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Abstract

The underlying technologies for storing digital bits have become more diverse in last

decade. There is no fundamental differences in their functionality yet their behaviors

can be quite different and no single management technique seems to fit them all. The

differences can be categorized based on the metric of interest such as the performance

profile, the reliability profile and the power profile.

These profiles are a function of the system and the workload assuming that the

systems are exposed only to a pre-specified environment. Near infinite workload space

makes it infeasible to obtain the complete profiles for any storage systems unless the

system enforces a discrete and finite profile internally. The thesis of this work is that

an acceptable approximation of the profiles may be achieved by proper characteriza-

tion of the workloads. A set of statistical tools as well as understanding of system

behavior were used to evaluate and design such characterizations. The correctness of

the characterization cannot be fully proved except by showing that the resulting profile

can correctly predict any workload and storage system interactions. While this is not

possible, we show that we can provide a reasonable confidence in our characterization

by statistical evaluation of results.

The characterizations of this work were applied to compression ratio for backup

data deduplication and load balancing of heterogeneous storage systems in a virtualized

environments. The validation of our characterization is validated through hundreds of

real world test cases as well as reasonable deductions based on our understanding of

the storage systems. In both cases, the goodness of characterizations were rigorously

evaluated using statistical techniques. The findings along the validations were both

confirming and contradicting of many previous beliefs.
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Chapter 1

Introduction

1.1 Current State of Practice

Storage system behavior is harder to predict and model than almost any other com-

ponents in the computer system. This is believed to be due to the statefulness of the

system, complexity of the IO stack and heterogeneity in the underlying technology such

as magnetic disks and flash memory. However, we believe that the main culprit is the

unpredictable workload to which the system is being subjected to. The current storage

systems are designed based on a set of specific workloads. It is assumed that these

workloads represents the real workload space. Therefore, the optimizations are typi-

cally static and designed for a small number of workloads. Furthermore, there is no

requirement for real time monitoring of workloads since it is assumed that the entire

workload space is already captured. Finally, the performance of two storage systems

are compared only within those small set of test vectors and the result is deemed final.

1.2 Objectives

The goal of this dissertation is not to provide one system that fits all workloads. Rather,

we would like to identify what kind of systems exists in a pool of heterogeneous storage

systems and direct appropriate workloads to systems that are better suited for the

workload. More importantly, we would like a sense of what to expect from the system

given a workload such that overall progress can be planed.

1
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Storage System

Flexibility

Capacity

Power

Reliability
Performance

Store Load

Figure 1.1: Storage system operation and attributes. While there are main two opera-
tions, there are many attributes of the system that we are interested in.

The thesis of this dissertation is that to meet these goals we need means to quantify

workload characteristics such that the system can measure workload. Such characteriza-

tion allow the mathematical models of the system responses which in turn allows systems

to be designed to dynamically adapt to a wider spectrum of workloads. Additionally,

it allows system comparison to be based on their response characteristics to different

workloads rather than a few predefined workloads. Finally, we apply the knowledge of

the system response characteristics to predict and if possible improve overall system

performance.

1.3 Overview

A storage system is a system that supports two operations, load and store. The load

operation allows system to change its internal state and the store operation allows this

state to be verified. A storage system must further ensure that the interval state is

immutable in an absence of a store operation.

There are numerous attributes of storage systems which are of our interest. The first

type of attributes, flexibility attribute, describe the allowed state transitions. A generic

storage system allows all states to be reached from every other state and will be the focus

of this work. The second type of attribute, capacity attribute is the number of the states

and defines the storage capacity. The third type of attribute, power attribute, defines

power requirement for maintaining the states, state transition and state verification.
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The fourth type of attribute, reliability defines the probability of state transition in the

absence of store operation. The last attribute, performance attribute, defines speed at

which the state transitions occur as well as verification of the states. These classification

of attributes as well as the two primary operations are shown in Figure 1.1.

The performance evaluation of storage systems is a difficult task due to lack of

representative workloads. Storage benchmark tools test a single aspect such as random

read performance at a time. While this approach does allow us to gain useful insights to

the system behavior, current practices are largely inadequate due to large benchmark

input parameter space. For example, a benchmark with 10 parameters require at least

1024 experiments if conducted exhaustively even if we only test extreme values of each

parameter. Furthermore, there is no way to tell if the benchmark being used is enough

to test all realistic scenarios. As a result, researchers and developers rely on multiple

benchmarks with ad hoc input parameters.

We propose a method to quickly identify input parameters that have high effect on

the performance metric of interest. We also show that using multiple benchmarks is

unnecessary at times and a good benchmark can cover all operational space by providing

a control over key parameters that affect the performance metric being measured.

Workload consolidation is a key technique in reducing costs in virtualized data-

centers. When considering storage consolidation, a key problem is the unpredictable

performance behavior of consolidated workloads on a given storage system. In practice,

this often forces system administrators to grossly over-provision storage to meet applica-

tion demands. In this paper, we show that existing modeling techniques are inaccurate

and ineffective in the face of heterogeneous devices. We introduce Romano, a storage

performance management system designed to optimize truly heterogeneous virtualized

datacenters. At its core, Romano constructs and adapts approximate workload-specific

performance models of storage devices automatically, along with prediction intervals. It

then applies these models to allow highly efficient IO load balancing.

End-to-end experiments demonstrate that Romano reduces prediction error by 80%

on average compared with existing techniques. The result is improved load balancing

with lowered variance by 82% and reduced average and maximum latency observed

across the storage systems by 52% and 78%, respectively.
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The compression and throughput performance of data deduplication system is di-

rectly affected by the input dataset. We propose two sets of evaluation metrics, and

the means to extract those metrics, for deduplication systems. The First set of metrics

represents how the composition of segments changes within the deduplication system

over five full backups. This in turn allows more insights into how the compression ra-

tio will change as data accumulate. The second set of metrics represents index table

fragmentation caused by duplicate elimination and the arrival rate at the underlying

storage system. We show that, while shorter sequences of unique data may be bad

for index caching, they provide a more uniform arrival rate which improves the overall

throughput. Finally, we compute the metrics derived from the datasets under evaluation

and show how the datasets perform with different metrics.Our evaluation shows that

backup datasets typically exhibit patterns in how they change over time and that these

patterns are quantifiable in terms of how they affect the deduplication process. This

quantification allows us to: 1) decide whether deduplication is applicable, 2) provision

resources, 3) tune the data deduplication parameters and 4) potentially decide which

portion of the dataset is best suited for deduplication.

1.4 Contributions

Some of the findings in the work validates many of the previous techniques. We show

that the use of synthetic benchmarks is a valid technique to evaluate the performance

is a given storage system under different workloads. We also show that some of the

well known characteristics such as randomness and IO size are indeed a key character-

istics that affect the performance. However, we also invalidate some of the traditional

techniques. Especially, we show that the effects of the workload on different types of

storage systems are non-linear and it no longer makes sense to define a storage sys-

tem performance as a scalar. The result of this finding invalidates the techniques that

compares two storage systems based on few performance measurements using synthetic

benchmarks.

The followings are the contributions of this dissertation.

We provide a statistically rigorous method to differentiate different workloads in
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terms of the system performance. Specifically, we show that the different storage bench-

mark program actually cover similar operational spaces. Furthermore, we show that

only few benchmark parameters are able to capture over 50% of system performance

variation [2].

We also show that the workload characteristics can be effectively constructed from

these parameters as a full factorial combination of these parameters. Additionally we

show means to minimize number of terms in the characteristics by using Analysis of

Variance(ANOVA). Finally, we show that such characterization is able to model the

performance of storage system with high accuracy even when using simple linear regres-

sion [3].

We also show how such model can be used to construct a load balancing algorithm

for virtualized IO workloads in a heterogeneous storage systems. Algorithm itself is a

simple stochastic optimization algorithm known as simulated annealing. However, it is

able to decrease the worst case average latency of a virtual disk by 70% and decrease

the average latency by 20% [3].

Finally, we show that such technique can be applied to other metrics such as com-

pression ratio and throughput in the backup workload. Here we apply our knowledge

of the system to derive characterization metrics and apply simple regression techniques

to derive the model. We show that we can predict the compression ratio and write

throughput with a high degree of accuracy [4] as well as read throughput [5].

1.5 Organization

This dissertation is organized as follows.

• Chapter 1 provides the overview and main contributions.

• Chapter 2 provides a brief overview of the storage systems that are used as part

of the experimental platform.

• Chapter 3 give high level description of the statistical tools used to identify and

quantify various components of the workload and to describe their interactions

with the system.
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• Chapter 4 shows means to efficiently compare different benchmark programs ans

suggest how they should be used to evaluate storage system performance.

• Chapter 5 describes a method to model storage system performance as a function

of workloads characteristics in a accurate and efficient way.

• Chapter 6 presents Romano, a load balancing system designed on top of storage

performance model constructed in Chapter 5

• Chapter 7 shows the workload model can effect both the capacity and performance

of backup storage system.

• Chapter 8 lists some of the related works in the area.

• Chapter 9 concludes the thesis work with discussion of some interesting future

works.



Chapter 2

Background

2.1 Storage Virtualization

The term storage virtualization can be applied very broadly. In fact, any type of IO

indirection to provide a virtual block address space can be seen as a type of virtualiza-

tion.

In this work, we focus on the storage virtualization where a single storage unit

provides a multiple volumes through distributed locking mechanism and IO redirec-

tion [6, 7, 8].

We have used VMware’s VSphere 5.1 as our test platform [9] and will describe how

it virtualizes its storage stack in this section.

Figure 2.1 outlines high level view of virtualized storage stack.

For storage controllers, VMware hypervisor provides guest with LSI Logic or Bus

Logic driver interface regardless of the underlying hardware. These drivers converts the

IO requests to privileged IN and OUT instructions which are trapped by the hypervisor

and is handed by the SCSI emulation layer called vSCSI layer. This allows every IO to

be inspected per VM, per virtual disk basis [10]. This provides an efficient mechanism

to measure workload load characteristics at highest resolution.

There are two main functional components required for storage virtualization. The

first is the command translation and the second is the address mapping. These are

provided by the hypervisor through SCSI virtualization layer.

7
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Guest vSCSI Driver

Command Translation

Address Translation

VMFS

Volumn Manager

SCSI
Device

SCSI Virtualization Layer SCSI Protocol

Filesystem API

Block Device API

SCSI Protocol

Figure 2.1: Virtualized IO Stack. The raw SCSI command is remapped to a file opera-
tion on VMFS via virtualization layer.

For example, READ CAPACITY command should return the last logical block ad-

dress(LBA) of the device or FFFFFFFFFh [11]. The command translation layer should

translate this command to stat command to retrieve the number of blocks in a file.

For READ and WRITE operations, the requesting LBA and the block size needs to

be translated into filename, offset and size by the address translation layer.

Once the translation is complete, the resulting filesystem call is passed to VMFS layer

which manages metadata consistency through distributed locks. Like any filesystem,

VMFS translates the filesystem calls to the underlying block device calls which than is

translated into the underlying SCSI command through the volume manager.
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The backing storage system can be any device that understands SCSI protocol in-

cluding FC and SAS.

2.1.1 Storage Live Migration

One of the main benefits of virtualization is decoupling of underlying Hardware from

the execution environment. Such decoupling allows the execution environment and all

its virtual resources to be migrated while the execution is live.

VM migration across different hosts have been available for a long time [12]. How-

ever, it relied on the shared storage since migration of entire storage contents would

prove to be too expensive. To hide the expensive migration cost of storage systems, a

mirroring scheme is used [13]. The storage system is divided into separate regions and

are copied one by one. IF the region that is already copied is written to, the write is

mirrored to the remote storage. If the region that is being copied is written to, the write

is buffered to be flushed upon completion. This process will continue until only a single

region to be copied is left at which time the VM will suspend for the final leg of the

copy. The typical down time for 32GB virtual disks was shown to be around 0.2s [13].

The live migration of virtual disks provide mechanism to control the workload-system

interactions. We will explore this aspect in detail in Chapter 6.

2.2 Data Deduplication

Data deduplication provides a means to efficiently remove redundancies from large

datasets. This process is made possible by first dividing up the data into segments

and representing each segment with a much smaller hash value. A redundant segment

of data is then easily identified through a hash table lookup. The efficiency of the pro-

cess comes at the cost of possible data loss through hash collisions but it is understood

that the collision probability is negligible compared to the soft error rate of the storage

system if an appropriate hash function is used [14, 15, 16, 17]. Another performance fac-

tor is the granularity of compression which is limited to the size of duplicate segments.

Two segments that are off by a single bit will result in no compression.

Despite these costs, data deduplication has steadily gained its place in backup [18, 19,

15], archive [20] and virtual machine storage solutions [21, 22, 23] due to its potentially
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Data µ1 µ2 µ3 Done
1− C/R

C/R

Content
Generator

Content
Dictionary

Content
Store

Figure 2.2: Our simplified deduplication system model. It is essentially 3 server open
queuing system. At the content dictionary, C/R of the segments exit the system and
1-C/R of the segments are passed on to content store. All data are assumed to be
immediately available at the memory and all three servers have exponentially distributed
service time.

huge reduction in storage space and IO elimination.

The deduplication process itself can be divided into largely three parts as shown

in Figure 2.2. First part of the process generates a sequence of segments from input

data stream which we call the content generator. In the second phase, the deduplication

system generates a dictionary of segments which is in turn used to identify the duplicate

segments which we call the content dictionary. In the last phase, new segments are

stored on a persistent storage system which we call the content store. The later two

components form a content addressable storage(CAS).

2.2.1 Content Generator

The goal of the content generator is to maximize the redundant segments while minimiz-

ing the number of segments generated. These two goals often conflict with each other

since the amount of duplicate data tends to increase with smaller segments size. This is

due to the fact that the generation of segments are typically done in stateless manner

to keep up with the huge data size and stringent throughput requirements. Recent pa-

pers try to overcome this limitation through a two level definition of contents [24, 16].

However, these approaches come at the extra computation cost and are applicable only

when there are less stringent throughput requirements.

These are the three most common methods to define the segment boundaries also

known as the anchors [15, 17].
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• File based : A file boundary becomes the segment boundary.

• Size based : The anchors are designated every k bits which determines the bound-

aries for the segment. Therefore, any addition or deletion of data results in shifted

anchors which is propagated until the end of the data stream. This effect is known

as the boundary shifting problem [17].

• Content based : An anchor is generated based on the content of the data which be-

comes the boundaries for the segments. Therefore the anchors are shifted together

with the contents in the case of addition and deletion of the data.

The content based approach is the most popular method used in data deduplica-

tion due to the boundary shifting problem found in the size based method. Average,

maximum and/or minimum segment size are usually specified for the content based

approach. This allows system to expect segments of the bounded size which makes the

segment handling simpler but also ensures that amount of size variation is limited which

can cause loss of redundancy [25].

From the system perspective, the content generator is the source generator for the

CAS. Typically, any information about the original data stream is lost after this point.

This justifies our looking the dataset as a sequence of segments since beyond this point,

the system is effectively decoupled from the original dataset.

2.2.2 Content Dictionary

The content dictionary is typically a hash table which is keyed by hash of segments. Hash

functions used typically provide one-way property as well as collision resistance. While

only the collision resistance is required for correct functionality, one-way property is also

attractive to ensure that the malicious users cannot corrupt the system by generating

hash collisions.

For a large dataset, the content store itself becomes significantly large. To relax the

memory requirements for the deduplication system, the content dictionary is typically

stored on the disk [26, 19, 15, 27] . Only a portion is cached onto the memory at a time.

Furthermore, any writes to the index table must be serialized which require expensive

locks [23]. Therefore, the caching algorithm for the index table is one of the major

performance factor within the deduplication system.
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To avoid unnecessary accesses to the index table, Bloom filter [28] is used to quickly

determine segments that are not in the index table [15]. While the backup stream

typically exhibit an inherent spatial locality between the segment instances [15], more

intelligent caching schemes that uses data similarities have also been proposed [19, 27].

Regardless of caching scheme, it is clear that content dictionary determines the data

path for any given segment. While every segment must read the index table at least

once, only the new segments result in it’s update. Furthermore, these new segments

must be passed down to the content store to be store on the disk. Problem is more

complicated for the read where segments maybe fragmented in various places both for

the actual contents and the dictionary. A recent work duplicated heavily used segments

over the physical disk such that the average seek time can be minimized [29]. However,

such approach assumes small working set of segments and is heavily workload dependent.

In this work we assume nothing about the caching policy of the content dictionary

or any other auxiliary data structure to minimize the access to the dictionary. We only

assume that the different segment types results in different resource requirements in

regular read/write operations.

2.2.3 Content Store

Once the segments are identified as new content that needs to be stored, it is passed

down to the content store to be processed. Various different mechanisms are possible.

The content may already be on the disk and the content store only generates a logical

mapping and freeing of segments [23, 30] or use log-based filesystem to optimize for the

in-band writes [15].

The content store is not affected specifically by the deduplication system. While

inherent copy-on-write (COW) support of storage subsystem [31, 32] allows easier shar-

ing of segments, the fundamental operations of underlying storage does not differ from

dataset to dataset. Therefore, we focus mostly on the behaviors of the content dictionary

in this paper.



Chapter 3

Statistical Tools

3.1 Plackett-Burman designs

The Plackett-Burman design (PB design) [33] minimizes the number of experiments

required to estimate the effect of independent variables on the dependent variable. Ba-

sically, it estimates the effect of single input parameter on an output in such a way that

variance of this effect due to other inputs is minimized. The effect is an approximation

of the full factorial design but with linear complexity. Required assumption is that

higher order interaction effects are negligible. PB design has been widely used to eval-

uate effect of benchmark input parameters on processor performance [34] and database

query processing performance [35], for example.

Formally, the main effect m1 of input variable x1 on output y is defined to be

m1 =
[
∑
f(x′1, x2, ..., xn)−

∑
f(x1, x2, ..., xn)]

2n
(3.1)

where x′1 represents some extreme value of x1 and x1 represents the mean of x1. f is an

unknown function which maps all xi to y. The summation is carried out for all possible

combination of x2 through xn. Hence, the effect of xi is simply maximum deviation of

y given maximum deviation of xi.

The goal of PB design is to estimate all mis such that

S =
∑
j

(ŷj −M − aj1m1 − aj2m2...− ajnmn + α)2 (3.2)

13
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is minimized. ŷj is simply the sampled value of y at time j and M is mean value of all

yjs. aji takes value ±1 based on whether the xi had positive or negative effect on ŷj . α is

the higher order effects which are ignored based on the observations made by Fisher [36].

Since there are n values to be estimated, the minimum number of experiments required

to derive a unique set of mi is n + 1. Plackett and Burman proved that S can indeed

be minimized using d(n+ 1)/4e ∗ 4 experiments assuming α = 0 [33].

3.2 Independent Component Analysis

While the PB method quantifies effect of each input parameters to output of interest, it

does have one major drawback. Because the effect estimation assumes any higher order

effects to be zero, the estimated effects of any main factor is partially aliased with any

interactions not including that particular main factor.

In contrast, Principal Component Analysis (PCA) and Independent Component

Analysis (ICA) estimate the effect of uncorrelated components of original factors [37].

These components may not reflect any intuitively meaningful parameter. However, they

do provide a uncorrelated set of factors that can be derived from the original ones. The

limitation of the PCA is that it requires the original factors to be normally distributed.

ICA is a more generic approach in that such assumption is not required [38]. It has

been observed that ICA performs better than PCA in capturing processor workload

space [39].

In essence, ICA tries to identify statistically independent components from given

factors.

Formally, ICA estimates a matrix W such that given x = (x1, x2, ..., xn) with joint

probability density function (pdf) px(x1, x2, ..., xn) such that y = W × x has joint pdf

py(y with following property.

E[yp11 , y
p2
2 , ..., y

pm
m ] = E[yp11 ]E[yp22 ]...E[ypmm ] (3.3)

for every integer value of pi and m ≤ n. Equation 3.3 is the definition of independence.



15

3.3 Linear Regression

A general model that predicts P given W is:

P = fP (w1, w2, w3, ...) + ε (3.4)

where wi’s are set of controlled variables and P is metric of interest. Estimating function

fP without any assumption is computationally expensive if not impossible. Therefore,

we restrict the form of fP to a generic linear model of the form:

P = β0 + β1w1 + β2w2 + ...+ ε = Wβ + ε

W =
[
1 w1 w2 w3 ...

]
, β =


β0

β1

β2

...


(3.5)

One thing to note here is that the linear model only dictates how the β values interact

with the controlled variables. The controlled variables themselves can be in the form

of any scale. This means that contrary to what many believe, W does not need to

have linear relationships with P . The goal is to estimate β such that ε is acceptable.

Typically, we assume that the effects of any factors not being modeled result in white

noise and that the ε should be normally distributed.

3.4 Analysis of Variance(ANOVA)

ANOVA is a widely used technique to separate the total variation (SST ) in a set of

measurements into a component due to random fluctuations (SSE ) and a component

due to actual difference among the alternatives (SSA) [40].

Intuitively, we can assume that the size of the actual component is 0 and calculate

the probability of this assumption being true. If the assumption is highly unlikely to

be true than we can reject this assumption. This assumption is typically called the

null hypothesis and the procedure is called hypothesis testing. Given n experiments

for each of k alternatives, total variation is sum of squares of difference between each
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of n ∗ k experiments and overall mean, y. Similarly, the variation due to the effects

of the alternatives is the sum of squares of the differences between the mean of the

measurements for each alternatives and overall mean. Lastly, the variation due to

errors is the sum of the squares of the differences between the individual measurements

and the mean of all measurements for a particular alternative, yj .

yj =

∑n
i=1 yij
n

(3.6)

y =

∑k
j=1

∑n
i=1 yij

kn
(3.7)

SSA = n
k∑
j=1

(yj − y)2 (3.8)

SSE =
k∑
j=1

n∑
i=1

(yij − yj)2 (3.9)

SST =
k∑
j=1

n∑
i=1

(yij − y)2 (3.10)

= SSA + SSE (3.11)

To test if SSA is statistically significant, we use F-test. We can say that SSA is

significantly higher than SSE at α level significance if the calculated F-statistic is larger

than the critical F value, F[1−α;(k−1),k(n−1)]. Note that k − 1 is the degree of freedom

for SSA and k(n− 1) is the degree of freedom for SSE . We can calculate F-statistic of

the experiment by:

F-statistics =
SSA(k(n− 1))

SSE (k − 1)

= S2
a/S

2
e

(3.12)

where S2
a is the variance of SSA and S2

e is the variance of SSE . Therefore, F-statistic is

nothing but a ratio of the signal variance and the noise variance. Critical F values defines

the minimum required ratio for the signal to have a statistical significance. Critical F

values for a given confidence are tabulated in numerous literature [40].

A more compact representation of the same information is the p-value which is
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defined to be

p = 1− P (F ≤ f) (3.13)

where P (F ≤ f) can be found from F-density function which can be found in numerous

statistics text books [40]. P-value represents the probability that SSA is not statistically

significant which is typically rejected if the p-value is less than 0.05.



Chapter 4

Storage Benchmark Programs

Storage system performance is one of the most critical factors in meeting overall system

performance expectations. The performance variances of typical storage systems today

can vary by orders of magnitude [41]. It is very easy to get misled by the performance

numbers without understanding the relationship between the storage workload and its

performance variances.

Characterizing the workload for storage systems is typically much more complex

than it is for the processors. In a simple uni-processor case, it is possible to calculate

metrics such as instruction per cycle based on the various cache misses, mis-predictions

and number of instructions. However, storage systems typically have a much more

state-dependent responses. For example, a cache miss does not always result in the

same penalty, and the service time for a given request depends not only on the current

request but also on all requests in the queue as well as the layout of the data. Therefore,

two very similar workloads may perform very differently since the small differences could

force the state transition path into completely different directions. For example, current

layout of the data could force a sequential write to become fragmented. This then cause

the sequential read of the same data to be slow. This in turn has effect on any requests

that are scheduled after it within the request buffer.

We evaluated current storage benchmarking tools and analyze the effects of different

parameter settings on various performance metrics. Based on the experiments, we

quantify the effects of various parameters for three benchmarks. In addition, we also

evaluate which parameters are needed to effectively cover the entire storage system

18
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performance space and we propose a new benchmark tool based on our evaluation.

4.1 Limitations of Current Approach

The best method for benchmarking a storage system would be to deploy the system

under test in the real environment and look at the execution time of the processes

that will be run. Obviously this approach is too costly to evaluate various feature and

performance enhancements. Therefore, system architects and designers resort to either

a set of traces collected from a real system or a set of synthetic benchmarks.

The problem with using a real trace is that there is no way to determine the coverage

of the workload space. For example, a given Exchange server trace may perform very

well on system A. However, it is difficult to determine if system A will perform as well

for all Exchange servers. Furthermore, it is impossible even to provide any range of

potential performances with a single trace. As mentioned above, a small change in the

trace could result in a very different performance results.

Numerous synthetic benchmarks have been proposed over last few decades. The

major benefit of these benchmarks is that they allow you to change the characteristics

of the workload in a quantitative manner. However, current benchmarks either provide

numerous parameters to set without providing any insights to the importance of each

parameter [42, 43, 44, 45, 46, 47] or they provide a representative set of parameters that

claim to represent a wide range of applications. When there are numerous parameters

to set, users typically test a few set of ad hoc settings based on their experience which

does not always result in an accurate representation of real workloads.

4.2 Benchmark Programs under Test

As a proof of concept, we evaluate two different benchmarks tools, PostMark [44] and

FIO [42].

Typically, the evaluated systems are only tested on single configuration of a given

benchmark. This is problematic since system A may perform better than system B for

one configuration of the benchmark but not the others. It is critical to either define

when the system A performs better or show that system A performs better B in wide



20

Name Level Low Level High

min file size 512B 4KiB
max file size 4KiB 16MiB
init file count 1000 10000
transaction count 10000 100000
read size 512B 32KiB
write size 512B 32KiB
file system buffer false true
read append ratio 1:9 9:1
create delete ratio 5:5 9:1
directory count 1 1000

Table 4.1: PostMark input parameters and input levels assigned to each parameter.

range of workloads by testing with multiple configurations that provide wide coverage.

4.2.1 PostMark

PostMark was designed for filesystem benchmarking with specific interest to perfor-

mance of handling small file accesses in Internet software [44]. It provides 10 different

parameter settings shown in Table 4.1 together with their level settings. Most of level

decisions were straight forward except the create delete ratio. Initially, we set the low

bound to be 1:9 where 10% of the operations are create and 90% deletion. However,

we soon realized that the bound is too unrealistic. If the deletion of file happens more

than the creation, the system will soon become empty of files. Therefore, we set the

low bound to be 50% where the creation and deletion is equally like to occur.

Aside from these, it also provide two more benchmarking parameter for setting the

random variable seed and controlling result format. The transaction count only controls

the duration of the run and not the arrival rate or the IO depth. Therefore, it is also a

benchmark parameter. The file system buffer parameter is a system parameter which

is forces all writes to bypass the filesystem buffer.

PostMark lacks control over arrival pattern and does not support sequential access

pattern. Since these two characteristics play a major role in how the storage system

performs, we can guess that the coverage of PostMark will not be great. Also, Post-

mark does not perform any overwrites which suggest that Postmark is unsuitable for
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Name Level Low Level High

operation read write
access pattern sequential random
files used 1 100
min file size 512B 1MiB
max file size 1MiB 1GiB
min block size 512 4KiB
max block size 4KiB 64KiB
io depth 1 100
overwrite false true
fsync false true
thinktime 0us 1000us
write buffer sync false true
file service roundrobin random
thread count 1 8
threads similarity false true
posix fadvise false true
async io engine false true
io engine queue false true
directio false true
buffer alloc malloc mmap

Table 4.2: FIO input parameters and input levels assigned to each parameter.

evaluating storage systems where overwrites are expensive such as SSDs.

Postmark reports seven performance metrics, transaction per second (tps), create

tps, read tps, append tps, delete tps, read throughput and write throughput.

4.2.2 Flexible IO Tester (FIO)

FIO was designed for benchmarking as well as stress/hardware verification [42]. It works

directly on block devices as well as files. In this experiment, we tested it on files for the

sake of consistency with PostMark.

FIO has over 30 different input parameters. However, some of those parameters

are completely dependent on other parameters and was discarded. Also, some of the

parameters, when set, caused bus errors on the system we tested. As a result, we

extracted 20 input parameters as shown in Table 4.2. Every experiment was ran for 10
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minutes which was sufficient to ensure that the system reached a steady state.

FIO can generate multiple independent streams of requests. In this study, we

evaluate the effect of multiple streams as function of two parameters, thread count

and threads similarity. The thread count parameter is self-explanatory. When the

thread similarity is true, we generate either set of very similar streams with only differ-

ence being the random seed. When it is false, we generate threads that are at maximum

distances from each other in the parameter space. This can be achieved by choosing

different experiments within PB design.

FIO also allows you to control number of outstanding requests controlled by io depth.

The posix fadvise option allows to you enable file advisory information to the operating

system [48]. FIO provides 13 different types of IO engines. Some of them did not

work on our system but we use 4 based on the two characteristics of the IO engines,

synchronous/asynchronous and multiple/single buffer.

FIO provides a detailed distribution of performance measurements as well as aggre-

gated numbers. In our study, we use 4 metrics, read throughput, write throughput,

average read latency and average write latency. These metrics were chosen not only

because they are important performance metrics but also so that the results can be

compared against PostMark for out coverage analysis. For the experiments with more

than 1 thread, the throughputs are simply added and the latency is averaged.

4.3 Quantative Analysis

4.3.1 Experiment Flow

The experiment is designed to evaluate the effect of various parameters of different

benchmarks and coverage of each benchmark. We first use PB design to evaluate the

effect of each parameter with minimum number of experiments. Once the effect has

been calculated, we perform ICA on the performance results from each benchmark to

estimate equal number of independent components. These components are clustered to

generate a view of coverage of each benchmark.

This lets us analyze what are the key parameters and whether both benchmarks are

needed for a through evaluation of storage systems.
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Figure 4.1: Experiment flow for estimating the parameter effects on performance.

Evaluation of Benchmark Parameter Effect

First, we use PB method to determine the effect of each parameters on each benchmarks

separately. The experiment flow for effect estimation is shown in Figure 4.1. Parameter

Extraction phase tries to extract parameters from benchmark documentation in such a

way that each parameter can be varied independently of others. This is not always easy

as shown in the description of the benchmarks.

For every parameter extracted, a two extreme level values are designated as shown

in Table 4.1 and Table 4.2. Also, once the number of parameter is known, the size

of PB design is also known which is required to generate PB design table. Since the

number of parameters for Postmark is 10 and FIO is 22, PB table of size 12 and 24 are

used respectively. While any Hardamard matrix [49] can be used, we use the matrices

shown in equation 4.1 for 11 factor experiment. PB table for 23 factors can be found in
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Plackett and Burman’s original paper [33] and we omit it due to the space constraint.

PB(12) =



1 1 −1 1 1 1 −1 −1 −1 1 −1

−1 1 1 −1 1 1 1 −1 −1 −1 1

1 −1 1 1 −1 1 1 1 −1 −1 −1

−1 1 −1 1 1 −1 1 1 1 −1 −1

−1 −1 1 −1 1 1 −1 1 1 1 −1

−1 −1 −1 1 −1 1 1 −1 1 1 1

1 −1 −1 −1 1 −1 1 1 −1 1 1

1 1 −1 −1 −1 1 −1 1 1 −1 1

1 1 1 −1 −1 −1 1 −1 1 1 −1

−1 1 1 1 −1 −1 −1 1 −1 1 1

1 −1 1 1 1 −1 −1 −1 1 −1 1

−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1



(4.1)

Each row of the PB table represents an experiment and columns represent parame-

ters. −1 value represents a low level while 1 represents a high level. It should be noted

that not every column can be assigned a parameter. You can leave any of the columns

out for actual run of the experiments. However, it is important to ignore the effect of

the unused column later.

The number of experiment required is equivalent to the number of rows of the

matrix. Every experiment is repeated three times and mean is used to calculate the

effect. Given n experiment result y, the effect, e, of a parameter represented by column

i of PB matrix is simply calculated by

e =
PBi · y∑

i
(PBi · y)

. (4.2)

Here the denominator is a simple normalization factor to ensure that sum of all effects

is 1.
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Figure 4.2: PostMark parameter effects. You can see that some parameters have high
effect on a particular kind of performance metric while some have high effect on almost
all performance metrics.

Evaluations of Benchmark Coverage

We use R JADE package [50] to generate 2, 4, 8 independent components from the input

parameters and the read and the write throughput measured from each benchmark.

Since the read and the write throughputs are the only common metrics reported from

the two benchmarks, only they can be directly compared.

Once components are estimated, we evaluate the Euclidean distances between all

components which corresponds to a single performance metric are calculated. Based on

the distance, the components are clustered. The number of clusters to be used were

estimated using dendrograms [51].

We evaluate the best number of components for clean clustering and determine the

coverage of each benchmark on two performance metrics.

4.4 Results

4.4.1 Effects

Figure 4.2 shows effect of each parameter on each performance metrics reported by

Postmark. The maximum file size and buffering are the clearly two most important



26

Figure 4.3: FIO parameter effects. Effect of application threading is the most pro-
nounced in this benchmark. However, it will be shown later that the effect of threading
can be triggered by other parameters as well.

factor in deciding the overall tps. The buffering parameter controls whether file system

buffer should be bypassed using direct IO and the importance of the parameter is

obvious. However, the effect of the maximum file size is less obvious. Potentially,

the high effect is due to the fact that larger file sizes allow a room for longer sequential

accesses while the small file sizes force overall access pattern to behave in a more random

fashion.

You can also see that different performance metrics are effected differently. The

create delete ratio is clearly and obviously important for create tps and delete tps while

for append tps, file sizes are more important. Another interesting to note is that while

read throughput is affected the most by the read append ratio, the write throughput is

much more impacted by the file size.

Table 4.3 shows list of parameters with the most effect on each performance metric

such that sum of the effects exceed 50%of overall effects. It is shown that roughly 50% of

the all performance variances can be captured using just 2-4 parameters. For example,

three parameters, maximum file size, number of initial files and buffering, contribute to

61% of overall tps variation observed. This equate to 4 to 16 experiments for exhaustive

evaluation. This is a huge improvements over 2048 experiments required for original 12
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Performance Metric Parameters Total Effect

tps maximum file size 0.6164
number of initial files
filesystem buffer

create tps maximum file size 0.5469
create delete ratio

read tps maximum file size 0.5229
number of initial files
read append ratio

append tps minimum file size 0.5418
maximum file size
read size
read append ratio

delete tps maximum file size 0.5369
create append ratio

read thru number of initial files 0.5722
write size
read append ratio

write thru maximum file size 0.5137
read append ratio
create delete ratio

Table 4.3: PostMark input parameters required to cover at least 50% of overall effect
for each performance metrics reported. The maximum number of parameters required
does not exceed 4.

parameters. Furthermore, it is clear that different input combinations must be tested for

each performance metric which must be taken into consideration when benchmarking

storage systems.

Figure 4.3 shows the effect of each parameter on four performance metrics measured

and Table 4.4 shows list of parameters with the most effect on each performance metric

such that sum of the effects exceed 50%of overall effects. It is interesting to note

that the most important parameters for read and write latencies are the same. We

can assume that read and write operations themselves do not affect the latency in our

system. This can expected, since on HDD, read and write operations do not result

in significantly different response time. Furthermore, we see that the threads same

parameter is important for all metrics. This indicates that the interference between
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Performance Metric Parameters Total Effect

read latency files used 0.5406
file service
posix fadvise
thread count
threads same

read throughput access pattern 0.5462
write buffer sync
threads same

write latency files used 0.5060
file service
posix fadvise
thread count
threads same

write throughput access pattern 0.5170
thread count
threads same

Table 4.4: FIO input parameters required to cover at least 50% of overall effect of each
performance metrics reported. The maximum number of parameters required does not
exceed 5.

the threads can seriously affect the performance. While the thread count parameter

is also important, the effect on the read throughput is shown to be negligible. Both

throughputs are sensitive to the access pattern which is expected but surprisingly the

latency is not. Instead, they are much more sensitive to the posix fadvise setting. This

suggests that latency is not determined by the seek time but rather cache miss penalties.

4.4.2 Coverage of Benchmarks

The distance between the independent components as well as their clustering is shown

in Figure 4.4 and Figure 4.5. In these graphs, each leaf node represents an independent

component. Since the independent components have no physical meaning associated

with them, we number them from 1 to 8 per benchmark. We only show the results of

8 components for the brevity. The closer the leaves are on the tree, more similar effect

they have on the result. The height represents the difference between the subtrees.

therefore, evenly spread out components of both benchmark on x-axis suggest similar
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Figure 4.4: Read performance coverage of of independent components of PostMark and
FIO.

coverage, while the height of the tree suggest the granularity of the coverage. For

example, the FIO component 4 and PostMark component 3 have the similar effect on

the read throughput based on the Figure 4.4. At the same time, FIO component 8 and

PostMark component 7 also have similar effect. However, there is a large gap between

the two sets of components which are not covered by any of the components as suggested

by the height of the edges connecting the two subtrees.

An interesting observation is that for read throughput, FIO and Postmark have

roughly the same coverage. This is interesting since PostMark have far fewer parameters.

It can be concluded if the metric of interest is read throughput, than it does not matter
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Figure 4.5: Write performance coverage of of independent components of PostMark and
FIO.

which benchmark you use as long as you can test the key parameters thoroughly.

For the write throughput, FIO does provide wider coverage to the left with com-

ponent 3, while PostMark provide wider coverage on the right with component 3 and

7. We can safely conclude that each benchmark provide one of more input parameters

that affect the write throughput that is not provided by the other benchmark.

The input parameters that affect the read and write throughput performance shows

some difference. They all depend on the size of the files, number of files and mix of

operations. However, write throughput is also dependent on file creation and deletion

which are not taken into account in FIO. Conversely, PostMark does not consider the
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number of threads which is another important factor provided by FIO.

We believe that a good benchmark should have all those components as inputs to

provide a wider coverage.

4.5 Conclusion

Clearly, any storage performance evaluation should consider the effect of critical input

parameters that has been described in this paper. We recommend that at least the

critical parameters shown in Table 4.3 and 4.4 should be tested thoroughly to gain an

approximate sense of the system’s performance variation.

The methodology presented in this paper can be applied to any benchmarking tool

with set of input parameters that can be adjusted. The key challenge is deciding the

range of each parameter. Once this is done, the entire process can be automated.

Even if the system is designed for a specific workload, it is still beneficial to follow the

methodology described in this paper. Since the characteristics of the actual workload is

known, a tighter level bounds can be assigned to each parameter. The resulting effect

of the parameters can describe how the system reacts to different parameters and can

provide valuable insights to workload-system interactions.

We also show that different benchmarks can still cover roughly the same performance

space if the input parameters are chosen appropriately. We suggest that performing a

set of through experiments on a single benchmark provides more accurate description

of system performance than running a single experiment on the multiple benchmarks.

However, it is clear that there are specific performance space that can only be

explored with a specific benchmark. Since it is difficult to determine what benchmarks

cover how much of the performance space, we propose a new benchmark with following

properties.

• IO benchmark tool should provide maximum coverage of storage system’s opera-

tional space with minimum parameter settings.

• The parameters of benchmarking tools should be as independent as possible.

• The parameters should be exclusively defined as either the system parameter, the

workload parameter or the benchmark parameter.
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• The target interface which the benchmark is testing needs to be clearly defined.

• A minimum validation of results should be handled. (eg. Results that suggest

under-utilization of target system such that the performance result does reflect its

capability.)

With this kind of benchmarking tool, most of the systems can be evaluated with

a single benchmark with multiple parameter settings. This tool would allow different

researcher and developers to report their performance in a more coherent manner which

in turn makes performance comparison and reproducing the result easier.

As a future work, we plan to conduct a comprehensive analysis of more benchmarks

and design a new benchmark that provides a wide coverage with few independent pa-

rameters.



Chapter 5

Storage Performance Model

Storage Performance Model predicts the performance of a workload on a given data

store. Before describing Storage Performance Model in detail we define a few variables

in Table 5.1 to help describe our model.

5.1 Storage Performance Model Framework

Figure 5.1 outlines how the Storage Performance Model is generated and maintained.

The edges in Figure 5.1 represents the following procedure.

1. The test vector is run on data stores.

2. Average latencies, P , as well as the characteristics of the workload (X, R, Z and

O) per data store are collected at 20 seconds interval.

W Workload MW Workload Model

S Data Store MS Data Store Model

P Performance(Latency) MP Performance
Model(Prediction)

X Random % R Read %

Z IO size O Outstanding IO

Table 5.1: Variables defined to describe the Storage Performance Model.

33
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Figure 5.1: Storage Performance Model framework.

3. Workload model is generated by determining which of the workload characteristics

and their interactions actually affect P .

4. From the workload model and the latencies, the data store model is generated via

linear regression.

5. The model is updated periodically based on the new data collected while data

stores are active.

6. The performance model is derived from the workload and data store model.

In this section we will describe and justify each step of the process involved in generating

the performance model (MP ).

5.1.1 The Goal

A system’s performance is mainly determined by the system itself and its workload.

Therefore, there should exist a function, fP , that can map a given data store (S) and

workload (W ) onto performance (P ).

P = fP (S,W ) (5.1)



35

We define IO workloads to be the set of all possible workloads, W = {wi} and Perfor-

mance, P , to be the average IO latency. However, the dimensions of S and W are too

large to be parameterized. Furthermore, even if they were not, deriving an accurate

non-linear function fP is difficult. Therefore, we assume the form of fP to be some

linear combination shown in Equation 3.5 and fit S and W into MS and MW such that

P can be approximated.

P = MWMS + ε = MP + ε (5.2)

The goal of Storage Performance Model is to derive MW and MS such that resulting

MP is as close to the actual P as possible.

5.1.2 The Problem

Since we can measure P , we need to determine MW to solve the Equation 5.2 for MS .

Once MW is defined, we can use linear regression to derive MS . Without the knowledge

about the true distribution of ε, we assume it to be Gaussian and solve for MS by:

(MW
TMW )−1MW

TP = MS (5.3)

Equation 5.3 is proven to result in smallest ε if the ε is Gaussian distributed [52]. While

the true distribution of ε may not be Gaussian, we found the resulting ε small enough to

justify the assumption. Therefore, the problem is finding a good MW such that ε can be

minimized. There is a practical constraint we must satisfy when solving this problem.

The characteristics of workloads that can be used to derive MW must be collected from

the system at run time without too much overhead. VMware ESXi 5.0 already collects

read ratio (R), average request size (Z) and average number of outstanding IOs (O) at 20

seconds granularity [53]. We implement a mechanism to collect one more characteristic

to measure amount of seeks (X) since it is well known that randomness of IO has large

effect on storage performance. The problem is now reduced to finding a good MW from

X, R, Z and O such that ε is minimized.
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5.1.3 Test Vector

To investigate how MW can be derived from X, R, Z and O, we first define the space

of all possible workloads in terms of those characteristics.

random%(X) = {r|r ∈ I, 0 ≤ r ≤ 100} (5.4)

read%(R) = {o|o ∈ I, 0 ≤ o ≤ 100} (5.5)

IOsize(Z) = {s|s ∈ 2nB , n ∈ N, 9 ≤ n ≤ 19} (5.6)

OutstandingIO(O) = {i|i ∈ N, 1 ≤ i ≤ 128} (5.7)

Note that we limited the range of O and Z which is not enforced theoretically. However,

they are typically enforced by the system resource limitations such as buffer size. While

different limits can be used, we believe these to be widely applicable in today’s systems.

Another thing to note is that we have only defined the R and X within I. While this

may result in loss of resolution, R and X are always discrete in practice since there can

only be finite number of requests and we assume that the close enough values always

result in similar latency. The size of the entire space is |O| ∗ |Z| ∗ |R| ∗ |X| = 14, 363, 008.

If we tested each point in space for 2 minutes, it would take 54 years to explore all

possible combinations. Therefore we sample this workload characteristics space such

that;

X = {0%, 25%, 50%, 75%, 100%} (5.8)

R = {0%, 25%, 50%, 75%, 100%} (5.9)

Z = {1K, 2K, 4K, 8K, 16K, 32K, 64K} (5.10)

O = {1, 2, 4, 8, 16, 32, 64} (5.11)

which would require 1600 tests and can be done in a couple of days. This sampled space

is our test vector. The idea of vectorizing a multidimensional continuous space into a

single discrete vector is analogous to the way application characteristics are represented

in HBench [54].

The reduction in workload space due to sampling 1600 datapoints results in no

significant loss of accuracy in the model. However, the space is still too large for the
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(b) N2

Figure 5.2: Effect of read% variation on the latency of E1 and N2 data stores. Each
line represent latency (P ) vs. read% (R) while other parameters(O, Z and X) are fixed.
The effect of R on E1 is much more predictable(therefore significant) than N2.

modeling to be carried out at low cost on on-line systems. The sampling technique that

would provide a reasonable model with minimum testing is an interesting topic we leave

for the future research.

We generate our test vector using Iometer [55].

5.1.4 Workload Model

How to describe an IO workload in a generic manner is an open question [56, 57, 58, 59].

Unlike Basil [60] and Pesto [61], our model generates a separate MW for each data store.

While it is tempting to derive MW in a data store independent manner, we found the

resulting performance model (MP ) to be neither robust nor accurate. This is because

each data store interacts with the characteristics of the workload in a different manner.

Figure 5.2 shows the relationship between P and R for two data stores E1 and N2

from Table 5.2. The plot shows the latency change observed on two different data stores

while varying R and fixing X, Z and O. It is clear that R has distinct effect of E1 but
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Name No. of disks RAID Interface Make

E1 3 0 SATA EMC
E2 6 5 FC EMC
N1 3 5 SATA NetApp
N2 7 6 FC NetApp

Table 5.2: Summary of test data stores used in Storage Performance Model testing.

not on N2. This means that MW for E1 should contain R but not N2. An important

thing to note is that the inclusion of R in MW for N2 will result in over-fitting since

it is likely to only add to the noise. Therefore, removing R from the workload model

actually results in a more robust model that is less sensitive to noise.

Another difficulty arises from the fact that the interactions between the character-

istics are significant and cannot be ignored. While it is possible to use a simple tuple

of X, R, Z and O, we found the resulting ε to be very large. Interactions between the

characteristics can be factored in by simply adding additional terms for the products

of two or more characteristics. For example, the interaction between X and R can be

factored in to the model by adding the additional term X : R = X ∗ R. Therefore,

given 4 characteristics, there are 24 − 1 = 15 possible terms including the interactions.

To check which of the 15 terms actually have a significant effect on the performance,

we conduct ANOVA at 95% confidence controlling the 15 terms (using the test vector)

and observing the latency on four test data store shown in Table 5.2.

The p-values derived from the ANOVA test is shown in Table 5.3. These values have

a significant effect on performance (P ) with 95% confidence. For example, the MW for

E2 is a row vector of the form;

MW =
[
O X ∗O Z ∗O X ∗R ∗O X ∗ Z ∗O

]
(5.12)

The resulting MW accounts for any interactions as well as their significance on a given

data store. While the cost of the experiment is not cheap, this only has to be done once

per data store type in the system.
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E1 E2

factor p-value factor p-value

O 4.83e-06 O < 2e-16
R:O 3.09e-08 X:O 7.92e-15
Z:O 3.45e-03 Z:O < 2e-16
X:R:O < 2e-16 X:R:O < 2e-16
X:Z:O 4.51e-03 X:Z:O 3.98e-05
X:R:Z:O 5.99e-11

N1 N2

factor p-value factor p-value

O 6.85e-03 O 3.06e-16
X:O < 2e-16 X:O < 2e-16
Z:O < 2e-16 Z:O < 2e-16
X:R:O 2.33e-05 X:R:O 4.68e-08
X:Z:O < 2e-16 X:R:Z:O < 2e-16
X:R:Z:O < 2e-16

Table 5.3: Result of factorial ANOVA with latency as response and characteristics of
workload as the treatment. Only the factors with p-values less than 0.05 are shown.
With 95% probability, these factors have a predictable effect on performance.

5.1.5 Data Store Model

Using the MW , we find the MS using Equation 5.3. Table 5.4 shows the resulting MS

for the four test data stores. The coefficients columns of each data store form a column

vector which is MS of that data store. The accuracy of MS depends heavily on the

number of data points. While initially it can be derived from our test vector, it can be

updated from the data collected in production environment to improve its accuracy.

5.1.6 Performance Model

Finally, we are now ready to calculate MP , which is the prediction of P , by taking the

cross product of MS and MW . One interesting thing to note from Table 5.3 is that all

the factors contain O. This is because the average latency (P ) of all data stores are

linear to the number of outstanding IOs (O). Note that it also means that P is not

linear to X, R and Z.

We have tested 12 different data stores and verified that the linear relationship
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E1 E2

factor coefficients factor coefficients

O 1.064 O 8.370e-01
R:O 2.828e-02 X:O 6.163e-03
Z:O 1.505e-05 Z:O 1.172e-05
X:R:O 2.277e-03 X:R:O 4.079e-04
X:Z:O 2.545e-07 X:Z:O 9.970e-08
X:R:Z:O 9.385e-09

N1 N2

factor coefficients factor coefficients

O 1.428 O 1.310
X:O 1.653e-01 X:O 1.403e-01
Z:O 1.293e-04 Z:O 9.078e-05
X:R:O -3.24e-04 X:R:O 1.579e-06
X:Z:O 2.052e-06 X:R:Z:O 1.514e-08
X:R:Z:O 2.613e-08

Table 5.4: Data store model (MS) for four test data stores. (MS) is a column vector
whose entries are shown in the coefficients column of the each data store.

between the outstanding IOs and the latencies hold. Therefore, we can rewrite Equa-

tion 5.3 as;

MP = MWMS = M ′WMSO

M ′W =
MW

O

(5.13)

Since the outstanding IO (O) is the number of IO requests outstanding in the queue

and P is time the requests spend in the system, by Little’s law [62], M ′WMS is the

average inter-arrival time of requests. It is also the average service time of requests at

equilibrium and its inverse is the throughput (T ) in IO/s. Pesto [61] describes the linear

relationship between O and P in much more depth and we refer interested readers to

their work.

The Figure 5.3 shows latency (P ) change as O is varied while fixing X, R and Z.

Except for some exceptions caused by the measurement errors, all plots show linear

relationship between O and P . M ′WMS is called LQ-slope in Pesto, and we continue to

use the terminology for the sake of consistency. Therefore, we can rewrite Equation 5.13
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Figure 5.3: Effect of outstanding IO (O) variation (from 1 to 128) on the latency of
test data stores. Each line represent latency (P ) vs. outstanding IO (O) while other
parameters are fixed. Except for the few noise, the relationship is clearly linear for all
data stores.
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to our final form of MP .

P = MP + ε = LQslope ∗O + ε = M ′WMSO + ε (5.14)

There are two benefits of using Equation 5.14 compared with Equation 5.2. First benefit

is that O no longer needs to be modeled. This effectively reduces the size of MS and MW

simplifying the modeling process as well as prediction process. The second benefit comes

when we derive the Workload Aggregation Model which we will describe in Chapter 6.

5.1.7 Prediction Interval

The most important feature of our model is that it provides the confidence of its own

prediction. The model keeps track of the variance (σ2) of ε from which the prediction

interval is calculated to be;

MP ±
1.96σ√

n
(5.15)

at 95% confidence. Therefore, the 95% of actual P should fall within the confidence

interval. n is the number of data points and ±1.96σ is used to capture the 95% of the

Gaussian distribution which we assume is the distribution of ε. In short, the prediction

interval is proportional to the variance of residuals and inversely proportional to the

square root of the number of observations. If the prediction interval is too large, the

prediction is useless. To tighten the interval we can do two things. First is to reduce

the confidence level. However this approach may lead to too many bad predictions that

could result in bad decision making. Another approach is to increase the number of

observations. In our model, the performance statistics and the workload characteristics

are collected in real time to update the MS in effort to tighten the prediction interval.

5.1.8 Stats Collector

In order to update MS , the stats collector collects workload characteristics and perfor-

mance in real time. P is measured at vSCSI layer as the completion time subtracted

from time of queueing per request. R and Z are simply read from IO request attributes.

O is measured from the queue depth of the vSCSI [63] device which is created per

virtual machine (VM) and virtualizes the SCSI device layer. We had to implement
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Basil Pesto FFLM Proposed

Min. -27380 -1.33 -1669 -1667
1st Qu. -441.8 12.03 -0.1037 -8.610
Median -105.2 52.67 -0.7699 -0.1033
Mean -565.6 292.5 1.860e-13 1.191
|Mean| 642.4 292.5 44.43 44.34
3rd Qu. -22.31 243.8 7.872 9.043
Max. 6242 10590 1141 1146

Table 5.5: Comparison of residuals (ε) for different modeling techniques. The residuals
were aggregated from all four data store models. 1st Qu. and 2nd Qu. represents
25% and 75% quantile values respectively. |Mean| represents mean of absolute values
of residuals. Units are in ms.

the mechanism to collect X at SCSI device layer since vSCSI is unaware of large seeks

that result from seeking between multiple virtual disks in a data store. X is measured

by simply looking at the percentage of seeks larger than 10 times the average request

size. The reason for the multiplier is that some workloads exhibit significant variance in

their request size. Since the seeks are measured in terms of address difference between

consecutive requests, large requests could falsely register as seeks even when they are

sequential. All stats are averaged and reported to Resource Manager at 20 seconds

granularity.

5.2 Prediction Accuracy

This section evaluates the accuracy and the robustness of our performance model.

Specifically, we use Basil [60] and Pesto [61] as the baseline models and assume that

the full factorial linear model (FFLM) is the ideal case since it uses all possible linear

combinations. To evaluate the accuracy we use test vector and run them against for

4 test data stores (Table 5.2). The resulting 6400 latencies are compared against the

predictions of 4 techniques.

Table 5.5 shows aggregated ε values, the difference between the prediction (MP ) and

the measurements (P ), of different modeling techniques. The values were aggregated

from latency prediction of all four data stores under test (from 6400 data points). It
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shows that the performance of Basil is unacceptable in a heterogeneous data store

environment for most applications with high mean ε of 642ms. This is expected since

Basil generates a single model for any data stores. Pesto takes into the account the

performance difference of each data store. However, it assumes that one data store is

simply more powerful than the other regardless of the workload. While it provides a

better accuracy than Basil by 60% on average, it still shows unreasonable maximum ε

of 10s and average ε of 260ms.

Our proposed model shows a much stronger predictive power with average ε of 44ms

and the maximum ε of 1.3s. This is an 82% reduction for the maximum residual and

83% reduction for the average residual compared to Pesto. In fact, our model performs

slightly better than FFLM although the difference is too small to be meaningful. How-

ever, this model is capable of faster model updates and prediction since it only uses 4-5

terms versus 16 terms used by FFLM. Furthermore, 50% of all predictions (between the

1st and 3rd quantile) exhibit less than 10ms of error.

In short, our proposed model shows 80% improvement in overall prediction accuracy

on heterogeneous workloads and data stores compared to the most recent technique [61].

5.3 Prediction Interval

Perhaps the most significant benefit of our model is its ability to provide a prediction

interval at pre-defined confidence for its predictions. Figure 5.4 shows the average

latencies of 20 different virtual disks running different workloads randomly selected

from our test vector on four test data stores. The average was evaluated over two

minutes. The predicted latency and its corresponding interval (shown as the error bar)

was calculated using our model at 95% confidence (allowing 5% of measurements to be

outside of the prediction interval).

Figure 5.4 shows that the predictions can be off by up to 500ms (workload 16 ).

However, all measurements fall within the prediction interval. In fact, out of 1600

workloads ran against 4 data stores in the previous experiment, our model failed to

capture the measured latency within its prediction interval 423 times which is 6.6%

(close to predefined 5%) of 6400 predictions made.
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Figure 5.4: The average latency (over 20 second intervals) observed from 20 different
workloads (running on separate virtual disks) on 4 different test data stores during 1
hour interval. The max and min latency is plotted. Also plotted are the model’s 95%
prediction intervals.

Another interesting thing is that there were roughly 5% of workloads whose confi-

dence interval is so large, like the workload 6 in Figure 5.4, that the prediction itself is

meaningless. Pesto [61] claimed that these workloads had specific characteristics (such

as purely sequential) and can be filtered out. However, we found them to be more of

random occurrences and difficult to predict in advance. By default, the prediction is

done every 8 hours to consider the possible moves in current VMware products [64].

However, we force prediction every 2 minutes and observed prediction interval change

after 5 hours. In theory, the prediction interval should converge after about 2 hours

(12 measurements), however we found the convergence to take a much longer time. We

suspect the reason to be fluctuation in the workload. A detailed analysis and speeding

up this convergence will be our future work.
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E1 E2 N1 N2

25.798101 4.922433 16.666000 6.753044

Table 5.6: Pesto LQ-slope of four test data stores. The units are ms/io. According to
these slopes, E2 is the fastest data store and E1 is the slowest.

In short, our model is capable of providing prediction interval at a specified con-

fidence level. The level of confidence can be lowered to trigger more aggressive load

balancing with tighter prediction interval. On the other hand a higher confidence inter-

val will result in moves that are only triggered when predicted benefit is large enough

to over come the larger prediction interval.

5.4 Handling Heterogeneous Data Stores

In this section, we evaluate the model’s ability to handle heterogeneous data stores using

Pesto [61] as the baseline. Basil is not compared here since it only generates a single

model across the data stores and can not handle heterogeneity. Pesto injects a 4KB,

random and read-only workload into the data store to derive the LQ-slope for a given

data store. Table 5.6 shows the Pesto LQ-slope of four test data stores. Since each

data store has a fixed LQ-slope regardless of the workload, running same workloads on

multiple data stores will always result in constant ratio equal to the LQ-slope ratio.

Figure 5.5b plots this effect.

Figure 5.5a shows the latency normalized by E2 latencies from running our test

vector. As expected, most of latencies observed in other data stores are larger than

that of E2 (with the smallest LQ-slope hence the fastest) but surprisingly, there exist

some corner cases where even the slowest E1 out performs E2. In fact, N1 seems to

have the highest latency of all data stores on average even though its LQ-slope is lower

than E1. Figure 5.4c shows that our model is able to capture this relative difference

fairly accurately. For those corner cases where the model fails to capture the exact

relative order of performance, the prediction intervals tend to be very large. Therefore,

Romano will not make any predictions for those cases with high confidence indicating

that actions should not be made based on the prediction values only.

Figure 5.4a shows that the residual (ε) distribution of Pesto varies widely depending
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Figure 5.3: Sorted normalized latency plot for four test data stores. It shows the relative
latencies of E1, N1 and N2 compared to E2. The 1600 latencies measured from each
data store were normalized by E2 and than sorted. The y-axis represents the normalized
latency and the x-axis represents the sorted index. The actual measurements as well as
predictions from Pesto and our model are plotted. Pesto assumes a linear performance
difference between the workloads so there is only a linear difference between the data
stores regardless of the workloads. For the actual measurement, all four lines cross each
other, suggesting that data stores are seldom slower than the other data store for all
workloads. While Romano does not capture this effect fully, it does capture the most
distinct features of real measurements.

on the data store. The accuracy of Pesto on a single data store provides little information

about how it might do on another data store. As the new data stores are introduced

into the storage pool, the applicability of Pesto needs to be re-evaluated.

On the other hand, our model shows a much more even distribution across the data

stores in Figure 5.4b. While there are some differences, prediction accuracy of our model

is robust against the heterogeneity of data stores. Furthermore, the model’s prediction

interval further improves its robustness by generating larger interval for the data stores
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Figure 5.4: Distribution of residuals (ε) for Pesto and Romano. x-axis is the value of ε
in ms. y-axis is number of occurrences+1. Addition of 1 was required to allow y-axis
to be in log scale.

that are difficult to model. In short, proposed technique provides robust and adaptive

models across the heterogeneous data stores with a single framework.



Chapter 6

Romano: IO Load Balancer

The cloud computing paradigm shift is built on virtualization. Most IT organizations

and cloud service providers have deployed virtualized data centers in an effort to con-

solidate workloads, streamline management, reduce costs and increase utilization. Still,

overall costs for storage management have remained stubbornly high. Over its lifetime,

managing storage is often four times more expensive than its initial procurement [65].

The annualized total cost of storage for virtualized systems is often three times more

than server hardware and seven times more than networking-related assets [66].

A key enabler for virtualization adoption is ability for a virtual machine (VM) to be

efficiently migrated across compute hosts at run time [12, 67, 68]. Consequently, VM live

migration has been utilized to perform active performance management in commercial

products for some time [53]. Similarly, virtualization offers unprecedented dynamic

control over storage resources, allowing both VMs and their associated virtual disks to

be placed dynamically and migrated seamlessly around the physical infrastructure [13].

However, it is well-known that storage data associated with a VM is much harder to

migrate compared to CPU and Memory state. Virtual disk migration time is typically

a function of virtual disk size, size of the working set, source and destination storage

state and capability, etc [13]. Migration can take anywhere from tens of minutes to a

few hours depending on those parameters.

Given the high expense of data migration, intelligent and automatic storage perfor-

mance management has been a relevant but difficult research problem [60, 61]. Virtual-

ized environments can be extremely complex, with diverse and mixed workloads sharing

50
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a collection of heterogeneous storage devices. Such environments are also dynamic, as

new devices, hardware upgrades, and other configuration changes are rolled out. Our

goal of supporting heterogeneity is critical since data center operators want to keep the

flexibility of buying the cheapest hardware available at any given time.

The key to automated management of storage lies in the ability to predict the

performance of a workload on a given storage system. Without it, an experienced user

must determine manually if migrating a virtual disk is beneficial, a complicated task.

Previous work [60, 61] has relied on a heuristic model derived from empirical data.

When considering automated load balancing, the simplest approach would be to

observe utilization of all data stores and offload a virtual disk from the most heavily

loaded data store to the least heavily loaded data store.

There are several problems with this approach but the main problem is the unpre-

dictability of the benefit of the moves. In fact, there exists no guarantee that the moves

will even be beneficial. Storage systems do not react to different workloads in a homo-

geneous manner. A workload may stress one storage system significantly more than the

other depending on the storage system configurations and optimizations.

The second problem is the workload interference. When multiple workloads are

placed into a single storage systems, their effect on the storage system is not simply

additive. While some workloads can be placed onto a single storage system and work

with minimum interference, some experience huge performance hits.

Romano prediction model takes into account this heterogeneous response of storage

systems and the interference between workloads improving the prediction accuracy by

over 80%. Once these problems are recognized, it is obvious that the load balancing is

no longer a bin packing problem as suggested by previous works [60, 61, 69]. Therefore,

we introduce a new load balancing algorithm based on simulated annealing [70] that

optimizes the overall performance in a stochastic manner. We show that Romano is

capable of reducing the performance variance by 82% and reduce the maximum latency

observed by 78%.

Romano makes following contributions.

Accuracy Romano residuals are reduced 80% on average compared to previous tech-

niques. Furthermore, the residual is unbiased and does not propagate with recur-

sive predictions.
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Robustness Romano is able to specify the prediction interval which satisfies a specified

confidence level. We show that the resulting prediction interval captures real

performance with surprising accuracy.

Flexibility Different storage systems have different response characteristics to differ-

ent workloads. Romano captures these differences by quantifying the effect of

workload characteristics as well as the interactions of those characteristics on a

given storage system.

Optimization Romano load-balancing algorithm avoids having system state stuck in a

local optimum, instead identifying a global pseudo-optimal state through recursive

prediction. At the same time, it also ensures that the most beneficial migrations

are performed first to maximize the benefit.

We have prototyped Romano on VMware’s ESXi and vCenter Server products. Min-

imal changes were made to the ESXi hypervisor to collect additional stats for vCenter

where the core of Romano is implemented.

6.1 Romano Design

Romano is a generic framework that allows automated load balancing of the virtual

disks in a heterogeneous storage environment. Specifically, Romano predicts the storage

performance using statistical techniques allowing the systems to relocate the virtual

disks without the human intervention.

Figure 6.1 shows an overview of Romano framework. Romano sits within the Re-

source Manager which maps physical storage resources to the virtual disks. Romano

framework consists of Romano Performance Model, Romano Aggregation Model and a

Romano Load Balancer. Romano Performance Model was described in Chapter 5. Ro-

mano Aggregation Model predicts the characteristics of multiple independent workloads

when they are aggregated on a single data store. Romano Load Balancer balances the

workloads across heterogeneous data stores such that the mean and maximum latency

observed by the virtual disks are minimized.

These components will be described in detail next.



53

Virtual Disk Pool

Resource Manager

Romano
Load

Balancer

Romano
Performance

Model

Romano
Aggregation

Model

Data Store Pool

Figure 6.1: High level view of Romano. Romano maps virtual disks onto pool of data
stores to satisfy the load balancing policy.

6.2 Romano Aggregation Model

Predicting the performance of a data store given a workload is not always enough. If

the data store is already running different workloads, we need to figure out what the

characteristics of aggregated workload will be.

In Basil, this is done by simply adding their workload parameter ω [61]. This made

sense under their assumption that all data stores react to different workloads in a similar

manner. Since ω represents the amount of work a data store has to process, aggregating

workloads only involve addition of ω’s.

Romano’s workload model is a tuple of different combinations of characteristics.

It makes more sense to aggregate each characteristic separately. In our closed loop

assumption, aggregation of workloads does not affect the number of IOs each workload

keeps in the system. Therefore we can safely assume that the Outstanding IOs (O) will
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simply be added.

However, Size (Z) and Read Ratio (R) can not be simply added together. It needs

to be averaged based on ratio of number of requests seen by the two workloads that

are being aggregated. Pesto weights each value by their O, assuming that higher O

means higher rate of requests. However, O can be highly independent of arrival rate.

For example, imagine a process that generates 5 IO requests and issues additional IO

whenever a request completes. The arrival rate will only depend on the service rate of

the requests and not on outstanding IOs which would be fixed at 5. For Romano this

weight to be used for averaging is already available as the inverse of LQ-slope, which

represents the throughput (T ) from our performance model in Equation 5.14.

The Random (X) is tricky because the randomness of access cannot be defined per

IO request and cannot be simply averaged.

Figure 6.2 shows the changes in the seek profile as you mix 0%, 50% and 100%

random workloads on E1 data store. Our measurements show that the LQ-slope for

these workloads are 0.476, 17.6 and 35.8 respectively. Therefore, the throughput (T ),

of these workloads are 2100.52, 56.77 and 27.93 respectively.

Note that mseeks represents seeks within a virtual disk while lseeks represents seeks

across the virtual disks. If we define the randomness of the workloads as percentage

of the seeks, the effect of aggregation is completely non-linear and hard to predict.

However, we make the following observations.

1. Mixing sequential workload and non-sequential workloads results in very low

mseeks.

2. The number of lseeks is determined by the lower throughput of two workloads.

3. The number of lseeks reduces the sequential and mseeks by the ratio of their

average T .

More formally,

seq =
seq1T1 ∗ seq2T2

T1 + T2
(6.1)

seq = seq − (seq ∗%lseek) (6.2)

%lseek =
min(T1, T2)

T1 + T2
∗ 2 ∗ seq (6.3)
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Figure 6.2: Seek profile of different workloads. Each color represents different mix of
X for workload with Z = 4KB , R = 100% read, O = 1. mseeks represents seeks done
within a virtual disk and lseeks represents seeks done across the virtual disks.

which can be solved for X = 1− seq to be:

Raggr = fX(X1, X2, T1, T2) = 1− T1T2(1−X1)(1−X2)(1 + 2 min(T1, T2))

T1 + T2
. (6.4)

Equation 6.1 is a simple throughput weighted average of the sequential% representing

average mseeks. However, this does not account for additional seeks due to serving

multiple virtual disks. Therefore Equation 6.2 subtracts the amount of lseeks from

the sequential%. Note that the %lseek in the equation represents the percentage of

lseeks. Intuitively, the storage system is typically serving the high throughput workload
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Figure 6.3: Comparison of fR and T weighted average for the randomness of aggregated
workloads. Each color represents different methods. Other characteristics are fixed at
S = 4KB , R = 100% read, O = 1.

and occasionally seeks to low throughput workload which causes the lseek. Therefore,

Equation 6.3 calculates the amount of lseeks which is proportional to the ratio between

the low throughput and the total throughput. This value is multiplied by 2 ∗ seq since

almost every lseek between the sequential workload is matched by a lseek in the opposite

direction to serve both virtual disks.

Figure 6.3 shows the result of fX against simple T weighted average. The maximum

and average error of doing T weighted average is 100% and 48% respectively. For fX

these values are 28% and 5% respectively. The maximum error in both cases are when

aggregating two completely sequential workloads whose resulting Xaggr has inherently
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high variance.

Putting it together, Romano Aggregation Model is;

(Xnew , Rnew , Znew , Onew ) = (fX(Xi, Ti),

∑
iRiTi∑
i Ti

,

∑
i ZiTi∑
i Ti

,
∑
i

Oi) (6.5)

where aggregating more than 2 workloads require fX to be recursively applied to the

workloads. In practice, this is naturally done since only a single virtual disk is migrated

at a time.

6.3 Romano Load Balancer

The Romano Load Balancer is different from traditional load balancers [60, 61, 69] in

two ways. Firstly, it optimizes the global state rather than a single storage migration.

Secondly, it is proactive. The balancing mechanism does not wait until a over-utilization

is detected. It continuously adjust the overall state whenever possible to ensure that

systems are less likely to be over-utilized. This is made possible by Romano’s accurate

and robust modeling techniques.

6.3.1 Merit Metric

Our load balancing goal is to minimize the overall latency while reducing the maximum

latency. To represent both aspect of our goal with a single metric, we define Romano

load balancing metric of Merit (M) to be the form;

M =

(∑
i

Pαi

) 1
α

(6.6)

where α controls the weight on the maximum latency. For example, if α is 1, M is

simply the sum of all latencies. However, as α becomes larger, more weight is given

to high latencies. Our experiment shows that 5 is a reasonable value for α. However,

further exploration of α space is left for the future work.
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Algorithm 1: Merit Update Function

updateMerit (Wcand, Sdest,Φ) begin
Ssrc ← getS(Wcand,Φ)
Wsrc ← getW (Ssrc,Φ)
Wdest ← getW (Scand,Φ)
W ′src ←aggregate(Wsrc −Wcand)
W ′dest ←aggregate(Wdest +Wcand)
P ′src ←predict(Ssrc, W

′
src)

P ′dest ←predict(Sdest, W
′
dest)

return merit(P ′all)

Algorithm 2: Simulated Anealing

minimizeMerit (Φi,Mi) begin
Φ← Φi

M ←Mi

Φf ← Φi

Mf ←Mi

K ← 0
while K < Kmax do

T ←temperature(k/kmax)
Wcand ←randomChoose(Wall)
Ssrc ← getS(Wcand,Φ)
Scand ←randomChoose(Sall − Ssrc)
M ′ ←updateMerit(Wcand, Scand,Φ)
if G(M,M ′, T ) > random() then

Φ←(Wcand → Scand)
M ←M ′

if M < Mf then
Φf ← (Wcand → Scand)
Mf ←M ′

K ← K + 1
return Φf ,Mf

6.3.2 Load Balancing

Romano uses simulated annealing [70] to optimize the overall placement and then makes

moves that result in maximum reduction of M . The reason for the first step is that

greedy approaches used in previous works [60, 61, 69] could result in a local optimum
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Algorithm 3: Romano Load Balancing Algorithm

loadBalance (Φi) begin
Mi ←merit(Φi); Mlist ← ∅
(Φf ,Mf )←minimizeMerit(Φi,Mi)
foreach W ∈ Φf do

if getS(W,Φf ) 6= getS(W,Φi) then
MoveCandidate ←W

while MoveCandidate do
foreach W ∈ MoveCandidate do

M ′ ← updateMerit(W, getS(W,Φf ),Φi)
append(Mlist , (M ′,W, getS(W,Φf )))

sortDescendingByM(Mlist)
(M,W,S)← Mlist [0]
Move(W , S)
Mi ← updateMerit(W,S,Φi)
Φi ← (W → S)
MoveCandidate ← MoveCandidate −W

that is far from the global optimum. The solution cannot be greedy since any optimal

sub-placement needs to be reevaluated once a new workload is added due to the aggre-

gation function. Adding a new data store is worse since every data store has its own

performance model. While the simulated annealing process does not necessarily result

in optimal placements, it is guaranteed to be better than finding a local optimal if the

algorithm can remember the best state it has seen so far [71].

However, the resulting state may require too many workloads to be migrated. There-

fore, once the target state is defined through simulated annealing, we use a greedy

method to get there. This way, we can make moves that result in the largest reduction

of M while always moving towards the optimal state. Of course, there may be a move

that results in an even larger reduction but the move may prohibit the possibility of

further reduction of M .

Algorithm 3 outlines the Romano load balancer. In this algorithm, Φ represents the

current mapping of workloads to data stores which is essentially current state of the

system. It requires two subcomponents, Alogrithm 1 and Algorithm2.

Algorithm 1 simply moves a virtual disk, Wcand, to a datastore, Sdest and recalculates



60

the system’s merit based on the performance prediction of the source datastore, Ssrc,

and the target datastore, Sdest.

Algorithm 2 is the simulated annealing process where given a state and its merit,

it will return a pseudo-optimal state and its merit which should be close to the global

minima. This has worked surprisingly well for this application as it will be shown in

the results. The temperature function and G functions are taken from the earlier works

on simulated annealing [70]. The temperature function simply divides k/kmax by 1.2

every iteration. G function returns 1 if current merit is lower than previous merit so

that the move is always accepted, but returns e(M−M
′)/T when current merit value

is higher. Therefore, there exists a finite chance of accepting a move even when the

merit increases. This probability decreases fast with the number of iterations and the

difference between the new and old merit values. With every iteration, the function

chooses a random workload to move and a random destination data store. New merit

is calculated and the move is either rejected or accepted based on the value returned

by G and a random number between 0 and 1. All our experiments required less than

200 iterations to complete. The convergence rate of simulated annealing is difficult to

predict without any structural information of the state space. However, since we do not

need the absolute minimum M , we can simply fix the maximum number of iterations

to a reasonable number and choose the best state found.

The loadBalance function takes the current state (Φ) and calls on minimizeMerit

function to determine the pseudo-optimal mapping of W on S. Once the mapping is

determined, it uses a greedy approach to determine which moves to execute. update-

Merit function is called on all possible moves to determine the next move. Note that

updateMerit function executes in O(1). The process is repeated until the pseudo-optimal

mapping is reached. getS(W,Φ) represents the data store on which W is mapped in

current State Φ while getW (S,Φ) represents all the workloads mapped onto data store

S in state Φ.

updateMerit function takes the current system state (all Workload mappings and

their performance) and calculates new Merit value. Note that our goal is to minimize the

Merit value. The aggregate function is Romano Aggregation Model and predict function

is Romano Performance Model. Therefore, updateMerit function is given a workload

candidate to be migrated and destination data store. New aggregated workloads are
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Workload IOSize Read% Random%

Web File Server 4KB 95% 75%
Web File Server 8KB 95% 75%
Web File Server 64KB 95% 75%
Support DB 1MB 100% 100%
Media Streaming 64KB 98% 0%
SQL Server Log 64KB 0% 0%
Web Server Log 8KB 0% 100%
OLTP DB 8KB 70% 100%
Exchange Server 4KB 67% 100%
Workstation 8KB 80% 80%
VOD 512KB 100% 100%

Table 6.1: Workload characteristics suggested by Wang [1]. These workloads are used
to ensure repeatable experiments.

calculated and their performances are predicted. Given the new performances of source

and destination data stores, global merit is recalculated.

In practice, it is unlikely that all the moves will be carried out due to the cost

involved with the migration. Furthermore, the workload themselves are going to change

over time. Therefore, Algorithm 3 will periodically rerun minimizeMerit function and

continually transition the system towards the newly found pseudo-optimal state without

ever actually getting there.

6.4 Results

6.4.1 Workload Aggregation

To test the effect of workload aggregation, we need to able to generate a repeatable work-

load. We use the workload settings shown in Table 6.1 to simulate the real workloads.

Previous works have shown that synthetic workloads do a good job of representing real

workload’s performance characteristics when the parameters are extracted from the real

workloads [59, 2].

All possible combinations of two workloads were chosen from the 11 workloads shown

in Table 6.1 resulting in 55 combinations. In Romano workload characteristics space,

aggregating 2 workloads and 3 workloads are the same since the aggregation process
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Figure 6.4: Result of workload aggregation. Two Workloads from Table 6.1 were placed
randomly across two data stores, E1 and N2. Figure 6.4a shows 20 randomly sampled
results from 110 placements on both data stores (55 each). Figure 6.4b shows the
residual of all 55 placements on E1 and N2.

is commutative and associative. O was randomly assigned from 1 to 3. The test was

repeated on two data stores for which the Romano model performed worst (see Fig-

ure 5.4b).

The workload aggregation method used in Pesto [61] is to average their workload

metric ω weighted by OIO. To isolate the effect of workload aggregation, we average

individual workload characteristics weighted by O and use Romano Performance Model

to predict the latency.

The result is shown in Figure 6.4. Figure 6.4a shows the latency from 20 randomly

selected experiments as well as the prediction interval of Romano. Only in 1 case,

Romano failed to capture the latency within its prediction interval. In fact, only 3 out

of 110 cases (2.7%) showed Romano failing to capture the measure latency. This is
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better performance than specified 5% confidence level. We believe that this is due to

the unbiased nature of Romano residual shown in Figure 5.4b. As the workloads are

aggregated, the residuals (ε) of LQ-slope prediction, used for workload aggregation, are

more likely to cancel each other out.

The accuracy of Pesto’s approach of O weighted average does not seem too bad at

first but there are some cases where the prediction won’t even register on the Figure 6.4a

(workload 2 and 16). This is especially true if the workloads running together are highly

skewed such that one workload has much higher throughput than the other. This verifies

our assumption that the workload should be aggregated based on its throughput rather

than O. his is especially true if the workloads running together are highly skewed

such that one workload has much higher throughput than the other. This verifies our

assumption that the workload should be aggregated based on its throughput rather than

O. Figure 6.4a also shows that while Pesto consistently overpredicts the aggregated

latency, Romano residuals are more unbiased shown in Figure 6.4b.

Another interesting result was that all 3 cases where Romano failed were observed

on E1 data store. This is as expected from the amount of outliers shown in Figure 6.4b.

We believe that amount of uncertainty introduced by workload aggregation is different

on each data store. We leave the further investigation to future work.

6.4.2 Load Balancing Using Romano

In this section we randomly placed 8-14 workloads from Table 6.1 allowing repetition on

4 data stores. Romano load balancing algorithm from Algorithm 1 was ran to optimize

the data placement by moving a single virtual disk at a time. The experiment was

repeated 50 times.

Figure 6.3 shows the aggregated result of load balancing using Basil and Romano. It

should be noted that the load balancing algorithm deployed by Basil and Pesto are the

same. Both Basil and Romano does a good job of reducing the average latency by 47%

and 52% respectively. However, the variance is reduced by 82% by Romano while Pesto

reduces it by 37%. Most importantly, the maximum latency observed was reduced by

78% with Romano while only 21% by Pesto.

There are two factors which result in improved performance by Romano. The first

is the more accurate modeling. Both Pesto and Basil assume that there exists only a
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constant performance difference between different data stores for any given workload.

Therefore, it has tendency to move virtual disks to a data store that is more power-

ful regardless of the workload. Furthermore, their aggregation model is based on the

outstanding IOs only. This allows workload that do not performance well together to

be placed on a single data store. The result of these inaccuracies in the model forces

the load balancing algorithm to place more workloads on the powerful data stores. In

fact 51% of all the moves by Pesto were made to E2 data store compared to 28% for

Romano. Figure 6.5b shows that resulting E1 and N1 latencies are smaller than that of

Romano while E2 and N2 exhibit large latencies that we would like to avoid. In fact,

Basil does not place any workload on E1 90% of the time even though E1 actually has

lower latency for most workloads than N1 as shown in Figure 5.5a.

The second factor is the load balancing algorithm itself. Basil and Pesto uses a

greedy approach [60] which terminates the algorithm once no beneficial moves are found.

Romano uses simulated annealing to find the pseudo optimal placement first and than

uses greedy approach to get to the optimal placement. This allows Romano to avoid

moves that may result in maximum benefit but prohibits any further moves that may

provide additional benefits.

One limitation of this approach is that it does require more moves to be made.

Figure 6.4 shows the number of moves required for Basil and Romano. On average

Basil requires 2.2 moves where as Romano required 2.6. Storage migration is expensive

and should avoided if possible. However, we show that even if we limit the maximum

number of moves to 2, Romano still out performs Basil as shown in Figure 6.5. This is

due to the greedy approach in which Romano chooses moves once the pseudo-optimal

placement is identified.

Figure 6.6 shows an example of latency changes for a single test case. It is shown

that most critical balancing is done within the first couple of moves.

6.5 Conclusion

We have presented Romano, a load balancing framework for virtual disks on heteroge-

neous storage systems. The kernel of Romano is a performance predictor given a set

of parameters that characterize the workloads and the storage devices. We have shown
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that Romano can outperform previous systems with same goals by up to 80% in predic-

tion accuracy. This increased accuracy results in 78% reduction in maximum latency

observed and 82% reduction in variance while load balancing.

At a deeper level, Romano contributes a recognition that there is inherent noise

in storage system performance that is not easily dealt with. Romano is capable of

capturing this noise within the prediction interval. As more data is gathered there is

higher confidence that the prediction interval will contain the measured latency.

Another key contribution of Romano is quantification of effect of various workload

characteristics and their interaction on heterogeneous storage devices. We have shown

that the performance differences between data stores cannot be described with a sin-

gle number. More specifically, we have shown that the storage performance must be

described in terms of the workload.

The last contribution follows the second contribution. Since the performance of

storage systems effectively change with the workload, the load balancing problem is no

longer a bin-packing problem as previously believed. Therefore we present a probabilistic

approach to finding a pseudo-optimal mapping of workloads to the data stores. It is

important to mention that probabilistic approach is only used to find the final state of

the system and the moves are actually made greedily to speed up the convergence and

minimize the number of moves that has to be made.

We believe that Romano not only provides means for more efficient load balanc-

ing but also in many other areas such as QoS management, power management and

performance tunning in tiered storage.

Whereas Romano raises the bar on the accuracy of practical modeling techniques,

there remain ample opportunities for improvements in future work. Better interference

modeling between workloads when they are placed on same data store is one such area

where we are making good progress. Another work in progress is to come up with a

better set of workload characteristics such that the workload description can be more

complete.
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(a) Initial data stores latencies.
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(c) Result of Romano load balancing.

Figure 6.3: Boxplot of average data store latencies on 50 different test cases. Each test
randomly placed 8-14 workloads from Table 6.1 (allowing repetition) on 4 data stores.
Basil’s greedy approach is compared with Romano’s random optimization technique.
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Figure 6.4: The distribution of number of moves resulting from Basil and Romano.
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Figure 6.5: Data store latencies after maximum of 2 moves with Romano.
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Chapter 7

Backup Workload and Data

Deduplication

As more and more backup systems opt to take advantage of data deduplication tech-

niques, the variability in performance is becoming an issue. The cause of this variation

can be categorized into two factors, systemic variation and input variation. Systemic

variation is caused by the use of different algorithms and techniques as well as the under-

lying hardware deployed in the deduplication systems. The input variation is caused by

different characteristics of the input datasets. The systemic variation is critical from the

deduplication system designers’ and vendors’ perspectives since it allows them to com-

pare two systems directly. However, the input variation is typically more critical from

the customer’s perspective when evaluating the potential benefits of data deduplication

for different types of datasets.

Current metrics for characterizing the datasets for data deduplication are overly

simplified and often inaccurate. For example, the compression ratio (CR) is typically

estimated using the average data change rate (dcr), which is the percentage of data

change. Let R be the required retention period. Assuming a full backup per unit time,

the compression ratio is simply:

CR =
Compressed Size

Uncompressed Size
=

1 + (R− 1) · dcr

R
. (7.1)

This model provides a simple estimation of the compression ratio but it can also be

71
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very inaccurate. We observed over 35% error using the dcr to characterize one of our

datasets. One of our main contributions is providing a new set of metrics and models

that allow much more accurate compression performance predictions to be made. In

five out of six cases we test, the error reduction was over 50% when compared with the

dcr method.

The main performance metrics for data deduplication systems are the compression

ratio and the read/write throughput. While the latency could also be an issue for

virtual machines, it can be mostly masked by high level caching and prefetching mech-

anisms. Unless specified otherwise, we use the term performance to represent both the

throughput and compression together.

The throughput of the system is heavily dependent on both system and input fac-

tors. Thus, it is difficult to determine if one dataset outperforms the other in terms of

throughput. However, there are features of datasets that are likely to benefit through-

put in most systems. One obvious one is the compression ratio itself. A highly com-

pressible dataset has lower IO requirements which in turn improves the throughput in

most systems. The compression ratio is the most influential factor in determining the

throughput. However, there are also other factors, such as spatial locality of the data

segments and bursty arrival rates, which we examine in this paper.

Our main contribution in this paper is to provide a framework to characterize the

input dataset for data deduplication systems. We 1) show that different datasets behave

with a unique pattern that is quantifiable. Furthermore, we 2) provide analysis on how

this pattern affect the deduplication system performance. As part of the framework,

we 3) provide classification of segment types and their relations. We further provide

parameters to show how the composition of these segment types change over time.

7.1 System Components

The input data itself is another system component that affects the performance. To

understand how the dataset affects the performance, it is described in terms of how the

data components can be separated once it is deduplicated. The segments, regardless of

how they are defined, are the smallest units of data in data deduplication. Therefore,

we define data as a sequence of segments rather than contiguous bits or characters. In
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Figure 7.1: Venn Diagram of Segment Sets. The logical segments which is equivalent
to the dataset, can be grouped into two separate sets N and C. The elements of N are
segments whose content occurs more than once in the dataset while the elements of C
are segments that must be stored in order to ensure no content information is lost from
the dataset.

this work, we show that the distribution of these different segment types completely

describes how the dataset affect the deduplication performance.

7.1.1 Queuing Model

The system can be viewed as simple open queuing system with three servers as seen in

Chapter 2. We make very little assumptions of particular algorithms deployed. However,

the functionality of each stage we have described in Chapter 2 exists in all conventional

deduplication systems. In this system, the arrival rate of segments at the content dic-

tionary is assumed to be exponentially distributed with the mean of average service

rate at the content generator. The probability of the arriving segments to be found in

the dictionary is equal to the compression ratio in which case it can by pass the content

store. If we assume that each outcome is independent, the arrival rate at content store

is also exponentially distributed. However, we show that this is not true and is one of

the factors that affect the throughput of the system.
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7.1.2 Segment Classification

We first define data segment as a tuple of offset and size within a dataset. Therefore

every segment is uniquely identifiable regardless of its content. The only constraint

under this definition is that the size of the data segment must be less than or equal to

the size of the dataset. Also, the content of the data segment must exist within the

dataset. There are no other restrictions to what may be defined as a segment. A dataset

is then a mere concatenated sequence of data segments.

We begin classifying the data segments by defining the logical segments which is

the set of all segments from which you can reconstruct the original dataset through

reordering only. Under this definition, a dataset is nothing but an ordered list of log-

ical segments. We also define unique segments and non-unique segments. The unique

segments are a set of segments whose content is unique across the logical segments.

Obviously the non-unique segments are the segments whose content is repetitive across

the dataset. These non-unique segments have a unique property called the degree of

repetition which represents number of times a particular content exist within a dataset.

From the perspective of the data deduplication system, the segments are really

divided into segments whose contents must be stored and segments which can be rep-

resented only as a reference to an already stored segment. We further classify segments

as either the content segments or the duplicate segments based on whether the content

of the segment is required to reconstruct the logical segments. The content segments

can be duplicated and reordered to construct the original dataset given the ordering

information of contents. The duplicate segments are simply redundant contents whose

only new information is the order of the content.

It is obvious from the two classifications that the duplicate segments must be the non-

unique segments while the unique segments are content segments. This is shown in the

Figure 7.1. As shown in the figure, there exists an intersection of non-unique segments

and the content segments that are called the base segments. The base segments are

minimum set of segments whose contents that must be stored to allow the deduplication

system to reconstruct all the non-unique segments.

Therefore, the base segments, the unique segments and the duplicate segments are

three sets of segments that are disjoint and whose union is the logical segments. A

segment at any given time must be a member of one and only one of these sets.
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Dataset Number of Compression Throughput
Segments Ratio (MB/s)

exchange 1,970,836 0.294 44.72
exchange is 1,960,555 0.377 42.60

exchange mb 1,951,271 0.973 27.20
fredp4 1,892,285 0.502 39.78
fredvar 1,922,420 0.209 48.36

workstation 1,966,577 0.403 38.92

Table 7.1: Datasets. Six datasets with the size of the logical segment set and two
performance metrics of interest.

Parameters Value Parameters Value

Content Generation Content Minimum 4KB
Method Based Segment Size

Average 8KB Maximum 16KB
Segment Size Segment Size

Storage Maximum 50MB/s Maximum Network 100MB/s
Throughput (sequential) Throughput

Content Dictionary 100,000 Hash Function SHA1
Cache Size entries for Segment ID (160 bits)

# of Bloom Filter 4 Bloom Filter Size 1,000,000
Hash Functions entries

Table 7.2: Experimental deduplication parameters.

We also define a relational parameter between these sets.

Definition 1 (scr) Segment compression ratio. scr = |C|/|L| where L = {logical segments}
and C = {content segments}.

The scr obviously represents how much of the data is actually redundant in terms

of segment count. Typical data deduplication systems have some bounded segment size

which ensures that scr closely reflects the actual data reduction.
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(a) exchange (b) exchange is

(c) exchange mb (d) fredp4
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(e) fredvar (f) workstation

Figure 7.0: Composition of segments for different datasets. Graphs show how the
composition of segments changes over time as weekly full backups are deduplicated.

7.2 Description of the Experimental Datasets

Six different datasets shown in Table 7.1 were used in our evaluation. Due to pri-

vacy concerns, only the SHA1, size and the backup order of the segments were made

available.1 We refer to this data as segment trace.

The exchange, exchange is and exchange mb datasets are all Exchange server data

encoded in different ways. The fredp4 dataset contain a revision control system data

and fredvar contain data from /var directory in the same machine. The workstation

dataset contains data from the home directories of several users.

The segment trace is not of the entire original dataset. Unfortunately, the data

presented to us were of the data that is truncated from a larger dataset. Although a

truncated dataset is used, it does not effect the methodology presented in this paper.

1 The actual data provided also contained compressed size of the segment, stream offset which
represents where the segment is located in the original dataset. The compressed size is unused since the
local compression of segments is not of interest in this study and stream offset is redundant information
which can be deduced from the order and the size of the segments.
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This is because we characterize the datasets based on how deduplication system pro-

cesses them. There are only a specific range of data characteristics from deduplication

system’s point of view. And these truncated datasets are used to show where in this

range a particular dataset may lay. We could easily have done same analysis with the

synthetic traces since their characteristics cannot lay outside this range regardless of

how we generate the trace.

The system parameters for data deduplication system is described in the Table 7.2.

The cache size for the content dictionary is kept reasonably small to capture the effect

of cache misses. Since the maximum raw throughput of the system is IO limited at

50MB/s, you can see that the throughput of different datasets vary from being close to

the maximum throughput to about 50% of that throughput.

As mentioned earlier, there is a strong linear relationship between the compres-

sion ratio and the throughput. The sample correlation coefficient, rct = −0.98 (where

c = compression ratio and t = throughput), suggest that higher compression (lower

compression ratio) results in higher throughput. While it may seem that compression

ratio is the dominant factor in determining the throughput since the two are so highly

correlated, the system for which the throughput numbers are reported are in-line dedu-

plication systems where all segments must be compared against the content dictionary

before it can be stored on the disk. Therefore, the elimination of duplicate segments

not only results in dictionary update but also additional disk writes. In systems where

data may already all be written to the disk before being looked up in dictionary may

not perform in exactly the same manner. Therefore, we concentrate more on dictionary

access pattern to analyze potential throughput concerns.

The segment trace contains 5 weekly full backup information of 6 different datasets

and 5GB of each full backup. Therefore, all data presented in Table 7.1 are of the same

size at 25GB. The variation in number of segments is due to variation in average segment

size. Compression ratio provided in the table is compression due to data deduplication

process only and does not include additional compression provided by local compression

of segments using traditional data compression tools.
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7.3 Data Characterization

An obvious and perhaps the most important data characteristic for data deduplication

is amount of redundancy. Two datasets of equal redundancy would yield in similar com-

pression assuming the content generation was done in a reasonable manner. However,

they could perform very differently depending on the other aspects such as locality of

segments and fragmentation due to elimination of duplicate segments. The difficulty

in characterizing workload of data deduplication is that the characteristics is actually

dependent on the contents. While access patterns and physical attributes such as size

of files tends to follow a well known distributions in a large scale [72, 73], contents

themselves are random in nature due to human factor and different encoding deployed

by different applications.

7.3.1 Composition of Segments

Figure 7.0 shows how the composition of segments, as defined in Figure 7.1, changes

over time for each dataset at a full backup granularity. The composition of the segments

is quite different for all datasets. In the figure backup number represents accumulated

number of full backups stored in the system. We make a few observations from the

composition.

Observation 1 Amount of duplication found within a single full backup is negligible

compared to the duplication found across the full backups.

This is an observation also made by other deduplication works on backup data [24].

This observation allows us to look at the changes in the composition of segments as

results of deduplicating a full backup instance against other instances of full backup.

While non-zero unique and base segments at backup number 0 in Figure 7.2d, Figure 7.1e

and Figure 7.1f indicate that there exists some inter-duplication within a backup, the

amount is negligible and we ignore its effect in this paper.

Observation 2 For the base segments there are two distinctive case where number of

base segments increase with number of fulls as in Figure 7.2b and Figure 7.2d and case

where number of base segments stay steady as shown in Figure 7.2a, Figure 7.1e and

Figure 7.1f.
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This observation can be made more pronounced in Figure 7.1a.

The number of base segments can only increase in the absence of the deletion.

Once a segment becomes a base segment, it cannot become any other type of segment.

Therefore, the number of base segment can only stay steady if there is no or very little

amount of new base segments are created. We can conclude that in this kind of dataset,

the unique segments stays unique segments while the same set of base segments keeps

getting duplicated.

Conversely, the increase in number of base segments mean that the unique segments

of previous backup number is getting converted to the base segments. This happens

only when a newly generate data at backup number i still exists at backup number i+1.

We assume that no base segments are generated within a full backup instance based

on the observation 1. We call this rate of conversion base generation rate(bgr) which

is bounded by the number of unique segments in previous backup number and is larger

than or equal to 0.

We formally define bgr below.

Definition 2 (bgr) Rate at which unique segments are converted to base segments.

bgri = |Bi+1|−|Bi|
|Ui| where the subscripts represent the backup number. We define bgr to

be average value of bgri, bgr =
∑
bgri

max(backupnumber) .

Observation 3 The number of unique segments either increase steadily as shown in

Figure 7.2c and Figure 7.1f or stay relatively steady as in the rest of the figures in

Figure 7.0. While the number of unique segments can decrease, it does not happen very

often.

The number of unique segments, |U |, at backup number i is increase by amount of

unique segments generated by that particular full backup and is decreased by amount

of unique segments at backup number i − 1 converted to base segments2 at backup

number i. Since the amount of decrease in |Ui+1| is |Ui| × bgri, we also need to define a

parameter to represent the increase in |U |, unique segment ratio(usr). This ratio does

not represent the changes in the number of unique segments, |U |, since there is also

conversion of segments from unique to base.

2 Conversion to duplicate segments is also possible but is ignored due to observation 1.
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Definition 3 (usr) Relative amount of unique segments within a full backup. usri =
|Ui+1|−|Ui|(1−bgri)

|Li+1| . We define usr to be average value of usri, usr =
∑
usri

max(backupnumber) .

From the definition of usr it is obvious that we cannot simply determine the rate

of unique segment generation from looking at the changes in |U |. However, since it

is possible to determine the bgr from also looking at the changes in number of base

segments, |B| which in turn allow us to calculate usr . Since increase in |B| is only

possible due to bgr, if increase is very small, we can assume that bgr ' 0. This allows

us to think that usri = Ui+1−Ui which means that unique segments in backup number

i no longer exists in backup number i+1 or else they would have become base segments.

This pattern is most pronounced in Figure 7.1f. Intuitively, the pattern suggests the

existence of a small and heavily updated working set within the file system as suggested

by [74]. Similar analysis could applied to Figure 7.2c where almost the entire dataset is

a working set.

Cases where |B| actually increase with the backup number, bgr represents the rate at

which new data becomes part of non-working set. It suggest that part of the working set

becomes stable over time and becomes base on which future segments are deduplicated.

Extreme case is shown in Figure 7.2d where the effect of bgr starts to outweigh the effect

of usr and the number of unique segments actually decrease. This is the most desirable

case for the data deduplication where amount of data to be store grows sub-linearly and

therefore more scalable in terms of backups you can store. It will also be shown that

the throughput also tends to be higher in these cases for similar compression.

Cases seen in Figure 7.2a and Figure 7.1e suggest that there exists only a small

change between the backups. While this is also a desirable case for data deduplication,

it may also be argued that for a storage system with such little activity, a longer period

of incremental backups could provide similar performance.

The logical size, usr and bgr of a dataset completely describes the dataset as long as

there is no deletion involved. Furthermore, they do not vary as much as dcr over time.

Therefore a aggregated values of usr and bgr are much better choices of parameters to

describe a dataset. They show how much of new data is generated (|L|∗usr), how much

of that data will be changed again before the next full (1− bgr). Together, they allow

you to calculate the compression ratio at time i+ 1 by following these steps.
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1. |Bi+1| = |Ui| ∗ bgr i + |Bi|.

2. |Ui+1| = |Li+1| ∗ usr + |Ui|(1− bgr i).

3. Calculate |Di+1| and scr from above two values.

7.3.2 Segment Run Length

In section 7.2, we showed that the compression ratio and the throughput of a dedupli-

cation system can be highly correlated. Figure 7.2 shows throughput vs. compression

ratio of each backup instances. This graph together with Figure 7.3 shows that the

compression ratio is indeed a most relevant factor in determining throughput. However,

Figure 7.3 shows some skewness both in Residual vs. Fitted graph and Residual vs.

Leverage graph. They suggest at other factors that affect throughput which are not

simply white noise.

Figure 7.2 also shows a linear estimation line. One interesting observation is that

there are some datasets which perform consistently better than the estimation. These

are exchange is, fredp4 and fredvar datasets. On the other hand, workstation dataset

performs consistently worse than expected.

To quantify this effect, we take look at the deviation of throughput numbers from

the regression line as shown in Table 7.3. These numbers are not absolute deviation.

These are average values of actual throughput− expected throughput and removes the

effect of the compression ratio from the throughput numbers. As explained in section

7.1, the content dictionary is the only place where this variation in performance due

to content could occur. Note that all data are of the same size, written sequentially

once. While content store actually stores less if more segments are deduplicated, this

performance difference is likely to be linear to the amount of data stored. Since we have

removed this linear factor and concentrate only on the deviation, the effect must be due

to on content dictionary behavior.

To evaluate the content dictionary behavior, we first look at the sequential runs of

segments. A longer sequence of a run represents a sequential access of content dictionary

making it easier for the dictionary cache to be a hit. A run is simply a sequence of

consecutive segments that are either unique or duplicate segments. We refer to them as
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Dataset Average Max Average Run Len.
Deviation Run Len. Run Len. > 1000

fredp4 1.532 207400 7.944 57%
exchange is 1.375 392000 15.88 27%

fredvar 0.852 366200 28.88 76%
exchange 0.217 183100 30.53 64%

exchange mb -0.722 7490 18.6 13%
workstation -3.260 5632 6.635 9%

Table 7.3: Average Deviation from the expected throughput and their corresponding
run length information

a content run and duplicate run respectively when need to distinguish between them.

Table 7.3 shows aggregated run data. We make following observations.

Observation 4 The average run length varies little across the datasets and shows little

correlation to the throughput. However, the maximum run length varies significantly

across the datasets and show high correlation.

The correlation coefficient of maximum run length and the average deviation is

r2 = 0.63. It is high enough that we can safely assume there is significant correlation

between the two values. The correlation coefficient of average run length and the average

deviation is only r2 = 0.002. The obvious reason is that the mean values of run length

does not represent anything physical when the significant portions of the data lay in

outlier regions. The last column of Table 7.3 shows that the over 50% of the segments

fall in a run length of over 1000. It is interesting to note that the fredvar and exchange

datasets suffer in throughput even though they have the highest percentage of large

runs. It leads us to our next observation.

Observation 5 Datasets with high average run length due to many extremely large runs

perform worse than cases where the run length are more evenly distributed.

The skewed run length has a negative impact on performance not because of the

content dictionary but the content store. While it is obvious that less amount to be

stored result in high logical throughput as described earlier, the arrival rate of segments

to the content store is also important. In a simple queuing model, the arrival rate at
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the content store is simply (1−p)S where S is the throughput of the content dictionary

and p is content dictionary hit probability. If p was uniformly distributed, that the

arrival rate would simply be a function of compression ratio. However, as the skewed

distribution of run length shows, p of each segments are highly correlated. The effect is

bursty arrivals at the content sore resulting in high queue length and lower throughput

as shown in Figure 7.4. It is shown that the effect of run length is less pronounced

for datasets with higher compression ratio. The all miss case is the worst case where

every segment is sent to the segment store and rand is the best case where run length

distribution is uniform.

The run length analysis shows that while the throughput is highly correlated with

the compression ratio, higher run length typically results in higher throughput. Addi-

tionally, skewed run length which typically results from few very long runs, results in

lower throughput especially when the compression ratio is low.

7.4 Applications

Above analysis of composition of segments allows users of deduplication systems to

collect specific statistics to predict future storage requirements. In the world of dedupli-

cation where the physical storage space and the logical segment space does not match,

it is difficult to provision storage space. Extracting bgr and usr from the deduplicated

data allow users to better predict future storage requirements.

For the given six test datasets, we use bgr and usr of the first three fulls to predict

the compression ratio of 4th and 5th full and compare them with the dcr approach.

For example, the bgr1 ∼ 0.01 and usr1 ∼ 0.26 for workstation dataset. Since

|Li| ∼ 393311, we can predict future segment composition given backup number 2

information. Figure 7.5 shows the graph of the original workstation composition and

the graph of predicted composition. Since the parameters were extracted from the

backup number 1 and 2, the accuracy of prediction falls as the number of fulls increase.

Of course, the accuracy of the prediction itself is also dependent on the dataset and the

worst case error was observed in exchange dataset where the scr at backup 4 was off

by just over 0.02(∼ 5% error). This is much better approach than simply observing the

compression ratio. For fredp4 dataset the dcr prediction is off in compression ratio by
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datasets dcr usr & bgr

fredp4 35.99% 3.68%
exchange is 9.20% 2.21%

fredvar 7.35% 0.21%
exchange 17.82% 5.42%

exchange mb 0.14% 0.20%
workstation 3.61% 0.61%

Table 7.4: Compression ratio prediction error comparison

0.18 (∼ 36% error).

Table 7.4 shows our approach outperforms the traditional dcr approach in all but

exchange mb dataset where the error is about the same.

Another potential application is evaluating the impact of merging two separately

deduplicated data. Unless there is a reason to suspect a large similarity between the two

datasets, parameters of each dataset can be superpositioned to predict the composition

of combined dataset.

A more involved application would be to filter out the working set from being

deduplicated. Various techniques exists to evaluate the working set of a storage sys-

tem [75, 57] which can be used to identify hot data and pass only those deemed cold

to the deduplication system. This would be especially useful for datasets with low bgr

where same portions of the data are constantly changing. This portion can deemed

unworthy of deduplication and is backed up separately.

The analysis of run length suggest that it maybe more beneficial for the through put

if the inter-duplicate segments are ignored. That is we only evaluate duplicate segments

generated between the full backups. These single or dual duplicate segments fragment

the index table and potentially the contents on disk without providing any substantial

gain in compression.

Last application maybe to adjust buffer sizes at each stage of deduplication based

on the run length observed to minimized skewed arrival effect.
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7.5 Limitations

Many deduplication systems allow the segments to be stored without duplicate detection

for the better throughput [27, 19]. This does not cause correctness issue. However, it

makes predicting performance even more difficult. In this study we assume that all

duplicate segments must be identified and eliminated. There has also been attempts to

make better decisions on identifying the data segments from the dataset [25, 24, 16]. We

claim that the segments, regardless of how they are defined, define datasets in terms

of data deduplication process. This claim assumes that different datasets will have

statistically similar relative compression and performance regardless of the segmentation

process. In other words, segmentation process affects different dataset in statistically

similar way. For example, if dataset A gained compression ratio by 10% while losing

throughput by 5% by using the new segmentation method, than dataset B is highly

probable to gain in compression and lose in throughput by similar amount. While this

assumption is actually verifiable, lack of datasets prevents us from providing strong

statistical guarantee. However, previous analysis of segmentation algorithms [24] as

well as our own tests indicate no evidence to reject our assumption.

7.6 Conclusion

We have shown a framework for characterizing datasets by analyzing how different

datasets behave within a data deduplication system. For the datasets presented here,

we show that there are classes of datasets which behave similarly.

We also show that the changes in the number of base segments is more important in

terms of scalable data compression than the simple compression ratio. More specifically,

a positive bgr guarantees continuing reduction in the compression ratio resulting in sub-

linear growth in the storage requirement. Intuitively, bgr represents life time of new data.

High bgr means that newly created data are long lived and low bgr means that they

are short lived. Since usr represents amount of new data created, their ratio tells you

how much of the new data is transient and how much are more permanent. Generating

more and more permanent data means more data to be deduplicated at each back up

resulting in better compression ratio.

We also show that the segment run length has a fundamental effect on the dictionary
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lookup process both in terms of the cache behavior and queuing delays, which can

counteract each other in terms of throughput. More specifically, the typical belief that

high average run length results in better throughput is not true. In fact, it can lower the

throughput due to skewed arrival rate the content store. However, high maximum run

length tends to improve performance due to good caching effect of content dictionary.

Simply put, one can estimate throughput based on the compression ratio using a C/R

vs. throughput regression line for a given system and can further expect the throughput

to be better or worse based on the run length information.

Lastly, we showed that we can increase the accuracy of compression ratio prediction

by as much as 80%. Furthermore, we can accurately predict the composition of segments

which allow us to determine the existence of frequently updated data which does not

have to be deduplicated.
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(a) Base segments (b) Duplicate segments

(c) Average references

Figure 7.1: Comparison of data sets. Number of references are simply |D|/|B|. There-
fore, exchange is and frep4 show lowest average number of references since their number
of base segments increase with the number of duplicate segments. For all other segments,
the number of base segments stay relatively steady indicating that same portion of the
data is changing over and over again.



89

Figure 7.2: C/R vs. Throughput. The accumulated compression ratio of each dataset
at each full backup is plotted against the throughput for that particular backup window.
You can observe that the throughput increases as the accumulated compression ratio
decreases even though every full backup is equal in size.
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Figure 7.3: Analysis of C/R vs.throughput. The top left graph shows that while the
regression is a good fit, data around throughput value of 40MB/s to 50MB/s tends to
out perform expected throughput. Top right graph shows square root of residual error.
The backup instance 5, 22 and 29 show a large deviation (from exchange, fredvar and
workstation datasets respectively). The lower left graph shows that the residual errors
are more or less normally distributed with the exception of 4, 21, 29 (from exchange,
exchange is and workstation datasets respectively). The lower right graph shows the
Cook’s distance. Backup instance 5 is less than 0.5 Cook’s distance away and can be
safely taken into evaluation.
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Figure 7.4: Run length vs. compression ratio vs. queue length.

(a) Real Data (b) Predicted Data

Figure 7.5: The original segment composition of workstation and the predicted values.



Chapter 8

Related Work

8.1 Storage IO Workload Characterization

Characterizing the workload for storage subsystems started as early as 1965 in order to

simulate computer system performance [76]. For almost two decades, the main focus of

the characterization was on the arrival rate of IO requests [76, 77, 78]. Hence, a simple

queueing model was used to describe storage system behavior [79].

At around the same time, synthetic benchmarks that takes record sizes, number of

records, read rate, write rate and number of files became available [80, 45]. A plateau

of works on measuring real workloads in production systems followed [81, 58, 10, 1, 82,

83, 84, 85, 86, 87]. Consequently, comprehensive and complex storage models [88, 89,

90, 91, 92] as well as storage benchmarks followed [93].

Importance of locality in sub storage systems was shown to be important in the

80’s [94]. However, the efforts to quantify locality in storage systems have began only

recently. Two different approaches exists. One approach relies on the fact that the

autocorrelation of LBN sequence tends not to decay exponentially [95]. This effect

is known as the long memory effect and can be quantified using Hurst exponent [96].

The other approach takes a more traditional approach of Stack Distance [97] and Seek

Distance [98].

These new ways of describing workloads allows us to gain new insights into the

workloads. However, previous works have failed to link these new characteristics to the

way the workloads interact with storage systems rendering the insights to be somewhat
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interesting but less useful.

There exists another set of characterization that relies on extracting a set of com-

ponents from the workload so that the workload can be synthetically generated [99].

Theses techniques typically rely on unintuitive parameters that cannot be meaning fully

controlled. Therefore the application of these characteristics are limited to replaying a

specific trace only.

8.2 Data Deduplication

The workload presented in typical deduplication systems paper are either from a pri-

vately accessible systems [23, 30, 100, 14, 19, 15] or a relatively small dataset of specific

type in public domain [101, 24, 25]. However, either techniques allow a direct compar-

ison of different systems if the dataset under evaluation is completely different or if it

only covers a dataset of a particular characteristics.

There have been few work in trying to statistically characterize the input dataset

to various benchmark programs [102, 103, 104]. However, these papers concentrate on

generic sub-setting of dataset so that different characteristics of application is explored

statistically hence lacking in accuracy when it comes to predicting exact performance

variances.

Numerous works have also been applied in filesystem activities and its contents [105,

73, 105] with one paper using a simple statistical analysis to characterize a filesystem

impression [106]. While these approaches all reveal some interesting intuitions of how

we use storage systems, the scope is too generic to be neither accurate or simple enough

to be applied in real systems. More specific workload analysis have been targeted to

SSDs [74] and we use some of their approach in our analysis.

8.3 Storage Consolidation and Resource Management

Our experiments have revealed that storage workload and storage device models are

highly inter-dependent. This confirms observations from other works [57, 2].

Early efforts to automatically manage storage resources in a virtualized environment

such as VectorDot [69] ignored the workload and simply concentrated on utilization of
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each storage system. A workload from the over-loaded device is simply migrated to

a less loaded device. This approach would fail to work in a heterogeneous storage

environment since the resulting performance is unknown. Furthermore, the goal is not

to simply ensure that no storage system suffers from over-utilization but to minimize

the performance degradation caused by resource sharing across all workloads.

Other work has focused on highly accurate latency prediction of workloads across

storage devices but this has come at the cost of practicality by requiring extensive off-

line experimentation and modeling. For instance, Wang et al. [57] developed CART

models off-line to develop workload-storage models. In contrast to their work, Romano

aims to be learn storage behavior quickly using online calibration without resorting to

intrusive off-line methods.

Earlier work in this area include Basil [60] and Pesto [61] which propose creating

separate workload and device models and using heuristics to perform load balancing.

The underlying assumption is the independence of the two classes of models. A com-

mercial product [53] based on Pesto is now available. Whereas Basil and Pesto have

very good average behavior, they suffer from severe corner case model inaccuracies. For

example, it was shown in their work that the prediction error can be more than 10 times

larger than the latency it predicts for sequential workloads. These can lead to bad data

movement recommendations. To address these shortcomings, Pesto applies aggressive

cost-benefit analysis to prune out potentially bad moves. The inadvertent result of this

pruning to deal with model inaccuracies is that many highly beneficial moves are also

left out.

Romano proposes to deal with these problems by creating a model capable of de-

termining its own confidence of prediction using prediction interval [107]. Furthermore,

Romano is capable of quantifying the effect of the workload characteristics and their in-

teractions for a given data store resulting in much more accurate and robust modeling.



Chapter 9

Conclusion and Discussion

9.1 Summary

In this thesis, we have shown that utilizing statistical tools allow us to analyze and

design storage systems in a workload dependent manner. Rather than trying to find

one or few points in the workload space that are representative, quantitative description

of the workload and its interaction with the system provides not only insight into the

complex and stateful system but also allow us to design a system that is more robust

and efficient.

To quantify the interaction between the workload and the system using synthetic

workloads, we have shown that it is better to use a single benchmark with better con-

trolled input vector than to use different benchmark programs. One technique called

PB method was shown to generate an efficient input vector of size linear to the number

of parameters with an assumption that all parameters have a monotonic effect on the

performance. Such dramatic decrease in the input vector size allows user to repeat

experiments to increase confidence of the experiment.

It is also shown that 2 to 4 input parameters are capable of covering the majority of

storage system’s operational space. This counter intuitive result shows that we can fur-

ther reduce the size of the input vector, allowing us to run more exhaustive experiments

to gain more that the first order effects.

We used such technique to create a storage performance model. A full-factorial linear

regression is performed using only 4 parameters. The resulting model is surprisingly
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accurate for static workloads. More importantly, the model is well behaved. We show

that misprediction falls closely to the target confidence level.

The main benefits of the proposed model is ease with which the model could be

updated with the performance data monitored at runtime, ability to trade the confidence

interval with statistical significance and generality of the method.

Based on the model we have designed a load balancing mechanism, called Romano,

for virtualized environment with heterogeneous workloads and storage systems. We have

shown that Romano can outperform previous systems with same goals by up to 80%

in prediction accuracy. This increased accuracy results in 78% reduction in maximum

latency observed and 82% reduction in variance while load balancing.

We have shown that the performance differences between data stores cannot be

described with a single number. More specifically, we have shown that the storage

performance must be described in terms of the workload.

The last contribution follows the second contribution. Since the performance of

storage systems effectively change with the workload, the load balancing problem is no

longer a bin-packing problem as previously believed. Therefore we present a probabilistic

approach to finding a pseudo-optimal mapping of workloads to the data stores. It is

important to mention that probabilistic approach is only used to find the final state of

the system and the moves are actually made greedily to speed up the convergence and

minimize the number of moves that has to be made.

We believe that Romano not only provides means for more efficient load balanc-

ing but also in many other areas such as QoS management, power management and

performance tunning in tiered storage.

If the system-workload interaction is simple enough for a given metric, we can gain

a much more precise result by analytical model of underlying interaction. We demon-

strate such model of compression ratio by analyzing how the data deduplication system

interacts with the backup workloads. By simply analyzing how the unique segments are

generated and converted to duplicate segments, we were able to improve the prediction

accuracy by as much as 80% compared to simple method using average data change rate.

Furthermore, because the throughput of the deduplication systems linearly depends on

the compression ratio, we were able to get insights into the potential future throughput

as well.
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In this dissertation, we have evaluated techniques to parametrize workload charac-

teristics in terms of how it affects the system behavior. We have shown that the correct

parameterization simplifies the system response model allowing easier online updates

of the model. These models are capable of predicting future behavior of the system

allowing system administrators to simulate system changes without actually making

changes. Furthermore, deterministic nature of the models allow programs to simulate

changes and optimize the system for a given goal.

9.2 Future Work

9.2.1 Characterizing Dynamic Behavior of the Workload

In this work, we have characterized static workload characteristics and observed how

it is varied over time. The interaction between the system and the static workload

is modeled which is simply applied to time series of of the characteristics to estimate

the performance. We assume that by carefully choosing workload characterization pa-

rameters the effect of statefullness allowing a memoryless model to predict the system

performance. However, in reality we know that this does not always work. For ex-

ample, the garbage collection pattern in solid state disks [108] or content addressable

storage [109] cannot be described using memoryless model. Furthermore, the workload

themselves have shown to have a long memory process properties [96] and does not

render itself easily to such models.

We have initially evaluated means to capture time domain properties as well as

spatial domain properties by evaluating entropy rates. The technique is similar to

PQRS [57] but allows dynamic characterization at run time.

The goal would be to able to generate workloads of some duration given a set of

characteristics parameters.

9.2.2 Locality Characterization

One of the key performance determinant in a storage system is how the workload in-

teracts with its cache. With reducing cost of SDRAM and NAND flash, cache sizes of

over 1/1000th of underlying storage system is becoming viable. We have found that the
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block accessed at time t have a very low probability of being accessed again before t+δt

for some δt. However, it is highly likely that the block close to the block access at time

t will be accessed with in δt. Based on the observation, we are evaluating a technique

that allows us to predict the effectiveness of the data prefetching through cache block

size control.
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