of energy content of low-solubles corn distillers dried grains and 

effects on growth performance, carcass characteristics, and pork fat quality in 

growing-finishing pigs. Journal of Animal Science 89:3140-3152. 

Deng B, Xu AW, Chen GY, Song RQ, Chen L. 2006. Synthesis of copper-core/carbon-

sheath nanocables by a surfactant-assisted hydrothermal reduction/carbonization 

process. The Journal of Physical Chemistry B 110(24):11711–6. 

doi:10.1021/jp0603029 

Funke A, Ziegler F, Berlin TU. 2010. Hydrothermal carbonization of biomass : A 

summary and discussion of chemical mechanisms for process engineering.  

Biofuels Bioproducts & Biorefining 4:160–177. doi:10.1002/bbb 

Ganesan V, Rosentrater KA, Muthukumarappan K. 2006. Methodology to determine 

soluble content in dry grind ethanol coproduct streams. Applied Engineering in 

Agriculture 22:899-903. 



   43 

 

Garrote G, Dominguez H, Parajo J. 1999. Hydrothermal processing of lignocellulosic 

materials. Journal of Wood and Wood Products 57:191-202. Retrieved from 

http://www.springerlink.com/index/p9gcq0r3h809edbu.pdf 

Ghosh S, Ramsden S, LaPara T. 2009. The role of anaerobic digestion in controlling the 

release of tetracycline resistance genes and class 1 integrons from municipal 

wastewater treatment plants. Applied microbiology and Biotechnology 84:791–

796. doi:10.1007/s00253-009-2125-2 

Haas MJ. 2012. Extraction and use of DDGS lipids for biodiesel production. In: Liu K, 

Rosentrater KA, editors. Distillers Grains. New York: CRC Press. p. 495.  

Heilmann SM, Davis HT, Jader LR, Lefebvre PA, Sadowsky MJ, Schendel FJ, von Keitz 

MG, Valentas KJ. 2010. Hydrothermal carbonization of microalgae. Biomass and 

Bioenergy 34:375-882. doi:10.1016/j.biombioe.2010.01.032 

Heilmann SM, Jader LR, Sadowsky MJ, Schendel FJ, von Keitz MG, Valentas KJ. 

2011a. Hydrothermal carbonization of distiller’s grains. Biomass and 

Bioengineering 35:2526-2533.  doi:10.1016/j.biombioe.2011.02.022 

Heilmann SM, Jader LR, Harned LA, Sadowsky MJ, Schendel FJ, Lefebvre PA, von Keitz 

MG, Valentas KJ. 2011b. Hydrothermal carbonization of microalgae II. Fatty acid, 

char and algal nutrient products. Applied Energy 88:3286-3290. 

doi:10.1016/j.apenergy.2010.12.041 

Henze M, Harremos P. 1983. Anaerobic Treatment of Wastewater in Fixed Film Reactors 

- A Literature Review. Water Science & Technology 15(8-9):1–101. 



   44 

 

Huang XH, Tu JP, Zhang CQ, Chen XT, Yuan YF, Wu HM. 2007. Spherical NiO-C 

composite for anode material of lithium ion batteries. Electrochimica Acta 

52(12):4177–4181. doi:10.1016/j.electacta.2006.11.034 

Hörmeyer H, Tailliez P, Millet J. 1988. Ethanol production by Clostridium thermocellum 

grown on hydrothermally and organosolv-pretreated lignocellulosic materials. 

Applied microbiology and Biotechnology 29:528–535. Retrieved from 

http://www.springerlink.com/index/r5j6114468254378.pdf 

Jacques K, Lyons TP, Kelsall DR. 1999. The Alcohol Textbook. 3rd edition, Nottingham 

University Press: Nottingham UK, p 62. 

Jirka AM, Carter MJ. Micro semiautomated analysis of surface and waste waters for 

chemical oxygen demand. 1975. Analytical Chemistry 47(8):1397-1402. 

Khanal SK. 2009. Anaerobic Biotechnology for Bioenergy Production. Iowa: Wiley-

Blackwell. 

Kim Y, Mosier NS, Hendrickson R, Ezeji T, Blaschek H, Dien B, Cotta M, Dale B, 

Ladisch MR. 2008. Composition of corn dry-grind ethanol by-products: DDGS, 

wet cake and thin stillage. Bioresource Technology 99:5165-5176.  

Kumar A, Jones DD, Hanna MA. 2009. Thermochemical Biomass Gasification: A 

Review of the Current Status of the Technology. Energies 2(3):556–581. 

doi:10.3390/en20300556 

Lettinga G, Rebac S, Zeeman G. 2001. Challenge of psychrophilic anaerobic wastewater 

treatment. Trends in biotechnology 19(9):363–70. Retrieved from 

http://www.ncbi.nlm.nih.gov/pubmed/11514000 



   45 

 

Li Y, Noike T. 1992. Upgrading of anaerobic digestion of waste activated sludge by 

thermal pretreatment. Water Science & Technology 26(34):857–866. Retrieved 

from http://www.iwaponline.com/wst/02603/wst026030857.htm 

Libra JA, Ro KS, Kammann C, Funke A, Berge ND, Neubauer Y, Titirici MM, et al. 

2011. Hydrothermal carbonization of biomass residuals: a comparative review of 

the chemistry, processes and applications of wet and dry pyrolysis. Biofuels 

2(1):71–106. doi:10.4155/bfs.10.81 

Lifshitz L, Slyozov VV. 1961. The kinetics of precipitation from supersaturated solid 

solutions. Journal of Physical Chemistry Solids 19:35-50. 

Liska AJ, Yang HS, Bremer VR, Klopfenstein TJ, Walters DT, Erickson GE, Cassman 

KG. 2009. Improvements in Life Cycle Energy Efficiency and Greenhouse Gas 

Emissions of Corn-Ethanol. Journal of Industrial Ecology 13(1):58–74. 

doi:10.1111/j.1530-9290.2008.00105.x 

Liu K, Rosentrater KA. 2012. Distillers Grains: Production, Properties, and Utilization. 

Florida: Taylor and Francis Group. p 82. 

Mackie RI, Bryant MP. 1981. Metabolic Activity of Fatty Acid-Oxidizing Bacteria and 

the Contribution of Acetate , to Methanogenesis in Cattle Waste at 40 and 60 ° C 

Metabolic Activity of Fatty Acid-Oxidizing Bacteria and the Contribution of 

Acetate , Propionate , Butyrate , and CO2. Applied and Environmental 

Microbiology. 41(6):1363–1373. 



   46 

 

Meredith J. 2003. Understanding energy use and energy users in contemporary ethanol 

plants. The Alcohol Textbook, 4th ed, eds. Jacques KA, Lyons TP, Kelsall DR, 

Nottingham, UK: Nottingham University Press, p 355-361. 

Mi Y, Hu W, Dan Y, Liu Y. 2008. Synthesis of carbon micro-spheres by a glucose 

hydrothermal method. Materials Letters 62(8-9):1194–1196. 

doi:10.1016/j.matlet.2007.08.011 

Mumme J, Eckervogt L, Pielert J, Diakité M, Rupp F, Kern J. 2011. Hydrothermal 

carbonization of anaerobically digested maize silage. Bioresource technology 

102(19):9255–60. doi:10.1016/j.biortech.2011.06.099 

Owen WF, Stuckey DC, Healy JB, Young LY, McCarty PL. 1979. Bioassay for 

monitoring biochemical methane potential and anaerobic toxicity. Water Research 

13(6):485–492. doi:10.1016/0043-1354(79)90043-5 

Perlack R, Wright L, Turhollow A. 2005. Biomass as feedstock for a bioenergy and 

bioproducts industry: the technical feasibility of a billion-ton annual supply. 

Retrieved from 

http://onlinelibrary.wiley.com/doi/10.1002/cbdv.200490137/abstract 

Rausch KD, Ronald BL. 2006. The future of coproducts from corn processing. Applied 

Biochemistry & Biotechnology 128:47-86. 

Schaefer SH, Sung S. 2008. Retooling the Ethanol Industry: Thermophilic Anaerobic 

Digestion of Thin Stillage for Methane Production and Pollution Prevention. 

Water Environment Research 80(2):101–108. doi:10.2175/106143007X212157 



   47 

 

Schuhmacher J, Huntjens F, Van Krevelen K. 1960. Chemical Structure and Properties of 

Coal XXVI - Studies on Artificial Coalification. Fuel 39(3):223–234. 

Sevilla M, Fuertes AB. 2009. Chemical and structural properties of carbonaceous 

products obtained by hydrothermal carbonization of saccharides. Chemistry 

(Weinheim an der Bergstrasse, Germany) 15(16):4195–203. 

doi:10.1002/chem.200802097 

Smith SR, Lang NL, Cheung KHM, Spanoudaki K. 2005. Factors controlling pathogen 

destruction during anaerobic digestion of biowastes. Waste Management 25(4): 

417–425. doi:10.1016/j.wasman.2005.02.010 

Stover EL, Gomathinayagam G, Gonzalez R. 1983. Anaerobic Treatment of Fuel Alcohol 

Wastewater by Suspended Growth Activated Sludge. Proceeding of the 38th 

Industrial Waste Conference p. 95-104. Purdue University, West Lafayette, IN, 

USA. 

Sun X, Li Y. 2004. Colloidal carbon spheres and their core/shell structures with noble-

metal nanoparticles. Angewandte Chemie (International ed. in English) 

43(5):597–601. doi:10.1002/anie.200352386 

Tchobanoglous G, Burton F, Stensel D. 2003. Wastewater Engineering: Treatment and 

Reuse, 4th edition, McGraw-Hill Inc., New York, USA. 

Titirici MM, Antonietti M. 2010. Chemistry and materials options of sustainable carbon 

materials made by hydrothermal carbonization. Chemical Society reviews 

39(1):103–16. doi:10.1039/b819318p 



   48 

 

Titirici MM, Thomas A, Antonietti M. 2007. Back in the black: Hydrothermal 

carbonization of plant material as an efficient chemical process to treat the CO2 

problem? New Journal of Chemistry 31(6):787-789. doi:10.1039/b616045j 

Toor SS, Rosendahl L, Rudolf A. 2011. Hydrothermal liquefaction of biomass: A review 

of subcritical water technologies. Energy 36(5):2328–2342. 

doi:10.1016/j.energy.2011.03.013 

Van Krevelen DW. 1950. Graphical-statistical method for the study of structure and 

reaction processes of coal. Fuel 29:269-284. 

Wang L, Weller CL, Jones DD, Hanna MA. 2008. Contemporary issues in thermal 

gasification of biomass and its application to electricity and fuel production. 

Biomass and Bioenergy 32(7):573–581. doi:10.1016/j.biombioe.2007.12.007 

Wang Q, Li H, Chen L, Huang X. 2001. Monodispersed hard carbon spherules with 

uniform nanopores. Carbon, 39(February):2211–2214. Retrieved from 

http://www.sciencedirect.com/science/article/pii/S0008622301000409 

Wei L, Sevilla M, Fuertes AB, Mokaya R, Yushin G. 2011. Hydrothermal Carbonization 

of Abundant Renewable Natural Organic Chemicals for High-Performance 

Supercapacitor Electrodes. Advanced Energy Materials 1(3):356–361. 

doi:10.1002/aenm.201100019 

Wilson CA, Novak JT. 2009. Hydrolysis of macromolecular components of primary and 

secondary wastewater sludge by thermal hydrolytic pretreatment. Water Research 

43(18):4489–4498. doi:10.1016/j.watres.2009.07.022 



   49 

 

Yang H, Qian J, Chen Z. 2007. Multilayered nanocrystalline SnO2 hollow microspheres 

synthesized by chemically induced self-assembly in the hydrothermal 

environment. The Journal of Physical Chemistry C 111(38):14067–14071. 

Retrieved from http://pubs.acs.org/doi/abs/10.1021/jp074159a 

Zhang Z, Wang K, Atkinson JD, Yan X, Li X, Rood MJ, Yan Z. 2012. Sustainable and 

hierarchical porous Enteromorpha prolifera based carbon for CO2 capture. 

Journal of hazardous materials, 229-230:183–91. 

doi:10.1016/j.jhazmat.2012.05.094 

Zinder S. 1990. Conversion of acetic acid to methane by thermophiles. FEMS 

Microbiology Letters 75(2-3):125–137. 

 

 

 



   50 

 

Appendix 
 
A.1  
 
Thin Stillage Linear Equations: 
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P=0.0004 RSq=0.95 RMSE=0.3242

 
 
Summary of Fit 
    
RSquare 0.954504 
RSquare Adj 0.924173 
Root Mean Square Error 0.324192 
Mean of Response 5.886364 
Observations (or Sum Wgts) 11 
 
Analysis of Variance 
Source DF Sum of Squares Mean Square F Ratio 
Model 4 13.230050 3.30751 31.4699 
Error 6 0.630605 0.10510 Prob > F 
C. Total 10 13.860655  0.0004* 
 
Lack Of Fit 
Source DF Sum of Squares Mean Square F Ratio 
Lack Of Fit 4 0.63053788 0.157634 4729.034 
Pure Error 2 0.00006667 0.000033 Prob > F 
Total Error 6 0.63060455  0.0002* 
    Max RSq 
    1.0000 
 
Parameter Estimates 
Term   Estimate Std Error t Ratio Prob>|t| 
Intercept  5.8863636 0.097748 60.22 <.0001* 
Temperature (°C)(200,240)  -0.2375 0.114619 -2.07 0.0836 
Time (h)(0.5,2)  0.415 0.114619 3.62 0.0111* 
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Term   Estimate Std Error t Ratio Prob>|t| 
% Solids(5.3,9.1)  1.135 0.114619 9.90 <.0001* 
Temperature (°C)*Time (h)  -0.37 0.114619 -3.23 0.0180* 
 
 
Sorted Parameter Estimates 
Term   Estimate Std Error t Ratio t Ratio Prob>|t| 

% Solids(5.3,9.1)  1.135 0.114619 9.90  <.0001* 

Time (h)(0.5,2)  0.415 0.114619 3.62  0.0111* 

Temperature (°C)*Time (h)  -0.37 0.114619 -3.23  0.0180* 

Temperature (°C)(200,240)  -0.2375 0.114619 -2.07  0.0836 

 
 
Prediction Profiler 
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Response Extracted Hydrochar % Nitrogen 
Actual by Predicted Plot 
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Predicted P<.0001 RSq=0.98 RMSE=0.2349

 
 
Summary of Fit 
    
RSquare 0.981134 
RSquare Adj 0.976418 
Root Mean Square Error 0.234865 
Mean of Response 6.562727 
Observations (or Sum Wgts) 11 
 
Analysis of Variance 
Source DF Sum of Squares Mean Square F Ratio 
Model 2 22.949725 11.4749 208.0225 
Error 8 0.441293 0.0552 Prob > F 
C. Total 10 23.391018  <.0001* 
 
Lack Of Fit 
Source DF Sum of Squares Mean Square F Ratio 
Lack Of Fit 2 0.24037652 0.120188 3.5892 
Pure Error 6 0.20091667 0.033486 Prob > F 
Total Error 8 0.44129318  0.0944 
    Max RSq 
    0.9914 
 
Parameter Estimates 
Term   Estimate Std Error t Ratio Prob>|t| 
Intercept  6.5627273 0.070815 92.67 <.0001* 
Temperature (°C)(200,240)  -1.37875 0.083037 -16.60 <.0001* 
Time (h)(0.5,2)  -0.98375 0.083037 -11.85 <.0001* 
 
 
Sorted Parameter Estimates 
Term   Estimate Std Error t Ratio t Ratio Prob>|t| 

Temperature (°C)(200,240)  -1.37875 0.083037 -16.60  <.0001* 

Time (h)(0.5,2)  -0.98375 0.083037 -11.85  <.0001* 
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Prediction Profiler 
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Whole Stillage Linear Equations: 
 
Response Extracted Hydrochar % Yield 
Actual by Predicted Plot 
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P<.0001 RSq=0.99 RMSE=0.1838

 
 
Summary of Fit 
    
RSquare 0.989683 
RSquare Adj 0.983788 
Root Mean Square Error 0.183815 
Mean of Response 17.76333 
Observations (or Sum Wgts) 12 
 
Analysis of Variance 
Source DF Sum of Squares Mean Square F Ratio 
Model 4 22.688550 5.67214 167.8738 
Error 7 0.236517 0.03379 Prob > F 
C. Total 11 22.925067  <.0001* 
 
Lack Of Fit 
Source DF Sum of Squares Mean Square F Ratio 
Lack Of Fit 4 0.20504167 0.051260 4.8858 



   54 

 

Source DF Sum of Squares Mean Square F Ratio 
Pure Error 3 0.03147500 0.010492 Prob > F 
Total Error 7 0.23651667  0.1117 
    Max RSq 
    0.9986 
 
Parameter Estimates 
Term   Estimate Std Error t Ratio Prob>|t| 
Intercept  17.763333 0.053063 334.76 <.0001* 
Temperature(200,230)  -1.43125 0.064989 -22.02 <.0001* 
Time(0.5,2)  -0.33375 0.064989 -5.14 0.0013* 
% Solids(10,14)  0.80375 0.064989 12.37 <.0001* 
Temperature*% Solids  -0.17375 0.064989 -2.67 0.0318* 
 
 
 
Sorted Parameter Estimates 
Term   Estimate Std Error t Ratio t Ratio Prob>|t| 
Temperature(200,230)  -1.43125 0.064989 -22.02  <.0001* 
% Solids(10,14)  0.80375 0.064989 12.37  <.0001* 
Time(0.5,2)  -0.33375 0.064989 -5.14  0.0013* 
Temperature*% Solids  -0.17375 0.064989 -2.67  0.0318* 
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Response Fatty Acid % Yield 
Actual by Predicted Plot 
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P<.0001 RSq=0.98 RMSE=1.2916

 
 
Summary of Fit 
    
RSquare 0.978525 
RSquare Adj 0.966253 
Root Mean Square Error 1.291628 
Mean of Response 89.61667 
Observations (or Sum Wgts) 12 
 
Analysis of Variance 
Source DF Sum of Squares Mean Square F Ratio 
Model 4 532.11695 133.029 79.7393 
Error 7 11.67812 1.668 Prob > F 
C. Total 11 543.79507  <.0001* 
 
Lack Of Fit 
Source DF Sum of Squares Mean Square F Ratio 
Lack Of Fit 4 9.541242 2.38531 3.3488 
Pure Error 3 2.136875 0.71229 Prob > F 
Total Error 7 11.678117  0.1742 
    Max RSq 
    0.9961 
 
Parameter Estimates 
Term   Estimate Std Error t Ratio Prob>|t| 
Intercept  89.616667 0.372861 240.35 <.0001* 
Temperature(200,230)  3.36375 0.456659 7.37 0.0002* 
Time(0.5,2)  7.09625 0.456659 15.54 <.0001* 
% Solids(10,14)  1.92375 0.456659 4.21 0.0040* 
Time*% Solids  -1.06875 0.456659 -2.34 0.0518 
 
 
Sorted Parameter Estimates 
Term   Estimate Std Error t Ratio t Ratio Prob>|t| 

Time(0.5,2)  7.09625 0.456659 15.54  <.0001* 

Temperature(200,230)  3.36375 0.456659 7.37  0.0002* 
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Term   Estimate Std Error t Ratio t Ratio Prob>|t| 

% Solids(10,14)  1.92375 0.456659 4.21  0.0040* 
Time*% Solids  -1.06875 0.456659 -2.34  0.0518 
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A.2 
 
Source Reactor Operation and Configuration for Anaerobic Digestion  

Two, three liter source reactors were initiated to provide inoculum for batch experiments. 

Start-up consisted of mixing two liters of digester sludge from a mesophilic cow manure 

digester with one liter of fresh cow manure and purging with N2. Reactors were sealed 

with rubber stoppers and gastight valves for feeding and wasting. Magnetically stirred 

source reactors were operated semi-continuously at mesophilic conditions (37°C) with an 

HRT/SRT (solids retention time) of 45 days. Cow manure feed was screened (1mm 

mesh) in order to prevent obstruction of influent and effluent flows. 

 
 



   57 

 

A.3 
 
GC Method 
 
Gas chromatography was conducted using a 6890 Series Hewlett Packard GC with a 

molecular sieve 13x packed column (Model: HP 19096C-008). Operating conditions 

included: thermal conductivity detector temperature of 250 °C, helium carrier gas flow 

rate of 20.0 mL/min, and an oven temperature of 75 °C. Methane standards were used to 

produce standard curves for determining % methane of biogas.  

A.4 

Biochemical Methane Production (BMP) Analysis 

Methane production was computed after each sampling by multiplying the (volume of the 

bottle + volume of biogas removed) by the measured % methane and subtracting residual 

methane from the previous sampling point. Total methane production was calculated by 

converting these values to STP (0°C and 1 ATM) and adding them together. Final TCOD 

values used to calculate the measured COD reduction were determined by subtracting the 

TCOD of the inoculum control from TCOD values of all treatments in which inoculum 

was added. Percentages of initial COD degraded to methane were derived through 

multiplying the measured value of total methane at STP by the theoretical computation 

 (Khanal 2008). Initial rate constants (mL CH4/g VS Inoculum) were calculated 

from the initial linear portion of methane production (5 days) by linear regression 

analysis. In order to compare initial rate constants for TS and HTC filtrates on an equal 

COD basis, TS initial rates were plotted over COD and fitted with a second degree 

polynomial function. The polynomial function was solved for an initial COD value of 
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50133 mg/L corresponding to the 100% HTC value and allowed for direct comparison 

between the two. 

A.5  

Total Methane Production 
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A.6  

SEM Images 

 

 

 

 

Unextracted Thin Stillage 

Extracted Thin Stillage 
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Unextracted Whole Stillage 

Extracted Whole Stillage 
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A.7 

Comparing the energy consumed by conventional methods and HTC to produce a shelf 
stable product (shelf stable product is defined as 90% solids) 

 
Conventional Whole Stillage Processing 

 
Assumptions:  

• Thin Stillage (TS): 7% solids 

• Whole Stillage (WS): 14% soilds 

• Wet Distillers Grains (WDG): 35% solids 

• Condensed Distiller Solubles: 35% solids 

• Dried Distillers Grains and Solubles (DDGS): 90% solids  

• All Wet Distillers Grains are used to produce DDGS 

• 30% of the Thin Stillage is backset to the front end of the fermentation process 

• Centrifuge: 3 BTU/lbH2O [1] 

• Evaporator (triple effect): 559 BTU/lbH2O [1] 

• Rotary Dryer: 1500 BTU/lbH2O  

 

 
 
Material balance: WS = TS + WDG 
Solids balance: 0.14WS = 0.07TS + 0.35WDG  
Water balance: 0.86WS = 0.93TS + 0.65WDG 
 
TS = WS – WDG  
.14WS = .07(WS – WDG) + .35WDG 
.14(100 lb.) = .07(100 lb.) - .07WDG + .35WDG 
14 lb = 7 lb - .28WDG 
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7 lb = .28WDG 
WDG = 7 lb/.28 = 25 lb.  
TS = 100 lb. – 25 lb. = 75 lb.  
 
Energy consumed by centrifuge 
 

86 lbH2O in starting WS  = 258 BTU 

 
 
 

 
 
Material balance: TS = CDS + W 
Solids balance: 0.07TS = 0.35DS 
Water balance: 0.93TS = 0.65DS + W 
 
DS = .07TS/.35 
DS = .07(52.5 lb.)/.35 = 10.5 lb.  
W = .93(52.5 lb.) - .65(10.5 lb.) = 42 lb. 
 
Energy Consumed by Triple Effect Evaporator  
 

42 lbH2O   = 23478 BTU 
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Material balance: WDG + DS = MG 
Solids balance: 0.35WDG + 0.35DS = 0.35MG 
 
MG = WDG + DS  
MG = 25 lb. + 10.5 lb. = 35.5 lb.  
 

 
 
Material balance: MG = W + DDGS 
Solids balance: 0.35MG = 0.90DDGS 
Water balance: 0.65MG = 0.10DDGS + W  
 
DDGS = .35MG/.90  
DDGS = .35(35.5 lb.)/.90 = 13.81 lb.  
W = .65MG - .10DDGS 
W = .65(35.5 lb.) - .10(13.81 lb.) = 21.69 lb.  
 
Energy Consumed by Rotary Dryer 
 

21.69 lbH2O  = 32535 BTU  

 
Total Energy  
 
32535 BTU + 23478 BTU + 258 BTU = 56271 BTU 
 

 = 562.71 BTU/lb WS 

 
 

HTC Processing of Whole Stillage 
 
Assumptions:  

• Whole Stillage (WS) - 14% solids 

• 50% heat recovery through use of heat exchangers 

• 32% mass yield of unextracted hydrochar 
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• Hydrochar -  60% solids 

• Rotary Dryer – 1500 BTU/lbH2O 

 
100 lb. WS  = 45.36 kg WS 
 
q = mCpΔT 
q = 45.36 kg (4.3395 kJ/kg °C) (200°C - 25°C) = 34446.95 kJ  
34446.95 kJ  .5 (heat recovery) = 17223.48 kJ 
17223.48 kJ  = 16325.57 BTU 

 
 
100 lb. WS  .14 solids = 14 lb. solids 
14 lb.  .32 char yield = 4.48 lb. hydrochar 
 

 
 
Material balance: WH = W + DH 
Solids balance: 0.6WH = 0.9DH 
Water balance: 0.4WH =W + 0.1DH 
 
WH = .9DH/.6  
WH = .9(4.48 lb)/.6 = 6.72 lb. 
W = .4WH - .1DH 
W= .4(6.72 lb.) - .1(4.48 lb.)= 2.24 lb. H2O 
 
2.24 lbH2O  = 3360 BTU 
 
Total Energy  
 
16325.57 BTU + 3360 BTU = 19685.57 BTU 
 

 = 196.86 BTU/lb. WS 

 
Comparing Convention to HTC 
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 = 0.350  100 = 35.0%  
 
 

Conventional Processing of Thin Stillage 
 
Assumptions: 

• Thin Stillage (TS) - 7% solids 

• Distiller Solubles (DS) - 35% solids 

• Dried Distillers Solubles (DDS) - 90% solids  

• All Thin Stillage is used to produce Dried Distillers Solubles 

• Evaporator (triple effect) – 559 BTU/lbH2O [1] 

• Rotary Dryer – 1500 BTU/lbH2O 

 

 
 
Material balance: TS = W + DS 
Solids balance: 0.07TS = 0.35DS 
Water balance: 0.93TS = W + 0.65DS 
 
DS = .07TS/.35 
DS = .07(100 lb.)/.35 = 20 lb.  
W = .93(100 lb.) - .65(20 lb.)= 80 lb. 
 
Energy Consumed by Triple Effect Evaporator 
 

80 lbH2O   = 44720 BTU 
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Material balance: DS = W + DDS 
Solids balance: 0.35DS = 0.9DDS 
Water balance: 0.65DS = W + 0.1DDS 
 
DDS = .35DS/.9 
DDS = .35(20 lb.)/.9 = 7.78 lb.  
W = .65(20 lb.) - .1(7.78 lb.) = 12.22 lb. 
 
Energy Consumed by Rotary Dryer 
 

12.22 lbH2O  = 18330 BTU 

 
Total Energy Consumed  
 
18330 BTU + 44720 BTU = 63050 BTU  
 

 = 630.5 BTU/lb TS 

 
HTC Processing of Thin Stillage 

 
Assumptions:  

• Thin Stillage (TS) - 7% solids 

• 50% heat recovery through use of heat exchangers 

• 17% mass yield of dry unextracted hydrochar 

• Hydrochar -  60% solids 

• Rotary Dryer – 1500 BTU/lbH2O 

 
100 lb. TS  = 45.36 kg TS 
 
q = mCpΔT 
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q = 45.36 kg (4.3395 kJ/kg °C) (200°C - 25°C) = 34446.95 kJ  
34446.95 kJ  .5 (heat recovery) = 17223.48 kJ 
17223.48 kJ  = 16325.57 BTU 

 
 
100 lb. TS  .7 solids = 7 lb. solids 
7 lb.  .17 char yield = 1.19 lb. hydrochar 
 

 
 
Material balance: WH = W + DH 
Solids balance: 0.6WH = 0.9DH 
Water balance: 0.4WH =W + 0.1DH 
 
WH = .9DH/.6 
WH = .9(1.19 lb.)/.6 = 1.79 lb. 
W = .4WH - .1DH 
W= .4(1.79 lb.) - .1(1.19 lb.)= 0.597 lb. H2O 
 
0.597 lbH2O  = 895.5 BTU 
 
Total Energy  
 
16325.57 BTU + 895.5 BTU = 17221.07 BTU 
 

 = 172.21 BTU/lb. TS 

 
Comparing Conventional to HTC 
 

 = 0.268  100 = 27.3% 
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A.8  

Anaerobic Digestion of HTC Filtrate 
  

Thin Stillage Flow a 190000 L/h 
Thin Stillage TCOD  89.089 g/L 
    
HTC Filtrate Flow ~190000 L/h 
HTC Filtrate TCOD  50.133 g/L 
Methane Yield b 0.26715 L/g TCOD 
    
Methane Production Rate 2279873 L/h 
Methane Lower Heating Value at STP c 35.846 kJ/L 

    
Energy Production Rate 9.12 * 107 kJ/h 
  8.65 * 107 BTU/h 
    
HTC Processing Energy Requirement 172.21 BTU/lb TS 
Density of TS ~1 kg/L 
HTC Energy Consumption Rate 7.21 * 107 BTU/h 
    
Net Energy Production Rate 1.43 * 107 BTU/h 
    
a Value from Agler et al., 2008 
b Methane yield from the 12th day of 100% HTC BMP assay  
c Value from Khanal 2008 
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