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Abstract 

This thesis presents how experimentation, numerical simulation, optimization, and 

mathematical analysis, can be applied to study and improve the fixation of left-ventricle leads 

within a cardiac vein.  Left-ventricle cardiac leads for implantable pacemakers can lose 

fixation within a cardiac vein and dislodge.  A common lead-fixation mechanism for left-

ventricle leads was investigated that used a two- or three-dimensional shape at the distal end.  

The lead and the distal end are constructed from a metal coil that is pre-formed into a two- or 

three-dimensional shape.    

Analytical beam approximations of a coil were developed to determine how coil stiffness is 

affected by coil geometry and material.  In-vitro experimentation with a radial force tester was 

used to measure the overall force between a two- or three-dimensional distal shape within a 

straight cylindrical tube.  Data processing techniques using a moving average were applied to 

interpret the force data.  Numerical simulation using a beam approximation for the coil 

determined the overall force between a distal shape and a straight cylindrical tube.  The 

distribution of force along the distal shape, including tip force was also obtained from the 

simulation.  The simulation models were validated with experimental data.  Using numerical 

simulation, the model of the distal shape was changed to a spiral shape and then optimized.  

Since actual cardiac veins are curved, the simulation model was updated with a curved tube to 

determine how the distal shapes would perform.  A mathematical analysis using engineering 

principles was also applied to obtain a simple analytical equation relating a deformed distal 

shape to force. 
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CHAPTER 1  

 

INTRODUCTION 

 

1.1 MOTIVATION 

Cardiac resynchronization therapy (CRT) is an effective treatment for patients with moderate 

to severe heart failure (HF).  This treatment involves implanting a pacemaker with a lead 

fixated to the heart.  CRT prolongs patient survival and improves the quality of life [1].  These 

benefits depend on the proper implantation and fixation of the left ventricle lead to stay in 

place to deliver effective and uninterrupted resynchronization.  The recommended position for 

the left ventricle (LV) lead is outside the left ventricle in lateral or posterolateral cardiac veins.  

Clinical practice is a transvenous LV lead implantation through a side branch of the coronary 

sinus (CS) [2].  Dislodgement of LV pacing leads is a common clinical complication requiring 

an additional surgery for lead repositioning with concomitant surgical risks.  The acute 

dislodgment rate is 5.4% [3], while the chronic dislodgement rate is 8.6% [4].  To reduce 

dislodgements, a structural analysis of cardiac lead fixation will be performed in this thesis.  

The distal fixation will be evaluated by a method of experimentation, computer simulation, 

and an analytical first principles model. 

 

There is a clear need for this work analyzing lead fixation based upon review of current 

literature.   The implantation of cardiac pacemakers and leads can be traced back to the 

1950’s.  For the next several decades, structural analysis of the cardiac leads involved 

examining the stress and fatigue of the metal components [5 – 10].  The structural analysis of 
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the lead fixation or attachment to the heart has been limited.  Recently this has been examined 

[11 – 13] but this has been limited to forces exerted on straight leads wedged into veins.  The 

use of a stent for fixation has been examined as well but then lead extraction could be difficult 

[14].  The current LV leads have been designed to incorporate two- or three-dimensional 

shaped distal ends [15].  These shapes allow the lead to spring back against the heart and 

vessel wall at any location in the vein.    

 

In this thesis, the fixation force of an implantable cardiac lead within a cardiac vein outside the 

left ventricle will be examined.  This distal end fixation force or resistance to movement 

within the vein keeps the electrodes in place against the heart and prevents dislodgements of 

the distal electrodes.  Lead dislodgements and poor electrode contact can interrupt or reduce 

the effectiveness of therapy from implantable cardiac pacemakers for patients with heart 

failure disease over the device lifespan within a patient [16].  Specifically, the two- or three-

dimensional pre-shaped distal end will be examined to determine the forces the lead exerts on 

the vein wall to keep it in position.   

 

There are two main objectives.  One is to determine a geometric distal shape with the highest 

fixation forces to reduce lead dislodgements.  The second is to minimize the contact force at 

the tip of the lead to reduce potential damage to the heart wall or vein.   

 

1.2 IMPLANTABLE PACEMAKER SYSTEMS 

An implantable pacemaker system consists of a pulse generator that is connected to the heart 

by leads that deliver electrical signals to the heart.  An implantable pacemaker is a computer 
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with an electrical pulse generator and battery that sends and receives electrical signals from 

the heart along a lead.  Due to the beating of the heart, the leads are in constant motion with 

the heart.  Typically the lifespan of a pacemaker system is five to ten years [17 – 19].  On 

average, the heart contracts seventy beats per minute with a maximum of over two hundred 

beats per minute [20].  The lead flexes and bends with each beat of the heart so fixation 

against the heart is important to maintain therapy to the patient.  

  

The proximal end of the lead connects [21] to an implantable pacemaker and transmits 

electrical impulses to and from the heart through electrodes on the distal end of the lead.  

These distal electrodes are held in contact with the heart wall via a fixation mechanism or 

force.  Fixation of the lead guarantees constant transmission of these electrical pulses and 

proper operation of the implantable pacemaker providing the patient with cardiac synchrony, 

proper heart rate, and improved cardiac output. 

 

A pacemaker is implanted if a patient’s heart can no longer properly control the pumping of 

blood.  Many factors can cause this to occur; genetic disorder, heart attack, age, etc. [22, 23].  

These devices are typically characterized into three groups respectively corresponding to the 

specific disease states; bradyarrhythmia, tachyarrhythmia, and heart failure.   

 

Depending upon the disease state being treated, the implantable pacemaker system can consist 

of a pulse generator and multiple leads, varying from one to three.  Some systems only have 

one lead that connects to the right atrium or right ventricle.  Others will have two leads that 

connect to both the right atrium and right ventricle [24].  Systems used to treat heart failure 

can have three leads connecting to the right atrium, right ventricle, and left ventricle [25]. 
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The fixation mechanism of the lead to the heart differs depending upon the location of the 

lead.  The left ventricle lead has higher dislodgement rates compared to the leads in the right 

atrium and right ventricle [16].  This thesis examines the fixation with the heart that is used by 

the left ventricle lead.   

 

1.3 DISEASE STATES 

1.3.1 BRADYARRHYTHMIA  

Bradyarrhythmia is a condition when the heart beats too slowly.  The pacemaker senses this 

slow rhythm and sends electrical signals that make the heart beat faster.  One or two leads are 

implanted for this system. 

 

The distal tip of the cardiac lead delivers these electrical signals inside the right atrium and/or 

right ventricle.  The distal fixation mechanism is typically a metal threaded screw that screws 

into the heart wall of the right atrium or right ventricle [26].  Another distal fixation method is 

plastic tines that hook into the trabecular heart tissue in the apex of the right ventricle [27]. 

   

1.3.2 TACHYARRHYTHMIA  

Tachyarrhythmia is a condition when the heart beats too fast.  The pacemaker senses this fast 

rhythm and sends electrical signals to the heart that attempt to make the heart beat slower.  If 

the pacemaker cannot pace the heart out of the faster rate, the pacemaker will send an 

electrical shock to defibrillate the heart to cardiovert or reset the heart into a normal rhythm.    

  

The distal tip of the cardiac lead delivers these electrical signals inside the right atrium and/or 
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right ventricle.  Again the fixation mechanism is typically either a metal threaded screw 

screwed into the heart wall in the right atrium [28] or right ventricle; or plastic tines that hook 

into the trabecular heart tissue in the apex of the right ventricle.  The distal end of the cardiac 

lead has an extra shocking coil in addition to the distal pacing and sensing electrodes. 

 

1.3.3 HEART FAILURE  

Heart failure is a condition that prevents the heart from pumping efficiently and is usually 

caused by the left ventricle not beating in synchrony with the right ventricle.  This results in 

poor or inefficient cardiac output or blood pumping.  Heart failure devices are pacemakers that 

treat both bradyarrhythmia and tachyarrhythmia with the additional capability to pace and 

sense the left ventricle.  Since these devices resynchronize the left and right ventricle, it is 

commonly called cardiac resynchronization therapy (CRT) [29].   

 

In addition to the leads in the right atrium and right ventricle, an additional lead is placed in a 

vein outside the left ventricle.  This left ventricle lead is not placed inside the left ventricle but 

is inserted into an outside vein after guided through the coronary sinus into the great cardiac 

vein or other branch vein [30, 31].  The coronary sinus is on the posterior of the heart and 

turns into the great cardiac vein towards the apex of the heart on the anterior of the heart.  The 

locations provide good locations for the pacing and sensing electrodes.  

 

The fixation mechanism for the left ventricle lead is plastic tines (Figure 1-1) that wedge in 

the vein, or alternatively the distal end of the lead is pre-shaped (Figure 1-2) in a two- or three-

dimensional shape that push against the vein and heart [32].   
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Figure 1-1 Plastic Tines on Distal Tip of 

Lead 

 

 

Figure 1-2 Pre-Shaped Spiral on Distal Tip of 

Lead 

 

This thesis examines the fixation of the left-ventricle lead when the distal end is pre-shaped 

(Figure 1-2) into a two- or three-dimensional shape.   

 

1.4 IMPLANTABLE CARDIAC LEAD CONSTRUCTION 

The lead body construction is typically made of coils, cables, and plastic tubing.  These can be 

arranged in single lumen, multi-lumen, or coaxial configuration.  Also the coils are typically 

multi-filar or made from multiple wire strands coiled together (Figure 1-3).  The individual 

filars can be insulated and used in a co-radial design. 

 

Figure 1-3 Multi Filar Coil (Example Shows Four Filars or Wire Strands) 

 

Typical conductors used in the coils and cables are a metal Nickel-Chromium alloy wire 

(MP35N).  The MP35N wire can have a core of silver (Ag) or Tantalum (Ta) to increase 

electrical conductivity [6].  The stiffness and stresses within the coils are determined by the 
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material and geometry of the coil including pitch, wire diameter, coil diameter, and the 

number of filars or wire strands wound to form the coil.  The number of filars in a coil can be 

one or more with the limitation typically being the bending stress generated in the coil.  The 

typical wire diameter used in a coil varies from 0.0254- to 0.254-mm.  Surrounding the coils is 

a silicone or polyurethane tubing that has an inside diameter that ranges from 0.762- to 1.524-

mm with wall thickness from 0.127- to 0.254-mm. 

 

1.5 LEFT VENTRICLE LEAD DISTAL END  

For left-ventricle leads, the distal end in contact with the heart can have plastic or rubber tines 

(Figure 1-4) that wedge into the vein against the heart.  The distal end contains the electrodes 

that are connected to the coil or cables.  Typically the use of tines on the distal end only allows 

the lead tip to be positioned and wedged into the end of a vein.  This only allows the left 

ventricle lead to be positioned in only one location at the end of the vein. 

 

Figure 1-4 Plastic or Rubber Tines on Distal Lead Tip 

 

Left-ventricle leads can also use a pre-shaped two- or three-dimensional distal tip (Figure 1-5) 

to allow the lead and electrodes to wedge against heart in the vessel [33].  The use of a pre-

shaped distal tip allows the left-ventricle lead to be positioned at any location along the vein. 
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Figure 1-5 Left Ventricle Lead Pre-Shaped Distal Tip 

 

The coil inside the left-ventricle lead allows a guidewire or stylet to be inserted into the coil to 

guide the lead into the coronary sinus and great cardiac vein via fluoroscopy.  As a guidewire 

or stylet is inserted, the two- or three-dimensional shape of the distal end straightens out.   

 

The straightened lead can then be guided to the targeted vein outside the left ventricle and 

once in the proper vessel location for sensing and pacing, the guide wire or stylet is removed.  

The distal end then tries to revert back to its two- or three-dimensional shape but is prevented 

by the vessel and cardiac wall.  The distal shape pushes against the vessel and heart to fixate 

the lead at this location.  This distal fixation provides electrode contact with the heart for 

sensing and pacing. 

 

1.6 THESIS PLAN 

The two- and three-dimensional shape of the distal tip of the left-ventricle lead will be 

examined to determine how this shape influences contact forces between the lead and the 

vessel/heart wall.  This examination will use numerical simulation to understand the forces 

occurring at the distal end of the lead.  Validating the simulation models will be accomplished 

with experimentation and analytical solutions of simpler boundary conditions.   

Two-Dimensional Shape                   Three-Dimensional Shape 
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The left-ventricle leads investigated are constructed of coils, and in Chapter 2 an analytical 

derivation of the bending, torsional, and axial elastic stiffness of coils will be presented to 

provide a comparison between coil designs.  This analytical derivation of the stiffnesses will 

also allow simulation models to be constructed to examine various geometric distal shapes and 

the radial forces that they generate. 

 

In Chapter 3, in-vitro experimentation with a radial force tester and samples will provide data 

on the overall radial force for a given tube diameter size.  Samples of different stiffness will be 

used to determine how lead stiffness affects radial force.  The limitation with experimentation 

will be that only an overall radial force can be obtained for each sample.  The instrumentation 

also only allows straight rigid cylindrical tubes to be examined. 

 

Numerical simulation used to replicate the experimentation from Chapter 3 will be explained 

in Chapter 4.  The simulation models the interaction of the samples with a straight rigid 

cylindrical tube.  These simulation models give an overall radial force that was measured 

experimentally.  This overall force allows validation of the simulation model.  This validation 

compares the absolute radial forces between the model and experimentation.  The relationship 

between radial forces and stiffness will also be investigated.  The benefit of the numerical 

simulation over experimentation is that the model can report radial forces along the entire 

distal end of the sample including the tip force. 

 

Since left-ventricle leads are inserted into curved blood vessels that wrap around the heart, 

curvature is added to the numerical simulation in Chapter 5.  The simulation model will show 

the interaction of the samples with a curved rigid tube.  The curvature chosen is explained and 
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results presented.  The addition of curvature makes experimentation very difficult or 

impossible. 

 

Chapter 6 will show a mathematical or analytical analysis based upon engineering principles 

to derive the fixation force of the distal lead shape that is inserted into a rigid cylindrical tube.  

This analysis will include a derivation of the analytical representation or equations used to 

calculate lead fixation forces within a straight rigid cylindrical tube.  Concluding remarks will 

follow in Chapter 7. 
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CHAPTER 2  

 

ANALYTICAL BEAM  

APPROXIMATION OF A COIL 

 

2.1 INTRODUCTION 

For numerical simulation of the leads, simplified models will be used that have their stiffness 

derived analytically.  The simplification will replace the three-dimensional complexity of a 

coil and tubing with an equivalent stiffness in a one-dimensional beam element.  These 

equivalent stiffnesses can be measured experimental or analytically calculated.  The analytical 

approach is what follows.   

 

The simplest representation of a lead is a metal coil within a silicone tube (Figure 2-1) with 

the distal end of the coil pre-formed into a two- or three-dimensional shape for fixation.  

 

Figure 2-1 Simplified Model of a Metal Coil within a Silicone Tube 
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This metal coil has elastic bending, torsional, and axial stiffnesses that are dependent upon 

coil material and geometry.  These elastic stiffnesses can be calculated analytically and 

compared for various coil designs.  Numerical simulation is also simplified by using beam 

elements that have these stiffness characteristics.  Detail simulation models of the coils are 

avoided resulting in smaller models and faster analysis times.   

 

Figure 2-2 shows the three loading conditions (bending, torsional, and axial) that the coil can 

undergo.  A simple beam with the same elastic stiffness characteristics can then represent the 

coil to determine fixation forces in a simulation model.  Loading is assumed to occur in the 

elastic range and permanent deformation does not occur.  For convenience, the beam 

representation will be assumed circular with a diameter Dbeam equal to the mean diameter of 

the coil Dmean and the length Lbeam is the same as that of the coil Lcoil. 

 

Figure 2-2 Loading Conditions on the Coil and on the Beam 
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Structurally, the lead is essentially a metal coil with the distal end of the coil pre-formed into a 

two- or three-dimensional shape for fixation.  The lead is straightened by sliding a guidewire 

into the coil and then inserting it into a vein.  Fixation against the cardiac vein occurs when the 

straightened distal end tries to revert back to its two- or three-dimensional shape but is 

prevented from doing so by the vein.  This fixation generates bending and torsional loads on 

the lead as the lead pushes and twists against the vein.  Axial loading is minimal.  Since the 

loading is mainly bending and torsional, only the stiffnesses related to them will be used in the 

subsequent numerical simulation.  An equivalent modulus of elasticity Ebeam and shear 

modulus Gbeam will be determined.  Poisson’s ratio  is the ratio of transverse to axial strain 

and can be determined from the modulus of elasticity Ebeam and shear modulus Gbeam for a 

material (Ebeam  = 2(1 + )Gbeam). 

 

These equivalent stiffnesses are calculated using strain energy and Castigliano’s theorem [34].  

The strain energy for a coil can be determined by integrating the applied load (bending 

moment, torque, or axial force on the ends of the coil) along the path of the coil.  The bending 

moment M is applied perpendicular to the coil axis to induce bending.  M varies with the angle 

 around the coil axis.  For the torque T and axial force W the corresponding loading does not 

vary with the angle  around the coil axis.   

 

2.2 ELASTIC BENDING STIFFNESS CALCULATION 

The elastic bending stiffness of a coil can be calculated from the coil geometry and material 

properties.  When a coil has a bending moment M applied to an axis perpendicular to the coil 

axis (Figure 2-3) the elastic bending stiffness of the coil can be calculated [5].  The Meagher 
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and Altman paper present the derivation for determining the stress within a coil undergoing 

bending.  As part of their derivation the elastic bending stiffness is obtained.    Their 

derivation of the elastic bending stiffness is presented in this section.  The stress derivation is 

not shown but can be referenced in their paper [5, 6, and 10].  Their derivation assumes that 

the wire consists of two materials, a core material surrounded by a tubular jacket or sleeve 

material (Figure 2-4).  For the work presented subsequently only a wire consisting of a single 

wire will be used, so their derivation will be simplified.   

 

 

Figure 2-3 Coil Loading in Bending 
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Figure 2-4 Coil Geometry 

 

The Meagher and Altman paper [5] show how using a free body diagram (Figure 2-5), the 

loading condition on the coil can be resolved into internal loads at any cross section 

perpendicular to the wire axis.  The applied bending moment M can be resolved into a 

torsional load T and two bending moments MR, MZ.  The torsion about the wire axis T is 

perpendicular to the wire cross section.  The bending moment MR axis lies within this plane 

while the other bending moment MR axis lies about the third orthogonal axis within this cross 

section.  The angle  is measured in the plane perpendicular to the coil axis, angle  is the coil 

pitch angle, and n is the number of coil turns (Figure 2-4) along the entire length of the 

coil Lcoil.  
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Figure 2-5 Free Body Diagram of Coil Subjected to Bending Moment M 

 

The coil-pitch angle is given by 

       
 

      
 ( 2-1 ) 

 

Meagher and Altman [5] show how the applied bending moment M can be transformed into 

resultant loads at any coil cross section location by Eq. ( 2-2 ).   These resultant loads change 

with the coil cross section around the axis of the coil . 

                                   ( 2-2 ) 

 

Meagher and Altman [5] describe how the fraction of total internal torque TT or the moment 

MT at the cross-section supported by the inner core or outer sleeve is determined using beam 

approximations for composite beams [35] and is shown in Eq. ( 2-3 ) and Eq.( 2-4 ).  Then, 

equilibrium of loads and compatibility of displacement is used to determine the torque and 

moment on the core (T1, M1) and on the outer sleeve (T2, M2). 
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     (
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) ( 2-3 ) 
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) ( 2-4 ) 

 

As shown in Meagher and Altman paper [5] the bending and torsion on the core and outer 

sleeve are expressed as functions of the area moment of inertia I, shear modulus G, modulus 

of elasticity E, and polar area moment of inertia J.   

         (
    

         
) ( 2-5a ) 
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) ( 2-5b ) 

             (
    

         
) ( 2-5c ) 

             (
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             (
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             (
    

         
) ( 2-5f ) 

 

Formulas for the area moment of inertia I and polar area moment of inertia J for the inner core 

and outer sleeve are shown in Figure 2-6 [36].  The subscripts 1 and 2 refer to the core and 

outer sleeve, respectively. 
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Inner Core Outer Sleeve 

 
 

         
   

 

  
          

    
    

  

  
 

                  

 

Figure 2-6 Moments of Inertia for Inner Core and Outer Sleeve Wire 

 

Meagher and Altman use Castigliano’s method [37] to determine the angular deflection  in 

the plane of bending for a single turn of the coil (Figure 2-7).   

 

Figure 2-7 Angular Deflection of a Single Coil Turn 
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energy due to bending about two axes and torsion about the third for the inner core and outer 

sleeve.  The terms are integrated along one turn of a coil.  Instead of integrating the angle  

from 0 to 2 radians, the equivalent integral is used with limits from 0 to  
 

 
 radians and then 

multiplied by 4. 
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                                                                                                                                                         ( 2-6 ) 

After integrating, Meagher and Altman [5] find the angular deflection per unit length of 

coil by dividing the angular deflection of one turn  by the coil pitch (P or Lcoil/n).   

  
 

 
 

  

     
 ( 2-7 ) 

 

Meagher and Altman combined this expression Eq. ( 2-7 ) with the relationship Eq. ( 2-8 ) 

between the arc length ds and the radius of curvature of the coil  to obtain the curvature in 

terms of angular deflection  .  
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Meagher and Altman [5] substitute for  from Eq. (2-6) and rearrange which yields the elastic 

bending stiffness   Eq. ( 2-11 ).  Again the subscripts 1 and 2 refer to the core and outer 

sleeve, respectively.  This expression assumes the coil only has a single filar (N=1) or wire.   

  
 

 
 

 
                             

                                              
 

( 2-11 ) 

 

If the coil consists of more than one filar (N>1), the elastic bending stiffness is multiplied by 

the number of filars N. 

  
 

 
 

   
                             

                                              
 

( 2-12 ) 

 

Having a single material for the wire filar simplifies the elastic bending stiffness . 

             

    
                                   

                                                    
 

( 2-13 ) 

 

After rearranging and using Eq. ( 2-1 ) for the coil pitch angle , the elastic bending stiffness 

for a coil undergoing bending is determined as. 
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( 2-14 ) 
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2.3 ELASTIC TORSIONAL STIFFNESS CALCULATION 

The elastic torsional stiffness of a coil can be determined from the coil geometry and material 

properties and this derivation is covered in many machine design textbooks including the one 

cited by Hearn [38].  When a torque T is applied to a coil about its axis, the elastic torsional 

stiffness of the coil can be determined.  The following derivation assumes the wire consists of 

a single material.  

 

With a free body diagram, the loading condition on the coil can be resolved into internal 

resultant loads at any cross section perpendicular to the wire axis (Figure 2-8).  Hearn [38] 

describes how the resultant loads can be resolved into a torsional load and a bending moment.  

The applied torque has a torsional component TAX about the AX axis of the wire and a bending 

component MAY about the AY axis.  

 

Figure 2-8 Free Body Diagram of a Coil Subjected to Axial Torque T 
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Hearn [38] shows how the total strain energy for this coil has two components, torsional 

(T
AX

 = T sinand bending (M
AY

 = T cos.  Substituting these relations into the strain 

energy equation results in Eq. ( 2-15 ).  

Strain Energy  U  
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] ( 2-15 ) 

 

The applied torque T causes the coil to rotate  about its axis.  This external work can be 

determined by Eq. ( 2-16 ).   

Work W   
 

 
   ( 2-16 ) 

 

Hearn shows that the strain energy is equal to the work W done by the torque T on the coil 

[38].  The angle of rotation  about the coil axis is determined by setting Eq. ( 2-15 ) equal to 

Eq. ( 2-16 ). 
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] ( 2-17 ) 

 

The length of the filar Lfilar can be related to the coil pitch P, coil mean diameter Dmean, and the 

overall coil length Lcoil. 
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             ( 2-18 ) 

 

Substituting Eq. ( 2-18 ) into Eq. ( 2-17 ) results in the angle of rotation  about the coil axis. 
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] ( 2-19 ) 

 

For an equivalent beam under a torsional load, the rotation  about the axis of the beam can be 

determined by Eq. ( 2-20 )  with the applied torque T, material Gbeam, beam length Lbeam, and 

polar moment of inertia of beam cross section Jbeam. 

   
      

          
 ( 2-20 ) 

 

Setting the rotation angle  equal to each other for Eq. ( 2-19 ) and Eq. ( 2-20 ), the torsional 

stiffness for an equivalent beam can be determined that will match the coil’s torsional 

stiffness. 
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] ( 2-21 ) 

 

After rearranging, the elastic torsional stiffness  for a coil undergoing a torque is determined.  

This expression assumes the coil only has a single filar (N=1) or wire.   
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( 2-22 ) 

 

If the coil consists of more than one filar (N>1), the elastic torsional stiffness is multiplied by 
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the number of filars N.  
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( 2-23 ) 

 

After rearranging and using Eq. ( 2-1 ) for the coil pitch angle , the elastic torsion stiffness for 

a coil undergoing a torque is determined as 
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( 2-24 ) 

 

2.4 ELASTIC AXIAL STIFFNESS CALCULATION 

The elastic axial stiffness of a coil will not be used in the computer models but the derivation 

is shown for completeness.  The elastic axial stiffness of a coil can be calculated from the coil 

geometry and material properties and this derivation is covered in many machine design 

textbooks including the one cited by Hearn [38].  When an axial load F is applied to a coil 

along its axis, the elastic axial stiffness of the coil can be calculated.  The following derivation 

assumes the wire consists of a single material.  

 

With a free body diagram, the loading condition on the coil can be resolved into internal 

resultant loads at any cross section perpendicular to the wire axis (Figure 2-9).  Hearn [38] 

describes how the resultant loads can be resolved into a torsional load and a bending moment.  

The applied torque has a torsional component TAX about the AX axis of the wire and a bending 

component MAY about the AY axis.  The shearing load of F across the wire cross section is 

assumed to be very small compared with the bending and torsional load and is neglected. 
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Figure 2-9 Free Body Diagram of Coil Subjected to Axial Load F 
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The applied force F causes the coil to deflect  along its axis.  This external work can be 

determined by Eq. ( 2-26 ).   

Work W  
 

 
   ( 2-26 ) 

 

Hearn shows that the strain energy is equal to the work W done by the force F on the coil [38].  

Setting Eq. ( 2-25 ) equal to Eq. ( 2-26 ), the deflection  along the coil axis is determined. 
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] ( 2-27 ) 

 

The length of the filar Lfilar can be related to the coil pitch P, coil mean diameter Dmean, and the 

overall coil length Lcoil. 

                        
     

 
             ( 2-28 ) 

 

Substituting Eq. ( 2-28 ) into Eq. ( 2-29 ) results in the deflection  along the coil axis. 
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] ( 2-29 ) 

 

For an equivalent beam under an axial load, the deflection  along the axis of the beam can be 

determined by Eq. ( 2-30 ) with the applied axial load F, material Ebeam, beam length Lbeam, and 

beam cross sectional area Abeam. 
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Setting the deflection  equal to each other for Eq. ( 2-29 ) and Eq. ( 2-30 ), the axial stiffness 

for an equivalent beam can be determined that will match the coil’s axial stiffness. 
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After rearranging, the elastic axial stiffness for a coil  undergoing an axial force is 

determined.  This expression assumes the coil only has a single filar (N=1) or wire. 
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( 2-32 ) 

 

If the coil consists of more than one filar (N>1), the elastic axial stiffness is multiplied by the 

number of filars N. 
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( 2-33 ) 

 

After rearranging and using Eq. ( 2-1 ) for the coil pitch angle , the elastic axial stiffness for a 

coil undergoing a axial force is determined as 
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( 2-34 ) 
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2.5 ELASTIC STIFFNESS SUMMARY AND COMPARISON 

The elastic stiffnesses have been determined and are summarized in Table 2-1.  They are 

functions of the pitch angle , the number of filars in the coil N, filar modulus of elasticity 

Efilar, filar shear modulus Gfilar, filar moment of inertia Ifilar, and filar polar moment of inertia 

Jfilar. 

Table 2-1 Analytically Derived Equivalent Stiffnesses for a Coil  

Bending 
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Torsional 
               

         

 [
     

            
 

     
            

]
 

( 2-24 ) 

Axial 
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( 2-34 ) 

 

The stiffnesses can be rearranged and the elastic properties can be determined (Table 2-2). 

Table 2-2 Equivalent Elastic Beam Properties 

Elastic 

Modulus 
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( 2-35) 

Shear 

Modulus 
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  ( 2-36) 

 

 

The coil mean diameter Dmean, is assumed for the beam element diameter Dbeam, and the area 

and polar area moment of inertias (Ibeam and Jbeam) can be calculated.  Then, the elastic 
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modulus Ebeam, and shear modulus Gbeam, can be determined from Eq. ( 2-35) and ( 2-36).  

Table 2-3 lists the material properties that will be used in the numerical simulation.  The 

Appendix has a sample analytical beam approximation calculation. 

Table 2-3 Material Properties for Simulation Models 

 Number 

of Filars 

in Coil 

 

N 

Wire 

Diameter 

 

 

dfilar 

Mean 

Diameter 

 

 

Dmean 

Coil Pitch 

per filar 

 

 

P 

Calculated 

Elastic 

Modulus 

  

Ebeam 

Calculated 

Elastic 

Shear 

Modulus  

Gbeam 

  (mm) (mm) (mm) (MPa) (MPa) 

Coil A 4 0.127 0.635 0.610 363 211 

Coil B 6 0.102 0.610 0.635 283 163 

Coil C 5 0.102 0.610 0.635 236 137  
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CHAPTER 3  

 

RADIAL FORCE EXPERIMENTATION 

IMPLEMENTATION AND RESULTS 

 

3.1 INTRODUCTION 

Experimentation is needed to measure the force between the lead and the cardiac vein wall.  

This force is caused by the vein wall preventing the distal tip from returning to its two- or 

three-dimensional shape after insertion.  This experimentation provided validation for the 

numerical simulation used later in the thesis.  Two approaches are in-vivo animal model 

experimentation with living hearts, or in-vitro bench experimentation simulating the heart 

anatomy. 

 

For the in-vivo experiments the lead would be positioned in a vein outside the left ventricle 

with a force gage connected to the terminal or proximal end of the lead.  The lead could then 

be extracted at a certain rate and direction with the force measured versus time or 

displacement.  This approach has the advantage of providing a realistic force measurement for 

lead dislodgment.  Disadvantages of this approach for in-vivo experimentation are the high 

cost of animal studies with multiple studies needed for each distal end design.  Also, the 

variation in the cardiac and circulatory system for each animal introduces variability by 

changing the size and torturous path in which the lead is placed in for each experiment.  
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In-vitro experimentation can be performed in several different ways.  The distal end of the 

lead could be inserted into glass tubes with varying diameters to visualize the appearance of 

the lead as it is prevented from returning to its pre-formed shape.  The glass tubes would only 

provide qualitative data of how the lead looks.  Disadvantages would be the lack of 

quantitative force data from this approach. 

 

Another in-vitro experiment could be to insert the leads into tubes and attach a force gage to 

the proximal end to extract the lead from the tubes.  This would provide an extraction force for 

the leads and an indirect measurement of the fixation force in the tube since friction would 

need to be accounted for.  The disadvantage of this approach is that the fixation force of the 

lead is not measured directly and friction would have a strong influence on the results.  

Friction between the distal lead tip, which is typically silicone rubber, and the tubing wall 

could be influence by external factors such as temperature and humidity which could be 

difficult to control. 

 

The in-vitro experiment adopted in this thesis is a radial force tester to quantify the fixation 

forces exerted by a left-ventricle lead when a wall prevents it from returning to its original 

shape.  This instrumentation simulates a rigid tube and measures the overall radial force 

exerted on the tube for a given diameter.  Radial force testers are used to measure and record 

radial force during expansion and compression of interventional devices such as expandable 

stents and other radial expanding devices [39]. 

 

A radial force tester from Machine Solutions Inc., Flagstaff, AZ was used for the experiment.  

A radial force tester has a movable mechanical iris that contracts and expands to different 
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diameters as it measures the overall radial force that an object exerts on the iris.  Typically 

radial force testers record radial force measurements as they contract and expand at certain 

rate.  Rate can be varied to determine if this affects the measurement.  

 

In this thesis, in-vitro experimentation with a radial force tester was used.  Samples with a 

two- or three- dimensional distal shape were completely straightened with a guidewire and 

inserted into a radial force tester.  The guidewire was then removed allowing the sample to 

return to its pre-formed shape but the walls of the tester prevented this.  The tester then 

measured the radial force that the sample exerted on the walls. 

 

3.2 DISTAL LEAD SAMPLES 

Simplified experimental samples were fabricated (Figure 3-1).  These samples consisted of a 

coil inside silicone tubing as described below.   

 

Figure 3-1 Simplified Experimental Samples 
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samples can be created with various coil stiffnesses.  The stiffness of the coils can be varied 

by changing their geometry.  The stiffness is affected by the number of wire filars used to 

make the coil, filar diameter, filar pitch, and coil diameter.  The MP35N material for the wire 

was used for all samples (Table 3-1).  The silicone tubing will have an inner diameter of 

1.118-mm with a wall thickness of 0.254-mm. 

Table 3-1 MP35N Material Properties 

Material Young’s 

Modulus 

Shear 

Modulus 

 (GPa) (GPa) 

MP35N 234 81 

 

3.2.1 ELASTIC COIL STIFFNESS 

To determine whether elastic coil stiffness affects the radial force for the same two-

dimensional distal shape, three different coil designs were evaluated (Table 3-2).  The designs 

varied in stiffness by having different wire diameter, number of filars, and coil pitch.  Coils 

can be wound with a single filar (wire) or multiple filars.  Coil pitch is defined as the axial 

distance along the centerline for one filar to wrap 360 degrees.   These coil designs (Figure 

3-2) were slight variations on coils used in actual leads [6].  The inside coil diameter is 

dictated by guidewire diameters that are inserted into the leads. 
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Table 3-2 Coil Design Parameters  

 Material Wire 

Diameter 

 

dfilar 

Number 

of Filars 

 

N 

Coil Inner 

Diameter 

 

D inner 

Coil 

Pitch per 

Filar 

P 

  (mm)  (mm) (mm) 

Coil A MP35N 0.127 4 0.508 0.610 

Coil B MP35N 0.102 6 0.508 0.635 

Coil C MP35N 0.102 5 0.508 0.635 

 

 

Figure 3-2 Coil Design Parameters (4 Filar Shown) 

 

The coil design was varied (Table 3-2) to change the elastic stiffness of the coil.  Chapter 2 

showed the derivation of how the elastic stiffness of a coil is determined and the results are 

shown in Table 3-3.  The elastic bending stiffness is calculated by multiplying the modulus of 

elasticity E of the material by its moment of inertia I about the bending axis.  An assumption 

is that the radial force is related to the coil stiffness and so Table 3-3 compares the stiffness of 

Coil B and Coil C with Coil A. 
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Table 3-3 Bending Stiffness of Coil Designs 

 Wire 

Diameter 

 

 

 

 

dfilar 

Number 

of Filars 

in Coil 

 

 

 

N 

Coil Pitch 

per filar 

 

 

 

 

P 

Elastic 

Bending 

Stiffness  

 

 

 

Ebeam 

Analytically 

Derived 

Bending 

Stiffness 

Change  

Relative  

to Coil A 

 (mm)  (mm) (MPa x mm
4
)

 
% 

Coil A 0.127 4 0.610 2.90 NA 

Coil B 0.102 6 0.635 1.92 - 34 

Coil C 0.102 5 0.635 1.60 - 45 

 

3.2.2 DISTAL TWO-DIMENSIONAL PRE-FORMED SHAPE 

The samples had a pre-formed shape at the distal tip of the coil that was a flat two-dimensional 

circular loop as illustrated in Figure 3-3.  This loop was created by tightly winding the coil 

around a mandrel.  This distal end loop had an inner diameter of 13-mm and a 360 degree 

wrap angle.  The tip of the sample had a straight length of 1-mm which is used to minimize 

the contact force at the tip of the lead to reduce potential damage to the heart wall or vein.

 

Figure 3-3 Coil Sample with Distal Shape for Radial Force Tester 
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3.3 EXPERIMENTATION PROCEDURE 

3.3.1 TARE (EMPTY) FORCE MEASUREMENT BEFORE AND AFTER 

EXPERIMENTATION 

The frictional forces or tare of forces must be measured before and after the experiment while 

the instrumentation is empty.  This tare force can then be subtracted from the forces measured 

with the sample to give the actual forces.  This was done before and after the experiment to 

see if the radial force tester varied with time and to check that the equipment did not 

experience any anomalous behavior. 

 

3.3.2 SAMPLE SETUP 

Proper sample placement in the radial tester reduces variability during testing.  For 

experimentation a guidewire is inserted into the sample, and then the distal end of the 

straightened sample is placed into the iris of the tester along the axial center line (Figure 3-4).  

During loading, the radial force tester has the mechanical iris set to the largest diameter used 

for testing.  A raised platform outside the tester serves to align the sample with the centerline 

of the iris.  A one kilogram weight is placed on the proximal end of the sample to prevent 

axial movement of that end during experimentation.  To reduce slack in the sample, the 

platform with the weight is placed as close as possible to the radial force tester.  After the 

straightened sample has been positioned, the guidewire is removed to allow the lead to return 

to its pre-formed shape but since the mechanical iris prevents this a force against the tester 

walls is created. 
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Figure 3-4 Radial Force Tester Setup 

 

3.3.3 EXPERIMENTAL PROCEDURE 

The radial force tester dynamically contracts and expands the mechanical iris between two 

diameters and then dwells or idles for a certain length of time at these diameters as it 

transitions and changes direction (Figure 3-5).  The appropriate diameter range and rate of 

contraction and expansion with dwell time were determined. 

 

Figure 3-5 Contraction and Expansion of a Single Cycle 

 

The diameter range to evaluate lead fixation forces should be typical of the blood vessels the 
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leads will be placed into outside the left ventricle.  Literature searches have found that the 

diameter of the coronary sinus and other veins outside the left ventricle can range from 2- to 

8-mm in diameter [40, 41].   

 

The rate of contraction and expansion of the radial force tester can range from 0.01 to 5.0 

mm/sec.  The rate was varied in this range and force measurements were found not to vary 

significantly with rate.  A rate of 1 mm/sec was chosen for the speed that the iris contracts and 

expands around the samples.  Force measurements were taken every 240 milliseconds. 

 

As the iris contracts and expands it dwells or stops for a certain duration at the maximum and 

minimum iris diameter.  This dwell time allows the iris to change direction between 

contraction and expansion.  At these transition times the forces driving the iris change 

magnitude and direction.   After a second of dwell time the forces stabilize around a steady 

value.  A dwell time of three seconds was chosen.   

 

The radial force tester uses a mechanical iris which is composed of multiple wedges that slide 

against each other as it contracts and expands.  These wedges are subject to frictional forces 

that act on each other even when the tester is empty and can produce noise in the 

measurements.   

 

To reduce noise in the data, a simple moving average Eq. ( 3-1) was used on the force 

measurements.  A simple moving average is the mean taken from an equal number of data 

points on either side of the central value.  A moving average of 1-mm before and after the 

central value was used.  For example, at 4-mm the forces will be averaged from 3- to 5-mm. 
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( 3-1) 

 

For data collection, three samples were used for each coil design and each sample was cycled 

multiple times.  For each sample, the iris diameter contracted to 2-mm and expanded to 8-mm 

for four cycles at a rate of 1-mm per second (Figure 3-5).  Radial forces were measured every 

240 milliseconds or about 4 times per second (Figure 3-6).  The moving average calculation at 

the contraction and expansion transition (2- and 8-mm) was modified to average the all forces 

at the transition diameter, 2- or 8-mm, together.  The first cycle at startup was not used since 

frictional forces are higher at startup with the iris not moving.  The experiment was performed 

at room temperature and humidity was not controlled.   

 

Figure 3-6 Radial Force Test Cycle vs. Time – Startup Cycle Highlighted 
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3.4 RESULTS 

3.4.1 TARE OR EMPTY RADIAL TESTER FORCES 

The first force measurements were performed with the radial force tester empty.  This baseline 

force with the tester empty (i.e., tare force) is needed so it can be subtracted from actual 

sample measurements.  Two baselines with the tester empty were measured, once at the 

beginning prior to the samples being measured and then again at the end after all sample 

measurements had been completed.   

 

Experimental data for the tare force is displayed in Figure 3-7.  The first column shows the 

force measurement before the samples were tested.  The second column shows the force 

measurement after the samples were tested.  Before and after tare measurements were 

performed to check for anomalous behavior during the experiment that could affect the force 

measurements. 

 

Radial force measurements versus iris diameter are shown in the sub-figures that comprise 

Figure 3-7.  The plots show a loop as the force was measured during iris contraction and 

expansion for three cycles.  Arrows on the plot show the counterclockwise direction of the iris 

contraction and expansion. 

 

For each column in Figure 3-7 three plots are shown.  The top plot shows the raw force data 

which has scatter, variation, or noise.  To reduce these intrusive features a simple moving 

average was performed on the data with the outcome shown in the middle plots.  A moving 

average with a 1-mm interval before and after was used Eq. ( 3-1).  The bottom plots show the 
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force measurement after all three cycles were averaged together.  The plots show that the force 

measurement before and after the experiment were not significantly different and that the 

equipment did not experience any anomalous behavior.   

Empty Radial Force Tester Before 

Experiment 

 

Empty Radial Force Tester After 

Experiment 

 
Radial Forces of All Three Cycles 

(Before Experiment) 

 
Radial Forces of All Three Cycles  

(After Experiment) 

 
Moving Average (+/- 1 mm) of All Three 

Cycles (Before Experiment) 

 
Moving Average (+/- 1 mm) of All Three 

Cycles (After Experiment) 

 
All Cycles Averaged  

(Before Experiment) 

 
All Cycles Averaged  

(After Experiment) 

 

Figure 3-7 Average Radial Forces (Before and After) in Empty Tester 
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The tare (or empty) force measurements were needed so that they could be subtracted from the 

forces measured from the samples.  Figure 3-8 shows the average tare force combined from 

before and after the experiment.  

 

Figure 3-8 Tare (or Empty) Force Measurement (Before and After) 

 

Figure 3-9 pictorially shows the tare force being subtracted from the sample measurement 

resulting in the corrected sample measurement shown in the rightmost plot. 
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Figure 3-9 Sample Measurement Corrected by Subtracting the Tare Force 
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3.4.2 SAMPLE DATA 

The force measurements taken for all three coil designs A, B, and C are conveyed in Figure 

3-10 through Figure 3-18.  Each coil design was represented by three samples, and each 

sample was cycled four times, however only the last three cycles are presented. 

 

For the graphs, each column corresponds to a single sample and shows the three measured 

cycles.  The top graph shows the raw force data which has variation or noise.  Noise/variation 

reduction was achieved by use of a moving average, with the outcome shown in the middle 

tier.  The bottom tier of plots shows the force measurements after all three cycles were 

averaged together for each sample.  Finally all three samples are averaged together in the 

lower left graph and then the tare (empty) forces are subtracted. 
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Coil A – Sample 1 

 
Coil A – Sample 2 Coil A – Sample 3 

 
Raw Data (3 cycles) 

 

 
Raw Data (3 cycles) 

 
Raw Data (3 cycles) 

 
Moving Average (3 cycles) 

 

 
Moving Average (3 cycles) 

 
Moving Average (3 cycles) 

 
Moving Average 

(All Cycles Combined) 

 

 
Moving Average 

(All Cycles Combined) 

 
Moving Average 

(All Cycles Combined) 

Figure 3-10 Coil A Force Measurements 

 

 
Figure 3-11 All Three Samples Averaged 

(Moving Average with All Cycles Combined) 

 
Figure 3-12 All Three Samples Averaged 

with Tare (Empty) Forces Subtracted 
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Coil B – Sample 1 Coil B – Sample 2 Coil B – Sample 3 

 
Raw Data (3 cycles) 

 

 
Raw Data (3 cycles) 

 
Raw Data (3 cycles) 

 
Moving Average (3 cycles) 

 

 
Moving Average (3 cycles) 

 
Moving Average (3 cycles) 

 
Moving Average 

(All Cycles Combined) 

 

 
Moving Average 

(All Cycles Combined) 

 
Moving Average 

(All Cycles Combined) 

Figure 3-13 Coil B Force Measurements 

 

 
Figure 3-14 All Three Samples Averaged 

(Moving Average with All Cycles Combined) 

 
Figure 3-15 All Three Samples Averaged 

with Tare (Empty) Forces Subtracted 
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Coil C – Sample 1 

 
Coil C – Sample 2 Coil C – Sample 3 

 
Raw Data (3 cycles) 

 

 
Raw Data (3 cycles) 

 
Raw Data (3 cycles) 

 
Moving Average (3 cycles) 

 

 
Moving Average (3 cycles) 

 
Moving Average (3 cycles) 

 
Moving Average 

(All Cycles Combined) 

 

 
Moving Average 

(All Cycles Combined) 

 
Moving Average 

(All Cycles Combined) 

Figure 3-16 Coil C Force Measurements 

 

 
Figure 3-17 All Three Samples Averaged 

(Moving Average with All Cycles Combined) 

 
Figure 3-18 All Three Samples Averaged 

with Tare (Empty) Forces Subtracted 
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3.4.3 DATA ANALYSIS 

When the radial force results for all three coil designs are compared to each other it is apparent 

that the respective radial force measurements are different (Figure 3-19).  Coil A has the 

highest radial force followed by Coil B and then Coil C. 

 

Figure 3-19 Coil Designs (Contraction and Expansion) 

 

To allow a quantitative comparison between the coil designs, each coil had its contraction and 

expansion values averaged together at a given iris diameter of 2-, 4-, 6- and 8-mm (Figure 

3-20 through Figure 3-22) 

 



Chapter 3 

 48 

 
Figure 3-20 Coil A Radial Force and Average 

 

 
Figure 3-21 Coil B Radial Force and Average 

 

 
Figure 3-22 Coil C Radial Force and Average 
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Table 3-4 lists the average radial force for each coil at a given tube diameter and then 

compares the radial force of Coil B and C with Coil A. 

Table 3-4 Radial Force Average Comparison at Given Tube Diameter (Experiment) 

Tube 

Diameter 

Coil A 

Average 

Coil B 

Average 

Radial 

Force 

Change 

Between 

Coil B 

and 

Coil A 

Coil C 

Average 

Radial 

Force 

Change 

Between 

Coil C 

and 

Coil A 

(mm) (N) (N) (%) (N) (%) 

2 0.167 0.119 -29 0.092 -45 

4 0.105 0.077 -27 0.052 -50 

6 0.105 0.076 -28 0.050 -52 

8 0.065 0.049 -25 0.034 -48 

 

Coil A generates the highest radial force over the range of tube diameters.  Coil B has a 25 % 

to 29 % lower radial force compared to Coil A, and Coil C has a 45 % to 52 % lower radial 

force compared to Coil A (Table 3-4).   Table 3-5 compares the coil stiffness (Table 3-3) with 

the radial forces and shows coil stiffness has a direct influence on radial force. 

Table 3-5 Coil Design Comparison with Coil Stiffness and Radial Force 

 Elastic 

Bending 

Stiffness  

Analytically 

Derived 

Stiffness 

Change 

Relative to 

Coil A 

Radial 

Force 

Change 

Relative to 

Coil A 

 (MPa x mm
4
) (%) (%) 

Coil A 2.90 NA NA 

Coil B 1.92 - 34  - 25 to - 29 

Coil C 1.60 - 45  - 45 to - 52 
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CHAPTER 4  

 

USE OF EXPERMENTAL RESULTS FOR 

NUMERICAL MODEL VALIDATION 

 

4.1 INTRODUCTION 

Numerical simulation will be used to determine the force between the distal shape of the lead 

and the wall of the cardiac vein.  For the simulations, a simplified representation of the lead 

distal shape will be used.  To simulate the wall of the cardiac vein, a simplification will be to 

use a straight rigid cylindrical tube in the model.  This simplification allows the interaction 

force between the lead distal shape and vein to be determined.  This simplification is also 

similar to the experimentation completed in Chapter 3.  

 

The stresses within the lead itself are out of the present scope, although they can be calculated 

as part of the analytical elastic stiffness derivation [5].  A more thorough evaluation of the coil 

stresses would need to include fatigue, corrosion, and other design conditions which could be 

evaluated later.  The coil designs evaluated here are similar to coils that have been used and 

implanted for ten to twenty years [6]. 

 

This simulation model provides forces that the lead distal shape exerts against a straight tube.  

The overall radial force can be compared to that of experiment to provide validation of the 

numerical simulation based on simplifications and assumptions.  The experiment in Chapter 3 
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used a radial force tester that was a straight rigid tube and the experimental samples were 

similar to the simulation model.  The simulation will also provide the distribution of the radial 

force along the axis of the lead, including the tip force. In addition, the relationship between 

radial forces and lead stiffness will be examined, as well as the effect of friction on radial 

force between the lead and the tube wall.  ABAQUS, a commercial finite element analysis 

code, will be used for the numerical simulation.  A flow chart of the numerical simulation 

setup is shown in Figure 4-1with a detailed description in the Appendix. 
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Figure 4-1 Flowchart of Numerical Simulation 
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4.2 DISTAL LEAD SHAPE MODEL 

The simulation model of the lead will use the finite element method to discretize the geometry 

into elements.  Three-dimensional beam elements will be used to simulate the lead distal 

shape.   The radial force that the lead distal shape exerts on a straight tube with various 

diameters ranging from 2- to 8-mm will be determined to compare with the experimental 

results.   

 

For the experiment, a radial force tester took continuous measurements as the mechanical iris 

or tube surrounding the lead distal shape was contracted and expanded between 2- and 8-mm.  

For the simulation model, continuous measurement with the tube expanding and contracting 

would be time consuming and difficult, so radial force measurements will be extracted at 

discrete tube diameters of 2-, 4-, 6-, and 8-mm and compared to the experimental results.  

 

A simplified model of the lead was used.  As noted previously, the lead is constructed of 

various coils, plastic tubing, cables, and electrodes.  For experimentation, samples consisted of 

a coil inside silicone tubing as described previously (Section 3.2).  For the simulation model, 

simple three-dimensional beam elements were used.  Beam elements are line elements used to 

create a one-dimensional idealization of a three-dimensional structure.  For convenience, the 

adopted beam elements had a circular cross section with an outer diameter that matched the 

experimental coil mean diameter (Figure 4-2).  The simulation model of the rigid tube 

contacting the beam elements was adjusted to account for the offset of using the coil mean 

diameter instead of the outer diameter of the coil. 
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Figure 4-2 Comparison of Simplified Experimental Samples (Top) to Computer Model (Bottom) 

 

The elastic properties of the beam were calculated based on the elastic bending stiffness, EI 

(Section 2.2) and elastic torsion stiffness, GJ (Section 2.3) of the coil with the assumed cross 

sectional diameter.  Based upon the coil geometry (Table 4-1), the calculated elastic modulus 

E beam and shear modulus G beam are listed in Table 4-2.  For comparison, Coil A was chosen as 

the baseline in Table 4-3 and lists the change in stiffness between each coil based upon their 

geometry of construction, when compared to Coil A. 
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Table 4-1 Coil Geometry 

 Number of 

Filars in 

Coil 

 

N 

Wire 

Diameter 

 

 

dfilar 

Mean Coil 

Diameter 

 

 

Dmean 

Coil Pitch 

per filar 

 

 

P 

  (mm) (mm) (mm) 

Coil A 4 0.127 0.635 0.610 

Coil B 6 0.102 0.610 0.635 

Coil C 5 0.102 0.610 0.635 

 

Table 4-2 Material Properties for Simulation Models 

 Calculated 

Elastic 

Bending 

Stiffness   

Ebeam I 

 

   

Calculated 

Elastic 

Torsional 

Stiffness 

Gbeam J 

 

 

Area 

Moment 

of Inertia 

 

 

 

I 

Polar 

Area 

Moment 

of Inertia 

 

 

J 

Calculated 

Elastic 

Modulus  

 

 

 

Ebeam 

Calculated 

Elastic 

Shear 

Modulus  

 

 

 Gbeam 

 (MPa x mm
4
) (MPa x mm

4
) (mm

4
) (mm

4
) (MPa) (MPa) 

Coil A 2.90 3.37 0.00798 0.0160 363 210 

Coil B 1.92 2.22 0.00678 0.0136 283 163 

Coil C 1.60 1.85 0.00678 0.0136 236 136 

 

Table 4-3 Change In Elastic Modulus among Coil Designs 

 Calculated 

Elastic  

Modulus   

 

 

 E beam 

Elastic  

Modulus 

Change 

from      

Coil A 

Calculated 

Elastic 

Shear 

Modulus   

 

Gbeam 

Elastic 

Shear 

Modulus  

Change 

from      

Coil A 

 (MPa) (%) (MPa) (%) 

Coil A 363 NA 210 NA 

Coil B 283 22 163 22 

Coil C 236 35 136 35 

 

The simulation model of the distal lead shape matches the geometry of the experimental 

samples (Figure 4-3).  The isometric view at the upper right of Figure 4-3 shows the outline of 

the rigid tube overlaid on top of the distal lead shape.  This tube is perfectly rigid and cannot 

deform in response to any force applied to it.  This simple cylindrical shape is represented as 
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an analytical rigid surface in the software and as such does not need to be discretized and 

meshed. 

 

Figure 4-3 Simulation Model Geometry (Side & Isometric View) 

 

4.3 BOUNDARY AND LOADING CONDITIONS  

The proximal end will be prevented from moving by setting all degrees of freedom, DOF, to 

zero.  This is similar to the experimental setup in Figure 3-4.  The six degrees of freedom 

include translation in the x, y, and z directions as well as rotation about these axes.  Gravity 

effects are neglected.  Contact surfaces between the distal shape and the rigid tube were 

created.  Contact surfaces allow the distal shape model to move freely within the tube but not 

penetrate or deform the rigid tube.    
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Figure 4-4 Initial State, Step 1, Step 2 

Figure 4-4 illustrates the loading sequence for the model.  Step 1 of the analysis is to 

straighten out the distal shape.  This is appropriate since during the experiment this was done 

and this is what occurs in actual use during insertion.  All contact surfaces are deactivated as 

the tip of the distal end is moved along the lead axis away from the proximal end.   

 

Step 2 begins after the distal end has been straightened.  The contact surfaces are activated.  

The distal tip is released and allowed to freely move and push against the rigid tube.  The 

distal shape tries to return to its un-deformed shape but is prevented from doing so by the rigid 

tube.  Once the distal shape contacts the rigid tube and reaches a final position, the 

displacements, and contact forces are obtained.  The simulation model reports contact forces 

along the length of the distal shape at node locations and summing these forces results in the 
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total radial force.  The element size used in the model was kept uniform and the same size for 

all the simulations.  The simulation model also reports the maximum radial force. 

 

4.4 MESH REFINEMENT EVALUATION 

4.4.1 MESH BACKGROUND INFORMATION 

The simulation model is discretized into elements.  The size of the elements or mesh density 

can affect results.  Accuracy of the model can usually be improved with an increase in 

elements or a refined mesh in the area of interest but at the expense of computer resources.  

The adopted model allows nonlinear geometry or large deformations, which can be 

computationally costly, so that a minimum number of elements is desirable to minimize run 

times.   

 

Various meshes were evaluated and the radial forces compared to determine an appropriate 

mesh density.  If the changes in forces between mesh densities is less than 5% it was assumed 

that the model is reasonable and sufficient.  This 5% criterion is arbitrary but should be 

sufficient for comparisons with the experimental results.  Also, when comparing results 

among simulation models, the change in the results as a function of mesh density or element 

size is not as critical since the same mesh is being used for all the models.   

 

The initial global element size was 10-mm and was subsequently reduced to 2.5-mm.  The 

highest deformation case will be evaluated as worst case, which is when the distal shape is 

inside the smallest tube diameter of 2-mm.  Coil A will be used for this evaluation since it is 
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typical of the three designs being evaluated.  Friction will also be assumed to be zero or 

frictionless for this case but will be evaluated later. 

 

4.4.2 MESH REFINEMENT RESULTS 

The total radial force and maximum radial force were determined for various global element 

or mesh sizes.  The mesh size started at 10-mm and was progressively decreased to 2.5-mm.  

Table 4-4 lists the radial forces and their change as a function of mesh size.   

Table 4-4 Mesh Refinement Results 

Global 

Element Size  

 

 

 

(mm) 

Total Radial 

Force  

 

 

 

(N) 

Total Radial 

Force Change 

from Preceding 

Element Size  

 

(%) 

Maximum 

Radial Force  

 

 

 

(N) 

Maximum 

Radial Force 

Change from 

Preceding 

Element Size 

(%) 

10 mm 0.186 NA 0.0662 NA 

7.5 mm 0.201 8.2 0.0683 3.3 

5.0 mm 0.199 -1.0 0.0655 -4.1 

2.5 mm 0.195 -2.2 0.0653 -0.4 

 

Figure 4-5 is a plot of the data in Table 4-4 and shows that the change between meshes is 

small as mesh refinement is increased.   
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Figure 4-5 Comparison of Radial Forces with Global Element Size 

 

A plot of the deformed distal shape (Figure 4-6) shows that the initial circular distal shape 

does not uniformly conform to the 2-mm tube after insertion but instead contacts the tube at 

four different locations.  The distal shape contacts the tube in the same plane as does the initial 

circular shape.  The deformation plot also shows the location and direction of the radial forces. 
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Figure 4-6 Deformed Distal Shape with Contact Forces – Coil A (2-mm Diameter Tube) 

 

Figure 4-7 shows a plot of the radial force magnitude along the distal end of the model 

(z-axis).  This line plot displays the radial force at each nodal location and then connects each 

data point with a line for visualization.  The total radial force is the sum of all the radial forces 

along the distal end at these nodal locations.  Only the 2.5- and 10-mm global element sizes 

are shown to maintain clarity.  This plot also shows that the maximum radial force occurs at 

the tip of the distal shape.  
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Figure 4-7 Radial Force Distribution along the Axial Direction (Mesh Refinement) 

 

The global element size results (Table 4-4) start at 10.0-mm and show that when the element 

size is reduced from 7.5- to 5.0- mm the change in total radial force is -1.0 % which meets the 

criterion of less than 5%.  For the maximum radial force, when the element size is reduced 

from 10- to 7.5-mm, the change is 3.3 % which meets the criterion of less than 5%.  Since 

total radial force requires a smaller element size, 5.0-mm, to meet this criterion, a global 

element size of 5.0-mm or less will be used for subsequent models. 

 

4.5 FRICTION EVALUATION 

4.5.1 FRICTION BACKGROUND INFORMATION 

Friction between the distal shape and the rigid tube was evaluated to determine its effect on 

radial force.  Coefficients of friction are difficult to determine and are affected by many 

 Distal Tip  Proximal End  

2.5 mm Mesh – Total Radial Force 0.195 N 

10 mm Mesh – Total Radial Force 0.186 N 
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variables, contact pressure, humidity, lubricants, surface finish, velocity, and temperature.  

The friction conditions between in-vivo and in-vitro conditions are very different.  The present 

evaluation is only to determine how sensitive the model is to friction and to gain a general 

understanding of its effect.   

 

Coefficients of friction between two materials can vary widely [42, 43].  Static coefficients of 

friction were tentatively assigned as 0.1, 0.5, and 1.0 to compare with the frictionless model.  

These friction values cover a wide range of materials and conditions.  The frictionless model 

may be more appropriate since for lead design, it is desirable to have the lowest coefficient of 

friction possible to allow easy delivery as it slides through the veins for implantation and to 

avoid abrasion with tissue and other leads [44 – 46]. 

 

To evaluate the friction effect, a simulation model of the distal shape interacting with a 6-mm 

tube was chosen.  The 6-mm tube diameter was chosen since it is between the minimum, 

2-mm, and maximum, 8-mm, tube sizes.  Coil A will be used for this evaluation since it is 

typical of the three designs being evaluated.   

 

4.5.2 FRICTION RESULTS 

The total radial force and maximum radial force were determined for various coefficients of 

friction.  The initial model was frictionless and then the friction coefficient was increased.  

Table 4-5 lists the radial forces and their changes as the coefficient of friction is increased.   
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Table 4-5 Friction Evaluation Results 

Static 

Coefficient of 

Friction  

Total Radial 

Force  

 

 

(N) 

Total Radial 

Force Change 

from                

Frictionless 

(%) 

Maximum 

Radial Force  

 

 

(N) 

Maximum 

Radial Force 

Change from                

Frictionless 

(%) 

Frictionless 0.141 NA 0.0406 NA 

0.1 0.114 -19 0.0369 -9 

0.5 0.076 -46 0.0288 -29 

1.0 0.056 -60 0.0235 -42 

 

The addition of friction to the simulation model reduces the radial forces.  As the coefficient 

of friction increases the total and maximum radial forces decrease.  Figure 4-8 displays the 

data in Table 4-5 and shows how friction reduces both the total radial force and maximum 

radial force.  The friction has more of a reduction on the total radial force than on the 

maximum radial force.   

 

Figure 4-8 Comparison of Radial Forces for Different Coefficients of Friction 
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A plot of the deformed shape (Figure 4-9) shows that the deformed distal shape is similar with 

or without friction.  Without friction the only contact forces interacting with the tube act 

radially.  Friction creates shear forces at the tube contact surface which act in the axial 

direction which reduce the radial forces.   

 

Figure 4-9 Deformed Distal Shape with Contact Forces for Coil A (6 -mm Diameter Tube) 

(Deformed Model with and without Friction) 

 

Figure 4-10 shows a plot of the radial force magnitude along the distal end of the model 

(z-axis).  This line plot displays the radial force at each nodal location and then connects each 

data point with a line for visualization.  The total radial force is the sum of all the radial forces 

along the distal end at these nodal locations.  Only two models (frictionless and friction with a 

coefficient of 1.0) are shown for clarity.  Again this plot shows that the maximum radial force 

occurs at the tip of the distal shape.  Figure 4-10 shows that friction decreases the radial forces 

Frictionless  

Coefficient of Friction 1.0 Model 

Axial Forces  

Radial Forces  

Radial Forces  
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that the distal shape exerts on the tube.  With friction, the radial force is distributed further 

towards the proximal end and the location of the forces changes.   

 

Figure 4-10 Radial Force Distribution along the Axial Direction with and without Friction 

 

Strain energy explains why friction reduces the radial forces that the distal shape exerts on the 

tube.  In the frictionless case, most of the strain energy occurs in bending as the distal shape 

pushes radially on the tube.  With friction, the strain energy is distributed between bending 

and axial stretching of the distal shape.  The axial forces are due to the shear forces inherent in 

friction.  Figure 4-9 illustrates these shear forces acting along the axis of the tube (z-axis).  

These shear forces axially stretch the distal shape further than the frictionless model.  This 

stretching is shown in Figure 4-10 by the proximal-end radial force being shifted towards the 

proximal end of the model.  Both models have similar amounts of strain energy in their 

 Distal Tip  Proximal End  

Frictionless – Total Radial Force 0.141 N 

Friction 1.0 – Total Radial Force 0.056 N 
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deformed states but friction reduces the amount of strain energy available for bending so that 

some of this strain energy is used to axial stretch the model in its final state.  

 

For subsequent models, the interface between the distal shape and the tube will be assumed 

frictionless.  This assumption is made since the purpose of the models is to evaluate distal 

shape designs and compare them to each other.  Another reason is that determining the correct 

coefficient of friction to use for these simulation models is highly error prone.  Also, the goal 

of most lead designs is to achieve a low friction design for easy sliding through the veins 

during implantation and to avoid abrasion with tissue and other leads [44 – 46]. 

 

4.6 PROXIMAL STRAIGHT-END LENGTH EVALUATION 

4.6.1 PROXIMAL STRAIGHT-END LENGTH BACKGROUND 

For both the experimental samples (Section 3.3.2) and the simulation models (Section 4.3), the 

end of the proximal straight length is held and fixed in position.  The length of the proximal 

end should be long enough that the proximal end does not influence distal-tip radial forces.  In 

the simulation model, the proximal end will be prevented from moving by setting all degrees 

of freedom, DOF, to zero.  Various proximal straight end lengths were evaluated and the 

radial forces compared to determine an appropriate length.  If the change in radial forces for 

successively prescribed lengths is less than 5% the model will be assumed to be reasonable 

and sufficient.  This 5% criterion is arbitrary but should show reasonable agreement with the 

experimental results. 
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Proximal straight-end lengths of 25-, 75-, and 150-mm were evaluated.  A simulation model 

with the distal shape interacting with a 6-mm diameter tube was chosen.  The 6-mm diameter 

tube size was chosen since it is between the minimum, 2-mm diameter, and maximum, 8-mm 

diameter, tube sizes.  Coil A will be used for this evaluation since its stiffness is similar to the 

three designs being evaluated.  The coefficient of friction was assumed to be zero.  

 

4.6.2 PROXIMAL STRAIGHT-END LENGTH RESULTS 

The total radial force and maximum radial force were determined for various proximal 

straight-end lengths.  The initial proximal straight-end length was 25-mm long, and then it was 

increased to 150-mm.  Table 4-6 lists the radial forces and their change as proximal straight-

end length is increased.   

Table 4-6 Proximal Straight-End Length Results 

Proximal 

Straight-End 

Length        

 

 

(mm) 

Total Radial 

Force  

 

 

 

(N) 

Total Radial 

Force Change 

from                

Preceding 

Length  

(%) 

Maximum 

Radial Force  

 

 

 

(N) 

Maximum 

Radial Force 

Change from                

Preceding 

Length  

(%) 

25 0.122 NA 0.040672 NA 

75 0.140 14.8 0.040609 0.02 

150 0.141 0.7 0.040614 0.00 

 

The proximal straight-end length change from 75- to 150-mm met the criterion of a less than 

5% change in the total radial force.  Figure 4-11 displays the data in Table 4-6 and shows that 

after the proximal straight-end length increases above 75-mm the radial forces change less 

than 1%.  The maximum radial force occurs at the distal tip (Figure 4-12) and is not affected 

by the length change since it is the farthest point away from the proximal end. 
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Figure 4-11 Comparison of Distal-End Radial Forces with Proximal Straight-End Length 

 

Figure 4-12 shows a plot of the radial force magnitude along the distal end of the model along 

(z-axis).  This line plot displays the radial force at each nodal location and then connects each 

data point with a line for visualization.  The total radial force is the sum of all the radial forces 

along the distal end at these nodal locations.  The change in the proximal straight end length 

has little effect on the radial forces at the distal end.  The effect on the proximal end of the 

distal shape (25- to 55-mm range in Figure 4-12) can be significant.  For a very short length 

(25-mm), a radial force of 0.004 N is obtained from the model at the 40-mm location while for 

other longer proximal end lengths radial forces at the 35-mm location are significantly higher 

at 0.013 N.  This plot also shows that the maximum radial force occurs at the tip of the distal 

shape.   
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Figure 4-12 Radial Force Distribution along the Axial Direction for Parametric Values of the 

Proximal Straight-End Length 

 

The proximal straight-end length results (Table 4-6) start at length of 25-mm and show that 

when the length is increased from 75- to 150-mm the change in total radial force is 0.7% 

which meets the criterion of less than 5%.  For the maximum radial force, when the proximal 

straight end length is increased from 25- to 75-mm, the change is 0.02% which meets the 

criterion of less than 5%.  Since the total radial force requires a longer proximal end, a length 

of 150-mm will be used for subsequent models.   

 

4.7 EXPERIMENTAL VALIDATION OF SIMULATION MODEL 

4.7.1 EXPERIMENTAL VALIDATION BACKGROUND 

A simulation model was used to evaluate the radial force of the distal shape and compared 

with the previous experimental results (Section 3.4).  The model was based upon the previous 

 Distal Tip  Proximal End  

25 mm – Total Radial Force 0.122 N 

75 mm – Total Radial Force 0.140 N 

150 mm – Total Radial Force 0.141 N 
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evaluations on mesh refinement (Section 4.4), friction (Section 4.5), and proximal straight-end 

length (Section 4.6).  The three coil designs were modeled using a global element size of 

2.5-mm.  The models were frictionless and the proximal straight-end length was 150-mm.  

These assumptions are based on the results of the previous sections to allow comparisons 

among designs.  For the simulation model, radial force measurements were extracted at 

discrete tube diameters of 2-, 4-, 6-, and 8-mm.   

 

4.7.2 EXPERIMENTAL VALIDATION OF SIMULATION MODEL RESULTS 

In the simulation model, the deformed geometry and radial forces were determined for all 

three coil designs at discrete tube diameters of 2-, 4-, 6-, and 8-mm.  The simulation model 

simulates the experiment completed in Chapter 3.  Figure 4-13 shows a plot of the deformed 

geometry for Coil A at various tube diameters.  The left side of Figure 4-13 shows an 

isometric view of the deformed mode with a corresponding end view (not to scale) on the 

right.  The tube prevents the distal shape from returning to its initial two-dimensional circular 

shape (Figure 4-6).  The end view shows that as the tube increases in diameter, the distal shape 

starts to take on a three-dimensional shape conforming and pushing against the tube.  This 

deformed shape is similar for all three coil designs (Coil A, B, and C). 
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Figure 4-13 Deformed Distal Shape for Various Tube Diameters (Coil A) 

End View 

Isometric View – Initial Shape 

Isometric View 

2 mm 

4 mm 

6 mm 

8 mm 
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The total radial force and maximum radial force were determined for all three coil designs at 

discrete tube diameters of 2-, 4-, 6-, and 8-mm.  Table 4-7 lists the total radial force and how 

the total radial force decreases from Coil A to Coil C.  The change in total radial force 

matches the change in stiffness among designs as shown previously in Table 4-3 which shows 

that Coil A is stiffer than Coil B and Coil B is stiffer than Coil C.   

Table 4-7 Total Radial Force – Coil Design vs. Tube Diameter 

Coil 

Design 

2-mm 4-mm 6-mm 8-mm Change 

from 

Coil A 

 (N) (N) (N) (N) (%) 

Coil A 0.195 0.136 0.141 0.237 NA 

Coil B 0.151 0.106 0.111 0.189 22% 

Coil C 0.126 0.088 0.092 0.158 35% 

 

Figure 4-14 displays the data of Table 4-7 and shows how the coil design and tube diameter 

affect the total radial force.  The radial force decreases from 2- to 4-mm and this is the result 

of the initial distal shape being allowed to expand further in the larger 4-mm tube.  The 

models then show the radial forces increase with larger diameters after 4-mm.  The plot of 

deformed geometry in the 6- and 8-mm diameter tube in Figure 4-13 suggests that this 

increase in radial force from 6- to 8-mm diameter tube in may be due to the distal shape within 

the tube changing from a two-dimensional shape to a conforming three-dimensional shape.   
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Figure 4-14 Comparison of Total Radial Force with Coil Design and Tube Diameter 

 

Table 4-8 lists the maximum radial forces and their change as compared to Coil A.  The 

change in the maximum radial force matches the change in stiffness among, designs as shown 

previously in Table 4-3.   

Table 4-8 Maximum Radial Force (Distal Tip) – Coil Design vs. Tube Diameter 

Coil Design 2-mm 4-mm 6-mm 8-mm Change from                

Coil A 

 (N) (N) (N) (N) (%) 

Coil A 0.065 0.045 0.041 0.054 NA 

Coil B 0.051 0.035 0.032 0.039 23% 

Coil C 0.042 0.029 0.026 0.032 36% 

 

Figure 4-15 exhibits the data in Table 4-8 and shows how the coil design and tube diameter 

affect the maximum radial force.  The maximum radial force decreases from 2- to 6-mm and 

then increase with larger diameters greater than 6-mm.   
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Figure 4-15 Comparison of Maximum Radial Force with Coil Design and Tube Diameter 

 

Figure 4-16 shows a plot of the radial force magnitude along the distal end of the model 

(z-axis) for Coil A.  This line plot displays the radial force at each nodal location and then 

connects each data point with a line for visualization.  The total radial force is the sum of all 

the radial forces along the distal end at these nodal locations.  For the tube diameters of 2-, 4-, 

and 6-mm, the maximum radial force is at the distal tip on the right side of the plot.  Although 

not shown, all trends for Coil A are similar to those for Coil B and C.  Figure 4-16 shows that 

distal shape contacts the tube at four points for the tube diameters of 2-, 4-, and 6-mm.  For the 

8-mm diameter tube, the radial force changes from four distinct contact points to multiple 

contact points with a pressure distributed from 160- to 170-mm.  Also, the maximum radial 

force occurs away from the distal tip.  With a larger tube diameter, the distal shape can expand 

more radially which allows the distal shape to retract axially or shrink in the z-axis.  
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Figure 4-16 Radial Force Distribution along the Axial Direction (Coil A) 

 

Table 4-9 lists the length of contact between the distal shape and the tube.  Note that this 

contact length is taken along the tube axis and not along the distal shape.  Therefore for the 

large tube diameters where the distal shape conforms to the tube, this contact length could be 

 Distal Tip  Proximal End  

2-mm Diameter Tube  

Total Radial Force 0.195 N 

 

4-mm Diameter Tube  

Total Radial Force 0.136 N 

 

6-mm Diameter Tube  

Total Radial Force 0.141 N 

 

8-mm Diameter Tube  

Total Radial Force 0.237 N 
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underestimated.  The increase in contact length as tube diameter increases indicates that the 

distal shape conforms to the tube. 

Table 4-9 Axial Tube Length of Contact – Coil Design vs. Tube Diameter 

Coil 

Design 

2-mm 4-mm 6-mm 8-mm 

 (mm) (mm) (mm) (mm) 

Coil A 22.1 38.3 45.3 52.1 

Coil B 24.6 38.3 46.3 51.9 

Coil C 24.6 38.3 45.3 51.9 

 

The total radial force for each coil design as predicted by simulation was then compared to 

experimental results from Chapter 3.  Figure 4-17 through Figure 4-19 compare the 

experimental total radial force with that from the simulations.  Inspection of these figure show 

that both the numerical predictions and the experimental radial forces decrease in the range of 

tube diameter from 2- to 4-mm but for tube diameters in the 4- to 6-mm range simulation 

results show higher radial force increase from 6- to 8-mm, but the experimental results show a 

decrease in that range. The figures also reveal that the experimental results display both 

contraction and expansion of the radial force as described in Section 3.3.3.   

 

Figure 4-17 Total Radial Force Simulation Model and Experimental (Coil A) 

Contraction 

Expansion 
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Figure 4-18 Total Radial Force Simulation Model and Experimental (Coil B) 

 

Figure 4-19 Total Radial Force Simulation Model and Experimental (Coil C) 

 

As shown on the right side in Figure 4-13, the simulation model shows a three-dimensional 

deformed shape in the 8-mm tube.  When the tube diameter changes from 4- to 8-mm, the 

deformed distal shape of the model transitions from a two-dimensional shape that is primarily 

in bending to a three-dimensional shape that is both in bending and torsion.  The higher total 

radial force in the 8-mm tube could be due to the increase in strain energy from the addition of 

torsional strain along with the bending strain.  The lack of higher radial forces in the 
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experimental results for the 8-mm diameter may be that the experimental samples did not 

transition from a two-dimensional deformed distal shape to a three-dimensional shape.  The 

simulation models are frictionless but friction does exist in the experimental setup between the 

silicone tubing and the radial force tester.  Friction between the samples and the mechanical 

tester could have prevented this three-dimensional deformed distal shape from occurring 

which would result in lower forces.  The friction evaluation completed in Section 4.5 showed 

that friction will reduce the radial forces. 

 

As noted earlier, the experimental measurements show both contraction and expansion of the 

mechanical iris (see Figure 4-17 through Figure 4-19).  The contraction and expansion radial 

force values at 2-, 4-, 6-, and 8-mm were averaged and then compared to the simulation model 

predictions in Figure 4-20 through Figure 4-22 to directly compare the experiment to the 

simulation model.  A numerical comparison of the same information is presented in Table 

4-10 through Table 4-12. 

 

Figure 4-20 Total Radial Force Simulation Model and Experimental Average (Coil A) 
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Figure 4-21 Total Radial Force Simulation Model and Experimental Average (Coil B) 

 

Figure 4-22 Total Radial Force Simulation Model and Experimental Average (Coil C) 

 

Table 4-10 Total Radial Force Simulation Model vs. Experimental Average (Coil A) 

Tube 

Diameter 

Simulation 

Model 

Experimental 

Average 

Change from 

Experimental 

(mm) (N) (N) (%) 

2 0.195 0.167 16 

4 0.136 0.105 30 

6 0.141 0.105 35 

8 0.237 0.065 263 
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Table 4-11 Total Radial Force Simulation Model vs. Experimental Average (Coil B) 

Tube 

Diameter 

Simulation 

Model 

Experimental 

Average 

Change from 

Experimental 

(mm) (N) (N) (%) 

2 0.151 0.119 27 

4 0.106 0.077 37 

6 0.111 0.076 46 

8 0.189 0.049 284 
 

 

Table 4-12 Total Radial Force Simulation Model vs. Experimental Average (Coil C) 

Tube 

Diameter 

Simulation 

Model 

Experimental 

Average 

Change from 

Experimental 

(mm) (N) (N) (%) 

2 0.126 0.092 37 

4 0.088 0.052 71 

6 0.092 0.050 86 

8 0.158 0.034 369 

 

With regard to the tabulated results, it may be noted that the stiffness of the coils decreases 

from Coil A to Coil C.  The radial force results also decrease from Coil A to Coil C for both 

the experiment and the simulation model (Table 4-10 through 4-12).  For the smaller tube 

diameters (2- to 6-mm) the simulation models and experiment show a decrease in radial 

forces.   

 

The difference between the simulation model and the experimental results (Table 4-10 through 

4-12) varies from 16% to 86% for the tube diameters from 2- to 6-mm.  When comparing the 

differences between coil designs, or stiffness, the lower stiffness coil design (Coil C) has 

larger differences between the simulation model and experiment.  This could be attributed to 

the simulation model allowing a three-dimensional deformed distal shape versus the 

experiment with friction that allows the deformed distal shape to remain two-dimensional.  
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The three-dimensional deformed distal shape conforms to the curved tube wall allowing 

higher radial forces in the simulation model versus the experiment.   

 

Figure 4-20 through 4-22 show that for the 8-mm tube diameter the radial forces for the 

simulation model increase and deviate from the experimental results which decrease.  The 

difference between the simulation model and experiment radial forces increases to 263% to 

369% for an 8-mm tube diameter.  The lack of friction in the simulation model could cause 

this deviation from experiment if the simulation model allows the distal shape to revert to a 

three-dimensional shape instead of a two-dimensional one. 

 

4.7.3 SIMULATION MODEL UPDATED WITH FRICTION 

The frictionless simulation model of the distal shape deviated from the experimental at larger 

tube diameters.  To determine if the lack of friction is the cause for this discrepancy, the 

simulation models of Coil A were reevaluated with friction.  Ideally, it would be desirable to 

determine the coefficient of friction directly from the test setup, but the original setup is not 

available and the coefficients of friction are difficult to determine.  Another approach is to use 

the friction evaluation results of Section 4.5 to estimate the coefficient of friction within the 

experimental setup.   

 

Coil A will be reevaluated with friction and compared with experimental results.  Coil A was 

chosen since it was used in the friction evaluation of Section 4.5 when friction was varied for 

Coil A in a 6-mm tube.  Review of Table 4-5 showed that with a coefficient of friction of 0.1 
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to 0.5 the total radial force of the simulation model (0.114 to 0.076 N) almost matched the 

experimental measurement (0.105 N) for the 6-mm tube.  

 

4.7.4 SIMULATION MODEL RESULTS WITH FRICTION 

The total radial force was determined for Coil A with an assumed coefficient of friction of 0.1 

and 0.5 for the tube diameters and compared to the experiment.  Table 4-13 shows the 

simulation model with a coefficient of friction of 0.5 is within 5% of the experimental 

measurements, except for the 6-mm tube diameter.   

 

Table 4-13 Total Radial Force with Simulation Model Updated with Friction (Coil A) 

Tube 

Diameter 

Experimental 

Average 

Simulation 

Model 

Frictionless 

Simulation 

Model 

Coefficient 

of Friction 

0.1 

Simulation 

Model 

Coefficient 

of Friction 

0.5 

Difference 

between 

Experimental 

and Model 

with 0.5 

Coefficient of 

Friction 

(mm) (N) (N) (N) (N) (%) 

2 0.167 0.195 0.187 0.163 -2 

4 0.105 0.136 0.124 0.100 -5 

6 0.105 0.141 0.114 0.076 -27 

8 0.065 0.237 0.135 0.068 4 

 

Figure 4-23 displays the data in Table 4-13 and shows how the simulation models with 

friction match the experimental measurements.  The model with the 0.5 coefficient of friction 

matches the best and shows the decrease in radial force at 8-mm that is shown in the 

experimental measurements. 
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Figure 4-23 Total Radial Force Simulation Model with Friction and Experimental Average 

 

Figure 4-24 shows the deformed distal shape for the three different coefficient of friction of 

Coil A.  The isometric view of the frictionless model shows that the deformed distal shape 

conforms to the tube in the shape of a three-dimensional spiral for the frictionless case.  

Friction causes the deformed shape to contact the tube in a two-dimensional shape with lower 

radial force.  As discussed in Section 4.5.2, strain energy explains why friction reduces the 

radial forces on the deformed shape since friction prevents the distal shape from sliding and 

conforming to the tube in a three-dimensional shape.  The three-dimensional spiral shape adds 

torsional twisting to the deformed shape.  The conforming shape of the distal shape influences 

the total radial force exerted against the tube. 
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Figure 4-24 Deformed Distal Shape for Various Coefficients of Friction (Coil A) 

 

4.8 SIMULATION MODEL FOR SPIRAL EVALUATION  

4.8.1 SIMULATION MODEL FOR SPIRAL EVALUATION BACKGROUND 

A goal for the distal shape is to achieve high radial forces for fixation and a low distal tip 

force.  The previous section showed the radial forces for a distal shape pre-formed into a two-

dimensional circular shape.  The results showed that when the deformed shape was three-

dimensional, whether due to a larger tube diameter or friction, higher radial forces were 

Isometric View End View 

0.5 Coefficient 

of Friction 

0.1 Coefficient 

of Friction 

Frictionless 

8 mm Diameter 
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exerted.  These results indicate a pre-formed distal spiral shape or helix as being desirable to 

achieve higher radial forces. 

 

The spiral distal shape was modeled as a helix with a given radius, rspiral, and pitch, Pspiral.  

Figure 4-25 shows what a helix looks like in three-dimensional space. 

 

Figure 4-25 Helix Geometry 

 

A helix is mathematically defined by Eq. ( 4-1) [47, 48].  The domain of this function is 

denoted with t which represents time. 

                                       ( 4-1) 
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The curvature, , for the helix is a function of both the pitch and radius Eq. ( 4-2 ). 

   
       

       
         

  
 

          
 ( 4-2 ) 

 

The length of the helix Lspiral is determined by  

                        √(          )
 
        

                   ( 4-3 ) 

 

A simulation model compared the three-dimensional spiral pre-shape to the original two-

dimensional circular shape.  To compare the three-dimensional shape with the two-

dimensional circular shape, the length of curvature Lcurvature will be the same for both models.  

The radius of curvature rcurvature between the two models will also be the same.  The previous 

two-dimensional circular shape has a small pitch equal to the diameter of the coil (0.6-mm).  

Table 4-14 lists the parameters for the two-dimensional circular shape modeled previously and 

the new three-dimensional spiral to be compared with.  Figure 4-26 shows what the initial 

models look like.  The elastic stiffness of Coil A will be used in both models for comparison. 

Table 4-14 Geometry of Distal Shape 

Distal 

Shape 

D
Distal Shape

 P
circular

 r
curvature L

curvature
 P

spiral
 r

spiral
 Wrap 

Angle 
 (mm) (mm) (mm) (mm) (mm) (mm) (degrees) 

2D 

Circular 

12.7 0.6 6.35 39.9 NA NA 360 

3D 

Spiral 

NA NA 6.35 39.9 2.54 5.08 450 
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Figure 4-26 Initial Distal Shape 

 

4.8.2 SIMULATION MODEL FOR SPIRAL EVALUATION RESULTS 

The deformed geometry and radial forces were determined for the spiral distal shape and 

compared to the circular distal shape at discrete tube diameters of 2-, 4-, and 6-mm.  The 

decrease in the radial size of the spiral distal shape caused it to return to its original shape in 

the larger 8-mm tube diameter which prevented the simulation model from giving results at 

this diameter.  The spiral geometry should be chosen to avoid this issue.  Figure 4-27 shows a 

plot of the deformed geometry at various tube diameters.  The tube prevents the distal shape 

from returning to its initial three-dimensional spiral shape.  The end view on the right side 

shows that the initial spiral shape helps it conform to the tube walls even with the smaller tube 

diameters.   

Isometric View – Initial 2D Circular Shape Isometric View – Initial 3D Spiral Shape 
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Figure 4-27 Deformed Spiral Distal Shape for Various Tube Diameters (Coil A) 

 

The total radial force was determined for the spiral distal shape and compared to the circular 

distal shape.  Table 4-15 lists the total radial force and the difference between a two 

dimensional circular shape and a three dimensional spiral shape.  The results show that just 

End View– Deformed Shape Isometric View– Deformed Shape 

2 mm 

4 mm 

6 mm 
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changing the distal shape to a spiral can increase the radial force from 56% to 268% 

depending on the tube diameter.   

Table 4-15 Total Radial Force Comparison between Circular and Spiral Distal Shape 

Tube 

Diameter 

Circular 

Distal Shape 

Simulation 

Model 

Spiral Distal 

Shape 

Simulation 

Model 

Change from 

Circular to 

Spiral 

(mm) (N) (N) (%) 

2 0.195 0.304 56 

4 0.136 0.263 94 

6 0.141 0.518 268 

 

Figure 4-28 displays the data in Table 4-15 and shows that the spiral shape increases the radial 

force over a two-dimensional circular shape.  

 

Figure 4-28 Comparison of Total Radial Force between Circular and Spiral Distal Shape 
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Figure 4-29 shows a plot of the radial force maganitude along the distal end of the models 

(z-axis) for both distal shapes.  This line plot displays the radial force at each nodal location 

and then connects each data point with a line for visualization.  The total radial force is the 

sum of all the radial forces along the distal end at these nodal locations.  The two-dimensional 

circular shape contacts the tube at four discrete points.  In the 6-mm tube, the three-

dimensional spiral distributes contact along the tube between the 155- and 175-mm.  The 

maximum radial force still occurs at the tip for both the 2- and 4-mm tube but at 6-mm the 

maximum shifts away from the distal tip.  In the 6-mm tube, the distal tip of the spiral is 

pulled back along the z-axis and the model has a length of 183-mm instead of 190-mm for the 

circular shape.  This shows as diameter increases the spiral can pull back within the tube as it 

tries to return to its original shape. 
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Figure 4-29 Radial Force Distribution along the Axial Direction (Coil A) 

 

Table 4-16 lists the length of contact between the distal shape and the tube.  Note that this 

contact length is taken along the tube axis and not along the distal shape.  Therefore for the 

cases where the distal shape conforms to the tube, this contact length could be underestimated.  

The spiral shape shows a 31% to 197% increase in contact length compared with that of the 

circular shape.  The contact length for the spiral shape shows a decrease as the tube diameter 

increases but this is because only the axial length is reported and not the true length along the 

2-mm Diameter Tube 

Circular Distal Shape – Total Radial Force 0.195 N 

Spiral Distal Shape – Total Radial Force 0.304 N 

 

4-mm Diameter Tube  

Circular Distal Shape – Total Radial Force 0.136 N 

Spiral Distal Shape – Total Radial Force 0.263 N 

 

6-mm Diameter Tube 

Circular Distal Shape – Total Radial Force 0.141 N 

Spiral Distal Shape – Total Radial Force 0.518 N 

  

 Distal Tip  Proximal End  
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distal shape.  The spiral shape retracts axially as it conforms to the larger diameter as 

illustrated in Figure 4-29 which underestimates the length of contact. 

Table 4-16 Axial Tube Length of Contact Comparison between Circular and Spiral Distal Shape 

Tube 

Diameter 

Circular 

Distal Shape 

Simulation 

Model 

Spiral Distal 

Shape 

Simulation 

Model 

Change from 

Circular to 

Spiral 

(mm) (mm) (mm) (%) 

2 22.1 65.7 197 

4 38.3 64.1 67 

6 45.3 59.3 31 

 

4.9 SPIRAL SHAPE DOE 

4.9.1 SPIRAL SHAPE DOE BACKGROUND 

The spiral shape was evaluated to determine what factors influence total radial force and tip 

force.  The goal is to have high radial forces for fixation and a low tip force to avoid the tip 

perforating tissue.  The total radial force and tip force were evaluated using simulation 

models.  To reduce the number of computer models, a design and analysis of experiments 

(DOE) methodology will be used [49, 50].  Instead of experiments, simulation models will be 

used to evaluate the design variables or factors.   

 

A two-level, full factorial design for three factors (2
3

 design) was used.  This allowed three 

factors to be evaluated and each factor will have two levels (high and low).  The factors to 

evaluate were the spiral’s radius rspiral, pitch Pspiral, and straight distal tip length Ldistal tip.  Also a 

constraint will be imposed that the length Lcurvature from the distal tip to the end of the 

curvature will be 40 mm, which is illustrated in dark gray in Figure 4-30.  The experimental 

samples and computer model previously had a curved length of 39.9-mm (Table 4-14).  A 
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review of the literature [51, 52] showed that within this 40-mm length is where electrodes are 

placed for pacing and where contact occurs with the heart.   

 

 

Figure 4-30 Spiral Distal Shape Representation with Distal Length 

 

The high and low values were chosen by reviewing the spiral evaluated in Section 4.8.  Table 

4-17 shows the three factors with their high and low values.  A center point value is also 

included to check the linearity assumption in the factor effects and whether there is curvature. 

Table 4-17 Factors with High and Low Values 

Factors Units Low Center High 

r
spiral

 (mm) 4 6 8 

P
spiral

 (mm) 2 4 6 

L
distal tip

 (mm) 1 5 9 

 

Table 4-18 lists the parameters for the each spiral design to be evaluated.  The stiffness used 

will be for Coil A (Table 2-3).  The simulation model used a tube diameter of 4-mm that the 

distal shape will interact with.  The 4-mm diameter was chosen since it was evaluated 

previously and is the middle tube diameter evaluated in Section 4.8.  

Proximal End 

Distal End 

L
distal tip
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Table 4-18 Spiral Designs 

Spiral Design r
spiral

 P
spiral

 L
distal tip L

curvature
 Wrap 

Angle 
 (mm) (mm) (mm) (mm) (degrees) 

1 4 2 1 40 557 

2 8 2 1 40 279 

3 4 6 1 40 543 

4 8 6 1 40 277 

5 4 2 9 40 443 

6 8 2 9 40 222 

7 4 6 9 40 432 

8 8 6 9 40 220 

9 6 4 5 40 332 

 

4.9.2 SPIRAL SHAPE DOE RESULTS 

The total radial force and the tip force were determined for all the spiral designs.  Table 4-19 

lists the radial forces. 

Table 4-19 Spiral Design DOE Results 

Spiral Design r
spiral

 P
spiral

 L
distal tip Total 

Radial 

Force 

Radial 

Tip  

Force 

 (mm) (mm) (mm) (N) (N) 

1 4 2 1 0.508 0.102 

2 8 2 1 0.094 0.031 

3 4 6 1 0.771 0.101 

4 8 6 1 0.101 0.031 

5 4 2 9 0.399 0.027 

6 8 2 9 0.070 0.019 

7 4 6 9 0.585 0.033 

8 8 6 9 0.080 0.019 

9 6 4 5 0.156 0.039 

 

A cube plot (Figure 4-31) shows the same data graphically of all three variables at their high 

and low values with the result at each corner of the cube.  The center point value is also 

included.   
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Figure 4-31 Cube Plot for DOE Results in a 4-mm Diameter Tube 

 

The total radial force results from the cube plot (Figure 4-31) show an increase in total radial 

force as the spiral’s radius rspiral is decreased from 8- to 4-mm.  This decrease in spiral radius 

rspiral increases the stiffness of the spiral as described in Section 2.2 in Eq. ( 2-14).  The 

decrease in spiral radius rspiral is limited by the tube size, since if the spiral radius is smaller 

than the tube diameter it will pull back within the tube and return to its original shape as 

discussed in Section 4.8.2.   

 

The radial tip force results from the cube plot (Figure 4-31) show a decrease in radial tip force 

as the spiral’s distal tip length Ldistal tip is increased from 1- to 9-mm.  The longer tip length 

allows the tip to conform to the tube wall and lower the force at the tip. 

 

Analyzing the factorial design gave indications of significant factors and interactions between 

the factors affecting the radial force results.  Simulation models were used, so there is only a 
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single run or replicate is at each design point [53].  This single run or replicate gave 

information on main effects and interactions. 

 

4.9.2.1 Total Radial Force Factorial Analysis 

The DOE factorial analysis shows a Pareto chart (Figure 4-32) of the main effects and 

interactions for total radial force.  The spiral radius rspiral is the significant factor affecting the 

total radial force.   

 

 

Figure 4-32 Pareto Chart of Effects for Total Radial Force 

 

Figure 4-33 shows the main effects plot for the factors affecting the total radial force.  The 

decrease in radius rspiral from 8- to 4-mm shows the total radial force increasing from 0.1 to 
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0.6 N.  Since the center point does not lie on the main effects line the linearity assumption in 

the factors is not true and curvature exists in the relationship.   

 

Figure 4-33 Main Effects Plot of Total Radial Force with Center Points 

 

For interactions, parallel lines in an interaction plot indicate no interaction.  The more that 

lines are less parallel, the higher the degree of interaction. The Pareto chart (Figure 4-32) 

indicated that there were not significant interactions when compare to all the factors.  The 

interaction plot (Figure 4-34) for the total radial force shows lines that are not parallel, so there 

is some interaction between the radius rspiral and pitch Pspiral.  There is also some interaction 

between the radius rspiral and distal tip length Ldistal tip.   
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Figure 4-34 Interaction Plot of Total Radial Force with Center Points 

 

The factorial analysis has shown that the spiral radius rspiral has the most significant effect on 

the total radial force.  The main effects plot (Figure 4-33) shows that to maximize the total 

radial force, the spiral radius rspiral needs to be small (4-mm).  The interaction plot shows some 

interaction between factors and indicates that for a small radius (4-mm) the pitch should be 

large (6-mm) and the distal length small (1-mm). 

 

A contour plot of the results can graphically show how to maximize the total radial force also.  

Again the main effects show that to maximize total radial force, the radius needed to be small, 

so a contour plot was created with the radius held at a constant 4-mm.  The lower right corner 

of Figure 4-35 shows the same result from the interaction graphs that the maximum total radial 
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force occurs when the radius is small (4-mm), pitch is large (6-mm), and the distal length is 

small (1-mm). 

 

Figure 4-35 Contour Plot for Total Radial Force with Radius Held Constant at 4 mm 

 

4.9.2.2 Radial Tip Force Factorial Analysis 

The DOE factorial analysis shows a Pareto chart Figure 4-36 of the main effects and 

interactions for radial tip force.  The spiral radius rspiral and distal tip length Ldistal tip with their 

interaction are the significant factors affecting the radial tip force. 

Pitch

D
is

ta
l 
L
e

n
g

th

65432

9

8

7

6

5

4

3

2

1

Radius 4

Hold Values

>  

–  

–  

–  

<  0.4

0.4 0.5

0.5 0.6

0.6 0.7

0.7

Force

Radial

Total

Contour Plot of Total Radial Force vs Distal Length, Pitch

MAX 



Chapter 4 

 101 

 

Figure 4-36 Pareto Chart of Effects for Radial Tip Force 

 

Figure 4-37 shows the main effects plot for the factors affecting the radial tip force.  The 

increase in radius rspiral from 4- to 8-mm shows the radial tip force decreasing from 0.065 to 

0.025 N.  The increase in distal length Ldistal tip from 1- to 9-mm shows the radial tip force 

decreasing from 0.065 to 0.025 N.   The change in pitch Pspiral does not change the radial tip 

force and stays around 0.045 N.  Since the center point does not lie on the main effects line the 

linearity assumption in the factors is not true and curvature exists in the relationship.   

 

AB

B

ABC

BC

AC

A

C

0.040.030.020.010.00

T
e

rm

Effect

A Radius

B Pitch

C Distal Length

Factor Name

Pareto Chart of the Effects
(response is Tip Force, Alpha = 0.05)

Lenth's PSE = 0.00222669



Chapter 4 

 102 

 

Figure 4-37 Main Effects Plot of Radial Tip Force with Center Points 

 

For interactions, parallel lines in an interaction plot indicate no interaction.  The more that 

lines are less parallel, the higher the degree of interaction. The Pareto chart (Figure 4-36) 

indicated that there were was a significant interaction between radius rspiral and distal tip length 

Ldistal tip.  The interaction plot (Figure 4-38) for the radial tip force shows an interaction effect 

between the radius rspiral and distal tip length Ldistal tip since the lines are not parallel.  The other 

interaction plots are parallel which indicates very little interaction.   

864

0.07

0.06

0.05

0.04

0.03

642

951

0.07

0.06

0.05

0.04

0.03

Radius
M

e
a

n
Pitch

Distal Length

Corner

Center

Point Type

Main Effects Plot for Tip Force
Data Means



Chapter 4 

 103 

 

Figure 4-38 Interaction Plot of Radial Tip Force with Center Points 

 

The factorial analysis has shown that the spiral radius and the distal tip length with their 

interaction have the most significant effect on the total radial tip force.  The main effects plot 

(Figure 4-37) show that to minimize the radial tip force the spiral radius rspiral needs to be large 

(8-mm) and the distal length Ldistal tip needs to be large (9-mm).  The interaction plot shows 

interaction effect between the radius rspiral and distal tip length Ldistal tip.   To minimize the radial 

tip force, a large radius (8-mm) and distal length (9-mm) should be used. 

 

A contour plot of the results can graphically show how to maximize the radial tip force also.  

Both the main effects (Figure 4-37) and interaction (Figure 4-38) plots show that pitch does 

not affect the radial tip force significantly, so a contour plot was created with the pitch held 

constant at the center point 4-mm.  The upper right corner of Figure 4-39 shows the same 
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result from the interaction graphs that the minimum radial force occurs when the radius is 

large (8-mm) and the distal length (9-mm) is large for any pitch. 

 

Figure 4-39 Contour Plot for Radial Tip Force with Pitch Held Constant at 4-mm 

 

4.9.2.3 Optimal Spiral Shape for Total Radial Force and Tip Force 

The previous sections have identified the factors and their values to maximize the total radial 

force and minimize the radial tip force but these factors conflict with each other (Table 4-20).  

The maximum total radial force occurs when the radius is small (4-mm), pitch is large 

(6-mm), and the distal length is small (1-mm).  The minimum radial force occurs when the 

radius is large (8-mm) and the distal length (9-mm) is large for any pitch. 
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Table 4-20 Spiral Designs for Maximum Total Radial Force & Minimum Tip Force 

Spiral Design r
spiral

 P
spiral

 L
distal tip Total 

Radial 

Force 

Radial 

Tip  

Force 

 (mm) (mm) (mm) (N) (N) 

Maximum Total 

Radial Force 

Spiral Design 

 

4 

 

6 

 

1 

 

0.771 

 

0.101 

Minimum Tip 

Force Spiral 

Design 

 

8 

 

2 

 

9 

 

0.070 

 

0.019 

Minimum Tip 

Force Spiral 

Design 

 

8 

 

6 

 

9 

 

0.080 

 

0.019 

 

The DOE factorial analysis for the two goals or responses can be combined and optimized.  

This optimization is only local or within the range that the factors were evaluated.  When two 

goals or responses are being optimized, the importance of the response compared to the other 

needs to be considered.  The primary goal was chosen to maximize radial force for fixation, 

with the secondary goal to minimize radial tip force.  With the primary goal of maximizing 

total radial force, the spiral should have a small radius rspiral.  Pitch Pspiral does not affect the tip 

force significantly (Figure 4-37) but does increase total radial force when the pitch is large so 

the pitch should be large.  The distal length does significantly affect the tip force (Figure 4-37) 

but it affects the total radial force to a lesser extent (Figure 4-33) so the distal length Ldistal tip 

should be large. 

 

The optimal design to maximize total radial force and minimize the tip force is when the 

radius is small (4-mm), pitch is large (6-mm), and the distal length is large (9-mm) for the 

range of variables examined in this DOE (Table 4-21).  This is only a local optimum within 

the range of variables evaluated.   
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Table 4-21 Locally Optimized Three-Dimensional Spiral 

Spiral Design r
spiral

 P
spiral

 L
distal tip Total 

Radial 

Force 

Radial 

Tip  

Force 

 (mm) (mm) (mm) (N) (N) 

Locally 

Optimized Spiral 

4 6 9 0.585 0.033 

 

Table 4-22 lists the length of contact between the distal shape and the tube for the optimized 

spiral.  Note that this contact length is taken along the tube axis and not along the distal shape.  

Therefore for the spiral distal shape that conforms to the tube, this contact length could be 

underestimated. 

Table 4-22 Axial Tube Length of Contact for Locally Optimized Three-Dimensional Spiral 

Tube 

Diameter 

Locally Optimized Spiral 

(mm) (mm) 

4 59.9 

 

4.10 SUMMARY 

Numerical simulation was used to determine the force between the distal shape and tube wall.  

Experimental validation of the computer model was shown.  Various distal shape design 

variables were then evaluated to maximize the total radial force and minimize the radial tip 

force.  Figure 4-40 shows the progression of how the distal shape changed from a two-

dimensional circular shape to a three-dimensional spiral. 
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Figure 4-40 Progression of Distal Shape to Maximize Total Radial Force and Minimize Tip Force 

 

The total radial force and radial tip force were determined for various distal shapes (Section 

4.7 through 4.9).  Figure 4-41 shows a plot of the radial force magnitude along the distal end 

of the model (z-axis) for the three distal shapes.  This line plot displays the radial force at each 

nodal location and then connects each data point with a line for visualization.  The total radial 

force is the sum of all the radial forces along the distal end at these nodal locations.  The local 

optimized three-dimensional spiral at the bottom of the figure shows that the maximum radial 

force has been shifted away from the tip.  This spiral shape also contacts the tube at multiple 

points from 155- to 185-mm.  Also included in the figures is a line for the 90
th
 percentile force 

which shows that approximately 90% of the total force lies below this value.   

Two-Dimensional 

Circular Shape  

Initial Three-Dimensional 

Spiral 

Locally Optimized Three-

Dimensional Spiral 
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Figure 4-41 Radial Force Distribution along the Axial Direction for Distal Shapes 

 

Table 4-23 describes the distal shapes with the radial forces, and Figure 4-42 displays this 

data.  The local optimized three-dimensional spiral has improved on the initial two-

dimensional circular design.  The total radial force has been increased by over 430% and the 

radial tip force has decreased by 26%. 
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Maximum Radial Force  

 Distal Tip  Proximal End  

Maximum Radial Force  

Maximum Radial Force  

Total Radial Force 0.136 N 

Total Radial Force 0.263 N 

Total Radial Force 0.586 N 

90th Percentile 

0.0107 N  

90th Percentile 

0.0022 N  

90th Percentile 

0.0002 N  
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Table 4-23 Distal Shapes and Radial Forces (4-mm Tube) 

Distal Tip 

Shape 
r

spiral or 

circle
 

P
spiral

 L
distal tip L

curvature
 Total 

Radial 

Force 

Radial 

Tip 

Force 

 (mm) (mm) (mm) (mm) (N) (N) 

2D Circular 6.35 0.6 1 39.9 0.136 0.045 

Initial 3D 

Spiral 

5.1 2.54 1 39.9 0.263 0.066 

Locally 

Optimized 

Spiral 

 

4 

 

6 

 

9 

 

40 

 

0.586 

 

0.033 

 

 

Figure 4-42 Comparison of Radial Forces between Distal Designs 

 

Table 4-24 lists the length of contact between the distal shape and the tube.  Note that this 

contact length is in the axial tube length and not along the distal shape so for cases where the 
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distal shape conforms with the tube this contact length could be underestimated.  The locally 

optimized spiral retracts axially as it conforms to the tube as illustrated in Figure 4-41. 

Table 4-24 Axial Tube Length of Contact Comparison between Distal Shapes (4-mm Tube) 

Distal Tip Shape Axial Tube Length of Contact 

 (mm) 

2D Circular 38.3 

Initial 3D Spiral 64.1 

Locally Optimized Spiral 59.9 

 

Table 4-25 list the length of contact between the distal shape and the tube but includes the 90
th
 

and 80
th
 percentile force with their corresponding length of contact.  For example, the locally 

optimized spiral has a maximum force of 0.0724 N and the length of contact is 59.9-mm for 

any contact force.  The 90
th
 percentile force is lower at 0.0107 N and the length of contact for 

any force greater than 0.0107 N is 16.2-mm.  The 80
th
 percentile force is at 0.0075 N and the 

length of contact for any force greater than 0.0075 N is 29.0-mm.  The spiral shapes have a 

more distributed contact force along the distal shape for a greater length of contact compared 

to the circular distal shape. 

Table 4-25 Axial Tube Length of Contact with Percentile for Distal Shapes 

Distal Tip 

Shape 

100
th

 

Percentile 

Force 

Length 

of 

Contact 

90
th

 

Percentile 

Force 

Length 

of 

Contact 

80
th

 

Percentile 

Force 

Length 

of 

Contact 

 (N) (mm) (N) (mm) (N) (mm) 

2D Circular 0.0446 38.3 0.0002 18.0 0.0000 38.2 

Initial 3D 

Spiral 

0.0664 64.1 0.0022 20.6 0.0015 31.3 

Locally 

Optimized 

Spiral 

0.0724 59.9 0.0107 16.2 0.0075 29.0 
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A potential next step to determine a global optimum, which is not presented here, is to use this 

locally optimized design point as a new starting point to perform another DOE to evaluate 

these factors and responses again. 
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CHAPTER 5  

 

NUMERICAL SIMULATION MODEL OF 

CURVED BLOOD VESSELS  

 

5.1 INTRODUCTION 

Numerical simulation will be used to determine the force between the distal shape of the lead 

and the wall of a curved cardiac vein.  The previous numerical simulation (Chapter 4) 

determined the distribution of radial force along the distal shape when inserted into a straight 

tube.  The straight tube model was then compared with the total radial force obtained by 

in-vitro experiments (Chapter 3) that used a straight tube radial force tester.  The following 

models implemented by numerical simulation will be used to investigate the distal lead shape 

as it is inserted into curved tube. 

 

5.2 CURVED TUBE BACKGROUND 

The distal lead is inserted into cardiac veins that wrap around the outside of the left ventricle.  

The curvature of the heart is assumed to be circular and the diameters of curvature are 

estimated to be between 6- and 9-cm.  These curvatures are based on the average adult heart 

size having a 12-cm length from base to apex, 9-cm at its broadest transverse diameter, and a 

6-cm anteroposteriorly thickness [54, 55].  The veins into which the lead is inserted run in the 

transverse direction, so curvature diameters of 6- and 9-cm were selected. 
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To evaluate the curvature effect, a simulation model of the distal shape interacting with a 

4-mm tube was chosen.  The 4-mm diameter was chosen since it was evaluated previously and 

is the intermediate tube diameter evaluated in Section 4.8.  The stiffness used will be for 

Coil A (Table 2-3).  Friction will also be assumed to be zero (frictionless).  The proximal end 

will be prevented from moving by setting all degrees of freedom (DOF) to zero.  For a straight 

tube, the orientation of the initial distal shape about its lead axis does not affect how the distal 

shape deforms in the straight tube.  With a curved tube, the orientation of the initial distal 

shape about its lead axis could affect how the distal shape deforms in the tube.  The lead 

orientation of the initial shape about its lead axis will be evaluated to determine its effect on 

radial forces. 

 

The radial forces for the two-dimensional circular distal shape (Section 4.7) and the three-

dimensional locally optimized spiral distal shape (Section 4.9) will be obtained by means of 

numerical simulation.  The geometry for the distal shape will be the same as the previous 

models.  Table 5-1 lists a summary of the geometry for the considered distal shapes. 

Table 5-1 Distal Shapes 

Distal Tip Shape r
spiral or circle

 P
spiral

 L
distal tip L

curvature
 

 (mm) (mm) (mm) (mm) 

Two-Dimensional 

Circular 

6.35 0.6 1 39.9 

Three-Dimensional 

Locally Optimized 

3D Spiral 

4 6 9 40 

 

The radial forces corresponding to the distal shapes will be compared with each other.  The 

radial forces that are obtained for the 6- and 9-cm diameter curved tubes will then be 

compared to the results of the straight tube (Section 4.7 and 4.9). 
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5.3 CURVED TUBE RESULTS 

The deformed geometry and radial forces were determined for the two-dimensional circular 

distal shape and the three-dimensional locally optimized spiral distal shape within a 4-mm 

diameter tube that had curvature diameters of 6- and 9-cm.  The upper part of Figure 5-1 

shows the initial distal shapes before insertion into a curved tube, while the lower portion of 

the figure displays the deformed distal shapes in the tube with a 6-cm diameter curvature.  On 

the left side of Figure 5-1, the tip of the two-dimensional circular distal shape is pushing 

directly down into the tube.  Figure 5-2 shows deformed distal shapes in the tube with a 9-cm 

diameter curvature.  For each respective distal shape, their deformed shape within the curved 

tubes is similar.   
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Figure 5-1 Deformed Distal Shapes Inside 4-mm Diameter Tube with a 6-cm Diameter Curvature 

 

 

6-cm Diameter 6-cm Diameter 

Deformed Two-Dimensional 

Circular Distal Shape 

Deformed Three-Dimensional 

Spiral Distal Shape 

Initial Two-Dimensional 

Circular Distal Shape 

Initial Three-Dimensional Locally 

Optimized Spiral Distal Shape 

4-mm Diameter  4-mm Diameter  
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Figure 5-2 Deformed Distal Shapes Inside 4-mm Diameter Tube with a 9-cm Diameter Curvature 

 

The orientation of the initial distal shape with respect to the curved tube was varied and it was 

determined that the distal shape would always twist to the same deformed shape.  The axial 

torsional stiffness of the distal shape is not high enough to resist the orientation of the final 

deformed distal shape.  The radial forces were not impacted by orientation of the initial distal 

shape to the curved tube as well. 

 

Table 5-2 lists the total radial force and radial tip force for the two-dimensional circular distal 

shape that has been inserted into a 4-mm diameter tube.  The straight tube simulation results 

(Section 4.7) are also listed and then the simulations with tube curvature are added.  The total 

9-cm Diameter 

Deformed Two-Dimensional 

Circular Distal Shape 

Deformed Three-Dimensional 

Spiral Distal Shape 

4-mm Diameter  

9-cm Diameter 

4-mm Diameter  
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and radial tip forces are greater for the tube with-curvature case relative to those for the 

straight tube.  Figure 5-3 displays the data in Table 5-2 and shows that both the total and radial 

tip forces decreased when the tube curvature diameter was decreased from 9- to 6-cm.   

Table 5-2 Circular Distal Shape Radial Forces within Straight and Curved Tubes 

Tube 

Curvature 

Diameter  

(cm) 

Total Radial 

Force 

 

(N) 

Radial Tip 

Force 

 

(N) 

Straight 0.136 0.045 

9 0.278 0.084 

6 0.254 0.077 

 

 

Figure 5-3 Comparison of Circular Distal Shape Radial Forces For Curved and Straight Tubes 

 

Figure 5-4 shows a plot of the radial force magnitude along the distal end of the model (z-axis) 

for the two-dimensional circular distal shape when it is inserted into a straight 4-mm tube, a 

curved 4-mm tube with a curvature diameter of 9-cm, and a curved 4-mm tube with a 
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curvature diameter of 6-cm.  This line plot displays the radial force at each nodal location and 

then connects each data point with a line for visualization.  The total radial force is the sum of 

all the radial forces along the distal end at these nodal locations.  The length of the deformed 

circular distal shape is shorter within the curved tube (180-mm) than within the straight tube 

(193-mm) as shown by the distal tip force location in Figure 5-4.  The curved tube allows the 

two-dimensional circular distal shape to retract into the tube and thereby allows the distal 

shape to conform to the tube walls in a three-dimensional shape.  The conforming of a distal 

shape against the tube walls with a three-dimenional shape has been shown to increase radial 

force (Section 4.7.2) which explains the higher radial force for a two-dimensional circular 

distal shape when inserted into a curved tube.   
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Figure 5-4 Radial Force Distribution along the Axial Direction for a Circular Distal Shape (4-mm 

Tube) 

 

Table 5-3 lists the total radial force and radial tip force for the three-dimensional locally 

optimized spiral distal shape that has been inserted into a 4-mm diameter tube.  The straight 

tube simulation results (Section 4.9) are listed and then the simulation results with tube 

curvature are included.  The total and maximum radial forces are larger for the straight model 

 Distal Tip  Proximal End  

Straight Tube  

Total Radial Force 0.136 N 

 

Tube Curvature 9-cm Diameter  

Total Radial Force 0.278 N 

Tube Curvature 6-cm Diameter 

Total Radial Force 0.254 N  
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and then decrease with curvature.  Figure 5-5 displays the data in Table 5-3 and shows that 

both the total and radial tip forces decrease when the tube curvature diameter was decreased 

from 9- to 6-cm.   

Table 5-3 Locally Optimized Spiral Shape within Straight and Curved Tubes 

Tube 

Curvature 

Diameter 

(cm) 

Total Radial 

Force 

 

(N) 

Radial Tip 

Force 

 

(N) 

Straight 0.585 0.033 

9 0.325 0.030 

6 0.269 0.025 

 

 

Figure 5-5 Comparison of Spiral Distal Shape Radial Forces for Curved and Straight Tubes 

 

Figure 5-6 shows a plot of the radial force magnitude along the distal end of the model (z-axis) 

for the three-dimensional locally optimized spiral distal shape when it is inserted into a 

straight 4-mm tube, a curved 4-mm tube with a curvature diameter of 9-cm, and a curved 



Chapter 5 

 121 

4-mm tube with a curvature diameter of 6-cm.  This line plot displays the radial force at each 

nodal location and then connects each data point with a line for visualization.  The total radial 

force is the sum of all the radial forces along the distal end at these nodal locations.  The 

length of the deformed spiral distal shape increased slightly within the curved tube (193-mm) 

compared with the straight tube (190-mm) as shown by the distal tip force location in Figure 

5-6.  This slight increase in length indicates that the spiral distal shape is not conforming as 

well to the curved tube as it does to the straight tube which could explain why the radial forces 

decrease when tube curvature is added. 
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Figure 5-6 Radial Force Distribution along the Axial Direction for a Spiral Distal Shape (4-mm 

Tube) 

 

5.4 SUMMARY 

The involvement of curved geometry into which the distal shape is inserted adds complexity 

to determining the optimal distal shape to maximize the total radial force and minimize the 

Straight Tube  

Total Radial Force 0.585 N  

 

Tube Curvature 9-cm Diameter  

Total Radial Force 0.325 N  

 

 Distal Tip  Proximal End  

Tube Curvature 6-cm Diameter  

Total Radial Force 0.269 N  
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radial tip force.  For a given distal shape, radial forces can increase or decrease when a distal 

shape is inserted into a curved tube versus a straight tube.  The use conditions or geometry 

under which the distal shape will be inserted are important for distal shape optimization.  The 

three-dimensional spiral distal shape model still had a higher total radial force and a lower 

radial tip force than did the two-dimensional circular shape model (Figure 5-3 and Figure 5-5).  

The three-dimensional spiral distal shape examined here was optimized for a straight tube 

(Section 4.9).  The results based on the curved tube models suggest that optimization of the 

spiral shape should be based upon the curved tube models instead of the straight tube models.  

This updated optimization of the distal shape using curved tube models is out of the present 

scope. 
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CHAPTER 6  

 

ANALYTICAL APPROXIMATION FOR 

FIXATION FORCE 

 

6.1 INTRODUCTION 

Using a spiral or helix shape for the distal end of a lead to fixate or push against the inside of a 

tube is analogous to a spring clutch that uses a helical coil wrapped around a shaft.  The distal 

shapes examined previously are spirals that have a diameter larger than that of the tube into 

which they are inserted.  After the spiral has been straightened out and inserted into the 

smaller diameter tube, the tube walls create a radial force pressing against the distal shape by 

preventing the spiral from returning to its original diameter.  A spiral clutch is similar but 

instead the spiral has a diameter smaller than that of the shaft over which it is assembled.  The 

outer cylinder walls create a radial force against the spiral clutch by preventing it from 

returning to its original diameter.  This analogy will allow an analytical derivation of the radial 

force a spiral exerts inside a tube. 

 

An analytical derivation using strain energy and Castigliano’s theorem will be used to 

calculate the radial force or pressure for a two-dimensional circular shape pushing against the 

inside of a tube.  This analytical model allows a simple calculation of the radial force that may 

be useful as a quick design tool.  The results of this analytical model will be compared to a 

simulation model to check for accuracy.   
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The derivation of the radial force for a spring clutch is commonly found in machine design 

textbooks [56].  In this reference, Burr derives the equation to calculate the force as a spring 

diameter is increased to fit over a larger diameter shaft.  The following derivation is a 

generalization to calculate the radial force as the spring diameter is decreased to fit within a 

smaller diameter tube.  The derivation assumes that the spring maintains its circular two-

dimensional shape with a very small axial pitch and end effects are neglected. 

 

6.2 ANALYTICAL DERIVATION 

Strain energy and Castigliano’s theorem provides a means to calculate the radial force as 

illustrated by Burr [56].  Figure 6-1 shows the axial view of the coil with the original 

unconstrained dimensions identified with a subscript of zero.  Burr’s derivation is modified 

and the coil is assumed to have a circular cross section as shown in Section A – A of Figure 

6-1.  The diameter d of the circular cross section will be assumed to be much smaller than the 

coil radius r0, so this diameter d is assumed to be unity in this derivation.   The coil material is 

assumed to be linear elastic material.   

 

The wire length L of the arc is bounded by the angle 0.  Burr’s derivation is modified to have 

the coil compressed radially and the wire length L stays the same but is bounded by a larger 

angle .  A pressure P and an internal moment M develop when the coil is compressed radially 

from the original radius r0 to the final radius r.  The pressure P is force per linear length.  

Another assumption is that the coil maintains a two-dimensional shape and does not expand 

axially.  Small displacements and frictionless conditions are assumed.   
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Figure 6-1 Axial View of Coil Before and After Radially Compression 

 

When a curved beam changes curvature, the moment M is defined as the change in curvature 

times the bending stiffness EI as given by 

     (
 

 
 

 

  
) ( 6-1) 

where E is the modulus of elasticity and I is the moment of inertia of the wire. 

 

If the bending moment is constant, the total strain energy U from bending [34] is  
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The strain energy as a function of curvature is obtained when the moment M from Eq ( 6-1) is 

substituted into Eq ( 6-2) with the result 

  
     

 
(
 

 
 

 

  
)
 

 ( 6-3) 

A pressure P compresses the coil radially and performs work in the same direction r.  Burr 

[56] illustrates that this work dU is equal to the pressure P acting over the length L through a 

small displacement dr so that 

          ( 6-4) 

The derivative of the strain energy Eq ( 6-3) can be taken with respect to the radius r with the 

outcome 

  

  
 

            

   
 

 ( 6-5) 

Substituting the equation for work Eq ( 6-4) into the foregoing derivative and rearranging 

gives the pressure  P per linear length as a function of the change in coil radius r.   

  
           

   
 

 ( 6-6) 

This derivation is a simplified version of Burr’s pressure calculation for spring clutch [56] but 

for a spring compressed within a tube instead. 
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6.3 COMPARISON OF ANALYTICAL AND SIMULATION MODEL 

The accuracy of the foregoing analytical model was compared with a simulation model.  For 

this comparison, the previous geometry and stiffness of Coil A for a two-dimensional circular 

shape (Section 4.2) was used in both the analytical and simulation models.  Coil A had a 

modulus of elasticity E of 363 MPa (Table 2-3), and the initial diameter of the two-

dimensional circular shape was 12.7-mm (Figure 4-3).    

 

A new simulation model is used to calculate the radial pressure in a two-dimensional circular 

coil with an initial diameter of 12.7-mm (6.35-mm radius) that is compressed radially to a 

given radii r of 5-, 4-, and 3-mm.  The loading condition for this simulation model is different 

from the previous models (Section 4.3) since this model is not straightened out before 

insertion into a tube.  Also this simulation model does not include the end effects that occur as 

shown in the previous models.  These assumptions are the same ones used in the analytical 

model and were chosen to provide a fairer comparison with the analytical model.   

 

Table 6-1 lists the radial pressures calculated from Eq ( 6-6) and obtained from the simulation 

models.  Figure 6-2 displays the data in Table 6-1and shows how the radial pressure increases 

as the coil is radially compressed. 
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Table 6-1 Comparison of Radial Forces from the Analytical and Simulation Models  

Coil A 

Elastic 

Modulus  

 

 

 

 

 

 

Ebeam 

Initial 

Diameter 

 

 

 

 

 

 

 

  D0 

Initial 

Radius 

 

 

 

 

 

 

 

r0 

Final 

Radius  

 

 

 

 

 

 

 

r 

Radial 

Force per  

Linear 

Length 

 

Analytical 

Model 

Chapter 6 

 

Panalytical 

Radial 

Force per 

Linear 

Length 

 

Simulation 

Model 

Chapter 6 

 

Pcomputer 

Difference 

between 

Analytical 

and 

Simulation 

Models 

(MPa) (mm) (mm) (mm) (N/mm) (N/mm) (%) 

363 12.7 6.35 5.0 0.00493 0.00497 0.8 

363 12.7 6.35 4.0 0.01676 0.01698 1.3 

363 12.7 6.35 3.0 0.05664 0.05793 2.2 

 

 

Figure 6-2 Comparison of Radial Force between Analytical and Simulation Model 
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When the coil is radially compressed from a radius of 6.35- to 5-mm, the analytical and 

simulation model results deviated by 0.8%.  As the radial compression is increased, the 

deviation was found to increase.  A 2.2% deviation occurs when the coil is compressed from a 

radius of 6.35- to 3-mm.  This deviation can be attributed to the discretization inherent in the 

simulation model.  In particular, simulation model discretizes the curvature with small 

elements of a straight length.  As the coil compresses to a smaller radius, smaller elements are 

needed.  The models used here had an element size that was held constant for all three models 

which led to the deviation increasing as curvature was increased.  This deviation would 

decrease if more elements were used to accurately model the curvature. 

 

Both the analytical and simulation models presented in this Chapter 6 neglect end effects and 

assume the two-dimensional shape of the coil does not elongate axially.  These assumptions 

are different from the two-dimensional circular model in Chapter 4 where the distal shape had 

a given length (40-mm) with end effects and axial elongation within the tube.  

 

6.4 COMPARISON OF MODELS 

Table 6-2 compares the results of the total radial force from the previous models in Chapter 4 

with the analytical model used in the current chapter.  The total radial force for the analytical 

model is obtained by multiplying the radial pressure per linear length by the length of 

curvature (40-mm) for the model in Chapter 4.   Table 6-2 compares the total radial force 

when the two-dimensional circular shape interacts with 8- and 6-mm tubes. 
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Table 6-2 Comparison of Total Radial Force between Chapter 6 and Chapter 4 Models 

Tube 

Diameter  

Total Radial 

Force 

 

Analytical 

Model 

Chapter 6 

Total Radial 

Force 

 

Simulation 

Model 

Chapter 4 

Difference 

between 

Analytical and 

Simulation 

Models 

 

(mm) (N) (N) (%) 

8.0 0.67 0.237 183 

6.0 2.27 0.141 1510 

 

The radial forces deviate between the different models.  In Chapter 4, the two-dimensional 

circular distal shape was straightened out and inserted into a tube.  That model had a given 

finite length and allowed end effects.  The analytical and simulation models in this chapter 

assume that the two-dimensional circular shape stays circular and planar as it compresses to a 

smaller radius or diameter, but this may be an unrealistic assumption for large radial 

compression.  These are significant differences in the loading conditions and these models 

should not be compared with each other.  For lead fixation, where the distal shape of the lead 

is straightened and inserted the simulation model presented in Chapter 4 is appropriate. 

 

The analytical model of this chapter does provide a very simple and quick way to determine 

the radial force for a coil compressed in a tube, but it must be used with the appropriate 

loading conditions.  In a case where the two-dimensional shape of the coil is maintained and 

does not elongate axially, this analytical model would be appropriate.  The technique of using 

strain energy and Castigliano’s theorem is another tool that can provide structural 

understanding on the fixation of leads within a cardiac vein but it must be applied 

appropriately.   
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CHAPTER 7  

 

CONCLUDING REMARKS 

 

7.1 INTRODUCTION 

This thesis has focused on how various engineering tools, experimentation, numerical 

simulation, optimization and mathematical analysis, can be applied to improve the fixation of 

a left-ventricle lead within a cardiac vein by maximizing the radial fixation force and 

minimizing the tip force.  Left-ventricle cardiac leads for implantable pacemakers can lose 

their fixation within a cardiac vein and dislodge.  Dislodgement requires the patient to return 

to the hospital for a surgical lead revision that involves repositioning of the lead within the 

cardiac vein.  

 

A common lead-fixation mechanism for left-ventricle leads is a two- or three-dimensional 

shape at the distal end.  Since the lead and the distal end are constructed from a metal coil, this 

two- or three-dimensional distal shape can be pre-formed into the coil.  During implantation 

inside the cardiac vein, the distal end is straightened by inserting a guidewire or stylet through 

the coil.  Once the lead distal end is positioned within the cardiac vein, the wire is removed 

and the distal shape pushes against the vein as it tries to return to its original shape. 
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7.2 ANALYTICAL BEAM APPROXIMATION OF A COIL 

In Chapter 2, the elastic coil stiffnesses were derived analytically so different coil samples 

could be experimented on to investigate whether coil stiffness is directly related to radial 

force.  Deriving the bending, torsional, and axial elastic stiffness of a coil allowed simulation 

models using three-dimensional beam elements to be created.  Beam elements with these 

elastic stiffnesses are line elements used to create a one-dimensional idealization of a three-

dimensional structure or distal shape.  This simplification removed the necessity of creating 

models that had the geometry of the actual coils.  Beam elements with their equivalent 

stiffnesses were used in the models instead. 

 

The elastic stiffnesses of the coil can be controlled by the geometry and material properties.  

They are functions of the pitch angle , the number of filars in the coil N, filar modulus of 

elasticity Efilar, filar shear modulus Gfilar, filar moment of inertia Ifilar, and filar polar moment of 

inertia Jfilar.   

 

7.3 EXPERIMENTATION  

A series of experiments presented in Chapter 3 used a radial force tester that measured the 

total radial force that a distal shape exerts on a straight cylindrical tube.  The radial force tester 

used a mechanical iris that contracts and expands radially around the distal lead shape.  The 

mechanism of the mechanical iris limited the experiments to only straight tubes. 

 

Coil stiffness was varied in the experiment and found to directly correlate to radial force.  The 

samples used in the experiment consisted of a coil covered with silicone tubing with the distal 
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end having a two-dimensional circular shape.  When this circular distal shape was deformed 

within the radial force tester the radial forces were obtained.  Three different coil stiffnesses 

were experimented with and the total radial force was found to increase with increasing 

stiffness. 

 

The radial force tester has some limitations but allows radial forces to be measured directly.  

One limitation is that it can only allow distal shapes to be measured in a straight tube.  Also 

the mechanical iris contains numerous mechanical parts that slide against each other during 

contraction and expansion which result in different radial forces being measured depending 

upon whether the tester was contracting or expanding.  An average radial force between the 

contraction and expansion values was used to compensate for this.  The numerous mechanical 

parts within the radial force tester also generate noise in the measurement but this was reduced 

by using a moving average on the data. 

 

7.4 NUMERICAL SIMULATION 

Simulation models allowed various distal shapes to be quickly evaluated for their total radial 

force as well as the distribution of these radial forces along the distal shape.  The simulation 

models in Chapter 4 were created to simulate the previous experiments.  The models evaluated 

the radial forces for a two-dimensional circular distal shape. 

 

Initial simulations of the simulation models evaluated the assumptions used in the model.  The 

first assumption was that the element size used to discretize the model was appropriate.  

Various element sizes were evaluated (Section 4.4) to determine the maximum element size 
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where the radial force results would not change significantly (less than 5%).  An element size 

of 5.0-mm or less met this criterion and was used for all subsequent simulation models. 

 

The effect of friction on the radial forces within the simulation model was determined for the 

two-dimensional circular distal shape (Section 4.5).  It was found that friction reduces the 

radial forces around the distal shape.  Friction adds shear forces between the distal shape and 

tube wall that cause the distal shape to axially stretch.  Radial forces are generated by bending 

and torsion loads where the distal lead contacts the tube walls.  The axial stretching caused by 

friction reduces the amount of bending and torsion within the distal shape and also reduces the 

radial force.  Determining friction coefficients can be highly error prone, especially within a 

cardiac vein.  Most lead designs try to achieve low friction that allows for easy sliding within 

a vein and to avoid abrasion.  For subsequent models, the interface between the distal shape 

and the tube was assumed frictionless.   

  

Another assumption in the simulation model was that the proximal end length was long 

enough that it does not influence the radial forces at the distal tip.  Various proximal end 

lengths were evaluated (Section 4.6) to determine the minimum length for which the radial 

force results would not change significantly (less than 5%). A proximal length of 150-mm or 

greater met this criterion and was used for all subsequent simulation models. 

 

7.5 NUMERICAL SIMULATION VALIDATION WITH EXPERIMENTS 

The simulation model with a two-dimensional circular distal shape determined the deformed 

geometry and radial forces for all three coil designs at discrete straight tube diameters of 2-, 
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4-, 6-, and 8-mm (Section 4.7).  The model simulated the experiment that was presented in 

Chapter 3.  The simulation model also provided a distribution of the radial force along the 

distal shape, which experimentation could not provide.  The simulation model gave the radial 

force at the distal tip which is useful information since high tip forces could cause perforation 

within a cardiac vein.  The simulation models determined that the radial forces decreased as 

the tube diameter was increased from 2- to 6-mm which agreed with the experiment.  The 

simulation model determined that radial forces increased as the tube diameter was increased 

from 6- to 8-mm which deviated from the experiment only at these larger tube diameters.  This 

deviation was examined to determine the cause.    

 

The frictionless simulation model of the distal shape deviated from the experiments at larger 

tube diameters.  The simulation model of the two-dimensional circular distal shape was 

reevaluated with friction.  When friction was included into the simulation model the radial 

forces results were very similar to those of the experiment (Chapter 3).  The friction in the 

experiment could be significant since the samples were coils inside silicone tubing that moved 

against the metal iris of the radial force tester.  The actual friction between the distal lead 

shape and a cardiac vein will be different from this in-vitro experiment. 

 

7.6 NUMERICAL SIMULATION OF A SPIRAL DISTAL SHAPE 

The simulation models indicated that as a deformed two-dimensional circular conformed more 

to the tube higher radial forces occurred which is desirable.  A three-dimensional spiral distal 

shape was chosen since it would conform more against the walls within a tube.   A three-

dimensional spiral distal shape was evaluated against the original two-dimensional circular 
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shape to determine if the total radial force could be increased (Section 4.8).  The three-

dimensional spiral distal shape was shown to have significantly higher radial forces (56% to 

268%) when compared with the two-dimensional circular distal shape. 

 

The three-dimensional spiral distal shape was then optimized using numerical simulation to 

maximize the total radial force for fixation and minimize the radial tip force to avoid 

perforation.  A design of experiment (DOE) methodology was used with numerical simulation 

to optimize the distal shape geometry (Section 4.9).  The simulation models used a straight 

tube.  The locally optimized three-dimensional spiral distal shape had a total radial force that 

was 330 % higher than the original two-dimensional circular distal shape and the radial tip 

force was reduced by almost 29%.   

 

Since actual cardiac veins are curved, a curved tube was evaluated with numerical simulation 

to determine how the distal shapes would perform in Chapter 5.  The radial force distributions 

within a distal shape were similar whether the tube was straight or curved, but the total and 

radial tip force were different depending upon the distal tip shape.  For the two-dimensional 

circular distal shape, the total and radial tip force increased from the straight tube results when 

curvature is added.  For the three-dimensional spiral distal shape the opposite occurred and the 

total and radial tip force decreased from the straight tube results when curvature is added.  

Tube curvature added complexity to the distal shape evaluation to determine the optimal distal 

shape to maximize total radial force and minimize radial tip force.  The three-dimensional 

spiral distal shape still had a higher total radial force and a lower radial tip force when 

compared to the two-dimensional circular distal shape in the curved tube simulation model.  

The results of the curved tube models show that the radial force that the distal shape exerts on 
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the tube wall is dependent on both the distal tip shape and the shape of the tube into which it is 

inserted.   

 

7.7 MATHEMATICAL ANALYSIS 

A mathematical analysis using engineering principles was presented in Chapter 6 to derive the 

radial force that a distal shape exerts against a tube after insertion.  This analytical approach 

using strain energy and Castigliano’s theorem allows fundamental engineering principles to be 

applied to understand how a coil’s material and geometry affect the radial force.  This 

relationship between the coil and radial force was inferred from the previous simulation 

models in Chapter 4 but the mathematical analysis clearly shows how the bending stiffness 

and radius affect the radial force. 

 

Assumptions and idealizations used in the mathematical model lead to deviations between it 

and the simulation model used in Chapter 4.  To mathematically derive the radial force 

simplifying assumptions were made that the coil compress radially and does not expand 

axially.  This assumption that the coil stays within a two-dimensional circular shape does not 

simulate the actual use condition of the cardiac lead being straightened as it is inserted.  The 

simulation model in Chapter 4 simulates this use condition which matches the experiment in 

Chapter 3.  The mathematical analysis does provide a fundamental understanding and can 

provide a radial force if used in the appropriate case. 
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7.8 CONCLUSION 

The methodology shown in this thesis demonstrates how experimentation and numerical 

simulation can be used synergistically to optimize the lead distal shape to maximize the total 

radial force for fixation and minimize the radial tip force.  Experiments were limited by the 

radial force tester to straight tubes.  Simulation models were created to simulate the same 

experiments.  The experiments and correlating simulation models provided validation and 

confidence that numerical simulation could provide results beyond what was tested.  The 

simulation models were then updated to evaluate and optimize the distal lead shape for radial 

force.  Finally, since the cardiac veins into which the distal lead shape is inserted are curved, 

the models were updated again to evaluate the distal lead shape inserted into a curved tube.   
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Sample Analytical Beam Approximation Calculation 

 

Listed below is a sample analytical beam approximation calculation from Chapter 2.  

 
Table A-1 Coil Geometry 

 Number of 

Filars in 

Coil 

N 

Wire 

Diameter 

 

dfilar 

Mean 

Diameter 

of Coil 

Dmean 

Coil Pitch 

per Filar 

 

P 

  (mm) (mm) (mm) 

Coil A 4 0.127 0.635 0.610 

 
Table A-2 Material Properties 

Material Young’s 

Modulus 

Efilar   

Shear 

Modulus 

Gfilar 

 (GPa) (GPa) 

MP35N 234 81 
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Detailed Procedure For Creating And Analyzing Model in ABAQUS Standard 

 

ABAQUS Standard finite element software (version 12-2) was used to perform the numerical 

simulation.  ABAQUS Standard allows surface-to-node contact to be defined and includes 

nonlinear effects of large displacements.  The steps to create the model of contact between a 

lead distal shape and a straight cylindrical tube follow below.   

 

Part Module – Lead Distal Shape 

The lead is constructed of a coil but can be represented using three-dimensional beam 

elements with a circular cross section property.  The material properties of this beam have a 

Young’s and shear moduli that are equivalent to the coil stiffness.  This removes the 

complexity of the multi-filar coil from the model while keeping its bending and torsional 

stiffness characteristics intact.  The distal shape is created using three-dimensional linear beam 

elements (B31) that have six degrees of freedom (displacement in X, Y, Z and rotations about 

X, Y, Z). 

 

The lead distal shape is wireframe geometry that can be constructed in CAD and imported into 

ABAQUS or it can be created in the ABAQUS CAE Part Module.  The part is a straight wire 

with one end wrapped into a 12.7-mm diameter.  In the part module, create a 3D deformable 

wire shape part that matches the circular distal shape geometry.  Create a straight wire 150 

mm long.  At one end create a circular helix that has a 12.7-mm diameter with a 0.6-mm pitch 

that translates out of plane.  At the end of the helix create straight wire 1-mm in length.  The 

out of plane pitch of 0.6-mm prevents the beam elements from overlapping.   
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A technique in ABAQUS CAE to create the wire geometry is to use a solid part and then 

extract the wire edge and delete any extra faces or edges that are not needed.  First create a 

solid revolved with a rectangle that has an edge with a diameter of 12.7-mm that is rotated 360 

degrees with a pitch of 0.6-mm.  The move sketch normal to path option should be used to 

create a helix.  At one revolved end extrude the section 150-mm.  At the other revolved end 

extrude the section 1 mm.  Next, in ABAQUS CAE create a wire by using the shape > wire > 

from edge and select the edges to create the wire.  Delete any faces or wires not needed.  This 

creates the wire geometry for the distal shape. 

 

Property Module – Lead Distal Shape 

Create a profile for the circular cross-section for the beam with a diameter of 0.635 mm (Coil 

A mean diameter).  Next, create a beam section and change the section integration to before 

analysis (cross section change or thinning is not expected).  Select the circular profile for the 

beam shape and in the table add the material properties (Young’s Modulus 363 MPa and Shear 

modulus 211 MPa).  Assign this section by selecting the wireframe geometry.  Finally, use the 

assign beam orientation and select the wireframe geometry. 

 

Straight Cylindrical Tube – Part Module 

Perfectly rigid surfaces or objects can be defined by rigid elements or, if the geometry is 

simple, like a tube, analytically rigid surfaces can be created.  These rigid surfaces do not 

allow any penetration or deformation.  These three-dimensional analytically rigid surfaces are 

created by extruding, revolving, or sweeping a two-dimensional cross section.  These rigid 

surfaces are controlled by a reference point where boundary conditions can be applied.   
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In ABAQUS CAE, for a 2-mm rigid tube create a part that is a 3D analytically rigid shape by 

extruding a shell.  Note that the circular beam element that contacts the tube does not have a 

geometric diameter of 0.635-mm so the actual contact is with the beam’s centerline not its 

outer surface.  To compensate, the 2-mm rigid tube has its diameter reduced by 0.635 mm to 

1.365 mm.  When sketching the circle to create the rigid tube, make sure that the circle is not a 

single continuous segment.  Circular analytically rigid surfaces cannot have an arc of more 

than 180 degrees, so a circular sketch with three segments (each less than 180 degrees) is 

adequate.  The extruded length is only for visualization since the actual extruded length is 

infinite.  Finally create a reference point for the rigid surface to apply boundary conditions by 

using tools > reference point.  Analytical rigid surfaces do not have any properties. 

 

Assembly Module 

Create an assembly with the distal shape part and analytically rigid tube by instancing them 

and orientating them so that the proximal end of the distal shape lies along the axis of the tube. 

 

Step Module 

Two steps were created to allow the distal shape to be straightened and then contact the tube.  

In the first step, all contact surfaces are deactivated and the distal shape is straightened so it 

fits within the tube.  The second step activates the contact surfaces and then releases the distal 

shape. 

 

In ABAQUS CAE, create the first step and select general procedure type with static, general 

option.  Turn on non-linear geometry (nlgeom) and activate the automatic stabilization with 

the default settings.  Use the automatic incrementation and leave the default time period of 1.  
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Change the maximum number of increments to 1000 or more.  For the second step, repeat the 

same settings but turn off the automatic stabilization.  If automatic stabilization is left on in the 

final step the results can be incorrect.   In the step module, create a field output request and 

add contact force to the default output variables. 

 

Interaction Module 

In ABAQUS CAE, the contact is defined in the interaction module.  Create an interaction that 

only occurs in the second step and select surface to surface contact.  For the master surface 

select the rigid tube and then for the internal faces choose the inside of the tube.  For the slave 

surface select the slave type as node region and then select the distal shape wireframe.  Accept 

the defaults in the form but create a contact interaction property.  For the interaction property 

choose contact and under the options select mechanical tangential behavior friction as 

frictionless.  

 

Load Module 

In ABQUS CAE, the load module is where boundary conditions are created.  To rigidly hold 

the tube, select the create boundary condition option and create an initial mechanical 

displacement/rotation boundary condition.  Select the reference point of the rigid tube and set 

all six degrees of freedom (U1, U2, U3, UR1, UR2, and UR3) to zero for all the steps.  To 

rigidly hold the proximal end of the distal shape repeat this same procedure but select the 

proximal end point of the distal shape and set all degrees of freedom to zero for all the steps. 

 

To straighten the distal shape, a boundary condition will be applied to the distal end point of 

the distal shape in the first step.  This boundary condition only allows the distal tip to travel in 
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the axial direction.  The rotational degrees of freedom (UR1, UR2, and UR3) are free to rotate 

but the degrees of freedom orthogonal to the axis (U1 and U2) are set to zero.  To straighten 

the distal shape the distal tip has a displacement of 40-mm or greater applied to it in the axial 

direction (UZ).  The distance can be determined by the circumference of the distal shape.   

 

This straightening is only done in the first step.  After the first step all the boundary conditions 

at the distal tip are deactivated and the contact is activated.  Automatic stabilization is also 

deactivated as described in the step module.  The distal end contacts the tube surface as it tries 

to return to its original shape which results in contact forces.  Since the tube is frictionless 

only contact forces normal to the tube surface (or radial to the tube axis) are generated. 

 

Mesh Module 

In ABAQUS CAE, the mesh module is where parts are meshed.  The analytically rigid surface 

does not need to be meshed.  The distal shape is meshed with three-dimensional linear beam 

elements.  The distal shape is meshed by selecting it as the object to be meshed.  The part had 

a global seed element of 2.5 mm.  To insure the mesh has elements of equal size the curvature 

control was deactivated.  The element type was assigned and two node linear shear-flexible 

beam elements (B31) for ABAQUS Standard were selected.  The distal shape was then 

meshed. 

 

Visualization Module 

After the solution has been obtained the contact force along the length of the distal shape can 

be obtained and plotted within ABAQUS CAE or exported to EXCEL.  Create a path using 

tools > path > create and select edge list type and then select viewport selection.  Next select 
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edges to be inserted into the path by feature edge and select one end of the distal shape.   The 

path should auto select from one end of the distal shape to the other.  If it does not select flip 

button to auto chain the entire distal shape.  Next create an XY data set by selecting the 

created path as the source using tools > XY data > create > source path.  This allows XY data 

to be extracted from the model along the selected path.  For the model shape select deformed 

and use the default node path points.  For the X plot values use Z distance and for the Y plot 

values select the last frame of the last step with contact normal force vector at surface nodes as 

the field output variable.  The contact force can then be plotted within ABAQUS CAE or then 

exported to excel at this point. 

 

 


