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Abstract 

 
Alastair K.O. Denniston, Academic Unit of Ophthalmology, School of Infection and 

Immunity, College of Medical and Dental Sciences, University of Birmingham 

 

A thesis submitted to The University of Birmingham for the degree of 

DOCTOR OF PHILOSOPHY 

 

The ocular microenvironment is immunosuppressive in animal models of antigen 

presenting cell function. My hypothesis was that in humans the normal ocular 

microenvironment maintains an immature dendritic cell (DC) phenotype, whereas in 

intraocular inflammation (uveitis) this regulation fails, permitting full DC maturation 

leading to the production and recruitment of pathogenic effector T cells to the eye. 

Using an in vitro model of DC function, I observed that non-inflammatory aqueous 

humour (AqH) inhibited DC maturation, with reduced MHC and CD86 expression, 

and reduced capacity to induce proliferation of allogeneic T cells, an effect which was 

cortisol and TGFβ2 dependent. In contrast, exposure to uveitis AqH generated a 

distinct DC profile with IFNγ dependent elevation of MHC class I, but reduced MHC 

class II and CD86 expression and impaired induction of T cell proliferation. Exposure 

to uveitis AqH from patients on topical glucocorticoid treatment caused additional 

suppression of CD86. 

Characterisation of ex vivo myeloid DC from patients with uveitis supported the 

findings of the in vitro model, with AqH-derived myeloid DC showing elevated 

MHC, but reduced CD86 expression. 

In summary human AqH is shown to be a powerful inhibitor of DC maturation, 

retaining this regulatory role during uveitis. 



 

To Anna, and the many like her 

 

 

 

Two weeks ago Anna could see ...  

But today, Anna is in trouble. Her own immune system has turned against her. White blood 

cells known as leucocytes have infiltrated most of the major structures of the eye. There are 

so many that I cannot see in much more than Anna can see out. At the back of the eye, the 

critical light-sensitive retina resembles the victim of a microscopic paint-ball competition. 

Clusters of leucocytes choke the retinal vessels and spill over into the surrounding tissues. 

The immune system is running riot. 

Most of the time our eyes live in their own protected little world. They travel in the "quiet 

coach" of the human body in which the most dramatic thing that should ever happen is a 

change in the view. It is a civilised place, in which even the immune system is on low 

volume. Most of our research underlines the ways that the immune system is kept in check 

within the eye. Inflammation inside the eye should not happen. But sometimes, as with 

Anna, the eye's immune system ramps up the volume, releasing the destructive 

inflammatory process of uveitis. 

Most uveitis is unexplained. We are good at describing it, reasonable at classifying it, 

moderate at treating it and, as yet, terrible at understanding it. In our research we probably 

get closest to what is going on through taking precious fluid samples from the front of the 

inflamed eye. 

Detailed study has allowed us to start building an accurate picture of the types of white 

blood cells involved during an attack of uveitis. We only have snapshots, but from these 

images we are steadily working backwards towards the key events that kick this whole 

process off. Uveitis should not happen. But it does, and it can blind people. 

I want to know why uveitis happens. I want to know because Anna is sitting in front of me 

in the clinic, and we've been filling in the forms that will officially register her blind. I 

want to know because she can't go back to her job. I want to know because the best 

treatments we had weren't good enough. And I want to know so that, next time, I have 

something more to offer. 

 

From ‘Blind Ignorance‟ by Alastair Denniston, MRC Max Perutz Science Writing 

Competition  

Reproduced from the Guardian (on-line edition) at 

http://www.guardian.co.uk/education/2009/sep/04/blindness-uveitis-max-perutz-prize 
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Chapter One General Introduction 1 

1 GENERAL INTRODUCTION 

1.1 The hypothesis and its context 

 

The primary role of the eye is to facilitate vision. Integral to this function is a 

transparent visual axis permitting light to pass through cornea, aqueous humour, lens 

and vitreous to reach the retinal photoreceptor layer which performs the remarkable 

feat of transducing light to nerve impulses.  

 

In order to maintain this clear visual axis, the eye is one of a number of structures that 

has a relatively protected relationship with the immune system, known as immune 

privilege (Medawar, 1948; Kaplan and Niederkorn, 2007). Thus by a number of 

different strategies it achieves the balance of permitting the immune responses 

required for protective immunity, and at the same time restricting these responses to 

prevent significant pathological damage which might obstruct vision (Streilein, 

2003b; Streilein, 2003a). 

 

However potentially blinding intraocular inflammation (known as uveitis) does still 

occur. This can be due to intraocular infection, but most uveitis is non-infective and is 

thought to be an autoimmune (or at least an autoinflammatory) phenomenon. There is 

clear evidence from both human and animal work that activated T cells are involved 

in the pathogenesis of uveitis (Muhaya et al., 1999). It is proposed that, as in other 

organ systems, these T cells have been activated by mature dendritic cells (DC), 

typically within the draining lymphoid tissue(Guermonprez et al., 2002; Steinman, 

1991). The site of DC maturation is not known, but is most likely to occur in the eye 

with trafficking of mature dendritic cells (mDC) to the draining lymphoid tissue 
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(Streilein, 2003a; Streilein, 2003b). Alternative and quite possibly coexisting 

mechanisms include the drainage of soluble antigen (accompanied by inflammatory 

cytokines and other molecules from the ocular microenvironment) to the lymphoid 

tissue with processing, maturation and presentation by a resident lymphoid DC or 

local antigen presentation within the eye by resident ocular DC to incoming CD4+ T 

cells (Camelo et al., 2006; Camelo et al., 2004b; Dullforce et al., 2004).  

 

My central hypothesis is that the normal resting ocular microenvironment 

maintains a relatively immature DC phenotype which generates anergic or 

regulatory T cells, whereas in intraocular inflammation (uveitis) this regulation 

breaks down permitting full DC maturation resulting in production and 

recruitment of pathogenic effector T cells to the eye.  

 

 

 

Figure 1.1 Schematic representation of the hypothesis.  
My hypothesis is that the normal resting ocular microenvironment maintains a 

relatively immature DC phenotype which generates anergic or regulatory T cells. In 

contrast in uveitis I propose that this regulation breaks down resulting in full DC 

maturation and inducing an effective adaptive immune response with T cell 

proliferation and recruitment to the eye. 
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In the following introduction, I outline the immunological context of this hypothesis 

in more detail. I will consider the dendritic cell first within the framework of the 

normal immune system, second within the unique microenvironment of the normal 

eye and finally within the dysfunctional microenvironment of the uveitic eye.  

 

1.2 The dendritic cell and its role in immunity 

 

The immune system is a remarkable series of inter-related defence mechanisms which 

protect the host from danger, whether external (invasion by pathogens) or internal 

(neoplasia). The immune system can be broadly divided into innate and acquired 

processes. Innate immunity provides an immediate line of defence, and is of sufficient 

efficacy to deal with the majority of potential pathogens encountered in peripheral 

tissue.  The target requirements of innate immunity are either non-specific or of broad 

specificity to ensure defence against a wide-range of pathogens. Key components of 

the innate system include the barrier itself (surface epithelium), specialised leucocytes 

(macrophages, neutrophils, natural killer cells, mast cells, eosinophils, basophils), and 

secreted molecules (acute phase response proteins, complement, and interferons).  

 

In contrast, the processes of acquired immunity are highly specific, enabling a highly 

potent but customized response to almost any pathogen encountered. The acquired 

immune system also has „memory‟, whereby any further encounter with the same 

pathogen will generate a faster and amplified response. The key players of the 

acquired immune system are lymphocytes, either B cells (which secrete antigen-

specific antibody) or T cells (which may have a „cytotoxic‟ role to kill infected cells 

or a cytokine-producing/„helper‟ role). 
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DC are bone-marrow derived leucocytes that provide a crucial link between the innate 

and adaptive immune responses. They are highly specialised antigen-presenting cells 

(APC) that respond to the presence of pathogens and inflammation at peripheral tissue 

sites, migrating to secondary lymphoid organs where they present antigen to either 

naïve or memory T cells, leading to T cell proliferation and differentiation towards 

effector cells (Steinman, 1991; Reis e Sousa, 2004a; Reis e Sousa, 2006; Rossi and 

Young, 2005). It is the DC that provides the initial signals that determine both the 

magnitude and quality of the T cell response (and via T helper cells, the B cell 

response). The DC is thus central to the potent and pathogen-specific defence 

characteristic of the acquired immune response (Reis e Sousa, 2004a; Reis e Sousa, 

2006; Rossi and Young, 2005; Moser, 2003). 

 

1.3 The paradigm of DC function 

 

Our current understanding of antigen presentation is still largely based on studies on 

the Langerhans cell, a type of dendritic cell found in the epidermis.  

 

In 1985 Steinman and colleagues showed that freshly isolated Langerhans cells 

expressed high levels of MHC class II but were poor at stimulating T cell proliferation 

in a mixed lymphocyte reaction. In contrast after two days of culture they became 

much more potent at simulating T cell proliferation (Schuler and Steinman, 1985; 

Inaba et al., 1986), but lost the capacity to process antigen (Romani et al., 1989). 

Parallel behaviour was observed in vivo by Austyn and colleagues, who noted that 

Langerhans cells from skin transplants and explants emigrate to lymphoid tissues, 
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undergoing a phenotypic „maturation‟ in the process and losing the ability to process 

antigen (Larsen et al., 1990; Reis e Sousa et al., 1993). It was subsequently shown that 

„maturation‟ could be induced both in vitro by the addition of inflammatory cytokines 

(notably TNFα), LPS or CD40 ligation (Sallusto and Lanzavecchia, 1994; Winzler et 

al., 1997), and in vivo by the addition of LPS (Roake et al., 1995; De Smedt T. et al., 

1996). 

 

In the simplest form of the paradigm, DC resident in the tissues encounter and process 

antigen in the context of a „danger signal‟ such as LPS or TNFα, and „mature‟ in 

terms of their chemokine receptors (to enable migration to the draining lymph node) 

and costimulatory molecules (to induce efficient T cell proliferation). In recent years 

this paradigm has had to evolve. First, the simple linear concept of maturation has 

struggled to encompass the range of DC behaviour observed in vitro and in vivo, 

particularly with regard to DC-induction of tolerance. Second, more recent studies in 

the skin show that a subcutaneous injection of antigen actually gives rise to three 

waves of antigen arriving in the draining lymph node: (1) soluble antigen which is 

then internalized by interdigitating DC (at around 90mins); (2) antigen borne by 

dermal DC (at around 24h); and (3) antigen borne by Langerhans cells (at around 48h) 

(Sixt et al., 2005; Kissenpfennig et al., 2005).Third, it has become clear that in 

addition to the „migratory‟ DC of the paradigm, there are significant populations of 

non-migrating lymph node resident DC. Even within the Langerhans cell model, a 

number of studies have failed to show that the migrated cells directly induce T cell 

proliferation (Allan et al., 2003; Itano et al., 2003), and it now seems increasingly 

likely that there is transfer of antigen from migratory DC to lymph node resident DC 
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(such as the interdigitating DC) with subsequent antigen presentation by the resident 

DC (Carbone et al., 2004).  

 

1.4 Classification of DC 

1.4.1 Subsets of human DC  

 

There are two major subsets of DC that have been identified from human blood: 

conventional myeloid DC and plasmacytoid DC. Conventional myeloid DC have a 

classic dendritic morphology and can be further subdivided on the basis of their 

surface molecules The most common (0.6% of all PBMCs) are CD1a
+
 BDCA-

1(CD1c)
+
CD11c

high
 BDCA-3

low
 and are designated type-1 MyDC (Dzionek et al., 

2000). The lesser population (0.04% PBMC) are CD1a
-
 BDCA-1(CD1c)

-
CD11c

low
 

BDCA-3
high

 and are designated type-2 MyDC (Narbutt et al., 2004). Both populations 

are effective stimulators of T cells which may be enhanced by coculture with GM-

CSF. In contrast plasmacytoid DC (0.4% PBMC) have a rounder morphology, and are 

poor stimulators of T cells unless stimulated with IL-3 and CD40L. They are 

functionally distinguished by the ability to produce high levels of IFNα in response to 

virus. They are BDCA-2+BDCA-4+ but are CD1a
-
BDCA-1

-
CD11c

-
BDCA-3

-
 

(Kadowaki and Liu, 2002).   

 

Although most studies of human DC depend on blood DC, conventional myeloid DC 

have also been isolated from tonsil, thymus and spleen; plasmacytoid DC have also 

been isolated from the tonsil and bone marrow.  
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 Myeloid type-1 Myeloid type-2 Plasmacytoid 

CD1a ++ - - 

CD4 ++ ++ ++ 

CD11b + - - 

CD11c +++ ++ - 

CD40 + + - 

CD80 + + + 

CD86 + + - 

BDCA-1 ++ - - 

BDCA-2 - - ++ 

BDCA-3 - ++ - 

BDCA-4 - - ++ 

MHCII +++ +++ ++ 

 

Table 1.1   Circulating human DC and their expression of key surface molecules 

 

1.4.2 Subsets of murine DC 

 

Studies on murine DC have also shown a clear division between conventional DC and 

plasmacytoid DC (reviewed (Sato and Fujita, 2007)). In the mouse, conventional DC 

can be subdivided primarily on the basis of CD4 and CD8 expression into the 

following subtypes:  

CD4-CD8αhighCD205+CD11b-, CD4-CD8α-CD205-CD11b+, CD4+CD8α-CD205-

CD11b+, CD4-CD8αlowCD205highCD11b+ and CD4-CD8α-CD205+CD11b+ (Sato 

and Fujita, 2007). These subtypes show some degree of anatomical localisation: CD4-

CD8αhighCD205+CD11b- are found in the T cell areas of spleen and lymph nodes, 

CD4-CD8α-CD205-CD11b+ and CD4+CD8α-CD205-CD11b+ are found in the 

marginal zone of spleen and lymph nodes, CD4-CD8αlowCD205highCD11b+ are 
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found in skin draining lymph nodes and CD4-CD8α-CD205+CD11b+ in all lymph 

nodes.  The DC found in the spleen have been demonstrated to be capable of inducing 

Th1, Th2 and regulatory T cell responses. The other two subtypes are generally only 

found in the lymph nodes and are mature forms of DC which have migrated from the 

peripheral tissues (Sato and Fujita, 2007). Thus CD4-CD8αlow appear to be the 

mature form of Langerhans cells, whereas CD4-CD8α- represent the mature form of 

interdigitating tissue DC. Murine plasmacytoid DC are functionally similar to their 

human equivalents being distinguished by the ability to produce high levels of type-1 

IFN in response to virus (Asselin-Paturel et al., 2001). 

1.5 Anatomical localization 

 

Dendritic cells are found in both blood and tissue. In the blood, dendritic cells and 

dendritic cell precursor cells comprise around 1% of peripheral blood mononuclear 

cells. In the non-lymphoid tissues dendritic cells are found in the skin (epidermal 

Langerhans cells and dermal cells), most organs (including liver, kidney, heart), 

connective tissues and mucosa (notably gastrointestinal tract). In the lymphoid tissues 

interdigitating dendritic cells are found in both T cell areas of the paracortex and in 

the germinal centres(Sato and Fujita, 2007). The germinal centre also contains 

follicular dendritic cells which are stromal cells with a dendritic morphology which 

trap whole antigen in the form of immune complexes for extended periods, promoting 

B cell activation and selection (Batista and Harwood, 2009). They are not “true” 

dendritic cells and will not be discussed further in this thesis.  
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1.6 DC maturation and cell surface molecules 

 

It is clear that DC may exist in a number of states that are more or less immunogenic 

or tolerogenic. As outlined earlier, the paradigm of DC maturation is one of a 

unidirectional pathway with DC moving from an antigen sampling immature state to 

an antigen presenting mature state. Despite important caveats to this model, the 

concepts of “immature” and “mature” DC continue to be useful to describe states of 

DC phenotype and function. 

 

A number of stimuli have been shown to induce maturation of DC, notably 

inflammatory cytokines and/or ligands for pattern recognition receptors (PRR) (De 

Smedt T. et al., 1996; Roake et al., 1995; Sallusto and Lanzavecchia, 1994; Winzler et 

al., 1997), although CD40 ligation has also been shown to be effective in vitro 

(Sallusto and Lanzavecchia, 1994). In response the DC undergoes a number of 

changes in terms of its surface molecules, cytokine production, migratory capacity 

and ability to act on other cells which are discussed below (Lutz and Schuler, 2002; 

Reis e Sousa, 2006)(Figures 1.2 and 1.3). 

1.6.1 DC surface molecules 

 

The immature DC in peripheral tissue express low levels of MHC class I and II and 

lack costimulatory molecules such as CD80/86. They do however express pattern-

recognition receptors (PRR) such as Toll-like receptors (TLR)(Reis e Sousa, 2004b) 

which can recognise conserved pathogen associated molecular patterns (PAMPs), 

molecules such as DEC 205 which can facilitate phagocytosis (Bonifaz et al., 2002), 

and chemokine receptors such as CCR5 which serve to retain the iDC in the 



Chapter One General Introduction 10 

peripheral tissue (Sallusto and Lanzavecchia, 1999). They also ingest large amounts 

of antigen indiscriminately by macropinocytosis (Sallusto et al., 1995). 

Maturation signals (cytokine or TLR ligand) induce the upregulation of key molecules 

on the DC. These molecules are involved in presenting antigen to T cells as part of 

“signal 1” via MHC class I and II (Janeway, Jr., 1989);  in contributing to T cell 

activation as part of  “signal 2”  via the costimulatory molecules CD80/CD86 

(Greenwald et al., 2005), 4-1BBL(Bertram et al., 2002), ICOSL (Greenwald et al., 

2005)  and OX40L (Chen et al., 1999) and adhesion molecules (eg ICAM-2, LFA-1, 

CD58); or in directing the migration of the DC to the draining lymph node (CCR7) 

(Sallusto and Lanzavecchia, 1999; Sallusto et al., 1998). Selected molecules are 

considered further in table 1.2 (reviewed (Jeras et al., 2005b)). 
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Figure 1.2 Outline of dendritic cell development  

Outline includes key surface molecules, cytokine production and function. 
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Figure 1.3 Summary diagram of significant molecules related to DC function 

which are considered further in this project.  
These include molecules involved in the interaction between DC and T cells, 

chemokine receptors and soluble factors. 
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 Mo M iDC mDC Function 

CD1a +/- - + + Presentation of non-
peptide Ag to CD1 

restricted T cells 

 

CD1b +/-  + + Presentation of non-
peptide Ag to CD1 

restricted T cells 

 

CD11b + +/++ ++ ++ Assoc with 

CD18integrin β2; 

adhesion via 
ICAM1,2,3 

 

CD11c + ++ + ++ Assoc with 

CD18integrin β2; 
adhesion and CTL 

 

CD14 

 

++ ++ +/- +/- LPS/LPS Binding 
Protein receptor 

CD80 

 

- + - ++ Costimulation via 
CD28 

CD83 

 

-  - ++ Unknown but marker 

of mature DC 

CD86 

 

+ + + ++ Costimulation via 

CD28 

CDw137L 

(4-1BBL) 

- + +/- + Costimulation; 4-1BB 

on activated T/B 

CD209  

(DC-SIGN) 

- - + + Capture of Ag 

CD275 

(ICOSL) 

+ + +/- + Costimulation; ICOS 

on T cells (especially 

antigen experienced T 
cells vs CD28 ) 

 

PD-L1 - -/+ + ++ Upregulated by IFNγ;  

regulates T-cells via 
PD-1 

 

PD-L2 - -/+ - + Upregulated by IL-4; 
regulates T-cells via 

PD-1 

 

B7-H3 - - + + Upregulated by IFNγ; 
regulates T-cells via 

unknown receptor 

 

B7-H4 - - - + Regulates T cells via 

unknown receptor 

 

 

Table 1.2 Selected surface molecules relevant to the function of monocytes, 

macrophages and dendritic cells. 

Abbreviations: monocytes (Mo), macrophages (M), immature DC (iDC) and mature 

DC (mDC).  
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1.6.2 Pattern Recognition Receptors 

 

Pattern recognition receptors (PRR) are cell-surface molecules which recognise 

conserved pathogen-associated molecular patterns (PAMP). Toll like receptors are the 

archetypal PRR, recognising a range of PAMPs from viruses, bacteria, protozoa and 

fungi, and widely expressed by cells of the innate immune system. Of particular 

importance to monocyte derived DC are TLR3, TLR4 and TLR8 although they do 

also express TLR1, TLR2, TLR5, TLR6, and possibly TLR7 and TLR 10 (Mazzoni 

and Segal, 2004; Reis e Sousa, 2004b). Unlike monocyte-derived and myeloid DC, 

plasmacytoid DC do not express TLR4 (ligand LPS), but do express TLR9 (ligand 

CpG oligonucleotide), activation of which generates large amounts of IFNα (Krug et 

al., 2001). 

 

DC-SIGN is a C-type lectin found on DC which can also act as a pattern recognition 

receptor. It has been shown to recognise human herpes virus 8 and Mycobacterium 

tuberculosis. DC-SIGN expression is IL-4 dependent and inhibited by IFN, IFN 

and TGF(Granelli-Piperno et al., 2005; Relloso et al., 2002). Other C-type lectins 

which can act as PRR are dectin-1 (which can signal in response to β-glucan) and 

BDCA-2 (exact role still uncertain)(Reis e Sousa, 2004a). 

 

1.6.3 Molecules involved in ‘signal 1’ 

1.6.3.1 TCR/CD3 complex and CD4/8 

 

The T cell receptor (TCR) is a transmembrane disulphide-linked heterodimer 

containing immunoglobulin-like domains. The TCR recognises antigen in the form of 
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processed peptides bound to MHC molecules on the surface of the antigen presenting 

cell. Endogenously produced peptides (whether host or foreign from intracellular 

infection) are presented on class I MHC. Exogenous peptides are taken up by 

phagocytosis or macropinocytosis (Sallusto et al., 1995), and are processed and  

presented on either class II MHC, the usual pathway for exogenous peptides, or class I 

MHC; class I MHC presentation in this context is known as „cross presentation‟ and is 

important in enabling DC to induce naive CD8+ T cells to respond to exogenous 

antigen eg viral infections of parenchymal cells (Rock and Shen, 2005). 

 

TCR are antigen specific. When the TCR recognises their specific MHC-peptide 

complex on the APC, the TCR signals via the CD3 complex of tyrosine kinases 

(known as „signal 1‟)(Janeway, Jr., 1989). T cells also express the coreceptor 

molecules CD4 or CD8 (or rarely both) which bind at different sites on invariant parts 

of the MHC molecule; CD4 binds to class II MHC and CD8 to class I MHC. Binding 

of CD4 or CD8 leads to the activation of tyrosine kinases associated with their 

cytoplasmic domains that, via phosphorylation of the immunoreceptor tyrosine-based 

activation motifs (ITAMs) of the CD3 molecule, lower the threshold for activation of 

the TCR CD3 complex by about 100-fold. 

 

1.6.4 Molecules involved in ‘signal 2’ 

1.6.4.1 CD40L and CD40 

 

The engagement of the TCR with the MHC-peptide complex („signal 1‟) leads to 

upregulation of CD40L on the T cell which interacts with CD40 on the DC. This 

interaction, known as licensing (Fujii et al., 2004), increases the capacity of the DC to 
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activate the T cell by increasing formation of MHC–peptide complexes („signal 1‟),  

by increasing expression of costimulatory molecules such as CD80/86 („signal 2‟) and 

by the production of cytokines including IL-12 („signal 3‟). CD40 also influences DC 

survival, migration, and avoidance of suppression (Fujii et al., 2004). 

 

1.6.4.2 CD28 and CD80/86  

 

TCR engagement with the MHC-peptide complex is not sufficient on its own to 

induce an effector T cell response, and indeed may lead to a refractory state known as 

anergy unless accompanied by an appropriate costimulatory signal (Schwartz, 2003). 

The most important costimulatory signal is the CD28 interaction with CD80/86 which 

promotes the activation of T cell responses, with a predominant role during initial T 

cell activation. CD80 is not expressed at significant levels on immature DC but is 

upregulated in response to maturation stimuli. CD86 is already present at low levels 

on immature DC and is also upregulated on mature DC(Jeras et al., 2005b). Signalling 

via CD28 upregulates T cell production of IL-2 both by increasing transcription of the 

gene and by stabilising IL-2 mRNA  leading to autocrine stimulation and T-cell 

expansion(Lindstein et al., 1989). Signalling through CD28 can also upregulate 

distinct effector T cell cytokine responses characteristic of the distinct T cell subtypes, 

Th1 and Th2 (discussed later)(Fujii et al., 2004; Greenwald et al., 2005)  

1.6.4.3 Inducible costimulator (ICOS; CD278) and ICOSL (CD275)  

 

ICOS interaction with ICOSL synergizes with the CD28 interaction with CD80/86 to 

promote T cell activation but predominantly affects antigen-experienced (rather than 

naïve) T cells. ICOS does not upregulate IL-2 production (so does not lead to T cell 
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proliferation) but can upregulate Th1 and Th2 cytokines and via IL-10 production 

may have a role in generating regulatory T cells. ICOS also provides important T cell 

help to B cells for their differentiation and effector functions (Greenwald et al., 2005). 

1.6.4.4 4-1BB (CDw137) and 4-1BBL  

 

4-1BB is a costimulatory member of the TNFR family, expressed on activated CD4 

and CD8 T cells(Vinay et al., 2006). Its ligand, 4-1BBL, is expressed on activated 

APC, including dendritic cells. 4-1BB is upregulated on the T cell in response to TCR 

stimulation, but after CD28-mediated costimulation (Bertram et al., 2002). It is 

thought to augment T cell proliferation, cytokine production, and prevent activation-

induced cell death. Although it can induce IL-2 production in resting T cells, it is 

much less effective than CD28 (Wen et al., 2002). 

1.6.4.5 Inhibitory molecules 

 

CTLA-4 and PD-1 are CD28 family members which provide inhibitory signals that 

can attenuate T cell responses. Although CTLA4 predominates they have synergistic 

roles (Greenwald et al., 2005). Levels of the ligand for PD-1 (PD-1L) increase in 

primary culture murine RPE cells on exposure to IFNγ, and this is associated with 

inhibition of bystander T cell responses although this appeared to be Th1 (as opposed 

to Th17) selective (Sugita et al., 2009). 

 

1.6.5 Chemokine receptors 

 

Immature DC are usually resident in the peripheral tissue and so are appropriately 

placed to deal with pathogen entry. However they, like monocytes, may be recruited 
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from blood to sites of inflammation under the influence of the chemokine receptors 

CCR1, CCR2, CCR5 and CXCR1 responding to the chemokines CCL2, CCL3 (MIP-

1), CCL4 (MIP-1), CCL5 (RANTES) and CXCL8 (IL-8) (Sallusto et al., 1999). 

 

During maturation these chemoreceptors are downregulated or desensitised, whereas 

CCR7 and CXCR4 are upregulated. This leads to DC responsiveness to chemokines, 

CCL19 and CCL21 (for CCR7), and CCL12 (for CXCR4), which are constitutively 

expressed in the lymph nodes and T cell areas of the spleen. DC (from the afferent 

lymphatic vessels) and CCR7/CXCR4 expressing T cells (from the high endothelial 

venules) are thus directed to the appropriate compartments of the lymphoid tissue to 

facilitate efficient antigen presentation (Scandella et al., 2002).  

 

1.6.6 Cytokines and chemokines produced by DC 

 

In addition to cell-surface signals between DC and T cell, mature DC produce 

secreted molecules (cytokines and chemokines) with wide-ranging effects on the 

immune system. DC secretion of IL-1β (Gardella et al., 2001), TNFα (Telusma et al., 

2006) and IL-6 (Dodge et al., 2003) have broad pro-inflammatory functions including 

fever and endothelial activation. Most fundamentally, DC effectively launch the 

adaptive immune system by the activation of CD4+ and CD8+ T cells and the 

direction of their differentiation (discussed further below). Additionally secretion by 

mature DC of the chemokines CCL3, CCL4 and CCL5 recruit further monocytes and 

iDC (Sallusto et al., 1999; Scandella et al., 2002). The cytokines and chemokines 

considered further in this project are listed in tables 1.3 and 1.4. 
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Cytokine Producer Receptor Target Action 

 
IL-1β M, epithelial 

cells 

CD121a, 

CD121b 

T cell, 

M, 

Activation of T cells 

and M; Fever 

 

IL-1RA Mo, M, N , 

Hepatocytes 

CD121a  Competitive antagonist 

of IL-1 

 

IL-2 T cell IL-2R  T cell Proliferation 

 

IL-4 T cells, Mast cells CD124  B cell  

T cell 

B activation, IgE 

switch; T  Th2 

 

IL-6 T cells, M, DC, 

Endothelial cells 

CD126/CD130 T cell 

B cell 

T cell growth + 

differentiation 

B cell growth + 

differentiation 

Fever 

IL-8 (CXCL8) M CXCR1,2 N, B, T cell Chemotaxis 

 

IL-10 T cells (TH2), 

M, 

 T cells, M, DC, 

B cells 

TH1 inhibition 

Inhibits M activation   

Inhibits DC response to 

chemokines 

Increase MHCII on B 

cells 

 

IL-12 

 
M, DC IL-12R 

 

NK 

CD4+ T cell 

NK activation 

T  Th1 

 

IL-13 T cells IL-13R  B cell 

T cell 

M 

B growth and 

differentiation 

Inhibits M 

inflammatory cytokine 

production 

Inhibits Th1  

 

IL-15 Many IL-15R  T cell 

NK 

T Proliferation and 

CD8 memory T cell 

survival 

NK Proliferation 

 

IL-17A,F TH17 IL-17R Fibroblasts, 

endothelium, M 

Induce pro-

inflammatory cytokine 

production by other 

cells 

  

TNFα M, NK, T  cells TNFR-I, and –

II 
M, endothelial 

cells 

 

Endothelial activation 

 

GM-CSF M, T cells CD116 Mo 

 
Mo  DC, M, 

 

Table 1.3 Selected cytokines relevant to the function of DC and T cells. 

Abbreviations: macrophages (M), monocytes (Mo), neutrophils (N), dendritic cells 

(DC).  
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Chemokine Producer Receptor Target Action 
CCL2 

(MCP-1) 
Mo, M, 

Fibroblasts, 

Keratinocytes 

 

CCR2 Mo, B, T, Chemotaxis 

CCL3  

(MIP-1α) 

Mo, T cells 

Fibroblasts, Mast 

cells 

 

CCR1,5 Mo, M, iDC, 

NK, B, T (Th1 

>Th2),  

Chemotaxis 

CCL4 

 (MIP-1β) 
Mo, M, 

Neutrophils, 

endothelium 

 

CCR5 Mo, M, iDC, 

NK, B, T (Th1 

>Th2), 

Chemotaxis 

CCL5 

(RANTES) 

T cells, 

endothelium, 

platelets 

CCR1,3,5 Mo, M, DC, 

NK, B, E, T 

(memory > other; 

Th1 >Th2), 

 

Chemotaxis 

CXCL8 

(IL-8) 
Mo, M, 

fibroblasts, 

endothelium, 

keratinocytes 

 

CXCR1,2 N, B, T cell Chemotaxis 

CXCL9  

(Mig) 

Mo, DC, 

fibroblasts 

CXCR3 Activated T (Th1 

> Th2) 

 

Chemotaxis 

CXCL10  

(IP-10) 

Keratinocytes, 

Monocytes,  

T cells, 

fibroblasts, 

endothelium 

CXCR3 Activated T (Th1 

> Th2) 

Chemotaxis 

 

Table 1.4. Selected chemokines relevant to DC and T cells.  

Abbreviations: macrophages (M), monocytes (Mo), neutrophils (N), basophils 

(B), dendritic cells (DC), eosinophils (E), natural killer cells (NK).  

 

 

1.7 DC effects on T cell phenotype 

 

The DC interaction with the naive CD4+ T cell is central to most adaptive immune 

responses (Figure 1.4). The phenotype of the DC in terms of the surface molecules 

expressed and cytokines produced are the most important influence on the 

differentiation of the CD4+ T cell into Th1, Th2, Th17, and Treg T cell subtypes. 

Thus IL-12 and IL-18 production by mature DC, and DC stimulation of NK cells to 

produce IFNγ biases T cell differentiation to Th1 (Trinchieri, 2003). Similarly IL-6 
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and IL-23 production by DC may bias T cell differentiation down a Th17 pathway 

(Boniface et al., 2008). DC regulation of Th2 responses is less clear. It has been 

suggested that the Th2 may be the default pathway with predominantly negative 

regulation by DC via IL-12 inhibition of GATA-3 expression. These mature DC 

responses contrast with immature DC antigen presentation to T cells where there is 

minimal proliferative response and the resulting T cells are frequently anergic (as 

reviewed earlier) , or may develop regulatory function (discussed below). DC 

therefore have the ability to control the balance between tolerance, immunity and 

autoimmunity (Moser, 2003; Lutz and Schuler, 2002; Moser, 2003; Reis e Sousa, 

2006). 

 

 

 

Figure 1.4 Summary of CD4+ T cell lineages indicating the primary signals of 

differentiation, their transcription factors, cytokine profile and function. 
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1.8 DC and regulatory T cells 

 

In addition to the long-established mechanisms of anergy and deletion, it has become 

apparent that T cell function may be regulated by specific populations of T cells 

known as regulatory T cells. These appear to have an important role in the 

maintenance of peripheral tolerance and the prevention of autoimmune disease. 

Several types of “regulatory” T cell have been identified (Tarbell et al., 2004; 

Sakaguchi, 2005). Natural T regs develop in the thymus and are CD4+CD25+Foxp3+; 

CD25 being the high affinity IL-2 receptor, Foxp3 being a transcription 

factor(Sakaguchi, 2005). Their development may depend on DC. DC conditioned 

with thymic stromal lymphoprotein can stimulate the development of CD4+CD25+ T 

regs from CD4+CD25- thymocytes under human thymus culture conditions 

(Watanabe et al., 2005). To proliferate and to enhance their suppressive function the T 

regs require an antigen-specific signal from a DC, however their suppressive function 

is then relatively widespread, being capable in experimental models of blocking 

autoimmunity due to multiple antigens(Tarbell et al., 2006). Induced T regs are 

produced in the periphery in response to peripheral stimuli. These include IL-10-

secretors (sometimes called Tr1) and TGFβ-secretors (sometimes called Th3)(Tarbell 

et al., 2006; Kojo et al., 2005).  As with CD4+ T cell differentiation in general, it is 

the nature of the DC: T cell signal (and therefore the phenotype of the DC itself) that 

is primarily responsible for T cell differentiation into a regulatory or effector T cell 

(Lutz and Schuler, 2002; Reis e Sousa, 2006). 
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1.9 Immune privilege and the eye 

 

The immune system has evolved to protect the individual from a wide variety of 

pathogens, but alongside this protective immunity there is frequently significant non-

specific damage to the surrounding tissues. Although this can be tolerated in the 

majority of tissues, certain sites are more sensitive to these effects due to their limited 

capacity for self-renewal or the delicate physiology of the tissues. Immune responses 

in these sensitive tissues are highly specialised, with a reduction in the pathological 

damage caused by the immune response, conferring immune privilege to these 

sites(Streilein, 2003b; Streilein, 2003a). The eye (Figure 1.5) is the archetypal site of 

immune privilege and will be considered first, before reviewing other sites of immune 

privilege such as the brain, the pregnant uterus, the hamster cheek pouch, the hair 

follicle, and the testes. 

 

 In order to maintain a clear visual axis, the eye must allow immune responses 

required for protective immunity, and at the same time restrict these responses to 

prevent significant pathological damage. Many mechanisms have been suggested to 

contribute to the maintenance of immune privilege in the eye, both immunological 

and anatomical. Immunological mechanisms include: a complex network of 

immunosuppressive molecules in the ocular microenvironment (aqueous humour – 

AqH) (Taylor et al., 1992; Taylor, 2007; Cousins et al., 1991b), expression of FasL on 

ocular surfaces (pro-apoptotic signal notably against activated T cells) (Ferguson and 

Griffith, 2007), expression of atypical rather than typical class I MHC (inhibit NK 

cells, and not recognised by CD8+ cytotoxic T cells), and the phenomenon of anterior 

chamber associated immune deviation (ACAID)(Streilein, 2003b; Streilein, 2003a). 
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Anatomical mechanisms comprise a tightly regulated blood:ocular barrier and limited 

lymphatic drainage. 

 

 

 

 

Figure 1.5 Key structures of the eye.  

Extraocular and intraocular views showing key anatomical structures, including the 

uveal tract comprising iris, ciliary body and choroid. Illustration by Angela Luck; 

adapted with permission. 

 

 

 

1.9.1 Ocular immune privilege 

 

Evidence for the unusually protected status of the anterior segment of the eye 

stretches back to the observation by Van Dooremaal in 1873 that murine-to-canine 

skin grafts were tolerated when inserted into the anterior chamber of the dog eye. 
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Medawar, recognising that immunity was responsible for allograft rejection, regarded 

allograft tolerance by the eye and the brain as evidence that they were „immune 

privileged‟ (Medawar, 1948)(recently reviewed (Kaplan and Niederkorn, 2007)). 

Further investigation has highlighted the contribution of aqueous humour to ocular 

immune privilege, and its regulation of both afferent and efferent arms of the immune 

response. Whilst other immunological and anatomical mechanisms are undoubtedly 

also important in maintaining immune privilege, within the context of this thesis I will 

be primarily considering the role of aqueous humour and its influence on the ocular 

antigen presenting cell with specific regard to the dendritic cell. 

 

1.9.2 Aqueous humour 

 

Aqueous humour is a clear colourless plasma-like fluid produced by the ciliary body 

at around 2.5μl/min (in human). Its functions include structure (providing support to 

the anterior segment of the eye), nutrition (to the avascular lens and cornea), light 

transmission and immunoregulation. It differs biochemically from plasma by being 

high in ascorbate but lower in glucose and protein, unless there has been breakdown 

of the blood-ocular barrier. 

 

The earliest direct demonstration of the immunomodulatory effects of AqH was 

Kaplan‟s observation that injection of alloantigenic cells into the anterior chamber of 

the eye resulted in immune deviation in which there was antigen-specific suppression 

of classical Th1 immune responses (Kaplan et al., 1975). Subsequent studies by 

Streilein and colleagues refined this concept of Anterior Chamber Associated Immune 

Deviation (Kaplan and Streilein, 1977; Kaplan and Streilein, 2007; Streilein and 
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Niederkorn, 2007; Wilbanks et al., 1991; Wilbanks and Streilein, 1991; Wilbanks et 

al., 1992), one of the fundamental tenets of which was that the differentiation of 

ocular antigen presenting cells and their processing of antigen under the influence of 

aqueous humour results in a unique immunoregulatory phenotype (recently reviewed 

by Niederkorn (Niederkorn, 2007)).  Several investigators also observed that when 

APC and T cells are co-cultured in the presence of AqH or iris/ciliary body 

supernatants, proliferation is inhibited (Cousins et al., 1991a; Streilein and Bradley, 

1991). Whilst interesting, it should be noted that these experiments do not identify 

whether it is the afferent arm (ie the APC) or the efferent arm (the T cell) or both 

which are affected by AqH. More recently, however, Shen has shown that murine 

bone-marrow derived dendritic cells when cultured in vitro with rabbit AqH, are 

inhibited in their capacity to induce a mixed lymphocyte reaction (Shen et al., 2007).  

 

AqH was also found to modulate the efferent arm of the DTH response.  Benson and 

Niederkorn demonstrated local suppression of DTH responses to a highly 

immunogenic tumour (UV5C25) within the eye of BALB-c mice despite  persistence 

of systemic DTH responses (Benson and Niederkorn, 1991). As noted above, most 

studies on the effects of AqH on T cell proliferation are hard to interpret due to the 

exposure of both APC and responder T cell to the AqH. Important exceptions include 

AqH inhibition of T cell proliferation in the IL-2 dependent CTLL assay (Cousins et 

al., 1991a), and AqH inhibition of lymphocyte proliferation to  polyclonal mitogens 

and to growth hormones (Kaiser et al., 1989). 

  

Investigation into the mechanism by which AqH achieves its effects have identified 

the presence of a number of potential immunomodulatory molecules including TGFβ, 
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the neuropeptides αMSH, VIP, CGRP, somatostatin and the endogenous 

glucocorticoid, cortisol. 

 

1.9.3 Transforming Growth Factor β (TGF) 

 

TGFβ was the first significant immunomodulatory molecule to be identified in AqH 

(Cousins et al., 1991a; Wilbanks et al., 1992). TGF exists in three isoforms, TGF1-

3. Although mRNA for all three isoforms may be found in ocular cells, TGF2 is the 

only isoform to actually be expressed at sufficient levels to be recovered from healthy 

aqueous humour. (Cousins et al., 1991a; Pasquale et al., 1993) In healthy aqueous 

humour TGF2 levels are 1-10ng/ml, the vast majority being in its latent form 

(Knisely et al., 1991b). 

 

TGF2 has been shown to have a number of immunomodulatory properties on APC. 

In some of the early experiments into the phenomenon of ACAID, Wilbanks showed 

that conferral by AqH of ACAID-inducing properties on non-ocular macrophages was 

TGFβ-dependent (Wilbanks et al., 1992). TGF2-treated APC lose the ability to 

activate Th1 cells and induce delayed type hypersensitivity (DTH). These APC 

produce less IL-12 and have lower expression of various accessory molecules 

(Takeuchi et al., 1998; Tsunawaki et al., 1988). Recently Shen has shown that 

recombinant TGFβ2 recapitulated the inhibitory effects of rabbit AqH on murine 

bone-marrow derived DC, and that the effects of AqH were blocked by AqH-pre-

treatment with anti-TGFβ2 (Shen et al., 2007). TGF2 treatment of macrophages also 
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reduces their production of inflammatory cytokines and their ability to generate 

reactive oxygen species(Tsunawaki et al., 1988).  

 

TGFβ2 present in AqH has also been shown to be capable of modulating T cell 

proliferation directly. In an IL-2 dependent CTLL assay, Cousins et al showed that 

AqH inhibition of proliferation was completely reversed by the addition of anti-

TGFβ2 (Cousins et al., 1991a). TGFβ has been shown to inhibit proliferation of naive 

T cells by inhibiting IL-2 production via Smad3 (in contrast activated T cells are 

relatively insensitive (Cottrez and Groux, 2001)), and to inhibit the differentiation of 

Th1 and Th2 subtypes via T-bet/Stat4 and GATA-3/NF-AT respectively (recently 

reviewed by Li et al (Li et al., 2006)). Significantly TGFβ also induces FoxP3 

expression and the induction of CD4+CD25+ T regs from CD4+ CD25- naive T cells 

(Chen et al., 2004).  

 

1.9.4 α -Melanocyte Stimulating Hormone (MSH) 

 

MSH is a 1.6 kDa, 13-amino acid neuropeptide which is cleaved from the protein, 

pro-opiomelanocortin hormone (POMC). It is produced by a number of cell types 

including neurons, macrophages and keratinocytes. MSH is constitutively expressed 

in the healthy eye with aqueous humour levels of around 20pM (Taylor et al., 1992). 

DC respond to αMSH via the melanocortin receptor MC-1R, with downregulation of 

CD86 and CD40, inhibition of the production of IL-1, IL-2, IL-4,IL-6, IL-13, IFNγ 

and TNFα and increased secretion of IL-10 (reviewed  (Luger et al., 2003)). Similarly 

αMSH has been noted to suppress activated macrophages, reducing their expression 

of pro-inflammatory cytokines, reactive oxygen species and nitric oxide, whilst 
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increasing their production of IL-10, MSH and their expression of MSH receptors 

(Star et al., 1995). It has also been found to suppress the pro-inflammatory effects of 

LPS (Chiao et al., 1996), IL-1 (Watanabe et al., 1993) and TNF (Martin et al., 

1991). 

 

In addition to its effects on APC, MSH has a number of important effects on T cells. 

AqH and αMSH (at its ocular concentration) inhibit IFNγ production by antigen-

stimulated T cells; neutralization of the αMSH component of AqH reverses this 

inhibition. αMSH can also induce a regulatory phenotype in CD4+ T cells which may 

be augmented by TGF2. This has been demonstrated both in vitro and in the mouse 

model of experimental autoimmune uveitis  (Taylor et al., 1992). In addition in a 

model of local adoptive transfer of delayed type hypersensitivity (DTH) in which 

lymph node cells from immunized C57BL/6 are reintroduced after incubation with 

Mycobacterium tuberculosis antigen, the suppressive effects of AqH were found to be 

partially reversed by removal of the αMSH fraction (Taylor et al., 1994a). 

 

1.9.5 Vasoactive Intestinal Peptide (VIP) 

 

VIP is a 3.3 kDa, 28 amino acid neuropeptide produced by neurons, with variant 

forms also being produced by neutrophils and mast cells. It is present in the anterior 

chamber at 12 + 1 nM. VIP has been shown to inhibit mitogen-driven lymphocyte 

proliferation and function (Ottaway, 1988; Stanisz et al., 1986). Its effects on APC are 

not well defined. At its ocular concentration it has been shown to inhibit Ag-

stimulated lymph node cell proliferation and IFNγ production in vitro. Interestingly 

removal of VIP from the low molecular weight fraction of AqH did not neutralize the 
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effect of AqH on proliferation but did neutralize the suppression of IFNγ-production. 

In addition removal of VIP neutralized the suppression of local adoptive transfer of 

delayed type hypersensitivity (DTH) (Taylor et al., 1994b). Ferguson subsequently 

showed that VIP was essential for the induction of ACAID, that it was antagonised by 

substance P and that the presence of VIP was dependent on a normal diurnal rhythm 

of light exposure. 

 

1.9.6 Cortisol 

 

Cortisol (hydrocortisone) is one of a class of hormones known as „glucocorticoids‟, a 

group of steroid hormones produced in the cortex of the adrenal gland, and the 

functions of which include glucose metabolism. It has wide-ranging effects on many 

homeostatic processes including metabolism, fluid balance, the cardiovascular 

system, and the immune system. Cortisol is secreted according to a diurnal rhythm , 

peaking in the morning, but is secreted at increased levels in response to stress.  

 

Cortisol has been observed at biologically significant levels in human and rodent AqH 

with levels of 18.0 + 1.0 ng/ml (mean + SD) for human; cortisone (corticosterone) 

levels were significantly lower at 0.7 + 1.0ng/ml. These levels equate to 49.7nmol/l 

and 1.9nmol/l respectively (362.5Mol mass). Our own group has measured levels of 

cortisol of 4.8 + 0.38 nmol/l and cortisone of 1.9 + 0.13 nmol/l (mean + SEM) by RIA 

in patients attending for cataract surgery(Rauz et al., 2003). Other groups observed 

human hydrocortisone levels of between 2.5 and 17ng/ml (Weinstein et al., 1991; 

Rozsival et al., 1981). Interestingly  the binding protein Cortisol Binding Globulin 

(CBG) was not present at detectable levels (by radioimmunoassay) (Knisely et al., 
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1994). Thus it would appear that the vast majority of cortisol in AqH exists in free 

form, in contrast to the situation in serum where 80-90% is bound to CBG, 4-10% is 

bound to albumin and the remaining 6-10% is free cortisol.  

 

The effects of cortisol on the immune system are primarily mediated via the 

glucocorticoid receptor (GR). The availability of cortisol for a specific tissue or cell 

may also be modified by the actions of the enzyme 11β-hydroxysteroid 

dehydrogenase (11β-HSD) which catalyzes the cortisone-cortisol shuttle. 11β-HSD1 

catalyzes the generation of active cortisol from cortisone, whereas the isoform 11β-

HSD2 catalyzes the reverse process.  

 

Binding of glucocorticoid to the glucocorticoid receptor results in downstream 

inhibition of the transcription factors NF-κB and AP-1, and, via binding  to negative 

glucocorticoid response elements (GRE) in inhibition of the POMC gene (reviewed 

(Webster et al., 2002)). Cortisol has wide-ranging effects including the apoptosis of 

monocytes, inhibiting IL-1 (Lee et al., 1988), IL-6  and TNFα production (Steer et al., 

2000), inhibiting IL-12 production by DC and inducing a shift from Th1 to Th2 

(Freeman et al., 2005). The addition of cortisol at the levels found in AqH inhibited 

PHA/IL-1-stimulate murine thymocyte proliferation and CCL64 cell proliferation 

(Knisely et al., 1994).  

 

1.9.7 Extraocular sites of immune privilege 

 

Other sites of immune privilege include the brain, the pregnant uterus, the hamster 

cheek pouch, the hair follicle, and the testes. The advantage of immune privilege 
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varies from organ to organ. For the brain (like the eye) it reduces the chance of 

immune-mediated collateral damage in a structure with limited regenerative capacity 

and where minor anatomical damage can cause survival-compromising loss of 

function. The pregnant uterus, effectively a semiallogeneic graft, requires immune 

privilege to prevent rejection of the fetus. Finally, without the immune privilege of the 

cheek pouch, the hamster would not be able to store food for the prolonged periods 

necessary for its survival.  

 

Some of the mechanisms of immune privilege familiar to the ocular  immunologist, 

have also been observed in other immune privileged structures. Mechanisms of 

immune privilege shared by the eye, brain and feto-placental unit include the presence 

of immunomodulatory molecules such as TGFβ, αMSH, VIP, CGRP and 

somatostatin, expression of FasL, absence  of typical MHC class I molecules, and, 

more speculatively, brain and fetal equivalents to ACAID (recently reviewed by 

Niederkorn (Niederkorn, 2006)).  

 

1.10 Antigen presentation in the ocular context 

In contrast to the role of the Langerhans cell within the skin (reviewed earlier), the 

nature and role of the antigen presenting cells of the eye are much less well-defined. 

Some of the most fundamental questions of ocular immunology centre on the ocular 

APC: its nature (dendritic cell, macrophage or other), its function (stimulatory or 

regulatory) and its location/migratory behaviour (resident or migratory). I will first 

summarise the background to each of these questions, before reviewing our central 

hypothesis within this context. 
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1.10.1 The identification of the ocular APC 

 

The nature of the ocular APC-like cell has been a matter of some debate. In human 

cadaveric studies of 12 eyes Chang observed that a population of dendritiform stromal 

cells of the iris, ciliary body and choroid were HLADR+ TLR4+MD2+ but CD68-, 

and were therefore most typical of dendritic cells.(Chang et al., 2004) However the 

same cells appeared to express CD14, which whilst expressed at high levels in 

macrophages is also expressed on iDC. In an earlier cadaveric study of 34 human eyes 

Flugel observed similar CD45+HLADR+ dendritiform cells in the trabecular 

meshwork, around the intra- and episcleral vessels,  the stroma of the ciliary body  

and the iris, and, with increasing age of the patient,  in the “uveoscleral” pathway. In 

this paper co-authored with Streilein,  Flugel argued that the CD45+HLADR+ cells in 

the trabecular meshwork were migrating APC “in transit” which could go on to 

mediate ACAID(Flugel et al., 1992).  

 

In mouse and rat anterior uveal tissues both Knisely and McMenamin  observed 

networks of Class II MHC (Ia) + dendritiform cells which they identified as dendritic 

cells (Knisely et al., 1991a) (McMenamin et al., 1994). Further work in the rat 

showed that the pleomorphic or dendritiform DC express MHC II and/or OX62 

antigen (α2 E integrin) and have a half-life of around 3 days whereas the macrophage 

population are positive for CD163, are usually MHCII- and have a much longer half-

life (Steptoe et al., 1995).  

 

Meanwhile in the mouse Streilein and colleagues observed F4/80+ cells in the 

anterior uveal tissues which they identified as monocyte/macrophages. This was of 
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particular interest because they also showed that these F4/80+Class II MHC (1a)- 

cells when derived from either iris/ciliary body or from the peritoneal cavity could be 

loaded with antigen (in vivo or in vitro) and transferred intravenously or 

intracamerally (ie into the anterior chamber) to induce ACAID in a second 

animal.(Wilbanks et al., 1992; Wilbanks et al., 1991) (Wilbanks and Streilein, 1991). 

Although F4/80 is often considered as a marker of murine macrophages it may also 

label groups of dendritic cells such as the Langerhans cell group of DC(McMenamin 

et al., 1994; Camelo et al., 2003). Immunolabelling of murine iris and ciliary body by 

McMenamin suggested that 80% of the F4/80+ cells were also positive for the 

macrophage marker SER4 (and apparently similarly for CD11b). However 33% of the 

F4/80+ cells also expressed MHCII (Ia) which has been primarily described on the 

DC population. Two thirds of the class II(Ia) + cells also expressed specific DC 

markers such as CD11c (McMenamin, 1999). 

 

1.10.2 The function of the ocular APC 

 

Although there is general agreement over the existence of both a DC-like population 

and a macrophage-like population, there is considerable argument over two issues: 

first, their function – do they act as immunogenic APCs or do they have an 

immunoregulatory role?; second, their migration – do they act purely locally or do 

they migrate, and if so where to? Camelo and colleagues have hypothesised that the 

anterior uveal dendritic cells are the sentinel APC which migrate to the draining 

lymph node to induce naïve T cell proliferation and so generate the primary ocular 

immune response, whereas the macrophage may be involved in the secondary 

immune response by restimulating activated T cells (Camelo et al., 2003). 
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Previous studies by Williamson and Streilein found that single-cell suspensions and 

whole preparations of the iris/ciliary body not only failed to function as allogeneic 

APCs but actually suppressed the mixed lymphocyte reaction. Intraocular injection of 

IFNγ led to upregulation of MHCII on resident bone-marrow derived cells of the iris-

ciliary body and could abrogate these immunosuppressive properties, although the 

exact mechanism of this altered function is unclear (Streilein et al., 1992). In contrast 

Steptoe found that purified MHCII (Ia)+ED2- iris DC, but not MHCII-ED2+ 

macrophages, did have moderate allostimulatory capacity in the mixed leucocyte 

reaction assay and that this could be further enhanced by  the addition of GM-CSF 

(Steptoe et al., 2000). These authors suggested that the failure to observe 

allostimulation in other studies might be due to contamination with iris/ciliary body 

epithelial or stromal cells which are known to have a strong immunoregulatory effect, 

rather than being a feature of the iris DC themselves. 

 

1.10.3 The traffic of soluble antigen and of ocular antigen presenting cells  

 

In the absence of a well-developed system of draining lymphatics it is unclear where 

antigen presentation actually takes place. A number of explanations have been 

proposed which are not mutually exclusive and may indeed coexist. The three 

dominant models are discussed below. 
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1.10.3.1 Model 1: Antigen presentation occurs in the eye only 

 

The simplest solution, proposed by Chang and colleagues, is that the traffic of antigen 

or APC out of the eye is unnecessary. They propose that naïve T cells may be 

recruited directly to the uvea and that priming and activation could occur in the uvea 

itself (Chang et al., 2004). Although there is no direct evidence for this occurring 

within the eye, direct antigen presentation to naive and memory CD4+ T cells can 

occur in peripheral tissues. Although under normal circumstances, only primed CD4+ 

T cells would be recruited to the site of inflammation, it is possible that in the 

presence of generalised endothelial activation (such as in the presence of severe blood 

ocular barrier breakdown) naïve CD4+ T cells may also traffic through. 

 

1.10.3.2 Model 2: Ocular APC migrate from the eye and present antigen in the 

spleen 

 

In contrast the Anterior Chamber Associated Immune Deviation (ACAID) model 

postulates that antigen introduced to the anterior chamber is picked up by APC which 

follow the conventional outflow pathway of aqueous humour via the venous system to 

the spleen(Streilein, 2003b). In the context of ACAID antigen presentation occurs in 

the spleen triggering an immunoregulatory (rather than an effector) response 

(Streilein, 2003b) . This has similarities to venous induction of tolerance where 

antigen is directly injected into the vein resulting in the traffic of large quantities of 

antigen directly to the spleen, although most advocates of ACAID argue that it is a 

distinct tolerogenic mechanism (Niederkorn, 2007) .  
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1.10.3.3 Model 3: Soluble antigen migrates to the draining lymph node and is 

processed by resident DC 

 

Other investigators have noted that almost all antigen is carried in mainly soluble 

form and not by an ocular APC. They propose that soluble antigen leaves the eye by 

either the conventional route or the unconventional uveoscleral route, and may then 

be transported in the venous system or in the afferent lymphatics to the secondary 

lymphoid tissues (Camelo et al., 2006; Dullforce et al., 2004). Wilbanks and Streilein 

compared the subsequent distribution of intracameral, subconjunctival and 

intravenous injections of 125I labelled BSA. In contrast to intravenous administration, 

both intracameral and subconjunctival sites acted as antigen depots, with detection of 

antigen even 4 weeks later. However they noted that 95% of the injected antigen left 

the eye in soluble form ie without being processed by ocular antigen presenting cells 

(Wilbanks and Streilein, 1989). 

 

Egan et al found that both the peptide OVA 323-339 and the whole OVA protein 

when inoculated into the posterior chamber of the eye led to the expansion of OVA-

specific T cells in the ipsilateral submandibular lymph node by day 3. This effect is 

abrogated by enucleation of the eye at 30mins, 1h or 5h, but persists with  enucleation 

at 24h suggesting that the antigen (in whatever form) exits the eye between 5 and 24h 

(Egan et al., 1996). 

 

Becker and colleagues subsequently used intravital microscopy in the mouse to 

identify which ocular APC ingested ovalbumuin after intracameral administration.  

Fluorescent ovalbumin and/or fluorescent antibodies to MHC II, CD11b, CD11c and 

F4/80 were injected into the anterior chamber of healthy mice. They found that 
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ovalbumin was taken up by some cells with morphologic and surface molecules 

typical of macrophages and some more typical of dendritic cells. At 6h after injection 

most (95%) ovalbumin+ cells were CD11c+, 90% were F4/80+, around 60% were 

MHCII+, and around 15% were CD11b+. On colabelling only 10% of the CD11b+ 

cells were MHCII+, and only 10-20% of the MHCII+ cells were CD11b+. At 24h 

after injection only 24% of ovalbumin+ cells were CD11c+, and around 30% were 

MHCII+, whereas the proportion of CD11b+ cells had increased to 60% and F4/80+ 

cells had remained at 90%. They also found that at 24h most of the MHCII+ cells 

were positive for an antibody mix to CD80 and CD86. The authors suggest that this 

apparent shift from a typical dendritic cell phenotype (CD11c+ and/or MHCII+) to a 

more macrophage-like phenotype (CD11b+ and/or MHCII-) may reflect actual 

differentiation of the DC, emigration of the DC or death of the DC with ingestion by 

macrophages (Becker et al., 2003). 

 

The same group then compared the uptake of texas red labelled ovalbumin (TR-OVA) 

with the uptake of fluorescent 2μm latex beads after injection into the murine anterior 

chamber. Cells positive for TR-OVA but not for fluorescent beads  were observed in 

the submandibular lymph nodes from 6h onwards. The majority of the beads 

remained clumped in the angle of the eye, although a few could be found in the spleen 

at 24h post injection(Dullforce et al., 2004). Video microscopy showed that no bead-

containing APC from the iris showed directionally significant movement or left the 

iris at any time point (4h, 5h, 6h, 12h, 24h, 48h) even under the additional 

inflammatory stimulus of LPS (Dullforce et al., 2004). This contrasted with their 

parallel experiments in which intradermal injection of identical beads resulted in 
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bead-containing APC in the draining lymph nodes, so recapitulating the work of 

Randolph (Randolph et al., 1999). 

 

Using in vivo video microscopy in the rat Camelo found that 24h after intracameral 

injection of fluorescent-labelled dextran, antigen had been taken up by numerous cells 

of the iris, ciliary body, anterior suprachoroidal space and episcleral connective tissue. 

Confocal microscopy revealed that the majority of these cells were MHCII (Ia) -,  and 

bore typical macrophage markers ED1 (syn macrosialin;  stains most rat tissue 

macrophages, may also be on DC; homologue of CD68),  and ED3 (CD169, stains 

marginal zone and subcapsular sinus subsets of lymphoid macrophages); however 

there was also a population of cells which were positive for both ED2 (CD163;syn 

scavenger receptor B) usually found on monocytes/macrophages (particularly 

alternatively activated (M2) macrophages(Tiemessen et al., 2007)) as well as OX62+ 

(ie rat αE2  integrin) which is a typical DC marker (Camelo et al., 2003). 

 

The same group then attempted to identify which extraocular sites the fluorescent-

labelled dextran drained to. They observed dextran+ cells in the marginal zone of the 

spleen, in the subcapsular sinus of the ipsilateral submandibular, superficial cervical 

and deep cervical lymph nodes, and unexpectedly in the mesenteric lymph nodes. In 

some cases dextran+ cells were also found in the contralateral submandibular and 

superficial cervical  lymph nodes (Camelo et al., 2004a). In the spleen these dextran+ 

cells were CD1+, CD11b+, CD11c-, CD68+ (clone ED1), CD86low, CD163low 

(clone ED2), CD169+ (clone ED3),MHCII (Ia)+ (clone OX6), ED5- (marker of 

FDC), and in the lymph nodes were CD4+, CD8+, CD80+ and CD172a+ (OX41). 
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The authors argue that these phenotypes suggest that they are resident lymphoid 

macrophages, and do not represent migrated APC from the eye (Camelo et al., 2006). 

 

The work by Camelo (Camelo et al., 2003) suggesting that in the rat eye intracameral 

dextran is mostly taken up by macrophages contrasts with the work of 

Dullforce(Dullforce et al., 2004) (discussed earlier) suggesting that in the mouse eye 

intracameral ovalbumin was first taken up by DC and only later appeared in cells of a 

macrophage phenotype. These differences could reflect differences in the nature of 

the antigen, interspecies variation or issues of experimental design and technique. 

Camelo and colleagues attempted to address some of these issues by repeating their 

earlier work with dextran (a polysaccharide) using ovalbumin and BSA (both 

proteins). With all three antigens, antigen positive cells were observed within the iris, 

iridocorneal angle, pre-equatorial choroid and around limbal/episcleral vessels. 

Interestingly whereas with BSA and dextran (40-70kDa), antigen positive cells were 

found lining both the conventional and non-conventional pathways, with albumin 

antigen positive cells were found mainly along the conventional outflow pathway. At 

24h most of the antigen positive cells were of a similar phenotype regardless of the 

antigen used; specifically they were CD68+ (ED1), CD163+ (ED2), mostly MHCII- 

and occasionally CD169+ (ED3) suggestive of a macrophage phenotype. A few 

antigen positive MHCI++ dendriform cells were identified in the iris, trabecular 

meshwork, choroid and episclera, and these were proposed as possible DC.(Camelo et 

al., 2004b) It should be noted that the studies by Camelo did not involve examining 

the eye earlier than 24h post injection, and thus direct comparison with the Dullforce 

(Dullforce et al., 2004) study is not possible. 
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In a subsequent series of experiments with parallels to the Dullforce paper,  Camelo 

and colleagues injected cascade-blue-dextran into the AC of the right eye and FITC-

dextran into the AC of the left eye: significantly individual APC bearing both 

fluorochromes were identified. Similarly when CB-Dx was injected into the AC of the 

right eye and FITC-DX was injected into the tail vein, APC bearing both fluorescent 

antigens were identified in the marginal zone of the spleen. They also showed that the 

distribution to lymph nodes following intracameral injection was almost identical to 

that seen after subconjunctival injection; they argued that this suggests that the 

intracameral antigen that ends up in these sites also travels via the conjunctival 

lymphatics (Camelo et al., 2006). 

 

1.10.4 Summary of antigen presentation in the eye 

 

My central hypothesis is that the normal resting ocular microenvironment maintains a 

relatively immature DC phenotype which generates anergic or regulatory T cells, 

whereas in intraocular inflammation (uveitis) this regulation breaks down permitting 

full DC maturation resulting in production and recruitment of pathogenic effector T 

cells to the eye.  

 

In terms of the identity of the ocular APC, MHC class II+ cells have been identified in 

the mouse, rat and cadaveric human eye, mainly around the iris (Becker et al., 2003; 

McMenamin et al., 1994; Forrester et al., 1994). These can be divided into two groups 

according to whether they express typical dendritic cell or macrophage markers. The 

iris dendritic cells express low CD11c, CD80 and CD86 suggesting that they are 

relatively immature (McMenamin et al., 1994) . Although less abundant than 



Chapter One General Introduction 42 

macrophage-like populations, there is now good evidence that DC are present within 

the anterior (and posterior) segment of the eye (Chang et al., 2004; Forrester et al., 

1994; Forrester et al., 1993; Forrester et al., 2005; McMenamin et al., 1994; 

McMenamin, 1999; McMenamin, 1997; McMenamin et al., 1992). 

 

In terms of function, indirect evidence for the role of dendritic cells in uveitis (or at 

least a form of ocular antigen presenting cell) comes from the presence during 

inflammation of recently primed, activated T cells (CD45RO+, CD69+) suggesting 

recent activation by professional APC(Muhaya et al., 1999) . Antigen injected into the 

AC is captured within 6-24h by macrophage and DC-like cells in the iris and 

subconjunctival tissue(Dullforce et al., 2004; Camelo et al., 2003), however it  

remains unclear whether antigen presentation is by these ocular DC themselves, or by 

resident DC of the lymphoid tissues which have imbibed soluble antigen or 

transferred antigen (from migratory DC). It is also uncertain whether antigen 

presentation takes place in the draining lymph nodes, the spleen (as per ACAID 

model) or indeed in the ocular tissue itself (as proposed by Chang). 

 

In the light of my hypothesis and the limits of our current knowledge (summarised 

above), one of the challenges of this thesis was therefore to develop an in vitro model 

of DC function that would reflect DC behaviour in both the resting ocular 

microenvironment and under inflammatory conditions and would enable us to assay 

its capacity to induce T cell responses both of naive cells, and of memory cells. 
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1.11 Uveitis 

1.11.1 The clinical problem of uveitis 

 

Uveitis comprises a group of diseases characterised by intraocular inflammation, 

which by its very existence challenges the paradigm of ocular immune privilege. 

Many cases resolve rapidly, but a significant number of patients develop persistent 

disease, with damage to ocular structures resulting in severe visual impairment. It is 

currently unclear whether the development of uveitis reflects a failure of immune 

privilege or whether these mechanisms are overwhelmed and conversely whether 

disease resolution represents a re-establishment of the normal mechanisms of immune 

privilege function.   

 

Although uveitis per se is a term correctly used to describe inflammation of the uveal 

tract (iris, ciliary body and choroid; Figure 1.5) alone, the term has come to include a 

large group of diverse diseases affecting also the retina, optic nerve and vitreous(Bora 

and Kaplan, 2007; Forrester, 2007). It predominantly affects people of working age, 

peaking  in the 20 – 50 year age group, with an annual incidence of 14 – 50 per 

100,000(Durrani et al., 2004).  Whilst there is some variation in prevalence across the 

globe, in the developed world it is the 5
th

 commonest cause of visual loss  accounting 

for 10 – 15% of total blindness and up to 20% of legal blindness(Durrani et al., 2004).  

 

Uveitis can be a devastating sight-threatening condition. The main causes of reduced 

vision are cystoid macular oedema and secondary cataract. Other vision threatening 

complications include secondary glaucoma, band keratopathy, vitreous opacities, 

optic neuropathy, retinal scars and phthisis (involution of the eye). Depending on the 
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primary site and extent of inflammation it may be described as anterior, intermediate, 

posterior or panuveitis (Table 1.5), each of which have their own constellation of 

typical clinical features (Table 1.6)((Jabs et al., 2005; Bora and Kaplan, 2007; 

Forrester, 2007).  

 

 

 

 

Type Primary site of 

inflammation 

Includes 

Anterior uveitis Anterior chamber Iritis 

Iridocyclitis 

Anterior cyclitis 

Intermediate uveitis Vitreous Pars planitis 

Posterior cyclitis 

Hyalitis 

Posterior uveitis Retina or choroid Focal, multifocal or 

diffuse choroiditis 

Chorioretinitis 

Retinochoroiditis 

Retinitis 

Neuroretinitis 

Pan uveitis Anterior chamber, vitreous 

and retina or choroid 

 

 

Table 1.5 Anatomical classification of uveitis 
The Standardization of Uveitis Nomenclature (SUN) anatomical classification of 

uveitis (2005)(Jabs et al., 2005)  
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Type Common symptoms Common signs 

Anterior uveitis  If acute: pain, redness 

If chronic: usually 

asymptomatic  

Ciliary injection 

AC cells 

AC flare 

Keratic precipitates 

Posterior synechiae 

Intermediate uveitis „Floaters‟ 

Reduced vision 

May be asymptomatic 

Vitreous cells 

Exudation at the ora 

serrata 

Posterior uveitis Reduced vision 

„Floaters‟ 

Macular oedema 

Retinal or choroidal 

infiltrates/oedema 

Retinal haemorrhages 

Periphlebitis or arteritis 

Panuveitis Any of the above 

 

Any of the above 

 

Table 1.6 Common clinical features observed in anterior, intermediate, posterior 

and panuveitis 
Clinical presentation varies according to the primary site of intraocular inflammation 

(Bora and Kaplan, 2007; Forrester, 2007). 

 

 

One of the challenges of inflammatory disease is to score activity and so permit 

monitoring of disease and assessment of any intervention. Anterior segment 

involvement is scored using the SUN grading score for anterior chamber cells and 

flare(Jabs et al., 2005). For AC cells this involves scoring the number of AC cells in a 

1.0 x 1.0mm beam as follows: <1 cells, score 0; 1-5 cells, score 0.5+; 6-15 cells, score 

1+, 16-25 cells, score 2+, 26-50 cells, score 3+, >50 cells, score 4+. For AC flare the 

grading is similarly from 0 to 4, and is based on the increasing visibility of the beam 

within the normally transparent AqH, the loss of clarity of the intraocular structures 

and the visibility of fibrin (Jabs et al., 2005). 

 

In the majority of patients the cause of the intraocular inflammation is unknown 

(Table 1.7). Infectious agents, such as Toxoplasma gondii, and the herpes viruses are 
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well-recognised causes, but, particularly amongst industrialized nations, only account 

for a minority of disease. Of the non-infectious cases, some are part of a systemic 

disease process, such as sarcoidosis, Behçet‟s disease, multiple sclerosis and the 

HLA-B27 related group of diseases, but in most cases the pathogenesis is not 

understood.  It is thought that many of these „idiopathic‟ cases have an autoimmune 

aetiology(Bora and Kaplan, 2007; Forrester, 2007). They share similarities (and 

indeed are often associated) with established autoimmune conditions; they also 

respond to immunosuppresives drugs, such as glucocorticoids (Curnow et al., 2004; 

Curnow et al., 2005; Muhaya et al., 1999; Becker et al., 2002). 

 

 

Group Subgroup 

 

Infectious Bacterial 

Viral 

Fungal  

Parasitic 

Others 

Non-infectious Known systemic association 

No known systemic association 

Masquerade Neoplastic 

Non-neoplastic 

 

Table 1.7 Clinical classification of uveitis 
The clinical classification of uveitis (infectious/non-infectious/masquerade) has been 

described by the International Uveitis Study Group, 2008)(Deschenes et al., 2008) 
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1.11.2 Treatment of uveitis 

 

In common with most other inflammatory diseases, uveitis responds well to treatment 

with glucocorticoids (Oksala, 1960; Dick et al., 1997; Gaudio, 2004). In most anterior 

uveitis topical synthetic glucocorticoids are sufficient: typically dexamethasone 0.1% 

or prednisolone 1%. In more severe episodes of uveitis or where uveitis is not 

confined to the anterior part of the eye systemic glucocorticoids are usually 

given(Oksala, 1960; Dick et al., 1997; Gaudio, 2004). Where prolonged 

immunosuppresssion is required (or where systemic glucocorticoids at an acceptable 

dose are insufficient to control disease) alternative agents are used in addition or 

instead of glucocorticoids. Such agents include cyclosporine (Dick et al., 1997; 

Murphy et al., 2005), tacrolimus (Murphy et al., 2005), methotrexate (Gangaputra et 

al., 2009), azathioprine(Pasadhika et al., 2009), mycophenolate mofetil (Kilmartin and 

Dick, 1999; Teoh et al., 2008), cyclophosphamide (Rosenbaum, 1994), anti-TNF 

therapies (Murphy et al., 2004; Mushtaq et al., 2007; Suhler et al., 2009),  IFNα 

(Deuter et al., 2009) and other „biological‟ therapies(Sen et al., 2009). All of these 

agents, like glucocorticoids, have significant potential side-effects (Okada, 2005; 

Gaudio, 2004; Dick et al., 1997) (Table 1.7, 1.8).  Within the field of uveitis there is a 

dearth of large scale high quality randomised controlled trials to direct the appropriate 

use of these agents. Although there is a general reliance on glucocorticoids first-line, 

the selection of supplementary or alternative immunosuppressants (and their dosing 

regimen) still tends to be led more by personal experience, retrospective studies or by 

extrapolation from other diseases than from randomised controlled trials specific to 

uveitis. Fortunately this situation is beginning to improve with the development of 
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consensus guidelines (Jabs et al., 2000) and a move to prospective studies (Sen et al., 

2009; Suhler et al., 2009). 

 

Experimental therapies currently under investigation for use in uveitis include T reg 

infusion and tolerogenic DC vaccination, both of which have shown to be effective in 

EAU (Jiang et al., 2003). Other targets which have shown promise in animal models 

include IL-17, CD44(Xu et al., 2002; Reis e Sousa et al., 1999), chemokines (such as 

MIP-1α)(Crane et al., 2003), and adhesion molecules (such as ICAM-1) (Uchio et al., 

1994; Xu et al., 2003).  

 

 Part of this project was to investigate how glucocorticoid treatment may alter the 

effect of the ocular microenvironment on DC, by studying the effect on DC both of 

AqH from patients with uveitis pre or post-commencement of treatment and of the 

therapy itself . 
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Drug Mechanism Side-effects (selected) 

Glucocorticoid 

Prednisolone 

Methylprednisolone 

Dexamethasone 

Inhibits NF-κB and AP-1 Glucose intolerance/diabetes 

mellitus 

Weight gain 

Osteoporosis 

Adrenal suppression  

Cataracts 

Antimetabolites 

Azathioprine Inhibits purine metabolism Bone marrow suppression 

Gastro-intestinal (GI) upset 

Secondary malignancies 

Alopecia 

Methotrexate Inhibits dihydrofolate 

reductase  

Hepatotoxicity 

Bone marrow suppression 

GI upset 

Mycophenolic acid Inhibits purine metabolism Bone marrow suppression 

GI upset 

Secondary malignancies 

Leflunomide Inhibits pyrimidine synthesis Bone marrow suppression 

Hepatotoxicity 

Calcineurin inhibitors 

Ciclosporin Inhibits calcineurin/NF-AT 

transcription factor  reduce 

IL-2 + other cytokines 

Nephrotoxicity 

Hypertension 

Hepatotoxicity 

Gingival hyperplasia 

Hypertrichosis 

Tacrolimus Inhibits calcineurin/NF-AT 

transcription factor  reduce 

IL-2 + other cytokines 

Nephrotoxicity 

Hypertension 

Neurotoxicity 

Hepatotoxicity 

Voclosporin Inhibits calcineurin/NF-AT 

transcription factor  reduce 

IL-2 + other cytokines 

Nephrotoxicity 

Hypertension 

Cytotoxics 

Cyclophosphamide Alkylating agent: DNA cross-

linking blocks cell replication 

Bone marrow suppression 

Haemorrhagic cystitis 

GI upset 

Sterility 

 

Table 1.8 Conventional anti-immunosuppressive drugs used in uveitis, their chief 

mode of action and selected important side-effects 
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Drug Mechanism Side-effects (selected) 

TNF inhibitors 

Adalimumab Anti-TNF: fully human 

monoclonal antibody against 

TNF 

TB and Hep B reactivation 

Severe infections 

Etanercept Anti-TNF: Fc fusion protein 

which binds extracellular 

TNF- 

Hypersensitivity reactions 

TB and Hep B reactivation 

Severe infections 

Inflixamab Anti-TNF: chimeric 

monoclonal antibody against 

TNF- 

Human antichimeric antibodies 

serum sickness 

TB and Hep B reactivation 

Anaphylaxis 

Severe infections 

Interleukin receptor antagonists 

Anakinra Anti-IL1R: recombinant 

version of IL1 receptor 

antagonist (IL1RA) 

Injection-site reaction 

Neutropenia 

Severe infections (especially in 

asthma) 

Daclizumab Anti-IL2R: humanized 

monoclonal antibody against 

the IL2 receptor 

Hypersensitivity reactions 

Hypertension 

Severe infections 

Anti- B cell 

Rituximab Anti-CD20: chimeric 

monoclonal antibody against 

CD20 (B-cells) 

Severe infusion reactions(inc 

dyspnoea, hypoxia, 

bronchospasm) 

Cytokine release syndrome 

Cardiac dysfunction (inc arrest, 

hypotension, angina, 

arrhythmias) 

TB reactivation 

PML 

Interferons 

Interferon-
2
 Antiviral and anti-tumour:  

decreases NK cell activity 

Leukopenia 

Depression 

TB reactivation 

Flu-like symptoms 

Nephrotoxicity 

Hepatotoxicity 

 

Table 1.9 Biological therapies currently used in uveitis, their chief mode of action 

and selected important side-effects.  
A number of emerging biological therapies (such as anti-IL-17 therapies) are also 

currently under consideration. 
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1.11.3 The initiation of uveitis 

 

The processes leading to the initiation of non-infective uveitis are still unclear. With 

regard to the most common group, acute anterior uveitis (AAU), there is good 

evidence for both a genetic and environmental component. Genetic factors include a 

strong association with HLA-B27. In the West the prevalence of HLA-B27 is < 10% 

in the general population but around 50% in those presenting with AAU(Brewerton et 

al., 1973a; Ehlers et al., 1974). Conversely being HLA-B27+ is estimated to carry 

around a twenty five-fold relative risk of AAU (vs non-carriers) (Brewerton et al., 

1973a; Ehlers et al., 1974). It is not clear whether the HLA-B27 association for AAU 

(and spondylarthropathies such as ankylosing spondylitis) is directly due to the 

molecule itself (eg via inappropriate recognition of self antigen on the HLA-B27 

molecule) or whether it is due to the presence of neighbouring genes existing in 

linkage disequilibrium with HLA-B27. Candidates include MHC I chain-related gene 

A (MICA; MICA A4 is associated with AAU (Goto et al., 1998); MICA*009 with 

Behcet‟s disease (Mizuki et al., 2007)) and TNF(Kaijzel et al., 1999).  

 

Despite its high relative risk of AAU, being positive for HLA-B27 only carries a 

lifetime incidence of around 1% (Linssen et al., 1991) raising the possibility of a 

significant environmental contribution. Most attention has focused on the presence in 

a proportion of AAU of recent gram negative bacterial infection, particularly Yersinia 

and Salmonella(Saari and Kauranen, 1980; Saari et al., 1980b; Saari et al., 1980a). 

The role of Gram negative bacteria is reasonably well established in other HLA-B27 

diseases (notably in reactive arthritis)(Liu et al., 2001) and thus a natural target in 

AAU. Interestingly both mice and rats transgenic for HLA-B27 only develop an 
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Ankylosing Spondylitis-like inflammatory disease when exposed to non-sterile 

conditions.   

 

In the eye the expression of TLR-4 and its associated LPS receptor complex is limited 

to DC-like APC found in perivascular and sub-epithelial locations where they can 

potentially respond to either intraocular or blood-borne LPS (from Gram negative 

bacteria); indeed this is used to induce a hyperacute anterior uveitis in the model 

endotoxin-induced uveitis (EIU)(Rosenbaum et al., 1980). It is proposed that the 

precipitating event in acute anterior uveitis may be an inappropriate TLR-4-mediated 

response within the eye, driven by either LPS or endogenous TLR-4 ligands. The self 

perpetuating autoimmune cycle may become established once LPS acts as an adjuvant 

for hypothetical self-antigens leading  to full APC maturation and breakdown of 

peripheral tolerance. Additionally in the presence of inflammation and tissue damage 

endogenous TLR-4 ligands are generated which may reinforce the TLR-4 response 

(Chang et al., 2004). Alternative animal models of anterior uveitis include collagen-

induced anterior uveitis (CAU) induced by a type I collagen fragment (Bora et al., 

2004)and experimental melanin induced uveitis induced by choroid derived melanin-

associated antigen (Chan et al., 1994)(Figure 1.10). 

 

The situation with regard to intermediate and posterior uveitis is even more complex. 

First it is a matter of debate as to whether the various clinical entities are different 

diseases or part of the spectrum of a single pathological process. Evidence for the 

former view comes from the clinical, prognostic, and genetic differences between 

some types of uveitis, for example, pars planitis (a form of intermediate uveitis with 

good prognosis) and the strongly HLA-A29 associated bird-shot retinochoroidopathy 
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(a form of posterior uveitis with poor prognosis). The interesting possibility that these 

are artificial groupings to describe a spectrum of inflammatory response has been 

recently reviewed by Forrester (Forrester, 2007) who points out that in animal models 

(summarised in table 1.10) the induction of autoimmune intraocular inflammation by 

ocular antigens can lead to a spectrum of disease with strong similarities to the range 

of human uveitis. 

 

Animal models such as experimental autoimmune uveitis (the most widely used 

model of posterior uveitis; recently reviewed (Kerr et al., 2008)) have demonstrated 

the capacity of ocular antigens (notably retinal-S antigen and interphotoreceptor 

retinoid binding protein) to induce uveitis when immunised with an adjuvant (usually 

a Mycobacteria tuberculosis extract such as Complete Freund‟s Adjuvant)(Table 

1.10). Modifications of this model (species, genetic background, immune status) 

result in variations in clinical phenotype which can be used to mimic acute 

monophasic, acute recurrent, and chronic disease. Traditionally regarded as a Th1 

disease, it has become increasingly apparent that Th17 cells may also play a critical 

role(Peng et al., 2007). This switch in paradigm (similar to that which has occurred 

with Experimental Autoimmune Encephalomyelitis (EAE)(Chen et al., 2006)) 

explains why switching off IFNγ alone does not cure EAU(Raveney et al., 2008), and 

why the presence of IL-6 (in the constitutively TGFβ2 rich ocular microenvironment) 

may be so central to the development of EAU and possibly human uveitis (Peng et al., 

2007; Amadi-Obi et al., 2007). Despite this recent change in focus it should be noted 

that EAU can also be induced in IL-17 knock-out mice, and thus it seems that both 

pathways have a pathogenic role to play (Luger et al., 2008). 
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More recently spontaneous models have been developed which, it is argued, better 

model the spontaneous nature of human disease. These models include spontaneous 

uveoretinitis in nu/nu mice after thymic reconstitution at 4wks of age (Ichikawa et al., 

1991), bird-shot retinopathy-like uveitis in mice made transgenic for HLA-A29 

(Szpak et al., 2001),  or the introduction of a foreign antigen (eg Hen egg lysozyme 

(HEL)) under an ocular promoter (eg the αcrystallin promoter) with either the 

adoptive transfer of specific T cells or crossing onto a mouse transgenic for the 

specific TCR (eg anti-HEL)(Zhang et al., 2003; Lambe et al., 2007).  

 

Model Antigen Adjuvant Animal 

Experimental 

autoimmune uveitis 

(EAU) 

 

Retinal S-Ag or 

IRBP (bovine) 

CFA Mouse or rat 

Endotoxin-induced 

uveitis (EIU) 

 

LPS (systemic or 

intravitreal) 

As for Antigen Mouse or rat 

Mycobacterium 

tuberculosis 

adjuvant-induced 

uveitis (MTU) 

 

Mycobacterium 

tuberculosis 

adjuvant 

(intravitreal) 

As for Antigen Mouse 

Experimental 

melanin induced 

uveitis (EMIU) 

 

Melanin (bovine) Hunter‟s adjuvant Rat 

Experimental 

Autoimmune 

Encephalomyelitis 

(EAE) 

Myelin basic 

protein 

CFA Rat 

Collagen-induced 

autoimmune uveitis 

(CAU) 

Type I Collagen 

(bovine) 

CFA 

Pertussis toxin 

Rat 

 

Table 1.10 Outline of commonly used animal models of uveitis, their antigens 

and adjuvants. 
Abbreviations: IRBP = interphotoreceptor retinoid binding protein; CFA = complete 

Freund‟s adjuvant  
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In human uveitis evidence for the role of autoantigens is less complete. De Smet 

noted  lymphocyte stimulation responses to peptide determinants of retinal S antigen 

in a range of uveitis conditions, being most frequent in uveitis associated with 

Behcet‟s disease or sarcoidosis (de Smet et al., 1990; de Smet et al., 2001).  Attempts 

to identify responding T cells in the peripheral blood of uveitis patients are extremely 

challenging but have suggested a higher rate of responding cells in uveitis patients vs 

controls (0-400/10
7
 cells vs 0-4/10

7
 cells)(de Smet et al., 1998), and, at least in 

Behcet‟s patients a thirty-fold expansion of the retinal S-Ag specific T cell pool after 

an episode of intraocular inflammation (de Smet and Dayan, 2000).  No difference in 

serum levels of anti-retinal S Ag or anti-IRBP have been observed between patients 

and controls (Chan et al., 1985; Doekes et al., 1987).  

 

1.11.4 Immune privilege and inflammation 

 

Does AqH still have immunosuppressive properties in the presence of inflammation? 

In the murine model of experimental autoimmune uveitis, Ohta observed that blood 

ocular barrier breakdown is associated with increased levels of IL-6 and loss of the 

capacity to suppress anti-CD3 driven T cell proliferation at the onset of disease (day 

11 after inoculation with IRBP). However at day 17 when disease was progressively 

severe AqH recovered the ability to suppress anti-CD3 driven T cell proliferation 

associated with a fall in IL-6 and in the presence of TGFβ-1 (from blood) and TGFβ-2 

(from the eye)(Ohta et al., 2000a). Subsequently using the model of endotoxin 

induced uveitis the same group found that 6 to 24 hours after LPS injection AqH lost 

its capacity to suppress T-cell activation associated with an increase in IL-6 measured 

in the AqH and high levels of IL-6 mRNA in the iris/ciliary body tissue. 
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Neutralization by the addition of IL-6 specific antibodies to inflamed AqH led to 

recovery of its capacity to suppress T-cell activation. Similarly CD3-induced T cell 

proliferation suppressed by exogenous TGFβ2 (at 0.5 or 5 ng/ml) could be overcome 

by the addition of IL-6 (at 1 or 10ng/ml). Additionally they noted that the induction of 

antigen-specific anterior chamber–associated immune deviation (ACAID) in normal 

mice was prevented by the addition of IL-6 into the anterior chamber (Ohta et al., 

2000b). Conversely using a different model based on the injection of LPS into the 

vitreous cavity of BALB/c mice, Mo and colleagues found that even at the peak of 

intraocular inflammation (9h) these eyes would both permit the proliferation of 

allogeneic tumour cells and support ACAID, and their AqH would still strongly 

inhibit T cell activation.(Mo and Streilein, 2007)  
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1.12 Objectives 

 

In this thesis, I set out to achieve the following:  

 To develop an in vitro model of DC differentiation, maturation and function 

that would best reflect the microenvironment of the human eye.  

 To study the effects of non-inflammatory AqH (or its significant components) 

on DC phenotype and function.  

 To compare the effects of non-inflammatory AqH with AqH from patients 

with uveitis.  

 To consider the effects of treatment on the ocular microenvironment as 

reflected by the effects of AqH from patients on or off treatment at the time of 

sampling.  

 To establish whether DC can be identified in aqueous humour from uveitis 

patients, and to characterize their phenotype.  

 To identify the mechanisms within the eye that regulate DC maturation under 

both non-inflammatory conditions and during uveitis. 
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2 MATERIALS AND METHODS 

2.1 List of reagents 

2.1.1 Media and solutions 

 

All Sigma-Aldrich, Irvine, UK unless otherwise specified. 

RPMI medium RPMI (Roswell Park Memorial Institute) 1640  

L-glutamine (1.64mM), benzylpenicillin (40U/ml), 

streptomycin (0.4mg/ml) and HEPES buffer (10mM) 

RPMI/ITS+3  RPMI medium with 1% ITS+3 liquid media supplement;  

ITS+3 liquid media supplement contains 1.0 mg/ml insulin 

from bovine pancreas, 0.55 mg/ml human transferrin 

(substantially iron-free), 0.5 μg/ml sodium selenite, 470 μg/ml 

linoleic acid, 470 μg/ml oleic acid and 50 mg/ml bovine serum 

albumin (equivalent to 2 moles each of linoleic acid and oleic 

acid per mole of albumin). 

RPMI/ITS+3/NEAA/Na pyruvate         

RPMI medium with 1% ITS+3 liquid media supplement, 1% 

Nonessential amino acids, 1% Sodium pyruvate 

Non-essential amino acid solution (100x) stock solution 

contains 0.89g/l L-alanine, 1.5g/l L-asparagine, 1.33g/l L-

aspartic acid, 1.47 g/l glutamic acid, 0.75 g/l glycine, 1.15 g/l L-

proline and 1.05 g/l L-serine. 

Sodium pyruvate stock solution contains 100mM sodium 

pyruvate solution. 

RPMI/1% BSA RPMI medium with 1% bovine serum albumin (BSA) 
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RPMI/10% HS RPMI medium with 10% pooled human AB+male serum (HS; 

HD Supplies, Aylesbury,UK)  

RPMI/10% FCS RPMI medium with 10% pooled fetal calf serum (Biosera, 

Ringmer, UK) 

PBS Phosphate buffered saline contains 8g/l NaCl, 0.2g/l KCl, 1.15 

g/l Na2HPO4, 0.2g/l KH2PO4 in distilled H2O; prepared as 1 

PBS tablet per 100ml  distilled H2O (tablets supplied by Oxoid, 

Basingstoke, UK) 

MACS buffer  Phosphate buffered saline (PBS) with 0.5%BSA, 2mM 

ethylenediamine tetra-acetic acid (EDTA) 

2.1.2 Cytokines and prostaglandins 

 

Recombinant human IL-4 (Immunotools, Friesoythe, Germany) 

Recombinant human GM-CSF (Immunotools) 

Recombinant human IL-1β  (Peprotech, London, UK) 

Recombinant human IL-6  (Immunotools) 

Recombinant human TNFα (Peprotech)  

Recombinant human PGE2 (Sigma-Aldrich). 

Recombinant human TGFβ1  (R & D Systems, Abingdon, UK) 

Recombinant human TGFβ2  (Peprotech)  

Recombinant human TGFβ3 (R & D Systems) 

Recombinant human αMSH (Bachem, Weil am Rhein, Germany) 

Recombinant human VIP  (Bachem) 
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2.1.3 Antibodies 

Target Conjugate Species Isotype Clone Company Cat No Dilution 

 

CD1a PB Mouse IgG1 HI149 Biolegend 300117/8 1in 50 

 

CD1c 

(BDCA-1) 

APC Mouse IgG2a AD5-8E7 Miltenyi 130-090-903 1in 10 

 

CD4 

 

PECy5 Mouse IgG2a 53.5 Caltag MHCD0406 1 in 50 

CD11b 

  

APCCy7 Mouse IgG1 ICRF44 

(44) 

BD Pharmingen 557754 1 in 40 

CD11c 

 

PECy7 Mouse IgG1 3.9 Biolegend 301607 1 in 10 

CD14  

 

FITC Mouse IgG1 MEM-18 Immunotools 21270143 1 in 20 

CD14 

 

APCCy7 Mouse IgG2b MφP9 BD Pharmingen 557831 1 in 20 

CD16 

 

FITC Mouse IgG1 LNK16 Immunotools 21279163 1 in 10 

CD19 

 

FITC Mouse IgG1 LT19 Immunotools 21270193 1 in 10 

CD40  

 

PECy5 Mouse IgG1 5C3 BD Pharmingen 555590 1 in 5 

CD45RA 

 

PETR Mouse IgG1 2H4LDH 

11LDB9 
Beckman Coulter PN IM2711 1 in 80 

CD45RO 

 

FITC Mouse IgG2a UCHL1 Dako F0800 1 in 20 

CD56 

 

FITC Mouse IgG2a MEM-188 Immunotools 21270563 1 in 10 

CD80 

 

FITC Mouse IgG1 2D10 Biolegend 

 

305206 

 

1 in 10 

 

CD80 

 

PE Mouse IgG1 L307.4 BD Pharmingen 557227 1 in 20 

CD80 

 

Biotin Mouse IgM BB1 BD 

Pharmingen 

555682 

 

1 in 50 

 

CD83 

 

PE Mouse IgG1 HB15 Serotec MCA1582PE 1 in 10 

CD86 

 

PECy5 Mouse IgG1 2331 

FUN-1 

BD Pharmingen 555659 1 in 20 

CDw137L  

(4-1BBL) 

PE Mouse IgG1 5F4 Biolegend 311503/4 1 in 10 

CD209 

(DCSIGN) 

FITC Mouse IgG2b DCN46 BD Pharmingen 551264 1 in 5 

CD275 

(ICOSL) 

Biotin Mouse IgG2b 2D3 Biolegend 

 

309405/6 

 

1 in 50 

 

CD303 

(BDCA-2) 

FITC Mouse IgG1 AC144 Miltenyi 130-090-510 1in 10 

 

CCR5 

(CD195) 

PECy7 Mouse IgG2a 2D7 / 

CCR5 

BD Pharmingen 557752 1 in 10 

CCR7 

 

FITC Mouse IgG2a 150503 R+D FAB197F 1 in10 

 

Table 2.1 List of primary antibodies used for flow cytometry (against surface 

molecules other than MHC).  Abbreviation used Allophycocyanin (APC), 

Cyanine 5 (Cy5), Cyanine 7 (Cy7) Fluorescein isothiocyanate (FITC), Pacific blue 

(PB), Phycoerythrin (PE), Phycoerythrin Texas Red (PETR) 
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Target Conjugate Species Isotype Clone Company Cat No Dilution 

 

HLA- 

A,B,C 

PB Mouse IgG2a W6/32 Biolegend 311417/8 1 in 50   

HLA-DR 

 

FITC Mouse IgG2a L243 BD Pharmingen 347400 1 in 20 

HLA-DR 

 

PE Mouse IgG2a 

 

L243 BD Pharmingen 347401 1 in 50 

HLA-DR 

 

PETR Mouse IgG1 Immu-357 Beckman 

Coulter 

PN IM3636 1 in 20 

 

Table 2.2 List of primary antibodies used for flow cytometry (against MHC) 
 

 

 

 

 

 

 

Target Conjugate Species Isotype Clone Company Cat No Dilution 

 

Biotin  Qdot 525  

 

Mouse N/A N/A Invitrogen Q10141MP 1 in 50 

Biotin Qdot 605  

 

Mouse N/A N/A Invitrogen Q10101MP 1 in 50 

 

Table 2.3 List of streptavidin-conjugated secondary antibodies used for flow 

cytometry  
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Target Conjugate Species Isotype Clone Company Cat No Dilution 

 

Irrelevant FITC 

 

Mouse IgG1 203 Immunotools 21335023 1 in 20 

Irrelevant PE 

 

Mouse IgG1 203 Immunotools 21335014 1 in 10 

Irrelevant PETR  

 

Mouse IgG2b MOPC-195 Caltag MG2b17 S 1 in 40 

Irrelevant PECy5 

 

Mouse IgG2a UPC-10 Immunotools 21335025 1 in 20 

Irrelevant PECy7 

 

Mouse IgG2a 5.205 Caltag MG2a12 S 1 in 10 

Irrelevant PB 

 

Mouse IgG2a 5.205 Caltag Mg2a 28 S 1 in 10 

Irrelevant APC Cy7 

 

Mouse IgG1 MOPC-21  BD 

Pharmingen 

557873 1 in 20 

Irrelevant Biotin 

 

Mouse IgG1 DAK-GO1 Dako X0945 1 in 10 

 

Table 2.4 List of isotype control antibodies used for flow cytometry  

 

 

 

 

 

 

 
Target Conjugate Species Isotype Clone Company Cat No Dilution 

 

FoxP3 PE 

 

Rat IgG1 eBR2a eBioscience 12-4321-73 1 in 5 

Irrelevant PE 

 

Rat IgG1 PCH101 eBioscience 12-4776-73 1 in 5 

 

Table 2.5 List of antibodies used for flow cytometry against intracellular targets 

 

 

 

 



Chapter Two Materials and Methods 63 

2.1.4 Other reagents 

 

Ficoll-Paque Plus (GE Healthcare Biosciences, Amersham, UK) 

MACS CD14-microbeads (Miltenyi Biotec, Surrey, UK) 

MACS Naïve CD4+ T cell isolation microbeads (Miltenyi Biotec) 

MACS Memory CD4+ T cell isolation microbeads (Miltenyi Biotec) 

MACS CD8+ T cell isolation microbeads (Miltenyi Biotec) 

MACS Myeloid Dendritic Cell isolation microbeads (Miltenyi Biotec) 

Carboxyfluorescein diacetate, succinimidyl ester (CFSE) (Invitrogen) 

Cortisol (> 98% HPLC Hydrocortisone; Sigma-Aldrich) 

RU486 (Mifepristone; Sigma-Aldrich) 

SB431542 hydrate (Sigma-Aldrich) 

Flow Check Fluorospheres (Beckman Coulter Inc) 

Counting beads (CALTAG/Invitrogen, Paisley, UK) 

Propidium iodide (Sigma-Aldrich) 

 

2.1.5 Other consumables 

 

96-well suspension culture plates sterile U bottom with lid (Greiner Bio-one Ltd, 

Stonehouse, UK) 

96-well adherent culture plates sterile flat bottom with lid (Sarstedt, Leicester, UK) 

24-well adherent culture plates sterile flat bottom with lid  

Tissue culture flasks for adherent cells (25cm
2
 surface area size) (Sarstedt) 

96-well multiscreen-MIC transmigration plates (Millipore, Watford, UK) 
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2.2  Aqueous humour samples 

 

Ethical approval for the collection of AqH and matched peripheral blood from 

patients either with uveitis (cases) or cataract (controls) had previously been obtained 

in 1996 from West Birmingham Local Research Ethics Committee. I oversaw the 

successful renewal of both our ethical application (Dudley Local Research Ethics 

Committee) and our research and development applications, including writing the 

new patient information sheets and consent forms (see Appendix). 

 

A team of ophthalmologists at the Birmingham and Midland Eye Centre led by 

Professor P.I. Murray regularly undertake AqH sampling both from patients with 

uveitis (for clinical and research purposes) and from patients attending for cataract 

surgery (for research purposes). Under the previous and current ethical application we 

have been able to collect between 20-80 uveitis AqH samples each year. As part of 

this team, and as the named contact for reporting accrual of patients to the United 

Kingdom Clinical Research Network (UKCRN) I oversaw the recruitment of 188 

uveitis patients (of whom 182 had successful sampling of peripheral blood and 87 of 

aqueous humour).  

 

Clinical data recorded comprised anatomical type of uveitis (Table 1.5), aetiology 

(where known), whether unilateral or bilateral, duration of current episode, duration 

of disease, current medical treatment (if any) and anterior chamber cellular activity 

(as per Standardization of Uveitis Nomenclature 2005 classification (Jabs et al., 

2005)). Anterior chamber flare was not recorded at the outset of the study, but has 

since been added to the minimum data set. AqH sampling from patients with active 
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uveitis was performed at the slit lamp following a previously published 

protocol(Cheung et al., 2004) and with typical sampling volumes of 40-100μl. The 

procedure was only carried out by the following trained personnel: Prof P.I.Murray, 

Mr I.J.Khan, Mr J.Abbott, Mr P.Tomlins, Miss K.Oswal and myself. 

 

Patients attending for routine cataract surgery provided the group of non-

inflammatory control AqH samples. AqH sampling from the control group was 

performed in theatre at the start of their cataract surgery, using a 1ml syringe with a 

27 gauge needle via either the main incision or a paracentesis port prior to any other 

manipulation of the anterior chamber, obtaining samples of 50-100μl. Working with 

Professor P.I. Murray and Miss S. Rauz we recruited 311 cataract patients (of whom 

all 311 had uncomplicated sampling of aqueous humour) (Figure 2.1). There were no 

significant adverse events following peripheral blood or aqueous humour sampling in 

either the uveitis or the control group. 

 

Each sample was centrifuged (300g, 5mins, 20˚C), before aspirating the supernatant 

for freezing at -80ºC in aliquots. Detailed demographic data including classification of 

uveitis (anatomical and clinical, and specific uveitis syndromes), and therapy (where 

relevant) was documented. The cells were resuspended in 100μl of RPMI/10% heat 

inactivated fetal calf serum (HIFCS) prior to staining for analysis by flow cytometry. 

 

During the period 1/11/06 to 1/9/09 (the period during which we were specifically 

recruiting for this project) we recruited 188 patients with uveitis with a mean + SD 

age of 52yrs 9mths + 17yrs 4mths. Of these 107 had anterior uveitis, two intermediate 

uveitis, four posterior uveitis and 54 panuveitis. Of this group of 188 patients, 87 
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underwent sampling of AqH (Figure 2.1). The clinical features of the group who 

underwent AqH sampling are set out in Table 2.6. 
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Figure 2.1 Flow-chart highlighting the recruitment of uveitis patients, cataract 

patients and healthy donors, and the utilization of samples as part of this study 

(UKCRN4654).  
Note that all DC culture experiments were based on monocyte-derived DC or myeloid 

DC from healthy controls. Non-inflammatory „control‟ AqH was taken at the time of 

surgery from patients without uveitis attending for routine cataract extraction.  
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Parameter 

 

Aqueous humour samples 

Number recruited 

 

87 

Age 

(Mean + SD) 

49.3 +16 yrs 

Anatomical classification Anterior 

Intermediate 

Posterior 

Panuveitis 

 

72 /82 

0  

0  

10 /82 

 

Eyes affected Unilateral 

Bilateral 

 

68 /78 

10 /78 

  

Course Acute (first episode) 

Recurrent 

Chronic 

 

17 /82 

64 /82 

1   /82 

 

Aetiology  Idiopathic 

HLA-B27 or related disease 

Fuchs Heterochromic Uveitis 

Viral (Herpes family) 

Vogt-Koyanagi-Harada disease 

52 /82 

18 /82 

7  / 82 

2  / 82 

1  / 82 

 

Duration of episode  

(Mean + SD) 

5.9 + 4.9 days  

Treatment Nil 

Topical corticosteroid 

Oral corticosteroid 

Intravenous corticosteroid 

 

49 /77 

24 /77 

2   /77 

2   /77 

 

Activity (cells) 0    

1+  

2+  

3+  

4+  

 

6   /82 

20 /82 

24 /82 

29 /82 

3   /82 

 

 

Table 2.6 Demographic and clinical features of patients with uveitis undergoing 

AqH sampling during the course of this study.  

All data (including duration of episode and treatment) was recorded at the time of the 

sampling and therefore does not reflect subsequent disease course. Anterior chamber 

cellular activity was graded as per Standardization of Uveitis Nomenclature 2005 

classification criteria(Jabs et al., 2005). 
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2.3  Purification of cells 

2.3.1 Purification of peripheral blood mononuclear cell fraction from whole 

blood 

 

Heparinised peripheral blood samples were obtained from healthy donors (recruited 

from amongst work colleagues). Informed consent was taken in accordance with the 

Human Tissue Act 2004. Peripheral blood was diluted 1:1 with “RPMI medium” 

comprising RPMI (Roswell Park Memorial Institute) 1640 supplemented with L-

glutamine (1.64mM), benzylpenicillin (40U/ml), streptomycin (0.4mg/ml) and 

HEPES buffer (10mM)(all Sigma-Aldrich). Diluted blood was layered on 8ml Ficoll-

Paque Plus (GE Healthcare Biosciences) in 25ml universal tubes and centrifuged at 

300g, 20°C, 30 mins, without brake. The peripheral blood mononuclear cell layer was 

transferred to fresh universal tubes and washed four times in RPMI medium with 

centrifugation of 300g at 20°C for 8mins each time. 

The yield of peripheral blood mononuclear cells (PBMC) was calculated by use of the 

Improved Neubauer haemocytometer (Weber Scientific) as described by the 

manufacturer. The range of yield was 5 x 10
5
 – 1.5 x 10

6
 per ml of peripheral blood. 

 

2.3.2 Purification of monocytes (CD14+) 

 

Monocytes were then isolated using MACS CD14-microbeads (Miltenyi Biotec) as 

described by the manufacturer. MACS Microbeads are superparamagnetic particles 

precoated with a specific antibody (here monoclonal anti-CD14) to enable positive or 

negative selection of cell populations when passed over a MACS column placed 

within a strong magnetic field. PBMC were incubated for 15mins at 4°C with 20µl 
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beads/10
7
 cells and 80μl MACS buffer /10

7
 cells. MACS buffer was filter-sterilized 

and consisted of phosphate buffered saline (PBS; Oxoid limited), 0.5% bovine serum 

albumin of 98% purity (BSA; Sigma-Aldrich) and 2mM ethylenediamine tetra-acetic 

acid, (EDTA; Sigma-Aldrich). The cells were then washed once with MACS buffer 

(centrifugation of 300g, 4°C , 8 mins), the supernatant pipetted off to a dry pellet, and 

cells resuspended in 500μl MACS buffer/10
8
 cells.  An LS MACS separation column 

was prepared by a single rinse with 3ml MACS buffer and placed on a QuadroMACS 

separator magnet. The resuspended cells were passed over the column, and the 

negative fraction eluted with a series of three x 3ml MACS buffer washes. The 

column was then removed from the magnet and the CD14-microbead positive fraction 

eluted with 5ml MACS buffer and firm column pressure from the plunger. 

 

The yield of monocytes was calculated by use of the haemocytometer. The range of 

yield was 5 x 10
4
 – 1.5 x 10

5
 per ml of peripheral blood. These populations were 

highly enriched with purity of >95% as determined by percentage of cells expressing 

CD14 analysed by flow cytometry (Figure 2.2).  
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Figure 2.2 Selection of CD14+ monocytes by CD14-microbeads 
CD14+ monocytes were isolated by MACS CD14-microbeads as described in the 

text, and purity checked by flow cytometry with staining for CD14. (A) Scatter plots 

show distinctive high forward scatter (FS) vs side scatter (SS) of monocytes compared 

to predominant lymphocyte population in peripheral blood mononuclear cell (PBMC) 

fraction. (B) Gating on region 1 (R1) for all cells (ie excluding debris) shows the 

purified fraction (filled-in area) to be 98% positive for CD14+ expression. 

Background staining was measured by an isotype control (broken line). 
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2.3.3 Purification of myeloid dendritic cells (BDCA-1+) 

 

Myeloid dendritic cells were also isolated using MACS technology in a two-stage 

process involving the depletion of CD19+ B cells prior to the positive selection of 

BDCA-1+ cells; the depletion step is required due to BDCA-1 also being present on a 

subset of B cells. PBMC were incubated for 15mins at 4°C with 200μl MACS buffer 

/10
8
 cells, 100µl CD19 beads/10

8
 cells, 100µl FcR blocking reagent/10

8
 cells, and 

100μl BDCA-1-Biotin antibody /10
8
 cells.  The cells were then washed once with 

MACS buffer (centrifugation of 300g, 4°C, 8 mins ), before being resuspended in 

500μl/10
8
 cells MACS buffer and passed over a prepared  LD MACS depletion 

column (single preparatory rinse with 2ml MACS buffer) placed on a QuadroMACS 

separator magnet. The B cell-depleted fraction was then eluted with a series of two x 

1ml MACS buffer washes. The B-cell depleted fraction was then washed again with 

MACS buffer (centrifugation of 300g, 4°C ), before being resuspended in 400μl 

MACS buffer /10
8
 cells and 100μl anti-biotin beads/10

8
 cells and incubated for 

15mins at 4°C. The cells were then washed once more with MACS buffer 

(centrifugation of 300g, 4°C , 8 mins), the supernatant pipetted off to a dry pellet, and 

cells resuspended in 500μl MACS buffer/10
8
 cells before being passed over an MS 

MACS separation column placed on a MiniMACS separator magnet. Having prepared 

the MS column (by a single rinse with 500μl MACS buffer), the negative fraction was 

washed through with a series of three x 500μl MACS buffer. The column was then 

removed from the magnet and the BDCA-1-microbead positive fraction eluted with 

1ml MACS buffer and firm column pressure from the plunger. To improve purity, 

elution was performed directly into a second prepared MS column, the negative 
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fraction was again eluted (three x 500μl MACS buffer) before final collection of the 

BDCA-1-microbead positive fraction by the addition of 1ml MACS buffer and firm 

column pressure from the plunger. 

 

The yield of myeloid DC was calculated by use of the haemocytometer. The range of 

yield was 2 x 10
3
 – 5 x 10

3
 per ml of peripheral blood. These populations were highly 

enriched with purity of >80% as determined by percentage of cells being          

BDCA-1+CD19- as analysed by flow cytometry (Figure 2.3).  
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Figure 2.3 Selection of BDCA-1+ myeloid DC by microbeads  
BDCA-1+  myeloid DC were isolated by MACS myeloid DC isolation kit as 

described in the text, and purity checked by flow cytometry with staining for BDCA-

1, CD14 and CD19. Scatter plots show distinctive intermediate forward scatter (FS) 

and side scatter (SS) when compared to monocytes or lymphocytes. CD19+ B cells 

(including those expressing BDCA-1) are successfully depleted, enabling enrichment 

of the BDCA-1+ CD19- myeloid DC to 80% purity.  
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2.3.4 Purification of naive (CD45RA+) CD4+ T cells, memory (CD45RO+) 

CD4+ T cells and CD8+ T cells 

 

Naive and memory CD4+ and CD8+ T cell subsets were isolated using MACS 

Isolations kits. This involved the depletion of non-CD4+ cells and memory T cells 

(for purification of naive CD4+ T cells), the depletion of non-CD4+ cells and naive T 

cells (for purification of memory CD4+ T cells) or the depletion of all non-CD8+ T 

cells (for purification of CD8+ T cells). In the CD4+ T cell isolation kits antibiotin-

microbeads are used after first labelling the PBMC fraction with a cocktail of biotin-

conjugated antibodies against CD8, CD14,CD16, CD36, CD56, CD123, TCRγδ, 

glycophorin A and either CD45RO (if isolating naive CD4+ T cells) or CD45RA (if 

isolating memory CD4+ T cells). The CD8+ T cell isolation kit is identical but 

comprises a cocktail of biotin-conjugated antibodies against CD4, CD15, CD16, 

CD19, CD34, CD36, CD56, CD123, TCRγδ, and glycophorin A. 

 

PBMC were incubated for 10mins at 4°C with 10µl biotin-antibody cocktail/10
7
 cells 

and 40μl MACS buffer /10
7
 cells. A further 30µl MACS buffer/10

7
 cells and 20μl 

anti-biotin microbeads /10
7
 cells were then added. The cells were then washed once 

with MACS buffer (centrifugation of 300g, 4°C , 8 mins), the supernatant pipetted off 

to a dry pellet, and cells resuspended in 500μl MACS buffer/10
8
 cells before being 

passed over a prepared LS MACS separation column placed on a QuadroMACS 

separator magnet. The negative fraction (containing the population of interest) was 

eluted with a series of three x 3ml MACS buffer washes.  

 

The yield of CD4+ or CD8+T cells was calculated by use of the haemocytometer. The 

range of yield was 2 x 10
5
 – 4 x 10

5
 per ml of peripheral blood for naive CD4+ T 
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cells, 5 x 10
4
 – 2 x 10

5
 per ml of peripheral blood for memory CD4+ T cells and 5 x 

10
4
 – 5 x 10

5
 per ml of peripheral blood for CD8+ T cells. These populations were 

enriched with purity of >90% as determined on flow cytometry by percentage of cells 

being CD4+ CD45RA+ (for naive CD4+ T cells) and CD4+CD45RO+ (for memory 

CD4+ T cells). For both the naive and memory CD4+ populations, the contaminating 

population (comprising 3-6%) were CD4- cells, and were distributed evenly between 

positive and negative fractions with regard to the CD45 splice variant of interest. For 

CD8+ T cells purity was >80% (Figure 2.4). 
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Figure 2.4 Selection of T cell subsets by microbeads  
Naive CD4+, memory CD4+ and CD8+ T cell subsets were isolated by MACS 

isolation kits as described in the text. Purity was checked by flow cytometry with 

staining for (A) CD4 and CD45RA, (B) CD4 and CD45RO or (C) CD8 as 

appropriate. Untouched naive CD4+ and memory CD4+ T cells could be isolated to 

>94% purity; untouched CD8+ T cells could be isolated to >80% purity).  
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2.4 Cell culture 

2.4.1 Standard culture conditions 

Human monocyte-derived DC were generated using well-established 

protocols(Sallusto and Lanzavecchia, 1994) . The standard culture conditions are 

described below. Variations from this protocol necessitated by experimental design 

are indicated in the text. Monocytes were resuspended in RPMI/10% pooled human 

AB+male serum (10%HS; HD Supplies, Aylesbury, UK) at 2ml medium/10
6
 cells 

supplemented with recombinant human IL-4 (500U/ml) and GM-CSF 

(1000U/ml)(both Immunotools, Friesoythe, Germany). These suspensions were 

placed in T25 flasks (Sarstedt, Leicester, UK) at 2.5 x 10
6
 cells/flask and cultured at 

37°C with 5% CO2.  At day 3, 2ml medium was removed and 2.5ml fresh medium (ie 

RPMI/10%HS) with IL-4 (final concentration 500U/ml) and GM-CSF (final 

concentration 1000U/ml) was added. At day 6 immature DC (iDC) were harvested by 

shaking the flask gently and collecting (and counting) non-adherent cells.  

 

2.4.2 Pooled human serum vs serum-free culture conditions 

 

To test the effect of alternative serum-free media on the differentiation and activation 

of DC the following serum-free media were used: RPMI/ITS+3, 

RPMI/ITS+3/NEAA/Na pyruvate, RPMI/1%BSA. These were compared to standard 

RPMI/10% pooled human serum. 

Cultures were carried out in 96 well flat-bottomed plates (Sarstedt) with initial counts 

of 50,000 cells in 100μl medium supplemented with IL-4 and GM-CSF (at standard 

concentration) per well  at 37°C with 5% CO2. At day 3, 25μl medium was removed 

and 50μl fresh medium with IL-4 and GM-CSF (standard concentrations) was added. 
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At day 6 immature DC (iDC) were harvested, and both number and surface 

expression of  HLA-DR, CD80 and CD86 were measured by flow cytometry. 

 

2.4.3 Pooled human serum vs alternative sera culture conditions 

 

To test the effect of alternative serum-free media on the differentiation and activation 

of DC the following media were used: RPMI/10%HS, RPMI/10% heat inactivated 

pooled human serum (HIHS), RPMI/10% fetal calf serum (FCS) and RPMI/10% heat 

inactivated fetal calf serum (HIFCS). Heat inactivation comprised being heated to 

56°C for 1 hour in a water bath. 

Cultures were carried out in 96 well flat-bottomed plates with initial counts of 50,000 

cells in 100μl medium supplemented with IL-4 and GM-CSF (at standard 

concentration) per well  at 37°C with 5% CO2. At day 3, 25μl medium was removed 

and 50μl fresh medium with IL-4 and GM-CSF (standard concentrations) was added. 

At day 6 immature DC (iDC) were harvested, and both number and surface 

expression of  HLADR, CD80 and CD86 were measured by flow cytometry. 

 

2.4.4 Pooled human serum vs autologous human serum culture conditions 

 

Cultures were carried out under standard conditions but with the addition of RPMI 

supplemented with either 10% pooled human serum or autologous serum 

supplemented with IL-4 and GM-CSF (standard concentrations). Cultures were 

carried out in T25 flasks, fed at day 3 and harvested at day 6 as per standard. 

Autologous serum was prepared by placing 10ml heparinised blood on ice for 10mins, 

before centrifuging at 500g, 4°C, 10mins and keeping the supernatant. Surface 



Chapter Two Materials and Methods 80 

expression of  HLADR, CD80 and CD86 was analysed as previously by flow 

cytometry. 

 

2.5 DC maturation 

 

Immature DC were cultured for a further 2d, under serum-free conditions, to induce 

maturation and/or modulation of their function. The standard culture conditions are 

described below. Any variations from this protocol necessitated by experimental 

design are indicated in the text. 

 

2.5.1 Standard maturation conditions 

 

At day 6 harvested DC were resuspended at 10
6
/ml in serum-free medium 

(RPMI/ITS+3/NEAA/Na pyruvate), and 500μl of DC suspension were added to each 

well of a 24 well plate (Sarstedt). To these wells were added either 500μl of the same 

serum-free medium alone or 500μl of a cocktail of the following inflammatory 

cytokines: IL-1β (final concentration 1μg/ml; Peprotech, London, UK), IL-6 (final 

concentration 200ng/ml; Immunotools), TNFα (final concentration 10ng/ml; 

Peprotech) and PGE2 (final concentration 1μg/ml; Sigma-Aldrich). 

 

2.5.2 Studies on the effect of non-inflammatory AqH 

 

Since the volume of individual samples of AqH is a limiting factor, these experiments 

were carried out in smaller total volumes (80μl/well). Cultures of DC (monocyte-
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derived or myeloid) were carried out in two matched 96 well round-bottomed plates 

(Greiner). After 2d plate 1 was harvested for analysis of surface molecule expression 

by flow cytometry, whilst plate 2 was used for the allogeneic proliferation assays. 

Experiments investigating the effects of non-inflammatory AqH were conducted 

using pooled samples of non-inflammatory AqH unless otherwise specified in the 

text. It was felt that under non-inflammatory conditions the properties of AqH from 

healthy individuals were likely to show sufficiently little variation, that pooling AqH 

would not mask its effects. In addition pooling of AqH was necessary to provide 

sufficient identical AqH within a single experiment to permit two plates (one for 

surface staining and one for allogeneic proliferation assay) of triplicate cultures of DC 

in the presence or absence of inflammatory cytokines with or without glucocorticoid 

blockade (or combined glucocorticoid and TGFβ blockade), an experimental design 

which requires 1920µl human AqH per experiment pooled from around 40 patients.  

 

At day 6 DC cultured under standard conditions were harvested, counted (by 

haemocytometer) and resuspended at 5x10
5 

cells/ml in serum-free medium 

(RPMI/ITS+3/NEAA/Na pyruvate). 20µl of DC suspension (ie 10
4
 cells) was added 

to each well of a 96 well plate (Greiner) with 20µl of medium or 20µl cytokine 

cocktail described previously:  IL-1β (final concentration 1μg/ml; Peprotech), IL-6 

(final concentration 200ng/ml; Immunotools), TNFα (final concentration 10ng/ml; 

Peprotech) and PGE2 (final concentration 1μg/ml; Sigma-Aldrich). AqH was added at 

50% final concentration (ie 40µl per well) in all experiments. Plates were cultured for 

2d at 37°C with 5% CO2. 
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2.5.3 Studies on the effect of uveitis AqH 

 

For experiments involving uveitis AqH, I opted not to pool specimens as I was 

concerned that the wide variation of clinical disease might be reflected in a diversity 

of properties of AqH which would be obscured if pooled.  In these experiments 

comparison is therefore between the effects of medium alone, individual uveitis AqH 

samples and individual non-inflammatory AqH samples; each AqH group comprised 

at least six individual samples. Due to the volumes of AqH available this meant that 

each sample could only be tested once (ie replicates were not possible). For studies of 

surface molecule staining these cultures were carried out as described previously but 

using Terasaki plates (vWR International, Lutterworth, UK) in a total volume of 20µl. 

For allogeneic proliferation assays, DC were cultured in  96 well plates (Greiner) as 

described previously.  

 

2.5.4 Studies on the effect of TGFβ and its inhibition 

 

To compare the effects of TGFβ isoforms, 20µl of DC suspension (as above, ie 10
4
 

cells) was added to each well of a 96 well plate (Greiner) with 20µl of medium or 

20µl inflammatory cytokine cocktail as described previously. TGFβ isoforms were 

then added at a final concentration of 10ng/ml. TGFβ1 (R & D systems, UK), TGFβ2 

(Peprotech) and TGFβ3 (R+D sytems) were compared. All experiments were carried 

out  in a total volume of 80µl serum-free medium (RPMI/ITS+3/NEAA/Na pyruvate) 

and at 37°C with 5% CO2.  
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To investigate the dose-response effect of TGFβ2, experiments were carried out as 

above but with TGFβ2 being added at a final concentration of 0.1, 1, 10 or 100ng/ml. 

 

Inhibition of TGFβ  was achieved with the synthetic molecule SB431542 which is a 

potent and selective inhibitor of TGFβ receptor type I kinases, specifically the Activin 

receptor-Like Kinases (ALK) -4, -5 and -7 which signal via phosphorylation of the 

transcription factors Smad-2 and Smad-3. In all experiments requiring TGFβ 

blockade, SB431542 was added at a final concentration of 10
-7

M. 

 

2.5.5 Studies on the effect of cortisol  and its inhibition 

 

To study the effect of cortisol, 20µl of DC suspension (as above, ie 10
4
 cells) was 

added to each well of a 96 well plate (Greiner) with either 20µl of medium or 20µl 

inflammatory cytokine cocktail as described previously. Cortisol was then added at a 

final concentration 10
-9

, 10
-8

, 10
-7

, 10
-6

 and 10
-5

M.  All experiments were carried out  

in a total volume of 80µl serum-free medium (RPMI/ITS+3/NEAA/Na pyruvate) at 

37°C with 5% CO2.  

 

Inhibition of cortisol or other glucocorticoids (eg dexamethasone)  was achieved with 

the synthetic molecule RU486 (also known as mifepristone) which is a potent  

inhibitor of both the glucocorticoid receptor and the progesterone receptor. In all 

experiments requiring glucocorticoid blockade RU486 was added at a final 

concentration of 10
-7

M. 
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2.6 Transmigration studies 

 

Ninety-six well transmigration plates (Millipore (UK), Watford, UK) were used to 

determine DC migration to the chemokines CCL-19 (MIP-3β) and CCL5 (RANTES).  

Monocyte-derived DC were harvested at day 6 and placed into fresh serum-free 

medium culture for 48h under the conditions of interest (as described previously), but 

at a higher cell density of 8x10
4
cells/80µl medium  in each well. After 48h DC were 

harvested, washed and resuspended in fresh serum-free medium at 8x10
4
 cells/200µl. 

150µl of  serum-free medium containing  0, 1, 10 or 100ng/ml of either CCL-19 

(MIP-3β) and CCL5 (RANTES) was placed into the lower chambers of the 96 well 

transmigration plate. DC were placed in the top wells at 2x10
4
 cells in 50µl of serum-

free medium., and the plate was incubated at 37ºC for 3h. The plate was then 

disassembled and the cells in each chamber harvested and added to FACS tubes 

containing 195µl of PBS/2%BSA and 5µl of counting beads, and counted by flow 

cytometry. 

 

2.7 Carboxyfluorescein diacetate, sucinnimidyl ester (CFSE) labelling of 

T cells 

 

The population of interest (either naive CD4+ T cells, memory CD4+ T cells or CD8+ 

T cells) was labelled with carboxyfluorescein diacetate, sucinnimidyl ester (CFSE; 

Invitrogen) as follows. The cells were kept in a universal tube and were washed twice 

with 10ml sterile PBS, before being resuspended in PBS at 50ul/10
6
 cells. 2.5µl of 

10M CFSE was added to 5ml of sterile PBS to give a 5uM solution. This was added 

at a 1:1 ratio to the cell suspension to give a final CFSE concentration of 2.5uM, and 
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incubated for 10min at room temperature with periodic shaking. At 10mins an equal 

volume of RPMI/10%HIFCS was added. After 1further minute the cells were washed 

once with PBS once and twice with RPMI/10%HIFCS. The cells were resuspended in 

RPMI/10%HIFCS at 10
6
/ml and incubated overnight in a 24 well plate at 2ml/well. 

 

2.8 Allogeneic proliferation assay 

 

At day 8 of DC culture the CFSE labelled naïve CD4+ T cells were harvested, and 

washed twice in RPMI/10%HIFCS. They were counted by haemocytometer, and 

resuspended in RPMI/10%HIFCS at 10
6
/ml. 

 

One of the 96 well plates containing the DC cultures was spun down (300g, 4mins, 

21°C) and washed with 100µl RPMI/10%HIFCS three times under tissue culture 

conditions. This was achieved by performing the washes in the hood including 

flicking off the supernatant onto paper towels, and lightly dabbing the plate on further 

IMS-soaked paper towels. The DC were then resuspended in 100µl of 

RPMI/10%HIFCS and 100µl of the naïve CD4+ T cell suspension was added ie 10
5
 

CD4+ T cells/well. Three wells containing T cells alone (10
5
 in 200µl 

RPMI/10%HIFCS) were also set up. At day 4 of proliferation assay the cells were 

harvested and proliferation was measured by flow cytometry.  
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2.9 Multiplex bead immunoassay 

 

Culture supernatants which had been stored at -80ºC were analysed by multiplex bead 

immunoassay (Luminex), a technique which permits the analysis of up to 100 

analytes in a single sample of 50μl. I used a Human Cytokine 25-plex Antibody Kit  

(Biosource, Nivelles, Belgium) which assays the following analytes: IL-1β, IL-1RA, 

IL-2, IL-2R, IL-4, IL-5, IL-6, IL-7, IL-8, IL-10, IL-12, IL-13, IL-15, IL-17, TNFα, 

IFNα, IFNγ, GM-CSF, CCL2 (MCP-1), CCL3(MIP-1α), CCL4 (MIP-1β), CCL5 

(RANTES), CXCL9 (MIG), CXCL10 (IP-10) and  Eotaxin. 

The following solutions were prepared: wash solution (PBS/0.05% Tween 20), assay 

buffer (PBS/0.05% Tween 20/1%BSA), standard solution (lyophilised concentrate 

rehydrated with assay buffer as per data sheet), bead solution (vortex and sonicate, 

dilute tenfold in assay buffer, protect from light), biotinylated detector antibody 

solution (vortex, tenfold dilution in assay buffer), streptavidin-RPE solution (vortex, 

tenfold dilution in assay buffer). The standard curve, blanks and samples were all 

initially prepared in a 96 well flexiplate to allow rapid transfer to the luminex plate. 

100µl of standard solution was placed in the first well of the standard curve and 75µl 

of assay buffer in wells 2 – 10. Serial transfer of 25µl from wells 1 – 8 gave the 1 in 4 

dilutions of the standard curve. Wells 9 and 10 were left with assay buffer only as 

“blanks”. The samples were placed in wells 11 onwards.  

 

The luminex filter plate was hydrated with wash solution 200ul/well and allowed to 

stand for a minimum of 30s, before aspirating via the vacuum manifold. 25µl bead 

solution was added to each well followed by 200µl wash solution. After 30s this was 

aspirated using the vacuum manifold. 25µl of assay buffer was then added to each 
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well prior to transferring 50µl from each well of the 96 well flexiplate to its 

corresponding well in the luminex plate. The plate was sealed and incubated for 2 

hours on an orbital shaker.  

 

The fluid was then aspirated via the vacuum manifold and washed twice by adding 

200µl wash buffer and again aspirating via the vacuum manifold. 100µl of 

biotinylated detector antibody was added to each well, the plate sealed and incubated 

for a further 1 hour on the orbital shaker. The fluid was then aspirated via the vacuum 

manifold and washed twice by adding 200µl wash buffer and again aspirating via the 

vacuum manifold. 100µl of streptavidin-RPE solution was added to each well. The 

plate was sealed and incubated for 30mins on an orbital shaker. The fluid was then 

aspirated via the vacuum manifold and washed three times by adding 200µl wash 

buffer and again aspirating via the vacuum manifold. The wells were then 

resuspended in 100µl of assay buffer and run on the luminometer (Luminex). 

  

Analysis was performed using StarStation 2 software (Applied Cytometry Systems, 

Sheffield, UK). The standard curve was adjusted to be five parameter weighted with 

the reciprocal of y fit. Upper and lower limits of sensitivity were defined by excluding 

any regions where the curve plateaued.  

 

2.10 Cortisol Enzyme-linked Immunosorbant Assay 

 

A high sensitivity cortisol acetylcholinesterase competitive EIA assay (Cayman,  US) 

was used to determine the concentration of free cortisol in human AqH and serum. 

EIA buffer, wash buffer, standard, cortisol tracer and cortisol antiserum were prepared 
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as per manufacturer‟s instructions. Human AqH was diluted 25-fold prior to testing. 

50µl aliquots of the following were added to the plate: the standard curve comprising 

standard and seven serial 1 in 2 dilutions, and the samples. Additional wells comprise 

a Blank well (Blk), Total Activity (TA) well, Non-Specific Binding (NSB) well, and 

Maximum Binding well (B0). 50µl of cortisol tracer was then added to all wells 

except the Total Activity and Blank wells, and 50µl of cortisol antiserum was added 

to all wells except Total Activity, Non-Specific Binding and Blank wells. The plate 

was the covered and incubated for 12-18h  at 4ºC. The plate was then washed five 

times with wash buffer before adding 200µl of Ellman‟s reagent (reconstituted on the 

day as per manufacturer‟s instructions) to all wells and 5µl of cortisol tracer to the 

Total Activity well. The plate was again covered and put on an orbital shaker for 120-

240mins before being read with a multiwall plate reader (Anthos HT III, Anthos 

labtec Instruments, Salzburg, Austria). 

 

As the ELISA is a competitive assay, absorbance values are proportional to 

concentration of competitive bound cortisol tracer (and inversely proportional to 

concentration of cortisol). Standard curves were plotted using a 4-parameter logistic 

equation fitted to the logarithmic transformation of the standard concentrations vs the 

percentage cortisol bound. 

 

2.11 Flow cytometry 

 

All flow cytometry was performed using either a Beckman Coulter Epics XL bench-

top flow cytometer (Beckman Coulter Inc, Fullerton, CA) or a Dako Cyan ADP High 

Performance flow cytometer (Dako, Colorado, US). Calibration was checked on a 
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daily basis with Flow Check Fluorospheres (Beckman Coulter Inc). Isotype controls 

were used to determine the level of background non-specific binding. For all multi-

colour cytometry compensation was performed using cells stained with each 

fluorochrome conjugated-antibody singly. This adjusts for false positives arising from 

detection of other fluorochromes due to spectral overlap. The level of median 

fluorescence intensity (MFI) was used to distinguish between high and low levels of 

expression. 

 

2.11.1 Analysis of DC differentiation  

 

At day 6 of DC differentiation the plate was centrifuged (300g, 4mins, 4°C), 

supernatant discarded and the plate was lightly vortexed. The cells were then labelled 

with anti-HLA-DR FITC, -CD80 PE and –CD86 PECy5 (or the matched irrelevants) 

made up to optimal concentrations in PBS/2%BSA and to a total volume of 50μl/well 

(see table 2.1).  They were then incubated for 20mins at 4°C. 

 

The cells were then washed with 100µl PBS/2%BSA, centrifuged at 300g, 4mins, 

4°C, the supernatant discarded and cells resuspended in 100μl PBS/2%BSA. The cell 

suspension was then transferred to flow cytometry tubes containing 180µl 

PBS/2%BSA and 20μl counting beads (CALTAG/Invitrogen, Paisley, UK). Flow 

cytometry was performed on the Beckman Coulter Epics XL bench-top flow 

cytometer. 
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2.11.2 Analysis of DC maturation 

 

 After 2d culture the 96 well plate containing the DC cultures for surface staining (ie 

plate 1)  was spun down (300g, 4mins, 4°C) and the supernatants removed and kept 

(frozen down at -80°C). The plate was then spun down again, any remaining 

supernatant discarded and the cells labelled as described earlier. Unless otherwise 

specified in the text, the standard panel was anti-CCR7 FITC, HLA-DR PE, CD86 

PECy5, CCR5 PECy7 and  MHCI PB. After 20mins at 4º the cells were washed with 

100μl PBS/2%BSA (300g, 4mins, 4°C), the supernatant discarded and cells 

resuspended in 100μl PBS/2%BSA. The cell suspension was then transferred to flow 

cytometry tubes containing 180μl PBS/2%BSA and 20μl counting beads and 100μl of 

40μg/ml propidium iodide (Sigma-Aldrich) which acts as a dead cell exclusion dye. 

Flow cytometry was performed on the Dako Cyan ADP High Performance flow 

cytometer (Dako Colorado). 

 

2.11.3 Analysis of  T cell proliferation 

 

After 4 days of culture the 96 well plate of DC: T cell cocultures was centrifuged 

(300g, 4mins, 21°C) and 100μl supernatant harvested and kept (frozen down at -

80°C). The cells were then spun down again, any remaining supernatant discarded 

and the cells were resuspended in 100μl PBS/2%BSA before being transferred to flow 

cytometry tubes containing 180μl PBS/2%BSA, 20μl counting beads and 100μl 

propidium iodide (Sigma-Aldrich) which acts as a dead cell exclusion dye. Flow 

cytometry was performed on the Dako Cyan ADP High Performance flow cytometer 

(Dako Colorado). When only part of the sample is run the actual numbers of cells in 
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the original sample can be calculated from the number of counting beads counted 

using the following equation:  

Total live cells = total PI negative cells counted/(total beads counted/total beads 

added).  

Undivided cells have the highest concentration of CFSE (and therefore highest signal) 

and this halves with successive generations of proliferated cells. The number of 

proliferated cells can therefore be calculated from the percentage of live cells to the 

left of the first peak (ie of highest signal). 

 

2.11.4 Analysis of FoxP3 expression of CD4+ T cells 

 

To assess FoxP3 expression in dividing cells, intracellular staining was performed as 

follows. At day 4 (or timepoint specified in the text) DC:T cell co-cultures were 

harvested, and each well divided in two to enable comparison of FoxP3 staining vs 

isotype for each well.  Cells were washed twice in 100µl PBS/0.5%BSA (300g, 4ºC) 

before being resuspended in 100µl of fix buffer (eBioscience; made up as per 

manufacturer‟s instructions) and incubated for 30mins at 4ºC. The plate was then 

washed once in 150µl PBS/0.5%BSA and twice in 150µl permeabilisation buffer 

(eBioscience; made up as per manufacturer‟s instructions).  1µ rat serum and 30µl of 

permeabilisation buffer was then added to each well and the plate was incubated for 

15mins at 4ºC. Anti-human FoxP3 antibody (or isotype control) was then added  to 

each well and the plate was incubated for a further 30 mins at 4ºC. After two further 

washes in 150µl permeabilisation buffer, the cells were resuspended in 100µl 

PBS/0.5%BSA, and transferred to FACS tubes containing 140µl PBS/0.5%BSA and 
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10µl counting beads. Flow cytometry was performed as previously with the important 

exception that propidium iodide was not used concurrently. 

 

 

2.12 Statistical tests 

 

The Kolmogorov-Smirnov test was used to test for normality of distribution. For 

normally distributed data, parametric tests were used as follows: Student‟s t-test 

(paired or nonpaired as appropriate) to determine significant differences between two 

conditions and one-way ANOVA for comparison of three or more conditions with 

Bonferroni‟s post hoc test for selected conditions. For non-normally distributed data, 

nonparametric tests were used: Mann−Whitney U test to determine significant 

differences between nonpaired groups, Wilcoxon−matched pairs analysis for paired 

samples and Kruskal-Wallis for comparison of three or more conditions with Dunn‟s 

post-hoc test for selected conditions. Correlation was tested by use of the Pearson 

correlation coefficient (for normal data) or the Spearman rank test (for non-normal 

data). The minimal level of confidence at which the results were judged significant 

was p < 0.05. 
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3 THE DEVELOPMENT OF AN IN VITRO MODEL TO 

STUDY DENDRITIC CELL FUNCTION IN THE 

OCULAR MICROENVIRONMENT 
 

3.1 Introduction 

 

In vivo, the anterior segment of the eye is a unique physiological niche in which 

tightly- regulated homeostatic and immunological mechanisms minimise the 

perturbations in the ocular microenvironment. Under resting non-inflammatory 

conditions, the blood-ocular barrier ensures that the aqueous humour which bathes the 

tissues of the ocular anterior segment is a distinctive serum-free environment. During 

uveitis, blood-ocular barrier break-down and local generation of inflammatory 

mediators cause significant changes in this environment with elevations in a number 

of key inflammatory cytokines such as IL-6, IL-8, CCL2 (MCP-1), and IFNγ 

accompanied by a fall in the regulatory molecule, TGFβ2 (Curnow et al., 2005). 

Dendritic cells present in the anterior segment of the eye have been difficult to 

characterise but appear to have a distinct, immature phenotype, possibly reflecting 

their exposure to this unique immunosuppressive environment (Forrester et al., 1994; 

Camelo et al., 2003; Chang et al., 2004). 

 

The aim of this body of work was to establish an in vitro model of ocular dendritic 

cell function in which human DC could be cultured and exposed to AqH or its 

constituents under serum-free conditions. Achieving this would require: (1) 

generating pure populations of homogeneous human dendritic cells either by 

differentiation from precursors, or by direct isolation; (2) establishing a serum-free 

environment in which the effects of AqH could be studied; (3) ensuring that the 
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dendritic cells would tolerate these serum-free conditions and function normally in 

terms of cytokine production, chemotaxis and induction of T cell responses.  

 

Monocyte-derived dendritic cells are the most widely studied in vitro model of human 

DC function, having the advantages over direct isolation of myeloid DC of being (1) 

reasonably abundant (ie easily generated from circulating monocytes which comprise 

around 10% of peripheral blood mononuclear cells),  (2) available at high purity and 

(3) of known experience (ie naive). In vitro generation of monocyte-derived dendritic 

cells is commonly carried out in serum-supplemented media (Jeras et al., 2005a) . Our 

group has  previously used 10% pooled human AB+ male serum supplementation of 

RPMI as standard for all our DC cultures, but I wished to investigate whether I could 

generate DC under serum-free conditions (as reported elsewhere (Bender et al., 1996; 

Royer et al., 2006)) and whether supplementation with other types of sera, notably 

Fetal Calf Serum (FCS) – which is often used as standard by other investigators 

(Sallusto and Lanzavecchia, 1994; Jeras et al., 2005b) – would alter DC 

differentiation and activation. Serum-free differentiation of monocyte-derived DC has 

received increasing attention mainly due to the use of these DC in clinical trials 

(Cerundolo et al., 2004).  

 

One of the conditions of my proposed  in vitro model of ocular dendritic cell function, 

was that the effects of AqH on DC should be studied under serum-free conditions, 

primarily so as to better reflect the environment of the anterior segment and 

secondarily to avoid the effects of AqH being obscured by the effects of serum. It was 

therefore important to characterise the behaviour of DC on being transferred to a 
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serum-free environment and to ensure that they demonstrated normal DC function 

under these conditions. 

  

The culture of cells in human AqH in vitro raises a number of challenges of 

miniaturisation. Even when used at 50% rather than 100% the volumes of AqH that 

can be safely obtained (usually 50 – 100μl) place severe constraints on the total 

volume (and therefore the number of cells) that can be used in each culture. It was 

therefore necessary to establish whether DC could still undergo normal maturation in 

total culture volumes of 100μl. It was also important to characterise the baseline 

phenotype of these DC in some detail (surface molecules, cytokine production, 

migration, induction of T cell responses)  before moving on to consider the effects of 

aqueous humour.  

 

More recently it has become possible to isolate and study in vitro significant numbers 

of circulating myeloid dendritic cells. Although there are still a number of 

disadvantages to their use, notably lower yields and lower purities than with 

monocyte-derived DC, myeloid DC are of interest as being a true ex vivo DC, which 

avoids the criticism levelled at the monocyte-derived DC that it is an in vitro 

generated cell type which happens to resemble the paradigm of DC behaviour. I 

therefore investigated the phenotype and function of myeloid DC as compared to 

monocyte-derived DC  in my in vitro model of dendritic cell maturation. 
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3.2 The role of serum on the differentiation of monocyte derived 

dendritic cells in vitro 

 

As outlined above monocyte-derived DC are most commonly differentiated in FCS 

(Sallusto and Lanzavecchia, 1994; Jeras et al., 2005b), but emerging DC-based 

immunotherapies have led to interest in the generation of DC under serum-free 

conditions. Additionally whilst FCS is reported to provide good yields of monocyte-

derived DC, it is likely that it is a less good model than human serum (HS) of the 

environment in which human DC differentiate in vivo. I therefore investigated the role 

of serum-supplementation and its alternatives in the differentiation of monocyte-

derived dendritic cells in vitro. 

 

3.2.1 Differentiation in serum-supplemented rather than serum-free medium 

improves yield and dendritic cell profile 

 

In order to determine whether DC differentiation could be supported in the absence of 

serum, CD14+ bead-purified monocytes from healthy volunteers were cultured in 96 

well plates in either standard conditions (RPMI/10% HS) or a serum-free alternative: 

(1) RPMI with 1% ITS+3, (2) RPMI with 1% ITS+3, 1% NEAA and 1% Na 

pyruvate, or (3) RPMI with 1%BSA. After six days of culture, cells were harvested, 

and cell number and surface expression of class II MHC (specifically HLA-DR) and 

the key costimulatory molecules CD80 and CD86 were measured by flow cytometry. 

 

The number of DC harvested per culture was lower in all serum-free conditions than 

standard RPMI/10% human serum (Figure 3.1A,B). Compared to the low yield with 
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RPMI/ITS+3 or RPMI/1%BSA, mean cell recovery was two-fold higher with 

RPMI/ITS+3/NEAA/Na pyruvate and four-fold higher with RPMI/10% human 

serum.  DC cultured in serum-free conditions were more heterogeneous and had 

significantly lower expression of HLA-DR and CD86 than DC cultured under 

standard conditions (Figure 3.1A,C).  

 

3.2.2  Differentiation of dendritic cells is affected by serum type (human or 

fetal calf serum) with reciprocal changes in CD80 and CD86 

 

Having established that serum-supplementation during differentiation improved the 

yield and profile of the DC generated, I compared the effect of standard pooled 

human serum (HS) with fetal calf serum (FCS), heat-inactivated HS (HIHS), or heat-

inactivated FCS (HIFCS) under the same culture conditions. Yield of DC at day 6 was 

comparable in all serum-supplemented conditions. There was a trend towards a higher 

cell recovery with FCS, but this was not statistically significant (Figure 3.2).  

 

DC cultured in any of the four serum-supplemented media had comparable expression 

of  HLADR, but differed significantly in terms of the level of costimulatory molecules 

(Figure 3.2B) . Supplementation with FCS or HIFCS resulted in significantly higher 

expression of CD80 with an MFI that was higher than with HS supplementation by a 

factor of 3.1 and 2.6 respectively. Conversely supplementation with FCS or HIFCS 

resulted in significantly lower expression of CD86 with an MFI that was four-fold 

lower than with HS supplementation. Heat inactivation of the serum, whether for HS 

or FCS, did not significantly alter HLA-DR, CD80 or CD86. 
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Fig 3.1
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Fig 3.2
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The reciprocal effects of HS and FCS on CD80 and CD86 were then investigated by 

culturing DC in varying concentrations of each serum individually and in combination 

(Figure 3.3). FCS induced CD80 to near maximal levels (twice baseline levels) from 

2.5% FCS supplementation, but was completely suppressed by the presence of even 

low levels of human serum (2.5%). Conversely CD86 expression was near maximal 

from 2.5% HS supplementation upwards, but was only partially suppressed by 

increasing concentrations of FCS (cf titration curve of HS alone). 

 

3.2.3  Dendritic cell differentiation in human serum is not affected by the 

serum being autologous or pooled 

 

Subsequently it was considered whether the donor-to-donor variation in yield and 

differentiation which occurs even under standard conditions might be partly due to 

individual “compatibility” with the pooled human serum. I hypothesized that the use 

of autologous human serum might therefore lead to more consistent results. In these 

experiments DC were cultured under standard conditions in T25 flasks with media 

supplemented with either autologous or pooled human serum (Figure 3.4). 

  

The use of autologous vs standard pooled HS did not affect DC cultures in terms of 

yield or levels of  HLA-DR, CD80 or CD86 (Figure 3.4). DC yields were 26 +14 % 

for autologous and 23 +13% (mean +SD) for standard pooled serum conditions.  
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Fig 3.3 
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Fig 3.4 
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3.3 The effect of inflammatory cytokines on the maturation of 

monocyte-derived dendritic cells in vitro 

The previous experiments established (1) the suitability of pooled human serum for 

the differentiation of DC from monocytes in my model system, and (2) the potential 

advantages over serum-free or FCS based media.  The subsequent experiments were 

directed towards establishing a successful in vitro model of DC maturation. To 

establish a model in which the putative effects of AqH on DC maturation could be 

investigated, it was important to first assess whether normal DC maturation could 

occur under serum-free conditions. In vivo, dendritic cell maturation may be driven by 

the milieu of inflammatory cytokines and/or by TLR stimulation (Reis e Sousa 2004). 

I had previously observed that under standard serum-supplemented conditions 

cytokine-driven maturation of DC was  more effective than TLR stimulation alone, as 

measured by upregulation of HLA-DR, CD80, CD83, CD86 and CCR7 (Curnow 

personal communication). 

 

 Monocyte-derived DC which had differentiated under standard serum-supplemented 

conditions until day 6, were washed and then cultured for a further 48h with or 

without inflammatory cytokines (IL-1β, IL-6, TNFα, PGE2)  under either serum-

supplemented (RPMI/10%HS) or serum-free (RPMI/1%ITS+3/1%NEAA/1%Na 

pyruvate) conditions (Figure 3.5). Serum supplementation was associated with higher 

yields of dendritic cells under non-inflammatory conditions with a 1.6 fold increase in 

cell recovery for iDC (p < 0.01). Under both serum-free and serum-supplemented 

conditions, the pro-inflammatory cytokines caused similar DC maturation in terms of 

upregulation of HLA-DR, CD80 and CD86. The absence of serum was not associated  
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Fig 3.5 
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with any significant difference in the levels of CD80 or CD86, but was associated 

with 20-30% higher levels of HLA-DR.  

 

3.3.1 Inflammatory cytokines can induce a surface phenotype characteristic of 

dendritic cell maturation under serum-free conditions 

 

Having established that under my defined serum-free conditions, monocyte-derived 

DC could respond appropriately to an inflammatory stimulus by upregulating 

HLADR, CD80 and CD86, these „serum-free‟ immature DC (iDC) and mature DC 

(mDC) were analysed in more detail  in terms of their surface phenotype and function. 

In addition to the  upregulation of class II MHC, and the costimulatory molecules 

CD80 and CD86,  the pro-inflammatory cytokine cocktail caused upregulation of 

CD40, and of the accessory costimulatory molecule ICOSL, but not of the accessory 

molecule 4-1BBL; there was also reciprocal downregulation of CCR5 and 

upregulation of CCR7 consistent with the published literature (Figure 3.6)(Greenwald 

et al., 2005; Scandella et al., 2002). 

 

3.3.2 DC maturation under serum-free conditions alters DC chemotactic 

function 

 

In order to test whether this characteristic change in surface phenotype towards a 

mature DC phenotype was accompanied by a change in DC behaviour, DC function 

was tested in three key areas: migration to chemokines, cytokine production and 

induction of T cell proliferation. 
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Fig 3.6 
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Ninety-six well plates with transwell inserts were used to assess DC migration to a 

range of concentrations of either CCL5 (RANTES; ligand for CCR5 expressed on 

iDC) or CCL19 (ligand for CCR7 expressed on mDC). Monocyte-derived dendritic 

cells which had differentiated under standard serum-supplemented conditions until 

day 6, were washed and then cultured for a further 48h with or without inflammatory 

cytokines (IL-1β, IL-6, TNFα, PGE2)  under serum-free conditions 

(RPMI/1%ITS+3/1%NEAA/1%Na pyruvate). They were then harvested and placed in 

fresh serum-free medium in the top chambers of the 96-well insert, with serum-free 

medium or 1 -100ng/ml chemokine placed in the bottom chamber. After three hours 

of culture both chambers were harvested and cell number was counted by flow 

cytometry (Figure 3.7). iDC showed directional responses to CCL5 (18% 

transmigration to 100ng/ml vs 1.5% baseline) but not to CCL19, consistent with their 

high expression of CCR5 and low CCR7. In contrast, mDC had high levels of 

transmigration to CCL19 (77% to 100ng/ml CCL19 vs 11% baseline), consistent with 

their high CCR7 and low CCR5 status.  In preliminary experiments DC migration was 

also tested using twenty-four well transwell plates and modified Dunn chambers but 

these had poor intra-experimental reproducibility when using the low DC numbers 

required for proposed AqH-culture experiments, and so were discarded in favour of 

the 96 well transwell plates.  

 

3.3.3 DC maturation under serum-free conditions alters cytokine profile 

 

Under standard conditions, DC maturation is associated with alteration of the profile 

of cytokine production. To assess whether this change in cytokine profile occurred 

under serum-free conditions, I analysed DC culture supernatants by multiplex bead  
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Fig 3.7
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immunoassay. Monocyte-derived dendritic cells which had differentiated under 

standard serum-supplemented conditions until day 6, were washed and then cultured 

for a further 48h with or without inflammatory cytokines (IL-1β, IL-6, TNFα, PGE2)  

under serum-free conditions (RPMI/1%ITS/1%NEAA/1%Na pyruvate). Supernatants 

were then harvested and cytokine levels for IL-1β, IL-1RA, IL-2, IL-2R, IL-4, IL-5, 

IL-6, IL-7, IL-8, IL-10, IL-12, IL-13, IL-15, IL-17, TNFα, IFNα, IFNγ, GM-CSF, 

CCL2 (MCP-1), CCL3(MIP-1α), CCL4 (MIP-1β), CCL5 (RANTES), CXCL9 (MIG), 

CXCL10 (IP-10) and  Eotaxin were measured by multiplex bead immunoassay. 

 

DC maturation under serum-free conditions was associated with increased production 

of the Th1-inducing cytokine IL-12, the chemokine IL-8 and the inhibitory molecule 

soluble IL-2R (Figure 3.8). There were also trends towards increases in CCL3 (MIP-

1α), CCL4 (MIP-1β) and CCL5 (RANTES) but these did not reach conventional 

levels of statistical significance. The following were not elevated above baseline 

(limit of detection shown in parentheses): IL-4 (< 8pg/ml), IL-5 (< 0.5pg/ml), IL-7 (< 

5pg/ml), IL-13 (< 1pg/ml), IL-15 (< 1pg/ml), IL-17 (< 15pg/ml), IFNα (< 10pg/ml), 

IFNγ (< 2.5pg/ml), CXCL9 (< 60pg/ml), CXCL10 (< 30pg/ml), Eotaxin (< 1pg/ml); 

since IL-1β, IL-6 and TNFα were added to the mDC cultures these were excluded 

from the analysis. 
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Fig 3.8 
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3.3.4 DC maturation under serum-free conditions increases DC capacity to 

induce T cell proliferation 

 

The function of DC matured under serum-free conditions was then assayed in terms 

of their capacity to induce proliferation of CFSE labelled naïve CD45RA+CD4+ T 

cells using an allogeneic proliferation assay. The naive CD4+ compartment was of 

particular interest as representing the situation at the lymph node where it is proposed 

that a peripheral tissue-educated DC will present antigen to a naive T cell. CFSE 

labelled naïve CD45RA+CD4+ T cells were cultured for 4 days with or without 

monocyte-derived dendritic cells (either iDC or inflammatory cytokine-stimulated 

mDC).  Number of proliferated cells in the cultures were estimated from the number 

of total live cells with submaximal CFSE (ie gate R2) which represent divided cells 

(Figure 3.9). Absolute cell numbers were estimated by the simultaneous use of 

„counting beads‟, a known number of which had been added to each sample.  mDC 

were observed to induce greater proliferation of naïve CD4+ T cells than iDC 

(p=0.001), and both iDC and mDC induced greater proliferation than unstimulated T 

cell cultures (p<0.05 and p < 0.001 respectively).  

 

We also wished to assess whether there were significant differences in how the naive 

and memory compartments responded to DC in my model. CFSE labelled naïve 

(CD45RA+) or memory (CD45RO+) CD4+ T cells were cultured for 4 days with or 

without monocyte-derived dendritic cells as described previously. Memory CD4+ T 

cells showed a similar pattern of responses to naive CD4+ T cells, with mDC 

inducing higher levels of proliferation than iDC, and both inducing higher 

proliferation than T cells alone (mDC:T > iDC:T > T cells alone; Figure 3.10). There  
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Fig 3.9 



Chapter Three Results 113 

Fig 3.10 
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was however a difference in the magnitude of the response to mDC with mDC-

induced proliferation of naive CD4+ T cells being significantly higher than for 

memory CD4+ T cells (p < 0.001); absolute levels of proliferation for T cells cultured 

alone or with iDC were not significantly different between naive and memory 

compartments. 

 

3.3.5 Cytokine production by DC-stimulated naive CD4+ T cells reflects their 

levels of proliferation 

 

The interaction of the naïve CD4+ T cell with its activating dendritic cell is thought to 

be the primary factor governing T cell differentiation and eventual phenotype (Th1, 

Th2, Th17, etc). I therefore wished to investigate whether serum-free culture 

conditions resulted in DC which skewed T cell differentiation towards one particular 

phenotype (eg Th1, Th2 or Th17). 

 

Naïve CD45RA+CD4+ T cells were cultured for 4 days with or without monocyte-

derived dendritic cells (either iDC or inflammatory cytokine-stimulated mDC). 

Supernatants were then harvested and cytokine levels for IL-2, IL-5, IL-10, IL-

12p40/p70, IL-13, IL-17, and IFNγ were measured by multiplex bead immunoassay 

(Figure 3.11). IL-2 levels were significantly higher in mDC stimulated cultures than 

iDC, associated with the increased levels of proliferation in these cultures. Indeed all 

cytokines considered showed a trend towards increasing levels in mDC rather than 

iDC stimulated cultures. Of interest the Th1-inducing cytokine IL-12 was elevated in 

mDC vs iDC: T cell co-cultures (mirroring the elevated IL-12 from mDC vs iDC 

cultures; Figure 3.8), but this did not translate into statistically significant higher  
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Fig 3.11 
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levels of IFNγ. Th2 cytokines IL-5 and IL-13 showed a non-significant trend to 

increase in the mDC vs iDC T cell cocultures; IL-17 levels were only just detectable 

for iDC:T cell co-cultures (16pg/ml) and remained low. 

 

3.3.6 Elevated FoxP3 expression in naive CD4+ T cells is sustained at higher 

levels in iDC vs mDC: T cell co-cultures 

 

We next wished to determine whether the state of DC maturation would differentially 

affect T cell expression of FoxP3, reflecting both the transient elevation seen with 

activation and the sustained FoxP3 elevation of regulatory T cells (reviewed Ziegler 

(Ziegler, 2006)). CFSE labelled naïve CD4+ T cells were cultured with iDC or mDC 

in an allogeneic proliferation assay as described previously. At various timepoints 

(d1, d2, d4, d8), the T cells were harvested and stained for intracellular FoxP3 (Figure 

3.12). In the presence of DC (but not T cells alone) a FoxP3
hi

 population of undivided 

cells could be identified from day 1. This population increased both in number and in 

FoxP3 expression from days 2 to 4 before subsiding either partially (for iDC) or 

completely (for mDC) to baseline (ie to the same levels as for T cells alone) at day 8. 

Divided cells were initially high for FoxP3 (day4) with FoxP3 levels dropping by 

day8 to medium (iDC) or low (mDC) levels. Further investigation confirmed these 

differences between iDC and mDC-stimulated cultures at day 8 (Figure 3.13) with 

significantly higher MFI in both divided (R11) and undivided (R10 + R12) iDC-

stimulated CD4+ T cells. 
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Fig 3.12 
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Fig 3.13 
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3.4 The effect of inflammatory cytokines on circulating myeloid 

dendritic cells in vitro 

 

Having used monocyte-derived DC to establish the in vitro model of dendritic cell 

maturation described above, I wished to establish whether myeloid DC would respond 

to inflammatory cytokines under similar serum-free conditions.   I therefore 

investigated both the phenotype and function of myeloid DC in my in vitro model of 

dendritic cell maturation. 

 

3.4.1 Myeloid DC upregulate MHC and costimulatory molecules in response 

to inflammatory cytokines 

 

Myeloid DC were bead-purified from the blood of healthy donors using a two-stage 

magnetic separation involving (1) the removal of BDCA-1+ B-cells by an anti-CD19 

depletion step and (2) the positive selection of BDCA-1+ myeloid DC via BDCA-1 

biotin followed by anti-biotin microbeads. Myeloid DC were then cultured for 48h in 

serum-free conditions with or without the addition of inflammatory cytokines (IL-1β, 

IL-6, TNFα, PGE2). The cells were then harvested and the expression of a range of 

key surface molecules was analysed by flow cytometry (Figure 3.14).  

 

The addition of inflammatory cytokines to myeloid DC culture led to changes similar 

to those seen with monocyte-derived DC, with increased expression of MHC, the 

costimulatory molecules CD80 and CD86, and the marker of maturation  CD83. 
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Fig 3.14 
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3.4.2 Inflammatory cytokines increase myeloid DC capacity to induce 

proliferation of CD4+ T cells  

 

Myeloid DC were cultured as before in the presence or absence of the inflammatory 

cytokine cocktail (IL-1β, IL-6, TNFα, PGE2), and tested for their capacity to induce 

proliferation of CFSE labelled naïve CD4+ T cells using an allogeneic proliferation 

assay. Monocyte-derived DC were included in this experiment by way of comparison. 

 

Number of proliferated cells in the myeloid DC:T co-cultures were compared to T 

cells alone (Figure 3.15), and to monocyte-derived DC:T cell cocultures. For both 

monocyte-derived and myeloid DC, exposure to inflammatory cytokines (ie mDC) 

increased their capacity to induce proliferation of naïve CD4+ T cells vs unstimulated 

(ie iDC). There were no significant differences in myeloid or monocyte-derived DC 

capacity to induce T cell proliferation (iDC or mDC). 
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Fig 3.15 
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3.5 Discussion 

 

The aim of the series of experiments described in this chapter was to establish an in 

vitro model of dendritic cell differentiation, maturation and function which could be 

used to investigate the effects of the ocular microenvironment, specifically human 

AqH and its components, on dendritic cells. 

  

The importance of establishing a reliable in vitro model of DC function in the eye is 

underlined by the limitations of our current understanding of the nature and function 

of antigen presenting cells within the eye. MHC class II+ cells with dendritic cell or 

macrophage markers have been identified in the mouse, rat and human eye, but the 

extent and nature of their role in antigen presentation is unclear. It has been shown 

that MHC class II+ cells from the anterior segment of the rat eye can function 

effectively as antigen presenting cells (Steptoe et al., 1995), however neither dendritic 

cells nor macrophages have been observed to leave the eye, leading to the suggestion 

that antigen escapes in soluble form(Camelo et al., 2006; Dullforce et al., 2004). 

Indeed these APC could not be induced to migrate even after stimulation with LPS or 

anti-CD40 (Dullforce et al., 2004). Additionally the iris dendritic cells that have been 

identified express low CD11c, CD80 and CD86 (Steptoe et al., 1995)  suggesting that 

they are relatively immature. We, like others, have hypothesized that it is the presence 

of immunosuppressive molecules in the anterior segment such as TGFβ and αMSH 

that inhibit maturation and at least partially repress migration of DC. 

 

It is not possible to do functional studies on these ocular APC themselves due to the 

issues of isolating sufficient numbers in humans. In non-inflamed conditions they will 
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be resident in tissues bathed in aqueous humour rather than circulating in the aqueous 

humour, requiring  biopsy of ocular tissue; such biopsies are scarce, would yield very 

low numbers of DC, and the tissue would usually be pathological. In uveitis (see 

chapter 5) I propose that the cellular infiltrate into the anterior chamber may well 

contain DC or at least DC-like APC, but not in sufficient numbers to perform any 

functional experiments. Even relatively large samples of AqH (150ul) taken from 

patients with severe uveitis may yield only 10 000 cells in total, the majority of which 

may be lymphocytes. 

 

In my in vitro model of dendritic cell differentiation, maturation and antigen 

presentation, I am attempting to mimic the conditions that may lead to the generation 

of a functional ocular APC. In this model, peripheral blood monocytes are induced to 

differentiate to iDC in serum, recapitulating the differentiation of DC from monocytes 

in the peripheral blood thought to occur in vivo. Then, as would be anticipated to 

occur in the anterior segment, immature DC in this in vitro model are exposed to 

serum-free conditions where they are bathed in AqH, either non-inflammatory AqH 

(see chapter 4) or uveitis AqH (see chapter 5). In this environment they may also be 

subjected to inflammatory stimuli (in my model a cocktail of maturation cytokines 

IL1, IL6, TNFα, and PGE2). When modelling functional antigen presentation I co-

culture with either allogeneic naive CD4+ T cells (to try to reflect the situation at the 

draining lymph node early on in inflammation) or allogeneic memory CD4+ T cells 

(to mimic re-stimulation).   

 

It should be recognised that alternative models are possible and, whilst not the subject 

of this thesis, may well be worthy of further investigation. For example, one could test 
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the effect of AqH on monocytes in order to model the potential differentiation of 

monocytes to DC within the eye. Similarly it could be argued that to model 

restimulation of T cells by DC within the eye one should conduct the DC: T cell co-

cultures (not just the DC cultures) within AqH; this would not, however, distinguish 

between the effects of AqH on the DC and on the T cell. 

 

As a result of the series of experiments described in this chapter, I have adopted the 

monocyte-derived dendritic cell as the model dendritic cell for the in vitro studies on 

AqH. As outlined earlier these are widely used for modelling dendritic cell function, 

since monocytes are available in reasonable numbers (around 1x10
5
 /ml peripheral 

blood), and generate pure cultures of homogeneous DC of known history. In all the 

experiments described in this thesis I have used bead purification by positive selection 

(CD14+ microbead kit from Miltenyi Biotec) which in my hands gives 

CD14+monocyte purities of >99%. Alternative methods of monocyte isolation 

include isolation by adherence, differential centrifugation, Flow Assisted Cytometric 

Sorting (FACS) or alternative magnetic bead methods (either positive or negative 

selection).  In my preliminary experiments I tested the adherence technique of 

isolation but found that the culture purities (70-90% CD14+) were not sufficiently 

high and gave lower yields, as has been observed by a number of other investigators 

(Thurner et al., 1999; Pickl et al., 1996). Differential centrifugation alone (Royer et 

al., 2006; Lehner et al., 2005)  is also no longer commonly used due to low purities of 

cultures obtained (70-90%).  

 

In contrast FACS techniques permit extremely pure cultures, but there is concern that 

the shear stresses on the cells and prolonged exposure to FACS buffer during sorting 
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adversely affect the health and viability of the cultures. Conversely negative selection 

bead-based techniques provide healthy cultures of untouched cells but at a cost of 

lower purity than positive selection techniques, whether these be bead-based or 

FACS. Isolation of monocytes by positive selection on CD14+ microbeads has thus 

become standard practice, whilst recognising that there is a theoretical possibility that 

ligating CD14 may modify function or induce partial activation.  It should be noted 

also that only CD14+ monocytes will be selected by these positive selection 

techniques (ie excluding the CD14loCD16+ subset), although this is likely to promote 

the homogeneity of the final cultures.  

 

In order to differentiate dendritic cells from these multipotent CD14+ monoctyes I 

cultured them in IL-4 and GM-CSF as first described by Sallusto and colleagues in 

1994, and which has since become standard practice (Sallusto and Lanzavecchia, 

1994; Jeras et al., 2005b). Most DC differentiation, like these early protocols, is 

carried out in FCS supplemented media, which, as described here, was found to give 

higher yields than other sera or serum-free alternatives (Figure 3.1).  In addition to 

affecting the yield, I found, like others that the use of serum-free media often leads to 

more adherent and heterogeneous populations, with striking variations in the level of 

expression of a number of key molecules such as CD86 (Figure 3.1)(Scandella et al., 

2002; Bender et al., 1996; Thurner et al., 1999).  

 

We also observed that both CD80 and CD86 were affected by whether HS or FCS 

was used as the serum supplement. Thus HS supplementation was associated with 

high CD86 and low CD80 whereas FCS was associated with low CD86 and high 

CD80. A number of other investigators have reported similar findings. Pietschmann 
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and colleagues found that monocyte-derived DC differentiating in 1% human plasma 

had lower levels of CD80 and higher levels of CD83 and CD86 than FCS 

supplemented cultures(Pietschmann et al., 2000).  Similarly Lehner and colleagues 

reported low CD80 in HS supplemented media(Lehner et al., 2005) and both 

Scandella(Scandella et al., 2002) and Royer (Royer et al., 2006) reported low CD86 

expression in FCS-differentiated DC, although in both cases the comparison was to 

serum free AIM-V ((Lehner et al., 2005), (Scandella et al., 2002), (Royer et al., 

2006)) or X-VIVO ((Royer et al., 2006)) media.   Another interesting difference 

between FCS-grown DC and some other media is the level of CD1a expression 

observed. Whereas monocyte-derived DC are often described as being CD1a
hi

 this is 

almost exclusively found with DC generated in FCS or some serum-free 

media(Sallusto and Lanzavecchia, 1994; Lehner et al., 2005). In contrast I, like others, 

found that DC grown under HS-or HP-supplemented conditions are CD1a
lo

 (Lehner et 

al., 2005) (Pietschmann et al., 2000; Duperrier et al., 2000). 

 

It is yet not known which molecules are of primary importance in the development of 

the CD80/CD86 profile of in vitro generated DC. Although the differences in the 

effects of HS, FCS and other media on these molecules have been noted by a number 

of investigators it does not appear to have been given serious study. My experiments 

showed that the key factors responsible are not inactivated by heat (1 hour at 56˚C in 

a water bath), and that there appears to be both (1)  one or more factors in FCS and 

HS which promote CD80 and CD86 respectively, and (2) one or more inhibitory 

factors which reciprocally inhibit CD86 and CD80 expression (Figure 3.2,3). Further 

study of these phenomena though interesting was not a priority for this project, and 

thus these experiments were not carried further.  
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One of my fundamental concerns when selecting a technique for generating DC was 

whether there would be sufficient yields for the complex AqH-based experiments 

planned. Under standard conditions (ie with 10% human serum, IL-4, GM-CSF  in 

T25 flasks) the (mean + SD) yield was 23(+15) % with significant donor-to-donor 

variability. These compare reasonably with other investigators (Bender et al., 1996), 

who, as here, report higher yield with (1) the use of bead purification vs adherence 

technique and (2) the use of FCS rather than other media. Despite the potential 

advantages of a higher yield with FCS, HS supplementation was chosen in this thesis 

as being likely to better reflect the in vivo environment that a differentiating dendritic 

cell is exposed to. 

 

An alternative method of generating in vitro dendritic cells is the use of human 

CD34+ cells, initially derived from cord blood, differentiated in the presence of GM-

CSF and TNFα (Caux et al., 1992). The main disadvantage of deriving DC from 

CD34+ cells is that only 0.1% PBMC are CD34+.  A similarly interesting but 

impractical technique for generating DC in vitro is the placement of PBMC on an 

unstimulated HUVEC monolayer, which results in selective transmigration of CD14+ 

cells within 1 hour (90% purity) and then reverse transmigration of some of these 

cells which have differentiated into a DC phenotype over the next 2 days(Randolph et 

al., 1998).  

 

More recently it has become possible to isolate myeloid dendritic cells (MyDC) 

directly from peripheral blood mononuclear cells by bead-purification or by FACS. 

Since even the predominant BDCA-1+ population of myeloid DC are only present at 
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around 0.6% of PBMC, yield is around ten-fold lower than achieved with 

differentiation from monocytes (3x10
5
 vs 2x10

6
 per 100ml blood); additionally the 

purity is significantly lower (75-85% vs 99% for monocyte-derived DC cultures). 

Despite these disadvantages, myeloid DC are a true ex vivo DC and therefore are an 

important comparator when considering whether any effects observed in monocyte-

derived DC in vitro are likely to be translatable to the in vivo situation (Piccioli et al., 

2007). 

 

In vivo DC maturation occurs in the presence of an inflammatory stimulus such as 

local infection. The signal to the DC will therefore usually comprise pro-

inflammatory cytokines with or without TLR stimulation. Similarly in vitro DC 

maturation is usually induced by recombinant human cytokines (eg TNFα, IL1β, IL6, 

PGE2) and/or TLR ligands (eg LPS), although direct CD40 stimulation with CD40L 

may also be used (Sallusto and Lanzavecchia, 1994).  Given that most uveitis is not 

infectious I elected to use a pure cytokine driven pro-inflammatory stimulus, however 

it should be recognised that some „non-infective‟ uveitis is associated with recent 

systemic gram negative bacterial infection (specifically Yersinia and 

Salmonella)(Saari and Kauranen, 1980; Saari et al., 1980b; Saari et al., 1980a). Indeed 

it has been hypothesised that the precipitating event in acute anterior uveitis may be 

an inappropriate TLR-4 response either by LPS or by endogenous TLR4-ligands 

(Chang et al., 2004). Previously I have also used ligands for TLR1-9 as the maturation 

stimulus but have found that they were all less effective at inducing maturation than a 

standard cytokine cocktail of IL1β, IL6, TNFα and PGE2; the additional effect of LPS 

combined with this cytokine cocktail was also relatively minor. Moreover LPS, which 
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was the most effective of the TLR ligands, showed considerable variation in effect 

depending on the monocyte donor.  

 

Our standard cocktail of cytokines to induce maturation of DC (IL1β, IL6, TNFα and 

PGE2) is in widespread usage(Jeras et al., 2005b), although alternative regimens 

include TNFα alone (Sallusto and Lanzavecchia, 1994), TNFα with IL-1β and IL-6, 

and TNFα with IL-1β and IFNγ(Jeras et al., 2005b). The predominant reason for 

including PGE2 is that it significantly upregulates CCR7 (Scandella et al., 2002) 

important for its in vivo function of homing to lymph nodes;). Although some 

investigators have found that PGE2 treated DC skew T cells to a Th2 phenotype 

(Jonuleit et al., 1997; Kalinski et al., 1998), I did not find the inclusion of PGE2 to 

significantly bias  to Th1 or Th2 subtypes. Conversely DC maturation by TNFα, IL-

1β and IFNγ results in DC which are strongly polarising towards a Th1 

phenotype(Mailliard et al., 2003; Mailliard et al., 2004). 

 

A major uncertainty at the outset of this project was whether the serum-free 

conditions required by my model would prevent the normal DC maturation seen under 

standard conditions. Although slightly more heterogeneous than cultures grown under 

serum-supplemented conditions, DC matured in this serum-free model showed a 

normal mature phenotype in terms of surface molecules, cytokine behaviour, 

chemotactic behaviour, and  induction of T cell responses.  Typical surface molecule 

changes included upregulation of class II MHC, CD40, the costimulatory molecules 

CD80, CD86 and the accessory costimulatory molecule CD275 (ICOSL) consistent 

with published work(Jeras et al., 2005b; Scandella et al., 2002; Greenwald et al., 

2005). I also found strong evidence of functional maturation in terms of upregulation 
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of the chemokine receptor CCR7and downregulation of CCR5, with accompanying 

chemotaxis to CCL19 and loss of sensitivity to CCL5 (RANTES) (Scandella et al., 

2002)(Figure 3.9).  

 

Maturation also induced a change in the cytokines and chemokines that were 

produced by the DC. mDC cultures produced higher levels than iDC of IL-12,  

soluble IL-2 receptor and the chemokine, IL-8. The high levels of IL-12 are 

interesting as this would usually promote T cell differentiation towards a 

Th1response, and thus contrasts with Kalinski and others‟ suggestion that PGE2 

treatment of DC may be Th2 polarising(Kalinski et al., 1998)  It should be noted that 

despite the high levels of IL-12 from these DC there was no clear bias to Th1 

phenotype from the corresponding T cell cultures, with significant levels of both Th1 

and Th2 cytokines being produced. Soluble IL-2 receptor is the extracellular domain 

of the IL-2Rα  shed from IL-2R expressing activated cells including lymphoctyes, 

macrophages and dendritic cells(Obara et al., 1992). It has been shown to be elevated 

in a number of inflammatory diseases such as ankylosing spondylitis (Wendling et al., 

1991) and malignancy; it was not however shown to be altered in the serum of 

patients with idiopathic uveitis (Calder et al., 1999). It is not clear whether it has a 

biological function. The chemokine IL-8 is the ligand for CXCR1 and 2, and is 

chemotactic for neutrophils, basophils and T cells. Elevation of IL-8 production by 

mature DC is significant in attracting T cells in order to present antigen to them (Taub 

et al., 1996; Taub and Oppenheim, 1994). 

  

The fundamental characteristic of dendritic cell maturation is their ability to present 

antigen and induce proliferation of naive T cells. As expected the mDC generated by 
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the inflammatory cytokine cocktail showed increased capacity to induce proliferation 

both of naïve and memory CD4+ T cells in an allogeneic proliferation assay. 

Interestingly although mDC always induced significantly more proliferation than iDC, 

the absolute levels of proliferation varied considerably between donors (Figure 3.9C). 

This is likely to reflect variations in allogenicity between donor pairs. An alternative 

method of measuring DC induction of T cell responses would have been to measure 

recall responses to tetanus toxoid pulsed DC (Duperrier et al., 2000; Pietschmann et 

al., 2000), however this would only be suitable for testing memory rather than naive 

CD4+ T cell responses. The use of CFSE as opposed to 3H-thymidine incorporation 

(Duperrier et al., 2000; Pietschmann et al., 2000) avoids the hazards of radioactivity, 

and enabled us to look at number of divisions and differences in variables such as side 

scatter or FoxP3 levels between generations of dividing cells. 

  

It has been suggested that immature dendritic cells may deviate CD4+ T cells towards 

a regulatory rather than effector phenotype(Reis e Sousa, 2006; Lutz and Schuler, 

2002). Although a number of extracellular markers have been identified, the most 

consistent marker of regulatory CD4+ T cells is the transcription factor FoxP3. Even 

the use of FoxP3 to define a Treg is problematic in a proliferating population, as 

activation per se also leads to an increase in FoxP3 levels.  My studies of combined 

FoxP3/CFSE labelling showed that there are differences in the expression of FoxP3 

expression by naïve CD4+ T cells in iDC vs mDC: T cell co-cultures, with elevated 

expression of FoxP3 being maintained out to day 8 for iDC co-cultures, but returning 

to near baseline for mDC co-cultures; this is the case for both divided and undivided 

cells. Whilst it is interesting to speculate that this may in part reflect iDC induction of 

a regulatory T cell phenotype it is likely that most, if not all, of the FoxP3 elevation 
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reflects the activation state of the T cells. Further elucidation would require 

purification of these FoxP3
hi

 T cells using surrogate markers such as CD25hiCD127lo 

(since FoxP3 staining is intracellular and therefore not possible on live cells) followed 

by a functional test of their ability to suppress a normal T cell response (eg allogeneic, 

recall to tetanus toxoid or by direct stimulation with antiCD3/CD28) .  

 

Comparison of in vitro generated monocyte-derived DC with isolated circulating 

myeloid dendritic cells revealed striking parallels in their responses under serum-free 

conditions to inflammatory stimuli, and in their ability to induce T cell responses. 

Both monocyte-derived DC and myeloid DC showed a broadly similar response to 

maturation cytokines, with  increase in MHC and the costimulatory molecules CD80 

and CD86 (Figure 3.14), and decrease in CCR5(data not shown). Interestingly Piccioli 

reported that BDCA-1+ myeloid DC were relatively unresponsive to TNFα 

alone(Piccioli et al., 2007), so  it is likely that myeloid DC, like monocyte-derived 

DC, require all or most of the cytokines (IL1β, IL6, TNFα) and PGE2. Additionally in 

an allogeneic proliferation assay, monocyte-derived and myeloid DC from the same 

donor generated similar levels of proliferation of naive CD4+ T cells. Whilst 

recognising that the myeloid DC studied here are themselves ex vivo, such parallel 

behaviour is supportive of the usefulness of monocyte-derived DC in modelling the 

function of myeloid DC in vivo. The ability of both DC populations to survive, mature 

and function normally in my serum-free in vitro model also suggests that these 

conditions would be suitable for studying the effects of AqH as I seek to understand 

the behaviour of dendritic cells in the ocular microenvironment. 
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4 DENDRITIC CELL FUNCTION IN THE OCULAR 

MICROENVIRONMENT: THE SUPPRESSIVE ROLE 

OF NON-INFLAMMATORY AQUEOUS HUMOUR 
 

4.1 Introduction 

 

In the ocular microenvironment, DC, macrophages or any other potential antigen 

presenting cells, are exposed to a number of molecules which have been reported to 

have immunomodulatory effects. In vivo and in vitro animal studies have suggested 

that TGFβ2 (Takeuchi et al., 1997; Takeuchi et al., 1998) and αMSH (Taylor et al., 

1992; Taylor et al., 2000) are the dominant immunosuppressive components of AqH, 

with well-documented inhibitory effects on macrophage inflammatory activity and on 

the generation of Th1 responses. Since almost all functional studies have used either 

rabbit AqH (Shen et al., 2007; Taylor et al., 1992; Taylor et al., 1997; Taylor and Yee, 

2003; Taylor et al., 1994b; Cousins et al., 1991a; Nishida and Taylor, 1999; Kaiser et 

al., 1989) or murine AqH(Kaiser et al., 1989; Granstein et al., 1990), it has not been 

clear to what extent these molecules are significant mechanisms of APC regulation in 

man, nor whether other mechanisms such as endogenous glucocorticoids (notably 

cortisol) (Knisely et al., 1994; Rauz et al., 2003) might contribute. In addition  studies 

of AqH components on APC function have tended to focus on the macrophage 

(Takeuchi et al., 1998; Takeuchi et al., 1998) rather than the DC, even though the DC 

is the most potent APC of peripheral tissues.   

 

Our central hypothesis was that the normal resting ocular microenvironment 

maintains a relatively immature DC phenotype. We propose that this contributes to 

immune privilege by reducing their capacity to induce T cell proliferation, and by 
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changing the nature of the T cells produced. We show here that, as seen in animal 

models (Shen et al., 2007), human AqH inhibits DC-induction of naïve T cell 

responses associated with reduced expression of MHC and costimulatory molecules 

on the DC. We observe that the principal inhibitors of DC function in human AqH are 

cortisol and TGFβ2, with cortisol having the dominant effect. 
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4.2 Investigation of the effects of human non-inflammatory AqH on 

monocyte-derived dendritic cell function  

 

Having established an in vitro serum-free model within which to test the effects of the 

ocular microenvironment, we conducted a series of experiments to investigate 

whether non-inflammatory human AqH modulated human dendritic cell (DC) 

function under either resting conditions or in response to a strong cytokine-driven 

inflammatory stimulus previously shown to induce full DC maturation (see Chapter 

3). 

 

4.2.1 Non-inflammatory AqH reduces expression of  MHC and costimulatory 

molecules on immature dendritic cells and prevents normal dendritic cell 

maturation 

 

We wished to determine whether DC surface expression of MHC and key 

costimulatory molecules was affected by the presence of AqH under resting 

conditions or when exposed to a potent cocktail of inflammatory cytokines. 

Monocyte-derived DC were cultured under standard conditions (RPMI/10%HS) as 

described previously. They were then washed and placed in serum-free culture for 

48h in the presence or absence of 50% pooled human AqH, with or without a cocktail 

of inflammatory cytokines (IL-1β, IL-6, TNFα, PGE2). At the end of this period they 

were harvested, labelled and analysed by flow cytometry (Figure 4.1). 

 

Under resting conditions the presence of AqH was associated with significant 

reduction in DC expression of class II MHC and of the costimulatory molecule CD86.  
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Fig 4.1
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In the presence of inflammatory cytokines normal maturation was prevented, with 

downregulation of MHC (class I and class II) and CD86, and failure to upregulate 

CD80 and CD83.  

 

4.2.2 Non-inflammatory AqH alters chemokine production by dendritic cells 

under resting conditions and in response to inflammatory cytokines 

 

Having identified changes in key surface molecules of DC, we wished to determine 

whether AqH modulated DC function, notably in terms of cytokine production, 

migration or induction of T cell responses. Monocyte-derived DC generated under 

standard conditions were placed in serum-free culture for 48h in the presence or 

absence of 50% pooled human AqH, with or without a cocktail of inflammatory 

cytokines (IL-1β, IL-6, TNFα, PGE2) as described previously. Supernatants were then 

harvested and cytokine levels for IL-1β, IL-1RA, IL-2, IL-2R, IL-4, IL-5, IL-6, IL-7, 

IL-8, IL-10, IL-12, IL-13, IL-15, IL-17, TNFα, IFNα, IFNγ, GM-CSF, CCL2 (MCP-

1), CCL3(MIP-1α), CCL4 (MIP-1β), CCL5 (RANTES), CXCL9 (MIG), CXCL10 

(IP-10) and  Eotaxin were measured by multiplex bead immunoassay (Figure 4.2). 

 

Under resting conditions the presence of AqH was associated with significant 

reduction in the levels of the chemokines, CCL3 (MIP-1α) and CCL4 (MIP-1β). In 

response to an inflammatory stimulus (ie to generate mDC), production of IL-12 and 

the chemokine IL-8 increased (as noted previously; Figure 3.8). Addition of non-

inflammatory AqH to these mDC cultures did not significantly affect levels of IL-12 

or IL-8 but did lead to significant reduction in the chemokines CCL4 (MIP-1β) and 

CCL5 (RANTES) (Figure 4.2). Analytes not shown were either not significantly  
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Fig 4.2 
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affected by the addition of non-inflammatory AqH (IL-1β, IL-1RA, IL-2, IL-2R, IL-8, 

IL-10, IL-12, CCL-2, CXCL9, CXCL10, Eotaxin) or were at or below the limits of 

detection IL-4, IL-5, IL-7, IL-13, IL-15, IL-17, IFNα, IFNγ, CXCL9, CXCL10, 

Eotaxin (see section 3.3.3). Since IL-1β, IL-6 and TNFα were added to the mDC 

cultures these were excluded from the analysis. 

 

4.2.3 Non-inflammatory AqH does not alter chemokine receptor expression 

and chemotactic function in response to inflammatory cytokines 

 

I wished to determine whether the presence of non-inflammatory AqH affected 

chemokine receptor expression and chemotactic function, both under resting 

conditions and in the presence of a cytokine-driven maturation stimulus, such as 

would normally cause a downregulation of CCR5 and upregulation of CCR7 (see 

chapter 3). 

 

Monocyte-derived DC generated under standard conditions were placed in serum-free 

culture for 48h in the presence or absence of 50% pooled human AqH, with or 

without a cocktail of inflammatory cytokines (IL-1β, IL-6, TNFα, PGE2) as described 

previously. Cells were harvested and either stained for chemokine receptor expression 

and analysed by flow cytometry or entered into a transmigration assay as below. 

Ninety-six well plates with transwell inserts were used to assess DC migration to a 

range of concentrations of either CCL5 (RANTES; ligand for CCR5 expressed on 

iDC) or CCL19 (ligand for CCR7 expressed on mDC). They were then harvested and 

placed in fresh serum-free medium in the top chambers of the 96-well insert, with 

serum-free medium or 1 -100ng/ml chemokine placed in the bottom chamber. After 
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three hours of culture both chambers were harvested and cell number was counted by 

flow cytometry (Figure 4.3).  

 

Non-inflammatory AqH did not affect baseline levels of CCR5 and CCR7 and did not 

prevent the normal upregulation of CCR7 and downregulation of CCR5 observed 

with DC maturation. The upregulated CCR7 was shown to be equally functional both 

for DC matured under normal conditions, and for DC matured in the presence of non-

inflammatory AqH.  

 

4.2.4 Non-inflammatory AqH inhibits the capacity of dendritic cells to induce 

proliferation of allogeneic naive CD4+ T cells  

 

To investigate whether non-inflammatory AqH alters DC capacity to induce T cell 

responses, AqH-treated DC were cultured in an allogeneic proliferation assay. 

Monocyte-derived DC were cultured in serum-free medium for 48h in the presence or 

absence of 50% pooled human AqH, with or without a cocktail of inflammatory 

cytokines (IL-1β, IL-6, TNFα, PGE2) as described previously. These DC were then 

washed and placed in fresh culture medium with CFSE labelled naïve 

CD45RA+CD4+ T cells for 4 days.  As previously, the number of proliferated cells in 

the cultures was calculated from the number of live cells with submaximal CFSE (ie 

gate R2) counted on flow cytometry, with counting beads enabling absolute cell 

numbers to be calculated (Figure 4.4).  

 

AqH-treatment significantly inhibited DC capacity to induce proliferation of naive 

CD4+ T cells, regardless of whether these DC were cultured under resting (iDC) or  



Chapter Four Results 142 

Fig 4.3 
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Fig 4.4 
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inflammatory conditions (mDC). As previously noted, mDC were observed to induce 

greater proliferation of naïve CD4+ T cells than iDC (p<0.001), and both iDC and 

mDC induced greater proliferation than unstimulated T cell cultures (both p < 0.001). 

Proliferation of CD4+ naive T cells was found to correlate with CD86 expression of 

DC (Figure 4.5; r = 0.86; p = 0.006)), although there was also a weaker correlation 

with HLA-DR levels. 

 

4.2.5 Cytokine production by naive CD4+ T cells stimulated by AqH-treated 

DC reflects their reduced levels of proliferation 

 

Having noted that AqH treatment of DC reduced the magnitude of the T cell response 

induced, I wished to determine whether the differentiation of T cells was also 

affected, with phenotype being skewed for example to Th1, Th2, Th17 or Treg. Naïve 

CD45RA+CD4+ T cells were cultured for 4 days with or without monocyte-derived 

DC (either iDC or inflammatory cytokine-stimulated mDC). Supernatants were then 

harvested and cytokine levels for IL-2, IL-5, IL-10, IL-12p40/p70, IL-13, IL-17, and 

IFNγ were measured by multiplex bead immunoassay (Figure 4.6A).  

 

In general, cytokine concentrations reflected the levels of proliferation in each culture 

with higher concentrations in T cell co-cultures with mDC rather than iDC. AqH-

treated mDC induced significantly lower levels of IL-2 and IL-13 in DC: T cell 

cocultures than untreated mDC. Concentrations of IL-2, IL-13, IFNγ and TNFα all 

correlated with levels of proliferation (Figure 4.6B). IL-17 was near baseline from all 

cultures and showed no significant effect of AqH treatment. 
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Fig 4.5 
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Fig 4.6 
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4.3 Investigation of the effects of human non-inflammatory AqH on 

myeloid dendritic cell function  

 

Having established that non-inflammatory AqH significantly altered function and 

inhibited normal maturation in monocyte-derived DC, I wished to identify whether 

AqH induced similar effects on myeloid DC purified directly from peripheral blood.  

 

Myeloid DC were bead-purified from the blood of healthy donors using a two-stage 

magnetic separation as described previously. Myeloid DC were then cultured for 48h 

in serum-free conditions with or without the addition of inflammatory cytokines (IL-

1β, IL-6, TNFα, PGE2). The cells were then harvested and the expression of a range 

of key surface molecules was analysed by flow cytometry (Figure 4.7A,B).  

 

The addition of inflammatory cytokines to myeloid DC culture led to dramatic 

elevation in CD86 expression which was largely prevented by the presence of AqH 

(Figure 4.7). A similar but less dramatic effect was seen with HLA-DR (2004 + 58) 

for iDC, 1968 + 0) for AqH-treated iDC, 2628 + 0) for mDC and 1865 + 48) for AqH-

treated mDC (mean + SD)). 

Myeloid DC were then cultured as before in the presence or absence of 50% pooled 

human AqH, with or without the addition of the inflammatory cytokine cocktail (IL-

1β, IL-6, TNFα, PGE2), and tested for their capacity to induce proliferation of CFSE 

labelled naïve CD4+ T cells using an allogeneic proliferation assay.  
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Fig 4.7 
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As had been observed for monocyte-derived DC, treatment with AqH significantly 

inhibited myeloid mDC ability to induce T cell proliferation. A mild non-significant 

inhibitory effect was also seen for myeloid iDC (Figure 4.7 C).  

 

4.4 Investigation of the mechanism by which human aqueous humour 

inhibits dendritic cell function 

 

Having demonstrated that whole human AqH could significantly alter the behaviour 

of human dendritic cells, I wished to determine which components of human AqH 

were chiefly responsible for this effect. Possible candidates suggested by animal 

studies included TGFβ, αMSH and VIP, however our own work amongst others also 

suggested that the endogenous glucocorticoid cortisol might be present at sufficient 

levels to play an inhibitory role (Knisely et al., 1994; Rauz et al., 2003). 

  

4.4.1 Cortisol downregulates CD86 expression by dendritic cells and 

contributes to CD86 downregulation by aqueous humour 

 

Cortisol has previously been measured by radioimmunoassay to be present at levels of 

between 5-50 x10
-9

M in non-inflammatory AqH (Knisely et al., 1994; Rauz et al., 

2003). In order to determine these levels in our own cohort of patients, an 

ultrasensitive ELISA was used to measure cortisol levels in a series of 17 non-

inflammatory AqH samples (non-pooled).  

 

Human AqH was diluted 25-fold prior to testing in a cortisol acetylcholinesterase 

competitive EIA assay (Cayman) as per the manufacturer‟s instructions. As the 
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ELISA is a competitive assay, absorbance values are proportional to concentration of 

competitive bound cortisol tracer (and inversely proportional to concentration of 

cortisol). Standard curves were plotted using a 4-parameter logistic equation fitted to 

the logarithmic transformation of the standard concentrations vs the percentage 

cortisol bound. The concentration of cortisol in AqH was found to range from 755 to 

6402pg/ml with a median (IQR) of 2820 (1650-4297) pg/ml.  

 

In order to determine whether cortisol would affect human dendritic cell function, 

monocyte-derived DC were cultured in the presence of 10
-9

 to 10
-6

M cortisol with or 

without the glucocorticoid receptor antagonist, RU486, with or without the addition of 

the inflammatory cytokine cocktail (IL-1β, IL-6, TNFα, PGE2). CD86 expression, 

which I had previously been determined to be a sensitive marker of overall DC 

function, was measured by flow cytometry. Percentage inhibition of CD86 expression 

was used as the chief measure of the inhibitory effect of AqH or its constituents. In a 

second set of experiments monocyte-derived DC were cultured in the presence of 

medium, 50% AqH or 10
-7

M cortisol, with or without RU486 and with or without the 

addition of the inflammatory cytokine cocktail. 

 

Cortisol treatment of DC caused dose-dependent inhibition of CD86 expression 

(Figure 4.8A).  This was present under both resting conditions (iDC) and in the 

presence of inflammatory cytokines (mDC), although mDC were ten-fold less 

sensitive to the effects of cortisol than iDC.  The addition of RU486 blocked the effect 

of cortisol for cortisol concentrations up to 10
-7

M for iDC and up to 10
-6

M for mDC. 
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Fig 4.8 
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AqH-treatment of DC showed, as previously, significant inhibition of CD86 

expression for iDC which was partially reversed by glucocorticoid blockade with 

RU486 (Figure 4.8B). As observed with the addition of exogenous cortisol earlier, 

mDC were less sensitive to the effects of AqH, and, although there was a trend 

towards reversal with RU486, this was not statistically significant. 

 

4.4.2 TGFβ2 but not αMSH or VIP downregulates CD86 expression by 

dendritic cells 

 

TGFβ2 and the neuropeptides αMSH and VIP are known immunomodulatory 

compounds which are present at measurable levels in AqH (see Introduction). I 

therefore wished to establish whether these molecules were contributing to AqH 

inhibition of DC function.  

 

Monocyte-derived DC were cultured in the presence or absence of 0.1 – 100ng/ml 

TGFβ2, αMSH or VIP with or without the addition of the inflammatory cytokine 

cocktail (IL-1β, IL-6, TNFα, PGE2). CD86 expression was measured by flow 

cytometry. TGFβ2 treatment of DC caused dose-dependent inhibition of CD86 

expression (Figure 4.9A).  This was present under both resting conditions (iDC) and 

in the presence of inflammatory cytokines (mDC). iDC were significantly inhibited 

from 10ng/ml; mDC were only sensitive to the effects of TGFβ2 from 100ng/ml.  

αMSH and VIP caused no significant inhibition of CD86 expression in iDC or mDC 

even up to doses of 100ng/ml (Figure 4.9B). Similarly the alternative TGFβ isoforms 

TGFβ1 and TGFβ3 were also not found to have significant inhibitory effects on DC 

expression of CD86 or induction of T cell responses (data not shown). 
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Fig 4.9 
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4.4.3 Cortisol and TGFβ2 have additive downregulatory effects on CD86 

expression by dendritic cells 

 

Having established that cortisol and TGFβ2 can independently downregulate CD86 

expression, I wished to establish whether these molecules demonstrated synergistic 

(or at least additive) effects when present together, as would occur in AqH. 

Monocyte-derived DC were cultured in the presence of 10
-9

 to 10
-6

M cortisol in 

combination with 0, 1 or 10ng/ml TGFβ2. The addition of 1ng/ml TGFβ2 caused 

significant additional inhibition at cortisol doses of 10
-7

 and 10
-6

M (Figure 4.10A); the 

same additive effect was also observed at the higher TGFβ2 dose of 10ng/ml (data not 

shown).  

 

In view of the additive effect described above, we hypothesised that the residual 

inhibitory effect of AqH not accounted for by cortisol alone (Figure 4.8) might be due 

to the additive or even synergistic effects of TGFβ2. To establish that I could 

effectively inhibit TGFβ function, I tested the Activin Receptor-Like Kinase (ALK) 

inhibitor SB431542 on TGFβ alone (data not shown) and then in combination with 

RU486 to block a combination of cortisol and TGFβ2 (Figure 4.10B).  
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Fig 4.10 
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4.4.4 Cortisol and TGFβ2 jointly contribute to AqH-induced downregulation 

of CD86 on dendritic cells and reduction in their capacity to induce T 

cell proliferation 

 

In order to test my hypothesis that the inhibitory effect of AqH on DC was due to 

cortisol and TGFβ2 in combination, I studied the effects of blocking both these 

molecules in whole non-inflammatory AqH.  

 

Monocyte-derived DC were cultured in the presence or absence of 50% AqH with or 

without the addition of the inflammatory cytokine cocktail (IL-1β, IL-6, TNFα, 

PGE2). Reversal of any AqH effect was tested with combined glucocorticoid and 

TGFβ blockade (RU486 and SB431542). The combination of cortisol (10-7M) and 

TGFβ2 (10ng/ml) was used as a positive control.  CD86 expression was measured by 

flow cytometry, and capacity of DC to induce T cell proliferation was tested in an 

allogeneic proliferation assay. 

 

Combined glucocorticoid and TGFβ blockade with RU486 and SB431542 caused 

significant reversal of AqH-induced CD86 inhibition (Figure 4.11A). As noted earlier 

when studying the effect of cortisol alone this effect was more dramatic for iDC than 

mDC, with mDC being relatively less sensitive to the effects of both the exogenous 

molecules and AqH itself. CD86 was shown earlier to correlate with capacity of DC 

to induce T cell proliferation. In addition to their reversal of the AqH effects on CD86 

expression, combined glucocorticoid and TGFβ blockade led to a significant recovery 

of DC function as demonstrated by their improved induction of T cell proliferation 

(Figure 4.11B). 
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Fig 4.11 
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4.5 Discussion 

 

The aim of the series of experiments described in this chapter was to use my in vitro 

model of DC differentiation, maturation and function (described in chapter 3) to 

investigate for the first time the effects of AqH on DC in an entirely human system. I 

have shown that the presence of non-inflammatory AqH induces significant 

suppression of human DC function, with reduction in MHC and costimulatory 

molecule expression, cytokine production, chemotaxis and induction of T cell 

responses. It is of note that AqH inhibition of DC function occurred even in the 

presence of a potent cocktail of inflammatory cytokines that would normally drive DC 

to a highly immunogenic mature DC phenotype(Jonuleit et al., 1997). Thus would 

suggest that in the human eye, DC are constitutively kept in a suppressed state and, 

even in the presence of a strong inflammatory stimulus, full maturation is inhibited.  

 

Although evidence for the anterior chamber of the eye being an immunologically 

privileged niche dates back to the observations of van Dooremaal and Medawar 

((Medawar, 1948); reviewed Niederkorn (Niederkorn, 2006)), direct evidence of the 

modulatory properties of AqH on the cells of the immune system stems from the work 

of Kaiser and colleagues in which they described the inhibitory effects of rodent AqH 

on lymphocyte proliferative responses in vitro. Specifically they found that murine 

and lapine AqH inhibits T cell proliferation to antigens, and lymphocyte responses to 

either polyclonal mitogens or growth factors. They found that AqH-induced 

immunosuppression was not achieved through direct cytotoxicity, and that it was 

distinct from the effects of murine serum (Kaiser et al., 1989). Shortly afterwards 

Cousins and colleagues identified TGFβ2 in lapine and human AqH, and 
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demonstrated that the inhibitory effects of rabbit AqH were at least partially reversed 

by neutralising TGFβ2 (Cousins et al., 1991a). 

 

Indirect evidence of an immunomodulatory role of AqH on ocular antigen presenting 

cells,  was provided by experiments which sought to define the mechanisms 

underlying ACAID. Streilein and colleagues showed in mouse, that iris and ciliary 

body contained bone-marrow derived cells which were mostly F4/80+ (found on 

mature murine macrophages and macrophage-like cells), and demonstrated that 

iris/ciliary body preparation (intact tissue or single cell suspensions) were not 

allostimulatory but in fact inhibited a Mixed Lymphocyte Reaction (Williamson et al., 

1989). Subsequently the same group showed that whilst the induction of ACAID was 

dependent on iris/ciliary body F4/80+ cells, injection of non-ocular F4/80+ cells into 

the anterior chamber and subsequent pulsing with antigen also resulted in the antigen-

specific suppression of DTH reactions characteristic of ACAID (Wilbanks et al., 

1991). Critically they then showed that similar ACAID-inducing characteristics could 

be generated in non-ocular macrophages by exposure to either aqueous humour or to 

culture supernatants from iris and ciliary body cells, and that this also was TGFβ-

dependent (Wilbanks and Streilein, 1992).  

 

The identification of TGFβ2 as the molecule of ocular immune privilege in mouse led 

many in the field to abandon the study of whole AqH in favour of the use of TGFβ 

and in due course the various neuropeptides identified in AqH. Whilst this is perhaps 

not surprising given the challenges of working with whole AqH, it has led to a 

disparity between the extensive literature on the identification and subsequent 

characterisation of various components of AqH, and a rather sparse body of work on 
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the effects of the complex biological fluid itself. As noted earlier, the series of 

experiments described in this chapter attempt to investigate the wide-ranging effects 

of whole human AqH, with particular regard to the role of the dendritic cell and its 

implications for the influence of the ocular microenvironment on antigen presentation.  

 

For the first time in an entirely human system I have shown that the presence of non-

inflammatory AqH maintains an immature DC phenotype, associated with reduction 

in MHC and costimulatory molecule expression and significant suppression of normal 

human DC function in terms of cytokine production, chemotaxis and induction of T 

cell responses. Previous investigations of the effects of whole AqH on antigen 

presenting cells include: the induction of the ability to induce ACAID (mouse AqH on 

non-ocular macrophages cells (Wilbanks and Streilein, 1992), suppression of nitric 

oxide generation by macrophages(Taylor et al., 1998), suppression of HLADR, CD80 

and CD86 and inhibition of a Mixed Lymphocyte Reaction (Mouse BM-derived DC 

with rabbit AqH)(Shen et al., 2007). In addition there are a number of studies which 

did not directly look at the effects of AqH on APC (as they are sometimes reported to 

have done (Stein-Streilein and Watte, 2007)), but which consider the effects of AqH 

or iris/ciliary body supernatants on T cell and APC together. Cousins showed that IL-

2 secretion of the T cell hybridoma (DG11) in response to an I-A
d
-expressing B cell 

lymphoma (A20) was inhibited by up to 20% in the presence of rabbit AqH(Cousins 

et al., 1991a).  Similarly Streilein found that iris-ciliary body supernatants inhibited 

both the same DG11/A20 model used by Cousins, and a murine mixed lymphocyte 

reaction (C3H responder spleen cells with irradiated BALB/c stimulator spleen 

cells)(Streilein and Bradley, 1991).   
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In animal studies the constitutive AqH components implicated in immunosuppression 

are TGFβ2, and αMSH and to a lesser extent VIP, CGRP, somatostatin and cortisol. 

In AqH the concentration of TGFβ2 is 1-10ng/ml with >90% being in latent form, 

bound to the latency associated peptide (LAP)(Taylor, 2007). In the mouse, TGFβ2 

treatment of APC inhibits their production of IL12 (ie deviates them away from a 

TH1 response) and reduces CD40 activation accessory signals(Takeuchi et al., 1997; 

Takeuchi et al., 1998). Additionally TGFβ2 prevents macrophage pro-inflammatory 

functions such as secretion of inflammatory cytokines or generation of reactive 

oxygen species. Interestingly Tsukahara observed that TGFβ treatment of peritoneal 

exudate cells with 5ng/ml of porcine TGFβ2 did not alter expression of CD80 or 

CD86, but that blockade of these two molecules prevented TGFβ2-treated PEC from 

inducing ACAID. TGFβ2 treatment was also noted to divert the PEC to produce IL4 

and IL10 but not IFNγ (Tsukahara et al., 2005). Recently however Shen et al have 

demonstrated that murine bone-marrow derived DC are maintained in an immature 

MHC
lo

 CD80/86
lo

 state by the addition of rabbit aqueous humour, and that this effect 

can be recapitulated by recombinant TGFβ2 or blocked by AqH pre-treatment with 

anti-TGFβ2(Shen et al., 2007).  In my studies I found TGFβ2 to have a weak 

inhibitory effect on DC maturation at levels of >10ng/ml for iDC but only at the 

supraphysiological dose of 100ng/ml for mDC, suggesting that under conditions of 

intraocular inflammation TGFβ2 would no longer be a significant regulator of DC 

function. I did not find the alternative isoforms TGFβ1 and TGFβ3 to have any effect 

on DC expression of CD86 or induction of T cell proliferation. Although neither of 

these isoforms are present at measurable levels in AqH under resting conditions, they 

are potentially relevant to the immunity of the ocular microenvironment as mRNA of 

all three isoforms have been identified in the eye (Pasquale et al., 1993) and 
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interestingly whole AqH induces TGFβ1 production by T cells under serum-free 

conditions.  

 

It is interesting that in my study MSH did not significantly affect human DC 

maturation. This finding is supported by the recent study by Shen(Shen et al., 2007) 

which found that despite their well-documented inhibitory effects on murine 

macrophage function (Taylor, 2005; Taylor et al., 1998) αMSH and CGRP were not 

significantly inhibitory for murine DC. The finding that VIP similarly had no effect at 

physiological levels is perhaps to be expected since its main immunomodulatory 

effects are thought to be directly against T cells(Taylor et al., 1994b). 

 

In contrast, the endogenous glucocorticoid cortisol (hydrocortisone) did have a 

significant suppressive effect on DC maturation, inhibiting both CD86 expression and 

induction of naive CD4+ T cell proliferation. Cortisol has been observed at 

biologically significant levels in human and rodent AqH. Levels in human AqH as 

measured by radioimmunoassay ranging from 1.7 to 18.0 ng/ml equating to 4.8 to 

49.7nmol/l (Rauz et al., 2003) (Weinstein et al., 1991; Rozsival et al., 1981; Knisely 

et al., 1994) . Interestingly the binding protein Cortisol Binding Globulin (CBG) was 

not present at detectable levels (by radioimmunoassay) (Knisely et al., 1994). Thus it 

would appear that the vast majority of cortisol in AqH exists in free form, in contrast 

to the situation in serum where 80-90% is bound to CBG, 4-10% is bound to albumin 

and the remaining 6-10% is free cortisol.  

 

The potential immunoregulatory function of cortisol in AqH has received little 

attention previously, and there are no previous studies on its potential role on APC 
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function in the eye. Knisely noted that cortisol at the levels present in AqH could 

inhibit PHA/IL-1 stimulated thymocyte proliferation, and interestingly that there was 

an additive effect with physiological levels of TGFβ(Knisely et al., 1994). In vitro 

studies of human DC have shown that cortisol and other glucocorticoids may interfere 

with DC differentiation and maturation. The addition of dexamethasone during DC 

differentiation from monocytes reduces Class II MHC, CD80/86 and CD83 

expression with consequent reduction in T cell proliferation in a mixed lymphocyte 

reaction (Piemonti et al., 1999). Freeman observed that the addition of 10
-8

M cortisol 

during DC differentiation from monocytes inhibited DC upregulation of CD83, IL-12 

production and allostimulatory activity in response to a maturation stimulus (TNFα) 

(Freeman et al., 2005).  

 

The consequences of glucocorticoid treatment on DC post-differentiation is more 

complex. Vieira reported that when monocyte-derived DC were cultured in FCS-

supplemented media and stimulated with LPS, treatment with cortisol or clobetasol-

17-propionate inhibited production of IL-12 but did not affect expression of HLA-DR 

or CD80 or their allostimulatory activity (Vieira et al., 1998). In contrast when 

monocyte-derived DC were stimulated with IL-1β and TNFα (similar to my own 

model of DC maturation), the presence of cortisol or clobetasol-17-propionate did 

inhibit upregulation of CD80, CD83 and CD86, with consequent reduced ability to 

simulate naive CD4+ T cells (De Jong et al., 1999). Similarly addition of 

hydrocortisone or the synthetic glucocorticoid dexamethasone to monocyte-derived 

DC activated by nickel sulphate hexahydrate, prevented normal upregulation of 

CD86, and reduced IL-12 and TNFα production (Toebak et al., 2008). These studies 

are supportive of my observations that cortisol at the levels present in AqH can inhibit 
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DC maturation, and that blockade of endogenous glucocorticoids within the AqH 

leads to a significant (albeit partial) reduction in the inhibitory effect of AqH. 

 

It should be noted that there is also evidence that AqH has a number of 

immunosuppressive properties directly on T cells (ie not via its effects on APC). 

These effects include inhibition of Th1 function (Taylor et al., 1992; Cousins et al., 

1991b), induction of T reg function (Taylor et al., 1997) and induction of apoptosis. 

However in this study I wished to specifically investigate the effects of AqH on the 

DC, and so carefully removed AqH from the DC cultures before commencing DC: T 

cell coculture. 

 

Although distinct, the role of AqH within the eye shares some striking similarities to 

the role of the CSF in the brain. In a parallel series of experiments to their induction 

of ACAID with AqH-treated APC, Wilbanks and colleagues showed that CSF 

treatment of PEC also induced ACAID (Wilbanks and Streilein, 1992). DC, both 

myeloid and plasmacytoid, were shown to be present in the CSF of patients with both 

inflammatory and non-inflammatory disease (Pashenkov et al., 2001).  The same 

group then studied the effects of inflammatory and non-inflammatory CSF on 

monocyte-derived DC, and observed that, in contrast to my observations with AqH, 

non-inflammatory CSF did not cause significant downregulation of HLA-DR, CD80 

or CD86 and did not inhibit DC induction of T cell proliferation in an allogeneic 

proliferation assay (Pashenkov et al., 2002). Whilst this may be a real difference 

between CSF and AqH, it may also reflect the disparity between „normal‟ fluids from 

completely healthy volunteers for which sampling usually cannot be justified and the 

„non-inflammatory‟ fluids which are used as a surrogate for normal. In my 
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experiments the „non-inflammatory‟ group have no ocular or significant systemic 

disease other than mild to moderate lens opacity, whilst in Pashenkov‟s CSF series, 

the non-inflammatory group are patients with wide-ranging active „Non-inflammatory 

neurological diseases‟ such as ischaemic stroke, depression and pseudotumor cerebri. 

Given that the range of effect of CSF for the non-inflammatory group was so wide (ie 

from >30% inhibition to >30% increase of an allogeneic proliferation assay 

(Pashenkov et al., 2002)) it would be interesting to know the effect of non-

inflammatory CSF on DC in the context of a more homogeneous „normal‟ population. 

 

Our central hypothesis is that the normal resting ocular microenvironment maintains a 

relatively immature DC phenotype. I propose that this contributes to immune 

privilege by reducing their capacity to induce an adaptive immune response. The 

experiments described in this chapter provide evidence that human AqH inhibits DC-

induction of naïve T cell responses associated with reduced expression of MHC and 

costimulatory molecules on the DC, and that in human AqH the key 

immunoregulators are cortisol and TGFβ2, with cortisol having the dominant effect.  
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5 DENDRITIC CELL FUNCTION IN UVEITIS: 

SUSTAINED SUPPRESSION OF DENDRITIC CELL 

FUNCTION DESPITE IFNγ MEDIATED 

UPREGULATION OF MHC 
 

 

5.1 Introduction 

 

One of the fundamental paradoxes of ocular immunology is the occurrence of 

potentially devastating intraocular inflammation (uveitis) in an immune privileged 

site. There has been considerable debate as to whether uveitis constitutes a failure of 

immune privilege, or whether immune privilege persists but is simply overwhelmed 

((Ohta et al., 2000b; Ohta et al., 2000a; Mo et al., 2003; Mo and Streilein, 2005; Mo 

and Streilein, 2001). 

 

In the body of work described in the previous chapter I presented evidence supporting 

my hypothesis that under normal resting conditions the ocular microenvironment 

maintains DC in a relatively immature state, reducing their capacity to induce an 

adaptive immune response. In contrast I proposed that during uveitis alterations in the 

ocular microenvironment result in uveitic AqH becoming stimulatory to DC function, 

resulting in a loss or at least a diminution of immune privilege. 

 

Although APC populations resembling macrophages and dendritic cells have been 

identified in tissues of the anterior segment in rodents and human cadaveric studies, 

they have not previously been isolated from humans ex vivo. We hypothesised that 

whilst usually resident in the tissue, dendritic cells might be found in the anterior 

chamber during severe intraocular inflammation. We therefore conducted a series of 
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experiments first to test the feasibility of identifying myeloid dendritic cells in the 

AqH, then to characterise them and finally to test the extent to which their phenotype 

could be recapitulated by exposure of monocyte-derived DC to uveitis AqH in vitro.  

In light of the debate on the persistence or otherwise of immune privilege during 

uveitis, we then sought to establish whether the effect of uveitis AqH on DC in vitro 

was primarily regulatory (as observed for non-inflammatory AqH; see chapter 4) or 

stimulatory (as per our hypothesis).  Previous analysis of the cytokine profile of 

uveitis AqH has identified increased levels of a number of pro-inflammatory 

cytokines (such as IL-6 and IFNγ (Curnow et al., 2005; Ooi et al., 2006)). This, 

coupled with a fall in TGFβ levels (Curnow et al., 2005), pointed to the likelihood 

that uveitic AqH would be stimulatory, however there remained the possibility that 

AqH might continue be immunosuppressive due to the persistence of molecules 

present during resting conditions (eg cortisol) or due to the influx or production of 

other molecules  in response to the inflammation. 

 

In summary, the aims of the series of experiments described in this chapter was (1) to 

identify and characterise myeloid dendritic cells in human AqH and (2) to investigate 

whether dendritic cell regulation by the ocular microenvironment persists during 

human uveitis. We show here that myeloid DC can be successfully isolated from the 

uveitic anterior chamber. In addition we refute our hypothesis, finding that, during 

uveitis, AqH continues to be predominantly immunosuppressive as evidenced by the 

phenotype of myeloid DC isolated directly from the uveitic eye. We have shown in 

vitro that this phenotype is a result of the effects of the AqH itself and that the 

consequences of exposure to AqH, even during uveitis, is a functionally immature 

population of DC within the eye. 
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5.2 The identification of myeloid dendritic cells in human AqH during 

uveitis with a distinct MHChi CD86lo phenotype 

 

Matched peripheral blood and AqH were taken from patients presenting with uveitis. 

Myeloid DC and CD14+ monocyte/macrophages were identified by flow cytometry 

of both the PBMC fraction and the AqH. Myeloid DC were defined according to 

Forward/Side scatter profile and characteristic expression of BDCA-1(CD1c)+CD19-

CD56-CD14-/low (Figure 5.1). Monocyte and macrophage populations were also 

identified by high expression of CD14 (Figure 5.1). Nineteen patients were recruited, 

sixteen of which had acute anterior uveitis and three of which had panuveitis (Table 

5.1).   

 

Myeloid DC could be identified in the AqH of patients with uveitis representing 0.6 + 

0.7% (mean + SD) of total AqH cells. This compares with the peripheral blood where 

0.3 + 0.6% (mean + SD) of the PBMC fraction were myeloid DC. CD14+ cells 

(monocytes/ macrophages) were more numerous than myeloid DC, being present at a 

3.3 + 3.9% (mean + SD) of AqH cells and at 7.9 + 5.5% (mean + SD) of the PBMC 

fraction. The relative cellular profile for anterior and panuveitis are compared in 

tables 5.2 (for AqH) and 5.3 (for peripheral blood).  
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Fig 5.1
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Anterior Uveitis 

 

 

Panuveitis 

Number of samples 16 

 

3 

Aetiology 14 Idiopathic 

1 Ankylosing spondylitis 

1 Ulcerative colitis 

 

2 Fuchs Heterochromic Uveitis 

1 Vogt-Koyanagi-Harada     

syndrome 

Activity (AC cells) 

(Mean + SD) 

2.4 + 0.2 1.0 + 0.6 

Unilateral vs         

bilateral disease 

15 Unilateral 

1 Bilateral 

 

2 Unilateral 

1 Bilateral 

First episode vs  

recurrent disease 

5 First episodes 

11 Recurrences 

 

3 Recurrences 

Duration of current     

episode (days) *** 

(Mean + SD) 

3.9 + 0.6 17.5 + 3.5 

Treatment 1 Topical glucocorticoid 

15 Untreated 

1Systemic glucocorticoid 

1 Topical glucocorticoid 

1 Untreated 

 

Table 5.1 Clinical profile of Anterior and Panuveitis samples analysed by flow 

cytometry for the presence of myeloid dendritic cells.  

Anterior chamber cellular activity was graded as per Standardization of Uveitis 

Nomenclature 2005 classification criteria(Jabs et al., 2005). Unpaired t-test for 

comparison of anterior and panuveitis for activity and duration (normality of 

distribution tested by Kolmogorov-Smirnov test); *** p < 0.001; all else NS. 
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 Anterior Uveitis Panuveitis 

Total cell count 

(Mean + SD) 

 

3870 + 2645 6185 + 5666 

Neutrophils (%) 

(Mean + SD) 

 

60.6 + 19.8 29.5 + 5.9 

Lymphoctyes (%) ** 

(Mean + SD) 

 

35.1 + 18.8 68.7 + 5.7 

Monocyte/macrophages (%) 

(Mean + SD) 

 

3.7 + 4.2 1.0 + 0.5 

Myeloid DC (%) 

(Mean + SD) 

 

0.6 + 0.7 0.8 + 0.8 

 

Table 5.2 Cellular profile of Anterior and Panuveitis AqH samples analysed by 

flow cytometry for the presence of myeloid dendritic cells 

Monocyte/macrophages defined by CD14+; myeloid DC defined as BDCA-1+CD14-

/lowCD19-CD56-; lymphocytes and neutrophils defined on the basis of forward/side 

scatter and being negative for the above markers.  

Unpaired t-test for comparison of anterior and panuveitis aqueous humour samples for 

cellular composition (normality of distribution tested by Kolmogorov-Smirnov test); 

** p < 0.01; all else NS. 

 

 

 Anterior Uveitis Panuveitis 

Monocyte/macrophages (%) 

(Mean + SD) 

 

8.6 + 5.7 4.3 + 2.4 

Myeloid DC (%) 

(Mean + SD) 

 

0.37 + 0.69 0.14 + 0.06 

 

 

Table 5.3 Cellular profile of Anterior and Panuveitis matched blood samples 

analysed by flow cytometry for the presence of myeloid dendritic cells 

Monocyte/macrophages defined by CD14+; myeloid DC defined as BDCA-1+CD14-

/lowCD19-CD56-.  

Unpaired t-test for comparison of anterior and panuveitis blood samples for cellular 

composition (normality of distribution tested by Kolmogorov-Smirnov test); all NS. 

 



Chapter Five Results 172 

For characterisation with regard to expression of key surface molecules, the 

homogeneous group of untreated idiopathic acute anterior uveitis were considered. 

Myeloid DC in the AqH expressed significantly higher levels of Class I and Class II 

MHC, but lower levels of the costimulatory molecule CD86 compared to the matched 

peripheral blood samples (Figure 5.2); they also showed significant elevation in their 

expression of CCR5 but no difference in levels of CD11c (data not shown). CD14+ 

monocyte/macrophages showed similar elevations in MHC (class I and class II) and 

CCR5 but unlike myeloid DC did not show a significant difference in CD86 

expression (Figure 5.3). 

5.3 Investigation of the role of the uveitic microenvironment on 

dendritic cell phenotype in vitro 

 

Having identified that dendritic cells in the uveitic anterior chamber appear to have a 

distinct phenotype, we wished to identify whether this was due to differential 

recruitment of MHChiCD86lo expressing DC or a consequence of the ocular 

microenvironment on normal DC. To investigate the role of the ocular environment 

we first tested the effects of uveitis AqH on the phenotype of monocyte-derived DC in 

vitro, and then sought to identify the molecules present in uveitis AqH that were 

responsible for these changes. 

 

5.3.1 Uveitis AqH can recapitulate an MHCIhi CD86lo phenotype in 

monocyte-derived DC in vitro  

 

Monocyte-derived DC were cultured in serum-free medium for 48h in the presence or 

absence of either 50% uveitic AqH or non-inflammatory AqH. Uveitis AqH was  
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Fig 5.2 
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Fig 5.3 
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taken from patients with active uveitis and > 1+ anterior chamber cells. Non-

inflammatory AqH was taken from patients attending for routine cataract surgery as 

described previously. At the end of 48h the cells were harvested, labelled and 

analysed by flow cytometry. 

 

Treatment of monocyte-derived DC with uveitis AqH supernatant resulted in 

significant upregulation in class I MHC and downregulation of class II MHC 

(specifically HLA-DR) and the costimulatory molecule CD86 (Figure 5.4). 

Upregulation of class I MHC was greatest when treated with uveitic AqH from 

patients with severe anterior uveitis (3/4+ anterior chamber cells), whereas class II 

MHC and CD86 levels were not affected by severity. CCR7 upregulation did not 

occur (Figure 5.5) and CCR5, rather than being downregulated as observed during 

normal DC maturation (Figure 3.6B) was further upregulated (Figure 5.5). 

  

5.3.2 Uveitis AqH-induced upregulation of MHCI on DC is IFNγ dependent  

 

In order to identify the mechanism by which uveitis AqH induced upregulation of 

class I MHC, we investigated the role of a number of molecules which had previously 

been noted to be elevated in active uveitis, notably IFNγ and IL-6 ((Curnow et al., 

2005; Ooi et al., 2006)); additionally IFNγ is known to be capable of MHC 

upregulation (Steimle et al., 1994). We therefore tested the effects both of the 

recombinant molecule and the consequence of blocking its effects in AqH. Monocyte-

derived DC were cultured in serum-free medium for 48h in the presence or absence of 

(1) 0.1 -100 ng/ml IFNγ with or without an IFNγ blocking antibody or (2) 50% uveitic  
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Fig 5.4 
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Fig 5.5 
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AqH vs non-inflammatory AqH with or without an IFNγ blocking antibody. At the 

end of 48h the cells were harvested, labelled and analysed by flow cytometry.  

 

Recombinant IFNγ caused a dose-dependent increase in MHC (class I and II) and 

CD86 (Figure 5.6). There was differential sensitivity of molecular expression to IFNγ 

with upregulation of class I MHC occurring from concentrations of IFNγ of 0.1ng/ml, 

HLA-DR from 1ng/ml and CD86 upregulation only being present at the higher 

concentrations of 10 and 100ng/ml. AqH-induction of class I MHC was shown to be 

IFNγ dependent with significant reversal with the addition of an IFNγ blocking 

antibody. As previously observed AqH-treatment downregulated HLA-DR but 

interestingly HLA-DR expression was further reduced in the presence of IFNγ 

blockade suggesting that there is an IFNγ-dependent drive to upregulate HLA-DR (as 

seen with class I MHC) but that this is insufficient to overcome the inhibitory effects 

of other components of AqH. CD86 levels which were reduced in the presence of 

AqH (as previously noted) were unaffected by IFNγ blockade. 

 

In a similar set of experiments investigating the possible contribution of IL-6, the 

effects of uveitis AqH on DC phenotype were (1) not recapitulated by the addition of 

recombinant IL-6 and were not reversed (or augmented) by IL-6 blockade: MFI for 

CD86 was 26.1 (15.5-40.3) with uveitis AqH alone (median (IQR) vs 28.3 (20.1-45.8) 

with matched uveitis AqH and IL-6 blockade (median (IQR); p = 0.56; Wilcoxon 

matched pairs analysis).   
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Fig 5.6 
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5.3.3 Cortisol levels are elevated in uveitis AqH, and increase with anterior 

chamber activity 

 

Despite the pro-inflammatory IFNγ-dependent upregulation of class I MHC, the 

predominant effect of uveitis AqH appeared to be inhibitory, with downregulation of 

class II MHC and CD86, as previously noted for non-inflammatory AqH.  In order to 

establish  the mechanism by which this was achieved, we first considered the role of 

the molecules which we had already demonstrated to be important in the 

immunosuppressive function of non-inflammatory AqH, namely cortisol and TGFβ2. 

To investigate the role of cortisol we first established by ELISA whether it was 

present at significant levels during uveitis, before proceeding to attempt to block its 

function in uveitis AqH. Our group had already demonstrated that TGFβ levels in 

AqH fall markedly during uveitis from a median of 353 (range <40 to 497) to a 

median of 86 (<40 to 667) pg/ml (Curnow et al., 2005). Since this is significantly 

below the level at which we have found TGFβ to inhibit DC function (Chapter 4), 

TGFβ was not considered further in this context. 

 

The presence of cortisol in human AqH during uveitis had not previously been 

determined. We therefore used an ultrasensitive ELISA to measure cortisol levels in a 

series of 13 untreated uveitic AqH samples, as described previously. As the ELISA is 

a competitive assay, absorbance values are proportional to concentration of 

competitive bound cortisol tracer (and inversely proportional to concentration of 

cortisol). The standard curve (Figure 5.7A) was plotted using a 4-parameter logistic 

equation fitted to the logarithmic transformation of the standard concentrations vs the 

percentage cortisol bound. The concentration of cortisol in uveitic AqH was found to 
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range from 1884 to 25536 pg/ml, with a median (IQR) of 5468 (3905 – 12300) pg/ml. 

This compares with a median (IQR) of 2820 (1650-4297) pg/ml for non-inflammatory 

AqH (Figure 5.7B). Cortisol level in AqH increased with severity of uveitis as 

measured by anterior chamber activity (Figure 5.7C; linear trend test p < 0.01). 

 

5.3.4 In uveitis, AqH-induced inhibition of CD86 loses glucocorticoid-

dependency which is restored in the presence of therapeutic 

glucocorticoids  

 

Having established (1) that cortisol levels were elevated during active uveitis (Figure 

5.7), (2) that addition of exogenous cortisol at these levels significantly inhibited DC 

expression of CD86 and induction of T cell responses (Chapter 4) and (3) that 

blockade of the glucocorticoid receptor with RU486 reversed the inhibitory properties 

of non-inflammatory AqH (Chapter 4), we hypothesised that the persistence of 

immunosuppression by AqH during uveitis was also likely to be due to endogenous 

cortisol, supplemented by exogenous (ie therapeutic) glucocorticoids in the case of 

„treated‟ samples. We therefore tested the inhibitory effects of uveitis AqH in the 

presence or absence of glucocorticoid blockade, recognising that for treated uveitis 

AqH samples glucocorticoid reversal would be blocking the combined effect of 

endogenous cortisol and exogenous glucocorticoids (such as dexamethasone).  

Monocyte-derived DC were cultured in the presence or absence of non-inflammatory 

or uveitis (untreated or treated) AqH with or without the glucocorticoid receptor 

antagonist, RU486; 10
-7

M cortisol was included as a positive control. After 48h, 

surface expression of HLA-A,B,C, HLA-DR and CD86 was determined by flow 

cytometry (Figure 5.8).  
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Fig 5.7 
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Fig 5.8 
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As noted previously for non-inflammatory AqH, both untreated and treated uveitis 

AqH caused significant reduction in CD86 expression. Glucocorticoid blockade with 

RU486 caused significant reversal of inhibition for treated uveitis AqH (as also seen 

for non-inflammatory AqH), but did not cause significant reversal of the inhibitory 

effect of untreated uveitis AqH. Class I and class II MHC were not affected by the 

addition of RU486.  

 

5.4 Investigation of the role of the uveitic microenvironment on 

dendritic cell function 

 

Having identified that the inflamed ocular microenvironment induced both a 

„stimulatory‟ upregulation of MHC (class I and II in vivo; class I only in vitro) and an 

„inhibitory‟ downregulation of CD86, we wished to investigate the functional 

consequences of this altered phenotype, in particular the possibility of selective 

inhibition of CD4+ vs CD8+ T cell responses, and the consequences of treatment on 

DC function. 

 

5.4.1 Uveitis AqH inhibits DC capacity to induce proliferation of CD4+ and 

CD8+ T cells 

 

Monocyte-derived DC were cultured in serum-free medium for 48h in the presence or 

absence of  50% uveitic AqH vs non-inflammatory AqH. These DC were then washed 

and placed in fresh culture medium with CFSE labelled naïve CD45RA+CD4+ T 

cells, or memory CD45RO+CD4+ T cells or CD8+ T cells for 4 days.  As previously, 

the number of proliferated cells in the cultures was calculated from the number of live 
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cells with submaximal CFSE (ie gate R2) counted on flow cytometry, with counting 

beads enabling absolute cell numbers to be estimated (Figure 4.3).  

 

Uveitis AqH-treatment significantly inhibited DC capacity to induce T cell 

proliferation, whether naive or memory CD4+ or CD8+ (Figure 5.9).  Inhibition with 

uveitis AqH was of a similar magnitude to that seen with non-inflammatory AqH. As 

noted previously for non-inflammatory AqH (Figure 4.5), induction of proliferation 

was found to correlate with CD86 expression of DC (Figure 5.10; r = 0.67; p = 

0.006).  

 

5.4.2 In vivo glucocorticoid treatment does not affect the capacity of uveitic 

AqH to inhibit DC induction of T cell proliferation, but is associated 

with lower IL-10 levels in DC: T cell supernatants 

 

Having noted that uveitis AqH treatment caused similar inhibition of DC function to 

non-inflammatory AqH, we wished to observe whether the inhibitory effects of 

uveitis AqH were affected by the  presence of glucocorticoid treatment. In addition 

we wished to determine whether the differentiation of T cells was also affected, with 

phenotype being skewed for example to Th1, Th2, Th17 or Treg.  

Naïve CD45RA+CD4+ T cells were cultured for 4 days with or without monocyte-

derived dendritic cells in the presence or absence of non-inflammatory AqH, 

untreated uveitis AqH or treated uveitis AqH (ie from patients who had already 

commenced topical glucocorticoid treatment at the time of sampling). Supernatants 

were then harvested and cytokine levels for IL-2, IL-5, IL-10, IL-12p40/p70, IL-13, 

IL-17, IFNγ and TNFα were measured by multiplex bead immunoassay (Figure 5.11).  
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Fig 5.9 
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Fig 5.10 
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In general, cytokine concentrations reflected the levels of proliferation in each culture. 

Uveitis AqH treatment of DC resulted in lower levels of proliferation regardless of 

whether the AqH was a „treated‟ or „untreated‟ sample, with no significant difference 

between them (Figure 5.11A). Similarly exposure of DC to uveitis AqH, whether 

untreated or  treated, resulted in lower levels of IL-2, IL-10, IL-13, IFNγ and TNFα 

(figure 5.11B); correlation with proliferation was high for all these cytokines (Figure 

5.11C). IL-17 was near baseline from all cultures and showed no significant effect of 

AqH treatment. 

 

5.4.3 In uveitis, AqH inhibition of DC function loses glucocorticoid-

dependency which is restored in the presence of therapeutic 

glucocorticoid 

 

Having established that (1) during uveitis downregulation of CD86 by AqH was no 

longer glucocorticoid-dependent, but that (2) this was restored in treated uveitis AqH, 

we wished to establish whether this was reflected in the glucocorticoid dependency 

(or otherwise) of the AqH inhibition of DC induction of T cell responses.  We 

therefore tested the inhibitory effects of uveitis AqH in the presence or absence of 

glucocorticoid blockade on DC induction of proliferation and T cell cytokine 

production; again it was noted that for treated uveitis AqH samples, the glucocorticoid 

receptor antagonist RU486 would be blocking the combined effect of endogenous 

cortisol and exogenous glucocorticoids (such as dexamethasone).  

 

Monocyte-derived DC were cultured in the presence or absence of non-inflammatory 

or uveitis (untreated or treated) AqH with or without the glucocorticoid receptor  
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Fig 5.11 
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antagonist, RU486; 10-7M cortisol was included as a positive control. After 48h, DC 

were then washed and placed in fresh culture medium with CFSE labelled naïve 

CD45RA+CD4+ T cells for 4 days.  The level of proliferation was estimated from the 

number of live cells with submaximal CFSE counted on flow cytometry (Figure 

5.12A).  

As noted previously for non-inflammatory AqH, both untreated and treated uveitis 

AqH caused significant impairment in DC capacity to induce T cell proliferation. 

Glucocorticoid blockade with RU486 caused significant reversal of inhibition for 

treated uveitis AqH (as also seen for non-inflammatory AqH), but did not cause 

significant reversal of the inhibitory effect of untreated uveitis AqH. Although it was 

not possible to directly measure the levels of therapeutic glucocorticoids in these AqH 

samples, it was noted that RU486 reversal of their inhibitory effect was not related to 

the intensity of treatment which they had received prior to sampling (5.12B). 
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Fig 5.12 
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5.5 Discussion 

 

The aim of the series of experiments described in this chapter was first to identify and 

characterise myeloid DC from the human anterior chamber, and second to investigate 

whether, with regard to the dendritic cell, immune privilege persists during human 

uveitis. We have shown that myeloid DC can be identified in human AqH during 

active uveitis, that they are MHChiCD86lo and that when this phenotype is 

recapitulated  in vitro by the exposure of monocyte-derived DC to uveitis AqH 

supernatant, the function of these DC is generally inhibited despite the opposing 

effects of inflammatory molecules such as IFNγ.  Furthermore the regulatory effects 

of uveitis AqH prior to treatment appear to be distinct from the cortisol and TGFβ2-

dependent mechanism we demonstrated for non-inflammatory AqH (chapter 4). 

 

The identification and characterisation of a defined BDCA-1+ myeloid DC population 

in human AqH is important in the context of the evolving debate over the identity and 

function of the ocular APC populations. As reviewed earlier (see Introduction) an 

ocular DC-like population was identified in human cadaveric studies, both by Flugel  

who described a population of CD45+ HLA-DR+ dendritiform cells(Flugel et al., 

1992) and by Chang who noted that these dendritiform cells were HLADR+ TLR4+ 

CD68- (ie typical of DC rather than macrophages) but which  also expressed CD14 

(suggestive of immature DC or macrophages)(Chang et al., 2004; Chang et al., 2004).  

Detailed studies in rodents have identified separate populations with both dendritic 

cell and macrophage-like characteristics (reviewed in Introduction). For example in 

the mouse the important F4/80 population responsible for ACAID can be divided into 

a class II MHC (Ia+) subset (typical of DC) and class II MHC (Ia-) subset (typical of 
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macrophage). In our flow cytometric analysis of whole uveitic AqH we have similarly 

been able to identify both a CD14+ monocyte/macrophage population and a separate 

CD14-/low BDCA-1+ myeloid DC population. We found that in the uveitic anterior 

chamber, DC were less abundant than CD14+ monocyte/macrophages; similarly in 

mouse the macrophage population outnumbered the DC population(McMenamin et 

al., 1994). Functionally, however, the role of these DC should not be under-estimated 

as they are far more potent than macrophages in their antigen presentation capacity, 

are unique in their ability to induce naive T cell responses and can fulfil regulatory as 

well as stimulatory roles.  

 

One of the most important findings of this entire thesis is that the regulatory 

properties of AqH observed under resting conditions persist during uveitis. Although 

in the context of our model we have only considered the effects of uveitis AqH on the 

afferent arm of the immune system (specifically DC function), this refutation of our 

hypothesis is very interesting in the context of the wider debate over whether immune 

privilege is maintained or lost during uveitis. We, and others, have analysed the 

cytokines present in human AqH during uveitis, finding increases in IFNγ and IL-6 

and a fall inTGFβ2 suggestive of an anterior chamber switch from a regulatory to an 

inflammatory microenvironment (Curnow et al., 2005; Ooi et al., 2006).  Rodent 

models of uveitis reflect a similar change in profile, and provide some additional 

information as to how these levels change over time during an episode of uveitis. For 

example in the murine model of experimental autoimmune uveitis, Ohta found that at 

onset of disease (day 11 after inoculation of IRBP) there is an increase of AqH IL-6, 

IL-1β and IL-2; that at the peak of disease (day 17) there is a sharp increase in IFNγ 

and TNFα, a fall in IL-6 and IL-1and maintenance of IL-2; and that at disease 
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resolution (day 28) most cytokine levels had returned to baseline, although IL-2 and 

TNFα were still found at low levels(Ohta et al., 2000a).  

 

A number of groups have investigated the functional consequences of these changes 

in the ocular microenvironment in rodents, with different conclusions. Most early 

investigators argued that immune privilege was lost during ocular inflammation (at 

least in the early phase), and that this was primarily due to a rise in IL-6. In the 

experimental autoimmune uveitis (EAU) model outlined above, Ohta observed that 

the ability of the ocular microenvironment to suppress anti-CD3 driven T cell 

proliferation in vitro was lost at the onset of disease (d11; associated with blood 

ocular barrier breakdown and elevated AqH IL-6), and that recovery of this 

suppressive function occurred  at the peak of disease (d17; associated with a fall in 

IL-6 and elevated TGFβ2 (locally produced) and TGFβ-1 (from blood/infiltrating 

leucocytes)) (Ohta et al., 2000a). Neutralisation of IL-6 was associated with 

maintenance of normal AqH suppression at day 11, whereas neutralisation of TGFβ2 

blocked the recovery of this suppressive function(Ohta et al., 2000a). Subsequently 

using the alternative model of endotoxin induced uveitis(EIU) the same group found 

that 6 to 24 hours after systemic LPS injection into the footpads of C3H/HeN mice, 

AqH lost its capacity to suppress in vitro T-cell activation (again associated with an 

increase in AqH IL-6), and that this could be recovered by neutralization of IL-6(Ohta 

et al., 2000b). Finally they noted that the induction of antigen-specific anterior 

chamber–associated immune deviation (ACAID) in normal mice was prevented by 

the addition of IL-6 into the anterior chamber (Ohta et al., 2000b).  
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This model of a loss of immune privilege at the onset of uveitis, and its restoration 

coincident with the onset of recovery seemed reasonably robust, supported as it was 

by convincing evidence in two different animal models. More recently however two 

alternative animal models of uveitis have demonstrated that severe intraocular 

inflammation is compatible with maintenance of immune privilege, a finding which 

we have now demonstrated for the first time in human. In the first of these models, a 

variant of the Endotoxin Induced Uveitis model in which LPS is injected, not 

systemically, but into the vitreous cavity of BALB/c mice, Mo and colleagues found 

that even at the peak of intraocular inflammation (9h; associated with high levels of 

IL-6) these eyes would permit the proliferation of allogeneic tumour cells and support 

ACAID in vivo, and their AqH would still strongly inhibit T cell activation in vitro 

(Mo and Streilein, 2001). In a second model of Mycobacterium tuberculosis adjuvant-

induced uveitis (MTU), intravitreal injection of Mycobacteria tuberculosis adjuvant 

into the eyes of BALB/c mice resulted in an intense anterior uveitis which again 

supported the growth of allogeneic tumour cells, and their AqH again inhibited T cell 

activation in vitro. Interestingly, however, the early phase of disease was associated 

with a temporary failure in the ability of the eye to induce ACAID(Mo and Streilein, 

2005). 

 

Our finding that uveitis AqH continues to be inhibitory to DC function is an important 

addition to the predominantly murine literature regarding the retention or otherwise of  

immune privilege during uveitis. The four animal models described above (see also 

Table 1.9) have important immunological differences to each other, reflected in their 

different profiles of disease severity, time-course and eventual outcome .Whilst none 

are a perfect model for spontaneous disease in humans, between them they reflect 
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something of the puzzling spectrum of human disease.  Mo et al argue that 

maintenance of immune privilege is normal during inflammation, but that (1) a strong 

Th1dominated inflammation can lead to the retention of a DTH response (ie loss of 

ACAID) associated with elevated IL-12 levels  during EAU and the early phase of 

MTU; and  that (2) whilst IL-6 can abrogate TGF-β driven immune privilege in 

systemically immunized models which are characterised by lower grade ocular 

inflammation (ie EAU and systemic EIU), the more extensive blood ocular barrier 

breakdown seen with intraocular immunization (ie local EIU and MTU models) 

results in an influx of plasma proteins which neutralize the effects of IL-6 ((Mo and 

Streilein, 2007)).  It is interesting to note that whilst in humans we have observed 

elevated IL-6 levels in uveitis AqH to be functional in terms of preventing T cell 

apoptosis (via a sIL-6R trans-signalling pathway(Curnow et al., 2004)), we have 

recently shown that IL-6 is auto-regulated by an influx of sgp130, a natural inhibitor 

of IL-6 trans-signalling(Simon et al., 2008). We hypothesise that differences in 

sgp130associated with variable blood-ocular barrier breakdown may account for the 

varying responses to IL-6 seen in the different animal models of uveitis.  

 

With regard to DC function, we had demonstrated in preliminary experiments that  

IL-6 alone did not significantly affect DC function . When used in combination with 

IL-1β, TNFα and PGE2 it caused characteristic changes of maturation such as 

elevation of MHC and costimulatory molecules and allostimulatory function, but that 

these changes could be blocked by the addition of normal AqH (chapter 3); similarly 

blockade of IL-6 in uveitis AqH did not significantly affect DC phenotype. In contrast 

IFNγ was associated with the limited pro-inflammatory activity of uveitis AqH. We 

have previously shown IFNγ levels to increase in uveitis and to correlate with disease 
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activity(Curnow et al., 2005). Here we have demonstrated that recombinant IFNγ 

upregulates class I and class II MHC, and that IFNγ-blockade reduces the uveitis 

AqH-driven upregulation of class I MHC and leads to further downregulation of class 

II MHC. 

 

Our observation of the persistence of the regulatory properties of human AqH during 

uveitis is also intriguing since it appears to be operating by an alternative mechanism 

to the dominant cortisol/TGFβ2 pathway of non-inflammatory AqH. Again this is 

controversial in the animal literature. It would appear that in mouse the predominant 

regulatory molecules are neuropeptides such as αMSH and VIP, with TGFβ playing a 

relatively minor role due to most of it being in the latent state. In the EAU and 

systemic EIU models, levels of active TGFβ1 and TGFβ2 increase and  it appears that 

TGFβ quickly becomes the dominant mechanism of immune privilege (hence 

regulation can be reversed by the addition of IL-6)(Ohta et al., 2000b; Ohta et al., 

2000a).  

 

In contrast, whilst the local EIU and MTU models do not discount a role for TGFβ, 

the lack of IL-6 effect suggests that other factors must be involved. In parallel to the 

animal studies we found that the dominant regulatory mechanism we had identified in 

non-inflammatory human AqH (predominantly cortisol with TGFβ2 contributing) was 

not operational, or at least not dominant, in uveitis AqH, despite the presence of 

increasing levels of cortisol in these samples;  in humans TGFβ levels have been 

shown to fall precipitately in uveitis and hence was discounted as a significant 

contributor in these experiments. We have been unable to determine the novel 

factor(s) that appear in uveitic AqH and contribute to the maintenance of regulation. It 
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is likely that the potential regulatory role of cortisol is maintained (or even enhanced 

given its increasing levels), but that the presence of novel alternative regulatory 

molecules provide for redundancy in the system, resulting in AqH inhibition of DC 

function no longer being reversible by glucocorticoid blockade alone. This seems 

plausible given that we have shown up to ten-fold increases in the level of cortisol 

during uveitis, and have shown in vitro that at these higher concentrations cortisol can 

inhibit DC function even under inflammatory conditions. An alternative explanation 

of the loss of cortisol-dependency is that rather than simply being redundant, the 

cortisol is no longer effective, either due to elevated cortisol binding globulin or due 

to inactivation of cortisol to cortisone by 11β-HSD2 dehydrogenase activity. This 

explanation seems less likely given that we have measured the levels of free cortisol 

(rather than total) and have shown that cortisol at these doses is effective. Furthermore 

with relation to 11β-HSD expression, monocyte-derived dendritic cells and ocular 

tissue predominantly express the oxo-reductase enzyme 11β-HSD1  (which activates 

cortisone to cortisol) rather than the 11β-HSD2 isoform (Freeman et al., 2005; Rauz et 

al., 2001). 

 

The origin and identity of these novel regulatory molecules is uncertain. Possibilities 

include locally produced molecules such as regulatory cytokines (eg TGFβ, IL-10) or 

mediators of resolution (resolvins and other lipid-derived small molecules such as 

lipoxin A4), or serum-borne molecules (such as sgp130  or 1α,25-dihydroxyvitamin D 

(Simon et al., 2008; Hewison et al., 2003)). As alluded to earlier we have already 

established that in humans neither TGFβ nor IL-10 are elevated in most uveitis; in 

fact TGFβ levels fall, and IL-10 is maintained at non-inflammatory levels in all forms 

of uveitis other than Herpes-viral (Curnow et al., 2005). Evidence that the key 
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molecule(s) may be present in the serum come from animal and our own studies 

which have shown that whilst low concentrations of uveitic serum was stimulatory, 

higher concentrations of serum (uveitic or normal) was significantly 

immunosuppressive. Whilst we hypothesise that in the animal models (and in human 

T cell survival) sgp130 regulation of IL-6 trans-signalling may be a key factor, the 

lack of IL-6 effect in our experiments argues against any significant role of AqH 

sgp130 in terms of human DC function.  The recently described „resolvins‟ and 

related lipid-derived molecules are of interest. Although the effects on DC are as yet 

poorly characterised, Lipoxin A4 has been shown to inhibit dendritic cell function in 

mouse by inhibiting IL-12 production, downregulating CCR5 and inhibit migration, 

although they do not comment on surface molecule expression of MHC and 

CD86(Aliberti et al., 2002).  

 

Our observation that treatment of uveitis is associated with restoration of a 

glucocorticoid-dependent mechanism of regulation is fascinating and has clear 

parallels with the recovery of immune privilege in the animal models. Whilst in our 

experiments it was not possible to differentiate between the effects of exogenous and 

endogenous topical steroids, it is interesting that the degree of inhibitory effect and 

subsequent reversal by RU486 was independent of the intensity of glucocorticoid 

therapy suggesting that this is at least partly due to recovery of the normal cortisol 

mechanism of regulation. In any event, the return to glucocorticoid dependency 

implies that the unknown mechanism of immunoregulation operational in uveitis AqH 

prior to treatment, is no longer a significant mechanism once treatment is underway. 

This may reflect restoration of the blood-ocular barrier (untreated and treated groups 

were matched for cellular activity but not for flare) which would result in falling 
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levels of any serum-borne mediator of regulation, or may be a direct effect of the 

treatment (eg glucocorticoid therapy has been associated with a reduction in 

resolvins). We wish to pursue this work by analysing a number of recently described 

bioactive molecules such as resolvins in non-inflammatory and uveitis AqH. 

Additionally by performing time-course studies of the change in cytokine levels (and 

other modulators of inflammation) during an episode of uveitis and correlating this 

with the effects of AqH on DC and related cell types, we hope to refine our 

understanding of the role of DC in the onset, progression, resolution and recurrence of 

human uveitis.  
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6 FINAL DISCUSSION 

6.1 Introduction 

 

During the course of this thesis I have shown that myeloid DC can be isolated from 

the anterior chamber of the human eye during uveitis, that human AqH regulates DC 

function and that even in the presence of the pro-inflammatory milieu of uveitis this 

regulatory function predominates.  I  have also provided evidence that in the normal 

human eye this suppressive function is cortisol and TGFβ2 dependent, but that during 

uveitis novel regulatory mechanisms are introduced, with apparent redundancy of the 

cortisol/TGFβ system.  

 

In the previous chapters I have set these results in the context of two of the great 

debates in ocular immunology: first, the identity of the ocular APC and the location 

and nature of its interaction with the target T cell; second, the maintenance (or 

otherwise) of immune privilege during intraocular inflammation. In this final 

discussion I will consider the broader implications of these findings, first with regard 

to the concept of immune privilege and second with regard to the aetiology, 

pathogenesis and treatment of ocular inflammatory disease.  

 

6.2 Immune privilege: an extreme of normal regulation 

 

Like many homeostatic processes, the immune system is tightly regulated to operate 

within the narrow compass of what is both effective and safe. An inadequate immune 

response leaves the organism vulnerable to surrounding pathogens. A misdirected or 
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excessive response may itself lead to damage to the organism, either due to specific 

anti-self responses or due to collateral damage to healthy tissue as the pathogen is 

cleared. For the immune response to be effective, all parts of the organism must be 

accessible to it. For it to be appropriate, each tissue must have regulatory mechanisms 

(whether specific or generic) to control the magnitude and direction of that response. 

 

The concept of immune privilege as originally described by Medawar was as an 

exception to the normal immune response (Medawar, 1948). „Normal‟ immunity 

could be demonstrated by the usual rejection of foreign grafts except when placed in a 

few „immune privileged‟ sites, such as the eye. Since then, however, the number of 

sites described as being immune privileged has grown. Thus whilst only a limited 

number of tissues exhibit prolonged tolerance of foreign grafts (as per the original 

definition), relative degrees of immune privilege are present in most tissues in order 

(at least in teleological terms) to „tailor‟ the immune system to the requirements of 

that site. In this discussion I argue that the literature points to regulation of the 

immune system as a normal property of all tissues, varying according to the needs of 

that site. In this context „immune privilege‟ per se simply represents the extreme of a 

continuum of normal regulation exhibited by all tissues.  In line with this model, I 

propose that the mechanisms of DC regulation that I have been investigating in the 

AqH may be more generally applicable and are likely to occur in other sites outside of 

the eye. 

 

Although ocular immune privilege is remarkable as a phenomenon, there is nothing 

unique in its component parts. Careful consideration of other tissues demonstrates that 

every mechanism of immune regulation found in the eye may be observed to some 
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extent in other sites. Some, such as complement regulatory proteins to prevent 

inappropriate cascade initiation, are almost ubiquitous. Similarly Fas:Fas ligand 

interactions to induce leukocyte apoptosis, though originally described in the eye, has 

since been recognised in the testis, brain, lung, kidney, liver, pancreas, heart, skin, 

thyroid and blood vessels (reviewed (Green and Ferguson, 2001)). 

Interestingly the regulatory mechanisms surrounding antigen presentation and the 

dendritic cell may be more limited in their distribution. These mechanisms include: 

(1) limited drainage of antigen or APC due to either absent or inefficient lymphatic 

drainage (eye, brain(Yamada et al., 1991), hamster cheek pouch(Barker and 

Billingham, 1971) or due to DC „entrapment‟ (as seen in the feto-placental unit 

(Collins et al., 2009)); (2) immune deviation responses such as ACAID (seen in the 

eye) and similar phenomena (seen in the brain and possibly by the feto-placental 

unit); and (3) central to this thesis, the presence of immunosuppressive molecules 

such as (a) TGFβ (present in the eye, brain, feto-placental unit, tumours, sites of 

inflammation), (b) the neuropeptides αMSH, VIP,  CGRP and somatostatin (present 

in the eye, brain, feto-placental unit)  and (c) steroid hormones such as cortisol (also 

eye, brain (Popp et al., 2009), feto-placental unit (Nolten and Rueckert, 1981)) or 

progesterone (feto-placental unit). 

 

Our finding that human DC may be regulated jointly by cortisol and TGFβ2 (chapter 

4) and that regulation continues even in the presence of inflammation, is thus relevant 

both to the specific situation in the eye, but also more generally to other sites where 

these molecules are present. Whilst the parallels to the CNS and the feto-placental 

unit are most evident, it is possible that cortisol and TGFβ2 contribute to DC 
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regulation in the many other tissues where these molecules may occur constitutively 

or be found under inflammatory conditions. 

 

6.3 Aetiology and pathogenesis of uveitis: common pathways from 

varied insults 

 

The extent to which autoimmunity (ie a self-directed immune response) is an 

inevitable consequence of a highly sensitive amplificatory immune system or whether 

dysregulation only occurs in the context of an external stimulus is still a matter of 

debate(Cooke, 2003; Kivity et al., 2009). In reviewing the aetiology and pathogenesis 

of uveitis we will first consider the extent to which uveitis (or some forms of uveitis) 

may be entirely due to the „spontaneous‟ recognition of unique uveitogenic antigens 

within the eye, before turning to the putative role of infectious agents (both extra-

ocular and intra-ocular) in triggering ocular autoimmunity.  

 

Since the DC is regarded as the key player in the induction of an antigen-specific 

adaptive immune response, it is strongly implicated in the development of the 

autoreactive T cells which are thought to mediate much „idiopathic‟ uveitis. These 

models of the initiation of uveitis are therefore considered within our evolving 

understanding of DC immunology, and in the light of my findings regarding 

modulation of DC function within the ocular microenvironment. Previous discussion 

of the ocular microenvironment (chapters 4 and 5) arising from my findings has been 

primarily limited to the anterior segment of the eye, in recognition that all the 

experimental work described within this thesis is based on AqH, both its contents 

(cellular and molecular) and immunodulatory effects. In this final discussion, I wish 
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to reflect more broadly on the probable role of DC within the aetiology and 

pathogenesis of uveitis, a process which will highlight both the similarities and some 

of the differences between types of uveitis found in both animal models and human 

disease. 

 

6.3.1 Model 1: ‘Spontaneous’ ocular autoimmunity 

 

A number of different ocular antigens have been proposed to be uveitogenic. In 

animal models, immunization with retinal-S antigen and interphotoreceptor retinoid 

binding protein (IRBP), among others, have been shown to induce uveitis. It is 

interesting that in most uveitis models, and many other models of autoimmunity, 

disease only develops when immunisation occurs with an appropriate adjuvant. Such 

models include Experimental Autoimmune Anterior Uveitis ( EAAU; antigen is a 

fragment of type I collagen) which primarily causes an anterior uveitis and 

Experimental Autoimmune Uveitis (EAU; antigen is retinal S-Ag or IRBP) which 

primarily generates a panuveitis ((Bora et al., 2004; Roberge et al., 1993; Lipham et 

al., 1990) and recently reviewed (Kerr et al., 2008)). Extrapolating to the human eye 

would suggest that most „spontaneous‟ human uveitis does in fact require an 

additional infective (or at least inflammatory) stimulus in order for uveitis to develop. 

Given that ocular antigen is, to at least some extent, sequestered (resulting in 

immunological ignorance) this is perhaps to be expected. In passing it should be noted 

that the model Endotoxin Induced Uveitis (EIU) is sometimes described as being 

„adjuvant-free‟ depending as it does on systemic LPS administration to induce a 

hyperacute neutrophilic ocular infiltrate (Rosenbaum et al., 1980). Since this model 

does not induce an antigen-specific adaptive immune response it cannot be regarded 
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as a helpful model of autoimmune uveitis, although it is of interest in providing a 

mechanism by which extraocular exposure to Gram negative bacteria (and their cell 

wall component, LPS) can selectively induce intraocular inflammation (considered 

later). 

 

One naturally occurring animal model of uveitis, recurrent equine uveitis, has been 

proposed as a model of spontaneous human disease (Forrester, 2007; Deeg et al., 

2002). It should be noted however that this form of uveitis appears to be associated 

with environmental exposure, particularly to Leptospira sp.(Faber et al., 2000). 

 

A number of models of „spontaneous uveitis‟ have now been developed. Some of 

these models involve compromising thymic tolerance such as by the reconstitution of 

nude mice with rat embryonic thymus(Ichikawa et al., 1991)or by deletions of the 

autoimmune regulator (AIRE) gene (Anderson et al., 2002). Other proposed models 

involve the insertion into the mouse genome of MHC susceptibility genes such as 

HLA-A29 (associated with bird-shot retinochoroidopathy in humans) or HLA-B27 

(associated with acute anterior uveitis). Interestingly whilst HLA-A29 does lead to a 

spontaneous retinochoroidopathy resembling human disease in up to 80% of 

transgenic mice(Szpak et al., 2001), HLA-B27 transgenic mice do not spontaneously 

develop uveitis (whereas they do develop colitis and spondylarthropathy as discussed 

below).  

 

An alternative strategy is to generate mice which are transgenic for a foreign antigen 

expressed under ocular tissue promoters (such as the rhodopsin promoter) and then 1) 

inoculate with that antigen, 2) adoptively transfer with T cells specific to the foreign 
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antigen or 3) cross with mice transgenic for the TCR to the foreign antigen. Gregerson 

and colleagues observed the effect of differing levels of expression of E. Coli β-

galactosidase in the retina by expressing it under different promoters. They observed 

that mice were refractory to the induction of uveitis by inoculation or adoptive 

transfer except when β-galactosidase was expressed at very high levels (β-gal-hi-

arrestin) and immunization was with a strong adjuvant (CFA and Pertussis) 

(Gregerson and Dou, 2002; Gregerson, 2002; Gregerson et al., 1999); this underlined 

the role of antigen sequestration in the tolerance of ocular antigens.  

 

Conversely the role of central tolerance was demonstrated in two studies of 

„spontaneous‟ uveitis using double transgenic mice. Ham et al used a double 

transgenic model (HEL expressed under the rhodopsin promoter (rho-HEL) with anti-

HEL TCR) to demonstrate that there was central deletion of anti-HEL T cells. 

Interestingly since deletion was partial, a degree of „spontaneous‟ uveitis was seen in 

the double transgenic model which was comparable to that seen with adoptive transfer 

of anti-HEL T cells into a single transgenic (rho-HEL); HEL immunisation with CFA 

into the single transgenic (rho-HEL) mice was not successful in inducing uveitis 

(Ham et al., 2004).  Similarly Zhang et al observed central deletion of anti-HEL T 

cells in a double transgenic model (membrane bound and soluble forms of HEL 

expressed under the α-crystallin promoter with anti-HEL TCR). Again uveitis still 

occurred due to escape of anti-HEL T cells (Zhang et al., 2003). 

 

While these models of spontaneous uveitis are ingenious, they serve rather to 

underline the strength of the immunoregulatory mechanisms which maintain ocular 

tolerance. Inducing uveitis in the absence of an infective or inflammatory trigger (as 
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postulated by this model) is difficult. This is entirely consistent with my finding that 

the ocular microenvironment strongly suppresses DC function in human. This strong 

inhibition of DC by the ocular microenvironment is also supported by data from 

animal models, notably Shen‟s observations that rabbit AqH inhibits mouse DC 

maturation and function (Shen et al., 2007). Spontaneous uveitis due to failure of 

these mechanisms is possible, but is likely to be a rare event in vivo. In summary, my 

data and evidence from the wider literature suggests that it is very unlikely that this 

model of „spontaneous‟ ocular autoimmunity is a frequent cause of non-infective 

uveitis. 

 

6.3.2 Model 2: Extraocular infection triggering ocular autoimmunity 

 

Although external aetiological agents have been proposed for many autoimmune 

diseases, there are relatively few for which there is robust evidence of cause and 

effect. One of the best-described examples of an infection-triggered autoimmune 

disease is reactive arthritis  in which there is strong evidence for the role of Gram 

negative bacteria. In outlining the possible role of extraocular infection in triggering 

ocular autoimmunity, I will first outline the evidence for the role of Gram negative 

bacteria in the development of ReA before considering the evidence for a similar 

mechanism in uveitis. 

 

6.3.2.1 Reactive arthritis as a model for infection-triggered autoimmunity 
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Reactive arthritis (also known as Reiter‟s syndrome) comprises a spectrum of clinical 

features including arthritis, urethritis and conjunctivitis which follows an infectious 

episode, either a genitourinary infection (commonly Chlamydia trachomatis) or 

gastro-intestinal (Salmonella sp., Shigella, Campylobacter jejuni and Yersinia 

enterocolitica). In most cases clinical features start 2-4 weeks post-infection, and 

resolve by 6-12 months post-infection, but around 15% may relapse and develop a 

progressive course. The presence of HLA-B27 is a risk factor for ReA, and is 

particularly common amongst those developing a progressive course or exhibiting 

extra-articular manifiestions (Brewerton et al., 1973b; Rihl et al., 2006a).  

 

In addition to clinical evidence associating prior Gram negative infection with the 

subsequent disease, there is reasonable immunological evidence to suggest cause and 

effect. Chlamydia, Yersinia and Salmonella antigens and Chlamydia bacterial RNA 

(but not cultivatable organisms) have all been identified from synovial tissue or fluid 

in ReA, sometimes years after the initial infection(Rihl et al., 2006b; Gerard et al., 

2000). The role of HLA-B27 in promoting susceptibility is not clear. It is possible that 

when HLA-B27 processes peptides from Gram negative bacteria, it results in an 

MHC-peptide complex which resembles self, and can thus via „ molecular mimicry‟ 

induce an anti-self response. Interestingly HLA-B27 restricted T cell responses are 

observed both to Chlamdyia and Klebsiella antigens and to human aggrecan (a 

proteoglycan found in cartilage). An alternative explanation is that the B27 molecule 

itself is immunogenic. This might be through misfolding (it is noted to have a 

relatively slow folding rate) and accumulation in the endoplasmic reticulum(Turner et 

al., 2005); or through the formation of immunogenic homodimers (Allen et al., 1999);  

or through molecular mimicry (ie resemblance between HLA-B27 and Gram negative 
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bacteria antigens (Chang et al., 2006; Chang et al., 2005; Chang et al., 2004).  Other 

susceptibility genes identified include functional polymorphisms of IL-10 and TNFα.  

6.3.2.2 Uveitis and the role of extraocular infection 

 

In most uveitis, the evidence for an external trigger leading to a dysregulated immune 

response is less clear. For acute anterior uveitis, like ReA, there is a strong association 

with HLA-B27 (50% of those presenting with AAU are HLA-B27+)(Chang et al., 

2005). Furthermore AAU has been reported to develop after both Yersinia and 

Salmonella infection, and specific cellular and humoral immune responses to a 

number of Gram negative bacteria have been identified in AAU patients (reviewed 

Wakefield (Wakefield et al., 1991)). It has been suggested, particularly in light of the 

organisms implicated, that chronic mucosal inflammation may be an important factor 

in disease development(Chang et al., 2005). Interestingly two-thirds of those with 

AAU have been shown to have chronic asymptomatic bowel inflammation on 

ileocolonoscopy(Banares et al., 1995). This finding parallels the observation that 

whilst HLA-B27 transgenic mice develop spondylarthropathy and colitis in the 

presence of commensal gut bacteria, they fail to do so in pathogen free conditions 

(Rath et al., 1996).  

 

The idea that much uveitis is an autoimmune response to an ocular antigen is an 

attractive hypothesis. In the context of AAU it is generally suggested that, as 

proposed for ReA, an ocular-antigen specific immune response arises through 

molecular mimicry to a pathogenic antigen (presented by DC or other professional 

APC). Autoreactivity may be present from the outset, or occur via epitope/antigen 

spreading in which priming to self-antigens released during tissue damage may occur; 
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this arises most commonly in the context of persistent immune response to the 

original antigen such as during chronic infection. It should be noted that, unlike the 

situation in ReA, conclusive identification of intact antigen from Gram negative 

bacteria has not been identified in the target tissue (ie the eye) itself, nor is there clear 

evidence for DC traffic from the eye (Dullforce et al., 2004; Camelo et al., 2003; 

Camelo et al., 2006; Camelo et al., 2004a); indeed my own data suggests that the 

required CCR7 upregulation/CCR5 downregulation is not induced by uveitis AqH. 

This provides further support to the concept that the encounter of APC and antigen 

may have occurred at an extra-ocular site of infection, such as the gastrointestinal or 

genitourinary tract.  

 

6.3.3 Model 3: Intraocular infection triggering ocular autoimmunity 

 

Infective uveitis due to intraocular invasion by pathogen may be caused by a wide 

range of organisms including viruses (eg Herpes simplex family), bacteria (eg 

Mycobacteria tuberculosis, Treponema pallidum), protozoa (eg Toxoplasma gondii), 

nematodes (eg Toxocara canis, Onchocerca volvulus) and fungi (eg Candida albicans, 

Histoplasma capsulatum). It is increasingly evident that much of the pathology of 

these diseases is mediated less by the organism itself and more by the immune 

response to chronic infection or possibly persistent antigen. It is interesting to 

speculate that some of the idiopathic uveitis syndromes such as Fuchs‟ heterochromic 

uveitis (FHU) and Posner-Schlossman syndrome (PSS) may represent a persistent 

immune response to a latent infection or to persistent antigen from a cleared infection. 

Each of these syndromes share clinical features with recognised presentations of viral 

anterior uveitis. In the past chronic infection with Herpes simplex and more recently 
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Rubella have been postulated for FHU (Bonfioli et al., 2005); trabeculitis due to 

Herpes simplex family members are still the leading candidates for PSS (Chee and 

Jap, 2008).  

 

An extension of this hypothesis is that the intraocular infection leads to the generation 

of autoreactive to T cells to an ocular antigen (by molecular mimicry, epitope 

spreading and/or bystander activation) so inducing a purely autoimmune uveitis which 

would continue after clearing of the pathogen. Although speculative, such a 

mechanism could account for the discordance between the reported falling incidence 

of FHU in line with rubella vaccination and the lack of clear evidence of persistent 

rubella pathogen (or even antigen) in ocular tissues/fluid (Birnbaum et al., 2007). 

Similarly in the context of posterior or panuveitis, it has been proposed that 

sarcoidosis (and its related uveitis) reflects a persistent immune response to chronic 

atypical mycobacteria infection; however it is also possible that such an infection 

generates a purely autoimmune syndrome which persists even after successful 

clearing of the mycobacteria.  

 

My data does not support the hypothesis that ocular DC, whether under resting or 

inflammatory conditions, migrate to draining lymph node tissue to induce a naive T 

cell response. As noted earlier my own data suggests that uveitis does not induce the 

normal CCR7 upregulation/CCR5 downregulation required for migration to the 

draining lymph nodes (indeed CCR5 was upregulated). Additionally ocular DC 

expression of the costimulatory molecule CD86 was reduced, and there was 

concomitant diminution of T cell responses (naive and memory; CD4+ and CD8+), 

suggesting that if any DC had trafficked to the draining lymphoid tissue (or if DC 
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encounter memory T cells in the ocular tissue itself) that this is unlikely to result in a 

strong antigen-specific effector immune response. 

 

6.3.4 T cell trafficking to the eye 

 

Although the mechanisms are very ill-defined, it seems increasingly likely that the 

initiating events in most cases of uveitis involve the extra-ocular/systemic priming of 

autoreactive T cells as a by-product of a normal response to pathogen(Forrester, 

2007). Indeed the capacity of a systemic injection of retinal antigen in conjunction 

with adjuvant to induce uveitis (as in EAU), is a clear demonstration that these 

mechanisms can operate. The next unresolved question is: regardless of where T cells 

are primed, how do they encounter antigen in the eye? 

 

6.3.4.1 Extraocular priming and site specific homing 

 

In the context of the model of ocular autoimmunity being triggered by extra-ocular 

mucosal inflammation (discussed earlier), it would follow that priming of naive 

antigen-specific T cells would occur in draining secondary lymphoid tissue. Thus in 

the presence of gastrointestinal inflammation, this would constitute Peyers patches 

and the mesenteric lymph nodes. The majority of T cells primed in this lymphoid 

tissue would home back to the gut due to expression of CCR9 and α4β7-integrin 

(responding to gut-specific CCL25 and mucosal vascular addressin cell-adhesion 

molecule (MADCAM-1) respectively), but such site-specific recirculation is not 

complete, allowing for the possibility that gut-DC primed T cells may circulate (Mora 
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et al., 2003)through other tissues such as the eye (reviewed Adams (Adams and 

Eksteen, 2006)). Mora et al found that the ratio of gut-DC primed T cells to peripheral 

lymph node-DC primed T cells was 17 times higher in the small intestine than the 

blood, but they also showed that these gut-DC primed T cells circulated to a range of 

other tissues including liver, lung and peripheral lymph nodes. Furthermore there is 

evidence that site-specific homing can be reprogrammed by subsequent encounters 

with DC from other tissues as has been demonstrated between skin and gut-DC 

primed T cells (Dudda et al., 2005). Whilst unique homing signals have not been 

identified for ocular tissues, this does at least provide a mechanism by which gut or 

skin-DC primed T cells may be diverted to other peripheral tissues including the eye. 

 

6.3.4.2 Hypothesis 1. Routine T cell trafficking through the non-inflamed eye leads 

to encounter of ocular antigen-specific T cell with cognate Ag/resident APC 

 

It is not clear to what extent there is any circulation of T cells through the eye under 

non-inflamed conditions, although during active uveitis we have found the anterior 

chamber infiltrate to have a high proportion of CD4+T cells which are almost 

exclusively the CD45RO+ memory (rather than CD45RA+ naive) population. Studies 

of non-inflamed CSF have however demonstrated a significant number of  memory 

CD4+ and CD8+ T cells circulating through the CSF which appear to provide a 

degree of „immune surveillance‟ to the adjacent CNS tissues (Hickey, 1999). 

Although this runs somewhat counter to its status as an immunologically-ignored 

antigen-sequestered organ, it seems likely that the eye may experience a similar 

degree of routine lymphocyte trafficking. Such trafficking would then permit the 

encounter of recirculating memory CD4+ or CD8+ T cell with APC in the eye 
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allowing reactivation of the antigen-specific T cell by either resident dendritic cell or 

macrophage, activation of macrophages by Th1 effector cells or direct cytotoxic 

function of effector CD8+ T cells. Interestingly Prendergast et al suggest that 

activated T cells are not restricted by the blood-ocular barrier. They observed that 

activated T cells, whether antigen specific (a retinal S-Ag specific T cell line) or non-

specific (concanavalin-A stimulated T cells), accessed the retina within 24h and that 

this preceded any visible signs of inflammation (Prendergast et al., 1998). 

 

An alternative explanation for this model comes from the findings of Xu et al who 

showed that adoptive transfer of non-Ag-specific activated T cells (concanavalin-A 

stimulated) into the normal mouse can themselves cause a transient local breakdown 

in the blood ocular barrier with passage of activated T cells across the endothelium. 

This mechanism, which is dependent on ICAM-1 upregulation on the endothelium 

and its interaction with LFA-1 on the T cell (Xu et al., 2003), provides an explanation 

by which activated autoreactive T cells may encounter cognate antigen within the eye 

in the absence of pre-existing ocular inflammation. 

 

A central feature of this hypothesis is it places the interaction of effector T cell and its 

cognate Ag-bearing APC (or Ag-bearing parenchymal cell) within the eye before 

there has been any local inflammation or breakdown in the blood-ocular barrier. In the 

context of this model, my findings that DC function is generally inhibited in the 

presence of non-inflammatory AqH (see chapter 4), would suggest that most 

encounters with circulating ocular-antigen specific T cells will not result in an 

effective (auto)immune response. Indeed, as discussed previously, the encounter may 

result in T cell anergy or even regulatory function, although I have not been able to 
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investigate this conclusively within this thesis. In the light of my findings, it seems 

unlikely that this non-specific routine circulation of T cells through the eye under 

resting conditions is the dominant mechanism by which uveitis-associated ocular-Ag 

specific T cell recruitment to the eye occurs. 

 

6.3.4.3 Hypothesis 2. Non-specific systemic inflammation leads to generalised 

endothelial activation and blood-ocular-barrier breakdown enabling 

encounter of ocular antigen-specific T cell with cognate Ag/resident APC 

 

The blood-ocular barrier and limited lymphatic drainage reduces leukocyte trafficking 

to and from the eye, resulting in a degree of immunological ignorance. It is therefore 

argued that any primed ocular antigen-specific T cells may simply never encounter 

antigen that is sequestered exclusively in the eye. A systemic inflammatory response, 

such as occurs during a generalized viral infection (eg influenza), leads to systemic 

release of IL-1β, IL-6 and TNFα. Release of these cytokines results in generalised 

activation of endothelial barriers, and may also affect the blood-ocular barrier. This in 

turn would lead to recruitment of memory T cells to the site of inflammation; it has 

also been suggested that under extreme inflammation naive T cells may also circulate 

through.  

 

Support for this hypothesis comes from the data of Xu et al who, in contrast to the 

conclusions of Prendergast et al (discussed earlier), suggest that activated T cells 

cannot routinely cross the uninflamed blood-ocular barrier. Using a scanning laser 

ophthalmoscope to track labelled leucocytes, they observed that under normal 

circumstances the high shear stress of the retinal vessels and lack of appropriate 
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adhesion molecules, precluded lymphocyte rolling, sticking and egress. When EAU 

was induced, they observed that early on in the disease (d9) reduction in shear stress, 

and upregulation of ICAM-1, P- and E-selectin on the endothelium permitted IRBP 

Ag-primed cells to leave the vessels and infiltrate the retina. Interestingly at the peak 

of disease (d16), naive cells also were able to infiltrate the retina(Xu et al., 2004). The 

numbers of these naive cells identified in retinal tissue were significantly fewer than 

the Ag-primed cells at all time points which may, in addition to the observed 

reduction in recruitment, reflect differential retention (or selective apoptosis). 

 

One molecule which may be released systemically and which has been shown to 

cause blood-ocular barrier breakdown is LPS. In EIU, injection of LPS alone (either 

systemic or intravitreal) leads to an anterior uveitis characterized by severe blood-

ocular barrier breakdown and neutrophilic infiltrate. The selective sensitivity of iris 

and ciliary body to LPS is interesting, and is possibly mediated via TLR-4 which has 

been shown to be expressed on APC in these tissues(Chang et al., 2004). The 

sensitivity of the blood-ocular barrier to LPS is important both in terms of the possible 

link between extraocular mucosal infection and anterior uveitis and more generally in 

demonstrating how a systemic stimulus can cause selective blood-ocular barrier 

breakdown. 

 

A central feature of this hypothesis is that the effector T cell does not enter the eye 

until inflammation (albeit generalised) is already present. The encounter of 

autoreactive T cell with cognate antigen as presented by antigen presenting cells (or 

on parenchymal cells) would thus occur in the context of inflammatory cytokines such 

as IL-1, IL-6 and TNFα. Given that AqH continues to inhibit DC function even in the 
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presence of inflammation, whether actual uveitis (chapter 5) or exogenous cytokines 

(chapter 4), it is likely that antigen presentation within the eye (at least by DC) does 

not result in a strong effector response, either for naive or for memory T cells. 

 

6.4 The natural history of uveitis and the role of treatment 

 

One of the unresolved issues of this thesis (and of our understanding of human uveitis 

in general) concerns how the immune response evolves during the clinical course of 

uveitis. To further characterise the uveitic immune response would require 

longitudinal AqH samples from a cohort of patients. Ideally one would take samples 

at onset and regularly throughout any acute episode (for first episodes and 

recurrences) or through any exacerbation of chronic disease, as is possible in animal 

models.  Although such regular exposure to an invasive technique would not be 

justified in humans, ethical approval has been granted to take up to three serial AqH 

samples in appropriately consented patients. Although serial sampling was not carried 

out as part of this series of experiments, such longitudinal information regarding the 

ocular infiltrate and microenvironment could be extremely valuable. Specifically it 

should  provide further insight into: the impact of treatment (note the advantage that 

one is comparing within the same patient cf between patients in this thesis); signals of 

resolution vs persistence; and the immunological difference between a first episode 

and recurrence (and possibly what determines recurrences). 

 

 In the context of this thesis it is interesting to speculate as to whether a rapidly 

resolving uveitis represents non-specific breakdown in the blood-ocular barrier (such 

as associated with LPS) but without DC priming of ocular antigen specific T cells, 
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whereas persistent (and possibly recurrent) disease represents a true autoimmune 

phenomenon mediated by DC (either ocular or extraocular). One way in which this 

might be tested would be to investigate the Ag-specificity of the T cells present in the 

AqH during episodes of uveitis, and look for restriction to ocular antigens occurring 

over time during a single recurrence and from first episode to subsequent recurrences. 

 

Patients frequently inform ophthalmologists that they have had previous episodes of 

uveitis that resolved spontaneously.  It would be interesting to know how spontaneous 

resolution differs from „treatment-assisted‟ resolution, but since one could not with-

hold treatment from any patient with active uveitis it is difficult to see how this could 

be tested. It is possible however that progress may be made by observing the 

differences in resolution between patients on different forms of therapy. 

 

6.5 Treatments for uveitis: do ocular APC have a role? 

 

Regulation of inflammation in the eye may potentially be achieved by the use of two 

different DC-based strategies: first, treatment directed at the ocular DC population; 

and second, treatment with in vitro generated „tolerogenic‟ DC populations. We will 

consider each of these in turn. 

 

The dominant finding of this thesis is that the ocular microenvironment is suppressive 

to normal DC function, and continues to be so even in the presence of uveitis. It 

should be noted, however, that despite this suppression, these  DC are still capable of 

inducing some degree of T cell proliferation, with progeny expressing both Th1 and 

Th2 cytokines. It is therefore interesting to speculate that pharmacological ablation of 
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DC function or deviation towards a tolerogenic DC phenotype might lead to further 

reduction in the effector T cell response and/or an increase in the regulatory T cell 

response within the eye. This would translate into more rapid resolution of clinical 

inflammation, and, more speculatively, might also reduce disease recurrence. Such 

potential pharmacological agents include molecules to which the eye is already 

exposed such as glucocorticoids and TGFβ.  

 

As discussed previously (Chapter 4) endogenous glucocorticoid (cortisol) and TGFβ2 

are already present within the eye at physiologically significant levels. It is interesting 

that the first-line treatment of uveitis (therapeutic glucocorticoids such as 

dexamethasone) has, among its protean effects, a profound dose-dependent 

suppression of DC expression of CD86 and associated loss in induction of T cell 

responses (chapter 5). Additionally Woltman et al have shown that stimulation of 

naive or memory T cells by dexamethasone treated of human monocyte-derived DC 

results in T cells that are anergic and have mild regulatory properties (Woltman et al., 

2000; Woltman et al., 2006) .  

 

The suppressive role of TGFβ induced tolerogenic APC has been demonstrated in a 

number of murine models of inflammation, including the suppression of EAU by 

TGFβ2-treated IRBP-pulsed PEC, the delayed onset and reduction in severity of 

Experimental Autoimmune Encephalomyelitis (EAE) by TGFβ2-treated Myelin Basic 

Protein (MBP)-pulsed PEC, and the reduction in severity of a model of autoimmune 

pulmonary fibrosis induced by hapten 2,4,6-trinitrobenzene-sensitized T effector cells 

by the addition of TGFβ2-treated hapten-pulsed APC. As discussed previously (see 

chapter 4), TGFβ2 in normal AqH appears to have an inhibitory role on DC, although 
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it has been suggested that this effect is reduced by the high proportion of the molecule 

in latent form. It is interesting to speculate whether exogenous treatment with TGFβ2 

or even in vivo activation of the molecule could further promote toloerogenicity in the 

ocular DC. 

 

In a review written in 2001, de Smet noted that „the functional characteristics of 

ocular DC have yet to be determined, particularly in the setting of acute 

inflammation‟ and that „modulation of DC function ... may prove to be an effective 

therapeutic approach in years to come‟ (de Smet and Chan, 2001). Since then in vitro 

generated tolerogenic DC have been used to induce suppression in a wide variety of 

animal models and, to a much more limited extent, in human. Strategies include the 

use of immature DC, or DC treated with IL-10 (with or without TGFβ), 

dexamethasone, 1,25(OH)2 Vitamin D3, PGE2, VIP, cyclosporin A, rapamycin and 

mycofenolate mofetil(Thomson and Robbins, 2008). 

 

In mouse such tolerogenic DC have been successful in prolonging allograft survival, 

in protecting from disease in models of colitis, arthritis, asthma and endotoxaemia and 

in reducing DTH response. In human healthy volunteers, immature DC pulsed with 

influenza matrix protein and keyhole limpet haemocyanin led to selective inhibition 

of MP-specific CD8+ T cell function, and generation of IL-10 producing MP-specific 

cells (Gad et al., 2004).  

 

Tolerogenic DC trials for human autoimmune disease are currently underway: these 

include one trial for diabetes mellitus using DC pulsed with antisense 

oligodeoxyribonucleotides to CD40, CD80 and CD86 and two trials for rheumatoid 
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arthritis using DC, one with DC pulsed with citrullinated peptides and one with non-

pulsed DC treated with dexamethasone and vitamin D3 (reviewed (Thomson and 

Robbins, 2008)). Although there are many practical challenges to the use of 

tolerogenic DC in the clinic, progress may be rapid due to the extensive experience 

gained from vaccination protocols for immunogenic DC use in cancer (reviewed 

(Palucka et al., 2008)). Whilst it is unlikely that DC vaccination is ever first-line 

therapy for mild disease, it remains an exciting possibility that, in refractory uveitis, 

tolerogenic DC (perhaps generated by endogenous ocular molecules or their 

analogues) may finally enable targeted resolution of the adaptive immune system in 

the eye. 
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8 APPENDIX 
 

8.1 Patient Information Sheet 

See pages I to V. 

8.2 Patient Consent Form 

See page VI. 

8.3 Study letter to GP 

 

See page VII. 
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Birmingham and Midland Eye Centre 

Dudley Road 
Birmingham 

B18 7QH 
Tel: 0121 554 3801 

www.cityhospital.org.uk 

 
Immune mechanisms in the ocular microenvironment 

 

You are being invited to take part in a research study. Before you decide it is 
important for you to understand why the research is being done and what it will 
involve.  Please take time to read the following information carefully. Talk to others 
about the study if you wish.  

 Part 1 tells you the purpose of this study and what will happen to you if you take 
part.   

 Part 2 gives you more detailed information about the conduct of the study.  
Ask us if there is anything that is not clear or if you would like more information.  
Take time to decide whether or not you wish to take part. 
 

PART 1. 
What is the purpose of the study? 
 

We are studying how the fluid inside the front of the eye (known as aqueous humour) 
is involved in a range of diseases that can cause the eye to become inflamed. We 
wish to look at a number of cells and molecules in the aqueous humour of people 
who have eye inflammation and compare these with people who do not have eye 
inflammation. By studying these differences we hope it will give us new information 
about how the inflammation is caused. In the longer term this information may lead to 
the development of better treatments for these conditions. 
 

Why have I been chosen? 
 

You have been invited to participate in this study because you have a condition that 
has caused your eye to become inflamed.  
  

Do I have to take part? 
 
No.  It is up to you to decide whether or not to take part.  If you do, you will be given 
this information sheet to keep and be asked to sign a consent form. You are still free 
to withdraw at any time and without giving a reason.  A decision to withdraw at any 
time, or a decision not to take part, will not affect the standard of care you receive.  
 

What will happen to me if I take part? 
 

If you decide to take part, we will take a very small sample of the fluid (aqueous 
humour) from the front of your eye. This is done in the Out-Patient Clinic or Casualty 
Department. First we use a few anaesthetic drops to numb your eye and then some 
antiseptic drops to clean the eye. With you sitting on our slit-lamp microscope (this is 
the machine we always use to look at your eyes) we introduce a very fine needle 
through the outside edge of the window of the eye to take a tiny sample of fluid 
(about the size of a drop of water) from the front of the eye. As the procedure is 
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undertaken under local anaesthesia there should be no pain but there might be a 
sensation of a slight pulling feeling for a few seconds as the sample is taken. 
We often perform this test in people who we think an infection has caused their eye 
inflammation. Only a doctor highly experienced in this technique and a member of 
Professor Murray‟s team will take the sample. 
 

We also wish to take a blood sample (about six teaspoonfuls) so we can compare the 
cells and molecules in it with your aqueous humour sample. 
 

Overall, it should take about 30 minutes to have the aqueous humour and blood 
samples taken. 
 

In most people we will only take the aqueous humour and blood samples once. 
Some people can get more than one attack of eye inflammation and if it does comes 
back we may ask to take the samples again. We will not ask to take samples more 
than a total of three times.   
 

What do I have to do? 
 

During the procedure you should keep as still as possible and follow any instructions 
from the doctor, for example to look in a particular direction.  
 

After the procedure we ask you to use some antibiotic drops for a few days. You will 
also need to use the treatment prescribed for your eye inflammation, and attend your 
follow-up clinic appointment as directed by the doctor who has seen you. 
You do not have to make any extra visits because you have had a sample of 
aqueous humour taken from the eye. 
 

What is being tested? 
 

After the procedure we examine your fluid (aqueous humour) and blood sample in 
the laboratory to look at a number of cells and molecules that might be responsible 
for the eye becoming inflamed. 
 

What are the potential side effects of the procedure? 
 

Complications are unusual from taking aqueous humour samples. Theoretical risks 
include the fluid from the front of the eye leaking out of the wound, reduced eye 
pressure, infection getting into the eye, clouding of the focusing lens, and bleeding 
into the front of the eye. We have performed hundreds of these procedures and have 
never had any of these complications. 
 

Complications from having a blood sample taken are rare, other than the brief 
discomfort of the needle. Some people may get some bruising of the skin around 
where the sample was taken.  
 

What are the other possible disadvantages and risks of taking part? 
 

Your appointment may take a few minutes longer than usual, but all other treatment 
and follow-up arrangements are unchanged. 
 

What are the possible benefits of taking part? 
 

We cannot promise that our research will help you directly but we hope that it will 
help us understand why some people get eye inflammation and that this may lead to 
improvements in treatment for these conditions. 
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What happens when the research study stops? 
 
Your direct involvement in this study only lasts for the time taken to take the aqueous 
humour and blood samples. Sometimes the samples may be kept for several years 
before the research is completed. At this point the samples will be carefully disposed 
of.   
  
What if there is a problem? 
 
Any complaint about the way you have been dealt with during the study or any 
possible harm you might suffer will be addressed. The details are included in Part 2. 
 
If you have any complaints please contact the Chief Investigator, Prof Philip I. Murray 
on 0121 507 6851. If you wish to contact someone independent please contact the 
Patient Advice and Liaison Services on 0121 507 4396. 
 
Will my taking part in the study be kept confidential?  

 
Yes.  All the information about your participation in this study will be kept confidential.  
The details are included in Part 2. 
 
Contact Details: 
 
For further information about the study or should you have any concerns about your 
involvement please contact either: 
 

Chief Investigator: Principal Investigator: 

Prof Philip I. Murray 
Academic Unit of Ophthalmology 
Birmingham & Midland Eye Centre 
Sandwell & West Birmingham NHS Trust 
Dudley Rd 
Birmingham  
B18 7QU 

Miss Saaeha Rauz 
Academic Unit of Ophthalmology 
Birmingham & Midland Eye Centre 
Sandwell & West Birmingham NHS Trust 
Dudley Rd 
Birmingham  
B18 7QU 

Tel: 0121 507 6851 Tel: 0121 507 6849 

Fax: 0121 507 6853 Fax: 0121 507 6853 

Email: P.I.Murray@bham.ac.uk Email: S.Rauz@bham.ac.uk 

 
 
This completes Part 1 of the Information Sheet. 
 
If the information in Part 1 has interested you and you are considering participation, 
please continue to read the additional information in Part 2 before making any 
decision. 
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Part 2  
 

What will happen if I don’t want to carry on with the study? 
 
You can withdraw from the study at any point, even after we have taken your 
samples. If you withdraw from the study, and you wish us to destroy your samples, 
we will do so but we would need to use the data collected up to your withdrawal.  
 

What if there is a problem? 
 

Complaints: If you have a concern about any aspect of this study, you should 
ask to speak with the researchers who will do their best to answer your 
questions (0121 507 6851).  If you remain unhappy and wish to complain 
formally, you can do this through the NHS Complaints Procedure.  Details can 
be obtained from the hospital. 
 
Harm:  In the event that something does go wrong and you are harmed during 
the research study there are no special compensation arrangements.  If you 
are harmed and this is due to someone‟s negligence then you may have 
grounds for a legal action for compensation against Sandwell & West 
Birmingham Hospitals NHS Trust, but you may have to pay your legal costs. 
The normal National Health Service complaints mechanisms will still be 
available to you (if appropriate). 

 

Will my taking part in this study be kept confidential? 
 
All information which is collected about you during the course of the research will be 
kept strictly confidential.  This information will be gathered by one of the clinical 
members of staff either directly from you at the time you enrol in the study or from 
your clinical notes at a later date. This information is anonymised, and only clinical 
members of staff involved directly with this research will have access to any 
identifiable data. Any information about you which leaves the hospital will have your 
name and address removed so that you cannot be recognised from it 
 
Our procedures for handling, processing, storage and destruction of your data are 
compliant with the Data Protection Act 1998. You have the right to view the data we 
have on record about you and to correct any errors. 
 
With your permission we would like to inform your GP that you have participated in 
this study. We will inform the GP that you have had a sample of aqueous humour 
and blood taken today but that this does not affect your treatment or follow-up 
arrangements. 
 
What will happen to any samples I give? 
 
The samples are stored in a secure environment on the Birmingham & Midland Eye 
Centre Site and are only removed to the Academic Unit of Ophthalmology Laboratory 
(University of Birmingham site) when they need to be analysed. Only members of 
Professor Murray‟s research team will have access to the samples. The samples will 
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eventually be destroyed in a safe manner following clinical waste protocol. All these 
conditions are compliant with the MRC guidance „Human Tissue and Biological 
Samples for Use in Research‟ and the Human Tissue Act 2004 
 
 
Will any genetic tests be done?   
 

No 
 
What will happen to the results of the research study? 
 
It is intended that the results of the research will be presented at scientific meetings, 
and published in relevant clinical and academic journals. We also feed these results 
back to participants through patient support groups and information in clinic. You will 
not be identified in any report or publication. 
 
Who is organising and funding the research?   
 
The Academic Unit of Ophthalmology of the University of Birmingham is organising 
this study. Our funding is derived from several ocular charities including the 
Birmingham Eye Foundation. Your doctor will be not be paid for including you in this 
study, and you will not receive any payment for participating in the study. 
 

Who has reviewed the study?  
 
This study was given a favourable ethical opinion for conduct in the NHS by the 
Dudley Local Research Ethics Committee. 
 
Patient Information Leaflet: Immune Mechanisms in the Ocular Microenvironment 
31.08.06 version 1.1 
 
And finally … 
 
You will be given a copy of the information sheet and a signed consent form. Thank 
you for taking the time to read this sheet and considering involvement in this 
research study. 
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Birmingham and Midland Eye Centre 

Dudley Road 
Birmingham 

Centre Number: BMEC               B18 7QH 

Study Number: UKCRN 4654         Tel: 0121 554 3801 

Patient Identification Number for this trial:            www.cityhospital.org.uk 

 
 

CONSENT FORM: Immune mechanisms in the ocular microenvironment 
 
Name of Chief Investigator: Professor Philip I. Murray 
Name of Principal Investigator: Miss Saaeha Rauz 
                                                Please initial box 
 
1. I confirm that I have read and understand the information sheet dated 31.08.06      

(version 1.1) for the above study. I have had the opportunity to consider the 
information, ask questions and have had these answered satisfactorily. 

 
2. I understand that my participation is voluntary and that I am free to withdraw at 

any time, without giving any reason, without my medical care or legal rights 
being affected. 

 
3.   I understand that relevant sections of any of my medical notes and data 

collected during the study, may be looked at by responsible individuals from 
regulatory authorities or from the NHS Trust, where it is relevant to my taking  
part in this research.  I give permission for these individuals to have access to 
my records.                             

                                                                                                             
4. I agree to my GP being informed of my participation in the study. 
 
 
5.   I agree to take part in the above study.    
 
 
 
 
________________________ ________________ ____________________ 
Name of Patient Date Signature 
 
 
 
_________________________ ________________ ____________________ 
Name of Person taking consent Date Signature 
(if different from researcher) 
 
 
 
_________________________ ________________ ____________________ 
Researcher Date  Signature 

 
 
When completed,  1 for patient;  1 for researcher site file;  1 (original) to be kept in medical notes 
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Birmingham and Midland Eye Centre 
Dudley Road 
Birmingham 

B18 7QH 
Tel: 0121 554 3801 

www.cityhospital.org.uk 

 
 
Centre Number:BMEC  
Study Number: UKCRN4654 

 
 

Title of Project: Immune mechanisms in the ocular microenvironment 
 
Name of Chief Investigator: Professor Philip I. Murray 
Name of Principal Investigator: Miss Saaeha Rauz 
  
 
 
Dear Doctor, 
 
This is to inform you that your patient: 
 
 
 
 
 
 
 
 
 
 
      
has today participated in our study on “Immune Mechanisms in the Ocular 
Microenvironment”. Their involvement included having samples of aqueous humour and 
peripheral blood taken. Neither of these procedures should affect their clinical care in any 
way. A separate letter will be sent to you regarding their clinical condition. 
 
Yours faithfully, 
 
 
 
 
 
Philip I. Murray PhD FRCP FRCS FRCOphth 
Professor of Ophthalmology 
 
                                        
 

 

 

 

Insert Addressograph here 



CHAPTER 3 
The development of an in-vitro model 
to study dendritic cell function in the 

ocular microenvironment
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Figure 3.1 Differentiation of dendritic cells from monocytes is inhibited in the 

absence of serum, with a lower yield and altered surface profile.

Bead purified CD14+ monocytes were cultured for 6d in the presence of 10% 

human serum or a serum-free alternative (1% BSA, ITS+3 or ITS+3/Non-essential 

amino-acids/Sodium pyruvate). (A) Forward scatter vs Side scatter and CD86  

expression for representative cultures in human serum vs serum-free (here ITS+3). 

(B) Yield and (C) MFI of HLA-DR, CD80 and CD86 for mean + SD of triplicate 

cultures; representative of three separate experiments. 

One-way ANOVA  with Bonferroni post-hoc test for each column vs human serum 

* p < 0.05; ** p < 0.01; *** p < 0.001; NS = not significant
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Figure 3.2 Differentiation of dendritic cells from monocytes is affected by 

serum type, with reciprocal changes in CD80 and CD86.

Bead purified CD14+ monocytes were cultured for 6d in the presence of 10% 

human serum or fetal calf serum (FCS), which was either standard or heat 

inactivated. (A) Yield and (B) MFI of HLA-DR, CD80 and CD86 for mean + SD 

of triplicate cultures; representative of three separate experiments.

One-way ANOVA  with Bonferroni post-hoc test for selected columns shown;      

* p < 0.05; ** p < 0.01; *** p < 0.001; NS = not significant.
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Figure 3.3 Fetal calf serum (FCS) induction of CD80 is prevented by the 

presence of human serum (HS), whilst FCS inhibits normal CD86 

upregulation by HS.

Bead purified CD14+ monocytes were cultured for 6d in the presence of (A) 0-

10% human serum or fetal calf serum or (B) both sera. MFI of CD80 and CD86 

for mean + SD of triplicate cultures; representative of two separate experiments. 

One-way ANOVA  with Bonferroni post-hoc test for matched concentrations 

shown;      * p < 0.05; ** p < 0.01; *** p < 0.001; NS = not significant.
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Figure 3.4 Dendritic cell differentiation in human serum is not affected by 

whether the serum is autologous or standard pooled AB male serum.

Bead purified CD14+ monocytes were cultured for 6d in the presence of 10% 

human serum (HS; standard pooled male AB+ vs autologous). MFI of HLA-DR, 

CD80 and CD86 for mean +SD of triplicate cultures; representative of three 

experiments. Student’s t-test (unpaired); NS = not significant.
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Figure 3.5 Serum-free conditions are compatible with dendritic cell 

maturation in response to inflammatory cytokines but are associated with 

lower yields.

Monocyte-derived dendritic cells were cultured for 48h with or without 

inflammatory cytokines (IL1β, IL6, TNFα, PGE2 to generate mature mDC vs 

immature iDC) in the presence or absence of serum. Histograms for (A) yield (B) 

MHC and key costimulatory molecules for mean + SD MFI of triplicate cultures; 

representative of three separate experiments. 

One-way ANOVA  with Bonferroni post-hoc test for selected columns shown; 

* p < 0.05; ** p < 0.01; *** p < 0.001; NS = not significant.

iDC            mDC       

Serum-free

Human serum

+     - +     -

- +         - +        

HLA-DR                             CD80                               CD86 

Yield

*
NS NS

*
NS NS

NS

NS

iDC            mDC       

+     - +     -

- +         - +        

iDC            mDC       

+     - +     -

- +         - +        

iDC            mDC       

Serum-free

Human serum

+     - +     -

- +         - +        

**

**

** **

M
F

I

N
u

m
b

e
r

Chapter Three Results 104



Figure 3.6 Inflammatory cytokines under serum-free conditions induce 

changes in key surface molecules characteristic of dendritic cell maturation

Monocyte-derived dendritic cells were cultured for 48h in the presence or absence 

of a cocktail of inflammatory cytokines (IL1β, IL6, TNFα, PGE2). Flow cytometry 

plots and mean +SD MFI of triplicate cultures for (A) MHC (B) selected 

chemokine receptors and (C) key costimulatory molecules;  representative of three 

separate experiments.

Student’s t-test (unpaired); * p < 0.05; NS = not significant. 
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Figure 3.7 Changes in chemokine receptors induced by inflammatory 

cytokines under serum-free conditions affect transmigration in response to 

CCL5 (RANTES) and CCL19.

Monocyte-derived dendritic cells were cultured for 48h in the presence or absence 

of a cocktail of inflammatory cytokines (IL1β, IL6, TNFα, PGE2). Migration to 

chemokine was assayed in a 96-well transwell plates with (A) flow cytometric 

counting of both chambers after 3h incubation to estimate (B) percentage 

transmigration. Representative of three separate experiments. Region R1 

corresponds to live cells; R35 to counting beads.
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Figure 3.8 Cytokine production induced by inflammatory cytokines under 

serum-free conditions is selectively upregulated

Monocyte-derived dendritic cells were cultured for 48h in serum-free conditions 

with or without inflammatory cytokines (IL1β, IL6, TNFα, PGE2). Culture 

supernatants were analysed by multiplex bead immunoassay. Mean + SEM 

concentrations for triplicate cultures; representative of four separate experiments. 

Student’s t-test * p < 0.05; ** p < 0.01; *** p < 0.001; NS = not significant.
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Figure 3.9 Dendritic cell maturation under serum-free conditions is 

compatible with highly stimulatory DC in an allogeneic proliferation model

CFSE labelled naive CD4+ T cells were cultured for 4 days in the presence or 

absence of monocyte-derived dendritic cells (either untreated (iDC) or pre-treated 

with inflammatory cytokines (mDC)). (A) Flow cytometric detection of CFSE 

levels in counted cells enables estimation of (B) number of divided cells with 

mean + SD of triplicate cultures shown. (A) and (B) are representative of ten 

separate experiments as shown in (C).

One-way ANOVA  with Bonferroni post-hoc test for selected columns (B) and 

Wilcoxon matched pairs test (C). * p < 0.05; ** p < 0.01; *** p < 0.001; NS = not 

significant.
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Figure 3.10 Dendritic cells matured under serum-free conditions are highly 

stimulatory to both naive and memory CD4+ T cells in an allogeneic 

proliferation model

CFSE labelled naive or memory CD4+ T cells were cultured for 4 days in the 

presence or absence of monocyte-derived dendritic cells (either untreated (iDC) or 

pre-treated with inflammatory cytokines (mDC)) (A) Flow cytometric detection of 

CFSE levels (B) number of divided cells with mean + SD of triplicate cultures 

shown. (A) and (B) are representative of three separate experiments.

One-way ANOVA  with Bonferroni post-hoc test for selected columns shown; 

* p < 0.05; ** p < 0.01; *** p < 0.001; NS = not significant.
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Figure 3.11 Dendritic cells cultured in serum-free conditions do not 

selectively skew T cell differentiation as measured by T cell cytokine 

production

CFSE labelled naive or memory CD4+ T cells were cultured for 4 days in the 

presence or absence of monocyte-derived dendritic cells (either untreated (iDC) or 

pre-treated with inflammatory cytokines (mDC)), and cytokine concentration in 

culture supernatants measured by multiplex bead immunoassay. Mean + SEM 

concentrations for four separate experiments shown. 

One-way ANOVA  with Bonferroni post-hoc test for selected columns shown; 

* p < 0.05; ** p < 0.01; *** p < 0.001; NS = not significant.
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Figure 3.12 Activation by dendritic cells induces FoxP3 elevation in naive 

CD4+ T cells which peaks at day 4, but is only present in a minority by day 8.  

CFSE labelled naive CD4+ T cells were cultured for 4 days in the presence or 

absence of monocyte-derived dendritic cells (either untreated (iDC) or pre-treated 

with inflammatory cytokines (mDC)) and stained for intracellular FoxP3 

expression. 
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Figure 3.13 FoxP3 expression in dendritic cell-activated naive CD4+ T cells is 

sustained at higher levels when stimulated by immature rather than mature 

dendritic cells

CFSE labelled naive CD4+ T cells were cultured for 8 days in the presence or 

absence of monocyte-derived dendritic cells (either untreated (iDC) or pre-treated 

with inflammatory cytokines (mDC)) and stained for intracellular FoxP3 

expression. (A) CFSE vs FoxP3 expression. R11 represents undivided cells with 

high FoxP3 expression; R10 and R12 represent divided cells; R16 represents 

FoxP3 bright divided cells. (B) MFI or percentage expression for mean +SD 

triplicate cultures; representative of three separate experiments. 

Student’s t-test (unpaired); * p < 0.05; ** p < 0.01; NS = not significant.
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Figure 3.14 Myeloid dendritic cells upregulate MHC and costimulatory 

molecules in serum-free conditions in response to an inflammatory stimulus

Bead-purified myeloid dendritic cells (MyDC) were cultured for 48h in the 

presence or absence of a cocktail of inflammatory cytokines (IL1β, IL6, TNFα, 

PGE2). (A)  Forward scatter vs side scatter, (B) surface expression (C) mean +SD 

MFI for MHC and other key surface molecules for triplicate cultures; 

representative of three separate experiments. 

One-way ANOVA  with Bonferroni post-hoc test for selected columns shown; 

* p < 0.05; ** p < 0.01; *** p < 0.001; NS = not significant.
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Figure 3.15 Myeloid DC treated with inflammatory cytokines induce higher 

levels of proliferation of naive CD4+ T cells, indicative of DC maturation

CFSE labelled naive CD4+ T cells were cultured for 4 days in the presence or 

absence of monocyte-derived DC or bead-purified myeloid DC (either untreated 

(iDC) or pre-treated with inflammatory cytokines (mDC)). (A) Flow cytometric 

detection of CFSE levels (B) number of divided cells with mean + SD of triplicate 

cultures shown. (A) and (B) are representative of three separate experiments. 

One-way ANOVA  with Bonferroni post-hoc test for selected columns shown; 

* p < 0.05; ** p < 0.01; NS = not significant
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CHAPTER 4 
Dendritic cell function in the ocular 
microenvironment: the suppressive 
role of non-inflammatory aqueous 

humour
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Figure 4.1 Non-inflammatory AqH reduces expression of MHC and CD86 on 

immature  monocyte-derived dendritic cells and prevents upregulation of 

MHC and costimulatory molecules in response to inflammatory cytokines.

Monocyte-derived DC were cultured for 48h in the presence or absence of 

inflammatory cytokines (IL-1β, IL-6, TNFα and PGE2) with or without 50% AqH. 

(A) Flow cytometry histograms and (B) MFI  of HLA-ABC, HLA-DR, CD80, 

CD83 and CD86 for mean + SD of triplicate cultures; representative of six 

separate experiments.

One-way ANOVA  with Bonferroni post-hoc test for selected columns shown;      

* p < 0.05; ** p < 0.01; *** p < 0.001; NS = not significant.
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Figure 4.2 Non-inflammatory AqH reduces production of  selected 

chemokines by monocyte-derived dendritic cells. 

Monocyte-derived DC were cultured for 48h in the presence or absence of 

inflammatory cytokines (IL-1β, IL-6, TNFα and PGE2) with or without 50% 

AqH.  Supernatants were harvested after 48h and analysed by multiplex-bead 

immunoassay. Mean + SD  concentrations from triplicate cultures; 

representative of four separate experiments.

One-way ANOVA with Bonferroni multiple group comparison for differences in 

cytokines; * p < 0.05; ** p < 0.01; *** p < 0.001.
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Figure 4.3 Non-inflammatory AqH does not alter chemokine receptor 

expression and function in response to inflammatory cytokines

Monocyte-derived DC were cultured for 48h in the presence or absence of 

inflammatory cytokines (IL-1β, IL-6, TNFα and PGE2 to generate mature mDC 

vs immature iDC) with or without 50% AqH.  (A) MFI of chemokine receptor 

levels analysed by flow cytometry, (B) migration to CCL19 assessed in a 96-

well transmigration chapter and (C) correlation of CCR7 expression and ability 

to transmigrate to CCL19; representative of (A) four or (B) two separate 

experiments.  

One-way ANOVA  with Bonferroni post-hoc test for selected columns (A) and 

Pearson r with p value shown (B); NS = not significant.
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Figure 4.4 Non-inflammatory AqH inhibits the capacity of dendritic cells to 

induce proliferation of allogeneic naïve CD4+ T cells.

CFSE-labelled allogeneic naïve CD4+ T cells were cultured for 4 days with 

immature or mature monocyte-derived DC which had been pre-treated with 

medium or 50% AqH.  (A) CFSE  vs side scatter (SS) for live cells and (B) 

number of divided cells for mean + SD of triplicate cultures; representative of six 

separate experiments. (C) Relative proliferation induced by AqH treatment for 

iDC and mDC; mean + SEM of six experiments.

One-way ANOVA with Bonferroni multiple group comparison; * p < 0.05; ** p < 

0.01; *** p < 0.001
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Figure 4.5 Reduction in dendritic cell CD86 expression by non-inflammatory 

AqH  correlates with inhibition of their capacity to induce proliferation of 

allogeneic naïve CD4+ T cells. 

Monocyte-derived DC were cultured in the presence or absence of 50% non-

inflammatory AqH as described previously. CD86 expression (MFI) by DC vs 

number of divided T cells shown for immature DC and AqH treated immature DC; 

representative of six separate experiments. 

Pearson r = 0.860, p = 0.006. Normality of distribution demonstrated by 

Kolmogorov-Smirnov test. 
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Figure 4.6 CD4+ naïve T cells stimulated by human AqH treated dendritic 

cells (DC) show generalised reduction in cytokine production correlating with 

reduced T cell proliferation and with no significant skewing of T cell 

phenotype. Multiplex-bead immunoassay of supernatants of DC:T cell co-

cultures harvested after 4d of culture showing (A) cytokine concentrations (mean 

+ SD of triplicate values) and (B) correlation of cytokine levels with T cell 

proliferation. Representative of four separate experiments. 

One-way ANOVA  with Bonferroni post-hoc test for selected columns shown 

(parametric distribution within groups); Spearman r for correlation (since non-

parametric when groups combined); * p < 0.05; ** p < 0.01; *** p < 0.001; NS = 

not significant.
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Figure 4.7  Non-inflammatory AqH treatment of myeloid dendritic cells 

causes downregulation of CD86 and reduced capacity to induce naïve CD4+ T 

cell proliferation under inflammatory conditions

Bead-purified myeloid dendritic cells were cultured in medium (iDC) or 

inflammatory cytokines (mDC) with or without the addition of non-inflammatory 

human AqH. Myeloid DC expression of CD86 with (A) representative flow 

cytometric histograms and (B) MFI, and (C) induction of naïve CD4+ T cell 

proliferation; Mean + SD for triplicate wells; representative of three separate 

experiments.

One-way ANOVA  with Bonferroni post-hoc test for selected columns shown;      

* p < 0.05; ** p < 0.01; *** p < 0.001; NS = not significant.
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Figure 4.8  Cortisol causes dose-dependent reduction in CD86 expression by 

dendritic cells, and contributes to CD86 inhibition by AqH

(A) Monocyte-derived DC were cultured in the presence of 10-9 – 10-6M  cortisol 

with or without the glucocorticoid receptor antagonist, RU486. Mean percentage 

inhibition of CD86  + SEM for three separate experiments shown. (B) DC were 

cultured in the presence or absence of 50% non-inflammatory AqH with or 

without RU486. Cortisol (10-7M) was used as a positive control. Mean percentage 

inhibition of CD86 (+ SD) for triplicate cultures; representative of three separate 

experiments shown. 

One-way ANOVA  with Bonferroni post-hoc test for selected concentrations/ 

columns shown; * p < 0.05; ** p < 0.01; *** p < 0.001; NS = not significant.
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Figure 4.9  TGFβ2 but not αMSH or VIP cause dose-dependent reduction in 

CD86 expression for immature and mature DC. 

(A) Monocyte-derived DC were cultured in the presence of (A) 0.1 – 100ng/ml 

TGFβ2 or (B) 0.1-100ng/ml αMSH or VIP.  Mean percentage inhibition of CD86 

+ SEM for three separate experiments shown. 

One-way ANOVA  with Bonferroni post-hoc test for selected concentrations 

shown; * p < 0.05; ** p < 0.01; *** p < 0.001; NS = not significant.
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Figure 4.10  Cortisol and TGFβ2 have additive inhibitory effects on dendritic 

cell expression of CD86. 

(A) Monocyte-derived DC were cultured in the presence of 10-9 – 10-6M  cortisol 

with or without the addition of 1 or 10 ng/ml TGFβ2. Mean percentage inhibition 

of CD86 + SD for triplicate cultures; representative of three separate experiments. 

One-way ANOVA  with Bonferroni post-hoc test comparing cortisol treatment 

with or without TGFβ2 at multiple cortisol concentrations; * p < 0.05; otherwise 

not significant. 

(B) Monocyte-derived DC were cultured in the presence or absence of cortisol 

(10-7M) and TGFβ2 (10 ng/ml) with or without the glucocorticoid inhibitor 

RU486 and/or the ALK kinase inhibitor SB431542 (which inhibits TGFβ

function). One-way ANOVA  with Bonferroni post-hoc test comparing the effects 

of RU486 and SB431542 with baseline inhibition by cortisol and TGFβ2; * p < 

0.05; otherwise not significant.
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Figure 4.11  Cortisol and TGFβ2 jointly contribute to CD86 inhibition by 

non-inflammatory AqH

Monocyte-derived DC were cultured in the presence or absence of 50% non-

inflammatory AqH with or without the glucocorticoid inhibitor RU486 and the 

ALK kinase inhibitor SB431542. Cortisol (10-7M) and TGFβ2 (10ng/ml) were 

used as a positive control. (A) Mean percentage inhibition of CD86 + SD and (B)  

mean percentage inhibition of induction of proliferation of allogeneic naïve CD4+ 

T cells + SD for triplicate cultures; representative of three separate experiments. 

One-way ANOVA  with Bonferroni post-hoc test for selected columns shown;      

* p < 0.05; ** p < 0.01; *** p < 0.001; NS = not significant.

B

Chapter Four Results 157



CHAPTER 5 
Dendritic cell function in uveitis: 

sustained suppression of dendritic cell 
function despite IFNγ mediated 

upregulation of MHC
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Figure 5.1 BDCA1+ myeloid DC and CD14+ monocyte/macrophages can be 

identified in human aqueous humour during uveitis

Myeloid DC were identified in the peripheral blood and aqueous humour of 

patients with active anterior uveitis. Gating strategy  demonstrating identification 

of CD14+ monocyte/macrophage vs BDCA1+ myeloid DC (CD14-/low 

predominant subset).
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Figure 5.2 Myeloid DC can be identified in AqH during acute anterior uveitis 

and have a distinct MHChi CD86lo phenotype

Myeloid DC were identified in the peripheral blood and aqueous humour of 

patients with active anterior uveitis (A) Representative histograms and (B) MFI of 

MHC and CD86 from matched PBMC and AqH of six or more patients.

Wilcoxon matched pairs analysis; * p < 0.05; ** p < 0.01; *** p < 0.001; NS = not 

significant
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Figure 5.3 CD14+ monocyte/macrophages identified in AqH are MHChi, but 

levels of CD86 are not affected

CD14+ monocyte/macrophages were identified in the peripheral blood and 

aqueous humour of patients with active anterior uveitis (A) Representative 

histograms and (B) MFI of MHC and CD86 from matched PBMC and AqH of ten 

or more patients; 

Wilcoxon matched pairs analysis;* p < 0.05; ** p < 0.01; *** p < 0.001; NS = not 

significant
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Figure 5.4 Treatment of naïve monocyte-derived DC with uveitis AqH 

supernatant in vitro induces a similar MHCIhi CD86lo profile to that seen in 

UvAqH myeloid DC. 

Monocyte-derived DC were cultured for 48h in the presence or absence of 50%  

uveitic or non-inflammatory AqH. (A) Representative histograms and (B) MFI of 

MHC and CD86 for nine uveitis AqH and six non-inflammatory AqH; 

representative of three separate experiments; for medium alone the mean + SD of 

MFI for  triplicate cultures are given; mild = 1+/2+, severe 3+/4+ cells in the 

anterior chamber (see text). 

Kruskal-Wallis with Dunn’s post-hoc test for multiple comparisons; * p < 0.05; ** 

p < 0.01; *** p < 0.001; NS = not significant
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Figure 5.5 Treatment of naïve monocyte-derived DC with uveitis AqH 

supernatant in vitro induces upregulation of CCR5 and no significant change 

in CCR7 expression.

Monocyte-derived DC were cultured for 48h in the presence or absence of 50%  

uveitic or non-inflammatory AqH. (MFI for CCR5 and CCR7 for representative of 

three separate experiments; for medium alone the mean + SD of MFI for  

triplicate cultures are given; mild = 1+/2+, severe 3+/4+ cells in the anterior 

chamber (see text). 

Kruskal-Wallis with Dunn’s post-hoc test for selected columns shown; * p < 0.05; 

** p < 0.01; *** p < 0.001; NS = not significant
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Figure 5.6 Increasing IFNγ levels in AqH during uveitis promote upregulation 

of MHC correlating with disease severity, but is insufficient to overcome 

AqH-induced regulation of HLADR or CD86 

Monocyte-derived DC were cultured in the presence or absence of (A) 0.1-

100ngml-1 IFNγ or (B) 50% uveitis AqH  (UvAqH) with or without an IFNγ 

blocking antibody. (A) and (B) are each representative of three separate 

experiments;  mean + SD of MFI for  triplicate cultures are given except for 

individual AqH samples. 

Wilcoxon matched pairs analysis; * p < 0.05; NS = not significant.
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Figure 5.7 Cortisol levels are elevated in uveitis AqH vs non-inflammatory 

AqH

Cortisol levels in non-inflammatory  (CAqH) and uveitic AqH  (untreated; 

UvAqH) were measured by super-sensitive ELISA. (A) Standard curve (B) 

Cortisol levels in non-inflammatory AqH vs uveitis AqH and (C) Cortisol levels 

according to cellular activity of AqH sample.  

Mann-Whitney U test (B)  and Linear trend test  for all four columns (C); ** p < 

0.01
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Figure 5.8 In uveitis, AqH induced downregulation of CD86 expression on DC 

is no longer dependent on endogenous glucocorticoids. 

Monocyte-derived DC were cultured in the presence or absence of 50%  non-

inflammatory (CAqH) or uveitis AqH (UvAqH) with or without the glucocorticoid 

blocker, RU486; cortisol or dexamethasone (Dex) were used as positive controls. 

Mean + SD of MFI for  triplicate cultures are given except for individual AqH 

samples. Wilcoxon matched pairs analysis; * p < 0.05; NS = not significant.
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Figure 5.9 Uveitis AqH inhibits DC capacity to induce T cell proliferation for 

CD4+ and CD8 + T cells

CFSE-labelled allogeneic naïve CD4+ T cells were cultured for 4 days with 

monocyte-derived DC which had been pre-treated with medium or 50% AqH 

(non-inflammatory (CAqH) or uveitic (UvAqH)).  (A) CFSE  vs side scatter (SS) 

for live cells and (B) number of divided cells;  representative of three separate 

experiments with the mean + SD of triplicate cultures for medium alone. 

One-way ANOVA with Bonferroni post-hoc test for for multiple comparisons 

(normality of data demonstrated by Kolmogorov-Smirnov test); * p < 0.05; ** p < 

0.01; *** p< 0.001; NS = not significant
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Figure 5.10 Uveitis AqH inhibition of DC capacity to induce T cell 

proliferation for naïve CD4+ T cells  correlates with downregulation of CD86 

CFSE-labelled allogeneic naïve CD4+ T cells were cultured with pre-treated 

monocyte-derived DC as described previously.  Proliferation (number of divided 

cells) vs CD86 expression; representative of three separate experiments. 

Pearson r = 0.670, p = 0.006 for uveitis AqH-treated DC. Control AqH-treated DC 

shown for comparison (r = 0.860, p = 0.006; see also Figure 4.5). Normality of 

distribution demonstrated by Kolmogorov-Smirnov test. 
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Figure 5.11 Uveitis AqH  is suppressive for DC function  regardless of 

glucocorticoid treatment and without skewing T cell phenotype, but 

treatment does cause additional suppression of IL-10 production

CFSE-labelled allogeneic naïve CD4+ T cells were cultured with pre-treated 

monocyte-derived DC as described previously. Supernatants were harvested after 

4d and analysed by multiplex-bead immunoassay.  (A) Proliferation (number of 

divided cells) or (B) cytokine concentration  or (C) correlation of proliferation vs 

cytokine concentration shown; representative of three separate experiments with 

the mean + SD of triplicate cultures for medium alone. 

Kruskal-Wallis with Dunn’s post-hoc test for multiple comparisons (B); * p < 

0.05; all other differences non-significant. Spearman r for correlation (C).
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Figure 5.12 In uveitis, AqH inhibition of DC function loses cortisol 

dependency which is restored in the presence of therapeutic glucocorticoids, 

but is not related to the intensity of therapy.

CFSE-labelled allogeneic naïve CD4+ T cells were cultured for 4 days with 

monocyte-derived DC which had been pre-treated with medium or 50% AqH 

(non-inflammatory or uveitic)  with or without the glucocorticoid blocker, RU486; 

cortisol or dexamethasone (Dex) were used as positive controls. (A) Mean + SD 

of MFI for  triplicate cultures are given except for individual AqH samples. (B) 

Reversal of inhibition by RU486 versus intensity of glucocorticoid therapy. (A) 

and (B) are representative of two separate experiments

Wilcoxon matched pairs analysis (A) and Kruskal-Wallis with Dunn’s post-hoc 

test for multiple comparisons(B); * p < 0.05; NS = not significant.
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