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Abstract

This thesis aims to theoretically study a modern linear transceiver design strategy,

namely interference alignment, in wireless networks. We consider an interference chan-

nel whereby each transmitter and receiver are equipped with multiple antennas. The

basic problem is to design optimal linear transceivers (or beamformers) that can max-

imize the system throughput. The recent work [1] suggests that optimal beamformers

should maximize the total degrees of freedom through the interference alignment equa-

tions. In this thesis, we first state the interference alignment equations and study the

computational complexity of solving these equations. In particular, we prove that the

problem of maximizing the total degrees of freedom for a given interference channel is

NP-hard. Moreover, it is shown that even checking the achievability of a given tuple

of degrees of freedom is NP-hard when each receiver is equipped with at least three

antennas. Interestingly, the same problem becomes polynomial time solvable when each

transmit/receive node is equipped with no more than two antennas.

The second part of this thesis answers an open theoretical question about inter-

ference alignment on generic channels: What degrees of freedom tuples (d1, d2, ..., dK)

are achievable through linear interference alignment for generic channels? We partially

answer this question by establishing a general condition that must be satisfied by any

degrees of freedom tuple (d1, d2, ..., dK) achievable through linear interference align-

ment. For a symmetric system with dk = d for all k, this condition implies that the

total achievable DoF cannot grow linearly with K (unlike the case in [1]), and is in fact

no more than K(M + N)/(K + 1), where M and N are the number of transmit and

receive antennas, respectively. We also show that this bound is tight when the number

of antennas at each transceiver is divisible by the number of data streams.
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Chapter 1

Introduction

Consider a multiuser communication system in which a number of users must share com-

mon resources such as frequency, time, or space. The mathematical model for this com-

munication scenario is the well-known interference channel, which consists of multiple

transmitters simultaneously sending messages to their intended receivers while causing

interference to each other. Interference channel is a generic model for multiuser com-

munication and can be used in many practical applications such as Digital Subscriber

Lines (DSL) [3], Cognitive Radio (CR) systems [4], ad-hoc wireless networks [5, 6] and

cellular networks.

A central issue in the study of interfering multiuser systems is how to mitigate mul-

tiuser interference. In practice, there are several commonly used methods for dealing

with interference. First, we can treat the interference as noise and just focus on ex-

tracting the desired signals (see [15], [21]). This approach is widely used in practice

because of its simplicity and ease of implementation, but is known to be non-capacity

achieving in general. An alternative technique is channel orthogonalization whereby

transmitted signals are chosen to be nonoverlapping either in time, frequency or space,

leading to Time Division Multiple Access, Frequency Division Multiple Access or Space

Division Multiple Access respectively. While channel orthogonalization effectively elim-

inates multiuser interference, it can lead to inefficient use of communication resources

and is also generally non-capacity achieving. Another interference management tech-

nique is to decode and remove interference. Specifically, when interference is strong

relative to desired signals, a user can decode the interference first, then subtract it from
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the received signal, and finally decode its own message (see [8] and [11]). This method

is less common in practice due to its complexity and security issues.

In a cellular system, multi-cell interference management is a major challenge. So

far various base station cooperation techniques have been proposed to mitigate inter-

cell interferences, including coordinated multi-point (CoMP) transmission, or network

MIMO transmission [32–34]. In coordinated multipoint strategy, data to a single user is

simultaneously transmitted from different base stations and the user jointly process the

received signals from different base stations. Most of the CoMP proposed techniques

in the literature require each base station to have full/partial channel state informa-

tion (CSI) as well as the knowledge of actual independent data streams to all remote

terminals. With the complete sharing of data streams and CSI, the multi-cell scenario

is effectively reduced to a single cell interference management problem with either to-

tal [35] or per-group-of-antennas power constraints [36,37]. While these techniques can

offer significant improvement on data throughput, they also have several drawbacks in-

cluding stringent requirement on base station coordination, the large demand on the

communication bandwidth of backhaul links, and the heavy computational load associ-

ated with the increasing number of cells [38, 39].

Theoretically, what is the optimal interference management strategy? The answer

is related to the characterization of capacity region of an interference channel, i.e., de-

termining the set of rate tuples that can be achieved by the users simultaneously. For

the noiseless case, the capacity region and the optimal precoding strategy of the two

user interference channel is discussed in [8] and [7]. In spite of intensive research on

this subject over the past three decades ( [7] - [20]), the capacity region of interference

channels is still unknown for general case (even for small number of users). The lack of

progress to characterize the capacity region for a MIMO interference channel has moti-

vated researchers to derive various approximations of the capacity region. For example,

the maximum total degrees of freedom (DoF) corresponds to the first order approxima-

tion of sum-rate capacity of an interference channel at high SNR regime. Maximizing

this approximation of sum-rate leads us to the interference alignment method [1].

Theoretically, what is the optimal transmit/receive strategy in a MIMO interference

channel? The answer is related to the characterization of the capacity region of an

interference channel, i.e., determining the set of rate tuples that can be achieved by
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the users simultaneously. In spite of intensive research on this subject over the past

three decades, the capacity region of interference channels is still unknown (even for

small number of users). The lack of progress to characterize the capacity region of the

MIMO interference channel has motivated researchers to derive various approximations

of the capacity region. For example, the maximum total degrees of freedom (DoF)

corresponds to the first order approximation of sum-rate capacity at high SNR regime.

Specifically, in a K-user interference channel, we define the degrees of freedom region

as the following [1]:

D =

{
(d1, d2, . . . , dK) ∈ RK

+ | ∀(w1, w2, . . . , wK) ∈ RK
+ ,

K∑
k=1

wkdk ≤ lim sup
SNR→∞

[
sup
R∈C

1

log SNR

K∑
k=1

wkRk

]}
, (1.1)

where C is the capacity region and Rk is the rate of user k. We can further define the

total DoF in the system as the following:

η = max
(d1,d2,...,dK)∈D

d1 + d2 + . . .+ dK .

Intuitively, the total DoF is the number of independent data streams that we can com-

municate interference-free in the channel.

It is well known that for a point-to-point MIMO channel with M antennas at the

transmitter and N antennas at the receiver, the total DoF is η = min{M,N}. Different

approaches such as SVD precoder or V-BLAST can be used to achieve this DoF bound.

For a 2-user MIMO fading interference channel with user k equipped with Mk transmit

antennas and Nk receive antennas (k = 1, 2), Jafar and Fakhereddin [59] proved that

the maximum total DoF is

η = min {M1 +M2, N1 +N2,max{M1, N2},max{M2, N1}} .

Moreover, this bound can be achieved using a linear interference alignment1 scheme

1 The concept of linear interference alignment was first introduced by [80]. There is a related, but
different, notion of signal level alignment whereby the transmitted/received signals are aligned, not
through linear beamformers, but through structured coding and/or phase arrangement. These schemes
are nonlinear in the data symbols.
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consisting of linear transmit and receive beamformers. This result shows that for the

case of M1 = M2 = N1 = N2, the total DoF in the system is the same as the single

user case. In other words, we do not gain more DoF by increasing the number of

users from one to two. Interestingly, if statistically independent channel extensions are

allowed either across time or frequency, Cadambe and Jafar [1] showed that the total

DoF is η = KM/2 for a K-user MIMO interference channel, where M is the number

of transmit/receive antennas per user. This result implies that each user can effectively

utilize half of the total system resource in an interference-free manner. The principal

assumption enabling this surprising result is that the channel extensions are i.i.d. and

exponentially long in K, which can be impractical. However, if channel extensions are

restricted to have a polynomial length or are not statistically independent, the total

DoF for a MIMO interference channel is still largely unknown even for the Single-Input-

Single-Output (SISO) interference channel. For the 3-user special case, reference [81]

provided a characterization of the total achievable DoF as a function of the diversity.

In the absence of channel extensions, various linear interference alignment algorithms

have been proposed for the MIMO interference channel [2].

The main theoretical investigation pertaining to the current work is [45] by Yetis

et. al. who studied the maximum achievable DoF for a MIMO interference channel

without channel extension. In general, linear interference alignment can be described

by a set of quadratic equations which correspond to the zero-forcing conditions at each

receiver. For a K-user system, there are a total of K(K − 1) such coupled quadratic

matrix equations whose unknowns are the transmit/receive beamforming matrices to

be designed. Moreover, the achievability of a given tuple of DoF corresponds to these

quadratic equations having a solution (in the form of beamforming matrices) whose

individual matrix ranks are given by the DoFs. One can easily count the number of

“independent unknowns” and the number of scalar equations in this quadratic system

defining interference alignment. It is then tempting to conjecture, as was done in [45],

that the interference alignment is feasible if and only if the number of equations is

no more than the number of unknowns in each subsystem of the quadratic equations.

When the latter is true, the authors of [45] called the corresponding system proper.

However, except for some special cases involving a small number of users and antennas,

the investigation of [45] was largely inconclusive.
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In this thesis, we first consider the problem of designing the linear beamformers in

a wireless interference channel. First, we study the complexity status of interference

alignment problem in spatial domain and we show that the problem is NP-hard when

the number of antennas at each node is at least three. Moreover, we show that the in-

terference alignment problem is polynomial time solvable when the number of antennas

at each node is at most two. In the second part of this thesis, we settle the conjecture

of [45] completely in one direction, and partially in the other. In particular, we consider

the case where no channel extension is allowed, and use results from the field theory to

establish a general condition that must be satisfied by any DoF tuple achievable through

linear interference alignment. This condition shows that the improperness property (in

the sense of [45]) indeed implies the infeasibility of interference alignment. For the sym-

metric system with Mk = M and Nk = N for all k, this condition implies that the

total achievable DoF cannot grow linearly with the number of users, and is in fact no

more than M +N − 1. This is in sharp contrast to the case with independent channel

extensions for which the total DoF can grow linearly with the number of users. For the

converse direction, we show that if all users have the same DoF d and the number of

antennas Mk, Nk are divisible by d for each k, then the properness of the quadratic sys-

tem implies the feasibility of interference alignment for all generically generated MIMO

interference channels. If in addition, Mk = M and Nk = N for all k and M,N are

divisible by d, then our results imply that interference alignment is achievable if and

only if (M + N) ≥ d(K + 1). In the simulation section, we use these established DoF

bounds to numerically benchmark the performance of several existing algorithms for

interference alignment and sum-rate maximization.



Chapter 2

Existing Interference

Management Approaches in

Multi-user Systems

In this section, we try to give a more general view over the different interference man-

agement approaches (other than interference alignment) in multi-user wireless systems.

2.0.1 Dirty Paper Coding and Successive Interference Cancelation

Dirty Paper Coding (DPC) and Successive Interference Cancelation (SIC) are two meth-

ods to cancel the multiuser interference at the transmitter and receiver, respectively.

The DPC result [55] simply states that the known noise at the transmitter can be pre-

canceled without any cost (neither extra power is needed nor rate decrement happens).

For example, in a broadcast (one-to-many) channel, when the transmitter transmits

the signal of user k, it knows the codeword of the users 1, 2, . . . , k − 1. Therefore, it

can precancel the effect of them at receiver k. Therefore, user k sees no interference

from the signals of users 1, 2, . . . , k − 1. DPC and TDMA techniques can achieve any

point in the capacity region of the broadcast channel [52–54]. However, so far the high

complexity of the DPC technique at the transmitter prevented us to use it in practice.

SIC is a technique to iteratively decode the interference and subtract the interference

from the received signal. By subtracting the interference from the received signal, the

6
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SINR value of the signal increases and therefore, higher rates can be provided. The

combination of SIC and TDMA can achieve any tuple of rates in the multi-access chan-

nel [56–58]. However, the complexity and the security issues arise from decoding the

interference, made this approach far from being practical.

2.0.2 Maximizing a Utility of the System Using Optimization Tech-

niques

One practical way to mitigate the interference between the users is to control the amount

of interference by using linear beamformers at the transmitters and receivers. To this

end, people consider a utility function of the system and maximize the utility subject

to the existing constraints. One typical optimization problem is to maximize the total

system throughput [31,41,43,44], i.e.,

max

K∑
k=1

Rk

s.t. constraints

where Rk is the rate of user k and we can consider different practical constraint such as

power budget, quality of service, etc. Unfortunately, in most of the cases, this problem

becomes non-convex and computationally intractable. Furthermore, in lots of scenarios,

this objective function leads to unfair resource allocation among different users. Hence,

people also consider different objective functions in the above optimization problem.

Some commonly used objective functions are as follows

• Sum rate utility function: U(R1, . . . , RK) =
∑K

k=1Rk

• Harmonic mean utility function: U(R1, . . . , RK) =
(∑K

k=1R
−1
k

)−1

• Geometric mean utility function: U(R1, . . . , RK) =
(∏K

k=1Rk

)1/K
• Min rate utility function: U(R1, . . . , RK) = mink Rk

In addition to the above optimization problem, many people considered the power min-

imization problem.
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When the channels are diagonal and no correlated signaling is allowed across different

antennas, we are basically led to the dynamic spectrum management problem. The

dynamic spectrum management problem, which is a key core in the performance of

DSL systems, has recently been a topic of intensive research in the signal processing

community. Different distributed and centralized algorithms has been proposed to the

dynamic spectrum management problem [22–26, 28, 49–51]. The authors in [28] have

studied this problem for different well-known utility functions and characterized the

efficient solvability of the problems in different cases.

2.0.3 Coordinated Multi-Point (CoMP)

Coordinated multi-point transmission is a new strategy where base stations cooperate

to transmit and receive the signals in order to mitigate the inter-user interference, effec-

tively treating the whole multi-cell system as a giant MIMO broadcast/MAC channel.

This cooperative strategy can improve the performance of cell-edge users in cellular

networks [63–67]. Although in theory the raw system throughput can increase dramati-

cally using CoMP strategy (linear in the number of users or total number of antennas),

the system overhead caused by the data sharing and synchronization may prevent it

from achieving the theoretical performance in practice. A major difficulty with CoMP

approach is its requirement that the signals from different base stations for the same

OFDM symbol should arrive at a given receiver at the same time. Due to large dis-

tances between different base stations, this same arrival time requirement is not possible

unless appropriate timing offset is pre-compensated at the transmitting base stations.

The latter would place a significant constraint on the length of cyclic prefix in a OFDM

symbol. In fact, for a typical 1-2 mile spacing between base stations, the length of

OFDM symbol would have to be longer than the data block length, rendering it rather

inefficient.

Another major issue with CoMP is that the capacity of the backhaul links also limits

the performance of the system. Since considering global knowledge and infinite capacity

for the backhaul links is impractical, people have proposed more practical scenarios such

as [68]:

• Local connectivity: in this scenario, two base stations are connected only if they
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are adjacent [69–75].

• Restricted connectivity to a central processor: only a subset of base stations is

connected to each other (or a central processor) [76].

• Global but finite capacity backhaul links: all processors are connected to a central

node via finite capacity links [77–79].

Compared to the networked MIMO CoMP strategy, the Coordinated Beamforming

(CBF) strategy requires no data sharing between the base stations. In fact, different

base stations encode the signals independently in the interference (interfering broadcast)

channel. Hence, far less signaling is needed for synchronization and the system overhead

is significantly reduced. Similarly, in the interference alignment (IA) strategy, only the

channel state information is exchanged between the base stations, no sharing of data

streams is required. Both CBF and IA allow more independent operations across base

stations as compared to the centralized CoMP approach, while still achieving a high

system throughput, at least theoretically, that is linear in the number of users or the

number of antennas in the system.

2.0.4 Degrees of Freedom Characterization

The lack of progress to characterize the capacity region of the MIMO interference chan-

nel has motivated researchers to derive various approximations of the capacity region.

One of the examples of this kind of approximations is the maximum total degrees of free-

dom (DoF) which corresponds to the first order approximation of sum-rate capacity of

an interference channel at high SNR regime. In this approach, for a K user interference

channel, we define the degrees of freedom region as the following [1]:

D =

{
(d1, d2, . . . , dK) ∈ RK

+ |∀(w1, w2, . . . , wK) ∈ RK
+ ,

K∑
k=1

wkdk ≤ lim sup
SNR→∞

[
sup
R∈C

1

log SNR

K∑
k=1

wkRk

]}
,

where C is the capacity region and Rk is the rate of user k. In the approaches dealing

with the DoF, the objective is to maximize the DoF in the system. In the consequent

chapters, we provide more details on this approach, its computational complexity and

the solution for this approach in the generic channel case.



Chapter 3

System Model, Assumptions, and

Problem Statement

Consider a MIMO interference network consisting of K transmitter - receiver pairs, with

transmitter k sending dk independent data streams to receiver k. Let Hkj be an Mj×Nk

matrix that represents the channel gain matrix from transmitter j to receiver k where

Mj and Nk denote the number of antennas at transmitter j and receiver k, respectively.

The received signal at receiver k is given by

yk =
K∑
j=1

Hkjxj + nk

where xj is an Mj × 1 random vector that represents the transmitted signal of user j

and nk ∼ N (0, σ2I) is a zero mean additive white Gaussian noise.

Throughout this thesis, we focus on linear transmit and receive strategies that can

maximize system throughput. In this case, transmitter k uses a beamforming matrix Vk

in order to send a signal vector sk to its intended receiver k. On the other side, receiver k

estimates the transmitted data vector sk by using a linear beamforming matrix Uk, i.e.,

xk = Vk sk, ŝk = UH
k yk

where the power of the data vector sk ∈ Rdk×1 is normalized such that E[sks
H
k ] = I,

10
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and ŝk is the estimate of sk at the k-th receiver. The matrices Vk ∈ CMk×dk and Uk ∈
CNk×dk are the beamforming matrices at the k-th transmitter and receiver respectively.

Without channel extension, the linear interference alignment conditions can be described

by the following zero-forcing conditions [2, 45,83]

UH
k HkjVj = 0, ∀ j ̸= k, (3.1)

rank
(
UH

k HkkVk

)
= dk, ∀ k. (3.2)

The first equation guarantees that all the interfering signals at receiver k lie in the

subspace orthogonal toUk, while the second one assures that the signal subspaceHkkVk

has dimension dk and is linearly independent of the interference subspace. Intuitively,

as the number of users K increases, the number of constraints on the beamformers

{Uk,Vk} increases quadratically inK, while the number of design variables in {Uk,Vk}
only increases linearly. This suggests the above interference alignment can not have a

solution unless K or dk is small.

The interference alignment conditions (3.1) and (3.2) imply that each transmitter

k can use a linear transmit/receive strategy to communicate dk interference free inde-

pendent data streams to receiver k (per channel use). In this case, it can be checked

that dk represents the DoF achieved by the k-th transmitter/receiver pair in the infor-

mation theoretic sense of (1.1). In other words, the vector (d1, d2, ..., dK) in (3.1) and

(3.2) represents the tuple of DoF achieved by linear interference alignment. Intuitively,

the larger the values of d1, d2,...,dK , the more difficult it is to satisfy the interference

alignment conditions (3.1) and (3.2).



Chapter 4

Complexity Analysis of

Interference Alignment

In this section, we show that for a given channel, not only the problem of finding the

maximum DoF is NP-hard, but also the problem of checking the achievability of a

given tuple of DoF, (d1, ..., dK), is NP-hard when there are at least 3 antennas at each

node. Then, we show that the same problem is polynomial solvable when the number

of antennas at each transceiver is less than 3.

Notice that the interference alignment conditions in the k-th receiver are

UT
kHkjVj = 0, ∀j ̸= k, (4.1)

rank
(
UT

kHkkVk

)
= dk. (4.2)

The first equation guarantees that all the interference is in the subspace orthogonal to

Uk while the second one assures that the signal subspace HkkVk has dimension dk and

is linearly independent of the interference subspace.

In the sequel, we examine the solvability of above interference alignment problem

(4.1) - (4.2) in two different cases.

Theorem 1 For a K user MIMO interference channel, maximizing the total DoF,

12
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namely,

max
{Uk,Vk}Kk=1

K∑
k=1

dk

s.t. UT
kHkjVj = 0, k = 1, ..,K, j ̸= k

rank
(
UT

kHkkVk

)
= dk, k = 1, ..,K

is NP-hard. Moreover, if each node is equipped with at least 3 antennas, then the problem

of checking the achievability of a given tuple of DoF, (d1, d2, . . . , dK), is also NP-hard.

Proof The proof of the first part is based on a polynomial time reduction from the

maximum independent set problem which is known to be NP-complete. For a given

arbitrary graph G = (V,E), where |V | = K, consider a K user interference channel that

each receiver and transmitter has a single antenna. Moreover, the channel coefficients

are given by:

hjk =

{
1, if j = k or (k, j) ∈ E,

0, otherwise.

It can be checked that the receiver nodes can only achieve a DoF of either 0 or 1, and

those receiver nodes achieving a DoF of 1 form an independent set in G. Thus, the

problem of maximizing the total DoF for the above interference channel is equivalent

to the problem of finding the maximum independent set of vertices in the graph G.

In order to prove the second part we use a polynomial reduction from the 3-colorability

problem. The latter problem is to determine whether the nodes of a graph can be

assigned one of the three possible colors so that no two adjacent nodes are colored the

same. The 3-colorability problem is known to be NP-Complete. There are two main

steps in the construction. In the first step, some dummy nodes are added to the channel

in order to force a discrete structure such that each non-dummy node may only have

one of the three possible cases. The second step is to define the direct channels in order

to make a polynomial reduction from the 3-colorability of an arbitrary graph to this

problem.
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For an arbitrary graph G with N nodes, we will construct a special MIMO inter-

ference channel for which the achievability of one degree of freedom at each user is

equivalent to the 3-colarability of G. In our construction, the MIMO interference chan-

nel will have two types of users: N main users, each equipped with 3 antennas at their

transmitters and receivers and 11N dummy users which will be defined later. Hence

the total number of users is 12N . In the rest of the proof we suppose that each user

(either the dummy user or the main user) wants to send one data stream. In other words

we want to check if the tuple of all ones is achievable by the constructed interference

channel or not.

We divide the dummy users into two groups. The number of dummy users in the

first group is 2N and the number of dummy users in the second one is 9N . Each dummy

user in the first group has 3 antennas at its receiver and transmitter, while each dummy

user in the second group has two antennas at its transmitter and receiver. Let us further

arrange the 2N dummy users in the first group into N subsets each containing two users.

We denote these subsets as Ai, i = 1, ..., N, |Ai| = 2. We also denote the users in the set

Ai as ai,1 and ai,2, and associate them to the i-th main user. For notational consistency,

we denote main user i as ai,0. We will also use ai,k,j to denote the j-th transmit antenna

of user ai,k, where 1 ≤ i ≤ N , k = 0, 1, 2 and j = 1, 2, 3. Similarly, we partition the set

of 9N dummy users in the second group into N subsets Bi, i = 1, ..., N , each containing

exactly 9 dummy users denoted by bi,ℓ, with ℓ = 1, .., 9. Each of these 9 dummy users

will have two receiving antennas which we denote as bi,ℓ,m, with m = 1, 2.

Now for any fixed i and j, we consider any size-2 subset of {ai,k,j : k = 0, 1, 2},
e.g., {ai,0,j , ai,1,j}. For each fixed i and j, there are exactly 3 of these cardinality-2

subsets. Since there are 3 different choices of j, we have a total of 9 subsets of this

kind for any fixed i. Let us index these 9 subsets by ℓ, ℓ = 1, .., 9, and assign the

ℓ-th subset to user bi,ℓ in Bi. Now we define the links in the channel for the users in

Ai and Bi. First, the channel matrices of all the direct links for any of the dummy

users are I (where I is the identity matrix of the appropriate size). In addition, none

of the dummy users in Bi (i = 1, 2, ..., N) cause interference to the other users (which

means that the channel gains between their transmit antennas and the other users’

receive antennas are all zero). Now for the aforementioned ℓ-th subset which we denote

as Si,ℓ = {ai,kℓ1 ,jℓ1 , ai,kℓ2 ,jℓ2}, we connect ai,kℓ1 ,jℓ1 and ai,kℓ2 ,jℓ2 to bi,ℓ,1 and to bi,ℓ,2,
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respectively. Here by connecting a transmit antenna to a receive antenna we mean that

the channel coefficient between these two antennas is 1. This situation is shown in the

figure 4.1 for the case Si,1 = {ai,0,1, ai,1,1}. Furthermore, we assume that dummy users

ai,k, k = 1, 2 do not suffer from any interference.

Figure 4.1: Channels to the dummy receiver bi,ℓ

Suppose that user ai,k (k = 0, 1, 2) uses the transmit beamforming vector (vi,k,1, vi,k,2, vi,k,3).

Then the interference received at the dummy receiver of bi,ℓ will be:

Ibi,ℓ = (vi,kℓ1 ,jℓ1si,kℓ1 , vi,kℓ1 ,jℓ2si,kℓ2 ) (4.3)

where si,k is the signal user ai,k intends to send. Notice that the signals which two

different users want to transmit are statistically independent. As a consequence, if we

want to have interference alignment at the receiver of bi,ℓ, so that this user can send

its own data stream, it is necessary and sufficient to have vi,kℓ1 ,jℓ1vi,kℓ2 ,jℓ2 = 0. Hence,

having the interference alignment at bi,ℓ for all ℓ = 1, .., 9 is equivalent to the fact that

users ai,k, k = 0, 1, 2 cannot send their messages through the antennas with the same

index, simultaneously. For example, if vi,0,1 ̸= 0 then vi,1,1 and vi,2,1 have to be zero.

On the other hand, considering the fact that each user needs to send one data stream,

it follows that none of the users ai,k, k = 0, 1, 2, can send their message on two of their

antennas simultaneously, because otherwise if for example ai,0 sends its message on two

antennas, then it would result in insufficient spatial dimension for either ai,1 or ai,2.

As an immediate consequence of these two facts we have just mentioned, we can
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conclude that the transmit beamforming vector at each user ai,k, k = 0, 1, 2, must be

proportional to one of the vectors [1, 0, 0]T , [0, 1, 0]T or [0, 0, 1]T . This is true specially for

the main user i. As we are not concerned about the constant factors, we have successfully

imposed a discrete structure on the problem solution so far. Notice that each dummy

user bi,ℓ has a total of 2 dimensions in its receiver. Since we have aligned the interference

at each dummy user bi,ℓ, these users can communicate their data streams easily along the

remaining dimension left for them in their receivers and remove interference which lies in

the other dimension. Moreover, since in our construction the dummy users ai,k, k = 1, 2

do not experience any interference from other users and their direct channel is I, so these

users can easily achieve one degree of freedom. Thus, we only need to take care of the

main users.

For each of the N main users, we must pick one of the three transmit beamforming

vectors [1, 0, 0]T , [0, 1, 0]T or [0, 0, 1]T in order to achieve interference alignment at all

the main receivers. We suppose all the direct channels for the main users, Hii, are I.

For the cross channels, we use the structure of graph G = (V,E). For each edge (i, j) in

G, we set Hij = Hji = I. Otherwise we set Hij = Hji = 0 (zero matrix of appropriate

size). Consequently, the main users i and j interfere with each other if and only if

they are connected to each other in graph G. We claim that achieving interference

alignment in the above MIMO interference channel is equivalent to 3-colorability of

graph G. This is because each user can choose 3 possible beamforming vectors, each

corresponding to a different color. If main user i chooses one of the three possible

beamforming vectors (or one of the three colors), then this beamforming vector cannot

be chosen by any other main users adjacent to the main user i in the graph G, otherwise

the interference would appear in the desired signal space at the receiver of main user i.

This establishes the equivalence between the 3-colorability of G and the achievability

of one degree of freedom for each user in the constructed MIMO interference channel.

Since 3-colorability problem is NP-hard, it follows that the problem of checking the

feasibility of interference alignment is also NP-hard.

Theorem 1 shows that the problem of checking the achievability of a given tuple of

DoF is NP-hard if all users (or at least a constant fraction of them) are equipped with

at least three antennas. Our next result shows that when each user is equipped with

no more than two antennas, the same problem can be solved in polynomial time. To
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this end, we need to define some notations and make some observations. First of all,

the interference alignment problem is equivalent to finding the signal subspaces at the

transmitters and the interference subspaces at the receivers such that the interference

alignment conditions are satisfied, i.e.,

dk = dim(Sk)

HkkSk ⊥ Ik

HkjSj ⊆ Ik ∀j ̸= k,

where Sk and Ik denote the signal subspace at the transmitter k and the interference

subspace at receiver k, respectively. The operator ⊥ represents the linear independence

of two subspaces. The first condition implies that the signal space has dimension dk while

the second condition says that the interference subspace and the received signal subspace

must be linearly independent. Finally, the third condition assures that the interference

from other users lies in the interference subspace (which is linearly independent of the

signal subspace).

Notice that in the 2-antenna case, if dj = dk = 1 and rank(Hkj) = 2, and the

interference subspace Ik is known, then Sj can be uniquely determined by Sj = H−1
kj Ik,

for any j ̸= k. Conversely, if Sj is known, we can uniquely find the interference subspace

of user k, i.e., Ik = HkjSj . Thus, by starting from a node with a known subspace

and traversing the interference links with full rank channel matrices, we can uniquely

determine the signal subspaces in the transmitter sides and the interference subspaces

at the receiver sides as long as they all have one DoF. Furthermore, if we find a loop of

full rank interfering links, the signal subspaces at these nodes must be the eigenvector

of the composite channel matrix of the corresponding loop. To make this point clear,

consider a 4-user interference channel. If all interfering links are full rank, by starting

from transmitter 1 and use the loop Tx1 → Rx2 → Tx3 → Rx4 → Tx1, we have the

following relations

I2 = H21S1, S3 = H−1
23 I2, I4 = H43S3, S1 = H−1

41 I4.

Thus, S1 must be the eigenvector of the loop channel matrix H−1
41 H43H

−1
23 H21. Using
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this observation and the idea of traversing the full rank interfering channel links, we

can establish the polynomial solvability of the problem of checking the achievability of

a given tuple of DoF in Theorem 2.

Theorem 2 For a K-user MIMO interference channel where each transmit/receive

node is equipped with at most two antennas, the problem of checking the achievabil-

ity of a given tuple of DoF is polynomial time solvable.

Proof By assigning zero channel weight if necessary, we can assume without loss of

generality that all transmitters/receivers are equipped with exactly two antennas, i.e.,

Mk = Nk = 2, for all k = 1, 2, · · · ,K. Furthermore, notice that if a user has zero

DoF (dk = 0), then we can assign the zero beamforming vector to this user and re-

move it (both its transmitter and receiver) from the system. Thus, we can assume

1 ≤ dk ≤ 2 for all k = 1, 2, · · · ,K. We further assume that all the direct channel

matrices Hkk, k = 1, 2, . . . ,K, are nonzero. Now the problem is to determine whether

the given tuple of DoF (d1, d2, · · · , dK) is achievable or not. To this end, we need to

define two bipartite graphs over the nodes of the interference channel (one side of the

graph consists of transmit nodes and the other consists of the receive nodes). In partic-

ular, we construct a bipartite graph G by connecting the transmit node of user i to the

receive node of user j if and only if the channel between them is nonzero, i.e., Hji ̸= 0.

Furthermore, we construct a bipartite subgraph G′ = (V ′, E′) of G by considering only

the full rank links of G, i.e., connecting transmit node i to the receive node j ̸= i if and

only if rank(Hji) = 2. Notice that the link between transmit node i and receive node i

is not included in G′ even if rank(Hii) = 2.

In what follows, we first consider a simple case which gives us the idea of how a

loop of rank 2 interfering channels forces a discrete structure on the choice of signaling

subspaces at the transmitters. Then, using this idea, we provide the proof for the general

case.

Consider a connected component H of G where all the interfering links are full rank

and connected, i.e., the induced subgraph of H over G′ is connected and contains all

the interfering links of H. We first argue that H can not contain the receive node of
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any user k with dk = 2. Suppose the contrary. Then the direct channel matrix, Hkk,

must be full rank. [If Hkk is rank deficient, then the received signal subspace at receiver

k has dimension at most 1, which would make it impossible to achieve dk = 2.] We

further claim that H cannot contain any other nodes. Since the direct link between the

transmit and receive nodes of user k is not contained in H, it follows that the receive

node of user k must be connected to another transmit node a in H. Let this node a be

associated with a user j (j ̸= k). Notice that user j achieves a DoF at least 1 (since all

zero DoF users have been removed from G). By definition, node a must be connected

to the receive node of user k via a full rank cross talk channel matrix Hkj . Thus, user

j will cause a nonzero interference subspace to user k, contradicting dk = 2. Since all

users with DoF =0 has been removed from graph G, we must have dk = 1 for all receive

nodes in H. For the other case where node a is a receive node of user j, then a is

linked to the transmit node of user k via a full rank channel matrix. In this case, user k

will cause a 2-dimensional interference subspace to user j, making it impossible to have

dj ≥ 1.

We now assume that all receive nodes in H have one DoF. We can start from an

arbitrary initial node of H and use Breadth First Search (BFS) to find a spanning tree.

Since each user has one DoF, the signal and interference spaces of all receive nodes in H

are uniquely determined by the signal (or interference) space of the initial node. Since

the initial node is arbitrary, this shows that the signal/interference spaces for all nodes

in H are linearly related to each other (via some constant composite channel matrices,

see the discussion before Theorem 2). Fixing any one uniquely determines the rest. For

the remaining edges (or links) not in the spanning tree, they each create a unique loop

in the tree. We can compute the composite channel matrices for these loops (see the

discussion before Theorem 2). Notice that each loop matrix (size 2× 2) has either one,

two or infinitely many eigenvectors (when the composite channel matrix is a constant

multiple of identity matrix). Suppose a loop matrix (starting from a given transmit

node, say b, in the loop) has one or two unique eigenvectors, then the signal space of

node b must be generated by one of these eigenvectors. In fact, since the beamforming

vectors of nodes in H are linearly related, each loop in H places a restriction on the

choice of beamforming vector of node b. Thus, for any fixed transmit node b in H,

there are multiple restriction sets, each corresponding to a loop in H caused by adding
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an edge to the minimum spanning tree and each containing one/two one-dimensional

subspaces from which node b’s signal space can be chosen. The receive nodes in H

can achieve interference alignment if and only if these restricted sets of one-dimensional

signal subspaces for node b share a common one-dimensional subspace. Moreover, to

ensure each user in H achieves one DoF, we need to additionally make sure that the

resulting interference subspaces at all receive nodes in H are linearly independent from

the corresponding respective signal subspaces. Since the total number of restriction sets

is at most linear in the number of edges in H and each restriction set contains at most

two one-dimensional subspaces, checking if these restrictions have any common one-

dimensional subspace can be carried out in O(K2) time. Moreover, for each common

one-dimensional subspace, checking if the linear independence between the resulting

signal subspace and interference subspace (already aligned) at each receive node can

also be performed in time that is linear in the number of nodes in H, or in O(K) time.

Now we are ready to look into the general case in which the rank 1 links are con-

sidered as well as the full rank links. Since there is no interfering link between different

connected components of G, we can assign the signal subspace for each connected com-

ponent separately. Notice that the number of connected components of G is at most

K, we only need to assign transmit subspaces for every connected component of G in

polynomial time.

Let H be a connected component of G. Let H′ ⊆ G′ be a subgraph of H which

contains only links with full rank channel matrices. H′ can be decomposed into var-

ious connected components of G′. By the argument above for such components, the

signal/interference spaces for the nodes in these connected components (consisting of

at least two nodes) can be assigned in one of the two ways:

(B1) The connected component contains a cycle with a channel matrix that is not equal

to a constant multiple of the identity matrix. In the case, the beamforming vectors

of all nodes can be determined from the eigenvector(s) of a certain loop channel

matrix. In this case, there are at most two possible choices of signal/interference

space for each node.

(B2) The connected component has no loops (i.e., forms a tree) or if every loop has a
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composite channel matrix that is a constant multiple of the identity matrix. In

this case, the signal/interference spaces of all nodes are linearly related to one

another. The signal/interference space of one node can be fixed at an arbitrary

one-dimensional subspace. Once this is fixed, the signal/interference spaces of

other nodes can be derived uniquely.

Consider a rank-1 interfering link in H with channel matrix Hij (i ̸= j). If user

j transmits in the null of Hij , then the signalling subspace of user j is known, i.e.,

Sj = Null(Hij). Otherwise, the interference subspace at user i is known, i.e., Ii =

Range(Hij). This is because di ≥ 1, so we have dim Ii ≤ 1. This plus the fact that

Range(Hij) ⊆ Ii implies Ii = Range(Hij). Therefore, we can assign a Boolean variable

xij to each rank-1 channel Hij , with “xij = 1” representing Sj = Null(Hij) and “xij =

0” signifying Ii = Range(Hij). In this way, we associate a Boolean variable xij for each

rank-1 crosstalk channel matrix Hij in H.

Next we represent the interference alignment condition at each receive node of H

using the Boolean variables {xij} (plus some auxiliary Boolean variables {yi, zij , zi}
defined below). Suppose user i’s receive node is in H. We consider the cases di = 2 and

di = 1 separately.

Case di = 2: In this case Ii = 0, so we must have xij = 1. We rewrite this condition

in the form of two 2-SAT clauses

xij ∨ yi, xij ∨ ȳi, for all j ̸= i and rank(Hij) = 1, (4.4)

where yi is an auxiliary Boolean variable. In this case, the satisfaction of (5.7) and the

condition that the receive node of user i is not connected to other users’ transmit nodes

via rank-2 links is equivalent to achieving one DoF for user i.

Case di = 1 and rank(Hii) = 1: In this case, then the received signal subspace is

HiiSi = Range(Hii) and dim Ii = 1, so that all the interference at the receive node of

user i must be aligned in an one-dimensional subspace that is linearly independent of

Range(Hii). We need to further consider several subcases, depending on if the receive

node of user i is connected to other transmit nodes via rank-1 or rank-2 links. In

particular, if the transmit nodes of users j and k are connected to receive node i via

rank-1 links, then the interference alignment condition requires the satisfaction of the
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following 2-SAT clauses

xij ∨ xik, for all j ̸= k ̸= i such that rank(Hij) = rank(Hik) = 1 and Range(Hij) ̸= Range(Hik),

xij ∨ zij , xij ∨ z̄ij , for all j ̸= i such that rank(Hij) = 1 and Range(Hij) = Range(Hii),

(4.5)

where zij is a dummy Boolean variable, and the last condition corresponds to the linear

independence requirement of the signal/interference subspaces. Moreover, if there is a

rank-2 link connecting the receive node of user i to the transmit node of user ℓ, ℓ ̸= i,

i.e., Hiℓ is full rank, then the receive node of user i is in H′. Consequently, the transmit

strategy of user ℓ has only two possibilities B1 and B2 as outlined above. For the Case

B1 where the transmit node of user ℓ can pick one of the two possible beamforming

vectors v0
ℓ , v

1
ℓ , we define a Boolean variable zℓ with “zℓ = 0” representing v0

ℓ is chosen,

while “zℓ = 1” signifying v1
ℓ is chosen. Now the interference alignment for user i requires

the satisfaction of following 2-SAT clauses

zℓ ∨ xij , for all j ̸= ℓ ̸= i such that rank(Hij) = 1, rank(Hiℓ) = 2 and Hiℓv
0
ℓ ̸∈ Range(Hij),

z̄ℓ ∨ xij , for all j ̸= ℓ ̸= i such that rank(Hij) = 1, rank(Hiℓ) = 2 and Hiℓv
1
ℓ ̸∈ Range(Hij).

(4.6)

If in Case B1 the transmit node of user ℓ must pick a unique vector v0
ℓ , then we must

have zℓ = 0 and xij = 1 if Hiℓv
0
ℓ ̸∈ Range(Hij), and zℓ = 0 if Hiℓv

0
ℓ ∈ Range(Hij). The

latter conditions are equivalent to the satisfaction of the following 2-SAT clauses:

z̄ℓ ∨ xij , z̄ℓ ∨ x̄ij , zℓ ∨ xij , for all j ̸= ℓ ̸= i s.t. rank(Hij) = 1, rank(Hiℓ) = 2 and Hiℓv
0
ℓ ̸∈ Range(Hij),

z̄ℓ ∨ xij , z̄ℓ ∨ x̄ij , for all j ̸= ℓ ̸= i s.t. rank(Hij) = 1, rank(Hiℓ) = 2 and Hiℓv
0
ℓ ∈ Range(Hij).

(4.7)

To ensure linear independence of the signal and interference subspaces for user i, we

must make sure the satisfaction of the following 2-SAT clauses

z̄ℓ ∨ yi, z̄ℓ ∨ ȳi, for all ℓ ̸= i s.t. rank(Hiℓ) = 2 and Hiℓv
1
ℓ ∈ Range(Hii),

zℓ ∨ yi, zℓ ∨ ȳi, for all ℓ ̸= i s.t. rank(Hiℓ) = 2 and Hiℓv
0
ℓ ∈ Range(Hii),

(4.8)

where yi is a dummy Boolean variable. Now we consider Case B2. Suppose the receive

node of user i lies in a connected component H′′ of H′. Then, for each pair of receive

node of users i and ℓ in H′′ (i ̸= ℓ), there exists a (efficiently computable) nonsingular

matrix Giℓ such that

Ii = GiℓIℓ.

To ensure this condition, the following 2-SAT clauses must be satisfied for all transmit
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nodes j and k in H ′′:

xij∨xℓk, for all j ̸= i, k ̸= ℓ s.t. rank(Hℓk) = rank(Hij) = 1, and GiℓRange(Hℓk) ̸= Range(Hij).

(4.9)

Furthermore, to make sure that the signal and interference subspaces are linearly inde-

pendent at the receive node of user i, we must have for all transmit node j in H ′′ that

the following 2-SAT clauses are satisfied

xij ∨ zij , xij ∨ z̄ij , for all j ̸= i s.t. Range(Hij) = Range(Hii). (4.10)

Finally, we notice that the Boolean variables {xiℓ, ziℓ} all represent the signaling strate-

gies of user ℓ. We must ensure that these signaling strategies are compatible. In other

words, we can not simultaneously have both Sℓ = Null(Hiℓ) and Sℓ = Null(Hjℓ) (j ̸= i),

unless of course the two null spaces are equal. This implies that we should have

x̄iℓ ∨ x̄jℓ, for all i ̸= j ̸= ℓ s.t. rank(Hiℓ) = rank(Hjℓ) = 1, Null(Hiℓ) ̸= Null(Hjℓ).

(4.11)

Moreover, if the transmit node of user ℓ is also in H ′′ and its transmit beamforming

vector must be chosen from the set {v0
ℓ ,v

1
ℓ} (Case B1). Then, by a similar argument,

we must also ensure the following compatibility conditions:

x̄iℓ ∨ zℓ, for all i ̸= j ̸= ℓ s.t. rank(Hiℓ) = 1, rank(Hjℓ) = 2, v0
ℓ ̸∈ Null(Hiℓ),

x̄iℓ ∨ z̄ℓ, for all i ̸= j ̸= ℓ s.t. rank(Hiℓ) = 1, rank(Hjℓ) = 2, v1
ℓ ̸∈ Null(Hiℓ).

(4.12)

In case of B2 (i.e., H ′′ is a tree or all loop matrices are constant multiples of identity

matrix), then the transmit subspace of user ℓ (which lies in H ′′) can be chosen con-

tinuously (rather than from a discrete set {v0
ℓ , v

1
ℓ}). In this case, the compatibility

condition (4.11) is sufficient; there is no additional compatibility condition needed.

Case di = 1 and rank(Hii) = 2: In this case, if the transmit node of user i is

connected to a receive node of user j via a rank-1 link, then xji = 1 signifies the use of

transmit beamforming subspace of Null(Hji) for user i; else if transmitter i is in H ′′ so

that its transmit beamforming direction must be chosen from v0
i , v

1
i , corresponding to

zi = 0 and 1 respectively (Case B1). [Case B2 corresponds to the continuous selection of
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beamforming vector for user i; no 2-SAT clause is needed in that case.] In the first case,

the signal subspace at receive node of user i becomes HiiNull(Hji), while in the second

case, the signal subspace is Hiiv
0
i , or Hiiv

1
i . We must make sure the signal subspace

is linearly independent from the interference subspace of user i. This implies that the

following 2-SAT clauses must be satisfied:

x̄ji ∨ xiℓ, for all i ̸= j ̸= ℓ s.t. rank(Hiℓ) = rank(Hji) = 1, Range(Hiℓ) = HiiNull(Hji),

xiℓ ∨ zi, for all i ̸= j s.t. rank(Hiℓ) = 1, i ∈ H ′′, Hiiv
0
i ∈ Range(Hiℓ),

xiℓ ∨ z̄i, for all i ̸= j ̸= ℓ s.t. rank(Hiℓ) = 1, i ∈ H ′′, Hiiv
1
i ∈ Range(Hiℓ).

(4.13)

It can be checked that the DoF tuple (d1, d2, . . . , dK) is achievable if and only if

conditions (5.7)-(4.13) are satisfied for some binary realizations of Boolean variables

{xij , yi, zi, zij}. Moreover, the number of such 2-SAT clauses is polynomial in K (in

fact O(K4)). Hence, we have transformed the DoF feasibility problem in polynomial

time to an instance of 2-satisfiability problem. The latter problem is known to be

solvable in polynomial time.



Chapter 5

Solvability of Interference

Alignment Equations for Generic

Channels

5.1 Bounding the Total DoF Achievable via Linear Inter-

ference Alignment

Our goal is to study the solvability of the interference alignment problem (3.1)-(3.2)

and derive a general condition that must be satisfied by any DoF tuple (d1, d2, ..., dK)

achievable through linear interference alignment for generic choice of channel matrices.

We will also provide some conditions under which this upper bound is achievable.

Let us denote the polynomial equations in (3.2) by the index set

J , {(k, j) | 1 ≤ k ̸= j ≤ K}.

The following theorem provides an upper bound on the total achievable DoF when no

channel extension is allowed.

Theorem 3 Consider a K-user flat fading MIMO interference channel where the chan-

nel matrices {Hij}Ki,j=1 are generic (e.g., drawn from a continuous probability distribu-

tion). Assume no channel extension is allowed. Then any tuple of degrees of freedom

25
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(d1, d2, ..., dK) that is achievable through linear interference alignment (3.1) and (3.2)

must satisfy the following inequalities

min{Mk, Nk} ≥ dk, ∀ k, (5.1)

max{Mk, Nj} ≥ dk + dj , ∀ k, j, k ̸= j, (5.2)∑
k:(k,j)∈I

(Mk − dk)dk +
∑

j:(k,j)∈I

(Nj − dj)dj ≥
∑

(k,j)∈I

dkdj , ∀ I ⊆ J . (5.3)

Condition (5.3) in Theorem 3 can be used to bound the total DoF achievable in a

MIMO interference channel. The following corollary is immediate.

Corollary 1 Assume the setting of Theorem 3. Then the following upper bounds hold

true.

(a) In the case of dk = d for all k, interference alignment is impossible unless

d ≤ 1

K(K + 1)

K∑
k=1

(Mk +Nk).

(b) In the case of Mk +Nk = M +N , interference alignment requires

(
K∑
k=1

dk

)2

+

K∑
k=1

d2k ≤ (M +N)

K∑
k=1

dk

which further implies
K∑
k=1

dk < (M +N).

Part (b) of Corollary 1 shows that the total achievable DoF in a MIMO interference

channel is bounded by a constant M +N − 1, regardless of how many users are present

in the system. While this bound is an improvement over the single user case which has

a maximum DoF of min{M,N}, it is significantly weaker than the maximum achievable

total DoF for a diagonal frequency selective (or time varying) interference channel. The

latter grows linearly with the number of users in the system [1].

The rest of this section is devoted to the proof of Theorem 3 and its converse.



27

Since we will use several concepts and results from the field theory [82] and algebraic

geometry [85,86], we first provide a brief review of the necessary algebraic background.

5.1.1 Algebraic Preliminaries

Let K,F be two fields such that K ⊆ F . In this case, we say F is an extension of K,

denoted by F/K. Let us use K[z1, z2, . . . , zn] to denote the ring of polynomials with

coefficients drawn from K. We say α1, α2, . . . , αn ∈ F are algebraically dependent over K
if there exists a nonzero polynomial f(z1, z2, . . . , zn) ∈ K[z1, z2, . . . , zn] such that

f(α1, α2, . . . , αn) = 0. (5.4)

Otherwise, we say that they are algebraically independent over K. The largest cardinal-

ity of an algebraically independent set is called the transcendence degree of F over K.

An element α ∈ F is said to be algebraic over K if there exists a nonzero polynomial

f ∈ K[z] such that f(α) = 0; else, we say α is transcendental over K.

Example 1. Let K = C be the field of complex numbers and F = C(x1, x2) be the

field of rational functions in variables x1, x2. Then, the polynomials

g1 = x21x2, g2 = x22, g3 = x1x2

are algebraically dependent over C because f(g1, g2, g3) = 0 identically for all (x1, x2),

where f(z1, z2, z3) = z21z2 − z43 .

Example 2. The two complex numbers a =
√
π, b = 3π+2 are algebraically dependent

over the field of rational numbers because by defining f(z1, z2) = 3z21 − z2 + 2, we have

f(a, b) = 0.

Notice that the definition of algebraic independence is in many ways similar to the

standard notion of linear independence from linear algebra. In fact, if the function f in

(5.4) is required to be linear, then algebraic independence reduces to the usual concept

of linear independence. Similar to linear algebra, we can define a basis for the field F
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using the notion of algebraic independence. In particular, given any algebraically in-

dependent set S over the field K, let K(S) denote the field of rational functions in

S with coefficients taken from the field K. For any field extension F/K, it is always

possible to find a set S in F , algebraically independent over K, such that F is an al-

gebraic extension of K(S). Such a set S is called a transcendence basis of F over K.

All transcendence bases have the same cardinality, equal to the transcendence degree of

the extension F/K. If every element in F is algebraic over K, then we say F/K is an

algebraic extension. In this case, the transcendence degree of F over K is zero.

Example 3. The two polynomials g1 and g2 in Example 1 are algebraically indepen-

dent over C. Together, they constitute a transcendental basis for C(x1, x2) over C.

The following table shows similar concepts between linear algebra and transcendental

field extension (see [82,86] for more details).

Linear algebra Transcendental field extension

linear independence algebraic independence

A ⊆ span(B) A algebraically dependent on B

linear basis transcendence basis

dimension transcendence degree

In linear algebra, it is well known that any (n + 1) vectors v1,v2, ...,vn+1 in an

n-dimensional vector space must be linearly dependent. In other words, there exists

a nonzero linear function f(z1, z2, ..., zn+1) such that f(v1,v2, ...,vn+1) = 0. A sim-

ilar result holds for algebraic independence. For example, any (n + 1) polynomials

g1, g2,..., gn+1 defined on n variables (x1, x2, ..., xn) must be algebraically dependent.

Consequently, there exists a nonzero polynomial f(z1, z2, ..., zn+1) such that

f(g1, g2, ..., gn+1) = 0, ∀ (x1, x2, ..., xn).

Example 1 is an instance of this property with n = 2. The following example states this

property, to be used in the proof of Theorem 3, in a more formal setting.



29

Example 4. Let C(z1, z2, . . . , zn) denote the field of rational functions in n variables

with coefficients in C. The set {z1, z2, . . . , zn} is a maximal algebraically indepen-

dent set in C(z1, z2, . . . , zn). Hence the transcendence degree of the field extension

C(z1, z2, . . . , zn)/C is n. Furthermore, for any m polynomials

g1(z1, z2, . . . , zn), g2(z1, z2, . . . , zn), . . . , gm(z1, z2, . . . , zn),

where m > n, there exists a nonzero polynomial f(·) such that f(g1, g2, . . . , gm) =

0, ∀ z1, z2, . . . , zn.

Next we describe a useful local expansion of a multivariate polynomial function.

Recall that for any univariate polynomial f and any x̄ ∈ C, there holds

f(x) = f(x̄) + (x− x̄)g(x), for all x ∈ C,

where g is some polynomial dependent on x̄ and the coefficients of f only. Similarly, for

a n-variate polynomial f defined on the variables x = (x1, x2, ..., xn) and any x̄ ∈ Cn,

we have

f(x) = f(x̄) +

n∑
i=1

(xi − x̄i)gi(x) = f(x̄) + (x− x̄)Tg(x), ∀ x ∈ Cn,

where each gi is some polynomial dependent on x̄ and the coefficients of f only. If we

replace the scalar variable xi by a matrix variable Xi, then we can write

f(X) = f(X̄) +
n∑

i=1

Tr
(
(Xi − X̄i)Gi(X)

)
, ∀ X, (5.5)

where each Gi is a matrix whose entries are polynomials dependent on the entries of

X̄ and the coefficients of f only. The local expansion (5.5) will be used in the proof of

Theorem 3.

To prove the converse of Theorem 3, we will use the concepts of Zariski topology

and a Zariski constructible set. We briefly review these concepts next (see [85] for more

details). Consider Cn, the n-dimensional vector space over the field of complex numbers

C. [One can replace C by any algebraically closed field.] The Zariski topology for Cn is
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defined by specifying its closed sets, and these are taken simply to be all the algebraic

sets in Cn. That is, the closed sets under Zariski topology are those of the form

S = {x ∈ Cn | fi(x) = 0, i = 1, 2, ...,m}

where {fi}mi=1 is any set if polynomials with coefficients taken from C. For example,

the entire space Cn is Zariski closed (Take m = 1 and f1 to be the zero function, i.e.,

f1(x) = 0, ∀ x). All other Zariski closed sets have zero measure. A nonempty Zariski

open set (the complement of a Zariski closed set) always has dimension n. If a property

holds over a Zariski open set, we say the property holds generically.

In topology, a set is locally closed if it is the intersection of an open set with a closed

set. A constructible set is defined as a finite union of locally closed sets. Thus, a Zariski

constructible set is simply a finite collection of sets, each defined by the feasible set of

finitely many polynomial equations and polynomial inequalities. Clearly, if a Zariski

constructible set has dimension n, then it must contain a Zariski open subset.

Let ϕ1, ϕ2, . . . , ϕn be polynomials in x1, x2, . . . , xn with coefficients from C. They de-

fine a map Φ : Cn 7→ Cn as follows: Φ(x) = (ϕ1(x), ϕ2(x), . . . , ϕn(x)) ∈ Cn. Chevalley’s

Theorem says that the image of this map is a constructible set (see [86] for more details).

Example 5. Let Φ : C2 7→ C2 be defined by Φ(x) = (ϕ1(x), ϕ2(x)) where ϕ1(x) = x1

and ϕ2(x) = x1x2. Let L be the line {x ∈ C2 : x1 = 0}. The image of Φ is the union

of two locally closed sets, C2\L (which is in fact open) and the point (0, 0) (which is

indeed closed).

Let the image of Φ be the union of locally closed subsetsW1,W2, . . . ,Wp whereWi =

Ui
∩

Vi and Vi is closed and Ui is open. Assume the Jacobian of ϕ1, ϕ2, . . . , ϕn is nonsin-

gular at some point x ∈ Cn. The Implicit Function Theorem says that the image of Φ

contains a small open disc around Φ(x), hence the measure of the image is nonzero. This

implies that for some i, Vi = Cn and Wi = Ui, i.e., the image of the map Φ(·) contains a
Zariski open set. Thus, if a certain property is shown to hold over the image of a polyno-

mial map Φ : Cn 7→ Cn whose Jacobian is nonsingular at some point, then this property
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must hold generically. We will use this approach to establish the generic feasibility of

interference alignment for certain MIMO interference channels (Theorem 4).

5.1.2 Proof of Theorem 3

We now use the transcendental field extension theory to establish Theorem 3.

Proof The inequality (5.1) is obvious due to (3.2). To prove (5.2), assume Mj ≤ Nk.

Since Hkj is generic, rank(HkjVj) = dj . Furthermore, due to (3.2), the beamformer Uk

must be full rank and hence dk+dj must be no more than the total dimension Nk. Sim-

ilar argument shows that dk + dj ≤ Mj when Mj ≥ Nk. Thus, dk + dj ≤ max{Mj , Nk}.

For simplicity of notations, we prove (5.3) for the case I = J . When I ⊂ J , the

proof is the same except that we need to focus on a subset of equations/variables. Now,

we prove (5.3) for the case of I = J by contradiction. Assume the contrary that

K∑
k=1

(Mk − dk)dk +

K∑
j=1

(Nj − dj)dj <

K∑
k,j=1,k ̸=j

dkdj , (5.6)

and the interference alignment conditions in (3.1) and (3.2) are satisfied. The interfer-

ence alignment condition (3.2) implies that Uk and Vk must have full column rank. By

applying appropriate linear transformations to the rows of Uk and Vk, we can write

Uk = Pu
k

[
I

Ūk

]
Qu

k , Vk = Pv
k

[
I

V̄k

]
Qv

k, ∀k, (5.7)

where Ūk and V̄k are some matrices of size (Nk−dk)×dk and (Mk−dk)×dk respectively.

The matrices Pu
k and Pv

k are square permutation matrices of size Nk×Nk and Mk×Mk

respectively, while Qu
k ,Q

v
k are some invertible matrices of size dk × dk. Define H̄ij =

Pu −1
i HijP

v −1
j to be the permuted version of Hkj . We can partition the matrix H̄kj as

H̄kj =

 H̄
(1)
kj H̄

(2)
kj

H̄
(3)
kj H̄

(4)
kj


where H̄

(1)
kj is of size dk × dj . Since the channel matrices {Hkj}k ̸=j are drawn from a
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continuous probability distribution, the transformed channel matrices {H̄(1)
kj }k ̸=j remain

generic. Rewriting the linear interference alignment condition (3.1) in terms of Ūk and

V̄k, we obtain [
I ŪH

k

] H̄
(1)
kj H̄

(2)
kj

H̄
(3)
kj H̄

(4)
kj

[ I

V̄j

]
= 0 (5.8)

or equivalently

H̄
(1)
kj + ŪH

k H̄
(3)
kj + H̄

(2)
kj V̄j + ŪH

k H
(4)
kj V̄j = 0, ∀ j ̸= k. (5.9)

The above system of quadratic equations, first derived in [45], is equivalent to the

interference alignment condition (3.1). The number of scalar equations in (5.9) is

K∑
j,k=1,j ̸=k

dkdj ,

while the total number of scalar variables (i.e., the scalar entries of the unknown matrices

{Ūk}’s and {V̄k}’s) is

K∑
k=1

(Mk − dk)dk +

K∑
k=1

(Nk − dk)dk =

K∑
k=1

(Mk +Nk − 2dk)dk.

So if
K∑
k=1

(Mk +Nk − 2dk)dk <

K∑
j,k=1,j ̸=k

dkdj , (5.10)

then we would have more constraints than unknowns in the interference alignment

condition (5.9), which we will argue cannot hold.

Let us consider the field F defined over the field of complex numbers C, consisting
of all rational functions in the entries of the matrices {Ūk}Kk=1 and {V̄k}Kk=1. Note that

the entries of the matrices {Ūk, V̄k}Kk=1 form a transcendence basis for F over C. Thus,
the transcendence degree of F is

∑K
k=1(Mk+Nk−2dk)dk, which is equal to the number

of entries in the matrices {Ūk, V̄k}Kk=1.

Now, let us consider the matrices H
(2)
kj ,H

(3)
kj ,H

(4)
kj for all k, j, k ̸= j and define the
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matrix Fkj :

Fkj(Ū, V̄) , −
(
ŪH

k H̄
(3)
kj + H̄

(2)
kj V̄j + ŪH

k H̄
(4)
kj V̄j

)
, (5.11)

for all k, j with k ̸= j. Note that Fkj is a dk×dj matrix, with each entry being a quadratic

polynomial function of the entries in the matrices Ūk and V̄k. As a result, the entries

of Fkj belong to the field F . Moreover, if (5.10) holds, then the number of quadratic

polynomials given in the matrices {Fkj}k ̸=j is strictly larger than the transcendence

degree of F over C. Hence, as we discussed in the algebraic preliminaries (Section 5.1.1;

see also [82, Chapter 8]), these quadratic polynomials in F must be algebraically de-

pendent. This implies that there exists a nonzero polynomial p which vanishes at the

quadratic polynomials corresponding to the entries of the matrices {Fkj}k ̸=j , i.e.,

p
(
F12(Ū, V̄),F13(Ū, V̄), . . . ,FK(K−1)(Ū, V̄)

)
= 0,

for all {Ūk, V̄k}Kk=1. Notice that the polynomial p is independent of the channel

matrices
{
H̄

(1)
kj

}
k ̸=j

, even though it does depend on the matrices
{
H̄

(2)
kj , H̄

(3)
kj , H̄

(4)
kj

}
k ̸=j

.

When viewed as a polynomial of the matrix variable X :=
(
H̄

(1)
12 , H̄

(1)
13 , . . . , H̄

(1)
K(K−1)

)
,

p(·) can be expanded locally at X̄ := (F12(Ū, V̄),F13(Ū, V̄), . . . ,FK(K−1)(Ū, V̄)) using

(5.5):

p
(
H̄

(1)
12 , H̄

(1)
13 , . . . , H̄

(1)
K(K−1)

)
= p

(
F12(Ū, V̄),F13(Ū, V̄), . . . ,FK(K−1)(Ū, V̄)

)
+
∑
k ̸=j

Tr
(
(H̄

(1)
kj − Fkj(Ū, V̄))Qkj(Ū, V̄)

)
,

for all {Ūk, V̄k}Kk=1, where Qkj is some polynomial matrix of size dj × dk. Combining

the above two identities yields

p
(
H̄

(1)
12 , H̄

(1)
13 , . . . , H̄

(1)
K(K−1)

)
=
∑
k ̸=j

Tr
(
(H̄

(1)
kj − Fkj(Ū, V̄))Qkj(Ū, V̄)

)
. (5.12)

Notice that this equality holds for all choices of {Ūk, V̄k}Kk=1. If the interference
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alignment condition (5.9) holds, then we have

H̄
(1)
kj − Fkj(Ū, V̄) = 0, for all k, j with k ̸= j,

for some special choices of the matrices {Ūk, V̄k}Kk=1. Substituting this condition into

the right hand side of (5.12), we obtain

p
(
H̄

(1)
12 , H̄

(1)
13 , . . . , H̄

(1)
K(K−1)

)
= 0. (5.13)

Notice that the polynomial p is independent of the channel matrices {H̄(1)
kj }k ̸=j .

Under our channel model, the channel matrices {H̄(1)
kj }k ̸=j are drawn from a continuous

probability distribution. It follows that the condition (5.13) cannot hold unless p is

identically zero, which contradicts the requirement p ̸= 0.

Theorem 3 settles the conjecture of [45] in one direction, namely, the improperness

of polynomial system (3.1) and (3.2) implies the infeasibility of interference alignment.

From the proof of Theorem 3, it can be seen that the upper bound (5.3) holds for any

choice of fixed channel matrices {H̄(2)
kj , H̄

(3)
kj , H̄

(4)
kj }k ̸=j as long as the channel matrices

{H̄(1)
kj }k ̸=j are generic.

Also, we remark that the proof technique for Theorem 3 can be used to bound the

DoF for a single antenna parallel interference channel (e.g., the OFDM channel). In

particular, consider a single input single output interference channel with M channel

extensions, i.e., the channel matrices are diagonal and of the size M × M . Assuming

each user transmits one data stream (dk = 1 for all k), we can check that the proper-

ness of the interference alignment condition (3.1)-(3.2) is equivalent to K + 1 ≤ 2M

(see [45, Theorem 1]). Using a completely identical proof, we can show that the proper-

ness condition K + 1 ≤ 2M is a necessary condition for the feasibility of interference

alignment. This implies that for the single beam case the total DoF per channel exten-

sion is upper bounded by 2, regardless of the number of channel extensions. This DoF

bound has also been proposed recently in [88].
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5.1.3 The Converse Direction

In the remainder of this section, we consider the converse of Theorem 3. In particular,

we show that the upper bound in Theorem 3 is tight for a special case where all users

have the same DoF d and number of antennas is divisible by d. In this case, we have

K(K − 1) matrix equations in (5.9), each giving rise to d2 scalar equations. For any

subset of these matrix equations indexed by I, with I ⊆ J , the number of corresponding

scalar equations is equal to d2|I|, whereas the number of scalar variables involved in

the equations indexed by I is ∑
k:(k,j)∈I

(Mk − d) +
∑

j:(k,j)∈I

(Nj − d)

 d.

The next result shows that the bound in Theorem 3 is tight if the polynomial sys-

tem (5.9) defining interference alignment is proper, i.e., for each I ⊆ J , the number

of variables involved in each set of equations indexed by I is no less than d2|I|, the
number of scalar equations. The proof of this result uses the Implicit Function The-

orem which involves checking the Jacobian matrix of the polynomial map (5.11) is

nonsingular at some channel realization {H̄kj}k ̸=j . Notice that the feasibility of inter-

ference alignment condition (5.9) at a given channel realization {H̄kj}k ̸=j is equivalent

to {H̄(1)
kj }k ̸=j being contained in the image of the polynomial map (5.11) which is de-

fined by {H̄(2)
kj , H̄

(3)
kj , H̄

(4)
kj }k ̸=j . Fix a generic choice of {H̄(2)

kj , H̄
(3)
kj , H̄

(4)
kj }k ̸=j for which

the Jacobian of the polynomial map (5.11) is nonsingular. The Implicit Function The-

orem allows us to establish the existence of a locally invertible map from the space of

channel submatrices {H̄(1)
kj }k ̸=j to the space of beamforming matrices, and that the im-

age of this polynomial map (5.11) is locally full-dimensional. Therefore, for all channel

submatrices near the given channel realization {H̄(1)
kj }k ̸=j , the interference alignment

condition (5.9) can be satisfied by some beamforming matrices. By Chevalley’s Theo-

rem from algebraic geometry [85] (see also the discussion at the end of Section 5.1.1),

the “local full-dimensionality” of the image of (5.11) implies that this image, which is

a constructible set, must contain a nonempty Zariski open set. As a result, the whole

image of polynomial map (5.11) contains all generically generated channel sub-matrices
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{H̄(1)
kj }k ̸=j . Since the choice of channel submatrices {H̄(2)

kj , H̄
(3)
kj , H̄

(4)
kj }k ̸=j is also generic,

this then establishes the feasibility of interference alignment for all generically generated

channel matrices {H̄kj}k ̸=j .

Theorem 4 Assume that all users have the same DoF dk = d, where 1 ≤ d ≤
min{Mk, Nk}, ∀k. Furthermore, suppose that Mk and Nk are divisible by d for all k.

Then interference alignment is achievable for generic channel coefficients if and only

if for each subset I of equations in (5.9), the number of variables involved in these

equations is no less than the number of matrix equations times d2, or equivalently,

|I|d ≤
∑

k:(k,j)∈I

(Mk − d) +
∑

j:(k,j)∈I

(Nj − d), ∀ I with I ⊆ J . (5.14)

Proof First of all, the “only if” direction is a direct consequence of Theorem 3. We now

focus on the “if” direction. Consider the polynomial map that we get by concatenating

all maps in (5.11) for all (k, j) ∈ J , i.e.,

F12(Ū, V̄) = −
(
ŪH

1 H̄
(3)
12 + H̄

(2)
12 V̄2 + ŪH

1 H̄
(4)
12 V̄2

)
,

F13(Ū, V̄) = −
(
ŪH

1 H̄
(3)
13 + H̄

(2)
13 V̄3 + ŪH

1 H̄
(4)
13 V̄3

)
,

...

FK(K−1)(Ū, V̄) = −
(
ŪH

KH̄
(3)
K(K−1) + H̄

(2)
K(K−1)V̄K−1 + ŪH

KH̄
(4)
K(K−1)V̄K−1

)
,

(5.15)

which maps the variables {Ūk, V̄k}Kk=1 to the {Fk,j}k ̸=j space. We will first show that

for a specific set of channel matrices, the rank of the Jacobian of this polynomial map

is K(K − 1)d2, equal to the number of equations. Hence, if we restrict the equations

to a subset of variables of size K(K − 1)d2, the determinant of the Jacobian matrix

of the polynomial map (5.15) does not vanish identically. This step will establish the

existence of a locally invertible map from the space of beamforming matrices to the

space of channel matrices. By Chevalley’s Theorem (see [85, Chapter 2, 6.E.]), this

image is a constructible subset under Zariski topology. This, plus the fact that the

image is locally full-dimensional, implies that the interference alignment condition (5.9)

is feasible for all generically chosen channel matrices. This then will show the “if”

direction of Theorem 4.
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To show the nonsingularity of the Jacobian matrix, we need to remove some redun-

dant variables in {Ūk, V̄j}k,j (this occurs when there are more variables than equations),

and then construct a specific set of channel matrices {H(2)
kj ,H

(3)
kj ,H

(4)
kj }k ̸=j and a solution

{Ūk, V̄j}k,j at which the Jacobian matrix of (5.15) is nonsingular. Before providing a

rigorous description for such a construction, we first consider a toy example with K = 3

users where Mk = 3, Nk = 2, dk = 1, for k = 1, 2, 3. For this specific example, the

assumption (5.14) is satisfied and the equations in (5.15) can be rewritten as

F12(Ū, V̄) = −
(
ŪH

1 H̄
(3)
12 + H̄

(2)
12 V̄2 + ŪH

1 H̄
(4)
12 V̄2

)
,

F13(Ū, V̄) = −
(
ŪH

1 H̄
(3)
13 + H̄

(2)
13 V̄3 + ŪH

1 H̄
(4)
13 V̄3

)
,

F21(Ū, V̄) = −
(
ŪH

2 H̄
(3)
21 + H̄

(2)
21 V̄1 + ŪH

2 H̄
(4)
21 V̄1

)
,

F23(Ū, V̄) = −
(
ŪH

2 H̄
(3)
23 + H̄

(2)
23 V̄3 + ŪH

2 H̄
(4)
23 V̄3

)
,

F31(Ū, V̄) = −
(
ŪH

3 H̄
(3)
31 + H̄

(2)
31 V̄1 + ŪH

3 H̄
(4)
31 V̄1

)
,

F32(Ū, V̄) = −
(
ŪH

3 H̄
(3)
32 + H̄

(2)
32 V̄2 + ŪH

3 H̄
(4)
32 V̄2

)
,

where V̄k = [vk1 vk2 ]
T ∈ C2×1, Ūk = [uk] ∈ C, for k = 1, 2, 3, and H̄

(2)
kj = [h̄

(2),1
kj h̄

(2),2
kj ]T ∈

C2×1, H̄
(3)
kj = [h̄

(3)
kj ] ∈ C, for k ̸= j. If we set H̄

(4)
kj = 0 for all channels, one can write the

Jacobian of [F12 F13 F21 F23 F31 F32] with respect to the variables [u1 u2 u3 v11 v12 v21 v22 v31 v32 ]

as 

−h̄
(3)
12 −h̄

(3)
13 0 0 0 0

0 0 −h̄
(3)
21 −h̄

(3)
23 0 0

0 0 0 0 −h̄
(3)
31 −h̄

(3)
32

0 0 −h̄
(2),1
21 0 −h̄

(2),1
31 0

0 0 −h̄
(2),2
21 0 −h̄

(2),2
31 0

−h̄
(2),1
12 0 0 0 0 −h̄

(2),1
32

−h̄
(2),2
12 0 0 0 0 −h̄

(2),2
32

0 −h̄
(2),1
13 0 −h̄

(2),1
23 0 0

0 −h̄
(2),2
13 0 −h̄

(2),2
23 0 0



.
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One can easily observe that by removing the variables {v11 , v21 , v32} and setting

h̄
(3)
12 = h̄

(3)
23 = h̄

(3)
31 = h̄

(2),1
13 = h̄

(2),2
21 = h̄

(2),2
32 = 1,

h̄
(3)
13 = h̄

(3)
21 = h̄

(3)
32 = h̄

(2),2
12 = h̄

(2),2
31 = h̄

(2),1
23 = 0,

the Jacobian of the mapping (5.15) with respect to the remaining variables becomes

−1 0 0 0 0 0

0 0 0 −1 0 0

0 0 0 0 −1 0

0 0 −1 0 0 0

0 0 0 0 0 −1

0 −1 0 0 0 0


,

which is clearly nonsingular since there exists exactly one nonzero element in each

column/row.

Next we argue that the above construction procedure can be generalized to the case

where Mk and Nk are divisible by d, provided that the assumption (5.14) is satisfied.

The construction of these channel/beamforming matrices and the removal of redundant

variables are outlined below. First, we set H
(4)
kj = 0, for all k ̸= j. Then we choose

{Ūk, V̄j}k,j arbitrarily. It remains to specify {H̄(3)
kj , H̄

(2)
kj }k ̸=j . We should do so to ensure

that the corresponding Jacobian matrix of (5.15) at {Ūk, V̄j}k,j is nonsingular. Since

Mk and Nk are divisible by d, we can partition our variables into blocks of size d × d

and rewrite the mapping (5.15) as

Fkj(Ū, V̄) = −
[
ŪH

k1 ŪH
k2 . . . Ū

H
ksk

]


H̄
(3),1
kj

H̄
(3),2
kj
...

H̄
(3),sk
kj

−
[
H̄

(2),1
kj H̄

(2),2
kj . . . H̄

(2),tj
kj

]


V̄j1

V̄j2
...

V̄jtj

 , ∀ k ̸= j,

(5.16)

where sk = Mk
d − 1, tj =

Nj

d − 1, and Ūki , V̄jℓ , H̄
(2),i
kj , H̄

(3),ℓ
kj ∈ Cd×d. Consider a bi-

partite graph G where the vertices are partitioned into two sets X and Y. Each block

of variables will correspond to a node in X , while each matrix equation in (5.16) will
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correspond to a node in Y. We draw an edge between a node x ∈ X and a node y ∈ Y
if the block of variables corresponding to node x appears in the equation corresponding

to node y. When viewed on the bipartite graph G, the assumption (5.14) simply says

that for any given set of nodes S ⊆ Y, the cardinality of the neighbors of S in X is no

smaller than the cardinality of S. This condition is precisely what is required to ensure

the existence of a complete matching in G covering all nodes in Y (Hall’s theorem,

see [87, Theorem 3.1.11]). Now consider a fixed complete matching in G. Let A ⊆ X be

the set of vertices that are not matched to a node in Y. Then, we can set to zero all the

blocks of the variables corresponding to the vertices in A, i.e., we can remove them from

our equations. Now we choose the rest of the channel matrices so that the determinant

of the Jacobian with respect to the remaining variables is nonzero. To this end, we set

H̄
(3),p
kj = 0 if the node for Ūkp is not matched to the node in Y corresponding to the

equation Fkj . Similarly, we set H̄
(2),q
kj = 0 if V̄jq is not matched to Fkj . Moreover,

we set all the remaining channel sub-matrices to the d × d identity matrix. Since this

construction is based on a complete matching, it is not hard to see that the Jacobian

for the whole system is a block permutation matrix, with nonzero blocks equal to the

negative d× d identity matrix. Hence the determinant of the Jacobian matrix is equal

to the product of the determinant of all nonzero blocks (up to sign), which is clearly

nonzero in our case. This completes the description of the procedure to remove poten-

tial redundant variables, as well as the procedure to construct all the channel matrices

{H(2)
kj ,H

(3)
kj ,H

(4)
kj }k ̸=j and the beamforming solution {Ūk, V̄j}k,j . The Jacobian matrix

of (5.15) is nonsingular at this constructed channel realization and beamforming solu-

tion. Figure 5.1 illustrates the construction of graph G and a complete matching (in

solid lines) for the aforementioned toy example.

To complete the proof, we fix a generic choice of {H̄(2)
kj , H̄

(3)
kj , H̄

(4)
kj }k ̸=j for which the

Jacobian of (5.15) is nonsingular. Let n be the total number of remaining scalar variables

in {Ūk, V̄j}k,j after removing the redundant variables. Notice that n is the same as

the number of scalar equations, i.e., n = d2K(K − 1). Let R1 = C[h1, h2, . . . , hn] and
R2 = C[ū1, ū2, . . . , ūm, v̄1, . . . , v̄n−m] be two polynomial rings where ūi’s and v̄j ’s are the

entries of the matrices {Ūk}Kk=1 and {V̄k}Kk=1 (after removing the redundant variables),

and h1, h2, . . . , hn are the entries of the matrices {H̄(1)
kj }k ̸=j . Consider {fi}ni=1 (the
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Figure 5.1: The bipartite graph G and a complete matching for the toy example

components of Fkj ’s in (5.15)) as the functions of ū’s and v̄’s, i.e., fi’s are polynomials

in R2. These polynomials define a map aϕ which maps a point c = (c1, c2, . . . , cn)

to (f1(c), f2(c), . . . , fn(c)). According to the Chevalley Theorem (see [85, Chapter 2,

6.E.]), the image of this map is a Zariski constructible subset of An
C,1, where An

C,1 is

the corresponding affine space of R1. Since the Jacobian of the set {f1, f2, . . . , fn} with

respect to the variables {ū1, ū2, . . . , ūm, v̄1, . . . , v̄n−m} is nonsingular generically for all

channel realizations, it follows from the Implicit Function Theorem that the dimension

of the image of aϕ is n. Note that the image of aϕ is a Zariski constructible subset

of An
C,1 (see Chevalley Theorem [85], Ch. 2, 6.E.) and it has full dimension. Hence,

the image contains a Zariski open subset of An
C,1 (see the discussion in section 5.1.1).

Let U be that Zariski open subset of An
C,1 in the image. Since U is in the image of

the map aϕ, there exists a solution for interference alignment equations for any choice

of {H̄(1)
kj }k ̸=j in U , which implies that interference alignment is feasible for generic choice

of {H̄(1)
kj }k ̸=j . Since the choice of channel matrices {H̄(2)

kj , H̄
(3)
kj , H̄

(4)
kj }k ̸=j is also generic,

this completes the proof of the “if” direction.
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Notice that the condition (5.14) is equivalent to the properness of the polynomial

system (5.9) defining interference alignment. For symmetric systems with Mk = M ,

Nk = N for all k, this condition simplifies to M + N ≥ d(K + 1) (see [45, Theorem

1]). Thus, each user can achieve d degrees of freedom as long as M + N ≥ d(K + 1)

and that d divides both M and N . In a concurrent work, the authors of [46] obtained

a similar result under a different set of assumptions. More specifically, they considered

the symmetric case with Mk = Nk = M, dk = d for all k, and proved that the feasibility

of interference alignment in this case is equivalent to 2M ≥ d(K + 1). This result and

Theorem 4 are complementary to each other. In particular, Theorem 4 is applicable to

non-symmetric systems, but does require an extra condition about the divisibility of the

number of antennas by the number of data streams. WhenK is odd and (K+1)d = 2M ,

then M must be divisible by d. This case is then covered by both Theorem 4 and the

result in [46]. However, for the case where K is even and (K +1)d ≤ 2M , Theorem 4 is

no longer applicable, whereas [46] shows that the interference alignment is achievable.

A few other remarks are in order.

1. Reference [45] also considered the case dk = 1 and used the Bernshtein’s theorem

to numerically compute the number of solutions, and therefore prove the feasibility,

for the resulting polynomial system (3.1)-(3.2) when the number of antennas are

small. In contrast, Theorem 4 shows the feasibility of single beam interference

alignment for all values of Mk, Nk as long as the system is proper.

2. As shown in Theorem 3, the condition (5.2) is necessary. For example, the sys-

tem K = 2,M = N = 3, d = 2 satisfies the inequality (5.3). However, the system

of equations (3.1)-(3.2) is infeasible for generic choice of channel coefficients. This

further shows that the properness property in [45] does not imply feasibility in

general, a fact that was first pointed out in [45, example 17].

3. Theorem 4 does not contradict the NP-hardness result of [83]. Given a set of

channel matrices, checking the feasibility of the interference alignment conditions

(3.1)-(3.2) when Mk ≥ 3 and Nk ≥ 3, is NP-hard. It is true that, under the

setting of Theorem 4, the interference alignment fails only for a measure zero set

of channels. However, for systems not satisfying the conditions of Theorem 4,

checking the feasibility of interference alignment can be hard. Moreover, the
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results of [83] imply that, even if a given tuple of DoF is known to be achievable

via interference alignment, finding the actual linear transmit/receive beamformers

to achieve it is still a NP-hard problem when the number of users is large.

4. The condition (5.14) implies the condition (5.2) if the number of antennas at each

transceiver is divisible by d. In fact, by choosing I = {(k, j)}, condition (5.14)

implies that d ≤ Mk +Nj − 2d and hence the condition (5.2) is satisfied.

5. Theorem 4 assumes that both Mk and Nk are divisible by d. This condition can

be weakened for a symmetric system where Mk = M, Nk = N, dk = d, for all k.

In particular, assume that only M (not N) is divisible by d and M,N ≥ d. If the

properness condition (K + 1)d ≤ M +N holds, then we can construct a reduced

MIMO interference channel with N ′ = M − d(K + 1) receive antennas for each

user, where M +N ′ = d(K +1) and M,N ′ are divisible by d. By Theorem 4, the

interference alignment condition for the reduced interference channel is feasible

and therefore, so is the interference alignment condition for the original channel

since the latter has more antennas. This shows that if M is divisible by d and

M,N ≥ d, then the interference alignment system (3.1)–(3.2) is feasible for generic

choice of channel coefficients if and only if (K +1)d ≤ M +N . By symmetry, the

same conclusion holds for the case where N is divisible by d.

5.2 Simulation Results

In this section, we use the theoretical DoF upper bounds to benchmark some existing

algorithms for interference alignment and sum-rate maximization. We generate MIMO

interference channels using the standard Rayleigh fading model. The numerical experi-

ments are averaged over 10 Monte Carlo runs.

In the first numerical experiment, we consider a MIMO interference channel with

3 users. We further consider two different cases of M = N = 2, d = 1 and M =

N = 4, d = 2. In both cases, the bounds in Theorem 3 and Theorem 4 are satisfied,

suggesting the interference alignment is achievable. We plot the sum-rate results of the

Distributed Interference Alignment (DIA) algorithm [2] (see also [29]). The “Predicted

Slope” line has the slope corresponding to the DoF in the system and it starts from
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the same point as the DIA method. The closeness of the two curves suggests that the

expected interference alignment has been achieved.

In the second numerical experiment, we consider a MIMO interference channel where
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Figure 5.2: Sum-rate versus SNR(dB)

each transmitter/receiver is equipped with 3 antennas. For different number of users in

the system, we maximize the sum-rate using the WMMSE algorithm [84] at increasingly

high SNRs. We estimate the slope of the sum-rate versus SNR and use it to approximate

the achievable total DoF. We then compare it with the value of theoretical upper bound

given by the conditions in Theorem 3. The maximum gap of the two curves is one, but

it is not clear if the gap is due to the weakness of the WMMSE algorithm or the upper

bound.
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Chapter 6

Remarks and Suggestions for

Future Work

According to the recent work of Jafar [1], interference alignment (IA) is capacity achiev-

ing at high SNR when the interference channel exhibits sufficient diversity either in

time or frequency (in the sense that the channel response is i.i.d. across sufficiently

long time or sufficiently wide frequency band). Moreover, linear transmit and receive

strategies suffice. This work strongly suggests that one should try to design optimal

linear transceivers to achieve interference alignment.

The major findings of our investigation are as follows.

1. IA can offer a huge performance gain when compared to the traditional orthog-

onal transmit/receive strategies, especially when the number of interfering users

are large. Unfortunately, realizing this potential gain in practice will be very

challenging. This is because of the following main obstacles:

• We have shown that computing optimal spatial interference alignment is

computationally intractable for systems with large number of users.

• The constructive results of [1] showed that the interference alignment is pos-

sible with exponentially many channel extensions or infinite diversity in the

system. Obviously, in practice we need to align the interference in systems

with significantly small channel extensions and limited diversity. These con-

siderations make Jafar’s construction impractical. In this thesis, we consider

45
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no channel extension case and prove that unlike Jafar’s work the total degrees

of freedom will no longer grow linearly with the number of users in this case.

We have also showed that our bound is tight for the single data stream/user

case.

• Perfect CSI is required for the computation of an optimal IA scheme. How-

ever, acquiring perfect CSI is difficult when the number of interfering users

in the system is large. For a K user system, there are O(K2) links to be esti-

mated, which could require substantial communication resource. In fact, the

overhead may be so high for large K that the resources available for actual

data transmission could be significantly reduced.

Based on the above remarks, it is clear that, to make interference alignment practical,

the following issues deserve further investigation. Answers to these questions, even if

partial, may shed light on the effectiveness of IA in practice.

1. Grouping of users: Since IA for large number of users is impractical, it is

important to develop methods for grouping users into groups of small size and

perform IA within each group, while putting different groups over orthogonal

channels. What is a good strategy to group users for a MIMO interference channel?

Clearly, any grouping strategy must take into account the linear spaces spanned

the channel matrices. Due to the use of MIMO beamforming strategy, the size or

the magnitude of the channel matrices do not capture the compatibility of users

in a given group. This suggests that simple location based grouping strategies are

not likely to work.

2. Interference alignment with limited channel extensions: Channel exten-

sion for an interference channel corresponds to the number of different time slots

for transmission or the number of subcarriers in the system. Although Jafar

showed how to achieve perfect alignment with infinitely many channel extension,

the maximum DoF that one can achieve with limited channel extensions (say, poly-

nomial in the number of users) is still unknown. In this work, we only consider

the case of no channel extension.

3. Interference alignment in the systems with finite diversity: The diversity
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in the system shows how different subcarriers in the system are related to each

other. The surprising result of [1] corresponds to alignment for systems with in-

finite diversity, i.e., channel in different subcarriers are completely independent.

However, in real systems the channel gain for adjacent subcarriers can be corre-

lated. Therefore, we need to study interference alignment for systems with limited

diversity. Is it possible to achieve a high DoF when the channel response across

different subcarriers are correlated? How does correlation impact the maximum

achievable DoF?

4. Interference alignment in interfering broadcast (multicast) channel:

Currently, most of the results on interference alignment is for interference channel.

Although many real systems can be decomposed into interference channel model,

we may be able to gain more in practice by considering more practical channel

models like interfering broadcast channels or interfering multicast channel. In

these models, one transmitter transmits to different receivers at the same time

and the transmitted signal from other transmitters cause interference to some of

the receivers. The study of these models, which are more practical, should be con-

sidered in the next step. Can we design, either analytically or computationally,

IA schemes for these channels, especially when the transmitters and receivers are

equipped with multiple antennas? A key practical requirement for such IA con-

structions is that the symbol/channel extensions must be limited to polynomial

in the number of users.

5. Interference alignment and KKT conditions of sum MSE (rate) mini-

mization (maximization): Intuitively, there should be a relationship between

these two problems. This relation can be studied and based on the properties of

KKT points. Understanding of this relationship may enable us to suggest more

efficient practical algorithms for (partial) interference alignment.

6. Robustness and low channel feedback: The number of required bits for feed-

back in interference channel is studied in [89]. This study propose a beamforming

and feedback scheme for interference alignment using imperfect CSI. In fact, it has

been shown that if the number of feedback bits increases linearly with the num-

ber of users, then Jafar’s interference alignment scheme still works in the channel.



48

However, this work is also impractical due to infinite number of channel extensions

and assuming infinite diversity in the system. It would be interesting to study the

possibility of interference alignment with limited feedback, channel extension, and

channel diversity. Moreover, it is absolutely essential in practice that any devised

linear transceiver strategies be robust against channel variations. We need to in-

vestigate robust design of linear transceivers to approximately achieve interference

alignment.



Chapter 7

Conclusion

This thesis aims to study the interference alignment equations for linear transceiver

design in wireless networks.

The recent work [1] shows that the optimal strategy, that can maximize the total

degrees of freedom (DoF), is interference alignment approach. This result is exciting,

but not practical because it requires exponentially many channel extensions and infinite

channel diversity.

What is the achievable DoF under practical assumptions such as limited channel

extension and limited diversity in the system? This thesis tries to answer this question

to some extent.

First we analyze the computational complexity of solving the interference alignment

equations with no channel extension. More precisely, we prove that maximizing the total

degrees of freedom in the system is NP-hard. Moreover, it is shown that even checking

the feasibility of interference alignment is NP-hard when there are at least three antennas

at each node. The same problem is proved to be polynomial time solvable when we have

at most two antennas at each node.

In the second part of this thesis, we again consider the interference alignment prob-

lem with no channel extension and showed that unlike [1], the total DoF in the system

cannot grow linearly with the number of users. In particular, it is proved that the

total DoF is bounded by M + N for a symmetric system, where M is the number of

antennas at the transmitter and N is the number of receive antennas. Furthermore, we

demonstrate the tightness of this upper bound for a special case.

49
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As a result, although interference alignment initially seems to be a promising and

exciting strategy in dealing with interference, the gain is not that large when more prac-

tical considerations are come into picture. Furthermore, it is computationally difficult

to achieve interference alignment in practice. These results show some major drawbacks

of interference alignment which prevent it from being practical.

Another interesting question related to this thesis is about the total degrees of

freedom when there are limited and more than one channel extensions/channel diversity.

This is an important open problem which needs to be studied in future.
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