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Abstract

Polycrystalline silicon (poly-Si) has become popular in recent years as a candidate for

low cost, high efficiency thin film solar cells. The possibility to combine the stability

against light degradation and electronic properties approaching melt-grown, wafer-based

crystallline silicon, with the cost advantage of Silicon thin films is highly attractive.

To fully realize this goal, efforts have been focused on maximizing grain size while

reducing the thermal input involved in a critical “annealing” step. Of the variety of

processes involved in this effort, studies have shown that poly-Si films obtained from

solid-phase-crystallization (SPC) of hydrogenated amorphous silicon (a-Si:H), grown

from non-thermal plasma-enhanced chemical vapor deposition (PECVD), exhibit the

potential to achieve the highest quality grain structures. However, reproducible control

of grain size has proven difficult, with larger grains typically requiring longer annealing

times.

In this work, a novel technique is demonstrated for more effectively controlling the

final grain structure of SPC-processed films while simultaneously reducing annealing

times. The process utilized involves SPC of a-Si:H thin films containing embedded

nanocrystallites, intended to serve as predetermined grain-growth sites, or grain-growth

“seeds”, during the annealing process. Films were produced by PECVD with a system in

which two plasmas were operated to produce crystallites and amorphous films separately.

This approach allows crystallite synthesis conditions to be tuned independently from

a-Si:H film synthesis conditions, providing a large parameter space available for process

optimization, including the effects of particle size, shape, quantity, and location within

the film.

The work contained here-in outlines the effects of select parameters on the both

grain size control and thermal budget. Reproducible control of both grain size and

crystallization rate were demonstrated through varying initial seed crystal concentra-

tions. Significant reductions in annealing times were demonstrated to occur in seeded

films relative to unseeded films, with both seed crystal concentration and seed crys-

tal geometry demonstrating significant effects on crystallization rate. Furthermore, the
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development of this technique has resulted in potentially new insights on the mate-

rial system involved, with the observation of a potentially unique phase-transformation

mechanism.
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Chapter 1

Introduction

The work contained herein consists of a collection of studies on a material with potential

uses in photo-voltaic energy conversion. Specifically, these studies focus on semiconduct-

ing silicon-based films that are poly-crystalline in structure with thicknesses less than

one micron. Similar materials have already been studied extensively elsewhere, for this

intended purpose. However, the following body of work presents a relatively novel pro-

cessing technique with measurable advantages over traditional techniques. Furthermore,

the development of this technique has resulted in potentially new observations on the

material system involved. Chapters 2 and 3 describe the context for application and the

basic experimental techniques used in material processing. Chapters 4-7 each demon-

strate the effect of varying a different key processing component on the behavior of the

material system. The effects of each of these components on synthesis and performance

are identified.

• Chapter 2 provides the context and intended application of the material system

that is the focus of this work: poly-crystalline silicon (poly-Si) thin films. The

chapter begins with a brief summary of the global energy landscape, followed

by the motivation for progress in photo-voltaics. It proceeds to a brief synopsis

of the most relevant photo-voltaic technologies to date, and the challenges faced

by each in achieving large-scale viability. A more extensive synopsis is given of

poly-Si thin film technologies; specifically common crystal growth techniques. The

chapter concludes with a brief outline of the poly-Si synthesis process used in this
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work, and the potential it has for solving the challenges faced by current methods.

• Chapter 3 outlines the apparatus and techniques used in synthesis of poly-Si thin

films in this work, and it explains the novel aspects. The chapter also outlines

basic processing parameters and relevant properties of the materials synthesized.

These parameters are compared to common parameters found in industry and

literature.

• Chapter 4 analyzes the effect of varying annealing temperature on the basic

crystallization behavior of the proposed material system. Comparisons are made

to traditional material systems, and advantages are outlined. The underlying

thermodynamics and kinetics of the crystallization process are also characterized.

• Chapter 5 demonstrates the effect of varying a parameter that will be defined

as “seed crystal density”. Three primary film properties will be characterized as

a result of varying seed density; crystallization rate, film disorder, and final grain

structure.

• Chapter 6 demonstrates the effect of varying seed crystal shape on crystallization

rate. Synthesis conditions are also outlined for which a potentially novel phase

transformation mechanism occurs. The additional processing advantages of these

conditions are quantified.

• Chapter 7 demonstrates the effect of varying amorphous film deposition proper-

ties. Specifically, a parameter space is studied in which relatively higher deposi-

tion rates are achieved. Several significant film parameters are observed to change

concurrently, and their effects on crystallization rate are measured. An optimal

processing window is identified.

• Chapter 8 summarizes the main conclusions of each study, and quantitatively

compares the performance of the processing technique used with those found in

industry and literature.



Chapter 2

Background

2.1 The Current Energy Landscape

One of the most formidable challenges currently facing the globe is that of securing

a sustainable energy supply. Aside from the potential environmental detriments, the

current global energy infrastructure operates primarily on resources of increasingly lim-

ited supply. As of 2009, total world energy consumption reached approximately 17

Terawatt-years (TWyr) [1] with over 85% of this demand being satisfied by oil, coal,

natural gas, and nuclear energy resources. Surveys covering the same year estimate

there to be approximately 3000 TWyr combined of remaining supply of these four main

resources [2]. Greater than half of this remaining supply either consists of more environ-

mentally detrimental versions of currently used forms, exists in locations requiring more

complicated acquisition processes, or requires technologies not yet developed enough to

make acquisition economically viable. With global consumption projected to rise to

approximately 23 TWyr by 2030 [2], excluding acquisition difficulties, these estimates

forecast a diminishing amount of usable energy with the current hierarchy of usage and

available technologies.
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2.2 The Potential Role of Solar Energy

It is interesting to note that if we were to use up every last joule of the estimated

remaining 3000 TWyr of these four primary resources, we would have used the energy

equivalent of the sun hitting the earth over the course of approximately nine days. The

amount of sunlight arriving at the earths surface in one hour is enough to satisfy global

energy needs for an entire year. In fact, the combined surface area of roads paved by

humankind in the last 100 years, if covered in photo-voltaic (PV) panels at current

efficiencies, could provide enough energy to supply a global population of 10 billion [3].

With this magnitude of available renewable resource it is evident that solar energy has

tremendous potential to rectify the looming energy challenge.

Currently, solar energy provides less than 1% of the total resources used to satisfy

global energy demands due to the inability of traditional solar cell technologies to be

cost competitive with a primarily coal dominated electricity market [4]. In order to

compete with current utility sources, new PV technologies must be able to consistently

produce modules that can operate at peak performance for under $1/W . Achievement

of this goal demands lower manufacturing costs, higher stable efficiency, and higher

process yields than current standards. Furthermore, due to the large scale of material

resources required, such solar cells must consist of readily abundant and non-harmful

components.

It is easy to understand then why over 80% of annual PV module production con-

tinues to be dominated by silicon based technologies [5]. Silicon, being the second most

abundant element in the earths crust, is also non-toxic, has electronic properties suitable

for photo-voltaic conversion, and has already been extensively studied and developed

for industrial application, due to its central role in the integrated circuit industry.
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2.3 The Current Industry Leader:

Wafer-based Technologies

Within the global solar market, as of 2012, over 89% of PV technologies consist of what

is known as crystalline silicon (c-Si) based modules [6]. c-Si modules have relatively

high stable efficiencies due to the exceptional electronic transport that a material with

a large-grain crystal structure provides. However, the process required to consistently

reproduce high purity materials of this nature is relatively costly and energy intensive.

Most c-Si technologies involve very high temperatures (greater than 1400 ◦C), and

highly sensitive procedures to generate large single crystal or multi-crystalline “ingots”

that crystal wafers are cut from. These processing parameters are cost effective for a

microelectronics industry in which several hundred high-value processor chips can be

made per wafer. However, a complete photo-voltaic system requires several full wafers in

order to generate a viable quantity of electricity in even the smallest-scale applications.

Material waste is also significant in most c-Si processes, as most wafers must be cut to

thicknesses several times larger than is needed for device performance due to their brittle

and fragile structure. Taking into consideration that over half of the usable material is

lost in the wafer sawing process, it is easy to see how a substantial part (40% to 50%) of

c-Si module costs typically arise from wafer production [7,8]. Furthermore, since wafers

can only be successfully manufactured with limited surface area sizes (typically less than

450 mm in diameter), scaling up to large area devices requires additional processes to

link cells together in order to produce a viable module. Despite the numerous difficulties

with wafer production, these melt-grown, c-Si based modules comprise a majority of the

global PV market. However, cost improvements are relatively limited, due to the fact

that these processes are cost-optimized primarily for much more developed, non-solar

industries. In order for photo-voltaics to occupy a significant portion of the global

energy demand, new processes, catered specifically to photo-voltaic cost optimization,

must be explored.
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2.4 Second Generation Solar Cells:

Thin Film Technologies

2.4.1 Advantages

In recent decades, due to advances in nanometer-scale characterization and manufactur-

ing, a new paradigm of “thin-film” technologies has emerged, which shows tremendous

promise for providing significant cost reductions over current c-Si standards. Unlike

the high temperature melting used in wafer processing, thin films are typically synthe-

sized from semiconductors contained in the gas phase, with processes rarely exceeding

temperatures of 600 ◦C. The primary performance advantage of thin film processing,

aside from a significantly reduced material requirement, is that these thinner cells re-

quire photo-generated carriers to travel much smaller distances in order to be collected.

Since longer distances increase the probability of a carrier being lost to defects within

the material, thinner cells are not required to have the same high level of purification,

which is one of the largest expenses in c-Si processing [7].

A more significant industrial advantage of thin film manufacturing is the ability to

deposit material uniformly over much larger areas. This allows for the manufacture of

full-sized modules directly rather than having to process, cut, and connect individual

wafers into modules as with traditional c-Si based processes. Furthermore, the lower

temperatures offered by these techniques are conducive to fabrication on a variety of

inexpensive substrates, and thus are more amenable to large-scale integration with com-

mon building materials.

2.4.2 Challenges

The main disadvantage of thin film materials stems from the large number of structural

defects they contain relative to c-Si technologies. Structurally, they are either poly-

crystalline/microcrystalline (composed of several different crystalline regions of various

orientation) or amorphous (having no long-range atomic order). As such, they contain

defects such as grain boundaries, strained or broken bonds, and atomic vacancies. These

defects substantially lower device efficiency by hindering electronic transport [9–12].
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Furthermore, although the dramatically reduced processing costs make thin films

more effective in cost/Watt (essentially cost/panel) terms, the lower efficiencies they

exhibit require more panel surface area to achieve the same total power output as a c-Si

system. This subsequently increases installation and other external or “base-of-system”

(BOS) costs, which generally scale with system sizes. Much of the difficulties associated

with optimizing thin film quality results from the technology’s youth. Whereas the c-

Si PV industry inherited a significant knowledge-base from the mature microprocessor

industry, thin film material processing is still relatively young, leaving much to be

optimized.

The fundamental challenge of thin film PV technologies is to combine the efficiency

and stability of c-Si wafer-based materials, with the cost advantage of thin film materials.

Although this goal has yet to be realized to the extent necessary, tremendous work

toward this effort has ushered in what has arguably become a thin film era for the PV

industry. From 2003 to 2008 alone, thin film global market share nearly doubled from

7% to 13%, and is expected to experience continued growth; putting it on track to

increase from a market worth of $44 billion in 2017, to $1 trillion by 2021 [13].

2.4.3 Current Thin Film Market Leaders:

Cadmium Telluride and Copper Indium di-Selenide

Of the five primary constituents of this market, the highest performing technologies

with stable module efficiencies above 10% and module costs below $1/W , are currently

comprised of cadmium telluride (CdTe), or copper indium diselenide (CIS) based ma-

terials [14–16]. Although these two materials combined currently occupy a significant

share of the thin film market, with efficiencies climbing at a steady pace, there are jus-

tified concerns about their ability to meet all of the criteria necessary for a long term

solar solution. CIS devices have not only exhibited significant difficulties in uniform pro-

cess scaling, but rely on the increasingly scarce elements Indium and Selenium, which

originate primarily as minor byproducts of other, expensive, rare-earth metal produc-

tions [9, 16]. CdTe devices suffer from similar resource limitations with tellurium, as

well as additional concerns regarding the high toxicity of cadmium. For these reasons,

great efforts in recent years have been put toward developing silicon-based thin films

that can compete with CdTe, CIS, and eventually c-Si performance.
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2.5 The Primary Alternatives:

Silicon Thin Film Technologies

2.5.1 Amorphous Silicon Thin Films

The earliest example of thin film technology, and possibly the most heavily studied,

has been hydrogenated amorphous silicon (a-Si:H). Having been successfully deposited

using a plasma discharge for the first time over 45 years ago [17], a-Si:H has been

extensively characterized and used within several areas of the micro-electronics industry,

mainly for its relatively simple deposition and easily doped electronic structure [18,19].

Although several alternative deposition methods have emerged in the last few decades,

including hot-wire deposition [20, 21] and electron-beam evaporation [22–24], a-Si:H is

still overwhelmingly grown from plasma dissociation of a silicon containing gas, silane,

in a method known as plasma enhanced chemical vapor deposition (PECVD). This

is due to the fact that PECVD processes lend themselves more easily to larger area

depositions with fewer issues regarding uniformity and equipment scaling. Furthermore,

PECVD a-Si:H films can be reproducibly deposited at thicknesses well below 1 µm and

at temperatures amenable to inexpensive substrates [7, 25,26].

Although these exceptional cost advantages have made a-Si:H the global leader in

the thin film solar cell market in years past, its progress has recently begun to plateau.

This is due mainly to the inherent disorder of the amorphous bond structure, which con-

tains a significantly larger number of strained or broken bonds relative to c-Si materials.

These defects result in sub-bandgap energy states that act as recombination centers for

charge carriers [25]. For this reason a-Si:H based devices exhibit much poorer electronic

transport than its microcrystalline and polycrystalline counterparts [26–28]. Further-

more, these properties degrade even further under extended light exposure, due to a

phenomenon known as the Staebler Wronski Effect (SWE) [10, 29, 30]. With the ex-

ception of a few recent efforts utilizing novel light-trapping schemes, little progress has

been made to prevent this degradation. Subsequently, the average stabilized efficiency

1 for single-junction a-Si:H based production modules has stayed below 7%. [7, 15].

1 Stabilized effficency refers to the efficiency measured under light exposure, after the observed
degradation with time has plateaued
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2.5.2 Mixed-phase Silicon Thin Films

Recent efforts in silicon thin films have thus been focused on developing materials that

negotiate a middle-ground between the manufacturing simplicity of amorphous silicon

and the performance and stability of crystalline silicon. This has led to the study of

several “mixed-phase” materials consisting of various combinations of amorphous and

crystalline silicon regions. These films are classified primarily by average grain size and

volume fraction of the crystalline phase present. Materials commmonly referred to as

either proto-crystalline, poly-morphous (pm-Si:H) or nano-crystalline (nc-Si:H) consist

of a predominantly amorphous structure containing a disperse population of nano-scale

crystalline grains. Devices based on these materials have been shown to exhibit novel

transport behavior and enhanced stability over traditional a-Si:H devices [10,27,31–35].

Materials such as micro-crystalline silicon (µc-Si:H) consist predominantly of crystalline-

phase material tightly spaced in grains several tens of nm in diameter. These materials

have shown promising results when layered with traditional amorphous films to make

tandem “micro-morph” devices [11, 36–40]. A phase diagram illustrating each material

is shown in figure 2.1 below.

Figure 2.1: Phase diagram illustrating the various amorphous and crystalline contri-

butions associated with mixed-phase silicon thin films. The progression of film growth

beyond the nucleation layer illustrates the columnar growth typical of many mixed films;

each column being separated by porous, defect rich regions. [41]
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These materials have provided interesting and cost-effective improvements over tra-

ditional a-Si:H films, with several companies reporting stabilized efficiencies above 10%

for factory-scale, multi-junction modules [7,40,42]. However, with deposition of mixed-

phase layers, complications with scaling often result due to difficulties with maintaining

precise phase proportions and uniformity over large thicknesses and areas [10,43]. Fur-

thermore, additional complications arise in multi-junction devices due to issues with

current matching between layers of different phase [7]. Furthermore, the limited grain

sizes and defects that remain in the more disordered film regions nc-Si:H and µc-Si:H

provide limited room for further progress [7, 11,44].

2.5.3 Poly-crystalline Silicon:

The material system of study in this work

One of the more promising materials investigated in recent years is poly-crystalline

silicon (poly-Si). Similar to the structural characteristics of CdTe and CIS materials,

poly-Si films are comprised of a network of crystal grains much larger than nc-Si:H

and µc-Si:H films, typically on the order of 1 µm to 100 µm (figure 2.2). These grains

form naturally when a-Si:H films are heated at temperatures above 550 ◦C for extended

periods of time in an annealing process step referred to as “solid-phase crystallization”

(SPC) [45–47]. The resulting film structure has superior electronic transport and stabil-

ity relative to amorphous and mixed-phase materials, with the same scalable processing

as traditional a-Si:H PECVD [26,48].

Figure 2.2: Cross-sectional TEM image of a poly-Si film after completion of annealing.

An example of a singular grain is outlined in red [49].
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Recent results include a device based on SPC of a 2.2 µm thick a-Si:H film capable

of achieving a stable efficiency over 10% in large-scale, 600 cm2, pilot line modules with

an average cost near $1.50/W [50, 51]. Furthermore, since the thin film poly-Si market

is relatively new, there is still much opportunity for improvement on both material

processing and device performance fronts.

Solid Phase Crystallization

In the area of process improvement, one of the primary costs arises from the thermal

budget associated with the annealing step, which is carried out at temperatures between

550 ◦C to 1000 ◦C for periods of time ranging between 3 hrs to 70 hrs [45–47, 52, 53].

In this process step, the actual emergence of crystal grain growth is usually preceded

by a time interval known as the incubation period. This period is attributed to the

time required for hydrogen to effuse from the film, and highly strained Si-Si bonds to

restructure [54].
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Figure 2.3: (a) TEM images showing the evolution of native nucleation during annealing

of an amorphous silicon film [46]. (b) Typical plot depiction of the primary stages of

crystal growth in an amorphous film during annealing. Crystal growth typically plateaus

at volume fractions below 1 due to the small fraction of remaining non-crystalline ma-

terial that constitutes the grain boundary regions.
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Following the incubation period, the amorphous to crystalline phase transformation

is believed to follow a classical nucleation model [45,46], wherein the formation or “native

nucleation” of crystalline regions occurs after sufficient energy is available to generate

crystalline clusters of a stable size. Following a brief transient period, crystallites will

then emerge at a constant “nucleation rate” and grain growth proceeds, irreversibly,

until grains coalesce as shown in figure 2.3.

Grain Size Effects

At the conclusion of an SPC process, the final film structure is comprised of multiple

crystal grains of various orientations with interfaces or grain boundaries comprised of

strained or broken bonds. These defects are the primary cause for reduced electronic

performances of poly-Si devices relative to c-Si counterparts [55–58]. The PV perfor-

mance parameter most heavily reflective of grain structure quality is referred to as the

“open circuit voltage” (Voc). Voc is defined as the maximum voltage that a solar cell

is capable of acquiring across its thickness under conditions of zero current flow. It is

clear from figure 2.4 that Voc exhibits the strongest grain size dependence within the

1 µm to 1 mm grain size regime (dotted line). It is worth noting that this regime

-specifically the closed circle data- represents devices having thicknesses beyond typical

thin film classification; ranging from 30 µm to 500 µm or more. Furthermore, they are

deposited by relatively high temperature processes such as zone melting and epitaxy

and are therefore incompatible with inexpensive substrates such as glass. Subsequently,

these processes typically require more costly, higher melting point, alumina and graphite

composite substrates [26, 48]. As a result, many of these technologies have yet to see

developments beyond laboratory stages.

It is interesting to note that several thinner devices (< 12µm) such as the “CSG”

and “Sanyo” devices, in the 1 µm grain regime, exhibit open circuit voltages similar

to those obtained by the thicker, high-temperature processed devices in the millimeter

grain size regime. Since the power output in a thin film device depends largely on the

ability of light generated charge carriers to reach circuit-connected contacts on the front

and back surfaces, the main goal of grain engineering is to achieve grains consistently as

thick as the device. An example of this optimal grain structure is shown in figure 2.4b,

where a cross-sectional TEM image of the Sanyo cell is shown to exhibit single grains
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extending through its entire 5 µm device thickness. It should be noted that both CSG

and Sanyo devices were produced from 600 ◦C SPC of a-Si:H films having thicknesses

below 5 µm. Although CSG devices remain in production, Sanyo has discontinued the

development of this particular device due to the excessive annealing times (10hrs at 600

◦C) required by its SPC process.

CSG

(a) (b)

Sanyo structure

Figure 2.4: (a) Open circuit voltages (Voc) of crystalline Si thin film solar cells shown

as a function of grain size “g”. For poly-Si pn junction thin film cells 30 µm to 500 µm

thick (solid circles), Voc increases with grain size for 1 µm to 1 mm, and saturates for

g > 1 mm (dashed line). Devices < 12 µm thick are shown in open circles. Figure and

caption descriptions taken from [59], adapted to include CSG data from [26]. (b) Cross-

sectional TEM image of the absorber layer used by Sanyo in the cell compared in a).

Individual grains are outlined in black, and extend from substrate to film surface. [60].

The Fundamental Challenges of Solid-phase Crystallization

Subsequently, efforts in poly-Si film development have been focused on both increasing

grain sizes while reducing required annealing times. However, numerous studies have

found these outcomes to be mutually exclusive. Specifically, increasing grain size entails

suppressing the rate of grain nucleation rate during SPC. Several studies have been

able to successfully suppress nucleation rate through adjusting deposition conditions to

increase hydrogen content and/or disorder within films. However, due to the incubation
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period required for film re-ordering prior to nucleation onset, this also typically results

in a longer annealing time [20,45,46,52,54,61–67]. Since an increased incubation period

begets additional annealing time and thus processing costs, more unique avenues of

grain growth control must be explored in order make significant improvements to both

film quality and process cost.

Externally Induced Grain Growth

To date, new efforts to improve these areas have focused on de-coupling film properties

from grain growth behavior by artificially producing growth sites from means other than

native nucleation. The most commonly explored of these processes include excimer laser

induced crystallization (ELA) [68–70] and metal induced crystallization (MIC) [71–75].

These processes are typically used to generate a thin poly-crystalline “seed layer” by

generating nucleation sites artificially from crystallization of an a-Si:H base-layer film.

These base layer grains are then epitaxially “thickened” through either a low pressure

chemical vapor deposition (LPCVD) or electron beam (e-beam) evaporation growth

on the seed layer. Although these methods have been successful in eliminating the

incubation period and controlling grain size to a certain degree, very few processes

were capable of surpassing laboratory efficiencies of 6%. Furthermore, they introduce

additional equipment, relatively high temperature processing steps, and performance

hindering contamination.

Seed-Induced Grain Growth

A relatively small body of work has been devoted to investigating the effects of em-

bedding an initial population of crystallites in a-Si:H film prior to annealing to serve as

“seed” material for grain growth during annealing. This seed-induced process eliminates

the grain-control complications associated with native nucleation, including lengthy in-

cubation periods and nucleation rates, and avoids the intentional introduction of impu-

rities commonly associated with MIC processes. Of the small number of works that have

attempted a variation of seed-induced crystallization techniques, significant promise has

already been shown in reduced annealing times and enhanced grain structure control

relative to native nucleation based processes [60,62,76–78].
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For instance, work in [76] and [62] measured significantly reduced thermal budgets

by annealing a-Si:H films deposited on top of substrates initially coated with a rela-

tively thinner, mixed-phase layer. Similarly, work in [60,78,79] measured reductions in

annealing times and enhanced grain sizes by annealing a-Si:H films having mixed phase

layers. These mixed-phase seed layers were formed at intermediate positions in the film

thickness by careful tuning of plasma conditions. Furthermore, work in [77] and [80]

showed similar advantages by annealing films consisting of a-Si:H film grown on top of

substrates coated in nano-crystallites that were grown in a separate process.

Although promising reductions in annealing times have been achieved in each of these

techniques, little else has been done to explore the basic parameter spaces surrounding

seed-induced crystallization, including the effects of varying basic seed crystal properties

such as size, shape and concentration, or the effects of varying basic properties of the

surrounding amorphous film. This is most likely on account of complications commonly

associated with controlling the properties of seed crystal synthesis independently from

amorphous film synthesis. In many of the techniques discussed above, seed material

is deposited in tandem with the amorphous film, by careful plasma tuning, nucleating

crystalline regions within the depositing amorphous film. Subsequently, the properties

of the surrounding amorphous film are inherently linked to the conditions favorable for

seed material formation.

A select few cases, such as in Kim et al., have synthesized seed crystals independently

from amorphous film using an external process such as liquid dispersion. However, such

techniques require etching procedures, or exposure to air contamination before crys-

tallites are finally included in a-Si:H film [80]. Ultimately, both plasma-tuned and

externally synthesized techniques for seed material formation have yet to demonstrate

reproducible control over basic seed crystal properties, including size distribution, and

concentration within the film. The work herein demonstrates a process that addresses

the issues commonly involved with seed-induced crystallization, mainly, the indepen-

dent control of amorphous and seed crystal components. Furthermore, this process was

utilized to perform a series of studies outlining the effects of varying such basic param-

eters as seed crystal concentration, seed crystal shape, and amorphous film deposition

conditions, on the crystallization behavior and final grain quality of seed-crystallized

films.



Chapter 3

Experiment

3.1 Dual Plasma Deposition System

This work outlines a novel approach to synthesizing poly-Si thin films from the solid-

phase crystallization (SPC) of a-Si:H thin films containing embedded nanocrystallites.

As previously outlined, these nanocrystallites are to serve as predetermined grain-growth

sites, or grain-growth “seeds”, during the annealing process. This technique is intended

to eliminate the complications associated with native nucleation, such as lengthy in-

cubation times and grain density control. As outlined in Chapter 1, this method has

been largely unexplored in silicon thin-film research, due primarily to the complexities

involved with independent synthesis of high quality seed material.

The technique utilized in this work attempts to provide a solution to the common

difficulties of seed material synthesis, by the development of a “dual-plasma” deposition

system shown in figure 3.1. With this configuration, two separate plasmas are operated

within the same vacuum chamber, but separated by an orifice to maintain a pressure

differential. This allows for one plasma to be operated at conditions optimal for high

quality a-Si:H film deposition, while the second plasma is operated at conditions optimal

for producing high quality nanocrystals.

16
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Figure 3.1: Schematic of dual plasma deposition system.

3.1.1 Seeded Film Structure

The film structure used as the basis of study for this work, was synthesized in a three-

stage deposition process illustrated in figure 3.2, and then annealed to create a poly-

crystalline film. The first stage involves depositing an amorphous film “base layer”, 50

nm to 100 nm thick, from the downstream a-Si:H film plasma. In the second stage,

the film growth discharge is turned off and the upstream nanocrystal discharge, in the

quartz tube region, is turned on. A shutter blocking the orifice between each region is

then manually withdrawn, allowing particles synthesized in the upstream quartz tube

to deposit in a “mono-layer” on top of the a-Si:H film base layer. The third step

involves deposition of an additional amorphous film “top layer” from the downstream

a-Si:H film plasma. The resulting film is composed of a planar layer of seed crystallites
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“sandwiched” between two layers of a-Si:H film. Due to the monolayer arrangement

of seed crystallites, film seed concentrations can be quantified in terms of aerial “seed

densities”, having units of nanocrystals per unit area. Figure 3.3 below shows the

relationship between duration of shutter withdrawal and the resulting seed density.

Films are then annealed at temperatures between 550 ◦C to 650 ◦C with the intention

that grain growth will proceed exclusively from the embedded seeds and eventually

encompass the extent of the film.

Glass substrate

a-Si:H

“seed” crystals

a-Si base layer

a-Si base layera-Si base layer

Glass substrate

a-Si base layer a-Si base layer

Deposition

Annealing

1. a-Si:H base layer 2. Seed crystal layer 3. a-Si:H capping layer

4. Grain growth 5. Full crystallization

Grain growth

Figure 3.2: Top: Schematic of three-stage seeded film deposition. Bottom: Depiction

of seeded grain growth during film annealing, following deposition.
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•

Figure 3.3: Aerial seed density versus duration of shutter withdrawal during seed particle

deposition. AFM data was taken using surface topography measurements on several 200

nm seeded films. TEM data was taken by Curtis Anderson [81]

.

3.1.2 a-Si:H Film Growth

Deposition Parameters

The a-Si:H component of each seeded film is deposited from 5% silane diluted in helium,

using a capacitively-coupled RF discharge operating at a frequency of 13.56 MHz,

nominal powers ranging from 2 W to 25 W , and pressures ranging from 100 mTorr to

400 mTorr. Films are grown in a chamber evacuated to a base pressure between 10−8

Torr and 10−7 Torr by a turbo molecular pump, with the a-Si:H discharge confined to

a cylindrical “plasma box” configuration, having the critical dimensions shown in figure

3.1. Table 3.1 provides a summary of the ranges of deposition parameters used in a-Si:H

film growth for this work, as compared to common values reported in literature.



20

Table 3.1: Summary of basic a-Si:H film deposition parameters used for the studies in

this work. Values are compared to common literature ranges taken from [25,26]

.

deposition power density dep. rate dep. temp. dep. Pressure

parameter (W/cm2) (nm/min) (◦C) (mTorr)

literature values 10-100 1-50 25-500 200-1000

dual plasma system 40-200 1-12 250 100-400

It should be noted that, with the exception of the powered electrode plate (denoted

by the 12.5 cm dimension in figure 3.1), the entire plasma box is at ground potential.

The powered electrode plate is electrically insulated from the grounded portions of the

plasma box by means of ceramic screws, which secure it to the roof of the plasma box

while maintaining a 3 mm vertical spacing from the grounded plasma box.

This plasma box geometry results in a ratio of grounded area to powered electrode

area to be approximately 4. According to equation 3.1, this results in a voltage drop

between the plasma bulk and substrate that is reduced from the delivered RF potential

by a factor of over 250 [82,83]. The intention of this design is to improve the quality of

the deposited a-Si:H film by reducing the ion bombardment energy on the growing film

surface.

Vgrounded
Vpowered

≈
(
Apowered
Agrounded

)4

(3.1)

Film Properties

In validating the quality of the a-Si:H film deposition process, a few common film param-

eters were characterized and compared to typical values found in literature. Specifically,

the content and nature of hydrogen bonding within the film is of primary significance,

as incorporated hydrogen serves to terminate dangling bond defects in the amorphous

matrix.
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Numerous studies have determined that typical device grade 1 a-Si:H films have

a hydrogen content in the range of 8% to 11%(at.), with lower concentrations leading

to films with significant populations of unterminated dangling bonds [25, 26, 84, 85].

Conversely, excessive hydrogen content can often result in films having porous, vacancy-

rich, regions stabilized by clustered silicon-hydrogen bonds. [25,84,86–89]. Subsequently,

the ratio of clustered to isolated hydrogen bonding within an a-Si:H film (also known as

“microstructure” or “R*”) is a parameter of interest in assessing film quality. Typical

R* values for device-grade PECVD a-Si:H vary between 0.05 to 0.2 [25]. Measured

values for hydrogen content and microstructure of as-deposited films grown for this work

are shown listed in table 3.2 along with typical values found in literature. Hydrogen

content was measured using a “forward recoil scattering” (FReS) mode of Rutherford

backscattering. Microstructure was measured by Fourier transformed infrared (FTIR)

spectroscopy, using the techniques and correction factors developed in the works by

Brodsky [90] and Langford [91].

Since crystallization kinetics have been measured to be influenced by impurity con-

centrations on the order of 1018 cm−3 or higher [92], a basic characterization of the

impurity presence resulting in the a-Si:H film growth process is also of interest. This

was conducted by performing opto-electronic measurements on as-grown, un-annealed,

films. Since common impurities such as oxygen and nitrogen can shift the Fermi level

of a-Si:H by several hundred milli-electron volts (meV ) if present in amounts greater

than 1017 cm−3 [25], dark conductivity and dark conductivity activation energy are a

simple means of inferring film purity within the sensitivity required for SPC studies.

For instance, device-grade films with impurity populations below these concentrations,

and with hydrogen contents within the ranges shown in table 3.2, should exhibit dark

conductivity values of 10−10 S/cm or lower, with an activation energy near 800 meV to

900 meV (roughly half the mobility gap) [25,85,93].

1 Device grade refers to films having sufficient structural and electronic quality to be utilized in
device application. Typically, this refers to uniformity, lack of surface roughness, and reasonable defect
and impurity levels
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Table 3.2: Summary of a-Si:H film properties measured from test case films grown in

the plasma box shown in figure 3.1. Values are compared to common literature ranges

taken from [25,26]

.

film property σdark EA

(
σphoto
σdark

)
H% R∗

– (S/cm) (eV ) – – –

literature values ∼ 10−10 ∼ 0.9 > 105 8-11% < 0.2

dual plasma system 10−12 − 10−9 0.9− 1 104 − 106 7-13% 0.02 - 0.15

Furthermore, since other electronically active defects, such as metallic impurities

from chamber materials, can limit the current produced under film illumination, photo-

conductivity was was also measured. Typical values for device grade a-Si:H film exhibit

a ratio of photo-conductivity to dark conductivity near 105 or higher [25]. Dark conduc-

tivity and its activation energy were measured using a film device structure consisting

of 2 mm wide chromium contacts evaporated to form 1 mm channels. Conductivity was

characterized from current-voltage (I-V) sweeps from -100 V to +100 V . Activation en-

ergies were approximated from similar (I-V) sweeps repeated over a temperature range

of 300 K to 450 K, measured in 1 K increments. As table 3.2 shows, the properties

of films grown from the plasma box discharge in the dual plasma system are within

acceptable ranges found in literature.
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3.1.3 Seed Crystal Synthesis

Nanocrystal seeds were synthesized in the capacitively-coupled, quartz tube flow-through

reactor shown in the upstream portion of figure 3.1. Similar to the a-Si:H film plasma,

the nanocrystal plasma was operated at 13.56 MHz, but at a relatively higher pressure

of 2.2 Torr, and a power of 140 W or greater. Precursor gases used for nanocrystal

synthesis consisted of the same 5% silane:helium precursor used in film growth, with

the addition of pure argon. A respective mass-flow ratio of 3:4 was typically used for

silane and argon precursors. As previously discussed, the nanocrystal reactor tube is

connected to the main film growth chamber through a 1 mm diameter orifice. Aside

from allowing plasma conditions in the reactor to operate at higher pressures more con-

ducive for large particle growth, the orifice also serves as the ground electrode for the

reactor discharge, as well as the passageway for nanocrystals from the reactor to the

substrate in the main chamber.

Previous studies have determined that nano-crystallite properties such as shape,

size, and quality can be carefully controlled by several key parameters such as pressure,

gas flow rate, RF power, and plasma discharge mode [94–98]. The crystallites studied

as candidates for grain seeding in this work were synthesized according to the methods

of Bapat et al. [94, 95].

10 20 30 40 50 60 70

0

20

40

60

80

100

120

C
ou

nt
s

Particle height (nm)

Figure 3.4: Left: TEM images of cubic seed crystals synthesized in the quartz tube

reactor shown in figure 3.1. Right: Size distribution of cubic seed crystals as measured

using AFM topography data of the surface of a 200 nm seeded film. The average particle

size is approximately 32 nm ± 2.5 nm. TEM images were taken by Andrew J. Wagner.
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In this method, single crystals, cubic in shape, are synthesized using a precur-

sor combination consisting of 3 standard cubic centimeters per minute (sccm) of 5%

silane:helium and 4 sccm of argon, with a nominal RF power of 140 W . As figure 3.4

shows, this synthesis method results in seed crystallites highly uniform in shape, with

a relatively narrow size distribution. The average seed crystal edge length according to

this size distribution is approximately 32 nm ± 2.4 nm. The plasma discharge mode

associated with yielding cubic shaped crystals is characterized as “filamentary”. Un-

like a common, uniform capacitive glow discharge, termed as “diffuse”, the filamentary

plasma mode is characterized by a rotating arrangement of small, relatively high density

discharge regions which rotate between the ring and grounded electrodes.

Figure 3.5: Left: Illustration of filamentary plasma mode. Right: High-speed digital

camera image of filamentary mode taken from [95].

As figure 3.5 shows, high-speed photography has revealed that this filamentary dis-

charge is composed of a string of 15 to 20 globular discharges with 3 mm to 5 mm

length, separated by 1 mm to 2 mm dark regions, rotating with a frequency about 150

Hz [95]. Earlier TEM work has shown the faces of each cube to be terminated by (100)

lattice planes. Simulations in ref. [99] argue this (100) termination and cubic shape to

be the lowest energy surface for silicon crystallite having hydrogen terminated surface

bonds.



Chapter 4

Crystallization Kinetics

4.1 Introduction: Motivation for Studies in Crystalliza-

tion Kinetics

As outlined in chapter 3, following deposition, films are annealed at temperatures above

550 ◦C to induce grain growth from the embedded population of seed crystals. The

objective is to have grain growth originate exclusively from the embedded population

of seed crystals, proceeding until grains coalesce to form a device-grade poly-Si film.

Ideally, the resulting grain structure should have an average grain size dictated by

the initial seed spacing. For these requirements to occur, it is necessary that seeded

grain growth be completed in a time interval smaller than the incubation period of the

surrounding a-Si:H film. Regions of the film that are not crystallized within this time

interval will nucleate native grains, subsequently limiting control over the final grain size

of the film. Therefore, it is necessary to characterize the grain growth rate of seeded

films relative to similar unseeded films in order to determine the time frame available

for grain growth. The studies outlined in this chapter compare crystallization rates,

and relevant annealing times of films of a single, test-case seed density over a range of

common annealing temperatures.

25
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Figure 4.1: In-situ heated stage TEM images of a seeded film during annealing at 650

◦C. Taken by Curtis Anderson [81].

An example of the desired “seeded” growth behavior is shown in figure 7.6, displaying

time lapse images of a seeded film taken by transmission electron microscopy (TEM),

in-situ, during annealing at 650 ◦C. The ”as-grown” image shows an aerial view of the

film with the embedded seed population, prior to annealing. Successive views show the

film’s behavior over several minutes at 650 ◦C, with grain growth originating exclusively

from the seed crystals, and encompassing most of the viewed area by 150 min. The

resulting grain sizes are subsequently on the order of the initial seed separation; roughly

4 µm2 in this case. The film consists of a single seed layer deposited between a 20 nm

a-Si:H base layer and 80 nm top layer. The observed lack of native nucleation suggests

films of this structure require less annealing time than a commensurate film without an

initial seed crystal population.
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4.2 Raman Crystal Fraction

In-situ TEM characterizations are useful for assessments of grain growth geometry and

behavior on relatively small, µm, length scales. However, in order to more quanti-

tatively assess the annealing behavior of seeded films over larger sample areas, Raman

spectroscopy was used to monitor the progression of grain growth over centimeter length

scales. In the Raman spectra of silicon, the peak shape, and location are distinctly dif-

ferent for amorphous and crystalline phases. This allows for the volume fraction of

crystalline phase present, in a particular film, to be estimated from relative peak contri-

butions [100–103]. For the studies outlined in this chapter, Raman spectra were taken

at regular intervals during annealing, averaged over sample areas of 150 mm2, and used

to generate plots of crystal fraction with respect to anneal time. An example fit of a

sample annealed to a crystal fraction of approximately 34% is shown in figure 4.2.
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Figure 4.2: Raman spectra and peak fitting of an amorphous silicon sample, partially

annealed at 625◦C. The crystal fraction at this state was calculated to be approxi-

mately 34%, using equation 4.1 along with the fitting technique outlined in ref. [103].

The two highest wavenumber peaks labeled TO (c-Si) and c-Si GB (yellow and pink,

respectively), represent the crystalline portions of the Raman spectra.
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Spectra peaks were fit according to the technique outlined in the work of Smit

et al. [103] Crystal fraction (“Xc”) was estimated using equation 4.1 below. IaSi−TO

corresponds to the integrated peak intensity of the transverse optical (TO) peak as-

sociated with the present amorphous phase, typically found near 480 cm−1. IcSi−TO

corresponds to the integrated peak intensity of the transverse optical (TO) peak as-

sociated with the present crystalline grains, typically found between 515 cm−1 to 521

cm−1. IcSi−gb corresponds to the integrated peak intensity of the peak associated with

strained bonds and grain boundaries at the grain surfaces; typically found between 500

cm−1 to 510 cm−1. Due to the difference in scattering cross-sections for amorphous

and crystalline phases, a correction factor, β, of approximately 0.8 was used based on

previous reports [100,101,103].

Xc =
IcSi−TO + IcSi−gb

IcSi−TO + IcSi−gb + βIaSi−TO
(4.1)

4.3 Raman Crystal Fraction Study 1: The Effect of Vary-

ing Anneal Temperature on Similar Films

In an initial study of seeded grain growth rates, the progression of Raman crystal fraction

during annealing was measured for several seeded films and compared to films of equal

thickness consisting only of a-Si:H material (“unseeded” films). Four pairs of similar

samples (4 seeded and 4 unseeded) were deposited on 2.5 cm x 2.5 cm square Eagle XG

glass subsrates. Total film thicknesses were 180 nm to 200 nm. Seeded films consisted

of a single seed layer, with aerial seed density of ∼ 16/µm2, deposited between two 90

nm to 100 nm a-Si:H layers. All a-Si:H layers were grown at 100 mTorr with a nominal

RF power of 5 W and a substrate temperature of 250 ◦C. Samples were annealed in

a quartz tube furnace, in nitrogen ambient to mitigate oxide growth. At regular time

intervals, ex-situ Raman spectra were averaged from 5 locations on each sample, using

a Witec alpha 300R confocal microscope, which resolved scattering from a 514.5 nm

Argon laser source. A 10x aperture having spot size of ∼250 µm was used to focus

the incident laser signal, and laser power was kept below 5 milliwatts to avoid inducing

crystallization during measurement. This was repeated for four separate annealing

temperatures: 600 ◦C, 625 ◦C, 650 ◦C, and and 675 ◦C. The evolution of crystal volume
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fraction with anneal time was then plotted for each sample pair, shown in figure 4.3

below.
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Figure 4.3: Progression of Raman crystal fraction with annealing for seeded and un-

seeded films annealed at four different temperatures. Figure (a) shows 600 ◦C and 625

◦C results as measured in ref [81]. Figure (b) shows 650 ◦C and 675 ◦C results. Arbitrary

fit lines were included as a guide for the eye.
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4.3.1 Crystallization Time

It is clear from figure 4.3 that the time required to crystallize a seeded film is significantly

reduced relative to similar unseeded films. This reduction can be quantified by using

a common metric known as the crystallization time, which is equivalent to the time at

which ∼ 63% of the film volume is measured to be crystalline by Raman spectroscopy

estimates. As figure 4.4(a) shows, the most significant reduction in crystallization time

occurs at lower annealing temperatures, with seeded crystallization times occuring al-

most 800 min earlier at an anneal temperature of 600 ◦C. It is interesting that this

reduction window shrinks with increasing anneal temperature; a trend which suggests

that the kinetics governing seeded growth rate have a lower temperature sensitivity than

the kinetics governing native nucleation.
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Figure 4.4: (a) Comparison of crystallization times for the seeded and unseeded film

data from figure 4.3. (b) Comparison of seeded crystallization times to unseeded incu-

bation times. Incubation times were measured as the average of the measurement times

between first measured onset of crystallization and the time of the measurement previous

to first onset. Error bars are taken as the time interval between the two corresponding

onset measurements.
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A similar trend is shown in figure 4.4 b), where the crystallization time of seeded films

is compared to the incubation time of unseeded films for each annealing temperature.

This shows that seeded films are mostly crystalline before the onset of native nucleation,

suggesting that the measured grain growth in seeded films results primarily from the

embedded population of seed crystals, for the anneal temperatures used.

4.3.2 Seeded Grain Growth Rate

The temperature sensitivity of seeded grain growth can be quantitatively assessed by

plotting grain growth rate with respect to annealing temperature. Grain growth rates

for seeded films were found by fitting crystal fraction curves with a modified version of

the “site-saturated” Kolmogrov-Johnson-Mehl-Avrami (KJMA) model of phase trans-

formation [104–108], shown in equation 4.2. With the film thickness L, and the aerial

seed density Ns known, crystallization curves can be fit using the radial, one-dimensional

grain growth rate vg as the only fit parameter. Fit lines were established by varying vg

to minimize the sum of the square error.

Xc = Xcmax

(
1− exp

(
−4π

Ns

L
vg

2tn
))

(4.2)

A power-law time dependence with exponent “n” of 3 was used based on the as-

sumption of three-dimensional, isotropic grain growth from a fixed initial population of

growth sites. These assumptions define the site-saturated version of the KJMA model.

With the population density of seed crystals used in this particular study, average seed

spacing (estimated by AFM and TEM) is large enough that adjacent grains should

theoretically reach the limitations of the film (substrate or surface interfaces) before

overlapping with each other, and reducing the dimension of growth. Furthermore, since

it is known from TEM observations that grain growth from seed crystals is not pre-

cisely isotropic, resulting growth rates are taken as an approximation of an equivalent,

isotropic, radial grain growth rate. Figure 4.5 (a) shows the fit quality of equation 4.2.

The maximum of each crystallization curve occurs below a fraction of 100% due to re-

gions of amorphous tissue which remain within the grain boundaries of the final poly-Si

film. Fit lines were subsequently adjusted using the correction factor Xcmax , which is

the crystal fraction measured at the plateau, or “complete crystalliation” of each curve.
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Figure 4.5: (a) Fit quality of the site saturated KJMA model to the seeded crystalliza-

tion data originally shown in figure 4.3. Fit model lines are depicted in solid black, with

data in colored symbols. The fit model is outlined in equation 4.2, with growth rate vg

being the only fit parameter. Figure (b) shows the subsequent growth rates extracted

from the fit lines in (a), plotted in Arrhenius form. A growth rate activation energy of

2.7 eV was subsequently found.
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The activation energy for seeded grain growth for this set of films was subsequently

found to be ∼ 2.7 eV . This shows good agreement with literature results for epitaxial

grain growth of a-Si:H deposited and annealed on (100) c-Si wafer substrates, which has

been found to be ∼ 2.68 eV ± 0.05 eV [46]. If grain growth were to proceed due to

native nucleation, growth rates would exhibit a much higher activation energy, measured

in literature to be ∼ 5 eV ± 0.1 eV [45, 46, 54, 109]. The much higher energy barrier

measured for native nucleation is due to the sum of two, concurrent, thermodynamic

barriers: 1) the energy required to form stable grain clusters from an existing amorphous

matrix (∼ 2.0 eV to 2.1 eV [110]), and 2) the energy required to induce growth from

stable clusters once they are formed (∼ 2.2 eV to 3.1 eV [45,111,112]). It is subsequently

intuitive that the growth-rate activation energy of seeded films should fall within the

latter range, due to the average seed crystal size of over 30 nm, which is well above

the theoretical stable cluster diameter of approximately 2 nm [46]. Furthermore, these

findings are consistent with the decreasing gap in seeded and unseeded crystallization

times shown in figure 4.4(b).

4.3.3 Avrami Slope

The assumption of three-dimensional growth can be more quantitatively validated by

evaluating the time dependence corresponding to each crystallization curve [107, 109].

This was done by replotting the data in figure 4.3 in a logarithmic scaling with the

quantity ln(ln(1−Xc)) as the ordinate, and the natural log of time as the abcissa. As

is shown in figure 4.6 (a), when crystal fraction data is displayed in this log-log fashion,

a linear regime can be observed at the beginning of each crystallization curve. This

regime can be assigned a slope value, referred to as the “Avrami slope”, equivalent to

“n” in equation 4.2. The Avrami slope indicates the order of the time dependence of

the crystallization, and subsequently can be associated with the dimension of growth.

Slope values below 4 are typically associated with grain growth occuring in 3 dimensions

or less, from a fixed or ”site-saturated” population of growth sites. Conversely, Avrami

slopes greater than 4 are associated with grain growth from an increasing number of

sites, such as with native nucleation [107, 108, 113]. Ideally, an Avrami slope near 3

would be expected for seeded crystallization curves if grain growth proceeded as three-

dimensional, unobstructed, radial grain expansion from a fixed number of growth sites.
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Figure 4.6: a): logarithmic (Avrami) plot of the crystallization curves from figure 4.3.

The linear regimes revealed for each line provide a slope associated with the time-

dependence of grain growth. A slope of 4 or greater is indicative of native nucleation.

Seeded samples (solid lines) subsequently exhibit mildler slopes than unseeded samples

(dotted lines). For each sample set, annealing temperature increases monotonically from

right to left, between 600 ◦C to 675 ◦C in 25 ◦C intervals. b): Comparison of the Avrami

slopes of each curve from figure a).
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The Avrami slopes of unseeded films fall between 5-10 for each anneal temperature,

suggesting growth behavior indicative of native nucleation. Seeded films exhibit much

more uniform behavior with temperature, with slopes falling within a much narrower

range of 2.3 to 3. This is expected behavior for grain growth originating from a fixed

population of growth sites, suggesting that a site-saturated KJMA model can be used

to estimate seeded grain growth rates for each temperature.

4.4 Conclusions

Grain growth has been demonstrated from seed clusters pre-implanted in amorphous

silicon thin film layers by method of a dual-plasma deposition. Grain growth was quan-

titatively confirmed to originate exclusively from the initial population of seed crystals

by analysis of Raman crystal fraction curves. A measurable reduction in required an-

neal time was observed for seeded films relative to unseeded films of similar thickness.

Grain growth rates were found to be approximated effectively by a modified version of

the KJMA transformation model. The corresponding thermodynamic barrier to grain

growth from seed crystals was subsequently measured, and found to be in agreement

with studies on epitaxial growth rates.



Chapter 5

The Effect of Varying Seed

Density

5.1 Introduction

5.2 The Effect of Varying Seed Density on Grain Growth

Rate

The results discussed in the previous chapter compare the crystallization kinetics of

unseeded films to one particular seeded film structure; specifically, 200 nm thick films,

having seed densities of approximately 16 µm2. The following section summarizes the

results of similar studies, on films consisting of various initial seed concentrations, herein

referred to as “seed densities”, on account of the planar distribution of the seed layer.

Figure 5.1 below shows the progression of Raman crystal fraction with anneal time at

650 ◦C for three samples deposited with different initial seed densities, along with a

fourth unseeded sample of similar thickness. Each film was approximately 180 nm to

200 nm in thickness, with seeded films consisting of a single seed layer at mid-depth.

Aerial seed crystal densities of each film were measured by AFM (shown in figure 5.1

(a)) to be ∼ 6/µm2, ∼ 15/µm2, and ∼ 32/µm2.
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Figure 5.1: (a) AFM surface topography of four samples of varying initial seed density,

prior to annealing. Seeded samples labeled low, medium and high were measured to

have average seed densities of ∼ 6/µm2, ∼ 15/µm2, and ∼ 32/µm2, respectively. (b)

Resulting crystallization curves of the samples shown in figure a), during annealing at

650 ◦C. Results show samples with lower initial seed densities crystallize faster than

more heavily seeded samples.
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The resulting crystallization curves are shown in figure 5.1 (b). Each seeded sample

exhibits an almost immediate onset of crystallization, while no crystallization is observed

for the unseeded sample before the completion of an incubation period of approximately

300 min. At the conclusion of the unseeded film incubation period, crystallization for

the seeded samples is mainly complete, suggesting the absence of native nucleation. A

more interesting observation, however, is that samples having lower initial seed density

exhibit relatively faster crystallization rates than more heavily seeded samples.

In order to examine this effect over a larger range of seed densities, crystallization

rates were compared over a series of 10 samples having initial seed densities ranging from

5/µm2 to 100/µm2. Each sample was annealed at 650 ◦C to complete crystallization,

and grain growth rates were subsequently extracted from each crystallization curve

by fitting with equation 4.2. It should be noted that each sample achieved complete

crystallization prior to the time that onset of native grain growth was measured in

similar unseeded films, indicating an absence of native nucleation. Figure 5.2 shows the

resulting variation of grain growth rate with respect to seed density for the measured

samples. It is clear from the observed trend that, within this range of seed densities,

grain growth rate decreases for films with larger seed crystal populations.

It is intuitive to infer that the effects observed in figure 5.2 are perhaps the result

of a competitive effect between adjacent seed crystals. For instance, if each seed acts

as a multi-directional growth site, neighboring seeds may encounter resistance from

one another in higher seed density films, due to competition for amorphous ad-atoms.

However, such an effect is difficult to empirically quantify beyond the trends of crystal-

lization curves already shown. Another explanation is that the inclusion of additional

seed crystals may have a disordering effect on the structure of the host film. As the

AFM images of figure 5.1 (a) show, the seed plane significantly increases the surface

roughness relative to unseeded films. It is possible that the texture of the seed plane af-

fects the depositing top a-Si:H layer in a manner that inhibits the bond re-arrangement

necessary to promote grain growth.
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Figure 5.2: Grain growth rate for several samples of varying intital seed density, during

annealing at 650 ◦C. Results indicate that growth rate is inhibited by relatively large

seed densities.

Numerous studies have demonstrated a link between film disorder and suppressed

crystallization rate in SPC of a-Si:H films [46, 47, 54, 62, 67, 92]. Specifically, studies by

Brahim et al. have shown that a-Si:H films grown at higher deposition rates exhibit

suppressed nucleation and grain growth rates [47, 92]. This was attributed to a greater

degree of defects within the bond matrix, inherent to higher deposition rate films. Fur-

thermore, studies by Wu et al. [67] have shown that ion implantation of amorphous films

prior to annealing can reduce nucleation and grain growth rate, due to the “unrelaxed”

state produced in the film by ion bombardment. These results have been argued to be

due to the additional energy required to restructure strained amorphous bonds during

the native incubation period [54,110].

In seeded films, the depositing top layer of amorphous silicon may contain a similar

disorder from deposition over the surfaces of the cubic seed crystallites. However, since

the population of grain nuclei are present prior to annealing, an incubation period

is non-existent. Subsequently, for seeded films, any relaxation of the disorder in the

surrounding amorphous matrix must occur during grain growth, rather than prior to
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grain growth as in native nucleation. For this reason, film disorder may play an even

more influential role in the crystallization of seeded films. Hence, it is interesting to

study the disorder introduced in the surrounding a-Si:H film, for various seed densities,

as this may explain the observed decrease in grain growth rate with seed concentration.

5.3 The Effect of Film Disorder

Disorder in amorphous silicon is characterized as structural deviations from an FCC

crystalline configuration. Typically, disorder is divided into two main categories accord-

ing to the length-scale of deviations within the bond matrix. Short-range disorder is

associated with defects affecting the film on the order of 1 Å to 3 Å, consisting mainly

of strained or twisted bonds, affecting up to 2 nearest-neighbor atoms. Medium-range

disorder is associated with defects on length- scales of 3 Å to 25 Å, consisting mainly

of atomic vacancies or porous regions affecting a volume of film equivalent to 3 to 10

atoms in diameter.

5.3.1 Short range disorder

The amorphous Raman signature is commonly used to characterize the degree of short

range disorder within as-deposited a-Si:H films. Specifically, the full width at half

maximum (FWHM) of the transverse optical (TO) peak is most commonly correlated

with the average distribution of bond angles within the film [114, 115]. Figure 5.3

shows the FWHM of the TO Raman peak for 100 nm and 200 nm as-grown films of

varying seed density. The seed plane of each film was deposited at mid-thickness: 50

nm and 100 nm below sample surface, for 100 nm and 200 nm films, respectively. The

increase in TO width with seed density indicates that the inclusion of seed crystals in

the amorphous film provides a measurable degree of short-range disorder.

Due to the strong optical absorption of a-Si:H at a wavelength of 514 nm, a majority

of the incident light used for this Raman study is absorbed in the top 100 nm of film.

For this reason, the similarity of TO FWHM trends for 100 nm and 200 nm seeded

films indicates that the observed short-range disordering extends above the immediate

seed plane region.
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This disordering likely originates within the a-Si:H top-layer, due to a lack of confor-

mal deposition over the textured surface created by the seed plane. Reports in literature

support the hypothesis that disorder of this nature, on the short-range scale, can result

in a suppression of crystallization rate during annealing. Similar behavior was observed

by Matsuyama et al., where it was demonstrated that a-Si:H films deposited on tex-

tured glass substrates exhibited a greater degree of short-range disorder, measured by

an increase in TO FWHM [66]. In the same study, it was demonstrated that these

textured substrate films exhibited lower crystallization rates than films grown on un-

textured substrates. Furthermore, Park et al., observed that amorphous films deposited

and annealed on top of pre-existing microcrystalline layers, showed measurably slower

crystallization when the amorphous layer consisted of material with relatively larger

Raman TO width [62].
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Figure 5.3: Full-width at half-maximum (FWHM) of the amorphous Raman TO peak

signature of as-grown samples of various seed crystal concentrations. TO FWHM is

correlated strongly with short-range disorder in a-Si:H films. Results indicate an in-

crease the short-range disorder induced by the inclusion of seed crystals. 100 nm thick

films were compared to 200 nm thick films to show the prevalence of the short-range

disordering effects through the film thickness.
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5.3.2 Medium Range Disorder

Microstructure

In order to characterize the full extent of the film disorder induced by the seed layer,

the effect of varying seed density on medium range order was also measured. A common

metric for characterizing film disorder on a medium range length-scale is the microstruc-

ture parameter (“R*”). As discussed in Chapter 3, microstructure is calculated from

the FTIR spectra of an as-deposited film, and classified as the fraction of total bonded

hydrogen that exists in a clustered formation. Since clustered hydrogen has been shown

to reside in vacancy-rich regions of the film, microstructure is typically used as an indi-

cation of film porosity [89, 116]. Figure 5.4 shows the variation of microstructure with

seed density for the films shown in figure 5.3. R* is relatively unaffected up to seed den-

sities of 30 /µm2, above which, increasing steadily from approximately 0.05 to values

above 0.10.
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Figure 5.4: Microstructure vs. seed density for the several 100 nm thick films. Relative

to unseeded films, microstructure increases by a factor of 2 for films containing seed

concentrations greater than 30/µm2, indicating that a measurable degree of porosity

is introduced by seed inclusions. Each data point reflects the average of FTIR spectra

taken at three film locations.
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Hydrogen Content

This increase in microstructure is likely, also, a consequence of non-conformal deposi-

tion of the a-Si:H top layer. In instances where increases in microstructure result in a

uniform increase porosity throughout the film volume, typically a measurable increase

in hydrogen content is observed [89, 117, 118]. Figure 5.5 shows the hydrogen content

for the seeded films shown in figure 5.4, as measured by FReS. Hydrogen content is rel-

atively constant at ∼12% for the range of seed concentrations over which R* is shown

to increase. These observations suggest that the medium range disorder induced is a

localized effect, likely concentrated near the seed plane.
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Figure 5.5: Hydrogen content vs. seed density for the 100 nm films shown in figure

5.4, as measured by forward recoil spectroscopy (FReS). Hydrogen content is relatively

constant over the range of seed densities that microstructure was observed to increase.

This suggest the observed increases in microstructure is a consequence of the local

geometry of the seed plane, and not a change in film stoicheometry.



45

Porosity at the Seed Plane

Figure 5.6 (a) shows cross-sectional SEM image of the seed plane region of a 100 nm

thick film containing a single seed layer, with a concentration of approximately 6 /μm2.

The top layer of a-Si:H film is seen to form a “conical” region that extends upward

from the base of each seed crystal, indicating the region of influence of the seed plane

layer on the top layer layer of film. Figure 5.6 (b) shows a closer, cross-sectional TEM

image of the top layer region surrounding a seed crystal. Near the base of the conical

region (outlined in red), nano-scale cavities can be seen, indicative of the microstructural

defects concentrated near the seed plane.

Seed 
Crystal

(a) (b)

Seed crystal

nano-cavities

50nm

Figure 5.6: (a) Cross-sectional SEM image of the a-Si:H top-layer of an as-grown film

containing a plane of seed crystallites. The dome regions on the film surface indicate

the top-layer a-Si:H film deposited over individual seed crystals. The red line indicates

the region of disorder influence the seed crystal exhibits on the deposition of the top

film layer. (b) Cross-sectional TEM image of an as-grown seeded film containing two

layers of seed crystals. Porous, nano-cavity rich regions can be seen adjacent to the base

of each conical regime (red), where seed crystals are located. Images taken by Andrew

J. Wagner.
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5.3.3 Textured substrates

The observed increases in structural disorder with seed concentration, in as-deposited

films, can possibly explain the resulting decreases in grain growth rate during annealing

shown in 5.2. The topography of the seed plane is capable of generating defects on the

short and medium range scale that have been linked to suppression of crystallization

in other reports. In order to explore this hypothesis further, equivalent 100 nm seeded

samples were deposited on substrates “textured” to various degrees to simulate the

topography (and thus the disorder) of the seed plane. Samples were then annealed at 625

◦C and crystallization rates were compared by Raman crystal fraction measurements.

Textured Substrate Deposition Process

In order to simulate the topography provided by the seed plane, substrate texture

was generated by depositing various concentrations of seed crystals directly onto the

substrate surface, prior to film deposition. These “texture-layer” crystals were then

coated with 10 nm of silicon dioxide grown from PECVD at 150 ◦C. Since SiO2 is stable

for temperatures up to 1100 ◦C, this barrier layer prevents seed crystals in the texture

layer from crystallizing the top layer film during annealing. Top layer films consisted

of a seeded film consisting of 100 nm of a-Si:H deposited at 5 W , 100 mTorr and 250

◦C, with a single seed layer, 50 nm below film surface, having a seed concentration of

∼ 6/µm2. Three separate samples were deposited, distinguished by “low”, “moderate”,

and “high” levels of substrate texturing. Figure 5.7 shows a schematic of the substrate

texturing and film deposition process, along with AFM images of each substrate texture

prior to film deposition.
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Figure 5.7: Schematic representation of the deposition process used to study the effect

of film disorder on crystallization rate in seeded films. Step 1: Corning glass substrates

were coated with seed crystals to achieve one of three degrees of texture: “low”, “mod-

erate” or “high”. AFM images of each type of texture layer are shown on the right. 2:

Texture layer is coated with a 10 nm to 15 nm barrier layer of PECVD grown oxide

to prevent crystallization from the texture layer. 3: A single, 100 nm, seeded film is

deposited with seed density of ∼ 6/µm2.
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Textured Substrate Crystallization Kinetics

Films were subsequently annealed at 625 ◦C in a quartz furnace under nitrogen ambient.

Crystal fractions calculated at regular time intervals by Raman spectroscopy using the

techniques outlined in Chapter 4. Figure 5.8 shows the resulting progression of crystal

fraction with anneal time for each substrate texturing. Crystallization curves are ob-

served to monotonically shift to later times with increasing substrate texturing. It is

clear from this result that the disorder generated by the seed-plane topography hinders

the crystallization rate of the surrounding film in a manner consistent with the trend

observed in figure 5.1. This suggests that the observed decrease in crystallization rate

with increasing seed density is a result of film disorder, likely due to defects associated

with top-layer deposition over the topography of the seed layer.
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Figure 5.8: Crystallization curves of 3 seeded films of equivalent structure, grown on

substrates having different degrees of texturing, and annealed at 625 ◦C. Films were

grown by the process outlined in figure 5.7 on top of substrates exhibiting either “low”,

“moderate”, or “high” degrees of texturing. Results show a reduction in crystallization

rate with substrate texturing.
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5.4 The Effect of Varying Seed Density on Final Grain

Structure

In order to quantify the ability of seed crystals to modify the final grain structure

of resulting poly-crystalline (poly-Si) films, comparisons of relative grain sizes were

conducted following annealing. Grain size comparisons were made by analysis of the

poly-crystalline Raman signature, along with electronic transport properties. Compar-

isons were made for several films of varying seed density, after films achieved “complete

crystallization”, defined as the annealing stage at which a crystal fraction maximum is

achieved.

5.4.1 Relative Grain Size

The transverse optical (TO) component of the Raman signature of poly-crystalline

silicon is a common method of providing information on relative grain size of poly-

crystalline films. The width of the crystalline TO Raman peak between 515 cm−1

to 520 cm−1 has been demonstrated to have a direct correlation to grain size [119].

Specifically, relatively smaller grain sizes have been demonstrated to exhibit larger TO

peak widths due to a progessive relaxation in momentum conservation. Figure 5.9 shows

c-Si TO widths for several of the 200 nm thick samples shown in figure 5.2, following

annealing to complete crystallization at 650 ◦C. Spectra were taken at five locations

across the surface of each film. The dashed reference lines corresponds to the range of

average TO widths measured for three unseeded films, following complete crystallization

at the same temperature.
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Figure 5.9: Raman c-Si TO peak width of several 200 nm thick seeded films after com-

plete crystallization at 650 ◦C. Peak width increases with initial seed density, indicating

a decrease in average grain size. An example Raman spectra of a fully crystallized,

poly-Si sample is shown in the inset.

The increase in peak-width with seed density indicates a shrinking grain size, con-

sistent with the intention of controlling final grain structure by seed population. It

is interesting to note that seed densities greater than ∼ 20/µm2 result in relatively

larger TO widths than films crystallized from unseeded material. This suggests a nec-

essary upper limit to initial seed density, beyond which the grain size of the resulting,

fully-crystallized, film decreases below the average grain size achievable by an unseeded

film.
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5.4.2 Electronic Transport

To analyze how these final grain structure variations translate into device performance,

electronic transport measurements were performed on fully crystallized samples of var-

ious initial seed concentrations. Descriptions of electronic transport in poly-Si differ

from those used to characterize wafer-based silicon materials, due to the necessary con-

sideration of grain boundary regions. Poly-Si grain boundaries are comprised mainly of

amorphous-like regions composed of strained and dangling bonds. These defect-rich re-

gions translate into electronic states residing between the valence and conduction bands.

Charge accumulation at grain boundary trap states results in a potential barrier between

adjacent grains on the order of a 50 meV to 500 meV [120–122]. The depletion width of

an inter-grain potential barrier extends into the adjacent grains, effectively reducing the

amount of free carriers available for intergrain transport. This results in the occurrence

of one of three primary modes of electrical conduction in un-doped poly-Si, depending

on grain size, and grain boundary trap density. Figure 5.10 illustrates the band diagram

associated with each mode, along with corresponding conduction formulas.

Figure 5.10(a) depicts barrier-limited transport, which occurs in films with small

enough trap density and/or large enough grain sizes that a significant free carrier pop-

ulation exists within grain regions. Partial depletion occurs for relatively smaller grain

sizes and/or higher trap densities, resulting in a majority of carriers residing in mid-gap

trap states (Figure 5.10(b)). Complete depletion occurs in films with relatively small

grain sizes or large grain boundary trap densities, when the grain boundary depletion

width extends to dimensions on the order of the average grain size, thus depleting grain

regions of free carriers (Figure 5.10(c)).

For both complete and partial depletion conditions, the Fermi level is fixed near

mid-gap due to the large density of trap states. Conduction is subsequently limited by

thermionic emmission of carriers from trap states, resulting in an conductivity activation

energy of approximately half the mobility gap (Eg). For barrier limited transport, a

significant population of free carriers resides in extended states of the grain region, and

the activation energy for conduction is reduced to the barrier height imposed by the

grain boundaries.
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Figure 5.10: Energy band diagram depiction of three primary modes of conduction in

poly-Si, after [120]. (a) Barrier limited transport. (b) Partially depleted transport.

(c) Fully depleted transport. Corresponding conductivity relationships are also shown,

after [122].

It is important to note that each mode of conduction also shows a prefactor depen-

dence on grain size, with partially depleted and barrier limited showing a positive, linear

correlation with grain size. Subsequently, the mode of conduction for a set of samples

with differing grain size can be inferred from the conductivity activation energy (EA),

the mobility gap (Eg), and the relative scaling of room-temperature conductivity with

grain size. Measurements of each of these parameters were performed on several fully

crystallized films in order to determine the effects of varying seed density on the mode

of transport.
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Dark Conductivity

The electronic transport properties of fully crystallized films were compared on the ba-

sis of dark (un-illuminated) electrical conductivity for samples annealed to complete

crystallization from varying initial seed concentrations. Measurements were performed

on 200 nm thick samples deposited with seed layers 100 nm below surface, having con-

centrations of approximately ∼ 6/µm2, ∼ 21/µm2, and ∼ 44/µm2. Following complete

re-crystallization at 650 ◦C, 150 nm thick chromium contacts were evaporated onto the

surface of each sample at several locations to form the device structure shown in the

inset of figure 5.11.

The contact pattern formed consisted of 24 channels total, providing information on

the uniformity of the transport properties across the entire sample. Each channel was 2

mm wide and 1 mm long to prevent the influence of small-channel contact effects. To

reduce Schottky barrier effects on the current-voltage (I-V) characteristics, contacts were

annealed at 450 ◦C for 30 min as suggested in [123]. Conductivity was first measured

for each sample across all 24 channels, at room temperature, and used to compute a

sample average. Activation energies were then estimated from temperature dependent

conductivity measurements taken on a single channel near sample center. Conductivity

was measured in the temperature range from 300 K to 450 K, in 1 K increments.

Figure 5.11 (a) shows the average room-temperature conductivity for each sample.

Figure 5.11 (b) shows Arrhenius plots of conductivity with temperature for each sample,

with corresponding activation energies. The average measured room-temperature dark

conductivity is observed to decrease with increasing initial seed density, suggesting a

reduction in grain size consistent with the results shown in Figure 5.9. Conduction

activation energies were observed to be relatively constant, ∼ 0.63 eV for all samples.

These values are consistent with literature values for poly-Si and micro-crystalline silicon

films [124,125]. However, measurements of the mobility gap were required to make more

accurate assessments of the mode of conduction present.
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Seed density, Activation energy
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Figure 5.11: (a) Room temperature conductivity (un-illuminated) of three fully crystal-

lized samples with as-deposited seed densities of ∼ 6/μm2, ∼ 21/μm2, and ∼ 44/μm2.

Conductivity values and error bars reflect the average and standard error measured over

all 24 conduction channels of the device structure shown in the inset. (b) Conductivity

of each sample as measured from a single, centrally located device channel, over the

temperature range from 300 K to 450 K. Corresponding activation energies are shown

in the legend.
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Mobility Gap

The mobility gap for fully crystallized films was found to be relatively constant over

a wide range of initial seed densities, with an average value of ∼ 1.14 eV ± 0.07 eV ,

roughly twice the conduction activation energies measured in figure 5.11. Mobility

gaps were approximated using “Tauc” plots of photo-absorption characteristics, shown

in Figure 5.12, a method commonly used as an approximation of the band gap in

semiconducting materials where the density of states is shaped by defect states [85, 93,

126]. Absorption data for each film was taken by the constant photo-current method

(CPM), in the range of 1320 nm to 800 nm (∼ 0.9 eV to 1.5 eV ). Band gap values for

fully crystalline materials are reported to be ∼ 1.1 eV in literature [127].

•

μ
μ
μ

μ

α

Figure 5.12: Mobility gap (Eg), for 200 nm thick, fully crystallized films annealed from

various initial seed densities. Values were approximated as equivalent to the Tauc gap,

estimated from Tauc plots of CPM photo-absorption, shown in the inset. The Tauc

gap was taken as the x-intercept of the linear portion of the plot shown, for absorption

coefficients above 103 cm−1 [85].
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Table 5.1: Summary of electronic transport properties of fully crystallized films of vary-

ing initial seed density. σ(300K) is dark conductivity averaged over 24 device channels,

taken at room temperature. Ea is dark conductivity activation energy taken over a

temperature range from 300 K to 450 K. Eg is mobility gap estimated from CPM

measurements. Grain diameter values were estimated from seed density.

seed density estimated grain diameter σ(300K) Ea Eg

(µm−2) (nm) (S/cm) (eV ) (eV )

6 426 5.7× 10−7 0.63 1.04

21 220 2.6× 10−7 0.63 1.19

44 151 1.85× 10−7 0.65 1.2

Table 5.1 summarizes the results of figures 5.11 and 5.12. In determining the mode

of conduction present, it is necessary to note the relative conductivity between samples

is approximately equal in scaling as the relative grain sizes estimated by initial seed

density. Specifically, the ratio of room temperature conductivity between ∼ 6/µm2 and

∼ 21/µm2 seed density samples is approximately 1.9, and the ratio of estimated grain

sizes between the same samples is roughly 2.2. Similarly, comparing the same values for

∼ 6/µm2 and ∼ 44/µm2 samples yields ratios of 2.8 and 3.1, respectively.

This scaling suggests a linear dependence between conductivity and average grain

size, indicative of either the partially-depleted or barrier-limited transport modes shown

in figure 5.10. However, the activation energy of conduction was observed to be approx-

imately 0.64 eV ± 0.01 eV for all samples, which is roughly half the average mobility

gap values observed in figure 5.12. This suggests the observed mode of conduction to

be partially-depleted, meaning conduction in fully crystallized seeded films is limited

primarily by trap states near the Fermi level. An increase in conductivity can subse-

quently be achieved by reducing the concentration of trap states in fully crystallized

films. Reduction in trap density requires elimination of the primary grain boundary

states responsible for increasing the depletion width.
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The shape of the grain boundary density of states has been experimentally observed

to be similar to that of amorphous silicon [120, 121], with an exponential tail of defect

states diminishing toward mid-gap. However, unlike amorphous silicon, the limited

long range order of the poly-Si grain structure results in a de-localization of many

of the states residing near the band-tail regions [120]. Subsequently, charge carrier

trapping is primarily associated with the localized, or dangling bond states residing

near mid-gap. For this reason, a description of the grain boundary region consisting

of a δ-shaped distribution of trapping states, centered near mid-gap, has been shown

to reasonably approximate experimental conductivity results [122]. Thus, a reduction

of carrier charge-trapping in fully crystallized films requires measures focused on a

reduction of dangling bonds within grain boundary regions.

Hydrogen Treatment

The most common method of reducing dangling bond defects in poly-Si films is by injec-

tion of hydrogen into grain boundaries after crystallization. This is typically performed

by exposing fully crystallized films to a hydrogen plasma at substrate temperatures be-

tween 25 ◦C to 450 ◦C [57, 128–130]. Hydrogen treatment was performed on the films

shown in Figure 5.11 by exposing them to an argon and hydrogen discharge at a pressure

of 400 millitorr and a substrate temperature of 200 ◦C. A 2:1 ratio of hydrogen to argon

flow rates was used (40 sccm:20 sccm) and exposure time was 30 min. The addition

of argon was found to be necessary to promote ionization of the hydrogen precursor.

In order to prevent ion bombardment damage to existing device contacts, additional

samples from the depositions of the devices shown in figure 5.11 were used to acquire

“post-treatment”, conductivity values. These samples were fully crystallized at 650 ◦C,

exposed to the hydrogen discharge treatment, and Cr contacts were evaporated to make

devices of the same structure shown in Figure 5.11.

Figure 5.13 shows the resulting hydrogen content of each film before and after un-

dergoing hydrogen plasma treatment. The non-zero signal measured prior to plasma

treatment is attributed to hydrocarbons adsorbed onto the film surface and into the

surface oxide. For each film measured, the hydrogen content increases from below 2%,

to values between 6% to 7% (at.).
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Figure 5.13: Hydrogen content (% at.) as measured by forward recoil spectroscopy

(FReS) of fully crystallized samples before and after hydrogen plasma treatment. Sam-

ples were 200 nm thick, with initial seed densities of∼ 6/µm2, ∼ 21/µm2 and∼ 44/µm2.

These values are reasonable considering the final crystal fractions measured for each

film by Raman were measured to be approximately 81%, 80%, and 78% for ∼ 6/µm2, ∼
21/µm2 and ∼ 44/µm2, respectively. This suggests remaining quantities of amorphous

grain boundary phase to occupy roughly 20% of the final film. The solubility limit

of amorphous silicon has been reported to be near 40%-50% (at.), due to spinodal

decomposition [131]. Assuming completely, amorphous grain boundary regions, this

suggests hydrogen solubility limits between 7% to 9% (at.) for the films treated here.

Following hydrogen treatment, room temperature dark conductivity and temperature-

dependent conductivity were measured. Figure 5.14 shows the resulting conductivity

measurements for fully crystallized films with (“H treated”) and without (“untreated”)

hydrogen plasma treatment.
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Figure 5.14: (a) Room temperature dark conductivity of fully crystallized films having

seed densities of ∼ 6/μm2, ∼ 21/μm2, and ∼ 44/μm2. Hydrogen treated films are

shown as solid symbols, with untreated films shown as open symbols. (b) Temperature-

dependent conductivity for untreated (dashed lines) and H treated (solid lines) samples.

Corresponding activation energies for H treated samples are shown in the legend.
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The results indicate a clear improvement in conductivity following hydrogen plasma

treatment. Table 5.2 provides a summary of the conductivity parameters from figure 5.2.

It’s interesting that this improvement is more significant for films crystallized from lower

initial seed densities. This is likely due to a larger average grain size and a subsequently

smaller number of grain boundaries. Since each film was exposed for equivalent time

intervals, longer exposure times are likely required to saturate the relatively larger

quantity of grain boundary defects in higher seed density films. This is further evidenced

by the observed changes in conduction activation energy between untreated and treated

samples. Activation energy is reduced below mid-gap levels to approximately 0.49 eV

for ∼ 6/µm2 and ∼ 22/µm2 density films following H treatment, while the ∼ 44/µm2

film exhibited a minor reduction to 0.59 eV . For ∼ 6/µm2 and ∼ 22/µm2 samples,

this suggests it is likely that trap density was reduced to a significant enough degree to

transition from partially depleted, toward barrier limited transport.

Table 5.2: Summary of electronic transport properties of fully crystallized films of vary-

ing initial seed density, with (H treated) and without (untreated) hydrogen plasma

treatment.

seed density σ(300K) σ(300K) σ(300K)Htreated
σ(300K)untreated Ea Ea

untreated H treated — untreated H treated

(µm−2) (S/cm) (S/cm) — (eV ) (eV )

6 5.7× 10−7 4.42× 10−5 77.4 0.63 0.49

21 2.6× 10−7 1.24× 10−6 4.9 0.63 0.49

44 1.85× 10−7 3.78× 10−7 2.1 0.65 0.59
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5.5 conclusions

The effect of varying initial seed crystal concentration, or “seed density”, has been

demonstrated on both crystallization kinetics, and final grain structure quality. Specifi-

cally, crystallization rate was observed to decrease with increasing initial seed concentra-

tion. This is believed to be due to an increase in film disorder, induced by the geometry

of the incorporated seed crystals, resulting from a-Si:H top layer deposition over the

texture of the seed plane. Crystallization studies of intentionally textured substrates

support this hypothesis. The final grain size of seeded films following annealing was seen

to decrease with increasing seed density, as measured by the TO width of fully crys-

tallized Raman spectra. Electrical conductivity measurements reflect a similar trend,

indicating final grain structure can be tuned by initial seed concentration to a degree

that translates into beneficial device properties. The mode of electrical conductivity

in fully crystallized films was identified, and a method for improving transport prop-

erties to a more favorable mode was outlined, through a post-anneal hydrogen plasma

treatment process.



Chapter 6

The Effect of Seed Crystal Shape

on Crystallization Kinetics

6.1 Introduction

The effect of seed crystal shape on crystallization kinetics was studied by varying plasma

conditions within the seed crystal reactor tube. Specifically, a parameter space of vary-

ing RF power was explored, due to observations of a potentially novel crystallization

mechanism occurring in films containing seed crystals grown at powers higher than 140

W . These observations are believed to be associated with changes in seed crystal shape

that occur at relatively higher synthesis powers, and were found to demonstrate further

enhancements in crystallization rate relative to cubic seed crystal films.

6.2 Void-induced Crystallization

It was observed in heated stage TEM that films containing seed crystals synthesized at

powers greater than 140 W or under conditions with more effective power matching,

exhibited significantly different mechanisms of crystallization. Figure 6.1 shows images

of 150 W seeded films during annealing at 640 ◦C. Void-like structures, elliptical in

shape, and roughly 10 nm to 30 nm in long axis dimension, can be seen to form at

the interface of the seed crystals. After a period of time, these void regions proceed to

travel through the film, leaving a crystalline wake.

62
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Several HSTEM observations have shown void motion to exceed radial grain growth

rate from seed crystals by a factor of 2 or more for anneal temperatures between 600

◦C-650 ◦C [81].

Crystalline tail

(a) (b)

Figure 6.1: TEM images taken in-situ, during annealing of a 100 nm seeded film at 640

◦C at (a) ∼7 min and (b) ∼15 min. Seed crystals were synthesized at an RF power of

150 W . Void regions (red arrows) are seen to propagate from most seed crystals, each

leaving a crystalline wake. After ref [81].

6.2.1 Void Kinetics

Previous studies by Anderson [81] determined void-induced crystallization (VIC) to

be driven by surface diffusion of amorphous silicon atoms from the frontal amorphous

region to the crystalline tail region along the inner void surface. Figure 6.2 shows an

illustration of the mechanism of void propagation proposed by Anderson. The activation

energy associated with diffusion along free surfaces in amorphous silicon was measured
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by Smets et al. to be approximately 0.77 eV to 1.05 eV [88]. The lower activation

energy of surface diffusion, relative to the activation energy from grain growth from

the seed crystals of 2.7 eV , was originally thought to facilitate the higher rate of void

motion. However, recent investigations by Wagner et al. [132] observed the rate of

void propagation to increase with void size, an effect attributed to the development of

twin-defects at the crystalline boundary of larger voids. Twin-enhanced grain growth

has been demonstrated in several literature studies, with increases in crystallization

rate of an order of magnitude or more being reported, relative to grain growth absent

twin formation [53, 125, 133]. The underlying enhancement is believed to be due to a

reduction in the required number of ad-atoms necessary for grain surface restructuring,

relative to a twin-free grain surface.

a-Si

c-Si

Void motion

a-Si atom
diffusion

Figure 6.2: Visual of the surface diffusion-driven mechanism of void propagation origi-

nally proposed by Anderson [81]. Blue arrows represent diffusion of silicon atoms from

the amorphous frontal region to the crystalline tail, along the inner void surface. The

resultant void motion is indicated by the red arrow.
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6.2.2 Void formation

Deposition Shadowing

These mobile void regions are believed to be formed by a coalescence of smaller, porous

regions near the seed plane, occurring during early anneal stages. These smaller, nano-

scale vacancies likely originate from the shadowing effect discussed in chapter 5. As was

shown in Figures 5.6 and 5.4, a significant degree of porosity was observed to occur near

the seed plane, even for films containing seed crystals synthesized at an RF power of 140

W . However, this shadowing effect is much more pronounced for films containing seeds

synthesized at RF powers of 150 W , an effect believed to be due to a modification of seed

crystal geometry. Figure 6.3 (a) shows TEM image comparisons of seed crystals grown

at 140 W and 150 W , demonstrating the observed change in seed crystal geometry

toward a higher-faceted, octahedral structure.

Figure 6.3: (a) TEM images of seed crystals synthesized at RF powers of 140 W and

150 W . (b) Visual depiction of film cross-section and shadowing following top-layer

deposition over each seed shape. (c) Comparison of microstructure with varying seed

density for films containing seed crystals grown at each power.



66

Figure 6.3 (b) shows a schematic representation of the shadowing effect proposed

to occur during deposition over seed crystals grown at 140 W and 150 W . The higher

faceting of 150 W seed crystals results in a lower area of surface contact with the

underlying a-Si:H base-layer, resulting in the formation of cavities during top-layer

deposition. These cavities result in a greater degree of porosity near the seed plane,

as is reflected by an the observed increase in microstructure shown in Figure 6.3 (c).

For most of the seed densities compared, microstructure of films containing 150 W seed

crystals is nearly double that of films containing 140 W seed crystals.

Cavity Coalescence

For all samples in which VIC was observed, voids were observed to appear near the

seed perimeter during early anneal stages, prior to the emergence of observable grain

growth. Figure 6.4 shows a comparison of cross-sectional TEM images of films in both

the as-deposited state, and following a 15 min anneal at 650 ◦C. A void is seen to

appear on the right side of the conical perimeter of the annealed sample, indicative of

the cavity coalescence believed to occur in this region. It is believed that the time scales

associated with void formation correspond to the time required for smaller vacancies

to coalesce into larger cavities. Similar effects have been reported in hydrogen effusion

experiments, where nano-vacancies have been shown to coalesce and propagate from

a-Si:H films at temperatures between 450 ◦C to 600 ◦C, in time scales of 15 min to

60 min [134–136]. This coalescence can be potentially explained in the context of free

energy minimization, due to the lower energy associated with internal surfaces of low

radius of curvature. The relatively higher curvature of smaller vacancies results in higher

energy, meta-stable regions of film capable of collecting into larger cavities with lower

curvature [137].
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Figure 6.4: Cross-sectional TEM image of a 100 nm thick seeded film as-deposited (left)

and after 15 min of annealing at 650 ◦C (right). The embedded seed crystal is identified

by the dark region at the base of the conical regime. Following annealing, a large void

is seen to appear on the right side of the conical perimeter.

6.3 The Effect of Particle Synthesis Power on Film Crys-

tallization Kinetics

In order to further investigate the effect of particle shape on crystallization kinetics,

several films were annealed containing seed crystals synthesized at various RF powers.

Specifically, powers above 140 W were utilized with the intention of producing shape

modifications that would potentially translate into measurable changes in crystallization

rate. Each sample was deposited with a single mono-layer of seed crystals synthesized

using the procedure outline in 3.1.3, with varying RF powers of 140 W , 150 W , 160 W ,

and 170 W . Surrounding a-Si:H films were 100 nm thick, deposited at an RF power of

5 W , a pressure of 100 mTorr, and a substrate temperature of 250 ◦C.
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6.3.1 Seed Crystal Shape

Figure 6.5 shows TEM images of the resulting seed crystals for each RF power, with

various shape profiles labeled for clarity. A distinct transformation from cubic (type

I) to a higher faceted, rounded cubic (type II) profile occurs when synthesis power is

increased from 140 W to 150 W . Similar shapes are observed at powers of 160 W and

170 W , with the additional presence of larger cubic-like particles, and several particles

exhibiting hexagonal profiles (type III).

Figure 6.5: TEM images of seed crystals grown using the procedure outlined in section

3.1.3, with varying RF powers. Profile shapes were observed to transform from cubic

(type I) at 140 W , to either a rounded cube (type II) or hexagonal (type III) profile of

a cuboctahedral structure.
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Figure 6.6: Schematic of the two primary shape outlines of the cuboctahedron shape

with corresponding silicon lattice orientations and observed TEM equivalents. Figure a)

depicts the (100) orientation resulting in the rounded cube outline visible in the above

TEM image of a seed crystal grown at 150 W , also marked as type “II” in figure 6.5.

Figure (b) depicts the (111) orientation resulting in the hexagonal outline visible in the

above TEM image of a seed crystal grown at 170 W , also marked as type “III” in figure

6.5.

As figure 6.6 illustrates, a single “cuboctahedron” geometry is capable of producing

profile shapes of both type II and III, when oriented relative to it’s surface normals. This

is interesting, considering tight-binding models, by See et al. [138], of silicon particle

formation have predicted the cuboctahedral geometry to be a stable configuration for

hydrogen terminated nano-crystals. Moreover, these studies determined that square

(dark blue) and triangular (light blue) faces correspond to (100) and (111) orientations,

respectively. Comparing the primary cuboctahedron shape profiles to high-resolution

TEM images of particles grown at elevated powers, Figure 6.6(a) demonstrates the

profile of a normal to the (100) cuboctahedron surface closely approximates the type

II profiles seen in figure 6.5. Similarly, Figure 6.6(a) demonstrates that the profile

normal to the (111) cuboctahedron surface can be seen to approximate type III profiles.
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Consequently, it is believed that a majority of the shape profiles observed at powers

above 140 W are a result of different orientations (either (111) or (100) oriented) of the

same cuboctahedral geometry.

The precise mechanisms linking this shape transformation to plasma synthesis pa-

rameters is unknown. However, insights can potentially be drawn from earlier studies

on the synthesis of cubic seed crystals in this particular reactor. For instance, studies

by Bapat et al. [95] observed interesting transformations in particle structure at sev-

eral locations, with respect to the nano-crystal plasma discharge region. Specifically,

it was observed that particles exhibited more spherical, amorphous-like structures, ap-

proximately 300 nm in diameter, in regions upstream of the plasma discharge. These

particles densified into ∼100 nm poly-Si particles near the upstream edge of the dis-

charge, eventually becoming 30-50 nmm single crystals of cubic shape.

It has been suggested that this transformation is a result of etching, occurring from

an increased bombardment of hydrogen ions upon entering of the discharge region [99].

Experiments by Sasaki and Takada [139] demonstrated hydrogen etching rates of wafers

to be 1.5 times higher in (100) orientations relative to (111) orientations. This was

argued to explain how cubic, (100) faceted structures could emerge downstream from

relatively larger spherical, (111) faceted structures [99]. In the context of higher-faceted

geometries, it is conceivable that either an over-etching of cubic (111) corner regions,

or an under-etching of (100) faces could potentially result in the cuboctahedron shapes

observed here. However, etching alone is unlikely to explain the transformations ob-

served, as the transition from amorphous to single-crystal particles requires significant

thermal input, as is typically supplied by ion and radical surface reactions.

It has also been suggested that hydrogen termination plays critical role in the stabil-

ity of different particle geometries. For instance, simulations by Hawa et al. have shown

that the cubic shape is more energetically favorable for silicon nano-crystals having full

hydrogen surface termination. In the instance of a bare particle surface, however, a

higher-faceted shape was determined be more stable. Subsequently, the stability of the

cuboctahedral shapes observed at higher powers can potentially be rationalized by a

lower hydrogen coverage. Lower hydrogen coverage could potentially occur at higher

powers due to an increased plasma density and subsequently increased ion flux, leading

to hydrogen abstraction, and/or hydrogen desorption from surface heating.
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6.3.2 Microstructure

FTIR spectra were compared for each film prior to annealing to compare relative degrees

of microstructure. As Figure 6.7 displays, a significant shoulder region near 2100 cm−1

emerges for films containing seed crystals synthesized at powers above 140 W , indicative

of a larger degree of clustered silicon-hydrogen bonds associated with film porosity. It is

interesting to note the strong overlap in spectra for 150 W , 160 W and 170 W samples.

This suggests a similar degree of shadowing is present for each film, regardless of the

presence of the larger particles observed in 160 W and 170 W films. Furthermore, due to

the cubic-like shape of the larger particles observed in 160 W and 170 W , this suggests

particle shape to play a more significant role than particle size in affecting film disorder

on the medium-range scale.
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Figure 6.7: Normalized FTIR spectra of 100 nm films containing seed crystals grown

at RF powers of 140 W , 150 W , 160 W , and 170 W . The emergence of a shoulder near

2100 cm−1 for 150 W to 170 W samples indicates an increase in microstructure. The

increased microsturcture is likely due to an increased shadowing effect during top layer

deposition, as a result of the higher-faceted shapes exhibited in seed crystals grown at

higher powers.
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6.3.3 Size Distribution

Prior to annealing, it was desired to ensure that average seed crystal density and size

were relatively similar for each synthesis power. Due to the findings of chapter 4,

in which crystallization rate was observed to have a nonlinear dependence on seed

density, it was desired to compare samples with seed densities similar to within 1 /µm2,

in order to avoid the potentially confounding effects of seed shape and seed density.

Subsequently, size distributions were compared for each synthesis power, acquired from

AFM topography scans of 100 µm2 film surface areas. Figure 6.8 a) shows seed crystal

size distributions for each power, with dashed baselines added for a zero-count reference.

Distributions are similar for 140 W and 150 W seed crystals, with an average diameter

of 32 nm ± 2.5 nm and 31.7 nm ± 3 nm, respectively. Both 160 W and 170 W

size distributions exhibit an asymmetrical broadening toward slightly larger average

diameters of 35 ± 4.9 nm and 35.6 ± nm for 160 W and 170 W powers, respectively,

reflecting the emergence of larger particles.
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Figure 6.8: (a) Seed crystal size distributions adapted from AFM topography data for

each 100 nm film, over a 10 µm x 10 µm area. (b) Seed crystal counts corresponding

to the peak of each distribution from (a).
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Interestingly, this broadening is accompanied by a decrease in peak yield with in-

creasing power, with the most significant decrease occurring between 160 W and 170

W . This is potentially due to the presence of larger particles growing at the expense of

smaller particles within the plasma discharge. The resulting aerial seed densities from

each sample were calculated by integrating each distribution from 20 nm to 100 nm,

and dividing by the AFM measurement area. This resulted in aerial seed densities of

approximately 3.4 /µm2, 2.6 /µm2, 2.9 /µm2, and, 1.1 /µm2 for 140 W , 150 W , 160

W , and 170 W samples, respectively.

6.3.4 Crystallization Kinetics

Due to the relatively lower aerial seed density of 1.1 for the 170 W sample, only films

containing 140 W , 150 W , and 160 W seed crystals were compared in annealing stud-

ies, to avoid confounding effects from seed density differences. Subsequently, 100 nm

films containing seed crystals grown at 140 W , 150 W , and 160 W were prepared and

annealed at regular intervals. The progression of crystal fraction was monitored by Ra-

man spectroscopy following the techniques outlined in section 4.2. This was repeated

for three different temperatures of 600 ◦C, 625 ◦C, and 650 ◦C. Figure 6.9 (a) shows the

resulting progression of crystal fraction with anneal time for each sample. Figure 6.9

(b) shows Avrami, log-scale plots of each crystallization curve, similar to those utilized

in Figure 4.6, demonstrating the time dependence of each samples grain growth.

It is clear from the results of figure 6.9 (a) that films containing seed crystals grown

at 150 W and 160 W exhibit faster rates of crystallization relative to 140 W samples. It

is interesting that crystallization curves overlap strongly for 150 W and 160 W samples

despite the greater presence of relatively larger seed crystals evident in the 160 W

sample. This suggests particle shape to have a more significant effect on increasing

crystallization kinetics then size. The increased microstructure evident in figure 6.7,

along with TEM observations suggest this enhancement of crystallization rate to be a

due to an increased presence of void-induced-crystallization in both 150 W and 160 W

samples.
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Figure 6.9: (a) Raman crystal fraction with anneal time for 100 nm films containing a

monolayer of seed crystals deposited at seed densities of ∼3/µm2. Seed crystals were

synthesized at powers of 140W , 150W , and 160W , resulting in cubic and cuboctahedral

shapes, respectively. (b) Avrami plots of the crystal fraction curves from (a). The

resulting slope “n” indicates the time dependence of the crystallization behavior, after

equation 4.2.
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It is also interesting to note the monotonic decrease in Avrami slope “n”, with

increasing power, shown in figure 6.9 (b). Values for “n” range between 1.2 to 1.5

for 140 W samples, decreasing to 0.9 to 1.1 for 150 W samples and 0.6 to 0.9 for

160 W samples. Since “n” has been suggested to be linked to the dimensionality of

grain growth [107, 108, 140], this trend suggests a different, more constrained, growth

geometry to be present for higher-faceted crystals, relative to cubic seed crystals. For

instance, in-situ TEM studies of VIC observe void motion to cease once a competing

void-wake or crystalline region is encountered. Due to the relatively rapid rate of void

propagation, it is also conceivable that grain growth dominated by VIC involves a

greater degree of interaction between adjacent grains at earlier annealing stages. The

subsequent restrictions associated with void interactions could potentially translate into

a perceived reduction in time dependence. It should also be noted that the reduction

in “n” for 140 W samples relative to the values observed in Chapter 4 is likely due to

a reduction in film thickness from 200 nm to 100 nm, as grain growth is expected to

be interrupted by the film surface and substrate interfaces at much earlier annealing

stages.

6.4 Conclusions

A modification of seed crystal shape from a cubic to a higher-faceted cuboctahedron

geometry was demonstrated to occur with increasing RF synthesis power. The precise

mechanism behind the observed shape transformation is unknown, however hydrogen

is believed to play a central role through etching and/or particle heating. It is clear

from the above observations that seeding films with cuboctahedral crystals leads to an

enhanced crystallization rate and reduced Avrami slope relative to seeding with cubic

crystals. This increase crystallization rate is likely due to the presence of a unique crys-

tallization mechanism, involving the propagation of nano-scale cavity regions or “voids”

within the film. It is believed that these voids result from the coalescence of cavities

formed during the top-layer of a-Si:H film deposition, due to an enhanced shadowing

from the higher-faceted seed crystal shapes. At the time of this study, it is unclear

whether the grain structures formed from void-induced crystallization have properties

more suitable for device structures. Additional studies are required to understand and
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exploit the potentially novel grain structures available through this mechanism.



Chapter 7

The Effect of Varying Film

Properties on Crystallization

Kinetics

7.1 Introduction: The Motivation for Varying Film Prop-

erties

The absorber layer of a competitive poly-Si solar cell consists of grains extending through

the device thickness, with viable device thicknesses considered to be 1 µm or more.

Producing devices in this thickness range requires significantly increased deposition

rates relative to those used in the experiments discussed in previous chapters. In the

studies outlined in this chapter, film deposition conditions were varied relative to those

used previously, to study the crystallization times of seeded films, and incubation times

of similar, unseeded films, grown at relatively higher deposition rates.

77
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7.1.1 The Relevance of Increasing Film Deposition Rate

Deposition rates of seeded films studied thus far have been near 2 nm/min using the

procedure and parameters outlined in section 3.1.2. At this deposition rate, synthesizing

a µm thick film would require a 9 hour deposition. Current industry efforts aim to

achieve deposition rates near 100 nm/min or more, however this typically involves RF

frequencies greater than 100 MHz, which typically leads to difficulty in film quality,

uniformity, and process scaling [25]. For the studies outlined in this chapter, it was

desired to achieve deposition rates that would allow for growth of a µm thick film

within a two hour deposition window, using an RF frequency of 13.56 MHz. This

required achieving deposition rates of 10 nm/min or more.

7.1.2 The Relevance of Through-thickness Grain Penetration

As discussed in section 2.5.3, the solar cell device measurement most commonly associ-

ated with grain structure quality in poly-crystalline devices is open circuit voltage (Voc).

Voc is defined as the maximum potential voltage that can be accumulated across the

thickness of a photo-voltaic device, operating under standard AM 1.5 illumination. It is

in the film thickness dimension that photo-excited carriers must be able to easily travel

in order to generate a voltage difference between the top and bottom contacts connect-

ing the device to an external circuit. For this reason, Voc is heavily dependent on the

electronic transport quality in the film-thickness dimension, decreasing with inter-grain

defects such as grain boundaries, and intra-grain defects such as dislocations [56,73,141].

Specifically, studies such as those shown in figure 2.4 have demonstrated device perfor-

mance to be more heavily dependent on grain structure in the thickness dimension,

rather than in the plane of the film.
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Conversely, the maximum current achievable by a particular photo-voltaic device is

more heavily dependent on the optical absorption properties of the device. Due to the

indirect band-gap of crystalline silicon, poly-Si absorber layers typically require thick-

nesses greater than a micron in order to generate sufficient current [26,40]. Subsequently,

a competitive, device-grade poly-Si film would have a thickness in the micron range, and

consist of single grains extending from substrate to film surface, or“through-thickness”.

The layer-by-layer structure of seeded film deposition, by the dual-plasma system,

is amenable to creating grain structures of this nature. However, this requires film

conditions in which seeded grains grow to the extent of the film thickness, before the

emergence of natively nucleated grain clusters at the conclusion of the host film incu-

bation period. Due to the relatively random, high density growth of native clusters,

the presence of native grains is undesirable in this context. Subsequently, the following

studies of deposition rate include investigations of the corresponding effects of relatively

higher deposition rate films on grain growth rate of seeded films and the incubation

time of unseeded films.

7.2 The Effect of Varying Pressure and Power

7.2.1 Deposition Rate

Two plasma parameters commonly linked to deposition rate are deposition pressure

[142,143] and RF power [7,25]. Higher pressures lead to increased radical fluxes to the

substrate surface, while higher RF powers result in increased plasma density [83]. The

studies conducted in previous chapters involved depositions carried out at a pressure of

100 mTorr and a nominal RF power of 5 W . Figure 7.1 (a) below shows deposition

rates measured for nominal powers ranging from 5 W to 15 W , at deposition pressures

of 100, 200, and 400 mTorr. Films were deposited on silicon wafer substrates and

thicknesses were measured using scanning electron microscopy (SEM).

For 100 and 200 mTorr parameter spaces, deposition rates showed negligible dif-

ference, with very mild increases across the range of powers studied. At 400 mTorr,

however, deposition rate increases significantly with power, approaching 8 nm/min at

15 W .
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This trend is consistent with literature observations on similar systems, where de-

position rate has been shown to increase sharply at specific pressures, due to a tran-

sition between α and γ discharge modes. The low pressure α regime is characterized

by lower deposition rates due to a lower frequency of electron-neutral collisions pri-

marily occurring far from the electrodes, and film densification from relatively large

ion-bombardment energies. Conversely, the higher pressure γ regime is characterized

by much larger deposition rates due to a greater frequency of collisions concentrated in

the sheath regions, closer to the substrate [83,143–146].
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Figure 7.1: a-Si:H film deposition rate vs. pressure and nominal RF power. Measure-

ments were taken over two sets of samples. Each sample set was deposited at separate

deposition times with thicknesses measured by SEM and scanning ellipsometry.
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Film deposition pressures could not be increased beyond 400 mTorr due to lim-

itations on the capacity of the turbo-molecular pump used in the current chamber

configuration. Subsequently, in order to achieve further increases in deposition rate, the

400 mTorr parameter space was expanded to include deposition powers of 20 W and

25 W . Powers much higher than 25 W risk approaching growth regimes favorable for

particle formation within the plasma, and result in extremely low quality film and even

unintended crystallite formation. Subsequently, the resulting parameter space of inter-

est for the deposition rate studies in this chapter consisted of a pressure of 400 mTorr,

with nominal RF powers ranging between 2 W to 25 W . Figure 7.2 shows the resulting

average deposition rates for each film condition. For RF powers above 5 W , deposition

rate increases significantly, approaching 13 nm/min at 25 W . This parameter space

was reproduced over three sample sets, with deposition rates measured by both SEM

and spectroscopic ellipsometry.
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Figure 7.2: a-Si:H film deposition rate vs. nominal RF power for films grown at 400

mTorr. Film thickness measurements were taken by SEM and spectroscopic ellipsome-

try. The resulting error bars represent the standard deviation of thickness measurements

taken over three sample sets.
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7.2.2 Film Properties

Several film properties of interest are expected to change concurrently with deposition

rate. Specifically, the variation of film microstructure (R*) and hydrogen content (H%)

with film deposition power are shown in figure 7.3, for the 400 mTorr parameter space

of interest. Both properties show similar increases, a majority of which occurs between

powers of 5 W to 15 W . These observations show a relatively abrupt transition be-

tween film conditions to accompany the transition between low and high deposition

rate regimes. Both microstructure and hydrogen content increase significantly between

these regimes, but plateau at relatively higher powers.

This observed trend can be more specifically linked to an increase ion density and

ion bombardment energy with increasing RF power. In the context of a-Si:H film

deposition, increasing RF power can result in two primary influences on the depositing

film, depending on deposition pressure. At low pressures, ion bombardment energies

are relatively high due to a lower frequency of collisions within the plasma bulk. This

can result in defect generation with the growing film surface, and subsequent increases

in microstructure and hydrogen content.

At relatively high pressures such as the 400 mTorr parameter space of study here

increased collisions within the plasma lead to a reduction in ion bombardment energy,

however similar disordering effects can occur due to silane polymerization, and the in-

corporation of higher order silicon-hydride radicals in the depositing film [146, 147].

Increasing power at elevated pressures enhances this effect, but in a limited capacity.

Above a certain threshold power, the effects of plasma polymerization and ion bom-

bardment become counteracting. Specifically, the porous regions formed from plasma

polymerization are collapsed by ion bombardment, and surface roughness can be dimin-

ished by momentum transfer to the film growth surface by ion surface collisions, causing

the plateau observed in the trends of Figure 7.3 [146,148,149].
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Figure 7.3: Microstructure parameter (R*) and Hydrogen content of unseeded a-Si:H

films deposited at 400 mTorr, for various RF powers. Microstructure measurements

were taken using the methods outlined in section 3.1.2.
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7.2.3 Seeded Crystallization Kinetics

Due to the diverse range of film conditions observed in figures 7.2 and 7.3, the deposition

parameter space of 400 mTorr, with RF powers ranging from 2 W to 25 W was the focus

of study for the effect of film properties on crystallization kinetics. Subsequently, seeded

and unseeded films were deposited at 400 mTorr, at RF powers varying between 2 W

to 25 W . Films were grown at equal thicknesses of 100 nm, with seeded films consisting

of a single seed layer 50 nm below the film surface, deposited at an aerial density of

approximately 6/µm2. Seed crystals were cubic in shape, and grown using the procedure

outlined in chapter 3. Annealing studies were carried out for several temperatures in

a quartz furnace under nitrogen ambient. Crystal fractions were measured at regular

time intervals with Raman spectroscopy, using the techniques outlined in section 4.2.

Due to the relatively high microsturucture and hydrogen fraction values measured, films

were “pre-annealed” at 500 ◦C for 30 min to prevent peeling from rapid formation of

molecular hydrogen bubbles.

Figure 7.4 shows the crystallization times for seeded films annealed at 600 ◦C, 625

◦C, and 650 ◦C. Crystallization time decreases with film deposition power over this

parameter space, with the most significant decreases occurring in the same power regime

that film microstructure and hydrogen content were observed to increase in Figure 7.3.

Figure 7.5 shows corresponding grain growth rates for each film displayed in a similar

fashion, above microstructure and hydrogen content trends. Grain growth rates were

found by fitting the crystallization curves with equation 4.2.
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Figure 7.4: Crystallization times (top) for 100 nm seeded films, deposited under various

a-Si:H film deposition powers and annealed at 600 ◦C, 625 ◦C, and 650 ◦C. The observed

decrease in crystallization time with power coincides closely with measured changes in

film properties such as microstructure and hydrogen content (bottom).
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Figure 7.5: Seeded grain-growth rates (top) for 100 nm seeded films, deposited under

various a-Si:H film deposition powers and annealed at 600 ◦C, 625 ◦C, and 650 ◦C. The

observed decrease in crystallization time with power coincides closely with measured

changes in film properties such as microstructure and hydrogen content (bottom).
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The Role of Microstructure

It is interesting that the observed increases in seeded crystallization rate correlate

strongly with both microstructure and hydrogen content trends. It is reasonable to

suggest that this behavior may be due to an increased presence of the void crystalliza-

tion mechanism discussed in chapter 6, due to the observed increase in microstructure

with deposition rate. Furthermore, it is anticipated that films grown at higher depo-

sition rates should experience a greater degree of shadowing at the seed plane. It is

well documented in thin film deposition literature that conformal coating over step-like

features is more difficult to achieve at elevated deposition rates [82].

To investigate this hypothesis further, numerous seeded films deposited at 5 W and

25 W were compared via heated-stage TEM to determine the relative contribution of

void-induced-crystallization, if any, to the observed crystallization. Figure 7.6 compares

TEM images taken in-situ, during annealing of 100 nm, seeded films grown at 5 W and

25 W . The images shown were taken during annealing at 610 ◦C, and 625 ◦C for 5 W

and 25 W films respectively. Each film contained roughly equivalent seed mono-layers,

having aerial densities of approximately 6/µm2.

After 10 min at 625 ◦C, numerous voids are seen to form in the 25 W films (marked

by red arrows) near the perimeters of seed crystals. However, of the voids observed

formed, only a small number (bottom left) proceed to propagate through the film.

By 60 min, most of the observable film crystallization was governed by grain growth

from the seed crystals themselves, with a majority of the void population becoming

engulfed by the surrounding grain growth. Red arrows track the diminishing population

of propagating voids with anneal time, decreasing from ∼15 to ∼5 from 10 min to 60

min for the 25 W film. No void formation was observed for the 5 W film, likely due to

the lower deposition rate, and subsequently lower degree of shadowing. Similar results

were reproduced across several samples deposited at 5 W and 25 W .
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Figure 7.6: TEM images taken in-situ, during annealing of 100 nm seeded films, with

a-Si:H film deposited at 400 mTorr and powers of 5 W (left) and 25 W (right), and

annealed at 625 ◦C and 610 ◦C, respectively. Red arrows track the population of prop-

agating voids in the 25 W film, indicating the diminishing role of void-induced crystal-

lization with time, due to entrapment by rapid seed growth fronts. No voids were seen

to form in the 5 W film.
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Measuring Microstructure at the Seed Plane

In order to draw conclusions about film porosity in seeded films, specifically in the region

of the seed plane, FTIR was performed on several samples of varying a-Si:H top layer

film thickness. This effectively results in a virtual depth profiling of film microstructure,

as films with larger top layers “dilute” the contribution of the seed plane to the overall

FTIR signal. For films deposited at 2 W and 25 W , four seeded samples were deposited

with 50nm base layer, a seed layer of approximately 6/µm2, and one of four top layer

thicknesses varying between 50 nm to 200 nm. FTIR spectra were taken for each sample

and used to calculate microstructure (R*), using the techniques outlined in [90,91].

Figure 7.7 shows the resulting microstructure values for each film, with respect to

overall film thickness. For seeded films, smaller film thicknesses correspond to samples

with a greater signal contribution from the seed plane, which is reflected in the rela-

tively larger microstructure values. It is clear that both 2 W and 25 W films exhibit

measurably higher microstructure near the seed plane. Films deposited at 25 W appear

to exhibit slightly higher microstructure values over the range of thicknesses measured,

however, this increase is relatively small with respect to the increases measured in chap-

ter 6, in which films with a consistent void presence were measured to have roughly

twice the microstructure of similar films with little or no void presence.



90

100nm
substrate

250nm

FTIR
aSi:HSeed crystals 

100 150 200 250
0.00

0.05

0.10

0.15  25W seeded
 2W seeded

R
*

Film thickness (nm)

Figure 7.7: Microstructure vs. film thickness for seeded and films grown at 400 mTorr

and RF power of 2 W and 25 W . Seeded films were deposited with a 50 nm base layer

and seed layer density of approximately 6 /µm2. Top layer thicknesses of seeded films

were varied to provide an indication of the effect of the seed plane on microstructure

for each deposition power. Unseeded films grown at 2 W are overlaid as a baseline for

comparison.
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The Role of Hydrogen

The appearance of voids without void propagation in films grown at higher powers, can

possibly be explained by an enhanced gettering of smaller porous regions in the presence

of increased hydrogen content. For instance, the cavity coalescence discussed in chapter

6, has been shown to be more significant in the presence of hydrogen [134,135,150]. This

is argued to be due to the ability of hydrogen atoms to mobilize within the amorphous

bond matrix at temperatures as low as 400 ◦C, and diffuse through interstitial locations

at Si-Si weak bonds. This motion is inhibited when a hydrogen atom diffuses to a mono-

vacancy in which one or more stable Si-H bonds are present. The mobile hydrogen atom

becomes trapped, and the once temporary interstitial position becomes an additional,

stabilized dangling bond, following the reaction outlined in equation 7.1 below [135].

This proceeds with the trapping of additional, mobile hydrogen to eventually form

larger nano- and micro-scale cavities.

SiHSi+ SiH −→ Sio + SiH + SiH (7.1)

Subsequently, although films grown at 2 W and 25 W may show similar degrees

porosity at the seed plane, the porous regions in the 25 W films may coalesce more

effectively into larger, more visible sizes due to a larger presence of hydrogen. However,

these voids fail to propagate due to their encapsulation by the rapid motion of the

seeded grain-growth front.

Preliminary Conclusions on Enhanced Seeded Crystallization

This suggests that the measured increase in crystallization rate for 25 W seeded films

originates primarily from an increase in the radial grain growth or solid-phase epitax-

ial growth (SPEG) of the seed crystals themselves. At the time of this report, it is

not certain what the mechanism behind the observed enhancement of SPEG in films

deposited at higher powers films is. However, it is likely due to the effect of both addi-

tional hydrogen as well as increased microstructure. In addition to coalescing vacancies,

mobile hydrogen has been demonstrated to restructure strained or weak bonds during

the effusion process in the early stages of annealing [151]. Subsequently, hydrogen effu-

sion has been shown to serve as a catalyst for crystallization at amorphous/crystalline
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interfaces [65,135,151].

In the context of microstructure, it is possible that the additional defects associated

with the more disordered network result in a relatively metastable interface between

grains and amorphous tissue. Interfaces of this nature have been observed to demon-

strate enhanced crystallization rates. For instance, work by Wagner et al. has shown

that the interfacial energy between crystallite nuclei and the surrounding amorphous

film is reduced when the interface is rendered less “coherent” by dangling bonds [152].

7.2.4 Unseeded Incubation Times

The exact mechanism for the enhanced grain growth rate seeded at relatively higher

powers is unknown at this time. However, the positive correlation between deposition

rate and crystallization rate in seeded films shown in Figure 7.5 is advantageous to the

ultimate processing objective of achieving thick-grain devices. As discussed in section

7.1.2, the primary limitation to the size of grains originating from a seed crystal is the

incubation time of the surrounding film. The radial growth front from each seed crystal

must expand to the extent of the film thickness before the onset of native nucleation

in the surrounding film. Therefore, the incubation time of the unseeded film is an

approximation of the growth window available to each seed crystal.

Figure 7.8 shows a comparison of unseeded incubation times for films deposited in

the same pressure and power regimes discussed in the previous section. Specifically, 100

nm films deposited at a pressure of 400 mTorr, at nominal RF powers ranging from 2

W to 25 W . Incubation times were defined as the approximate time of crystallization

onset, taken as the anneal time at which the first measurable crystal fraction below

0.10 was observed by Raman spectroscopy. This is comparable with X-ray diffraction

characterization techniques used in literature, where incubation times are taken to be

the time at which 10% of the saturated crystal fraction occurs [136, 153]. Seeded crys-

tallization times (from figure 7.4) are overlaid for comparison. Films in which unseeded

incubation times exceed crystallization times in corresponding seeded films, exhibit the

potential for larger grain sizes.
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Figure 7.8: Incubation times of unseeded films (open symbols) compared to crystal-

lization times of commensurate seeded films (closed symbols) grown at 400 mTorr and

a nominal RF power of 2 W to 25 W . Samples with larger positive time differences

between unseeded incubation times and seeded crystallization times exhibit potential

for the largest grain sizes.
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It is interesting that incubation times of unseeded films decrease with deposition

power in the same manner as seeded crystallization times. For the outlined objective of

achieving large grain sizes from seeded films, ideally, incubation times would increase

with deposition rate, thus allowing a larger window of growth for seeded crystalliza-

tion. It is possible this trend is a result of the same mechanisms likely responsible for

enhanced seeded grain growth, mainly, hydrogen restructuring during early annealing

stages. However, consensus still remains to be achieved, in literature reports, regarding

the precise individual roles of hydrogen content and microstructure in controlling incu-

bation times. This is mainly due to the fact that microstructure and hydrogen content

are strongly coupled parameters; with increases hydrogen content tending to accompany

any increases in microstructure.

The few studies that have been able to decouple these properties suggest that mi-

crostructure tends to increase incubation time only if there is a lack of available hydrogen

(typically below 8-10%) to restructure the disordered bond matrix [61,65]. Conversely, if

sufficient hydrogen is available the hydrogen effusion process in early anneal stages acts

to restructure defected regions, leaving denser, more ordered regions behind [65,136]. It

is argued that these resulting restructured regions are capable of forming stable nuclei

in less time than un-restructured material.

Work by Sharma et al. specifically showed incubation times to increase with in-

creasing microstructure for films with hydrogen concentrations below 8%. In the same

study, a similar set of films was shown to have increasing incubation times with increas-

ing microstructure, and hydrogen contents above 8% [136]. It is believed that this is

the mechanism behind the trend of decreasing incubation times with deposition power

observed here. Specifically, higher deposition rate films experience lower incubation

times due to a combination of meta-stable microstructured film, and a sufficient enough

hydrogen content to catalyze its rapid restructuring into denser, native-nucleation con-

ducive material. It is interesting to note in figure 7.8 that incubation times decrease

significantly for powers above 10 W , which is also the power at which hydrogen content

increases from below 8% to above 11%.
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7.2.5 Argon dilution

In isolating the effect of hydrogen content on incubation time, it was desired to study

a similar parameter space of films exhibiting increasing deposition rate and microstruc-

ture, but without varying hydrogen content. This was accomplished by depositing films

grown with the silane precursor diluted 50% in argon. Films were grown at 100 mTorr

and 250 ◦C using 40 sccm of argon with 40 sccm of 5% SiH4 diluted in helium. For

powers ranging from 2 W to 15 W, deposition rate increased by a factor of 3, microstruc-

ture increased by a factor of 2, and as-deposited hydrogen content remained near 10%,

which is above the cited threshold concentration for enhanced reconstruction [65,136].

Figure 7.9 shows the incubation times and film properties of 100 nm unseeded films

grown in argon dilution and annealed at 600 ◦C. Incubation time decreases significantly

with increasing power from 2 W to 5 W , despite the invariance of hydrogen content.

It is interesting that this trend correlates with the observed increase in microstructure.

This is consistent with the findings of Budini et al. [65] and Sharma et al. [61], and the

hypothesis that microstructure is capable of generating dense, ordered regions in the

presence of sufficient hydrogen concentrations.
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Figure 7.9: Top: Incubation times of 100 nm unseeded films grown in argon dilution and

annealed at 600 ◦C. Films were grown at 100 mTorr and 250 ◦C using 40 sccm of argon

with 40 sccm of 5% SiH4 diluted in helium. Deposition power was varied to produce a

parameter space of increasing microstructure without varying hydrogen content. Middle:

corresponding microstructure and hydrogen content. Bottom: corresponding deposition

rates.
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7.2.6 Theoretical Grain Size of High Deposition Rate Seeded Films

Despite an incomplete understanding of the mechanisms behind the increased seeded

crystallization rate and decreased incubation observed at elevated deposition rates, an

optimal process window for achieving micron-scale grains at relatively higher deposition

rates can still be identified using the information gathered from Figures 7.5 and 7.8.

Using incubation times from Figure 7.8 and growth rates from figure 7.5, a theoretical

seeded grain diameter dg can be approximated for the relatively higher deposition rate,

400 mTorr parameter space studied in this chapter. Grain size was estimated for each

of the deposition power, using equation 7.2

dg = 2 ∗ vg ∗ τo (7.2)

where vg is the radial, seeded grain growth rate (from figure 7.5) and τo is the in-

cubation time of the surrounding film. Note should be made that unseeded incubation

times were assumed to be equivalent to the incubation times of the amorphous compo-

nent of seeded films. This is likely a conservative assumption, as the short range film

disorder imposed by seed inclusions may lead to longer incubation times, as demon-

strated in Chapter 5. It follows that the grain size estimates shown in figure 7.2 are

likely conservative estimates.

Figure 7.10 shows the resulting estimated grain sizes for films grown at 400 mTorr

at the deposition powers and annealing temperatures studied. Deposition rates (from

Figure 7.2) are included as well to provide an overall comparison of process. Based on

these results, the most optimal processing conditions for achieving large-grained devices

appears to be for films grown at deposition powers between 10 W to 15 W , and annealed

at temperatures near 625 ◦C. This parameter space predicts grain sizes approaching 1

µm, with film deposition rates of approximately 6 nm/min to 9 nm/min.

It is not surprising that an intermediate temperature of 625 ◦C appears to facilitate

the largest relative grain sizes for films grown under these conditions. This reflects the

trade-off between relatively higher seed growth rates observed at higher temperatures

and longer incubation times observed at lower temperatures. It is likely that a more op-

timal anneal temperature exists at intermediate values. Further investigation is required

over intermediate temperatures to determine if such an optimum exists.
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Figure 7.10: Top: Potential grain sizes achievable by seeding films grown at 400 mTorr,

for several RF deposition powers, and annealing temperatures. Bottom: Corresponding

deposition rates for each deposition power. Results indicate an optimal process for

large grain films to exist for films deposited between RF powers of 10 W to 15 W , and

annealed near 625 ◦C.
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7.3 Conclusions and Recommendations

The effect of varying film properties on seeded crystallization kinetics and unseeded

incubation time has been demonstrated. Specifically, a parameter space consisting of

films grown at 400 mtorr with RF powers varying from 2 W to 25 W was studied,

in which deposition rates increased toward more industrially viable levels, relative to

film deposition processes utilized in previous chapters. Corresponding increases in basic

film properties such as microstructure and hydrogen content were also measured in

this parameter space, and their effects on seeded crystallization were observed. Most

notably, an increase in seeded crystallization rate was observed to occur with increasing

deposition rate.

Although an increase in void appearance also occurred in these higher deposition

rate films, void-induced crystallization was observed to play a minimal role in the crys-

tallization rate enhancement. This enhancement is believed to be due primarily to an

increase in the radial, epitaxial grain growth rate from each seed crystal, and is possibly

a result of a meta-stable, defect-rich film matrix catalyzed to restructure more rapidly

by hydrogen. A similar enhancement in native nucleation was observed for unseeded

films, believed to be due to similar restructuring effects.

Seeded grain growth rates were combined with observed incubation times of un-

seeded films to estimate potential grain sizes achievable by seeding films grown in a

relatively higher deposition-rate parameter space. Viable deposition and annealing con-

ditions have been identified with the potential of resulting in through-thickness grains,

of micron-scale, grown at relatively higher deposition rates, at an RF frequency of 13.56

MHz. For the outlined objective, of through-thickness grain growth, a more ideal

parameter space would exhibit increasing incubation times with deposition rate, thus

allowing for a larger window of time for seeded grain growth. However, a precise un-

derstanding of the effects of plasma deposition conditions on incubation time is still

lacking. Based on preliminary observations of incubation behavior in this chapter, it is

believed that a more ideal parameter space would involve films with relatively large mi-

crostructure (≥ 0.15), having relatively low hydrogen concentration (< %7). This may

potentially be achieved by re-producing the above parameter spaces at higher deposition

temperatures.



Chapter 8

Conclusions

8.1 Summary of Processing Advantages

This thesis has demonstrated the potential advantages of a novel process for synthesizing

poly-crystalline silicon thin films. The processing advantages of annealing films contain-

ing an embedded population of grain growth sites has been demonstrated through several

ex-situ studies of crystallization kinetics. Measurable reductions in crystallization time

were observed for films containing seed crystals, relative to traditional, unseeded films.

Thermal Budget Reduction

The reduction in thermal budget provided by this technique can be quantified relative

to other techniques using a metric referred to in literature as an “annealing factor”. The

annealing factor is calculated as the product of annealing temperature (in celcius) and

annealing time to complete crystallization (in minutes), normalized to film thickness (in

nm). When plotted against deposition temperature, a complete picture of the thermal

budget associated with the overall film deposition and annealing process can be quanti-

fied. Figure 8.1 shows annealing factor plotted with respect to deposition temperature

for several films reported in literature pertaining to the most successfully performing

solar cell absorber layers.

100
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Figure 8.1: Comparison of the overall thermal budgets associated with several different

film synthesis and annealing processes. Annealing factor is defined as the product of

annealing temperature and annealing time, normalized to film thickness. Black sym-

bols represent several selected processes from literature; including the top-ten highest

performing poly-Si solar cell absorber layers as of 2010 [22,23,49,53,58,60,62,63,68,71,

79,80,92,136,154,154–159]. Red symbols represent 200 nm films grown from the dual-

plasma reactor. The blue symbol represents a 100 nm film seeded with cuboctahedral

seed crystals deposited at 150 W .

The annealing factors corresponding to films deposited in the dual plasma reactor

are shown in red. The closed red symbol pertains to a 200 nm film containing a mono-

layer of seed crystals, ∼ 6/µm2, annealed at 650 ◦C. The open red symbol represents

a commensurate 200 nm unseeded film. The overall trend depicts the ostensibly in-

herent process trade-off, in which a reduction in thermal budget during deposition (by



102

decreasing deposition temperature) results in an increase in thermal budget during post-

deposition annealing, as reflected in by an increase in anneal factor. Subsequently, the

lower left corner of Figure 8.1 represents a region of relatively lower thermal budget. It

is clear from this figure that seeded films grown from the dual plasma technique exhibit

relatively low thermal processing budgets, with a significant reduction relative to the

commensurate unseeded film shown.

Final Film Performance

Studies on the effects of a varying initial seed crystal population have demonstrated the

ability of the resulting poly-Si film structure to be controlled. Specifically, the initial

seed crystal population has been demonstrated to dictate the final grain structure in a

way that translates into measurable modifications of grain size, and electronic transport

properties.

New Insights on Crystallization Kinetics

As was outlined in chapter 2, several similar, mixed-phase material systems have been

studied for their unique properties in the as-grown state. However, at the time of this

report, little has been to characterize the basic parameter spaces associated with anneal-

ing films containing an initial population of seed material. This is mainly due to a lack

of reproducible control over the basic properties of the seed material. The independent

processing of seed and film components, provided by the dual-plasma approach, has

facilitated studies of interesting new phase transformation behavior. Successful modifi-

cation of seed crystal shape was demonstrated in chapter 6, with relatively high yield

and narrow size distribution. Such controllable modifications are rare for gas-phase

processing in group IV materials; and are typically exhibited in colloidal, liquid-phase

processing. It was demonstrated that modification of seed crystal shape leads to further

enhancements in seeded crystallization kinetics, due to the presence of an interesting

“void-induced crystallization” mechanism. Further studies are required to determine

the potential benefits of the grain structures possible with this mechanism, as well as

processing conditions that could potentially enhance crystallization rate even further.

Chapter 7 demonstrated the effects of modifying basic film properties on seeded

grain growth, specifically in relatively higher deposition-rate parameter spaces. Since
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crystallization in traditional, unseeded, amorphous films is a result of both the nucle-

ation and growth of native grains, the effects of film properties on the growth rate,

alone, of individual grains is relatively un-documented. Seeded films grown from the

dual plasma reactor described in this work allow for a fixed number of growth sites to

be studied under variable film conditions. It was subsequently demonstrated that film

parameters commonly associated with relatively higher deposition rates were seen to

enhance the growth rate of individual grains. Furthermore, an optimal processing win-

dow was identified for producing potentially through-thickness grains of micron-scale

thickness, under relatively higher deposition rates.

8.2 Future Work and Recommendations

Seeded films grown from the outlined dual-plasma technique exhibit potential for high-

performing solar cell absorber layers, with low thermal budget requirements relative

to similar, currently implemented standards. The layer-by-layer approach is amenable

to through-thickness grain structures, optimal for solar cell abosrber layers. However

the studies outlined here provide a basic proof of concept. Now that a processing win-

dow has been identified for deposition of potentially useful, thicker grain structures,

more extensive characterization of such thicker films is required. Specifically, the com-

plete crystallization of µm-thick films by a single mono-layer of seed crystals should be

demonstrated. The electronic transport properties associated with grain quality in the

thickness dimension must also be characterized. Specifically, transverse contact scheme

must be implemented in characterization, similar to the device structures implemented

in photo-voltaic junctions. This requires successfully annealing films on a conductive

substrate. Glass substrates coated in aluminum doped zinc-oxide are a viable candidate

due to high temperature stability and electrical properties. Furthermore, since solar

cells consist of doped “p-i-n” diode structures, the effects of dopant impurity concen-

tration on crystallization kinetics present entirely new parameter spaces of importance

as well.
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