A Preliminary Checklist of the Moths of Butler County, Ohio¹

KEITH S. SUMMERVILLE², JOSEPH J. JACQUOT³, AND RYAN F. STANDER, Department of Zoology, Miami University, Oxford, OH 45056

ABSTRACT. Using a combination of blacklight, mercury vapor light, and sugar bait sampling techniques, we collected moths over a 2-yr period in Butler County, OH, and compiled a list of 392 species. Seventy-eight percent (305) of these species were found to be new county records. A checklist is provided as a baseline catalogue of the moths of Butler County, OH. An analysis of historical county records revealed a bias towards large or colorful species. Although many species we collected are considered common, several infrequently encountered species were discovered. Our effort suggests that biological surveys in fragmented landscapes may reveal unexpected biological diversity.

OHIO J SCI 99 (4): 66-76, 1999

INTRODUCTION

The Lepidoptera are one of the most diverse groups of terrestrial insects. More than 11,250 species of butterflies and moths are believed to occur within North America, north of Mexico (Hodges and others 1983). In addition to their high species diversity, Lepidoptera also have enormous functional importance within ecosystems. Most caterpillars are herbivorous and thus have key roles in terrestrial food webs (Price 1997). As adults, Lepidoptera play important and occasionally specialized roles as pollinators, facilitating pollen dispersal across moderate to large distances (Samways 1995). Some species, however may damage or destroy cultivated plants or stored grains, contributing to considerable annual economic losses.

In contrast to similarly hyperdiverse insect orders (for example, Diptera, Hymenoptera), Lepidoptera are collected and studied by a large groups of enthusiasts, which facilitates data acquisition and information exchange. Despite this popularity, the Lepidoptera of Butler County, OH (particularly moths) have been poorly described. For example, Rings and others (1992) provided only 32 records of noctuid moths from Butler County in their compilation of that family's state-wide biogeography. Furthermore, occurrence data for species of small-bodied moths are sparse for Butler County (for example, members of the superfamilies Gelechioidea, Pyraloidea, Tortricoidea, Yponomeutoidea, Tineioidea, and Incurvarioidea). Land conversion for agricultural and urban development continues to threaten populations of Lepidoptera, and future local extinctions are likely (Samways 1995). However, in the absence of a baseline diversity assessment, documentation of species loss or functional impairment is impossible.

The implementation of any biological monitoring or conservation initiative requires the acquisition of baseline diversity data (Noss and Cooperrider 1994). Characterization of regional biodiversity should involve a species inventory, and the data generated from this endeavor are appropriate for establishing conservation priorities and generating monitoring protocols (Longino and Colwell 1998). Inventory data can also be used to answer ecological questions concerning spatial and temporal patterns in species distribution, diversity, abundance, and life history traits (for example, Leps and others 1998; Thomas 1991; Spitzer and others 1984; Rajmanek and Spitzer 1982). Perhaps the most publicly accessible use for inventory data is the creation of a species checklist for an area, which is an underused tool for the long term monitoring of animal and plant biodiversity (Droege and others 1998; Shapiro 1998).

Many checklists of Lepidoptera exist for Ohio on a state-wide or county basis (see Rings and others 1991, 1992; Iftner and others 1992), and these efforts have substantially improved our knowledge of Ohio's Lepidoptera. This paper presents a more regionally focused effort for Butler County, OH. The purpose of this paper is to synthesize two years of research into a baseline biodiversity assessment for the moths of Butler County.

METHODS AND MATERIALS

Moths were collected in 1997 and 1998 from three principal localities, the Ecology Research Center (ERC), Bachelor Reserve (both part of the Miami University Natural Areas system; 39°30'25"N; 84°44'43"W), and a secondary-growth woodlot near Hamilton, OH (39°23'58"N; 84°33'41"W). All three sites are located in Butler County, OH (Fig. 1). The ERC (68 ha; T5N R1E S13-14) consists of a mixture of secondary-growth forest, hedgerows, and old field interspersed with soybean fields and mowed grassy areas (principally Festuca spp.). Forested habitats support a high diversity of hardwoods, with sugar maple (Acer saccharum) and American beech (Fagus grandifolia) as dominant species, and hedgerows are dominated by bush honeysuckle (Lonicera maackii), locust (Robinia pseudoacacia and Gleditsia triacanthos), and osage orange (Maclura pomifera). Old fields contain a mixture of perennial grasses (for example, Poa spp.; Bromus japonica.) and coarse forbs, (for example, Solidago spp.). The ERC also has several small ponds and streams which support marginal vegetation such as sedges (Cyperus spp.) and rushes (for example, Juncus spp.).

Bachelor Reserve (268 ha; T5N R1E S24) is a midsuccessional forest dominated by sugar maple (Acer

¹Manuscript received 9 March 1999 and in revised form 26 July 1999 (#99-04).

²Corresponding Author: Department of Zoology, Miami University, Oxford, OH 45056, USA. Phone: (513) 529-3391, FAX: (513) 529-6900, Internet: summerks@muohio.edu.

³Department of Biology, Grand Valley State University, Allendale, MI 49401.

FIGURE 1. Sites included in our preliminary survey of the moths of Butler County, OH (shown in black). Three sites were sampled: the Miami University's Ecology Research Center (\blacksquare = sugar bait sampling, blacklight and mercury vapor light sheet stations), Miami University's Bachelor Reserve (\blacklozenge = 12-V blacklight traps), and a secondary-growth woodlot near Hamilton, OH (\blacktriangle = blacklight and mercury vapor light sheet stations).

saccharum), American beech (*Fagus grandifolia*), and white ash (*Fraxinus americanus*). The diversity of hardwood species in this natural area is relatively high, and species of *Quercus*, *Populus*, *Prunus*, *Carya*, and *Ulmus* are were also present and frequently encountered. As part of another study, a series of study plots were established along an edge-to-interior gradient within the forest. Thus, moths collected from Bachelor Reserve were likely sampled from three distinct habitats: the forest interior, the surrounding field-pond matrix, and the forest-field interface. The third study site, located near the city of Hamilton (0.5 ha; T4N R2E S14), was similar to Bachelor Reserve in terms of plant community types represented and plant species diversity.

Moths were collected at the ERC using a combination of methods. We used sheet stations with mercury vapor and UV lights as a primary sampling technique. These stations were erected proximal to existing buildings for general collecting, or we transported stations to specific habitat patches for more concentrated sampling efforts. Sheet stations were operated approximately once a week from May to September 1997 and from April to October 1998. During 1998, we also collected moths biweekly using sugar baiting transects along a trail in a more mature hardwood forest stand at the ERC (5.8 ha, T5N R1E S13 SW1/4). Sheet stations were the sole sampling protocol used at the Hamilton site.

Universal blacklight traps (12-watt, BioQuip Products; powered with lawnmower batteries) were operated in

Bachelor Reserve. Traps were placed on platforms 2 m above the ground in plots located along field-edge to forest-interior transects to capture as many moth species as possible. Each sampling night a single trap was placed at each of three distances from the edge: 0.0 m, 50 m, and 100 m. Traps were operated every other night from mid-June to early September regardless of weather conditions or moon phase. Hours of operation spanned 8:00 PM to 6:00 AM. Moths were dispatched inside the traps with ethyl acetate. In addition to this structured trapping protocol, we collected moths with 12-watt blacklight traps in other woodlots, old fields, and riparian zones throughout Butler County. Collected specimens were frozen in the lab until they could be properly spread, dissected if required, and identified. Specimens requiring particular expertise for identification were forwarded to taxonomic authorities.

We used a chi-square analysis to compare the representation of species from our surveys with previously recognized Butler County records from the Ohio Lepidopterists database. Expected values for each family were calculated using the overall number of new county records divided by the total number of species collected (305/392). This assumed the proportion of new county records was equal among families. As recommended by Piegorsch and Bailer (1997), only families represented by at least five species were included in this analysis.

A checklist of all the species we collected was prepared by indexing species according to their family and Hodges checklist number (Hodges and others 1983). Nomenclature follows Hodges and others (1983); however, we have included taxonomic changes or revisions to species names where appropriate (for example, Ferguson 1993; LaFontaine 1998). Using the classification of Lepidoptera according to Heppner (1998), we include the Crambinae as a subfamily of the Pyralidae. Furthermore, in the text below, we retain the distinction between macrolepidoptera and microlepidoptera (after McDunnough 1938, 1939) as informal groupings of moth superfamilies. For the present checklist, macrolepidoptera include all species within the superfamilies Drepanoidea, Geometroidea, Bombycoidea, Sphingoidea, and Noctuoidea; microlepidoptera encompass the remaining taxa.

RESULTS

Over a 2-yr period we collected 12 250 moths representing 392 species (Appendix I). By referencing the state-wide Lepidoptera database maintained by the Ohio Lepidopterists, we determined that 305 species (78%) in our checklist are new Butler County records. The majority of species are thought to be widely distributed throughout the state. The most common species of macro-moths found during the 2-yr study were: *Halysidota tesselaris* (Arctiidae), *Protolampra brunneicollis* (Noctuidae), *Plathypena scabra* (Noctuidae), *Mellilla xanthometata* (Geometridae), and *Palpita magniferalis* (Pyralidae). Some species discovered in Butler County, however have more restricted ranges or are considered relatively elusive. For example, we collected *Ozarba aeria* (Noctuidae), which was previously known from only three Ohio counties. We also documented the spread of the European species, *Noctua pronuba* (Noctuidae), into Butler County. This survey failed to produce any new Ohio state records.

Representatives from 29 moth families were collected during the study (Table 1). The six most frequently collected families comprised roughly 80% of our species list. From our checklist, the family Noctuidae contained the most species (42%), followed by the Geometridae (13%), Pyralidae (8%), Arctiidae (6%), Sphingidae (6%), and Notodontidae (5%). Eleven families, mostly microlepidoptera, were represented by only a single species. Although microlepidoptera (for example, Gelechiidae, Tortricidae: Cochylini, Olethreutidae, Oecophoridae) were underrepresented in this checklist, virtually all of our species were new county records. Even within a well-studied family, such as the Pyralidae, most of our species were unreported from Butler County.

Comparing proportional representation of county records within families from our data set and historical

TABLE 1

Examination of the number of moths species collected over a two year period by family, and the percentage of species within a family that are new Butler County records. Noctuid moths were the most frequently encountered. While underrepresented in our checklist, virtually all of the microlepidoptera (after McDunnough 1938, 1939) collected during this study were county records.

Family	No. of Species	% of Species	No. Butler Co. Records	% Butler Co. Records
Apatelodidae	2	0.5	0	0.00
Arctiidae	23	5.9	9	39.1
Cosmonterigidae	-5	0.3	1	100
Cossidae	1	0.3	0	0.00
Crambidae	5	13	5	100
Drepanidae	1	0.3	1	100
Epipelmidae	1	0.3	1	100
Epiperinidae	1	0.3	1	100
Gelechiidae	2	0.5	2	100
Geometridae	52	13.3	49	94.2
Lasiocampidae	4	10	1	25
Limacodidae	11	2.8	11	100
Lymantriidae	2	0.5	1	50
Megalopygidae	1	0.3	1	100
Noctuidae	165	42 1	148	89.7
Nodontidae	20	5.1	7	35.0
Oecophoridae	5	13	5	100
Olethreutidae	o o	23	0	100
Psychidae	1	2.5	1	100
Pyralidae	30	0.5	28	03.3
Saturniidae	12	2.1	20	0.00
Sacurindae	12	0.3	1	100
Sphingidae	22	5.0	1	21.7
Thyatiridae	2.) 1	0.3	1	100
Thyainidae	1	0.3	1	100
Tipaidae	2	0.5	1	100
Tortricidae	11	2.8		100
Vpopmoutidae	2	2.0	11	100
Zygaenidae	1	0.3	1	100

collection records revealed a significant difference ($\chi^2 = 35.00$, df = 11, P <0.005; Table 2). The pattern of county records we observed was not regularly distributed among all families we collected. Rather, the majority of the moth species previously reported from Butler County were from the large-bodied and generally colorful families such as the Saturniidae ($\chi^2 = 9.37$, df = 1, P <0.001), Sphingidae ($\chi^2 = 9.35$, df = 1, P <0.001), Notodontidae ($\chi^2 = 4.76$, df = 1, P <0.05), and Arctiidae ($\chi^2 = 3.53$, df = 1, P <0.05; Table 2). The majority of our county records were for species that were either small in body size, cryptic in coloration, or a combination of both.

TABLE 2

Cbi-square analysis of expected number of county records for moth species within selected families ($n \ge 5$ species) assuming similar bistorical sampling intensity and methods. Families with larger, more colorful species were previously recorded from Butler County ($\chi^2 = 35.00$, df = 11, P <0.005), whereas families with small or drab species were not recorded.

Family	No. of Species Collected	Expected Co. Records	Observed Co. Records	χ^2 Value
Arctiidae	23	18.0	9	3.53*
Crambidae	5	3.9	5	0.31
Geometridae	52	40.6	49	1.73
Limacodidae	11	8.6	11	0.68
Noctuidae	165	128.9	148	2.84 *
Nodontidae	20	15.6	7	4.76 *
Oecophoridae	5	3.9	5	0.31
Olethreutidae	9	7.0	9	0.55
Pyralidae	30	23.4	28	0.89
Saturniidae	12	9.4	0	9.37 **
Sphingidae	23	18.0	5	9.35 **
Tortricidae	11	8.6	11	0.68

* P <0.05, ** P <0.001

DISCUSSION

This study has significantly contributed to our knowledge of moth distribution regionally and within the state of Ohio. We established the residency of a variety of common species in Butler County, and discovered populations of potentially rare species (for example, Vaxi critica, Polygrammodes langdonalis, Spragueia apicalis apicella, and Glena cribrataria) as well as exotic species (for example, Noctua pronuba and Ostrinia nubilalis). Often exotic species have been implicated in the disruption of ecological function (Price 1997). Further, even when introduced species appear ecologically benign, their dominance of regional biota degrades the uniqueness of natural biodiversity (Summerville 1998). Our 305 county records represents an initial step towards eliminating a significant information gap for Butler County. This checklist, however, is far from complete. We have shifted our focus to describing the microlepidoptera, and we are also extending our survey efforts to include species such

as the winter moths (*Lithophane* spp., *Eupsilia*, spp., *Pyreferra* spp.) and univoltine species with early or late flight periods (for example, *Papaipema* spp.). Additionally, we plan to structure our survey efforts to include eastern portions of the county, which were undersampled in the current study.

Although we did not record any new state records, transition zones for three vegetation associations, the beech-maple, the mixed mesophytic, and the western mesophytic, occur near Butler County (Greller 1988). Furthermore, Butler County lies along the Wisconsonian glacial fall-line (Iftner and others 1992). This diversity of vegetative and physiographic characteristics may support high biological diversity. A portion of this diversity may be attributed to previously unrecorded populations occurring on the edge of their species' range. Some species, especially non-vagile taxa, may not disperse outside of these transition zones. Therefore, it is not unreasonable to expect the discovery of species novel to Ohio in Butler County.

Our collection techniques of sheets, traps, and sugaring were biased in the species attracted. Not all moth species are attracted to ultraviolet (UV) light; nonphototactic species are probably underrepresented in our survey. For instance, only one species within the Sesiidae is known to be attracted to ultraviolet light, Synanthedon acerni; this was the only species we collected from this family. Further, sugaring tends to only attract species that feed on fermenting sap (for example, Amphipyra spp., Lithophane spp., and Catocala spp.). The most significant sampling bias of this study was the requirement for attended collection at sheet stations and sugar lines. Often it is tempting to collect the larger and more colorful species. This may explain the predominance of Saturniidae and Sphingidae in historical county records. Our light-traps collected indiscriminately and therefore captured a wide range of microlepidoptera and drab species that tend to be overlooked using these other techniques. Moth biodiversity is concentrated within families characterized by small body size and cryptic coloration. Emphasis on collecting large or colorful species prevents accurate estimation of species richness at any scale.

Checklists can provide reliable information on changes in species composition of a locality or region over time (Droege and others 1998). As habitat fragmentation and land use changes continue, it is increasingly important to establish a baseline understanding of species diversity at a practical scale (that is, the county). Previously published inventories for Lepidoptera have focused on moderate to large-sized parks and wildlife refuges within Ohio (Rings and Metzler 1989; Rings and others 1991; Rings and Metzler 1992). While these efforts have greatly contributed to area management plans and state-wide conservation initiatives, exclusive focus on habitats already afforded protection neglects patches of quality habitat not included in current reserves. Indeed, we should adjust our focus toward inventories in habitat fragments not included in current protection schemes as a measure of the gaps in our conservation planning (Noss and Cooperrider 1994). Species in unprotected areas face the most immediate

risk of local extinction as a result of habitat loss. Future inventories and surveys should focus on these shrinking habitats given the extraordinary pace at which humans are altering the landscape.

ACKNOWLEDGMENTS. The following individuals assisted in the identification of species that were outside our areas of expertise: Eric Metzler (Noctuidae and various microlepidoptera), Mogens Nielsen (Noctuidae), George Balogh (Geometridae and Pyralidae), and Loran Gibson (Tortricoidea). We thank Reed Watkins of the Ohio Lepidopterists for kindly verifying our county records. Dr. Thomas Crist and two reviewers made insightful comments on an earlier draft of this manuscript. Funding and support for this project were provided by the Miami University Ecology Research Center, the Ohio Biological Survey, and the Ohio Board of Regents.

LITERATURE CITED

- Droege S, Cyr A, Larivee J. 1998. Checklists: an underused tool for the inventory and monitoring of plants and animals. Conser Biol 12 (5):1134-8.
- Ferguson D. 1993. Revision of the species of *Nematocampa* (Geometridae: Ennominae) occurring in the United States and Canada. J Lepidopterists Soc 47:60-77.
- Greller A. 1988. Deciduous forest. In: Barbour M and Billings W, editors. North American terrestrial vegetation. Cambridge (MA): Cambridge University Pr. p 287-316
- Heppner J. 1998. Classification of Lepidoptera: Part 1. Introduction. Holarctic Lepidoptera 5(S1):1-148.
- Hodges R, Dominik T, Davis D, Ferguson D, Franclemont J, Munroe E, Powell J, editors. 1983. Check list of the Lepidoptera of America north of Mexico. London: E. W. Classet, Ltd., and Washington DC: Wedge Entomological Research Foundation. 284 p.
- Iftner D, Shuey J, Calhoun J. 1992. Butterflies and Skippers of Ohio. Ohio Biological Survey Bulletin. New Series Vol 9 Number 1 xii + 212 p. (includes 40 Pls.).
- LaFontaine J. 1998. Noctuoidea, Noctuidae (part). In: Dominick and others. The moths of America North of Mexico, fasc. 27.3. Kansas: Allen Pr. 1-348.
- Leps J, Spitzer K, Jaros J. 1998. Food plants, species composition, and variability of the moth community in an undisturbed forest. Oikos 81:538-48.
- Longino J, Colwell R. 1998. Biodiversity assessment using structured inventory: capturing the ant fauna of a tropical rain forest. Ecol Appl 7(4):1263-77.
- McDunnough J. 1938. Check list of the Lepidoptera of Canada and the United States of America. Part 1 Macrolepidoptera. Mem So California Acad Sci 1:1-272.
- McDunnough J. 1939. Check list of the Lepidoptera of Canada and the United States of America. Part 2 Microlepidoptera. Mem So California Acad Sci 2:1-171.
- Noss R, Cooperrider A. 1994. Saving nature's legacy. Washington DC: Island Pr. 416 p.
- Piegorsch W, Bailer A. 1997. Statistics for environmental biology and toxicology. London: Chapman and Hall. 579 p.
- Price P. 1997. Insect ecology. New York: J Wiley. 874 p.
- Rajmanek M, Spitzer K. 1982. Bionomic strategies and long term fluctuations in the abundance of Noctuidae (Lepidoptera). Acta Entomol Bohem 79:81-96.
- Rings R, Metzler E. 1989. A preliminary checklist of the Lepidoptera of Mohican State Forest and Mohican State Park, Ashland County, Ohio. Ohio J Sci 89 (4):78-88.
- Rings R, Metzler E. 1992. A check list of the Lepidoptera of Beaver Creek State Park, Columbiana County, Ohio. Great Lakes Entomol 25 (2):115-31.
- Rings R, Metzler E, Arnold F, Harris D. 1992. The owlet moths of Ohio Order Lepidoptera Family Noctuidae. Ohio Biological Survey Bull. New Series Vol 9 Number 2. vi+219 p (includes 16 Pls.).
- Rings R, Metzler E, Parshall D. 1991. A checklist of the Lepidoptera of Fulton county, Ohio with special reference to the moths of Goll Woods State Nature Preserve. Great Lakes Entomol 24 (4):265-80.
- Samways M. 1995. Insect conservation biology. London: Chapman and Hall. 358 p.
- Shapiro A. 1998. False faunas: on mistrusting old species lists. Am Entomol 44 (4):238-50.
- Spitzer K, Rajmanek M, Soldan T. 1984. The fecundity and long term

variability in abundance of noctuid moths (Lepidoptera: Noctuidae). Oecologia 62:91-3.

Summerville K. 1998. Discovery of two moth species new to Michigan

(Noctuidae, Tortricidae). Great Lakes Entomol 31:125-8. Thomas C. 1991. Spatial and temporal variability in a butterfly population. Oecologia 87:577-80.

APPENDIX I

HODGE #	FAMILY	SPECIES NAME	Butler County Record
319	Tineidae	Kearfottia albifasciella Fern. 1904	Х
340		Acrolophus arcanella Clem. 1859	х
373		Acrolophus popeanella Clem 1859	х
457	Psychidae	Thyridopteryx ephemeraeformis Haw. 1803	х
957	Oecophoridae	Psilocorsis reflexella Clem. 1860	х
992	1	Ethmia zelleriella Cham. 1878	х
1011		Antaeotricha schlaegeri Zell. 1854	х
1019		Antaenotricha humilis Zell. 1855	х
1046		Callima argenticintella Clem. 1860	х
1509	Cosmopterigidae	Stagmatophora wyattella B. & Bsk 1920	х
1986	Gelechiidae	Gnorimoschema gallaesolidaginis Riley 1869	х
2281		Dichromeris ligullela Hbn. 1818	х
2401	Yponomeutidae	Atteva punctella Cram. 1781	
2420		Yponomeuta multipunctella Clem. 1860	х
2554	Sesiidae	Synanthedon acerni Clem. 1860	х
2693	Cossidae	Prionoxystus robiniae Peck 1818	
2738	Olethreutidae	Endothenia hebesana Wlk. 1863	х
2774		Olethreutes monetiferana Riley 1881	х
2788		Olethreutes inornatana Clem. 1860	х
2937		Phaneta parmatana Clem. 1860	х
3116		<i>Eucosma dorsisignatana</i> Clem. 1860	х
3116.1		<i>Eucosma similiana</i> Clem. 1860	х
3142		Eucosma cataclystiana Wlk. 1863	х
3219		<i>Sonia canadana</i> Mc.D 1925	Х
3230		Proteoteras aesculana Riley 1881	X
3594	Tortricidae	Pandemis limitata Rob. 1869	x
3597		Argyrotaenia velutinana Wlk. 1863	X
3624		Argyrotaenia alisellana Rob. 1869	X
3633		<i>Choristoneura parallela</i> Rob. 1869	X
3635		Choristoneura rosaceana Harr. 1841	X
3684		<i>Clepsis clemensiana</i> Fern. 1879	Х
3686		Clepsis melaleucana Wlk. 1863	X
3695		Sparganothis sulfereana Clem. 1860	Х
3732		Platynota flavedana Clem. 1860	X
3740		Platynota idaeusalis Wlk 1959	Х
3747		Coelostathma discopunctana Clem. 1860	Х
4624	Zygaenidae	Harrisina americana Guer. 1829	Х
4644	Megalopygidae	Lagoa crispata Pack. 1864	х
4052	Limacodidae	Tortricidia testacea Pack. 1864	х
4665		Lithacodes fasciola HS. 1854	х
4667		Apoda y-inversum Pack. 1864	Х
4009		Apoaa biguttata Pack. 1864	Х
40/1		Prolimacoaes baaia Hbn. 1822	X
4677		Phobetron pithecium J. E. Smith 1/9/	Х
40/9		Natada nasoni Grt. 1876	Х
4081		Isa lexitula HS. 1854	X
4085		Adoneta spinuloides HS. 1854	X
4097 4700		Euclea aeiphinn Bdv. 1832 Sibino stimulog Clom. 1860	X
4700 //701	Enipyropidae	Sume summed Clem. 1800	X
4774	Pyralidae	Putyonueuu exiguu ny. EUWarus 1883 Potrophila hifascialis Poh 1860	X
1704	i jianuac	Eustivia pupula Hbn 1922	A V
4870		Clathuria spanistrialis Hbn 1823	A V
10/0		Supsyin sequer mis 11.11, 104)	л

HODGE #	FAMILY	SPECIES NAME	Butler County Record
4889		Dicymolomia julianalis Wlk, 1859	X
4949		Ostrinia nubilalis Hbn. 1796	Х
4950		Fumibotys fumalis Gn. 1854	Х
4980		Helvibotys belvialis Wlk. 1859	Х
5040		Pyrausta bicoloris Gn. 1854	Х
5071		Pyrausta acrionalis Wlk, 1859	Х
5079		Udea rubigalis Gn. 1854	Х
5156		Nomophila nearctica Mun. 1973	х
5159		Desmia funeralis Hbn. 1796	Х
5160		Desmia maculalis Westwood 1831	Х
5169		Hymenia perspectalis Hbn. 1796	Х
5226		Palpita magniferalis Wlk. 1861	х
5228		Polygrammodes flavidalis Gn. 1854	Х
5229		Polygrammodes langdonalis Grt. 1877	х
5233		Compacta capitalis Grt. 1881	Х
5241		Pantographa limata Grt. 1867	Х
5277		Herpetogramma thestealis Wlk. 1859	х
5292		Conchylodes ovulalis Gn. 1854	х
5362		Crambus agitatellus Clem. 1860	х
5403		<i>Agriphila vulgivagella</i> Clem. 1860	х
5413		<i>Pediasia trisecta</i> Wlk. 1856	Х
5420		Microcrambus elegans Clem. 1860	х
5466		<i>Vaxi critica</i> Fbs. 1820	Х
5518		Aglossa cuprina Zell 1872	Х
5524		Hypsopygia costalis F. 1775	Х
5533		Herculia olinalis Gn. 1854	Х
5556		<i>Tosale oviplagalis</i> Wlk. 1866	Х
5566		Arta statalis Grt. 1875	X
5577		<i>Epipaschia superatalis</i> Clem. 1860	
5606		<i>Tetralopha asperatella</i> Clem. 1860	
5797		<i>Nephopterix virgitella</i> Clem. 1860	Х
6053		<i>Peoria approximella</i> Wlk. 1866	
6078	Thyrididae	Dysodia oculatana Clem. 1860	X
6237	Thyatiridae	Pseudothyatira cymatophoroides Gn. 1852	Х
6255	Drepanidae	Oreta rosea Wlk. 1855	X
6261	Geometridae	Heliomata cycladata Grt. & R. 1866	X
6322		Mellilla xanthometata Wlk. 1862	х
6331		Semiothisa promiscuata Fgn. 1974	Х
6386		Semiothisa ocellinata Gn. 1857	х
6443		Glenaria texanaria Hulst 1888	Х
6449		Giena cribritaria Gn. 1857	X
6588		Irraopsis larvaria Gn. 1857	X
6507		Anavarineaa pampinaria Gn. 1857	X
6620		Ectropis crepuscularia Diis, 1773	X
6640		Biston botularia L 1759	X
6654		Dision delutaria L. 1730	X
6667		Lomographa vertaliata Cp. 1957	X
6720		Lomographia Vestatutati (H. 10)7	A V
6726		Lynoso unuana 113 1074 Fuchlaona obtusaria Hbp. 1800-13	A V
6720		Euchaena johnsonaria Fitch 1860	A V
6733		Fuchlaena amoenaria Gn 1857	X
6740		Xanthotype inticaria Swett 1018	X
6752		Pero honestaria Wilz 1860	X
6754		Pero hubneroria Gp. 1857	X
6706		Campaea perlata Gn. 1857	X
6797		Ennomos magnaria Gn. 1857	x
6820		Metanema determinata Wlk. 1866	x

HODGE #	FAMILY	SPECIES NAME	Butler County Record
6826		Metarranthis hypochraria HS 1854	X
6838		Probole amicaria HS. 1855	х
6841		Plagodis kuetzingi Grt. 1876	x
6842		Plagodis phlogosaria Gn. 1857	x
6843		Plagodis fervidaria H -S 1854	x
6844		Playodis alcoolaria Gn 1857	x
6885		Besma auercivoraria Gn. 1857	x
6912		Sicva macularia Harr 1850	x
69/12		Eusarca confusaria Hbp. 1813	X X
6062		Tatrocis crocallata Cp. 1857	А
6965		Eutrapola clomataria L. F. Spith 1707	v
6974		Batalene elezenaria Wilk 1960	X
60974		Prochesens des transmerta Dry 1770	х
0982		Prochoerodes transversata Dru. 1770	
6987 7000		Antepione thisoaria Gn. 1857	x
7009		Nematocampa resistaria Haw. 1809	X
7053		Dichorda iriaaria Gn. 1857	X
/058		Synchlora aerata F. 1/98	
7071		Chlorochlamys chloroleucaria Gn. 1857	х
7146		Haematopis grataria F. 1798	х
7159		Scopula limboundata Haw. 1809	x
7196		<i>Eulithis diversilineata</i> Hbn. 1813	х
7292		<i>Hydria prunivorata</i> Fagen 1955	х
7390		<i>Xanthorhoe lacustrata</i> Gn. 1857	Х
7414		Orthonama obstipata F. 1794	Х
7419		<i>Hydrelia lucata</i> Gn. 1857	х
7430		Trichodezia albovittata Gn. 1857	х
7440		Eubaphe mendica Wlk. 1854	X
7647		Heterophleps triguttaria HS. 1854	X
7648		Dyspteris abortivaria HS. 1855	X
7653	Epiplemidae	Calledapteryx dryopterata Grt. 1868	x
7663	Apatelodidae	Apatelodes torrefacta J. E. Smith 1797	
7665		Olceclostera angelica Grt. 1864	
7670	Lasiocampidae	<i>Tolype velleda</i> Stoll 1791	
7674	-	Tolype notialis Franc. 1973	х
7685		Heteropacha rileyana Cram. 1874	
7687		Phyllodesma americana Harr. 1841	
7704	Saturniidae	Eacles imperialis Dru. 1773	
7706		Citheronia regalis F. 1793	х
7709		Sphingicampa bicolor Harr. 1841	
7712		Sphingicampa bisecta Lint. 1879	
7715		Dryocampa rubicunda F. 1793	
7723		Anisota virginiensis Dru. 1773	Х
7746		Automeris io F. 1775	
7757		Antheraea polyphemus Cram. 1776	
7758		Actias luna L. 1758	
7764		Callosamia promethea Dru. 1773	
7765		Callosamia angulifera Maasson 1873	
7767		Hvalophora cecropia L 1758	
7775	Sphingidae	Manduca sexta L 1763	
7776	ophiligidae	Manduca minayomaculata Haw 1802	
7782		Manduca jasmingarum Guer 1820-1821	x
7786		Coratomia amontor Cover 1925	~
7787		Coratomia undulosa Wilk 1956	
7780		Coratomia catalpae Rdy 1875	
7709		Coratomia bagoni (et 1874	
7790		Daratraga bloba E 1777	
//70 7800		r ananaea piedeja 1°. 1/// Sphiny, chargis Hop, 1922	v
/ 004		3011111 CDETSIS 11D11. 1043	Δ

HODGE #	FAMILY	SPECIES NAME	Butler County Record
		Stehing canadonsis Bely, 1875	x
7808		Sphinx franchii Neum 1893	x
7821		Smorinthus jamaicausis Dru 1773	~
7824		Paonias preacatus L F Smith 1707	
7825		Paonias muots L.F. Smith 1797	
7827		Laothoa inglandis L.E. Smith 1797	
7853		Hamaris (hysho E 1775	
7855		Homaris diffinis Rdy 1936	
7850		Fumorbha bandonis Hbp. 1821	
7870		Subacodina abbottii Swainson 1821	
7871		Daidamia inscripta Harr. 1830	
7885		Darabsa marca Crup. 1780	
7886		Darabsa bholus Cram, 1760	
7804		Hylos lineata E. 1775	v
7895	Notodoptidae	Clostara albosiona Fitch 1856	X V
7097	NOROGOTHICIAC	Datana drovolii Hy. Edw. 1884	A V
7904		Datana contracta Wile 1855	А У
7900		Datana integerima (st. 80)	А
7907		Nadata gibbosa L.R. Smith 1707	
7915		Dovided basituides Wills 1955	
7919		Peridea angulard L E Sprith 1707	
7920		Novice hidentata Wills 1955	
7929		Chuthisia astronomia Wilk 1955	
7931		Europhista septemirionis Wik. 1855	
7950		Furcula poreans Guer. 1852	
7951		Symmetrista alogrous J. E. Shilut 1797	Х
/95/		Dasylophia anguina J. E. Smith 1797	
7974		Misogaaa unicolor Pack. 1864	
7975		Macrurocampa marinesia Gram. 1/80	
7983		Heterocampa obliqua Pack. 1864	Х
7985		Heterocampa subrotata Harv. 18/4	
7990		Heterocampa umbrata WIK. 1855	X
/995		Heterocampa biunaata WIK. 1855	
8010		Schizura concinna J. E. Smith 1/9/	Х
8012		Oligocentria semirufescens Wik. 1865	
8045.1	Arctudae	Crambidia pallida Pack 1864	Х
8090		Hypoprepia fucosa Hbn. 1827-1831	
8098		Clemensia albata Pack. 1864	Х
8107		Haploa clymene Brown 1776	
8110		Haploa contigua Wik. 1855	Х
8111		Hapioa lecontel Guer-Meneville 1832	
8121		Holomelina aurantiaca Hon. 1827	X
8129		Pyrrbarcha isabella J. E. Smith 1/9/	
8131		Estigmene acrea Drury 1//3	
813/		Spilosoma virginica F. 1/98	
8140		Hyphantria cunea Drury 1//3	
8146		Ecpantheria scribonia Stoll 1790	
8157		Phragmatobia lineata Newman & Donahue 1966	Х
8169		Apantesis phalerata Harr. 1841	
8196		Grammia parthenice Kby. 1837	Х
8197		Grammia virgo L. 1758	Х
8203		Halysidota tessellaris J. E. Smith 1797	
8211		Lophocampa caryae Harr. 1841	
8214		Lophocampa maculata Harr. 1841	Х
8230		Cycnia tenera Hbn. 1818	
8238		Euchaetes egle Drury 1773	
8262		Ctenucha virginica Esp. 1794	X
8267		Cisseps fulvicollis Hbn. 1818	
8296	Lymantriidae	Dasychira basiflava Pack. 1864	X

HODGE #	FAMILY	SPECIES NAME	Butler County Record
8316		Orevia leucostiema J. E. Smith 1797	
8322	Noctuidae	Idia americalis Gn. 1854	x
8323	Tioetenade	Idia aemula Hbn 1813	x
8334		Idia lubricalis Gever 1832	X
8338		Phalaenophana byramusalis Wlk 1850	v
0330 0247		Zanclognathy obscuritonnis Crt. 1872	A V
0257		Maan shile absorbtalis Wills 1850	X
0337		Macrochilo anstrpatis Wile 1059	X
0366		Pla al accorta la la garactici das Cat. 1979	X
8364		Phalaenostola larentionaes Grt. 1875	X
8380		Renia nemoralis Barnes & McDunnogh 1918	Х
8397		Palthis angulalis Hbn. 1/96	Х
8398		Palthis asopialis Gn. 1854	Х
8421		Hypenodes fractilinea Smith 1908	Х
8440		<i>Nigetia formosalis</i> Wlk. 1866	Х
8442		Bomolocha baltimoralis Gn. 1854	Х
8445		Bomolocha abalienalis Wlk. 1859	Х
8447		Bomolocha madefactalis Gn. 1854	Х
8465		Plathypena scabra F. 1798	Х
8493		Isogona tenuis Grt. 1872	х
8514		Scolecocampa liburna Geyer 1837	х
8545		Anomis erosa Hbn. 1821	х
8587		Panopoda rufimargo Hbn. 1818	х
8588		Panopoda carneicosta Gn. 1852	Х
8641		Synedoida grandirena Haw. 1809	х
8689		Zale lunata Dru. 1773	
8692		Zale galbanata Morr. 1876	х
8697		Zale minerea Gn. 1852	х
8717		Zale horrida Hbn. 1818	х
8719		Euparthenos nubilis Hbn 1823	
8721		Allotria elonymtha Hbn 1828	x
8738		Caenuroina crassiuscula Haw 1809	
8739		Caenurgina erechtea Cram 1780	
8745		Mocis terana Morr 1875	x
8769		Spiloloma lunilinea Grt 1873	X
8770		Catocala innubers Gp. 1852	v
8771		Catocala piatrix Grt 186/	X V
9779		Catocala habilis Crt. 1872	A V
8770		Catocala serona W. H. Edwards 1864	A V
8779		Catocala flobilis Crt. 1972	х У
0702		Catocala angusi Crt. 1972	A V
0703		Catocala obscura Strockov 1974	X
0/04		Catocala notosta Crt. 1872	X
0700		Catocala vidual E. Smith 1707	Х
0792		Cato calla magnitora Hulat 1997	
0795		Cato cala maesiosa Huist 1884	Х
8790		Catocala nebulosa W. H. Edwards 1864	
8797		Calocala subnala Grt. 1864	X
8798		Catocala neogama J. E. Smith 1/9/	
8801		Catocala una Cram. 17/6	X
8803		Catocala relicta wik. 1858	х
8834		Catocala amatrix Hbn. 1813	х
8857		Catocala ultronia Hbn. 1823	х
8858		Catocala crataegi Saunders 1876	X
8864		Catocala grynea Cram. 1780	х
8871		<i>Catocala dulciola</i> Grt. 1881	х
8874		Catocala minuta W. H. Edwards 1864	х
8878		Catocala amica Hbn. 1818	
8887		Trichoplusia ni Hbn. 1803	Х
8890		Pseudoplusia includens Wlk. 1858	Х

HODGE #	FAMILY	SPECIES NAME	Butler County Record
8897		Diachrysia balluca Gever 1832	X
8898		Allagrapha aerea Hbn. 1803	х
8904		Chrysanymbha formosa Grt. 1865	х
8905		Eosphoroptervx Ibvativroides Gn. 1852	x
8907		Autographa biloba Stephens 1830	x
8908		Autographa precationis Gn_185?	
8924		Anagrapha falcifera Kirby 1837	
8957		Paretes oculatrix Gn 1852	×
8968		Futelia hulcherrima Grt 1865	x
8970		Baileva opthalmica Gn. 1852	x
8073		Baileva australis Grt 1881	× ×
8083.2		Menganala stodia France 1985	x x
9030		Ozarba aoria Grt. 1881	x x
9044		Thioptara nigrofinibria Cp. 1852	A V
90/17		Lithacodia muscosula Gp. 1852	x
9051		Lithacodia musta Crt. 8: Rob. 1868	v
0053		Lithacodia carnola Cp. 1852	A V
9033		Harathabaria aticasa Hawath 1800	X
9037		<i>Composite a Traitacher</i> 1926	X
9062		<i>Cerma cermina</i> Trenscrike 1820	X
9005		Leuconycia aippiteroiaes Gn. 1852	X
9095		Tarachiaia erastriodes Gn. 1852	X
9127		Spragueia leo Gn. 1852	X
9131a		Spragueia apicalis apicella Grt. 18/2	X
9189		Charadra deridens Gn. 1852	Х
9193		Raphia frater Grt. 1864	Х
9200		Acronicta americana Harris 1841	х
9227		Acronicta laetifica J. E. Smith 1897	X
9236		Acronicta morula Grt. & Rob. 1868	Х
9237		Acronicta interrupta Gn. 1852	х
9241.1		Acronicta beitzmani Covell and Metzler 1992	х
9254		Acronicta afflicta Grt. 1864	х
9272		Acronicta oblinita J. E. Smith 1797	х
9280		Simyra henrici Grt. 1873	х
9281		Agriopodes fallax HS. 1854	x
9285		<i>Polygrammate hebraeicum</i> Hbn. 1818	х
9299		<i>Eudryas uni</i> o Hbn. 1831	х
9301		Eudryas grata F. 1793	
9309		<i>Psychomorpha epimenis</i> Dru. 1782	х
9332		<i>Apamea vulgaris</i> Grt. & Rob. 1866	х
9364		Apamea sordens Hufnagel 1766	Х
9367		Apamea dubitans Wlk. 1856	х
9373		Agroperina helva Grt. 1875	Х
9404		<i>Oligia modica</i> Gn. 1852	х
9454		Amphipoea velata Wlk. 1865	х
9471		Papaipema arctivorens Hampson 1910	х
9495		Papaipema furcata Smith 1899	x
9496		Papaipema nebris Gn. 1852	x
9505		Papaipema cerussata Grt. 1864	х
9545		<i>Euplexia benesimilis</i> McDunnough 1922	х
9560		<i>Dypterygia rozmoni</i> Berio 1974	х
9578		Hyppa xylinoides Gn. 1852	х
9619		Phosphila miselioides Gn. 1852	х
9638		Amphipyra pyramidoides Gn. 1852	х
9661		Crambodes talidiformis Gn. 1852	х
9666		Spodoptera frugiperda J. E. Smith 1797	х
9669		Spodoptera ornithogalli Gn. 1852	x
9678		Elaphria versicolor Grt. 1875	х
9684		Elaphria grata Hbn. 1818	х

HODGE #	FAMILY SPECIES NAME	Butler County Record
9688	Galgula partita Gn. 1852	X
9690	Platysenta videns Gn. 1852	х
9696	Condica vecors Gn. 1852	х
9696	Platysenta vecors Gn. 1852	Х
9720	Ogdoconta cinereola Gn. 1852	х
9725	Stiriodes obtusa HS. 1854	х
9754	Plagiomimicus pityochromus Grt. 1873	х
9781	Basiodes pepita Gn. 1852	х
9887	Lithophane bethunei Grt. & Rob. 1868	х
9936	Eupsilia morrisoni Grt. 1874	x
9943	Metaxaglaea inulta Grt. 1874	х
9957	Sunira bicolorago Gn. 1852	х
9961	Anathix ralla Grt. & Rob. 1868	х
10012	Psaphida electilis Morr. 1875	х
10059	Homohadena hadistriga Grt. 1872	х
10200	Cucullia asteroides Gn. 1852	
10202	<i>Cucullia convexipennis</i> Grt. & Rob. 1868	x
10292	Melanchra adjuncta Gn. 1852	
10293	Melanchra picta Harris 1841	x
10397	Lacinibolia renigera Stephens 1829	x
10414	Lacinibolia implicata McDunnough 1937	x
10431	Faronta diffusa Wlk 1856	x
10438	Pseudaletia unituncta Haw, 1809	x
10459	Leucania inermis Forbes 1936	x
10462	Leucania thermis robots 1990 Leucania pseudarowia Gn. 1852	x
105211	Morrisonia later Gn 1852	x
10578	Pseudorthodes vecors Gn 1852	x
10648	Agrotis gladiaria Morr 1874	x
10663	Agrotis ipsilon Hufnagel 1766	x
10670	Feltia jaculifera Gn 1852	
10676	Feltia herilis Grt 1873	x
10891	Ochropleura implecta Lafontaine 1998	x
10901	Fugorotis lubricans Gn 1852	x
10919	Diarsia jucunda Wik 1857	x
10926	Staelotis clandestina Harr. 1862	x
10942 1	Xestia dolosa France 1980	x
10943	Xestia normaniana Grt 1874	X
10944	Xestia smithii Snellen 1896	x
10950	Pseudobermonassa hicarnea Gn. 1852	x
10008	Choethora fungorum Grt. & Rob. 1868	А
10770	Protolamtra brunneicolis Grt. 1865	v
11000	Abagratis alternata Crt. 186/	А
11045	Abarotis anchocolioides Cp. 1852	x
11049	Purrhia umbra Hufn 1766	x x
11068	Helicopera zea Roddie 1850	\$
11178	Schinia arciaera Cp. 1852	v
11125	Schinia artigera GII, 1032 Schinia vinulosa Cp. 1852	A V
11140	Schinia Induusu (JII. 10)2 Schinia trifascia Hbp. 1818	A V
NIA	Noctua tronula I 1758	A V
INA	посния ртопион L. 1730	X