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Abstract 

The main results of this thesis are the following. We show that for each α > 0 every 
sufficiently large oriented graph G with minimum indegree and minimum outdegree at 
least 3|G|/8 + α|G| contains a Hamilton cycle. This gives an approximate solution to 
a problem of Thomassen. Furthermore, answering completely a conjecture of Häggkvist 
and Thomason, we show that we get every possible orientation of a Hamilton cycle. 

We also deal extensively with short cycles, showing that for each � ≥ 4 every sufficiently 
large oriented graph G with minimum indegree and minimum outdegree at least ≥ |G|/3+ 
1 contains an �-cycle. This is best possible for all those � ≥ 4 which are not divisible by 3. 
Surprisingly, for some other values of �, an �-cycle is forced by a much weaker minimum 
degree condition. We propose and discuss a conjecture regarding the precise minimum 
degree which forces an �-cycle (with � ≥ 4 divisible by 3) in an oriented graph. 

We also give an application of our results to pancyclicity. 
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I can live with doubt and uncertainty and not 
knowing. I think it’s much more interesting to live 
not knowing than to have answers which might be 
wrong. I have approximate answers and possible 
beliefs and different degrees of certainty about 
different things, but I’m not absolutely sure of 
anything and there are many things I don’t know 
anything about, such as whether it means 
anything to ask why we’re here. I don’t have to 
know the answer. I don’t feel frightened by not 
knowing things, by being lost in a mysterious 
universe without any purpose, which is the way it 
really is as far as I can tell. It doesn’t frighten me. 

The Pleasure of Finding Things Out 

Richard Feynman, 1983 
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CHAPTER 1 

PREFACE
 

The study of cycles, both Hamilton and short, is one of the most important and most 

studied areas of graph theory. There are many papers published every year seeking more 

sufficient conditions for a graph to contain a Hamilton cycle, looking at the behaviour of 

Hamilton cycles in various models of random graphs and examining refinements of the 

idea of Hamiltonicity. The Caccetta-Häggkvist conjecture has inspired years of research 

into sufficient conditions for short cycles in digraphs. 

A simple graph G = (V (G), E(G)) is a set of vertices V (G) with a set of edges 

E(G) ⊆ V (2). The number of vertices in a graph is called its order and is often denoted 

|G|. The number of edges in a graph is denoted by e(G). A cycle (or k-cycle) is a sequence 

of distinct vertices x1, x2, . . . , xk where x1x2, . . . , xk−1xk, xkx1 ∈ E(G). A Hamilton cycle 

is a cycle containing every vertex. The degree d(x) of a vertex x ∈ V (G) is the number 

of vertices sharing an edge with x. The minimum degree δ(G) of a graph is the minimum 

of the degrees of the vertices of G. 

A digraph or directed graph is a graph in which all the edges are assigned a direction 

and there are no multiple edges of the same direction. I.e. we allow an edge in each 

direction between two vertices, but no other multiple edges are allowed. An oriented 

graph is a (simple) graph in which every edge is assigned a direction. Equivalently, an 

oriented graph is a digraph with no multiple edges. 

In the following four sections we summarise the main results of this thesis. In the 
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corresponding chapters there are introductions giving more details on these results, the
 

history of the area and related results. Finally in Chapter 8 we summarise the open 

problems coming from this work. All of the work detailed in Chapters 4 and 5 is joint 

work with Deryk Osthus and Daniela Kühn. 

1.1 Hamilton Cycles in Oriented Graphs 

A fundamental result of Dirac states that a minimum degree of |G|/2 guarantees a Hamil

ton cycle in an undirected graph G on at least 3 vertices. Ore in 1960 gave a stronger 

sufficient condition: if the sum of the degrees of every pair of non-adjacent vertices is at 

least |G|, then the graph is Hamiltonian [66]. 

There is an obvious analogue of a Hamilton cycle for digraphs. That is, an ordering 

x1, . . . , xn of the vertices of a digraph D such that xixi+1 is a directed edge for all i. A cycle 

(or k-cycle) is a sequence of distinct vertices x1, x2, . . . , xk where at least one of the ordered 

pairs xixi+1 and xi+1xi is in E(G) (for all 1 ≤ i ≤ k, counting module k). It is a directed 

cycle if xixi+1 ∈ E(G) for all i. We will use the convention that a cycle in an oriented 

graph or digraph is directed unless otherwise stated. The minimum semi-degree δ0(G) of 

an oriented graph G (or of a digraph) is the minimum of its minimum outdegree δ+(G) 

and its minimum indegree δ−(G). See Chapter 2 for more precise definitions. There are 

corresponding versions of the famous theorems of Dirac and Ore for digraphs. Ghouila-

Houri [34] proved in 1960 that every digraph D with minimum semi-degree at least |D|/2 

contains a Hamilton cycle. Meyniel [60] showed that an analogue of Ore’s theorem holds 

for digraphs, that is a digraph on at least 4 vertices is either Hamiltonian or the sum of 

the indegrees and outdegrees of a pair of non-adjacent vertices is less than 2|D| − 1. All 

these bounds are best possible. 

It is natural to ask for the (smallest) minimum semi-degree which guarantees a Hamil

ton cycle in an oriented graph G. This question was first raised by Thomassen [73], 

who [75] showed that a minimum semi-degree of |G|/2− |G|/1000 suffices (see also [74]). 

2
 



Note that this degree requirement means that G is not far from being complete. Häggkvist 

[37] improved the bound further to |G|/2 − 2−15|G| and conjectured that the actual value 

lies close to 3|G|/8. The best previously known bound is due to Häggkvist and Thoma

son [39], who showed that for each α > 0 every sufficiently large oriented graph G with 

minimum semi-degree at least (5/12+α)|G| has a Hamilton cycle. Our first result implies 

that the actual value is indeed close to 3|G|/8. 

Theorem 1.1 (Kelly, Kühn and Osthus [48]). For every α > 0 there exists an integer 

N = N(α) such that every oriented graph G of order |G| ≥ N with δ0(G) ≥ (3/8 + α)|G| 

contains a Hamilton cycle. 

A construction of Häggkvist [37] shows that the bound in Theorem 1.1 is asymptoti

cally best possible (see Proposition 4.6). 

We also give two stronger sufficient conditions for a large oriented graph to contain a 

Hamilton cycle. We show that the property δ∗(G) := δ(G)+δ+(G)+δ−(G) ≥ (3|G|−3)/2 

suffices and we prove an Ore-type result, where δ(G) is the minimum of |N(x)| over all x ∈ 

V (G). Since this work was originally published, Keevash, Kühn and Osthus [46] have 

improved upon Theorem 1.1, giving an exact minimum semi-degree bound (Theorem 1.9) 

forcing a Hamilton cycle. 

1.2 Cycles of Given Length 

A central problem in digraph theory is the Caccetta-Häggkvist conjecture [18]: 

Conjecture 1.2. An oriented graph on n vertices with minimum outdegree d contains a 

cycle of length at most �n/d�. 

Note that in Conjecture 1.2 it does not matter whether we consider oriented graphs 

or general digraphs. Chvátal and Szemerédi [22] showed that a minimum outdegree of at 

least d guarantees a cycle of length at most �2n/(d+1)�. For most values of n and d, this is 

improved by a result of Shen [68], which guarantees a cycle of length at most 3�0.44n/d�. 
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Chvátal and Szemerédi [22] also showed that Conjecture 1.2 holds if we increase the
 

bound on the cycle length by adding a constant c. They showed that c := 2500 will do. 

Nishimura [65] refined their argument to show that one can take c := 304. The next result 

of Shen gives the best known constant. 

Theorem 1.3 (Shen [67]). An oriented graph on n vertices with minimum outdegree d 

contains a cycle of length at most �n/d� + 73. 

The special case of Conjecture 1.2 that has attracted most interest is when d = �n/3�. 

Here the conjecture is that a minimum outdegree of �n/3� implies a cycle of length 3, 

that is, a directed triangle. The following bound towards this case improves an earlier 

one of Caccetta and Häggkvist [18]. 

Theorem 1.4 (Shen [67]). If G is any oriented graph on n vertices with δ+(G) ≥ 0.355n 

then G contains a directed triangle. 

If one considers the minimum semi-degree δ0(G) := min{δ+(G), δ−(G)} instead of the 

minimum outdegree δ+(G), then the constant can be improved slightly. The best known 

value for the constant in this case is currently 0.346. [43] See the monograph [5] or the 

survey [64] for further partial results on Conjecture 1.2. 

We consider the natural and related question of which minimum semi-degree forces 

cycles of length exactly � ≥ 4 in an oriented graph. We will often refer to cycles of length � 

as �-cycles. Our main result answers this question completely when � is not a multiple 

of 3. 

Theorem 1.5 (Kelly, Kühn and Osthus [49]). Let � ≥ 4. If G is an oriented graph on 

n ≥ 1010� vertices with δ0(G) ≥ �n/3� + 1 then G contains an �-cycle. Moreover for any 

vertex u ∈ V (G) there is an �-cycle containing u. 

The extremal example showing this to be best possible for � ≥ 4, � �≡ 0 mod 3 is given 

by the blow-up of a 3-cycle. More precisely, let G be the oriented graph on n vertices 

formed by dividing V (G) into 3 vertex classes V1, V2, V3 of as equal size as possible and 
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adding all possible edges from Vi to Vi+1, counting modulo 3. Then this oriented graph 

contains no �-cycle and has minimum semi-degree �n/3�. 

Also, for all those � ≥ 4 which are multiples of 3, the ‘moreover’ part is best possible 

for infinitely many n. To see this, consider the modification of the above example formed 

by deleting a vertex from the largest vertex class and adding an extra vertex u with 

N+(u) = V2 and N−(u) = V1. This gives an oriented graph with minimum semi-degree 

�(n − 1)/3�. For � ≡ 0 mod 3 it contains no �-cycle through u. 

Perhaps surprisingly, we can do much better than Theorem 1.5 for some cycle lengths 

(if we do not ask for a cycle through a given vertex). Indeed, we conjecture that the 

correct bounds are those given by the obvious extremal example: when we seek an �

cycle, the extremal example is probably the blow-up of a k-cycle, where k ≥ 3 is the 

smallest integer which is not a divisor of �. 

Conjecture 1.6. Let � ≥ 4 be a positive integer and let k ≥ 3 be minimal such that k does 

not divide �. Then there exists an integer n0 = n0(�) such that every oriented graph G on 

n ≥ n0 vertices with minimum semi-degree δ0(G) ≥ �n/k� + 1 contains an �-cycle. 

In Chapter 5 we discuss this conjecture in some detail and provide a series of partial 

results in support of it. 

1.3 Arbitrary Orientations of Cycles 

It is natural to ask whether the bound in Theorem 1.1 gives only directed Hamilton cycles 

or whether it gives every possible orientation of a Hamilton cycle. Indeed this question 

was answered for digraphs, asymptotically at least, by Häggkvist and Thomason in 1995. 

Theorem 1.7 (Häggkvist and Thomason [38]). There exists n0 such that every digraph D 

on n ≥ n0 vertices with minimum semi-degree δ0(D) ≥ n/2 + n5/6 contains every orien

tation of a Hamilton cycle. 

For oriented graphs this question was asked originally by Häggkvist and Thoma

son [39] who proved that for all α > 0 and all sufficiently large oriented graphs G 
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a minimum semi-degree of (5/12 + α)|G| suffices to give any orientation of a Hamil

ton cycle. They conjectured that (3/8 + α)|G| suffices, the same bound as for the di

rected Hamilton cycle up to the error term α|G|. Whilst not asked explicitly before 

Häggkvist and Thomason’s paper, there is some previous work of Thomason and Grant 

relevant to this area. Grant [36] proved in 1980 that any digraph D with minimum semi-

degree δ0(D) ≥ 2|D|/3 + |D| log |D| contains an anti-directed Hamilton cycle, provided 

that n is even. (An anti-directed cycle is one in which the edge orientations alternate.) 

Thomason [71] showed in 1986 that every sufficiently large tournament contains every 

possible orientation of a Hamilton cycle (except possibly the directed Hamilton cycle: the 

transitive tournament with vertices {1, 2, . . . , n} and the edge ij when i < j clearly has 

no Hamilton cycle as there is no edge out of n). The following theorem confirms the 

conjecture of Häggkvist and Thomason. 

Theorem 1.8 (Kelly [47]). For every α > 0 there exists an integer n0 = n0(α) such that 

every oriented graph G on n ≥ n0 vertices with minimum semi-degree δ0(G) ≥ (3/8+ α)n 

contains every orientation of a Hamilton cycle. 

1.4 Pancyclicity 

Building on the proof of Theorem 1.1, Keevash, Kühn and Osthus [46] recently gave an 

exact minimum semi-degree bound which forces a Hamilton cycle in an oriented graph. 

Theorem 1.9 (Keevash, Kühn and Osthus [46]). There exists n0 such that every oriented 

graph G on n ≥ n0 vertices with δ0(G) ≥ (3n − 4)/8 contains a directed Hamilton cycle. 

This is best possible for all n ≥ n0. The arguments in [46] can easily be modified 

to show that G even contains an �-cycle for every � ≥ n/1010 through any given vertex. 

Details of the changes needed can be found in Chapter 7. Together with Theorems 1.4 

and 1.5 this implies that G is pancyclic, i.e. it contains cycles of all possible lengths. 

Theorem 1.10. There exists an integer n0 such that every oriented graph G on n ≥ n0 

vertices with minimum semi-degree δ0(G) ≥ (3n − 4)/8 contains an �-cycle for all 3 ≤ 
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� ≤ n. Moreover, if 4 ≤ � ≤ n and if u is any vertex of G then G contains an �-cycle
 

through u. 

We can also extend our result on arbitrary orientations of Hamilton cycles, Theo

rem 1.8, to a pancyclicity result for arbitrary orientations: If an oriented graph G on n 

vertices contains every possible orientation of an �-cycle for all 3 ≤ � ≤ n we say that G 

is universally pancyclic. The following theorem says that asymptotically universal pan-

cyclicity requires the same minimum semi-degree as pancyclicity. 

Theorem 1.11. For all α > 0 there exists an integer n0 = n0(α) such that every oriented 

graph G on n ≥ n0 vertices with minimum semi-degree δ0(G) ≥ (3/8 + α)n is universally 

pancyclic. 
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CHAPTER 2 

NOTATION AND TERMINOLOGY
 

This chapter contains the main terminology used in this thesis. For completeness we 

repeat any definitions given in the introduction. 

A simple graph G = (V (G), E(G)) is a set of vertices, V (G) (or V if this is unambigu

ous), often taken to be [n] := {1, . . . , n}, with a set of edges E(G) ⊆ V (2) (or E). The 

number of vertices in a graph is called its order and is often denoted |G|. The number of 

edges in a graph is denoted by e(G). A multigraph is a graph in which edges are given a 

multiplicity. 

A digraph or directed graph is a multigraph in which all the edges are assigned a 

direction and there are no multiple edges of the same direction. I.e. we allow an edge in 

each direction between two vertices, but no other multiple edges are allowed. An oriented 

graph is a (simple) graph in which every edge is assigned a direction. Equivalently, an 

oriented graph is a digraph with no multiple edges. 

Given two vertices x and y of an oriented graph G, we write xy for the edge directed 

+We write NG

(x)| for its outdegree. 

x
 and d+(x) :=
 

−− |d ( ) := Nx G

+|NG

from (x) for the outneighbourhood of
 a
 vertex
 to y.
x
 

+| ⊆ |( ) for its indegree Given X V (G) we denote Nx . G

−Similarly, we write NG (x) for the inneighbourhood of x and
 

+∩ |( ) X by dx X

(x) for the neighbourhood 

(x),
 

− −+ ∪and define d We write N ( ) := N ( ) Nx xG GGX

of x. We use N+(x) etc. whenever this is unambiguous. The maximum degree Δ(G) of G 

is the maximum of |N(x)| over all vertices x ∈ G. We write δ(G), δ+(G) and δ−(G) 
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respectively for the minimum of |N(x)|, |N+(x)| and |N−(x)| over all vertices x ∈ V (G) 

and call these the minimum degree, minimum indegree and minimum outdegree. The 

minimum semi-degree is defined as δ0(G) := min(δ+(G), δ−(G)). 

Given a set A of vertices of G, we write NG 
+(A) for the set of all outneighbours of 

vertices in A. So N+(A) is the union of N+(a) over all a ∈ A. N−(A) is defined similarly. G G G 

The directed subgraph G[A] of G induced by A ⊆ V (G) is the oriented graph whose 

edges are those edges of G with both vertices in A and we write e(A) for the number of 

its edges. G − A denotes the oriented graph obtained from G by deleting A and all edges 

incident to A. We say that A is independent if G[A] contains no edges. Given disjoint 

vertex sets A and B in a graph G, an A-B edge is an edge ab where a ∈ A and b ∈ B. 

We write e(A, B) for the number of all these edges. We write (A, B)G for the induced 

bipartite subgraph of G whose vertex classes are A and B. We write (A, B) where this is 

unambiguous. (A bipartite graph has vertex set V (G) = A ∪ B with e(A) = e(B) = 0.) 

A path is a sequence of distinct vertices v1v2 . . . v� where each vivi+1 (1 ≤ i ≤ � − 1) is 

an edge. Such a path is said to go from v1 to v�. An x − y path is a path from x to y. We 

call a path with the standard orientation a directed path. A cycle is a closed path (i.e. a 

path where v�v1 is also an edge) and a Hamilton cycle is a cycle containing every vertex. 

An oriented graph is said to be Hamiltonian if and only if it contains a Hamilton cycle. 

A walk in G is a sequence v1v2 . . . v� of (not necessarily distinct) vertices, where vivi+1 

(or vi+1vi if the walk is not directed) is an edge for all 1 ≤ i < �. The length of a walk W 

is �(W ) := � − 1. The walk is closed if v1 = v�. Given two vertices x, y of G, the distance 

dist(x, y) from x to y is the length of the shortest directed x-y path. The diameter of G 

is the maximum distance between any ordered pair of vertices. Outside of sections clearly 

pertaining to arbitrary orientations, when referring to paths, cycles and walks in oriented 

graphs we usually mean that they are directed without mentioning this explicitly. 

Given two vertices x and y on a directed cycle C, we write xCy for the subpath of C 

from x to y. Similarly, given two vertices x and y on a directed path P such that x 

precedes y, we write xP y for the subpath of P from x to y. 
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The underlying graph of an oriented graph G is the graph obtained from G by ignoring
 

the directions of its edges. We call an orientation of a complete graph a tournament and 

an orientation of a complete bipartite graph a bipartite tournament. An oriented graph G 

is d-regular if all vertices have indegree and outdegree d. 1 G is regular if it is d-regular 

for some d. It is easy to see (e.g. by induction) that for every odd n there exists a regular 

tournament on n vertices. A 1-factor of an oriented graph is a 1-regular spanning oriented 

subgraph, i.e. a covering of the oriented graph by pairwise-disjoint cycles. Note that a 

Hamilton cycle is a connected 1-factor. 

Almost all of these definitions apply equally well for digraphs and oriented graphs. 

For two functions f, g : N → R we write f(n) = o(g(n)) to mean f(x)/g(x) → 0 

as x → ∞. We write 0 < a1 � a2 � . . . � ak to mean that we can choose the 

constants a1, a2, . . . , ak from right to left. More precisely, there are increasing functions 

f1, f2, . . . , fk−1 such that, given ak, whenever we choose some ai ≤ fi(ai+1), all calculations 

needed using these constants are valid. 

1We will later introduce the entirely separate property of being ε-regular. From the context and the 
use of Latin and Greek letters as the parameter we hope it is clear to the reader which of these are being 
used. 
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CHAPTER 3 

SZEMER´ EDI’S REGULARITY LEMMA 

In this chapter we collect all the information we need about the Diregularity lemma and 

the Blow-up lemma. See [52] for a survey on the Regularity lemma, originally proved by 

Szemerédi [70], and [50] for a survey on the Blow-up lemma. We will use the Regularity 

lemma as a major tool twice. Once in Chapter 4 where we also need a powerful version of 

the Blow-up lemma due to Csaba (Lemma 3.4). The second time is in Chapter 6, where 

we use only a relatively weak ‘path-embedding lemma’. 

3.1 Further Notation 

We start with some more notation. The density of a bipartite graph G = (A, B) with 

vertex classes A and B is defined to be 

eG(A, B)
dG(A, B) := . 

|A| |B| 

We often write d(A, B) if this is unambiguous. Given ε > 0, we say that G is ε-regular 

if for all subsets X ⊆ A and Y ⊆ B with |X| > ε |A| and |Y | > ε |B| we have that 

|d(X, Y ) − d(A, B)| < ε. Given d ∈ [0, 1] we say that G is (ε, d)-super-regular if it is 

ε-regular and furthermore dG(a) ≥ (d − ε) |B| for all a ∈ A and dG(b) ≥ (d − ε) |A| for 

all b ∈ B. (This is a slight variation of the standard definition of (ε, d)-super-regularity 

where one requires dG(a) ≥ d |B| and dG(b) ≥ d |A|.) 
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3.2 The Diregularity Lemma 

The Diregularity lemma is a version of the Regularity lemma for digraphs due to Alon 

and Shapira [2]. Its proof is quite similar to the undirected version. We will use the 

degree form of the Diregularity lemma which can be easily derived (see e.g. [79] or [55]) 

from the standard version, in exactly the same manner as the undirected degree form. 

Lemma 3.1 (Degree form of the Diregularity lemma). For every ε ∈ (0, 1) and every 

integer M � there are integers M and n0 such that if G is a digraph on n ≥ n0 vertices 

and d ∈ [0, 1] is any real number, then there is a partition of the vertices of G into 

V0, V1, . . . , Vk and a spanning subdigraph G� of G such that the following holds: 

• M � ≤ k ≤ M , 

• |V0| ≤ εn, 

• |V1| = · · · = |Vk| =: m, 

• d+ 
G(x) − (d + ε)n for all vertices x ∈ G,G� (x) > d+ 

• d− 
G(x) − (d + ε)n for all vertices x ∈ G,G� (x) > d− 

• for all i = 1, . . . , k the digraph G�[Vi] is empty, 

• for all 1 ≤ i, j ≤ k with i � and Vj = j the bipartite graph whose vertex classes are Vi 

and whose edges are all the Vi -Vj edges in G� is ε-regular and has density either 0 

or density at least d. 

V1, . . . , Vk are called clusters, V0 is called the exceptional set and the vertices in V0 

are called exceptional vertices. The last condition of the lemma says that all pairs of 

clusters are ε-regular in both directions (but possibly with different densities). We call 

the spanning digraph G� ⊆ G given by the Diregularity lemma the pure digraph. Given 

clusters V1, . . . , Vk and the pure digraph G�, the reduced digraph R� is the digraph whose 

vertices are V1, . . . , Vk and in which ViVj is an edge if and only if G� contains a Vi -Vj 
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edge. Note that the latter holds if and only if the bipartite graph whose vertex classes 

are Vi and Vj and whose edges are all the Vi -Vj edges in G� is ε-regular and has density 

at least d. It turns out that R� inherits many properties of G, a fact that is crucial in the 

proofs in this thesis using the Diregularity lemma. However, R� is not necessarily oriented 

even if the original digraph G is, but the next lemma shows that by discarding edges with 

appropriate probabilities one can go over to a reduced oriented graph R ⊆ R� which still 

inherits many of the properties of G. 

Lemma 3.2. For every ε ∈ (0, 1) there exist integers M � = M �(ε) and n0 = n0(ε) such 

that the following holds. Let d ∈ [0, 1], let G be an oriented graph of order at least n0 

and let R� be the reduced digraph obtained by applying the Diregularity lemma to G with 

parameters ε, d and M � . Then R� has a spanning oriented subgraph R with 

(a) δ+(R) ≥ (δ+(G)/|G| − (3ε + d)) |R|, 

(b) δ−(R) ≥ (δ−(G)/|G| − (3ε + d)) |R|, 

(c) δ(R) ≥ (δ(G)/|G| − (3ε + 2d)) |R|. 

Proof. Let us first show that every cluster Vi satisfies 

|NR� (Vi)|/|R�| ≥ δ(G)/|G| − (3ε + 2d). (3.1) 

To see this, consider any vertex x ∈ Vi. As G is an oriented graph, the Diregularity 

lemma implies that |NG� (x)| ≥ δ(G) − 2(d + ε)|G|. On the other hand, |NG� (x)| ≤ 

|NR� (Vi)|m + |V0| ≤ |NR� (Vi)||G|/|R�| + ε|G|. Altogether this proves (3.1). 

We first consider the case when 

δ+(G)/|G| ≥ 3ε + d and δ−(G)/|G| ≥ 3ε + d. (3.2) 

Let R be the spanning oriented subgraph obtained from R� by deleting edges randomly as 

follows. For every unordered pair Vi, Vj of clusters we do nothing if either of the edges ViVj 
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� � 

and Vj Vi does not exist. Otherwise we delete the edge ViVj with probability 

eG� (Vj , Vi) 
eG� (Vi, Vj ) + eG� (Vj , Vi)

, (3.3) 

deleting Vj Vi if not. So if R� contains at most one of the edges ViVj , Vj Vi then we do 

nothing. We do this for all unordered pairs of clusters independently and let Xi be the 

random variable which counts the number of outedges of the vertex Vi ∈ R. Then 

eG� (Vi, Vj ) eG� (Vi, Vj )E(Xi) ≥ ≥ 
eG� (Vi, Vj ) + eG� (Vj , Vi) |Vi| |Vj |

j � j=i=i �

|R�| � 
≥ (d+ 

G� (x) − |V0|) ≥ (δ+(G�)/|G| − ε) |R|
|G| |Vi| 

x∈Vi 

(3.2) 
≥ (δ+(G)/|G| − (2ε + d)) |R| ≥ ε|R|. 

A Chernoff-type bound (see e.g. [3, Cor. A.14]) now implies that there exists a constant c = 

c(ε) such that 

P(Xi < (δ+(G)/|G| − (3ε + d)) |R|) ≤ P(|Xi − E(Xi)| > εE(Xi)) 

−cE(Xi) ≤ e −cε|R|≤ e . 

Writing Yi for the random variable which counts the number of inedges of the vertex Vi 

in R, it follows similarly that 

P(Yi < (δ−(G)/|G| − (3ε + d)) |R|) ≤ e −cε|R|. 

As 2|R|e−cε|R| < 1 if M � is chosen to be sufficiently large compared to ε, this implies 

that there is some outcome R with δ+(R) ≥ (δ+(G)/|G| − (3ε + d)) |R| and δ−(R) ≥ 

(δ−(G)/|G|− (3ε + d)) |R|. But NR� (Vi) = NR(Vi) for every cluster Vi and so (3.1) implies 

that δ(R) ≥ (δ(G)/|G| − (3ε + 2d))|R|. Altogether this shows that R is as required in the 

lemma. 

14
 



If neither of the conditions in (3.2) hold, then (a) and (b) are trivial and one can obtain
 

an oriented graph R which satisfies (c) from R� by arbitrarily deleting one edge from each 

double edge. If exactly one of the conditions in (3.2) holds, say the first, then (b) is trivial. 

To obtain an oriented graph R which satisfies (a) we consider the Xi as before, but ignore 

the Yi. Again, NR� (Vi) = NR(Vi) for every cluster Vi and so (c) is also satisfied. � 

The oriented graph R given by Lemma 3.2 is called the reduced oriented graph. The 

spanning oriented subgraph G∗ of the pure digraph G� obtained by deleting all the Vi -Vj 

edges whenever ViVj ∈ E(R�) \ E(R) is called the pure oriented graph. Given an oriented 

subgraph S ⊆ R, the oriented subgraph of G∗ corresponding to S is the oriented subgraph 

obtained from G∗ by deleting all those vertices that lie in clusters not belonging to S as 

well as deleting all the Vi -Vj edges for all pairs Vi, Vj with ViVj ∈/ E(S). 

3.3 The Blow-up Lemma 

In the proof of Theorem 4.3 we need the Blow-up lemma, in both the original form of 

Komlós, Sárközy and Szemerédi [51] and a recent strengthening due to Csaba [26]. We 

will also use the Blow-up lemma when proving Theorem 6.2, but only in a weaker form 

discussed in Section 3.4. Roughly speaking, they say that an M -partite graph formed 

by M clusters such that all the pairs of these clusters are dense and ε-regular behaves like 

a complete M -partite graph with respect to containing graphs H of bounded maximum 

degree as subgraphs. 

Lemma 3.3 (Blow-up Lemma, Komlós, Sárközy and Szemerédi [51]). Given a graph R 

on [M ] and positive numbers d and Δ there exists a positive real ε0 = ε0(d, Δ,M) such 

that the following holds for all positive numbers m and all 0 < ε ≤ ε0. Let F be the graph 

obtained from R by replacing each vertex i ∈ R with a set Vi of M new vertices and joining 

all vertices in Vi to all vertices in Vj whenever ij is an edge of R. Let G be a spanning 

subgraph of F such that for every edge ij ∈ R the graph (Vi, Vj )G is (ε, d)-super-regular. 

Then G contains a copy of every subgraph H of F with maximum degree Δ(H) ≤ Δ. 
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Moreover, this copy of H in G maps the vertices of H to the same sets Vi as the copy of 

H in F , i.e. if h ∈ V (H) is mapped to Vi by the copy of H in F , then it is also mapped 

to Vi by the copy of H in G. 

Furthermore, given b > 0 we can additionally require that for vertices x ∈ H ⊆ F lying 

in Vi their images in the copy of H in G are contained in (arbitrary) given sets Cx ⊆ Vi 

provided that |Cx| ≥ bM for each such x, in each Vi there are at most αM such vertices x 

and α < α0(d, Δ, M, b). 

The ‘furthermore’ section of this theorem, whilst not given in their original statement, 

is implicit in their proof. It also uses the standard definition of super-regularity, but 

this affects nothing since one can merely use a slightly larger d than would otherwise be 

necessary. 

Observe that in this version the pairs of clusters have to be super-regular and the 

regularity constant ε0 depends on the number M of clusters. It is also not explicitly 

formulated to allow for a set V0 of exceptional vertices. So we also need the stronger 

(and more technical) version due to Csaba [26]. The case when Δ = 3 of this is implicit 

in [27]. 

Lemma 3.4 (Blow-up Lemma, Csaba [26]). For all integers Δ, K1, K2, K3 and every 

positive constant c there exists an integer N such that whenever ε, ε�, δ�, d are positive 

constants with 

0 < ε � ε� � δ� � d � 1/Δ, 1/K1, 1/K2, 1/K3, c 

the following holds. Suppose that G∗ is a graph of order n ≥ N and V0, . . . , Vk is a 

partition of V (G∗) such that the bipartite graph (Vi, Vj )G∗ is ε-regular with density either 

0 or d for all 1 ≤ i < j ≤ k. Let H be a graph on n vertices with Δ(H) ≤ Δ and let 

L0 ∪ L1 ∪ · · · ∪ Lk be a partition of V (H) with |Li| = |Vi| =: m for every i = 1, . . . , k. 

Furthermore, suppose that there exists a bijection φ : L0 → V0 and a set I ⊆ V (H) of 

vertices at distance at least 4 from each other such that the following conditions hold: 

(C1) |L0| = |V0| ≤ K1dn. 
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(C2) L0 ⊆ I. 

(C3) Li is independent for every i = 1, . . . , k. 

(C4) |NH (L0) ∩ Li| ≤ K2dm for every i = 1, . . . , k. 

(C5) For each i = 1, . . . , k there exists Di ⊆ I ∩ Li with |Di| = δ�m and such that for �kD := i=1 Di and all 1 ≤ i < j ≤ k 

||NH (D) ∩ Li| − |NH (D) ∩ Lj || < εm. 

(C6) If xy ∈ E(H) and x ∈ Li, y ∈ Lj then (Vi, Vj )G∗ is ε-regular with density d. 

(C7) If xy ∈ E(H) and x ∈ L0, y ∈ Lj then |NG∗ (φ(x)) ∩ Vj | ≥ cm. 

(C8) For each i = 1, . . . , k, given any Ei ⊆ Vi with |Ei| ≤ ε�m there exists a set Fi ⊆ 

(Li ∩ (I \ D)) and a bijection φi : Ei → Fi such that |NG∗ (v) ∩ Vj | ≥ (d − ε)m 

whenever NH (φi(v)) ∩ Lj � and all j = 1, . . . , k).= ∅ (for all v ∈ Ei 

(C9) Writing F := 
�k Fi we have that |NH (F ) ∩ Li| ≤ K3ε

�m.i=1 

Then G∗ contains a copy of H such that the image of Li is Vi for all i = 1, . . . , k and the 

image of each x ∈ L0 is φ(x) ∈ V0. 

The additional properties of the copy of H in G∗ are not included in the statement of 

the lemma in [26] but are stated explicitly in the proof. 

Let us briefly motivate the conditions of the Blow-up lemma. The embedding of H 

into G guaranteed by the Blow-up lemma is found by a randomised algorithm which 

first embeds each vertex x ∈ L0 to φ(x) and then successively embeds the remaining 

vertices of H. So the image of L0 will be the exceptional set V0. Condition (C1) requires 

that there are not too many exceptional vertices and (C2) ensures that we can embed 

the vertices in L0 without affecting the neighbourhood of other such vertices. As Li 

will be embedded into Vi we need to have (C3). Condition (C5) gives us a reasonably 
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large set D of ‘buffer vertices’ which will be embedded last by the randomised algorithm.
 

(C6) requires that edges between vertices of H − L0 are embedded into ε-regular pairs of 

density d. (C7) ensures that the exceptional vertices have large degree in all ‘neighbouring 

clusters’. (C8) and (C9) allow us to embed those vertices whose set of candidate images 

in G∗ has grown very small at some point of the algorithm. Conditions (C6), (C8) 

and (C9) correspond to a substantial weakening of the super-regularity that the usual 

form of the Blow-up lemma requires, namely that whenever H contains an edge xy with 

and x ∈ Li, y ∈ Lj then (Vi, Vj )G∗ is (ε, d)-super-regular. 

The weakest commonly-used embedding lemma is the following result, often called the 

Key Lemma, which does not allow us to find spanning graphs but in recompense does not 

require that any pairs of clusters are super-regular. We use this lemma in Chapter 5. 

Theorem 3.5 ([52], Theorem 2.1). For all d ∈ (0, 1], h0 ∈ N and Δ ≥ 1 there exists ε0 > 0 

and m0 ∈ N such that the following holds. Suppose ε ≤ ε0 and R is any graph. Let F be 

the graph obtained from R by replacing each vertex i ∈ R with a set Vi of m ≥ m0 new 

vertices and joining all vertices in Vi to all vertices in Vj whenever ij is an edge of R. 

Let G be a spanning subgraph of F such that for every edge ij ∈ R the graph (Vi, Vj )G is 

ε-regular and has density at least d. Then G contains a copy of every subgraph H of F 

with maximum degree Δ(H) ≤ Δ and h ≤ h0 vertices. 

3.4 A Path-Embedding Lemma 

In the proof of Theorem 6.2 we shall only use the following consequence of the Blow-up 

lemma, which uses similar ideas to those in recent work of Christofides, Keevash, Kühn 

and Osthus [19]. 

Lemma 3.6. Suppose that all the following hold. 

• 0 < 1/m � ε � d � 1. 

• U1, . . . , Uk are pairwise disjoint sets of size m, for some k ≥ 6, and G is a digraph 
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on U1 ∪. . .∪Uk such that each (Ui, Ui+1)G is (ε, d)-super-regular (where by convention 

we consider Uk+1 to be U1). 

•	 A1, . . . , Ak are pairwise disjoint sets of vertices with (1 − ε)m ≤ |Ai| := mi ≤ m 

and H is a digraph on A1 ∪ . . . ∪ Ak which is a vertex-disjoint union of paths of 

length at least 3, where every edge going out of Ai end in Ai+1 for all i. 

•	 S1 ⊆ U1, . . . , Sk ⊆ Uk are sets of size |Si| = mi. 

•	 For each path P of H we are given vertices xP , yP ∈ V (G) such that if the initial 

vertex aP of P belongs to Ai then xP ∈ Si and if the final vertex bP of P belongs 

to Aj then yP ∈ Sj , and the vertices xP , yP are distinct as P ranges over the paths 

of H. � 
Then there is an embedding of H into GS := G[ Si] in which every path P of H is 

mapped to a path that starts at xP and ends at yP . 

The following immediate consequence of the Blow-up lemma is needed in the proof of 

Lemma 3.6. 

Lemma 3.7. For every 0 < d < 1 and p ≥ 4 there exists ε0 > 0 such that the following 

holds for 0 < ε < ε0. Let U1, . . . , Up be pairwise disjoint sets of size m, for some m, and 

suppose G is a graph on U1 ∪ . . . ∪ Up such that each pair (Ui, Ui+1), 1 ≤ i ≤ p − 1 is (ε, d)

super-regular. Let f : U1 → Up be any bijective map. Then there are m vertex-disjoint 

paths from U1 to Up so that for every x ∈ U1 the path starting from x ends at f(x) ∈ Up. 

We also need the following random partitioning property of super-regular pairs which 

says that with high probability (i.e. with probability tending to 1 as m → ∞) all new pairs 

created by a random partition of a super-regular pair are themselves super-regular. (It 

can be deduced from, for example, Fact 1.5 in [52] and standard Chernoff-type bounds.) 

Lemma 3.8. Suppose that the following hold. �k•	 0 < ε < θ < d < 1/2, k ≥ 2 and for 1 ≤ i ≤ k we have ai, bi > θ with i=1 ai = �k 
i=1 bi = 1. 
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•	 G = (A, B) is an (ε, d)-super-regular pair with |A| = |B| = m sufficiently large. 

•	 Uniformly at random we choose partitions A = A1 ∪ . . . ∪ Ak and B = B1 ∪ . . . ∪ Bk 

with |Ai| = aim and |Bi| = bim for 1 ≤ i ≤ r. 

Then with high probability (Ai, Bj ) is (θ−1ε, d/2)-super-regular for every 1 ≤ i, j ≤ k. 

With these tools we can now prove Lemma 3.6. 

Proof. [Of Lemma 3.6] Enumerate the paths of H as P1, . . . , Pp. We break Pi into 

consecutive paths Pi,1, Pi,2, . . . , Pi,qi where the initial vertex ai,j of Pi,j is the terminal 

vertex bi,j−1 of Pi,j−1. We can take all these paths to have length 3, 4 or 5 as each 

path has length at least 3. Let Es consist of all ai,j belonging to the cluster As and 

similarly let Fs consist of all bi,j belonging to the cluster As. For each ai,j ∈ Es pick a 

distinct vertex xi,j ∈ Ss and for each bi,j ∈ Fs pick a distinct vertex yi,j ∈ Ss such that 

if ai,j = bi,j−1 then xi,j = yi,j−1, xi,1 and yi,mi = yPi,j . It is sufficient to show that = xPi,j 

there is an embedding of H in which each path Pi,j is mapped to a path in GS starting 

at xi,j and ending at yi,j . 

For a path Pi,j encode whether each edge in Pi,j goes forwards or backwards. If Pi,j 

has length 3 then, writing f for an edge going from some A� to A�+1 and b for an edge 

going from A� to A�−1, t encodes one of the following 23 = 8 possibilities: 

fff ffb fbf fbb bff bfb bbf bbb. 

Similarly there are 24 possibilities for paths of length 4 and 25 for those of length 5. We 

divide the paths Pi,j into 56k subcollections Pi,t with 1 ≤ i ≤ k, 3 ≤ � ≤ 5 and 

t : {0, 1, . . . , �} → {−�, −� + 1, . . . , �} 

encoding one of the 23 + 24 + 25 = 56 possibilities discussed above and the length � of 

the paths. Note that we always have t(0) = 0. For example, a path oriented ffb would 
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have t : (0, 1, 2, 3) �→ (0, 1, 2, 1). Pi,t contains all paths Pi,j of length � = �(t) starting 

in Ai with each vertex in Pi,j going to the cluster relative to Ai given by t. 

Observe that as |Ui \ Si| ≤ εm, every pair (Si, Si+1) is (2ε, d/2)-super-regular. We 

first use a greedy algorithm to sequentially embed those collections Pi,t containing at 

most d2m paths. That is, we pick any |Pi,t| vertices in Si to be the start of these paths, 

and then construct these paths by selecting any (distinct) neighbours of these vertices in 

the Sj appropriate for each vertex in each path. Each set Si is met by at most 11 × 56 

of the collections so at any stage in this process we have used at most 6 × 11 × 56d2m 

vertices from any cluster Ui. As we have d � 1 the restriction of any pair (Si, Si+1) to 

the remaining vertices is still (4ε, d/4)-super-regular and so we can indeed do this. 

With all the Pi,t containing at most d2m paths embedded we randomly split the 

remaining vertices so that for each large Pi,t we have sets S0 S1 
i,t ⊆ St(0)=i, i,t ⊆ St(1), 

. . . , S� ⊆ St(�) each of size |Pi,t| > d2m. By Lemma 3.8 for each large collection Pi,ti,t 

and for all 0 ≤ r ≤ � − 1 the pair (Sr 
i,t i,t i,t)i,t, S
r+1) if t(r + 1) > t(r) or the pair (Sr+1, Sr 

if t(r + 1) < t(r) is (4d−2ε, d/8)-super-regular with high probability. Thus for sufficiently 

large m we can choose a partition with this property and apply Lemma 3.7 to embed each 

large Pi,t within its allocated sets. � 

3.5 Super-regular oriented subgraphs 

At various stages in our proof we will need some pairs of clusters to be not just regular 

but super-regular. The following well-known result (for example, [20]) tells us that we 

can indeed do this whilst maintaining the regularity of all other pairs. 

Lemma 3.9. Let ε � d, 1/Δ and let R be a reduced oriented graph of G as given by 

Lemmas 3.1 and 3.2. Let S be an oriented subgraph of R of maximum degree Δ. Then 

we can move exactly 2Δε|Vi| vertices from each cluster into V0 such that each pair (Vi, Vj) 

corresponding to an edge of S becomes (2ε, d/2)-super-regular and every pair corresponding 

to an edge of R \ S becomes 2ε-regular with density at least d − ε. 
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In Chapter 4 we would like to apply the Csaba Blow-up lemma (Lemma 3.4) with G∗ 

being obtained from the underlying graph of the pure oriented graph by adding the 

exceptional vertices. It will turn out that in order to satisfy (C8) it suffices to ensure that 

all the edges of a suitable 1-factor in the reduced oriented graph R correspond to (ε, d)

super-regular pairs of clusters. Lemma 3.9 states that this can be ensured by removing a 

small proportion of vertices from each cluster Vi, and so (C8) can be satisfied. However, 

(C6) requires all the edges of R to correspond to ε-regular pairs of density precisely d 

and not just at least d. (As remarked by Csaba [26], it actually suffices that the densities 

are close to d in terms of ε.) The following proposition shows that this does not pose a 

problem. 

Proposition 3.10. Let M �, n0, D be integers and let ε, d be positive constants such that 

1/n0 � 1/M � � ε � d � 1/D. Let G be an oriented graph of order at least n0. 

Let R be the reduced oriented graph and let G∗ be the pure oriented graph obtained by 

successively applying first the Diregularity lemma with parameters ε, d and M � to G and 

then Lemma 3.2. Let S be an oriented subgraph of R with Δ(S) ≤ D. Let G� be the 

underlying graph of G∗ . Then one can delete 2Dε|Vi| vertices from each cluster Vi to 

obtain subclusters Vi 
� ⊆ Vi in such a way that G� contains a subgraph G� 

S whose vertex set 

is the union of all the Vi 
� and such that 

• (Vi 
�, V j 

�)G� is ( 
√ 
ε, d − 4Dε)-super-regular whenever ViVj ∈ E(S),

S 

• (Vi 
�, V j 

�)G� is 
√ 
ε-regular and has density d − 4Dε whenever ViVj ∈ E(R). 

S 

Proof. Consider any cluster Vi ∈ V (S) and any neighbour Vj of Vi in S. Recall that 

m = |Vi|. Let dij denote the density of the bipartite subgraph (Vi, Vj )G� of G� induced by Vi 

and Vj . So dij ≥ d and this bipartite graph is ε-regular by the remarks before Lemma 3.2. 

Thus there are at most 2εm vertices v ∈ Vi such that ||NG� (v) ∩ Vj | − dij m| > εm. So 

in total there are at most 2Dεm vertices v ∈ Vi such that ||NG� (v) ∩ Vj | − dij m| > εm 

for some neighbour Vj of Vi in S. Delete all these vertices as well as some more vertices 

if necessary to obtain a subcluster Vi 
� ⊆ Vi of size (1 − 2Dε)m =: m� . Delete any 2Dεm 
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vertices from each cluster Vi ∈ V (R) \ V (S) to obtain a subcluster Vi 
� . It is easy to 

check that for each edge ViVj ∈ E(R) the graph (Vi 
�, V j 

�)G� is still 2ε-regular and that its 

density d� satisfiesij 

d� := d − 4Dε < dij − ε ≤ d� ≤ dij + ε.ij 

Moreover, whenever ViVj ∈ E(S) and v ∈ Vi 
� we have that 

(dij − 4Dε)m � ≤ |NG� (v) ∩ Vj 
�| ≤ (dij + 4Dε)m � . 

For every pair Vi, Vj of clusters with ViVj ∈ E(S) we now consider a spanning random 

subgraph G� 
ij of (Vi 

�, V j 
�)G� which is obtained by choosing each edge of (Vi 

�, V j 
�)G� with prob

ability d�/d� ij , independently of the other edges. Consider any vertex v ∈ Vi 
� . Then the ex

pected number of neighbours of v in V � (in the graph G� ) is at least (dij −4Dε)d�m�/d� ≥j ij ij 

√ 
(1 − ε)d�m� (for ε sufficiently small). So we can apply a Chernoff-type bound to see that 

there exists a constant c = c(ε) such that 

√ �−cd�mP(|NG� (v) ∩ Vj 
�| ≤ (d� − ε)m �) ≤ e . 

ij 

Similarly, whenever X ⊆ Vi 
� and Y ⊆ Vj 

� are sets of size at least 2εm� the expected 

number of X-Y edges in G� is dG� (X, Y )d�|X||Y |/d� Since (V �, V �)G� is 2ε-regular this ij ij . i j 

√ √ 
expected number lies between (1 − ε)d�|X||Y | and (1 + ε)d�|X||Y |. So again we can 

use a Chernoff-type bound to see that 

√ 
P(|eG� (X, Y ) − d�|X||Y || > ε|X||Y |) ≤ e −cd�|X||Y | ≤ e −4cd�(εm�)2 

. 
ij 

Moreover, with probability at least 1/(3m�) the graph G� 
ij has its expected density d� (see 

e.g. [10, p. 6]). Altogether this shows that with probability at least 

� −cd�m − 22m −4cd�(εm�)2 
1/(3m �) − 2m e 

� � 
e , 
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√ 
which is greater than 0 for sufficiently large m�, we have that G� ε, d�)-super-regular ij is ( 

and has density d� . Proceed similarly for every pair of clusters forming an edge of S. An 

analogous argument applied to a pair Vi, Vj of clusters with ViVj ∈ E(R) \ E(S) shows 
√ 

that with non-zero probability the random subgraph G� ε-regular and has density d� .ij is 

Altogether this gives us the desired subgraph G� 
S of G� . � 
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CHAPTER 4 

HAMILTON CYCLES IN ORIENTED GRAPHS
 

4.1 Introduction 

When discussing cycles and paths in digraphs in this chapter we always mean that they 

are directed without mentioning this explicitly. 

As discussed in the preface, there is an obvious analogue of a Hamilton cycle for 

digraphs. That is, an ordering x1, . . . , xn of the vertices of a digraph D such that xixi+1 

is a directed edge for all i. A fundamental result of Dirac states that a minimum degree 

of |G|/2 guarantees a Hamilton cycle in an undirected graph G on at least 3 vertices. 

Ore in 1960 gave a stronger sufficient condition: if the sum of the degrees of every pair 

of non-adjacent vertices is at least |G|, then the graph is Hamiltonian [66]. There are 

corresponding versions of these famous theorems of Dirac and Ore for digraphs. Ghouila-

Houri [34] proved in 1960 that every digraph D with minimum semi-degree at least |D|/2 

contains a Hamilton cycle. Meyniel [60] showed that an analogue of Ore’s theorem holds 

for digraphs; that is, a digraph on at least 4 vertices is either Hamiltonian or the sum of 

the degrees of a pair of non-adjacent vertices is less than 2|D| − 1. All these bounds are 

best possible. 

It is natural to ask for the (smallest) minimum semi-degree which guarantees a Hamil

ton cycle in an oriented graph G. This question was first raised by Thomassen [73], 

who [75] showed that a minimum semi-degree of |G|/2− |G|/1000 suffices (see also [74]). 
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Note that this degree requirement means that G is not far from being complete. Häggkvist 

[37] improved the bound further to |G|/2 − 2−15|G| and conjectured that the actual value 

lies close to 3|G|/8. The best previously known bound is due to Häggkvist and Thoma

son [39], who showed that for each α > 0 every sufficiently large oriented graph G with 

minimum semi-degree at least (5/12 + α)|G| has a Hamilton cycle. Our first result (The

orem 1.1 in the preface) implies that the actual value is indeed close to 3|G|/8. 

Theorem 4.1. For every α > 0 there exists an integer N = N(α) such that every oriented 

graph G of order |G| ≥ N with δ0(G) ≥ (3/8 + α)|G| contains a Hamilton cycle. 

A construction of Häggkvist [37] shows that the bound in Theorem 1.1 is asymptoti

cally best possible (see Proposition 4.6). 

In fact, Häggkvist [37] formulated the following stronger conjecture. Given an oriented 

graph G, recall that δ(G) denotes the minimum degree of G (i.e. the minimum number 

of edges incident to a vertex) and set δ∗(G) := δ(G) + δ+(G) + δ−(G). 

Conjecture 4.2 (Häggkvist [37]). Every oriented graph G with δ∗(G) > (3n − 3)/2 has 

a Hamilton cycle. 

Our next result (stated in the preface as Theorem ?? provides an approximate confir

mation of this conjecture for large oriented graphs. 

Theorem 4.3. For every α > 0 there exists an integer N = N(α) such that every oriented 

graph G of order |G| ≥ N with δ∗(G) ≥ (3/2 + α)|G| contains a Hamilton cycle. 

Note that Theorem 4.1 is an immediate consequence of this. Once one has a Dirac

type result it is natural to ask if there is a corresponding Ore-type result and indeed in 

this case there is. 

Theorem 4.4. For every α > 0 there exists an integer N = N(α) such that if G is an 

oriented graph on n ≥ N vertices with d+(u) + d−(v) ≥ 3n/4 + αn for all non-adjacent 

vertices u, v ∈ V (G) then G contains a Hamilton cycle. 
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The proof for this is similar to that of Theorem 4.3 so we do not give the entire proof.
 

We do though give a proof of the one important lemma which is different, along with a 

brief discussion, in Section 4.6. 

Since this work was originally published, Keevash, Kühn and Osthus [46] have im

proved upon Theorem 4.1, proving that in any sufficiently large oriented graph G having 

a minimum semi-degree of at least δ0(G) ≥ (3|G| − 4)/8 suffices. (See Theorem 1.9.) 

Moreover, note that Theorem 4.1 immediately implies a partial result towards a clas

sical conjecture of Kelly (see e.g. [5]), which states that every regular tournament on n 

vertices can be partitioned into (n − 1)/2 edge-disjoint Hamilton cycles. 

Corollary 4.5. For every α > 0 there exists an integer N = N(α) such that every regular 

tournament of order n ≥ N contains at least (1/8 − α)n edge-disjoint Hamilton cycles. 

Indeed, Corollary 4.5 follows from Theorem 4.1 by successively removing Hamilton 

cycles until the oriented graph G obtained from the tournament in this way has minimum 

semi-degree less than (3/8 + α)|G|. The best previously known bound on the number 

of edge-disjoint Hamilton cycles in a regular tournament is the one which follows from 

the result of Häggkvist and Thomason [39] mentioned above. A related result of Frieze 

and Krivelevich [33] implies that almost every tournament contains a collection of edge-

disjoint Hamilton cycles which covers almost all of its edges and that the same holds 

for almost all regular tournaments. Since this research was originally carried out, Kühn, 

Osthus and Treglown [57] have proved an approximate version of Kelly’s conjecture for 

large tournaments. 

4.2 Extremal Example 

The following construction of Häggkvist [37] shows that Conjecture 4.2 is best possible 

for infinitely many values of |G|. We include it here for completeness. 

Proposition 4.6. There are infinitely many oriented graphs G with minimum semi-

degree (3|G| − 5)/8 which do not contain a 1-factor and thus do not contain a Hamilton 
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A

B C

D

Figure 4.1: The oriented graph in the proof of Proposition 4.6. 

cycle. 

Proof. Let n := 4m+3 for some odd m ∈ N. Let G be the oriented graph obtained from 

the disjoint union of two regular tournaments A and C on m vertices, a set B of m + 2 

vertices and a set D of m + 1 vertices by adding all edges from A to B, all edges from B 

to C, all edges from C to D as well as all edges from D to A. Finally, between B and D 

we add edges to obtain a bipartite tournament which is as regular as possible, i.e. the 

indegree and outdegree of every vertex differ by at most 1. So in particular every vertex 

in B sends exactly (m + 1)/2 edges to D (Figure 1). 

It is easy to check that the minimum semi-degree of G is (m − 1)/2 + (m + 1) = 

(3n − 5)/8, as required. Since every path which joins two vertices in B has to pass 

through D, it follows that every cycle contains at least as many vertices from D as it 

contains from B. As |B| > |D| this means that one cannot cover all the vertices of G by 

disjoint cycles, i.e. G does not contain a 1-factor. � 
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4.3 Overview of the proof of Theorem 4.3
 

Let G be our given oriented graph. The rough idea of the proof is to apply the Diregularity 

lemma and Lemma 3.2 to obtain a reduced oriented graph R and a pure oriented graph G∗ . 

The following result of Häggkvist implies that R contains a 1-factor. 

Theorem 4.7 (Häggkvist [37]). Let R be an oriented graph with δ∗(R) > (3|R| − 3)/2. 

Then R has a directed path between every 2 vertices and contains a 1-factor. 

So one can apply the Blow-up lemma (together with Proposition 3.10) to find a 1

factor in G∗ − V0 ⊆ G − V0. One now would like to glue the cycles of this 1-factor together 

and to incorporate the exceptional vertices to obtain a Hamilton cycle of G∗ and thus 

of G. However, we were only able to find a method which incorporates a set of vertices 

whose size is small compared to the cluster size m. This is not necessarily the case for V0. 

So we proceed as follows. We first choose a random partition of the vertex set of G into 

two sets A and V (G) \ A having roughly equal size. We then apply the Diregularity 

lemma to G − A in order to obtain clusters V1, . . . , Vk and an exceptional set V0. We 

let m denote the size of these clusters and set B := V1 ∪ . . . Vk. By arguing as indicated 

above, we can find a Hamilton cycle CB in G[B]. We then apply the Diregularity lemma 

to G − B, but with an ε which is small compared to 1/k, to obtain clusters V1 
�, . . . , V � 

� 

and an exceptional set V0 
� . Since the choice of our partition A, V (G) \ A will imply that 

δ∗(G − B) ≥ (3/2 + α/2)|G − B| we can again argue as before to obtain a cycle CA which 

covers precisely the vertices in A� := V1 
� ∪ · · · ∪ V� 

� . Since we have chosen ε to be small 

compared to 1/k, the set V0 
� of exceptional vertices is now small enough to be incorporated 

into our first cycle CB. (Actually, CB is only determined at this point and not yet earlier 

on.) Moreover, by choosing CB and CA suitably we can ensure that they can be joined 

together into the desired Hamilton cycle of G. 
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4.4 Shifted Walks
 

In this section we will introduce the tools we need in order to glue certain cycles together 

and to incorporate the exceptional vertices. Let R∗ be a digraph and let C be a collection 

of disjoint cycles in R∗ . We call a closed walk W in R∗ balanced w.r.t. C if 

• for each cycle C ∈ C the walk W visits all the edges on C an equal number of times, 

• W visits every vertex of R∗ , 

• every vertex not in any cycle from C is visited exactly once. 

Let us now explain why balanced walks are helpful in order to incorporate the exceptional 

vertices. Suppose that C is a 1-factor of the reduced oriented graph R and that R∗ is 

obtained from R by adding all the exceptional vertices v ∈ V0 and adding an edge vVi 

(where Vi is a cluster and v ∈ V0) whenever v sends edges to a significant proportion of 

the vertices in Vi, say we add vVi whenever v sends at least cm edges to Vi. (Recall that m 

denotes the size of the clusters.) The edges in R∗ of the form Viv are defined in a similar 

way. Let Gc be the oriented graph obtained from the pure oriented graph G∗ by making 

all the nonempty bipartite subgraphs between the clusters complete (and orienting all the 

edges between these clusters in the direction induced by R) and adding the vertices in V0 

as well as all the edges of G between V0 and V (G)\V0. Suppose that W is a balanced closed 

walk in R∗ which visits all the vertices lying on a cycle C ∈ C precisely mC ≤ m times. 

Furthermore, suppose that |V0| ≤ cm/2 and that the vertices in V0 have distance at least 3 

from each other on W . Then by ‘winding around’ each cycle C ∈ C precisely m − mC 

times (at the point when W first visits C) we can obtain a Hamilton cycle in Gc . Indeed, 

the two conditions on V0 ensure that the neighbours of each v ∈ V0 on the Hamilton cycle 

can be chosen amongst the at least cm neighbours of v in the neighbouring clusters of v 

on W in such a way that they are distinct for different exceptional vertices. The idea 

then is to apply the Blow-up lemma to show that this Hamilton cycle corresponds to one 

in G. So our aim is to find such a balanced closed walk in R∗ . However, as indicated in 
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Section 4.3, the difficulties arising when trying to ensure that the exceptional vertices lie
 

on this walk will force us to apply the above argument to the subgraphs induced by a 

random partition of our given oriented graph G. 

Let us now go back to the case when R∗ is an arbitrary digraph and C is a collection 

of disjoint cycles in R∗ . Given vertices a, b ∈ R∗ , a shifted a-b walk is a walk of the form 

W = aa1C1b1a2C2b2 . . . atCtbtb 

where C1, . . . , Ct are (not necessarily distinct) cycles from C and ai is the successor of bi 

on Ci for all i ≤ t. (We might have t = 0. So an edge ab is a shifted a-b walk.) We 

call C1, . . . , Ct the cycles which are traversed by W . So even if the cycles C1, . . . , Ct are 

not distinct, we say that W traverses t cycles. Note that for every cycle C ∈ C the walk 

W − {a, b} visits the vertices on C an equal number of times. Thus it will turn out that 

by joining the cycles from C suitably via shifted walks and incorporating those vertices 

of R∗ not covered by the cycles from C we can obtain a balanced closed walk on R∗ . 

Our next lemma will be used to show that if R∗ is oriented and δ∗(R∗) ≥ (3/2+α)|R∗| 

then any two vertices of R∗ can be joined by a shifted walk traversing only a small number 

of cycles from C (see Corollary 4.10). The lemma itself shows that the δ∗ condition implies 

expansion, and this will give us the ‘expansion with respect to shifted neighbourhoods’ 

we need for the existence of shifted walks. The proof of Lemma 4.8 is similar to that of 

Theorem 4.7. 

Lemma 4.8. Let R∗ be an oriented graph on N vertices with δ∗(R∗) ≥ (3/2 + α)N for 

some α > 0. If X ⊆ V (R∗) is nonempty and |X| ≤ (1−α)N then |N+(X)| ≥ |X|+αN/2. 

Proof. For simplicity, we write δ := δ(R∗), δ+ := δ+(R∗) and δ− := δ−(R∗). Suppose 

the assertion is false, i.e. there exists X ⊆ V (R∗) with |X| ≤ (1 − α)N and 

N+(X) < |X| + αN/2. (4.1) 
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We consider the following partition of V (R∗): 

A := X ∩ N+(X), B := N+(X)\X, C := V (R ∗ )\(X ∪ N+(X)), D := X\N+(X). 

(4.1) gives us 

|D| + αN/2 > |B|. (4.2) 

Suppose A � ∅.= If |N+(x) ∩ A| ≥ |A|/2 for every x ∈ A then we would have e(A) ≥ 

|A|2/2, contradicting the fact that e(A) ≤ |A|(|A| − 1). Thus there exists x ∈ A with 

|N+(x) ∩ A| < |A|/2. From this we can that δ+ ≤ |N+(x)| < |B| + |A|/2. Combining this 

with (4.2) we get 

|A| + |B| + |D| ≥ 2δ+ − αN/2. (4.3) 

If A = ∅ then N+(X) = B and so (4.2) implies |D| + αN/2 ≥ |B| ≥ δ+ . Thus (4.3) 

again holds. Similarly, if C �= ∅ then considering the inneighbourhood of a suitable vertex 

x ∈ C gives 

|B| + |C| + |D| ≥ 2δ− − αN/2. (4.4) 

Suppose C = ∅: then if D = ∅ also we have V (R∗) = X ∪ N+(X) = (X \ N+(X)) ∪ 

N+(X) = N+(X), but the right-hand side has order less than (1 − α/2)N , which is a 

contradiction. Thus D �= ∅ and so N−(D) ⊆ B (as C �= ∅), which gives |B| ≥ δ− . 

Together with (4.2) this shows that (4.4) holds in this case too. 

If D = ∅ then trivially |A| + |B| + |C| = N ≥ δ. If not, then for any x ∈ D we have 

N(x) ∩ D = ∅ and hence 

2|A| + 2|B| + 2|C| ≥ 2 |N(x)| ≥ 2δ. (4.5) 

Combining (4.3), (4.4) and (4.5) gives 

3|A| + 4|B| + 3|C| + 2|D| ≥ 2δ− + 2δ+ + 2δ − αN = 2δ ∗ (R ∗ ) − αN. 
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Finally, substituting (4.2) gives
 

3N + αN/2 ≥ 2δ ∗ (R ∗ ) − αN ≥ 3N + αN, 

which is a contradiction. � 

As indicated before, we will now use Lemma 4.8 to prove the existence of shifted walks 

in R∗ traversing only a small number of cycles from a given 1-factor of R∗ . For this (and 

later on) the following fact will be useful. 

Fact 4.9. Let G be an oriented graph with δ∗(G) ≥ (3/2+α)|G| for some constant α > 0. 

Then δ0(G) > α|G|. 

Proof. Suppose that δ−(G) ≤ α|G|. As G is oriented we have that δ+(G) < |G|/2 and 

so δ∗(G) < 3n/2 + α|G|, a contradiction. The proof for δ+(G) is similar. � 

Corollary 4.10. Let R∗ be an oriented graph on N vertices with δ∗(R∗) ≥ (3/2 + α)N 

for some α > 0 and let C be a 1-factor in R∗ . Then for any distinct x, y ∈ V (R∗) there 

exists a shifted x-y walk traversing at most 2/α cycles from C. 

Proof. Let Xi be the set of vertices v for which there is a shifted x-v walk which 

traverses at most i cycles. So X0 = N+(x) � ∅ and Xi+1 = N+(Xi 
− 

i = ) ∪ Xi, where X− 

is the set of all predecessors of the vertices in Xi on the cycles from C. Suppose that 

|Xi| ≤ (1 − α)N . Then Lemma 4.8 implies that 

|Xi+1| ≥ |N+(X−)| ≥ |X−| + αN/2 = |Xi| + αN/2.i i 

Thus |Xi| ≥ iαN/2 for all i, so taking i∗ := �2/α� − 1 we have |Xi
− 
∗ | = |Xi∗ | ≥ (1 − α)N . 

But |N−(y)| ≥ δ−(R∗) > αN by Fact 4.9 and so N−(y) ∩ Xi
− 
∗ =� ∅. In other words, 

y ∈ N+(Xi
− 
∗ ) and so there is a shifted x-y walk traversing at most i∗ + 1 cycles. � 
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Corollary 4.11. Let R∗ be an oriented graph with δ∗(R∗) ≥ (3/2 + α) |R∗| for some 

0 < α ≤ 1/6 and let C be a 1-factor in R∗ . Then R∗ contains a closed walk which is 

balanced w.r.t. C and meets every vertex at most |R∗|/α times and traverses each edge 

lying on a cycle from C at least once. 

Proof. Let C1, . . . , Cs be an arbitrary ordering of the cycles in C. For each cycle Ci pick 

a vertex ci ∈ Ci. Denote by c + 
i the successor of ci on the cycle Ci. Corollary 4.10 implies 

+that for all i there exists a shifted ci -ci+1 walk Wi traversing at most 2/α cycles from C, 

where cs+1 := c1. Then the closed walk 

W � + + + +:= c1 C1c1W1c C2c2 . . .Ws−1cs Cscs2 Wsc1 

is balanced w.r.t. C by the definition of shifted walks. Since each shifted walk Wi traverses 

at most 2/α cycles of C, the closed walk W � meets each vertex at most (|R∗| /3)(2/α) + 1 

times. Let W denote the walk obtained from W � by ‘winding around’ each cycle C ∈ C 

once more. (That is, for each C ∈ C pick a vertex v on C and replace one of the occurences 

of v on W � by vCv.) Then W is still balanced w.r.t. C, traverses each edge lying on a cycle 

from C at least once and visits each vertex of R∗ at most (|R∗| /3)(2/α) + 2 ≤ |R∗| /α 

times as required. � 

4.5 Proof of Theorem 4.3 

4.5.1 Partitioning G and applying the Diregularity lemma 

Let G be an oriented graph on n vertices with δ∗(G) ≥ (3/2+α)n for some constant α > 0. 

Clearly we may assume that α � 1. Define positive constants ε, d and integers MA
� ,MB 

� 

such that 

1/MA 
� � 1/MB 

� � ε � d � α � 1. 
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Throughout this section, we will assume that n is sufficiently large compared to MA 
� for 

our estimates to hold. Choose a subset A ⊆ V (G) with (1/2 − ε)n ≤ |A| ≤ (1/2 + ε)n 

and such that every vertex x ∈ G satisfies 

d+(x) α |N+(x) ∩ A| d+(x) α − ≤ ≤ + 
n 10 |A| n 10 

and such that N−(x) ∩ A satisfies a similar condition. (The existence of such a set A can 

be shown by considering a random partition of V (G).) Apply the Diregularity lemma 

(Lemma 3.1) with parameters ε2 , d + 8ε2 and MB 
� to G − A to obtain a partition of 

the vertex set of G − A into k ≥ MB 
� clusters V1, . . . , Vk and an exceptional set V0. Set 

B := V1 ∪ . . . ∪ Vk and mB := |V1| = · · · = |Vk|. Let RB denote the reduced oriented 

graph obtained by an application of Lemma 3.2 and let G∗ be the pure oriented graph. B 

Since δ+(G − A)/|G − A| ≥ δ+(G)/n − α/9 by our choice of A, Lemma 3.2 implies that 

δ+(RB) ≥ (δ+(G)/n − α/8)|RB|. (4.6) 

Similarly 

δ−(RB ) ≥ (δ−(G)/n − α/8)|RB | (4.7) 

and δ(RB) ≥ (δ(G)/n − α/4)|RB|. Altogether this implies that 

δ ∗ (RB ) ≥ (3/2 + α/2)|RB |. (4.8) 

So Theorem 4.7 gives us a 1-factor CB of RB . We now apply Proposition 3.10 with CB 

playing the role of S, ε2 playing the role of ε and d + 8ε2 playing the role of d. This shows 

that by adding at most 4ε2n further vertices to the exceptional set V0 we may assume 

that each edge of RB corresponds to an ε-regular pair of density d (in the underlying � 
graph of G∗ ) and that each edge in the union C ⊆ RB of all the cycles from CBB C∈CB 

corresponds to an (ε, d)-super-regular pair. (More formally, this means that we replace the 

clusters with the subclusters given by Proposition 3.10 and replace G∗ with its oriented B 
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subgraph obtained by deleting all edges not corresponding to edges of the graph G�
CB 

given by Proposition 3.10, i.e. the underlying graph of G∗ will now be G� .) Note that B CB 

the new exceptional set now satisfies |V0| ≤ εn. 

Apply Corollary 4.11 with R∗ := RB to find a closed walk WB in RB which is balanced 

w.r.t. CB , meets every cluster at most 2|RB|/α times and traverses all the edges lying on 

a cycle from CB at least once. 

Let Gc be the oriented graph obtained from G∗ by adding all the Vi -Vj edges for all B B 

those pairs Vi, Vj of clusters with ViVj ∈ E(RB ). Since 2|RB |/α � mB , we could make WB 

into a Hamilton cycle of Gc by ‘winding around’ each cycle from CB a suitable number B 

of times. We could then apply the Blow-up lemma to show that this Hamilton cycle 

corresponds to one in G∗ However, as indicated in Section 4.3, we will argue slightly B . 

differently as it is not clear how to incorporate all the exceptional vertices by the above 

approach. 

Set εA := ε/|RB|. Apply the Diregularity lemma with parameters ε2 and M � 
A, d + 8ε2 

A A 

to G[A ∪ V0] to obtain a partition of the vertex set of G[A ∪ V0] into � ≥ MA 
� clusters 

V1 
�, . . . , V � 

� and an exceptional set V0 
� . Let A� := V1 

� ∪ · · · ∪ V� 
�, let RA denote the reduced 

oriented graph obtained from Lemma 3.2 and let G∗ be the pure oriented graph. Similarly A 

as in (4.8), Lemma 3.2 implies that δ∗(RA) ≥ (3/2 + α/2)|RA| and so, as before, we can 

apply Theorem 4.7 to find a 1-factor CA of RA. Then as before, Proposition 3.10 implies 

that by adding at most 4ε2 
An further vertices to the exceptional set V0 

� we may assume 

that each edge of RA corresponds to an εA-regular pair of density d and that each edge in � 
the union C∈CA 

C ⊆ RA of all the cycles from CA corresponds to an (εA, d)-super-regular 

pair. So we now have that 

|V0 
�| ≤ εAn = εn/|RB|. (4.9) 

Similarly as before, Corollary 4.11 gives us a closed walk WA in RA which is balanced 

w.r.t. CA, meets every cluster at most 2|RA|/α times and traverses all the edges lying on 

a cycle from CA at least once. 
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4.5.2 Incorporating V � into the walk WB0 

Recall that the balanced closed walk WB in RB corresponds to a Hamilton cycle in Gc 
B. 

Our next aim is to extend this walk to one which corresponds to a Hamilton cycle which 

also contains the vertices in V0 
� . (The Blow-up lemma will imply that the latter Hamilton 

cycle corresponds to one in G[B ∪ V0 
�].) We do this by extending WB into a walk on a 

suitably defined digraph R∗ with vertex set V (RB ) ∪ V � in such a way that the B ⊇ RB 0 

new walk is balanced w.r.t. CB . R∗ is obtained from the union of RB and the set V � B 0 

by adding an edge vVi between a vertex v ∈ V0 
� and a cluster Vi ∈ V (RB ) whenever 

N+ 
G (v) ∩ Vi > αmB /10 and adding the edge Viv whenever N− 

G (v) ∩ Vi > αmB/10. 

Thus 

|N+(v) ∩ B| ≤ |N+ (v)|mB + |RB|αmB /10.G R∗ 
B 

Hence 

|N+ (v)| ≥ |N+(v) ∩ B|/mB − α|RB|/10 ≥ |N+(v) ∩ B||RB|/|B| − α|RB|/10R∗ G GB 

≥ (|N+ (v)| − |V0|)|RB|/|G − A| − α|RB |/10G−A

≥ (δ+(G)/n − α/2)|RB| ≥ α|RB|/2. (4.10) 

(The penultimate inequality follows from the choice of A and the final one from Fact 4.9.) 

Similarly 

|NR
− 
∗ (v)| ≥ α|RB |/2. 
B 

Given a vertex v ∈ V � pick U1 ∈ N+ (v), U2 ∈ N− (v)\{U1}. Let C1 and C2 denote the 0 R∗ R∗ 
B B 

cycles from CB containing U1 and U2 respectively. Let U1 
− be the predecessor of U1 on 

C1, and U+ be the successor of U2 on C2. (4.10) implies that we can ensure U− =� U+ .2 1 2 

(However, we may have C1 = C2.) Corollary 4.10 gives us a shifted walk Wv from U1 
− to 

U2
+ traversing at most 2/(α/2) = 4/α cycles of CB . To incorporate v into the walk WB, 

recall that WB traverses all those edges of RB which lie on cycles from CB at least once. 
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C1 C2

U−
1

U1 U2

U+
2

v
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Figure 4.2: Incorporating the exceptional vertex v.
 

Replace one of the occurences of U1 
−U1 on WB with the walk 

W � U+:= U− C2U2vU1C1U1,v 1 Wv 2 

i.e. the walk that goes from U1 
− to U2

+ along the shifted walk Wv, it then winds once 

around C2 but stops in U2, then it goes to v and further to U1, and finally it winds 

around C1. The walk obtained from WB by including v in this way is still balanced 

w.r.t. CB, i.e. each vertex in RB is visited the same number of times as every other vertex 

lying on the same cycle from CB . We add the extra loop around C1 because when applying 

the Blow-up lemma we will need the vertices in V0 
� to be at a distance of at least 4 from 

each other. Using this loop, this can be ensured as follows. After we have incorporated v 

into WB we ‘ban’ all the 6 edges of (the new walk) WB whose endvertices both have 

distance at most 3 from v. The extra loop ensures that every edge in each cycle from C 

has at least one occurence in WB which is not banned. (Note that we do not have to add 

an extra loop around C2 since if C2 �= C1 then all the banned edges of C2 lie on Wv 
� but 

each edge of C2 also occurs on the original walk WB .) Thus when incorporating the next 

exceptional vertex we can always pick an occurence of an edge which is not banned to 

be replaced by a longer walk. (When incorporating v we picked U1 
−U1.) Repeating this 

argument, we can incorporate all the exceptional vertices in V0 
� into WB in such a way 

that all the vertices of V0 
� have distance at least 4 on the new walk WB . 

Recall that Gc
B denotes the oriented graph obtained from the pure oriented graph G∗ 

B 
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by adding all the Vi -Vj edges for all those pairs Vi, Vj of clusters with ViVj ∈ E(RB). 

Let Gc 
B∪V

�as all the B V- 0

denote the graph obtained from Gc 
B -B edges of G as well
 � 

0

edges of G.
 Moreover, recall that the vertices in V � have distance at least 4 

�by adding all the V0 

0

and α � 1. As already observed at the beginning of Section 4.4, altogether this shows that 

�|from each other on W and VB 0 | ≤ εn/|RB| � αmB/20 by (4.9) and since mB |RB| ≈ n/2 

by winding around each cycle from CB , one can obtain a Hamilton cycle CB
c 
∪V � 

0 
of Gc 

B∪V � 
0 

from the walk WB, provided that WB visits any cluster Vi ∈ RB at most mB times. To see 

that the latter condition holds, recall that before we incorporated the exceptional vertices 

�in V0 into WB , each cluster was visited at most 2|RB |/α times. When incorporating an 

exceptional vertex we replaced an edge of WB by a walk whose interior visits every cluster 

�| | |2 R /α + 5 VB 0

at most 4/α + 2 ≤ 5/α times. Thus the final walk WB visits each cluster Vi ∈ RB at most 

(4.9)	 √ 
|/α ≤ 6εn/(α|RB |) ≤ εmB	 (4.11) 

times. Hence
 we
 have the desired Hamilton cycle CB
c 
∪V � 

0 
of Gc 

B∪V � 
0 
.
 Note that (4.11)
 

implies that we can choose CB
c 
∪V � 

0
in such a way that for each cycle C ∈ CB there is a 

subpath PC of CB
c 
∪V � 

0 
which winds around C at least
 

√ 
(1 − ε)mB (4.12) 

times in succession. 

4.5.3	 Applying the Blow-up lemma to find a Hamilton cycle 

in G[B ∪ V0 
�] 

Our next aim is to use the Blow-up lemma to show that CB
c 
∪V � 

0
corresponds to a Hamilton
 

� �∪ | | ∈cycle in G[B V ]. Recall that k R and that for each exceptional vertex V= vB 00

outneighbour U1 of v on WB is distinct from its inneighbour U2 on WB. We will apply 

the
 

the Blow-up lemma with H being the underlying graph of CB
c 
∪V � 

0 
and G∗ being the graph
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obtained from the underlying graph of G∗ by adding all the vertices v ∈ V � and joining B 0 

each such v to all the vertices in NG 
+(v) ∩ U1 as well as to all the vertices in NG 

−(v) ∩ U2. 

Recall that after applying the Diregularity lemma to obtain the clusters V1, . . . , Vk we 

used Proposition 3.10 to ensure that each edge of RB corresponds to an ε-regular pair 

of density d (in the underlying graph of G∗ and thus also in G∗) and that each edge of B � 
the union C∈CB 

C ⊆ RB of all the cycles from CB corresponds to an (ε, d)-super-regular 

pair. 

V0 
� will play the role of V0 in the Blow-up lemma and we take L0, L1, . . . , Lk to be the 

partition of H induced by V0 
�, V1, . . . , Vk. φ : L0 → V0 

� will be the obvious bijection (i.e. the 

identity). To define the set I ⊆ V (H) of vertices of distance at least 4 from each other 

which is used in the Blow-up lemma, let PC 
� be the subpath of H corresponding to PC 

(for all C ∈ CB ). For each i = 1, . . . , k, let Ci ∈ CB denote the cycle containing Vi and 

let Ji ⊆ Li consist of all those vertices in Li ∩ V (PC
� 
i 
) which have distance at least 4 from 

the endvertices of PC
� 
i 
. Thus in the graph H each vertex u ∈ Ji has one of its neighbours 

in the set L− 
i corresponding to the predecessor of Vi on Ci and its other neighbour in the 

set Li 
+ corresponding to the successor of Vi on Ci. Moreover, all the vertices in Ji have 

distance at least 4 from all the vertices in L0 and (4.12) implies that |Ji| ≥ 9mB /10. It is 

easy to see that one can greedily choose a set Ii ⊆ Ji of size mB /10 such that the vertices �k �kin i=1 Ii have distance at least 4 from each other. We take I := L0 ∪ i=1 Ii. 

Let us now check conditions (C1)–(C9). (C1) holds with K1 := 1 since |L0| = |V �| ≤ 0 

εAn = εn/k ≤ d|H|. (C2) holds by definition of I. (C3) holds since H is a Hamilton 

cycle in Gc (c.f. the definition of the graph Gc ). This also implies that for every B∪V �B∪V0 
� 

0 

edge xy ∈ H with x ∈ Li, y ∈ Lj (i, j ≥ 1) we must have that ViVj ∈ E(RB ). Thus (C6) 

holds as every edge of RB corresponds to an ε-regular pair of clusters having density d. 

(C4) holds with K2 := 1 because 

(4.9) 
|NH (L0) ∩ Li| ≤ 2 |L0| = 2 |V �| ≤ 2εn/|RB | ≤ 5εmB ≤ dmB .0 
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For (C5) we need to find a set D ⊆ I of buffer vertices. Pick any set Di ⊆ Ii with 

|Di| = δ�mB and let D := 
�k

i=1 Di. Since Ii ⊆ Ji we have that |NH (D) ∩ Lj | = 2δ�mB for 

all j = 1, . . . , k. Hence 

||NH (D) ∩ Li| − |NH (D) ∩ Lj || = 0 

for all 1 ≤ i < j ≤ k and so (C5) holds. (C7) holds with c := α/10 by our choice U1 ∈ 

NR
+ 
∗ (v) and U2 ∈ NR

− 
∗ (v) of the neighbours of each vertex v ∈ V0 

� in the walk WB (c.f. the 
B B 

definition of the graph R∗ ).B 

(C8) and (C9) are now the only conditions we need to check. Given a set Ei ⊆ Vi 

of size at most ε�mB, we wish to find Fi ⊆ (Li ∩ (I \ D)) = Ii \ D and a bijection 

φi : Ei → Fi such that every v ∈ Ei has a large number of neighbours in every cluster Vj 

for which Lj contains a neighbour of φi(v). Pick any set Fi ⊆ Ii \ D of size |Ei|. (This 

can be done since |D ∩ Ii| = δ�mB and so |Ii \ D| ≥ mB/10 − δ�mB � ε�mB .) Let 

φi : Ei → Fi be an arbitrary bijection. To see that (C8) holds with these choices, consider 

any vertex v ∈ Ei ⊆ Vi and let j be such that Lj contains a neighbour of φi(v) in H. 

Since φi(v) ∈ Fi ⊆ Ii ⊆ Ji, this means that Vj must be a neighbour of Vi on the cycle 

Ci ∈ CB containing Vi. But this implies that |NG∗ (v) ∩ Vj | ≥ (d − ε)mB since each edge of � 
the union C∈CB 

C ⊆ RB of all the cycles from CB corresponds to an (ε, d)-super-regular 

pair in G∗ . �kFinally, writing F := i=1 Fi we have 

|NH (F ) ∩ Li| ≤ 2ε� mB . 

This holds since Fj ⊆ Jj implies that each element of Fj has its two neighbours in H in L+ 
j 

and Lj 
−, so each of ≤ ε�mB elements in Fj contributes at most two to the intersection 

with a given Li. Thus (C9) is satisfied with K3 := 2. Hence (C1)–(C9) hold and so we 

can apply the Blow-up lemma to obtain a Hamilton cycle in G∗ such that the image of Li 

is Vi for all i = 1, . . . , k and the image of each x ∈ L0 is φ(x) ∈ V0. (Recall that G∗ was 
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obtained from the underlying graph of G∗ by adding all the vertices v ∈ V � and joining B 0 

each such v to all the vertices in NG 
+(v) ∩ U1 as well as to all the vertices in NG 

−(v) ∩ U2, 

where U1 and U2 are the neighbours of v on the walk WB.) Using the fact that H was 

obtained from the (directed) Hamilton cycle Cc and since U1 �= U2 for each v ∈ V0 
�, it is B∪V0 

� 

easy to see that our Hamilton cycle in G∗ corresponds to a (directed) Hamilton cycle CB 

in G[B ∪ V0 
�]. 

4.5.4 Finding a Hamilton cycle in G 

The last step of the proof is to find a Hamilton cycle in G[A�] which can be connected 

with CB into a Hamilton cycle of G, recalling that A = V � ∪ . . . ∪ V � Pick an arbitrary 1 � . 

edge v1v2 on CB and add an extra vertex v ∗ to G[A�] with outneighbourhood NG 
+(v1) ∩ A� 

and inneighbourhood NG 
−(v2) ∩ A� . A Hamilton cycle CA in the digraph thus obtained 

from G[A�] can be extended to a Hamilton cycle of G by replacing v ∗ with v2CBv1. To 

find such a Hamilton cycle CA, we can argue as before. This time, there is only one 

exceptional vertex, namely v ∗, which we incorporate into the walk WA. Note that by our 

choice of A and B the analogue of (4.10) is satisfied and so this can be done as before. 

We then use the Blow-up lemma to obtain the desired Hamilton cycle CA corresponding 

to this walk. 

4.6 Ore-type Condition 

The following observation guarantees that every oriented graph as in Theorem 4.4 has 

large minimum semidegree. 

Fact 4.12. Suppose that 0 < α < 1 and that G is an oriented graph such that d+(x) + 

d−(y) ≥ (3/4 + α)|G| whenever xy /∈ E(G). Then δ0(G) ≥ |G|/8 + α|G|/2. 

Proof. Suppose not. We may assume that δ+(G) ≤ δ−(G). Pick a vertex x with 

d+(x) = δ+(G). Let Y be the set of all those vertices y with xy /∈ E(G). Thus |Y | ≥ 
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7|G|/8 − α|G|/2. Moreover, d−(y) ≥ (3/4 + α)|G| − d+(x) ≥ 5|G|/8 + α|G|/2. Hence 

e(G) ≥ |Y |(5|G|/8 + α|G|/2) > 35|G|2/64, a contradiction. � 

The proof of Theorem 4.4 is similar to that of Theorem 4.3. Fact 4.12 and Lemma 3.2 

together imply that the reduced oriented graph RA (and similarly RB) has minimum 

semidegree at least |R|/8 and it inherits the Ore-type condition from G (i.e. it satisfies 

condition (d) of Lemma 3.2 with c = 3/4 + α). Together with Lemma 4.13 below (which 

is an analogue of Lemma 4.8) this implies that RA (and RB as well) is an expander in 

the sense that |N+(X)| ≥ |X| + α|RA|/2 for all X ⊆ V (RA) with |X| ≤ (1 − α)|RA|. 

In particular, RA (and similarly RB) has a 1-factor: To see this, note that the above 

expansion property together with Fact 4.12 imply that for any X ⊆ V (RA), we have 

|N+ (X)| ≥ |X|. Together with Hall’s theorem, this means that the following bipartite RA 

graph H has a perfect matching: the vertex classes W1,W2 are 2 copies of V (RA) and we 

have an edge in H between w1 ∈ W1 and w2 ∈ W2 if there is an edge from w1 to w2 in 

RA. But clearly a perfect matching in H corresponds to a 1-factor in RA. Using these 

facts, one can now argue precisely as in the proof of Theorem 4.3. 

Lemma 4.13. Suppose that 0 < ε � α � 1. Let R∗ be an oriented graph on N 

vertices and let U be a set of at most εN2 ordered pairs of vertices of R∗ . Suppose that 

d+(x) + d−(y) ≥ (3/4 + α)N for all xy ∈/ E(R∗) ∪ U . Then any X ⊆ V (R∗) with 

αN ≤ |X| ≤ (1 − α)N satisfies |N+(X)| ≥ |X| + αN/2. 

Proof. The proof is similar to that of Lemma 4.8. Suppose that Lemma 4.13 does not 

hold and let X ⊆ V (R∗) with αN ≤ |X| ≤ (1 − α)N be such that 

N+(X) < |X| + αN/2. (4.13) 

√ 
Call a vertex of R∗ good if it lies in at most εN pairs from U . Thus all but at most
 
√ 

2 εN vertices of R∗ are good. As in the proof of Lemma 4.8 we consider the following 
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partition of V (R∗): 

A := X ∩ N+(X), B := N+(X)\X, C := V (R ∗ )\(X ∪ N+(X)), D := X\N+(X). 

(4.13) implies 

|D| + αN/2 > |B|. (4.14) 

√ 
Suppose first that |D| > 2 εN . It is easy to see that there are vertices x � y in D= 

such that xy, yx ∈/ U . Since no edge of R∗ lies within D we have xy, yx ∈/ E(R∗) and 

so d(x) + d(y) ≥ 3N/2 + 2αN . In particular, at least one of x, y has degree at least 

3N/4 + αN . But then 

|A| + |B| + |C| ≥ 3N/4 + αN. (4.15) 

√ 
If |D| ≤ 2 εN then |A|+ |B|+ |C| ≥ N −|D| and so (4.15) still holds with room to spare. 

Note that (4.14) and (4.15) together imply that 2|A| + 2|C| ≥ 3N/2 + 2αN − 2|B| ≥ 

3N/2 − |B| − |D| ≥ N/2. Thus at least one of A, C must have size at least N/8. In 

particular, this implies that one of the following 3 cases holds. 

√ 
Case 1. |A|, |C| > 2 εN . 

Let A� be the set of all good vertices in A. By an averaging argument there exists 

x ∈ A� with |N+(x) ∩ A�| < |A�|/2. Since N+(A) ⊆ A ∪ B this implies that |N+(x)| < 

|B| + |A \ A�| + |A�|/2. Let C � ⊆ C be the set of all those vertices y ∈ C with xy /∈ U . 
√ 

Thus |C \ C �| ≤ εN since x is good. By an averaging argument there exists y ∈ C � with 

|N−(y) ∩ C �| < |C �|/2. But N−(C) ⊆ B ∪ C and so |N−(y)| < |B| + |C \ C �| + |C �|/2. 

Moreover, d+(x) + d−(y) ≥ 3N/4 + αN since xy /∈ E(R∗) ∪ U . Altogether this shows that 

|A�|/2 + |C �|/2 + 2|B| ≥ d+(x) + d−(y) − |A \ A�| − |C \ C �| ≥ 3N/4 + αN/2. 

Together with (4.15) this implies that 3|A| + 6|B| + 3|C| ≥ 3N + 3αN , which in turn 

together with (4.14) yields 3|A| + 3|B| + 3|C| + 3|D| ≥ 3N + 3αN/2, a contradiction. 
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√ √ 
Case 2. |A| > 2 εN and |C| ≤ 2 εN . 

As in Case 1 we let A� be the set of all good vertices in A and pick x ∈ A� with |N+(x)| < 
√ 

|B| + |A \ A�| + |A�|/2. Note that (4.14) implies that |D| > N −|X|− |C|− αN/2 ≥ εN . 

Pick any y ∈ D such that xy /∈ U . Then xy /∈ E(R∗) since R∗ contains no edges from A 

to D. Thus d+(x) + d−(y) ≥ 3N/4 + αN . Moreover, N−(y) ⊆ B ∪ C. Altogether this 

gives 

|A�|/2 + 2|B| ≥ d+(x) + d−(y) − |A \ A�| − |C| ≥ 3N/4 + αN/2. 

As in Case 1 one can combine this with (4.15) and (4.14) to get a contradiction. 

√ √ 
Case 3. |A| ≤ 2 εN and |C| > 2 εN . 

This time we let C � be the set of all good vertices in C and pick y ∈ C � with |N−(y) ∩ C �| < 

|C �|/2. Hence |N−(y)| < |B|+|C \C �|+|C �|/2. Moreover, we must have |D| = |X|−|A| > 
√ 
εN . Pick any x ∈ D such that xy /∈ U . Then xy /∈ E(R∗) since R∗ contains no edges 

from D to C. Thus d+(x) + d−(y) ≥ 3N/4 + αN . Moreover, N+(x) ⊆ A ∪ B. Altogether 

this gives 

|C �|/2 + 2|B| ≥ d+(x) + d−(y) − |A| − |C \ C �| ≥ 3N/4 + αN/2, 

which in turn yields a contradiction as before. � 
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CHAPTER 5
 

SHORT CYCLES
 

5.1 Introduction 

5.1.1 Cycles of Given Length in Oriented Graphs 

A central problem in digraph theory is the Caccetta-Häggkvist conjecture [18] (which 

generalised an earlier conjecture of Behzad, Chartrand and Wall [8]): 

Conjecture 5.1. An oriented graph on n vertices with minimum outdegree d contains a 

cycle of length at most �n/d�. 

Note that in Conjecture 5.1 it does not matter whether we consider oriented graphs 

or general digraphs. Chvátal and Szemerédi [22] showed that a minimum outdegree of at 

least d guarantees a cycle of length at most �2n/(d+1)�. For most values of n and d, this is 

improved by a result of Shen [68], which guarantees a cycle of length at most 3�0.44n/d�. 

Chvátal and Szemerédi [22] also showed that Conjecture 5.1 holds if we increase the 

bound on the cycle length by adding a constant c. They showed that c := 2500 will do. 

Nishimura [65] refined their argument to show that one can take c := 304. The next result 

of Shen gives the best known constant. 

Theorem 5.2 (Shen [67]). An oriented graph on n vertices with minimum outdegree d 

contains a cycle of length at most �n/d� + 73. 
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The special case of Conjecture 5.1 that has attracted most interest is when d = �n/3�.
 

Here the conjecture is that a minimum outdegree of �n/3� implies a cycle of length 3, 

that is, a directed triangle. The following bound towards this case improves an earlier 

one of Caccetta and Häggkvist [18]. 

Theorem 5.3 (Shen [67]). If G is any oriented graph on n vertices with δ+(G) ≥ 0.355n 

then G contains a directed triangle. 

If one considers the minimum semi-degree δ0(G) := min{δ+(G), δ−(G)} instead of the 

minimum outdegree δ+(G), then the constant can be improved slightly. The best known 

value for the constant in this case is currently 0.346 [43]. See the monograph [5] or the 

survey [64] for further partial results on Conjecture 5.1. 

We consider the natural and related question of which minimum semi-degree forces 

cycles of length exactly � ≥ 4 in an oriented graph. We will often refer to cycles of length � 

as �-cycles. Our main result answers this question completely when � is not a multiple 

of 3. 

Theorem 5.4. Let � ≥ 4. If G is an oriented graph on n ≥ 1010� vertices with δ0(G) ≥ 

�n/3� + 1 then G contains an �-cycle. Moreover for any vertex u ∈ V (G) there is an 

�-cycle containing u. 

The extremal example showing this to be best possible for � ≥ 4, � �≡ 0 mod 3 is given 

by the blow-up of a 3-cycle. More precisely, let G be the oriented graph on n vertices 

formed by dividing V (G) into 3 vertex classes V1, V2, V3 of as equal size as possible and 

adding all possible edges from Vi to Vi+1, counting modulo 3. Then this oriented graph 

contains no �-cycle and has minimum semi-degree �n/3�. 

Also, for all those � ≥ 4 which are multiples of 3, the ‘moreover’ part is best possible 

for infinitely many n. To see this, consider the modification of the above example formed 

by deleting a vertex from the largest vertex class and adding an extra vertex u with 

N+(u) = V2 and N−(u) = V1. This gives an oriented graph with minimum semi-degree 

�(n − 1)/3�. For � ≡ 0 mod 3 it contains no �-cycle through u. 
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Perhaps surprisingly, we can do much better than Theorem 5.4 for some cycle lengths
 

(if we do not ask for a cycle through a given vertex). Indeed, we conjecture that the 

correct bounds are those given by the obvious extremal example: when we seek an �

cycle, the extremal example is probably the blow-up of a k-cycle, where k ≥ 3 is the 

smallest integer which is not a divisor of �. 

Conjecture 5.5. Let � ≥ 4 be a positive integer and let k ≥ 3 be minimal such that k does 

not divide �. Then there exists an integer n0 = n0(�) such that every oriented graph G on 

n ≥ n0 vertices with minimum semi-degree δ0(G) ≥ �n/k� + 1 contains an �-cycle. 

It is easy to see that the only values of k that can appear in Conjecture 5.5 are of the 

form k = ps with k ≥ 3, where p ≥ 2 is a prime and s a positive integer. Theorem 5.4 

confirms this conjecture in the case when k = 3. The following result implies that Con

jecture 5.5 is approximately true when k = 4, 5 and � is sufficiently large. It also gives 

weaker bounds on the minimum semi-degree for large values of k. 

Theorem 5.6. Let � ≥ 4 be a positive integer and let k ≥ 3 be minimal such that k does 

not divide �. 

(i)	 There exists an integer n0 = n0(�) such that whenever k ≥ 150 and G is an oriented 

graph on n ≥ n0 vertices with δ+(G) ≥ n/k + 150n/k2 then G contains an �-cycle. 

(ii)	 If k = 4 and � ≥ 42 then for every ε > 0 there exists an integer n0 = n0(�, ε) such 

that every oriented graph G on n ≥ n0 vertices with δ0(G) ≥ n/k + εn contains an 

�-cycle. 

(iii)	 The analogue of (ii) holds if k = 5 and � ≥ 2550. 

Part (i) is obtained from Theorem 5.2 via a simple application of the Regularity lemma 

for digraphs (see Section 5.3). It would be interesting to find a proof which does not rely 

on the Regularity lemma. Moreover, part (i) suggests that one might be able to replace δ0 

by δ+ in Conjecture 5.5. Even replacing it in Theorem 5.4 would be interesting. 
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In view of Theorem 5.4 and the Caccetta-Häggkvist Conjecture one might wonder
 

whether a minimum semi-degree close to n/3 also forces a 3-cycle through any given 

vertex. However the next proposition (whose straightforward proof is given in Section 5.2) 

shows that the threshold in this case is much higher. 

Proposition 5.7. 

(i) If G is an oriented graph on n vertices with δ0(G) ≥ �2n/5� then for any vertex 

u ∈ V (G) there exists a 3-cycle containing u. 

(ii) For infinitely many n there exists an oriented graph G on n vertices with δ0(G) = 

�2n/5� containing a vertex u which does not lie on a 3-cycle. 

5.1.2 Arbitrary orientations of cycles 

It is natural to ask whether these results still hold if we ask for arbitrary orientations 

of short cycles. It appears that the semi-degree required depends on the so-called cycle-

type. Given an arbitrarily oriented �-cycle C, the cycle-type t(C) of C is the number of 

edges oriented forwards in C minus the number of edges oriented backwards in C. By 

traversing C in the opposite direction if necessary, we may assume that t(C) ≥ 0. An 

oriented �-cycle has cycle-type �. Arbitrarily oriented cycles of cycle-type 0 are precisely 

those for which there is a digraph homomorphism into an oriented path. (A digraph 

homomorphism is a mapping between digraphs which sends edges to edges.) Moreover, 

if t(C) ≥ 3 then t(C) is the maximum length of an oriented cycle into which there is a 

digraph homomorphism of C. 

Proposition 5.8. 

•	 Let � ≥ 4 and let α > 0. Then there exists n0 = n0(�, α) such that every oriented 

graph G on n ≥ n0 vertices with minimum semi-degree δ0(G) ≥ (1/3 + α)n contains 

every orientation of an �-cycle. 
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• Let α > 0 and let � be some positive constant. Then there exists n0 = n0(α, �) such 

that every oriented graph G on n ≥ n0 vertices with minimum semi-degree δ0(G) ≥ 

αn contains every cycle of length at most � and cycle-type 0. 

This result is proved in Section 5.4. Conjecture 5.5 has a natural strengthening to 

incorporate arbitrarily oriented cycles. 

Conjecture 5.9. Let C be an arbitrarily oriented cycle of length � ≥ 4 and cycle-

type t(C) ≥ 4. Let k be the smallest integer which is greater than 2 and does not di

vide t(C). Then there exists an integer n0 = n0(�, k) such that every oriented graph G on 

n ≥ n0 vertices with minimum semi-degree δ0(G) ≥ �n/k� + 1 contains C. 

As we shall see in Section 5.4, Conjecture 5.5 would imply an approximate version of 

Conjecture 5.9. 

5.1.3 Cycles of Given Length in Digraphs 

A straightforward application of the Regularity lemma shows that a solution to Conjec

ture 5.5 would also asymptotically give a result for general digraphs: Let δdi(�, n) denote 

the smallest integer d such that every digraph with n vertices and minimum semi-degree 

at least d contains an �-cycle and let δorient(�, n) denote the smallest integer d so that every 

oriented graph with n vertices and minimum semi-degree at least d contains an �-cycle. 

Proposition 5.10. For any � ≥ 3, 

δdi(�, n)
lim = 
n→∞ n 

⎧ ⎪⎪⎨ ⎪⎪⎩
 

1/2 if � is odd;
 

δorient(�,n)limn→∞ n otherwise. 

It is easy to see that these limits exist.1 We will prove Proposition 5.10 in Section 5.3. 

The corresponding density problem for digraphs was solved by Häggkvist and Thomassen. 
1Suppose for example that limn→∞ δorient(�, n)/n does not exist. Then there is an ε > 0 such that for 

every n� ∈ N there exist n2 > n1 ≥ n with c2 := δorient(�, n2)/n2 ≥ δorient(�, n1)/n1 + ε =: c1 + ε. Let 
G2 be any oriented graph on n2 vertices with δ0(G2) ≥ c2n2 − 1 (say) which does not contain an �-cycle. 
Pick a random set X ⊆ V (G2) of size n1. Then G2[X] has minimum semidegree at least (c2 − ε/2)n1, 
contradicting the fact that δorient(�, n1)/n1 = c1. 
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Let exdi(�, n) denote the largest number d so that there is digraph with n vertices and at 

least d edges which contains no �-cycle. Häggkvist and Thomassen [40] proved that
 

� � 

exdi(�, n) = 
n 
2 

+ 
(� − 2)n 

2 
. (5.1) 

The case � = 3 was proved earlier by Brown and Harary [15]. A transitive tournament 

(i.e. an acyclic orientation of a complete graph) shows that it does not make sense to con

sider this density problem for oriented graphs. More general extremal digraph problems 

are discussed in the surveys [16, 55]. 

5.2 Proofs of Theorem 5.4 and Proposition 5.7 

We begin with two immediate facts about oriented graphs which will prove very useful. 

Fact 5.11. If G is an oriented graph and X ⊆ V (G) is non-empty then e(X) ≤ |X|(|X|− 

1)/2. In particular, there exists x ∈ X with |N+(x) ∩ X| ≤ |X|/2 − 1/2 and thus 

|N+(X) \ X| ≥ |N+(x) \ X| ≥ δ0(G) − |X|/2 + 1/2. 

Fact 5.12. If G is an oriented graph on n vertices then the maximum size of an indepen

dent set is at most n − 2δ0(G). 

Proof of Proposition 5.7. First we prove (i). By Fact 5.11 there exists a vertex 

x ∈ N+(u) with 

|N+(x) \ N+(u)| ≥ δ0(G) − |N+(u)|/2 + 1/2. 

Hence 

|N+(u)| + |N−(u)| + |N+(x) \ N+(u)| ≥ 5δ0(G)/2 + 1/2 > n 

and so x must have an outneighbour in N−(u). 

For (ii), pick m ∈ N and define an oriented graph G on n := 5m−1 vertices as follows. 

Let A, B, C be disjoint vertex sets of sizes 2m − 1, 2m − 1 and m respectively. Add 

all possible edges from A to B, B to C and C to A. Let G[A] and G[B] induce regular 
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tournaments. So for example every vertex in A will have m − 1 outneighbours and m − 1 

inneighbours in A. Add a single vertex u with N+(u) := B and N−(u) := A. Then 

δ0(G) = 2m − 1 = �2n/5�. By construction u is not contained in a 3-cycle. 

We now prove Theorem 5.4 in a series of lemmas. Lemmas 5.13, 5.14 and 5.16 deal 

with the special cases � = 4, 5, 6. Lemmas 5.17 and 5.18 deal with the general case � ≥ 7. 

Lemma 5.13. If G is an oriented graph on n ≥ 4 vertices with δ0(G) ≥ �n/3� + 1 then 

for any vertex x ∈ V (G), G contains a 4-cycle through x. 

Proof. Assume that there is a vertex x ∈ V (G) for which no such cycle exists. Let X be 

a set of �n/3� + 1 outneighbours of x and Y be a set of �n/3� + 1 inneighbours. Suppose 

that both of the following hold. 

(i) There exists x� ∈ X with |N+(x�) \ (X ∪ Y )| ≥ (�n/3� + 1)/2. 

(ii) There exists y� ∈ Y with |N−(y�) \ (X ∪ Y )| ≥ (�n/3� + 1)/2. 

Then 

(N+(x �) ∩ N−(y ��)) \ (X ∪ Y ) = ∅ 

and hence the desired 4-cycle exists. So without loss of generality assume that (i) does 

not hold. (The case when (ii) does not hold is similar.) Let X � be the set of vertices 

x� ∈ X with d− (x�) > 0. Note that Fact 5.12 implies that X � �= ∅. Let x� ∈ X � be such X 

that d+ �) is minimal. Since N+(x�) ∩ (X \ X �) = ∅, Fact 5.11 implies that X� (x

|N+(x �) \ X| = |N+(x �) \ X �| ≥ δ0(G) − |X �|/2 ≥ δ0(G) − |X|/2 ≥ (�n/3� + 1)/2. 

Since we are assuming that (i) does not hold this means that x� has an outneighbour 

�� ∈ X of x� �� �y ∈ Y . By definition of X � there exists an inneighbour x . But then xx x y is 

the required 4-cycle. � 

Lemma 5.14. If G is an oriented graph on n ≥ 5 vertices with δ0(G) ≥ �n/3� + 1 then 

for any vertex x ∈ V (G), G contains a 5-cycle through x. 
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Proof. As N−(x) is not independent by Fact 5.12 we can pick vertices a, y ∈ N−(x) 

such that ya, ax, yx ∈ E(G). Let X be a set of �n/3� + 1 outneighbours of x and Y be a 

set of �n/3� + 1 inneighbours of y. Define Z := X ∩ Y . Clearly, it suffices to prove the 

next claim. 

Claim 1. There exists at least one of the following: 

(i) an x-y path of length 4, 

(ii) an x-y path of length 3 avoiding a. 

Note that x, y, a �∈ X ∪Y since G is an oriented graph. So we may assume that e(X, Y ) = 

0, as otherwise (ii) is satisfied. In particular, Z is independent and e(X, Z) = e(Z, Y ) = 0. 

The following claim immediately implies (i) (to see this, note that x, y /∈ N+(x�)∩N−(y�)). 

Claim 2. Both of the following hold. 

(a) There exists x� ∈ X with |N+(x�) \ (X ∪ Y )| ≥ (�n/3� + 1 + |Z|)/2. 

(b) There exists y� ∈ Y with |N−(y�) \ (X ∪ Y )| ≥ (�n/3� + 1 + |Z|)/2. 

We will only prove (a) (the argument for (b) is similar). If X \ Z = ∅ then X = Z and 

so X is independent. But |X| = �n/3� + 1 which contradicts Fact 5.12. So assume that 

X \ Z � � ∈ X \ Z be such that d+ (x�) is minimal. Fact 5.11 implies that = ∅ and let x X\Z 

d+ (x �) > δ0(G) − (|X| − |Z|)/2 ≥ (�n/3� + 1 + |Z|)/2. 
X\Z 

By assumption x� has no outneighbours in Y , so d+ (x�) = d+ (x�) and thus (a) holds. 
X\Z X∪Y 

(Recall that for X ⊆ V (G), X := V (G) \ X.) � 

In order to prove the cases � = 6 and � ≥ 7 of Theorem 5.4 we need some more 

notation. An xy-butterfly is an oriented graph with vertices x, y, z, a, b such that xa, xz, 

az, zb, zy, by are all the edges (Figure 5.1). The crucial fact about a butterfly is that 

it contains x-y paths of lengths 2, 3 and 4, and is thus a useful tool in finding cycles 
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x z y

a b

Figure 5.1: An xy-butterfly 

of prescribed length: any y-x path of length � − 2, � − 3 or � − 4 whose interior avoids 

the xy-butterfly yields an �-cycle containing x. The following fact tells us that a large 

minimum semi-degree guarantees the existence of a butterfly. 

Fact 5.15. If G is an oriented graph on n vertices with δ0(G) ≥ �n/3� + 1 then for any 

vertex x ∈ V (G) there exists a vertex y such that G contains an xy-butterfly. 

Proof. By Fact 5.12 the outneighbourhood of x is not independent, so pick an edge az 

in it. Reapply Fact 5.12 to find an edge by in the outneighbourhood of z. Note that as 

x, a ∈ N−(z) all the vertices are distinct. � 

Lemma 5.16. If G is an oriented graph on n ≥ 6 vertices with δ0(G) ≥ �n/3� + 1 then 

for any vertex x ∈ V (G), G contains a 6-cycle through x.
 

Proof. Fact 5.15 gives us an xy-butterfly for some vertex y ∈ V (G), with vertices a, b, z
 

as described in the definition of an xy-butterfly. To complete the proof we may assume
 

that each of the following holds.
 

(i) There is no y-x path of length 2. 

(ii) There is no y-x path of length 3 avoiding a. 

(iii) There is no y-x path of length 4 avoiding z. 

Indeed, it is easy to check that if one of these does not hold then this y-x path together 

with a suitable subpath of the xy-butterfly forms the required cycle. 

Pick Y ⊆ N+(y)\{a, x}, X ⊆ N−(x)\{y} such that |Y | = �n/3�−1 and |X| = �n/3�. 

Observe that b, z �∈ Y and a, z �∈ X. Moreover X ∩ Y = ∅ by (i). Let Y � := N+(Y ) \ Y , 
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X � := N−(X) \ X. Then X ∩ Y � = ∅ and Y ∩ X � = ∅ by (ii). Fact 5.11 implies that 

|Y �| ≥ �n/3�/2 + 2 and |X �| ≥ �n/3�/2 + 3/2. By (i) and the definitions of X and Y we 

have x, y �∈ X, Y, X �, Y � . Altogether this shows that 

n + |X � ∩ Y �| ≥ |X| + |Y | + |X �| + |Y �| + 2 ≥ 3�n/3� + 9/2 ≥ (n − 2) + 9/2. 

Hence |X � ∩ Y �| ≥ 3, and so (X � ∩ Y �) \ {z} � But this implies that there is a y-x path= ∅. 

of length 4 avoiding z. � 

The next two lemmas deal with the case � ≥ 7. 

Lemma 5.17. Let C be some positive integer. If G is an oriented graph on n ≥ 8 · 109C 

vertices with δ0(G) ≥ n/3 − C + 1 then for every pair x � y of vertices there exists an = 

x-y path of length 3, 4 or 5. 

Proof. Let ε := 1/104 and C � := 10C/ε. Let X be a set of �n/3� − 2C outneighbours 

of x in G − y and let Y be a set of �n/3�− 2C inneighbours of y in G − x, chosen so that 

|X \ Y |, |Y \ X| ≥ C. Let Z := X ∩ Y . If there is an X-Y edge then we have an x-y 

path of length 3. So suppose there is no such edge. In particular this implies that Z is 

independent and there are no X-Z or Z-Y edges. 

Let X � := N+(X \ Z) \ X and Y � := N−(Y \ Z) \ Y . Note that X � ∩ Y = ∅ and 

Y �∩X = ∅, as otherwise we have an X-Y edge. Moreover, we may assume that X �∩Y � = ∅, 

as otherwise we have an x-y path of length 4. As no vertex in X \ Z has an outneighbour 

in Z we have X � = N+(X \ Z) \ (X \ Z). Hence by Fact 5.11 

|X �| ≥ δ0(G) − |X \ Z|/2 ≥ �n/3�/2 + |Z|/2. 

Similarly, |Y �| ≥ �n/3�/2 + |Z|/2. Observe that this implies 

|V (G)\((X ∪Y )∪(X � ∪Y �))| = n−2(�n/3�−2C)+ |Z|−2(�n/3�/2+ |Z|/2) ≤ 4C. (5.2) 
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Note that
 

|X �| ≤ n−|X ∪Y |−|Y �| ≤ n−(2n/3−|Z|−4C)−(n/6+|Z|/2) = n/6+|Z|/2+4C. (5.3) 

We call a vertex x� ∈ X \ Z good if |N+(x�) \ X| ≥ n/6 + |Z|/2 − C � ≥ |X �| − 4C �/3 (the 

last inequality follows from (5.3)). Suppose that at least ε|X \ Z| vertices in X \ Z are 

not good. Since d+ (x�) ≥ δ0(G) − |N+(x�) \ (X \ Z)| = δ0(G) − |N+(x�) \ X| for every X\Z 

x� ∈ X \ Z this implies that 

e(X \ Z) ≥ ε|X \ Z|(δ0(G) − (n/6 + |Z|/2 − C �)) + (1 − ε)|X \ Z|(δ0(G) − |X �|) 

(5.3) 
≥ ε|X \ Z|(n/6 − |Z|/2 + C �/2) + (1 − ε)|X \ Z|(n/6 − |Z|/2 − 5C) 

= |X \ Z|(n/6 − |Z|/2 + εC �/2 − 5C(1 − ε)) 

≥ |X \ Z|(n/6 − |Z|/2) ≥ |X \ Z|2/2. 

But this is a contradiction as G is an oriented graph. Thus we may assume that all but 

at most ε|X \ Z| vertices in X \ Z are good, and hence, since |X �| ≥ n/6 ≥ 4C �/(3ε) we 

have 

e(X \ Z, X �) ≥ (1 − ε)|X \ Z|(|X �| − 4C �/3) ≥ (1 − 2ε)|X \ Z||X �|. (5.4) 

√ 
Call a vertex x� ∈ X � nice if |N−(x�) ∩ (X \ Z)| ≥ (1 − 2 ε)|X \ Z|. Then at least 

√ 
(1 − 2 ε)|X �| vertices in X � are nice, as otherwise 

√ √ √ 
e(X \ Z, X �) ≤ 2 ε|X �|(1 − 2 ε)|X \ Z| + (1 − 2 ε)|X �||X \ Z| < (1 − 2ε)|X �||X \ Z|, 

which contradicts (5.4). Consider a nice vertex x� ∈ X � \{y}. Note that N+(x�)∩(Y ∪Y �) 

is either empty or equal to {x} (as otherwise we get an x-y path of length 4 or 5). Since x� 
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√ 
is nice it has at most 2 ε|X \ Z| outneighbours in X \ Z and so 

(5.2) √ √ 
|N+(x �) ∩ X �| ≥ δ0(G) − 2 ε|X \ Z| − 1 − 4C ≥ n/3 − εn. (5.5) 

√ √ 
In particular, |X �| ≥ n/3 − εn. Similarly, |Y �| ≥ n/3 − εn. But |X ∪ Y | ≥ n/3 − C 

and so 
√ 

|X �| ≤ n − |X ∪ Y | − |Y �| ≤ n/3 + 2 εn. (5.6) 

√ √ 
Now we combine this with the fact that at least |X �| − 1 − 2 ε|X|� ≥ (1 − 3 ε)|X �| 

vertices in X � \ {y} are nice to obtain 

(5.5) √ √ (5.6) √ √ 
|X �|2/2 ≥ e(X �) ≥ (1−3 ε)|X �|(n/3− εn) ≥ (1−3 ε)|X �|(|X �|−3 εn) > 2|X �|2/3. 

This contradiction completes the proof. � 

Lemma 5.18. Suppose � ≥ 7 and n ≥ 1010�. If G is an oriented graph on n vertices with 

δ0(G) ≥ �n/3� + 1 then for every vertex x ∈ V (G), G contains an �-cycle through x. 

Proof. Fact 5.15 gives us an xy-butterfly for some vertex y ∈ V (G), with a, b and z 

as in the definition of an xy-butterfly. Greedily pick a path P of length � − 7 from y to 

some vertex v such that P avoids a, b, x, z (the minimum semi-degree condition implies 

the existence of such a path). 

Now apply Lemma 5.17 to G − ({a, b, z} ∪ (V (P ) \ {v})) with C := � (say) to find a 

v-x path of length 3, 4 or 5. Pick a path from x to y in the xy-butterfly of appropriate 

length to obtain the desired �-cycle through x. � 

5.3 Proofs of Theorem 5.6 and Proposition 5.10 

The following lemma implies that if we allow ourselves a linear ‘error term’ in the degree 

conditions then instead of finding an �-cycle, it suffices to look for a closed walk of length �. 

We will use (i) and (ii) in the proof of Theorem 5.6 and (iii) in the proof of Proposition 5.10. 
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The proof of this lemma is a standard application of the Regularity lemma. As men

tioned in the introduction to this chapter, it would be interesting to find a proof which 

avoids the Regularity lemma. This would probably yield a much better bound on n1. 

Lemma 5.19. Let � ≥ 2 be an integer. 

(i)	 Suppose that c > 0 and there exists an integer n0 such that every oriented graph H 

on n ≥ n0 vertices with δ0(H) ≥ cn contains a closed walk of length �. Then for 

each ε > 0 there exists n1 = n1(ε, �, n0) such that if G is an oriented graph on 

n ≥ n1 vertices with δ0(G) ≥ (c + ε)n then G contains an �-cycle. 

(ii)	 The analogue holds if we replace δ0(H) by δ+(H) and δ0(G) by δ+(G). 

(iii)	 The analogue of (i) also holds if we consider directed graphs instead of oriented 

graphs. 

Proof. We only consider (i). (The arguments for the remaining parts are similar.) 

Apply the degree form of the Diregularity lemma (Lemma 3.1) and Lemma 3.2 to G to 

obtain a partition of V (G) into clusters and a reduced oriented graph R. By Lemma 3.2 R 

almost inherits the minimum semi-degree of G, i.e. δ0(R) ≥ (c + ε/2)|R|. Applying our 

assumption with H := R gives a closed walk of length � in R. Since n1 is large compared 

to �, this also holds for the size of the clusters. So we can apply Theorem 3.5 to find an 

�-cycle in G. � 

Proof of Theorem 5.6(i). Note that Lemma 5.19(ii) implies that in order to prove 

part (i) it suffices to show that every oriented graph H with δ+(H) ≥ |H|/k + 149|H|/k2 

contains a closed walk of length �. Theorem 5.2 implies that H contains an a-cycle C for 

some a ≤ 1/(1/k + 149/k2) + 74 < k. But a > 2 since H is oriented and thus a divides � 

by our definition of k. By traversing C precisely �/a times we obtain the required closed 

walk of length � in H. � 
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Note that the proof actually shows the following: Let c be such that every oriented
 

graph G with δ+(G) ≥ d has a cycle of length at most �cn/d�. Then for each ε > 0 

there exists n0 = n0(ε, �) such that every oriented graph G on n ≥ n0 vertices with 

δ+(G) ≥ cn/(k − 1) + εn contains an �-cycle (where � and k are as in Theorem 5.6). 

In particular, if we assume the Caccetta-Häggkvist conjecture, then this implies that 

Conjecture 5.5 is approximately true if we replace k by k − 1. Similarly, the result in [22] 

which gives a cycle of length at most �2n/(d + 1)� in an oriented graph of minimum 

outdegree at least d implies that we may take c := 2. It would be interesting to find 

improved approximate versions of Conjecture 5.5. 

To prove parts (ii) and (iii) of Theorem 5.6, we will use the following lemma. 

Lemma 5.20. Let G be an oriented graph on n vertices. 

(i) If δ0(G) ≥ n/4 then either the diameter of G is at most 6 or G contains a 3-cycle. 

(ii) If δ0(G) > n/5 then either the diameter of G is at most 50 or G contains a 3-cycle. 

Proof. We first prove (i). Consider x ∈ V (G) and define X1 := N+(x) and Xi+1 := 

N+(Xi) ∪ Xi for i ≥ 1. If there exists an i with δ+(G[Xi]) > 3|Xi|/8 then G[Xi] contains 

a 3-cycle by Theorem 5.3. So assume not. Then there exists a vertex xi ∈ Xi with 

|N+(xi) ∩ Xi| ≤ 3|Xi|/8. Hence 

|Xi+1| ≥ |Xi| + (δ0(G) − 3|Xi|/8) ≥ 5|Xi|/8 + n/4. 

In particular |X2| ≥ 13n/32 and |X3| ≥ 65n/256 + n/4 = 129n/256 > n/2. Similarly, for 

any vertex y �= x we have that |{v ∈ V (G) : dist(v, y) ≤ 3}| > n/2, and thus there exists 

an x-y path of length at most 6, which completes the proof of (i). 

To prove (ii), define sets Xi as before. Consider any i for which |Xi| ≤ n/2. Similarly 
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as before
 

|Xi+1| ≥ |Xi| + (δ0(G) − 3|Xi|/8) > |Xi| + (n/5 − 3|Xi|/8) ≥ |Xi| + (n/5 − 3n/16) 

= |Xi| + n/80. 

Thus |X25| > n/2. Similarly, for any vertex y �= x we have that |{v ∈ V (G) : dist(v, y) ≤ 

25}| > n/2. Thus there exists an x-y path of length at most 50. � 

Proof of Theorem 5.6(ii). As in the proof of (i), by Lemma 5.19(i) it suffices to 

show that every sufficiently large oriented graph H with δ0(H) ≥ |H|/4 + 1 contains a 

closed walk of length �. If H has a 3-cycle then it contains such a walk since 3 divides � 

by definition of k. Thus we may assume that H has no 3-cycle. Fact 5.12 implies that 

the maximum size of an independent set is smaller than the neighbourhood NH (v) of any 

vertex v. Thus H contains some orientation of a triangle. By assumption this is not a 

3-cycle, and so it must be transitive, i.e. the triangle consists of vertices x, y, z and edges 

xz, xy, zy. 

Since H − z has no 3-cycle, Lemma 5.20(i) implies that H − z contains a y-x path P 

of length t ≤ 6. This gives us 2 cycles C1 := yP xy and C2 := yP xzy of lengths t + 1 

and t+2 respectively. Write � as � = a(t+1)+r with 0 ≤ r ≤ t ≤ 6. We can wind r times 

around C2 and (a − r) times around C1 to find a closed walk of length � in H provided 

that r ≤ a. But the latter holds as a = ��/(t + 1)� ≥ 6. � 

In the proof of Theorem 5.6(iii), we will use the following result (on undirected graphs) 

of Andrásfai, Erdős and Sós [4]: 

Theorem 5.21. Every triangle-free graph F on n vertices with minimum degree δ(F ) > 

2n/5 is bipartite.
 

Proof of Theorem 5.6(iii). Again, by Lemma 5.19(i) it suffices to show that every
 

sufficiently large oriented graph H on n vertices with δ0(H) > n/5 + 1 contains a closed
 

walk of length �.
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Let F be the underlying undirected graph of H. Since H has no double edges, we
 

have δ(F ) > 2n/5. Suppose first that F contains a triangle. This cannot correspond to 

a 3-cycle in H, as this in turn immediately yields a closed walk of length � in H. So H 

must contain a transitive triangle, i.e. vertices x, y, z with xz, xy, zy ∈ E(H). We can now 

proceed similarly as in the proof of Theorem 5.6(ii): by Lemma 5.20(ii) we can find a y-x 

path P of length t ≤ 50 in H − z. This gives us 2 cycles C1 := yP xy and C2 := yP xzy 

of lengths t + 1 and t + 2 respectively. To obtain a closed walk of length �, write � as 

� = a(t + 1) + r with 0 ≤ r ≤ t ≤ 50. We can wind r times around C2 and (a − r) times 

around C1 to find a closed walk of length � in H provided that r ≤ a. But the latter holds 

as a = ��/(t + 1)� ≥ 50. 

So now suppose that F does not contain a triangle. Then Theorem 5.21 implies 

that F (and thus H) is bipartite. We will now use this to find a 4-cycle in H. (This 

immediately yields a closed walk of length � in H.) So suppose that H has no 4-cycle. 

Write δ0 := �n/5� + 1. Denote the vertex classes of H by A and B. Let a := |A| 

and b := |B|, where without loss of generality we have b ≤ n/2. On the other hand 

b ≥ δ(F ) ≥ 2n/5 and so a ≤ 3n/5. Now consider any v ∈ A. Choose a set X1 ⊆ N+(v) 

and Y1 ⊆ N−(v) with |X1| = |Y1| = δ0. Let X2 := N+(X1) and Y2 := N−(Y1). Note 

that X2 and Y2 are disjoint, as otherwise we would have a 4-cycle (through v) in H. 

The number of edges from X1 to X2 is at least |X1|δ0, so by averaging there is a vertex 

x ∈ X2 which receives at least |X1|δ0/|X2| edges from X1. This in turn means that x 

sends at most |X1|(1 − δ0/|X2|) edges to X1. Recall that x does not send an edge to Y1 

since otherwise x ∈ X2 ∩ Y2 = ∅. So if we let Z := B \ (X1 ∪ Y1), then x sends at least 

δ0 − |X1|(1 − δ0/|X2|) = δ2/|X2| edges to Z. In particular, |Z| ≥ δ2/|X2|. On the other 0 0 

hand, |Z| = b − 2δ0 ≤ n/10. So |X2| ≥ δ2/(n/10) ≥ 2δ0. Since X2 and Y2 are disjoint, 0 

this implies that |Y2| ≤ a − |X2| ≤ 3n/5 − 2δ0 < n/5. On the other hand, the definition 

of Y2 implies that |Y2| ≥ δ0(H), a contradiction. � 

Proof of Proposition 5.10. First suppose that � is even. The inequality δdi(�, n) ≥ 

δorient(�, n) is trivial. For the upper bound on δdi(�, n), suppose we are given a digraph H 
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on n vertices with δ0(H) ≥ δorient(�, n). If H has a double edge, it has a closed walk of 

length �. If it has no double edge, then H has an �-cycle by definition of δorient(�, n). So 

in both cases, H has a closed walk of length �. So part (iii) of Lemma 5.19 implies that 

for each ε > 0 there is an n0 so that for all n ≥ n0 we have δdi(�, n) ≤ δorient(�, n) + εn, 

as required. 

If � is odd, we obtain the lower bound by considering the complete bipartite digraph 

with vertex class sizes as equal as possible. The upper bound follows e.g. from (5.1). � 

5.4 Proof of Proposition 5.8 

For both parts of Proposition 5.8, the proof divides into three steps. 

1. For a given �-cycle C with cycle-type k find an appropriate walk W with prescribed 

orientation (which will be a cycle for k ≥ 3) into which there is a digraph homo

morphism of C. 

2. Prove that the minimum semi-degree condition in Proposition 5.8 guarantees a copy 

of W in any sufficiently large oriented graph G. 

3. Apply Lemma 5.19(i) to ‘lift’ this walk to one on the cycle C itself. 

Let us start with the first step. For k = 0 it is clear that there is a digraph homomor

phism of C into a directed path of length �. For k ≥ 3 we can let W be a directed k-cycle 

and then construct our digraph homomorphism greedily. Suppose that k = 1. Then the 

number of edges of C oriented forwards is one larger than the number of its edges oriented 

backwards. So C must contain a subpath of the form ffb, where we write f for an edge 

oriented forwards and b for an edge oriented backwards. But this means that there exist 

constants 0 ≤ k1, k2 < � (depending on C) such that there is a digraph homomorphism 

of C into the oriented walk W obtained by adding a transitive triangle to the k1th vertex 

of a directed path of length k2 (see Figure 5.2(a)). 
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(a) k = 1, ffb in cycle (b) k = 2, fffb in cycle (c) k = 2, ffb in cycle twice 

Figure 5.2: The walks needed in the cases k = 1 and k = 2. 

Finally suppose that k = 2. So C contains two more edges oriented forwards than back

wards. Hence C contains two subpaths of the form ffb or one subpath of the form fffb. 

In the first case we take W to be a suitable directed path of length less than � with 

two transitive triangles attached, possibly to the same vertex (see Figure 5.2(c)). In the 

second case we let W be a suitable directed path with a 4-cycle oriented fffb attached 

(see Figure 5.2(b)). 

For the second step we have to show that the relevant minimum semi-degree condition 

implies the existence of W in G. If W is a path then we only need the minimum semi-

degree to be at least �. If W is a k-cycle then we just apply Theorem 5.4. So suppose that 

k = 1, 2 and consider any vertex x of G. The minimum semi-degree condition δ0(G) ≥ 

(1/3 + α)n implies each vertex y ∈ N+(x) has at least αn neighbours in N+(x). So G 

contains the transitive triangles needed in Figures 5.2(a) and (c). To see that we can also 

find the 4-cycle oriented fffb, suppose that N := G[N+(x)] does not contain a directed 

path of length 2 (otherwise we are done). Then N must contain two distinct vertices y and 

y� such that y has no outneighbours in N and y� has no inneighbours in N . But this means 

that there is some z ∈ N+(y) ∩ N−(y�) and then xyzy� has the required orientation fffb. 

Hence we can find any of the walks in Figure 5.2 greedily. An application of Lemma 5.19(i) 

now completes the proof of Proposition 5.8. The argument for the case k ≥ 3 also shows 

that Conjecture 5.5 would imply an approximate version of Conjecture 5.9. 
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� 

CHAPTER 6 

ARBITRARY ORIENTATIONS OF HAMILTON
 

CYCLES
 

6.1 Introduction 

It is natural to ask whether the bounds giving Hamilton cycles in Chapter 4 give only 

directed Hamilton cycles or whether they give every possible orientation of a Hamilton cy

cle. Indeed this question was answered for digraphs, asymptotically at least, by Häggkvist 

and Thomason in 1995. 

Theorem 6.1 (Häggkvist and Thomason [38]). There exists n0 such that every digraph D 

on n ≥ n0 vertices with minimum semi-degree δ0(D) ≥ n/2 + n5/6 contains every orien

tation of a Hamilton cycle. 

For oriented graphs this question was asked originally by Häggkvist and Thoma

son [39] who proved that for all α > 0 and all sufficiently large oriented graphs G 

a minimum semi-degree of (5/12 + α)|G| suffices to give any orientation of a Hamil

ton cycle. They conjectured that (3/8 + α)|G| suffices, the same bound as for the di

rected Hamilton cycle up to the error term α|G|. Whilst not asked explicitly before 

Häggkvist and Thomason’s paper, there is some previous work of Thomason and Grant 

relevant to this area. Grant [36] proved in 1980 that any digraph D with minimum semi-

degree δ0(D) ≥ 2|D|/3 + |D| log |D| contains an anti-directed Hamilton cycle, provided 
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that n is even. (An anti-directed cycle is one in which the edge orientations alternate.)
 

Thomason [71] showed in 1986 that every sufficiently large tournament contains every pos

sible orientation of a Hamilton cycle (except possibly the directed Hamilton cycle if the 

tournament is not strong). The following theorem confirms the conjecture of Häggkvist 

and Thomason. 

Theorem 6.2. For every α > 0 there exists an integer n0 = n0(α) such that every 

oriented graph G on n ≥ n0 vertices with minimum semi-degree δ0(G) ≥ (3/8 + α)n 

contains every orientation of a Hamilton cycle. 

6.1.1 Robust Expansion 

The property underlying the proofs of many of the recent results on Hamilton cycle in 

oriented graphs is robust expansion. This is a notion which was introduced by Kühn, 

Osthus and Treglown in [56] and has proved to be the correct notion of expansion in a 

digraph when dealing with this kind of question or when using the Diregularity lemma. 

Informally speaking, a digraph G is a robust outexpander if all subsets of V (G) have 

outneighbourhoods larger than themselves unless they are very large or very small and, 

moreover, this still holds after the removal of a small number of edges. 

Having a minimum semi-degree δ0(G) ≥ (3/8 + α)|G| for some α > 0, satisfying 

an approximate Ore-type condition or satisfying an approximate Chvátal condition imply 

robust outexpansion (see Lemma 11 in [56]). Hence an extension of Theorem 6.2 to robust 

outexpanders would imply approximate Ore-type and Chvátal-type results for arbitrary 

orientations of Hamilton cycles. The author believes it is likely that the argument given 

in this chapter could be straightforwardly extended to prove this. 

6.1.2 Extremal Example 

As discussed in Section 4.2, Häggkvist [37] constructed an example in 1993 giving a graph 

on n = 8k − 1 vertices with minimum semi-degree (3n − 5)/8 containing no Hamilton 
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A

B C

D

Figure 6.1: The oriented graph constructed in Proposition 6.3 

cycle. In 2009 Keevash, Kühn and Osthus [46] extended this to all n. This means that 

Theorem 1.9 is best possible and that Theorem 6.2 is best possible up to the linear 

error term. Interestingly, this example can be improved upon when considering arbitrary 

orientations. Hence the additive constant in Theorem 1.9 is not the correct bound when 

seeking any orientation of a Hamilton cycle. It is an open question as to what the correct 

additional term should be. 

Proposition 6.3. There are infinitely many oriented graphs G with minimum semi-degree 

exactly (3|G| − 4)/8 which do not contain an anti-directed Hamilton cycle. 

Proof. Let n := 8m + 4 for some integer m ∈ N. Let G be the oriented graph obtained 

from the disjoint union of two regular tournaments A and C on 2m+1 vertices and sets B 

and D of 2m + 1 vertices by adding all edges from A to B, all edges from B to C, all 

edges from C to D and all edges from D to A. Finally, between B and D we add edges 

to obtain a bipartite tournament which is as regular as possible, i.e. the indegree and 

the outdegree of every vertex differs by at most 1. So in particular every vertex in B 

sends at least m edges to D. It is easy to check that the minimum semi-degree of G is 

3m + 1 = (3n − 4)/8, as required. 

Let us try to construct an anti-directed Hamilton cycle in G and let us start in B with 
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an edge going forwards. This edge can go either to C or to D. (Starting with an edge
 

oriented backwards produces an identical argument and result.) The next edge must go 

backwards. It can go from C to either B or C. It can go from D to either B or C. So after 

two steps we can be in either B or C. Our next edge must go forwards. If we are in B 

our possible locations after the next two steps are B and C as before. From C we can go 

forwards either to C or to D. Both options repeat situations we have already met. In no 

case do we have a means to reach A whilst respecting the orientation of our anti-directed 

Hamilton cycle. Hence the longest anti-directed cycle in G has length at most 3n/4 and 

we have no anti-directed Hamilton cycle as claimed. � 

6.2 Overview of the Proof 

The proof of Theorem 6.2 splits into two parts, both relying on the expansion properties 

that our minimum semi-degree condition implies. The cases are distinguished by the 

similarity of the Hamilton cycle C we are trying to embed to the standard orientation 

of a Hamilton cycle. It turns out that the correct measure, at least for this problem, of 

whether a cycle is close to a directed cycle is the number of pairs of consecutive edges 

with different orientations. Given an oriented graph C we call the subgraph induced by 

three vertices x, y, z ∈ V (C) a neutral pair if xy, zy ∈ E(C). Given an arbitrarily oriented 

cycle C on n vertices let n(C) be the number of neutral pairs in C. Write Cn 
∗ for the 

standard orientation of a cycle on n vertices. When there is no ambiguity we will merely 

write C∗ . 

The essential idea is to split the cycle up into alternating short and long paths and 

use the probabilistic method to find an approximate embedding of the long paths into a 

Hamilton cycle of the reduced oriented graph created by applying the Diregularity lemma. 

We connect these paths up greedily using the short paths and then adjust the embedding 

to obtain something which, after the Blow-up lemma has been applied, gives us the desired 

orientation of a Hamilton cycle in our graph. 

67
 



The case distinction comes in the manner in which we alter our embedding. In Sec

tion 6.6 we give the argument for cycles far from C∗ , where we use the neutral pairs 

for our adjustments. In Section 6.7 we assume that we have few neutral pairs, and thus 

many long sections of C containing no changes in direction, and use these to adjust our 

embedding. 

Our need to have more control over the number of exceptional vertices than pro

vided directly by the Diregularity lemma means that some technical difficulties are in

troduced. So we control the number of exceptional vertices by randomly splitting our 

oriented graph G. In still vague, but slightly more precise terms, the Diregularity lemma 

will for any ε > 0 give us a partition with the property of ε-regularity. It will also give 

us a set of ‘exceptional vertices’ which are in some sense badly behaved, but tells us 

that these make up at most an ε proportion of our vertices. Our method can only cope 

with ηn � εn such vertices. Hence we split the vertices of our given graph G into two 

sets A and B of roughly equal size (satisfying some ‘nice’ properties). We apply the 

Diregularity lemma to G[B], giving us at most ε|G| exceptional vertices V0. We then 

apply the Diregularity lemma to G[A ∪ V0] only this time not with ε but with η. This 

gives us at most η|G| exceptional vertices V0 
� . We then consider GB := G[(B \ V0) ∪ V0 

�], 

which is ε-regular and has η|G| � ε|GB| exceptional vertices and GA := G − GB, which 

is η-regular and has 0 � η|GA| exceptional vertices. Hence, at the cost of some technical 

work and having to stitch everything back together we are able to control the number of 

exceptional vertices. 

6.3 Skewed Traverses and Shifted Walks 

In this section we introduce some tools needed to tweak a random embedding of an 

arbitrarily oriented Hamilton cycle into a directed Hamilton cycle of the reduced oriented 

graph to make it correspond (in some sense) to the desired orientation of a Hamilton cycle 

in our original graph. 
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First we must recall from Section 4.4 the following crucial result which says that our
 

minimum semi-degree condition implies outexpansion. 

Lemma 6.4 (K., Kühn, Osthus [48]). Let R be an oriented graph with δ0(R) ≥ (3/8 + 

α)|R| for some α > 0. If X ⊂ V (R) with 0 < |X| ≤ (1 − α)|R| then |N+(X)| ≥ 

|X| + α|R|/2. 

(The condition on δ0(G) implies the necessary δ∗(G) bound to allow us to apply 

Lemma 4.8.) Suppose that F is a Hamilton cycle (with the standard orientation) of the 

reduced oriented graph R and relabel the vertices of R such that F = V1V2 . . . VM , where 

we let M := |R|. Create a new digraph R∗ from R by adding all the exceptional vertices 

v ∈ V0 and adding an edge vVi (where Vi is a cluster containing m vertices) whenever v 

sends edges to a significant proportion of the vertices in Vi, say we add vVi whenever v 

sends at least cm edges to Vi for some constant c > 0. (Recall that m denotes the size 

of the clusters.) The edges in R∗ of the form Viv are defined in a similar way. Let Gc 

be the digraph obtained from the pure oriented graph G∗ by making all the non-empty 

bipartite subgraphs between the clusters complete (and orienting all the edges between 

these clusters in the direction induced by R) and adding the vertices in V0 as well as all 

the edges of G between V0 and V (G − V0). 

Let W be an assignment of the vertices of an arbitrarily oriented cycle C on n vertices 

to the vertices of R∗ which respects edges (i.e. is a digraph homomorphism from C to R∗). 

We denote by a(i) the number of vertices of C assigned to the cluster Vi. Observe that 

we can think of W either as a (possibly degenerate) embedding into Gc or as a closed 

walk in R∗ . It will be useful to the reader to keep both interpretations in mind when 

reading the rest of the proof. We say that an assignment W of C to R∗ is γ-balanced if 

maxi |a(i) − m| ≤ γn and balanced if a(i) = m for all i. Furthermore, we say that an 

embedding (γ, µ)-corresponds to C if the following conditions hold. 

• W is γ-balanced. 

• Each exceptional vertex v ∈ V0 has exactly one vertex of C assigned to it. 
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V

V ′

Vi2

Vi2−1

Vi1

Vi1−1

Figure 6.2: A skewed V -V � traverse 

•	 In every Vi ∈ V (R) at least m − µn of the vertices of C assigned to Vi have both of 

their neighbours assigned to Vi−1 ∪ Vi+1. 

We say that the assignment µ-corresponds to C if it (0, µ)-corresponds to C. 

Once we have found such an assignment we can use the Blow-up lemma (Lemma 3.3) 

to show that it corresponds to a copy of C in G. Our immediate aim then is to find such 

a closed walk corresponding to C. 

Given clusters V and V �, a skewed V -V � traverse T (V, V �) is a collection of edges of 

the form 

T (V, V �) := V Vi1 , Vi1−1Vi2 , Vi2−1Vi3 , . . . , Vit−1V � . 

The length of a skewed traverse in the number of its edges minus one; so the length 

of the above skewed traverse is t. Suppose that we have a γ-balanced assignment W 

of C to R∗ and that many neutral pairs of C are assigned to each vertex of R. We 

would like to make this a balanced embedding by modifying W . Let Vi, Vj be clusters 

with a(Vi) > m and a(Vj ) < m. If Vi−1Vj ∈ E(R) then we could replace one neutral pair 

assigned to Vi−1ViVi−1 in the embedding with Vi−1Vj Vi−1. This would reduce a(Vi) by 

one and increase a(Vj ) by one. Repeating this process would give the desired balanced 

embedding. We can not though guarantee that Vi−1Vj ∈ E(R) so we are forced to use 

skewed traverses to achieve the same affect, which we are able to show always exist under 
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certain conditions. Let
 

Vi−1Vi1 , Vi1−1Vi2 , Vi2−1Vi3 , . . . , Vit−1Vj 

be a skewed Vi−1 -Vj traverse. Then replacing neutral pairs starting at Vi−1, Vi1−1, . . . , Vit−1 

with the edges in the skewed Vi−1 -Vj traverse we reduce a(Vi) by one, increase a(Vj ) by 

one and crucially do not alter a(Vk) for any Vk ∈ V (R) \ {Vi, Vj }. See Figure 6.2 for 

an illustration of this, where the dashed edges represent the neutral pairs which will be 

replaced by the solid edges representing the edges of the skewed traverse. We always 

assume that a skewed traverse has minimal length and thus that each vertex Vi ∈ V (R) 

appears at most once as the first vertex of an edge in a skewed traverse. 

Given vertices V, V � ∈ V (R), a shifted V -V � walk S(V, V �) is a walk of the form 

S(V, V �) := V Vi1 FVi1−1Vi2 FVi2−1 . . . Vit FVit−1V � , 

where we write ViFVj for the path 

ViFVj := ViVi+1Vi+2 . . . Vj , 

counting modulo |F | = M . (The case t = 0, and thus a walk V V �, is allowed.) We say 

that W traverses F t times and always assume that a shifted walk S(V, V �) traverses F 

as few times as possible. Its length is the length of the corresponding walk in R. Note 

that if we can find a skewed V -V � traverse then we can find a shifted V -V � walk. 

The most important property of shifted walks is that the walk W −{V, V �} visits every 

vertex in R an equal number of times. Observe also that by our minimality assumption 

each vertex Vi is visited at most one time from a vertex other than Vi−1. I.e. of the t times 

that Vi is visited at most one does not come from winding around F . This fact will be 

useful later when we try and bound the number of edges of an embedding not lying on 

the edges of F . 
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As with skewed traverses, we can use shifted walks to go from an approximate assign

ment W of a cycle C to R∗ to a balanced assignment. Let Vi, Vj be clusters with a(Vi) > m 

and a(Vj ) < m. If Vi−1Vj , Vj Vi+1 ∈ E(R) then we could replace one section of W isomor

phic to F by Vi−1Vj Vi+1FVi−1, that is, replace Vi−1ViVi+1 by Vi−1Vj Vi+1. This new section 

has the same length as before and so would not alter the rest of W . Clearly we can not 

ensure that such edges always exist. Instead we use shifted walks and replace a section 

of the embedding that looks like FF . . . F with 

S(Vi−1, Vj )S(Vj , Vi+1)FVi−1F . . . FVi−1; 

where the F . . . F in the new embedding contains the appropriate number of F to ensure 

that it is of exactly the same length as the section of the assignment it replaced. This 

is a shifted walk from Vi−1 to Vj , then a shifted walk from Vj to Vi+1 and then wind 

around F . By our definition of shifted walks each cluster will have the same number of 

vertices assigned to it (except Vi−1, Vi and Vj ) the total number of vertices assigned will 

not be altered. Clearly this method needs the cycle we’re trying to embed to contain 

many long sections with no changes of orientation (and oriented in the same direction 

as F ). In the case where the cycle we are trying to embed is close to C∗, the standard 

orientation of a cycle, we are indeed able to ensure this. 

Corollary 6.5. Let R be an oriented graph on M vertices with δ0(R) ≥ (3/8 + α)M for 

some α > 0 and let F = V1V2 . . . VM be a Hamilton cycle of R. Define r := �2/α�. Then 

for any distinct V, V � ∈ V (R) there exists the following. 

(i) A skewed V -V � traverse of length at most r. 

(ii) A shifted V -V � walk traversing at most r cycles. 

Proof. Let Ai be the set of vertices which can be reached from V by a skewed traverse 

of length at most i and let A− := {Vi ∈ V (R) : Vi+1 ∈ Ai}. If |Ar−2| ≥ (1 − α)M theni 

N−(V �) ∩ A− 
r−2 =� ∅ and so we have a skewed V -V � traverse of length at most r − 1. 
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Otherwise |Ar−2| ≤ (1 − α)M , so |Ai| ≤ (1 − α)M for all i ≤ r − 2: then, applying 

Lemma 4.8, we have that for each i ≤ r − 2 we have |Ai+1| ≥ |Ai| + αM/2. Thus 

|Ar−2| ≥ (r − 2)αM/2 ≥ (2/α − 2)αM/2 ≥ (1 − α)M > M − |N−(V �)| and so again 

N−(V �) ∩ A− 
r−2 =� ∅ and thus we get a skewed traverse 

This skewed traverse also gives the desired shifted walk, merely ‘wind around’ F after 

each edge. � 

When linking together sections of our cycle we will sometimes need to find a path 

between two vertices which is not just short but is isomorphic to a given path. To do this 

we use the following lemma of Häggkvist and Thomason. 

Lemma 6.6 (Häggkvist and Thomason [39], Lemma 2). Let R be an oriented graph 

on M vertices with δ0(R) ≥ (3/8 + α)M for some α > 0. Let 4�log2(1/α)� ≤ k ≤ αM/4 

and let P be an arbitrarily oriented path of length k. Then, if M is large enough and 

V, V � ∈ V (R) are distinct vertices, there exists a path from V to V � isomorphic to P . 

6.4 An approximate embedding lemma 

Our main tool in our proof of Theorem 6.2 is the following probabilistic result which says 

that we can assign a series of paths Pi to the vertices of a small graph R such that each 

vertex of R is assigned approximately the same number of vertices. Furthermore, we show 

that if we have a large collection of subpaths of the Pi we can assure that every vertex 

of R is assigned a reasonable number of these. When we talk about ‘greedily embedding 

an oriented path Pi around a cycle F given a starting point V ∈ V (F )’ we mean the 

following. Assign the first vertex of Pi to V . Given an embedding of some initial segment 

of Pi which ends at V � ∈ V (F ) assign the next vertex of Pi to either the successor or the 

predecessor of V � in F according to the orientation of the edge in Pi. 

Lemma 6.7. Let R be an oriented graph on M vertices and let F be a Hamilton cycle 

in R. Let P = {P1, . . . , Ps} be a collection of arbitrarily oriented paths on t vertices and 
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Q be a collection of pairwise disjoint oriented subpaths of the Pi. Then for any γ > 0 and 

sufficiently large s there exists a map φ : [s] → V (R) such that if the paths are greedily 

embedded around F with the embedding of each P (i) starting at φ(i) then the following �
 
holds. Define a(i) to be the number of vertices in j

s 
=1 Pj assigned to Vi by this embedding 

and define n(i, Q) to be the number of oriented subpaths in Q starting at Vi. Then for 

all Vi ∈ V (R) 

a(i) −
 
st
 
M
 

≤ γst, (6.1)
 

|Q|
n(i, Q) − 

M 
≤ γst. (6.2)
 

To prove it we need the following well-known probabilistic bound (see [61] for example). 

Theorem 6.8. Let X be a random variable determined by s independent trials X1, . . . , Xs 

such that changing the outcome of any one trial can affect X by at most c. Then for 

any λ > 0,
 
λ2 

Pr(|X − E(X)| > λ) ≤ 2 exp −
 . 
22c s 

Proof. [of Lemma 6.7] We construct φ by picking each φ(i) independently and uniformly 

at random. Observe that the assignment of any one path Pi can change the number of 

vertices assigned to any vertex of R by at most t. Clearly E(a(i)) = st/M . By Theorem 6.8 

we have 

2t2γ2s γ2s 
Pr(|a(i) − st/M | > γst) ≤ 2 exp(− ) = 2 exp(− ) < 1/(2M)

2t2s 2 

for s � M . 

A similar argument gives that the probability that n(i, Q) differs too much from the 

expected value is at most 1/(2M). Thus the probability that there exists Vi which does not 

have almost the expected number of vertices or almost the expected number of starting 

points of paths in Q assigned to it by φ is less than 1. Hence a map satisfying the 

conclusion of the lemma exists. � 
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6.5 Preparations for the Proof of Theorem 6.2 

6.5.1 The Two Cases 

We split into two cases depending on the number of neutral pairs. Let G be an oriented 

graph on n vertices with δ0(G) ≥ (3/8 + α)n for some constant 0 < α � 1. Let C be an 

orientation of a cycle on n vertices with n(C) = λn neutral pairs. Define the following 

hierarchy of constants. 

0 < ε1 � ε2 � ε3 � ε4 � ε5 � ε6 � α < 1. 

Let Q be a maximal collection of neutral pairs all at a distance of at least 3 from each 

other, where the distance between two neutral pairs is understood to be minimum of the 

distances between the ends. 

If λ � ε4 then let ε := ε6, εA := ε5 and ε∗ := ε4. The proof of this case is given in 

Section 6.7. 

Otherwise we have λ � ε3 (more strictly, we construct our hierarchy of constants such 

that either this or λ � ε4 is true) and we set ε := ε3, εA := ε2 and ε∗ := ε1. The proof of 

this case is in Section 6.6. 

The following two sections, where we partition G and C in preparation for our em

bedding, are common to both cases. 

6.5.2 Preparing G for the Proof of Theorem 6.2 

Define a positive constant d and integers MA
� ,MB 

� (all functions of α) such that 

0 < ε ∗ � 1/MA 
� � εA � 1/MB 

� � ε � d � α � 1. 

Chernoff-type bounds applied to a random partition of V (G) show the existence of a
 

subset A ⊂ V (G) with (1/2 − ε)n ≤ |A| ≤ (1/2 − ε)n such that every vertex x ∈ V (G)
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satisfies
 
d+(x) α |N+(x)| d+(x) α − ≤ A ≤ + 
n 10 |A| n 10 

and similarly for d−(x). Apply the Diregularity lemma (Lemma 3.1) with parameters ε2 , 

d + 8ε2 and MB 
� to G − A to obtain a partition of the vertex set of G − A into MB := 

k ≥ MB 
� clusters V1, . . . , Vk and an exceptional set V0. Set B := V1 ∪ . . . ∪ Vk and 

mB := |V1| = · · · = |Vk|. Let G� := G[B], let RB denote the reduced oriented graph B 

obtained by an application of Lemma 3.2 and let G∗ be the pure oriented graph. Since B 

δ+(G − A)/|G − A| ≥ δ+(G)/n − α/9 by our choice of A, Lemma 3.2 implies that 

δ0(G) α 3 3α 
δ0(RB ) ≥ − |RB | ≥ + |RB|. (6.3) 

n 4 8 4 

So Theorem 4.3 gives us a Hamilton cycle FB of RB. Relabel the clusters of RB so 

that ViVi+1 ∈ E(FB) for all i. We now apply Lemma 3.9 with FB playing the role of S, 

ε2 playing the role of ε and d + 8ε2 playing the role of d. This shows that by adding at 

most 4ε2n further vertices to the exceptional set V0 we may assume that each edge of RB 

corresponds to an ε-regular pair of density at least d (in the underlying graph of G∗ )B

and that each edge in FB corresponds to an (ε, d)-super-regular pair. Note that the new 

exceptional set now satisfies |V0| ≤ εn. 

Now apply the Diregularity Lemma with parameters ε2 /4, d+2ε2 and MA 
� to G[A∪V0]A A 

to obtain a partition of the vertex set of G[A ∪ V0] into MA := � ≥ MA 
� clusters V1 

�, . . . , V � 
� 

and an exceptional set V0 
� . Let A� := V1 

� ∪ · · · ∪ V� 
�, let RA denote the reduced oriented 

graph obtained from Lemma 3.2 and let G∗ be the pure oriented graph. As before A 

Lemma 3.2 implies that δ0(RA) ≥ (3/8 + 3α/4)|RA| and so, as before, we can apply 

Theorem 4.3 to find a Hamilton cycle FA of RA. Then as before, Lemma 3.9 implies that 

by adding at most ε2 |A ∪ V0| further vertices to the exceptional set V � we may assume A 0 

that each edge of RA corresponds to an εA-regular pair of density at least d and that each 

edge in FA corresponds to an (εA, d)-super-regular pair. Finally define GB := G[B ∪ V0 
�] 
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and nB := |GB| and observe that we now have 

|V �| ≤ εA|A ∪ V0|/2 < εAnB. (6.4)0 

In both cases of our proof we now have 

0 < ε ∗ � 1/MA � εA � 1/MB � ε � d � α � 1. 

6.5.3 Preparing C 

We would like to divide C into a number of paths and use Lemma 6.7 to obtain a ε

balanced assignment of C to R. Since we have split our graph G into two parts, we have 

to split C into two paths PA and PB and embed these into (an oriented graph similar 

to) G[A�] and GB respectively. 

Define r := 4�log2(4/α)�. Lemma 6.6 tells us that if P is an orientation of a path of 

length r then between any two distinct vertices in V (RB ) or V (RA) there exists a path 

between them isomorphic to P . 

Define 
n − (s + 1)(r − 1) n 

s := �(log n)2�, t := − 1 ≈ . 
s + 2 (log n)2 

Recall that Q is a maximal collection of neutral pairs in C all at a distance of at least 3 

from each other. If Q is large, i.e. we are in the case where C is far from C∗, let v ∗ be a 

vertex in C such that the subpath of C of length n/2 following v ∗ and the subpath of C 

preceding v ∗ both contain at least 2|Q|/5 elements of Q. Divide C into (overlapping) 

paths 

C := Q1P1Q2P2 . . . Qs−1Ps−1QsPsQ ∗ P ∗ 

where their lengths satisfy �(Pi) = t, �(Qi) = �(Q∗) = r and 2t ≤ �(P ∗) < 3t and Q1 

starts at v ∗ . Let sB be such that 

1 < nB − sB(t + r) < �(P ∗ ) 
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and let
 

PB := P ∗ Q1P1 . . . QsBB PsB 

where PB 
∗ is an initial segment of P ∗ of such length as to ensure �(PB) + 1 = nB. Let 

PA := Q� 
1P1 

� . . . Q� P � Q ∗ P ∗ 
sA sA A 

where Q� 
i := QsB +i, Pi 

� := PsB +i, sA := s − sB and PA 
∗ is the terminal segment of P ∗ which 

overlaps PB 
∗ in exactly one vertex. Observe that we now have 

nB = sBt + sBr + �(P ∗ ) = |V (PB)| (6.5)B

and define 

nA := n − nB = sAt + (sA + 1)r + �(P ∗ ) − 1 = |V (PA)| − 2.A

6.6 Cycle is Far From C∗ 

6.6.1 Approximate Embedding 

First we assign the paths Pi to the clusters of RB in such a way as to ensure that all the 

clusters are assigned approximately the same number of vertices and the neutral pairs 

are relatively evenly distributed. Recall that Q is a maximal collection of neutral pairs 

in C all at a distance of at least 3 from each other. Let QB contain all neutral pairs 

in PB from Q which are contained in and at a distance of at least three from the ends of 

the Pi. Apply Lemma 6.7 to RB , PB := {P1, P2 . . . , PsB } and QB with ε∗ as γ to obtain 

an embedding of the Pi into V (RB) with 

a(i) −
 
sBt ≤ ε ∗ sB t, n(i, QB ) − 

|QB |
MB 

≤ ε ∗ sBt. 
MB 
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for all Vi ∈ V (RB). (Recall that a(i) is defined to be the number of vertices assigned to 

the cluster Vi by the embedding.) In a slight abuse of notation let n(i) be the number of 

neutral pairs in QB starting at Vi. Note that 

(6.6)
 
(6.5) sB t sBt |a(i) − mB| ≤ 

≤
 

a(i) −
 − mB+
 
MB 

sBt 
MB 

sBr + 2t 
MB 

a(i) −
 +
 
MB 

sBt 
MB 

+ ε ∗ mB.≤
 a(i) −
 

The last term here is ≤ ε∗ mB if and only if |aBt − nB| ≤ ε∗ nB , which follows from 

the definition of sB . The requirement that the neutral pairs in Q are at a distance of at 

most three from each other means that |Q| ≥ n(C)/4. By the observation in Section 6.5.3 

we know that PB contains at least 2|Q|/5 ≥ λn/10 neutral pairs. The paths Qi and P ∗ 
B 

together contain fewer than sB r + 3t neutral pairs and at most 4sB neutral pairs can be 

in the Pi but within a distance of at most three from a Qi. Thus for all i 

λn λnB λmB 
n(i) ≥ − ε ∗ sB t − (sBr + 3t + 4sB ) ≥ − 2ε ∗ nB ≥ ,

10MB 6MB 7 

where mB := |Vi| = (nB − |V �|)/MB is the size of a cluster. For all 2 ≤ i ≤ sB we can 0 

join Pi−1 and Pi by a path in RB isomorphic to Qi using Lemma 6.6. Furthermore we 

can greedily extend P1 backwards by a path isomorphic to PB
∗ Q1. This will increase a(i) 

by at most sB r + 3t < ε∗ mB for n sufficiently large. We now have an assignment of PB 

to the clusters of RB which we can think of as a walk WB in RB . 

6.6.2 Incorporating the Exceptional Vertices 

Let Gc be the digraph obtained from the pure oriented graph G∗ by making all the B B 

non-empty bipartite subgraphs between the clusters complete (and orienting all the edges 

between these clusters in the direction induced by RB ) and adding the vertices in V0 
� as 

well as all the edges of G between V0 
� and V (GB − V0 

�). Our next aim is to incorporate 
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Vi+1

ViVi+2

v

Figure 6.3: Incorporating an exceptional vertex when C is far from C∗ . 

the exceptional vertices V0 
� into the walk WB. We do this by considering the following 

extension of RB. Define R∗ ⊇ RB to be the digraph formed by adding to RB the vertices B 

in V � and, for v ∈ V � and Vi ∈ V (RB ), the edge vVi if |N+(v) ∩ Vi| > αmB/10 and Viv if0 0 G 

|N−(v) ∩ Vi| > αmB/10.G 

Then for each v ∈ V0 
� pick an inneighbour Vi ∈ V (RB ) and replace one neutral pair 

ViVi+1Vi starting at Vi with VivVi. This reduces a(i + 1) and n(i) by one. Figure 6.3 

contains an illustration of this, where we consider WB as being in Gc and the dotted lines B 

as the section of the embedding to be replaced by the solid lines. After doing this for 

every exceptional vertex we will have that for all Vi ∈ V (RB ) 

(6.6) 
|a(i) − mB| ≤ a(i) −
 

sB t 
MB 

+ ε ∗ mB (6.7) 

(6.4) 
≤ (ε ∗ sBt + εAmB + |V �|) + ε ∗ mB < 4εAnB , (6.8)0 

where the second term in the second line comes from greedily embedding the Qi. We 

also still have a reasonable number of neutral pairs starting at each cluster of RB for 

all Vi ∈ V (RB ): 
λmB λmB λmB 

n(i) ≥ − |V �| > − εAnB > .07 7 8 
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0 Note that of the a(i) vertices of PB assigned to any Vi ∈ V (R), at most εAnB + 2|V �| ≤ 

3εAnB do not have their neighbours assigned to Vi−1 ∪ Vi+1, where the first term came 

from the Qi and the second came from incorporating the exceptional vertices. Thus we 

currently have a (4εA, 3εA)-corresponding embedding of PB into R∗ 
B . 

6.6.3 Adjusting the Embedding 

We now adjust WB to obtain a 5εAMB-corresponding assignment of PB to R∗ ; i.e. we B

adjust WB to ensure that a(i) = mB for all Vi ∈ V (RB). Recall from Corollary 6.5 that 

between any two vertices in RB there exists a skewed traverse of length at most �8/3α� < 

r� := �4/α�. Then for each cluster Vi ∈ V (RB ) with a(i + 1) > mB pick Vj ∈ V (RB) 

with a(j) < mB and find a skewed Vi -Vj traverse of length q ≤ r�: 

ViVk1 , Vk1−1Vk2 , Vk2−1Vk3 , . . . , Vkq Vkq −1, Vkq −1Vj . 

As discussed in Section 6.3 we can use this skewed traverse to modify WB to reduce a(i+1) 

by one, increase a(j) by one and leave the number of vertices assigned to every other cluster 

of RB the same. We do this by, for every 0 ≤ p ≤ q, replacing a neutral pair Vkp−1Vkp Vkp−1 

in WB by Vkp−1Vkp+1 Vkp−1 where we define Vk0−1 := Vi and Vkq+1 := Vj . 

Since 
�MB |a(i) − mB| ≤ 4εAMB nB , doing this will consume at most 4εAMB nBi=1 

neutral pairs starting at any vertex of RB . This is fine though as for all Vi ∈ V (RB ) we 

have n(i) ≥ λmB /8 � 4εAMB nB. Each cluster Vi now has at most 3εAnB + 4εAMBnB < 

5εAMBnB vertices of PB assigned to it that do not have both their neighbours assigned 

to Vi−1 ∪ Vi+1. Hence we have constructed a 5εAMB-corresponding embedding WB of PB 

into R∗ 
B . 

6.6.4 Finding a copy of PB in GB 

We will now use Lemma 3.6 to find a copy of PB in GB . To do this we use WB to find an 

embedding WB 
� of PB into GB such that 
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• Every vertex of WB in V0 
� is unchanged in WB 

� . 

•	 Each appearance of a cluster of RB in WB is replaced by a unique vertex in the 

corresponding cluster in GB . 

•	 Every edge of WB which does not lie upon an edge of FB is mapped to an edge 

of GB. 

First we split WB into two digraphs WB 
1 and WB 

2 . Let WB 
1 consist of all maximal walks 

ui,1ui,2 . . . ui,�i 

in WB of length at least three whose edges all lie on FB. Let WB 
2 consist of all edges 

not in WB
1 . Then WB 

2 is a union of walks vi,1vi,2 . . . vi,�i , where we relabel if necessary to 

ensure that ui,1 = vi−1,�i−1 and ui,�i = vi,1. We now greedily find an embedding of WB 
2 

into GB which will satisfy the third requirement above. 

The walks in WB 
2 are of one of three types. The first type comes from the incorporation 

of an exceptional vertex, in which we have an exceptional vertex x ∈ V0 
� and a cluster Vi ∈ 

V (RB) with |N−(x)∩Vi| > αmB/10. In this case we choose any two distinct vertices u, v ∈G 

N−(x) ∩ Vi, which we can do as there are at most |V �| � εmB � αmB/10 exceptional G	 0 

vertices. The second type comes from the paths Qi and the path PB
∗ . These we find in G∗ 

B 

(and hence in GB ⊇ G∗ ) greedily. We can do so as the total length of the Qi is at most B

sB r +2t � εmB and all their edges are assigned to edges in RB corresponding to ε-regular 

pairs of density at least d in G∗ The final type are pairs of edges ij, ji with i, j ∈ V (RB)B. 

which come from the skewed traverses used to ensure that the correct number of vertices 

of PB were assigned to each vertex of RB . There are at most 5εAMB n � εmB of these and 

so we can again find these greedily. Note that our requirement that all the neutral pairs 

in Q are at a distance of at least three from each other and the ends of the Pi implies that 

we have now considered all possible walks in WB
2 . To satisfy the second condition above 

we simply assign each vertex of WB not already assigned to a vertex in the corresponding 
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cluster in GB . As WB is balanced (i.e. WB assigns exactly mB vertices to each cluster) 

we can do this. 

�−For all i let S consist of the vertices of G Vi B 0 to which the vertices of W
1 
B that are
 

�−not at the end of a path have been assigned. We can now apply Lemma 3.6 to G VB 0 

with W 1 as H, the ui,1 and ui,�i as the xP and yP respectively and the Si as just defined. B 

Combining this with the embedding of W
2 
B into G gives us a copy of PB in GB . 

6.6.5 Finding a copy of C in G 

Recalling how we ‘chopped up’ C at the start of this section, let u, v ∈ V (GB) be the 

� �P Q P:=A 11

vertices to which the endpoints of PB were assigned. To complete the proof of this case 

we find a copy of PA in GA := G[A� ∪ {u, v}] starting at v and ending at u. We find 

a copy of PA exactly as we found the copy of PB with three differences. Firstly there 

are no exceptional vertices, except u and v and these are handled in a different manner. 

Secondly, recalling that 

. . . Q� P � Q ∗ PA
∗ ,sA sA 

�we require that the embeddings of Q1

1Since Q� is long enough for Lemma 6.6 we can specify the cluster to which its initial 

and PA 
∗ start and end at v and u respectively. 

�vertex is assigned and use Lemma 6.6 to join it to P1

and Lemma 6.6 to connect it with the rest of the embedding. Hence we can indeed start 

and end at the required vertices. This doesn’t affect the constants in the rest of the proof. 

Since the number of exceptional vertices and the imbalances created by the approximate 

embedding are both small (and small as functions of MA) we can proceed exactly as before 

and find the desired cycle C in G. The calculations work as before as a result of us only 

having two exceptional vertices. The equation (6.7) becomes 

. We embed PA 
∗ greedily and use Q∗ 

|a(i) − mA| ≤ a(i) −
 
sAt 
MA 

+ ε ∗ mA 

≤ (ε ∗ sAt + εAmA + |{u, v}|) + ε ∗ mA ≤ 4εAmA. 
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Hence in Section 6.6.4 we now have
 

MA

|a(i) − mA| ≤ 4εAMAmA, 
i=1 

which is fine as we will have that n(i) ≥ λmA/8 � 4εAMAmA for all clusters Vi 
� ∈ V (RA). 

6.7 Cycle is Close to C∗ 

Our argument closely follows that in the previous section, the difference being in the 

means of correcting imbalances. To correct imbalances we will need long sections of PB 

with no changes in orientation. Define �B := �
α 
4 �MB , which is at least the maximum 

length of a shifted walk between two vertices in RB . As before we split up C into PA 

and PB , the only difference being that we do not need a special vertex v ∗ this time. 

Let Q� consists of a maximal collection of paths in PB of length 3�B all at a distance of B 

at least 3 from each other, oriented in the same direction and containing no changes in 

orientation. We will call these long runs. There are at least 

nB αnB 
m(PB , Q� ) ≥ − 2λn ≥B 3�B + 6 14MB 

of these in PB. (We subtract 2λn not λn as both neutral pairs ViVi+1Vi and their in

verse ViVi−1Vi kill possible long runs.) 

Let QB be the subset of Q� containing those long runs contained in the Pi, at aB 

distance of at least 4 from the ends of all the Pi and all oriented in the same direction. 

We assume that these all are oriented in the same direction as FB. Keeping only long 

runs oriented in one direction loses us at most half of them. The paths Qi and the 

path Q∗PB 
∗ (and the 3 vertices neighbouring them in the Pi in each direction) can intersect 

at most 2s + 2 of the long runs and so, abusing notation slightly, 

αnB αnB 
m(PB) ≥ − 2s − 2 ≥ 

28MB 30MB 
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Vi

Vi+1

Vi+3

Vj

v

S(Vj, Vi+3)

Figure 6.4: Incorporating an exceptional vertex when C is close to C∗ . 

for sufficiently large n, where we recall that PB := {P1, P2 . . . , PsB }. Similarly defin

ing �A := � 4 �MA and Q� and QA in the obvious way we have m(PA) ≥ α(nA)/30MA.A 

Apply Lemma 6.7 to RB, QB and PB with ε∗ as γ to obtain an embedding of the Pi 

into V (RB) with 

α 

a(i) −
 
sBt 
MB 

≤ ε ∗ sB t, m(i) ≥
 
αnB αnB− ε ∗ sB t ≥ (6.9)


30MB 
2 32MB 

2 

for all Vi ∈ V (RB ), where we write m(i) for the number of elements of QB whose initial 

vertex is assigned to Vi ∈ V (R). 

For all 2 ≤ i ≤ sB we can join Pi−1 and Pi by a path in RB isomorphic to Qi using 

Lemma 6.6. Furthermore we can greedily extend P1 backwards by a path isomorphic 

to PB
∗ Q1. This will increase a(i) by at most sBr + 3t ≤ εAmB for n sufficiently large. We 

now have an embedding of PB into RB which we can think of as a walk WB in RB . 

Let G∗ and R∗ 
0 be an exceptional B , G

c be defined exactly as in Section 6.6.2. Let v ∈ V � B B 

vertex and let Viv, vVj ∈ E(R∗ ). Take a long run in QB whose initial vertex is currently B

assigned to Vi. Since MB divides �B it also ends at Vi. We cannot replace the long run 

simply by VivVj FB . . . FB because this would not end at Vi. Thus it would require us to 

alter the rest of our approximate embedding, possibly causing (6.9) to no longer hold. 

Instead we use shifted walks and a ‘jump’ to ensure that our modification incorporates v 
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into our walk and does not alter a(i) or m(i) significantly for any cluster of RB. We 

replace the long run starting at Vi with the following walk 

VivVj S(Vj , Vi+3)FBFB . . . FB Vi, 

where S(Vj , Vi+3) is a shifted walk from Vj to Vi+3. The number of FB is chosen so that 

the new section has exactly the same length as the long run it replaces. This is illustrated 

in Figure 6.4. This is a walk that goes out to v, back to Vj , follows a shifted walk to Vi+3 

and then winds around F until we have a walk of length 3�B ending at Vi. This new walk 

visits Vi+1 and Vi+2 one time fewer than previously and Vj one time more. Observe that 

the shifted walk by definition visits every cluster in RB the same number of times, which 

allows us to observe that we still end at Vi. Repeating this for each exceptional vertex 

creates a new assignment now satisfying 

(6.5) 
|a(i) − mB | ≤ a(i) −
 

sBt 
MB 

+
 
sBr + 2t 

MB 

≤ (εAsBt + εAmB + |V �|) + εAmB ≤ 3εAnB.0 

for all i. We also still have a reasonable number of long runs starting at each cluster. 

αnB αnB 
m(i) ≥ − |V �| ≥ . 

32MB 
2 0 40MB 

2 

Note that of the a(i) vertices of PB assigned to Vi ∈ V (R), at most 

εAmB + 4|V �| ≤ 5εAnB0 

do not have their neighbours assigned to Vi−1 ∪ Vi+1. The first term here comes from 

connecting the Pi and the second term from incorporating the exceptional vertices: each 

exceptional vertex has one direct edge from a given cluster in RB and the shifted walk can 

add at most two edges outside FB to each cluster. Thus we currently have a (3εA, 5εA)
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corresponding assignment of PB into R∗ 
B . 

6.7.1 Correcting the imbalances 

We now adjust our current assignment of PB to R∗ to obtain aB 15εA-corresponding 

assignment, i.e. we adjust WB to ensure that a(i) = mB for all Vi ∈ V (RB). To do 

this we find a pair Vi, Vj ∈ V (RB ) such that a(i) > mB and a(j) < mB and replace a long 

run starting at Vi−1 with the following walk: 

S(Vi−1, Vj )S(Vj , Vi+1)FB . . . FBVi−1, 

where the number of FB is chosen to ensure that the new section has length 3�B . This 

walk removes the assignment of one vertex to Vi, assigns one extra vertex to Vj and does �MBnot change the number of vertices assigned to all other clusters in RB . Since i=1 a(i) = 

mB MB we can always find such a pair unless we have corrected all the imbalances. Each 

pair requires a long run and we still have at least αnB/40MB 
2 � 3εAnB of these starting at 

each cluster and so can indeed correct all the imbalances. This leaves us with a balanced 

assignment with at most 

3εAnB + 4 × 3εAnB = 15εAnB 

edges outside FB from each vertex. Hence there are at most 15εAMB nB � εmB edges in 

total not in a path of length at least 3 all of whose edges lie on FB or not lying entirely 

on FB. This is exactly the same position as in Section 6.6.4. We can now proceed as 

before to first find a copy of PB in GB and then repeat the procedure with PA (using QA 

not QB) to find the desired cycle C in G. 
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CHAPTER 7
 

PANCYCLICITY
 

7.1 Introduction 

7.1.1 An Exact Pancyclicity Result 

Building on the proof of Theorem 4.3, Keevash, Kühn and Osthus [46] recently gave an 

exact minimum semi-degree bound which forces a Hamilton cycle in an oriented graph. 

More precisely, they showed (Theorem 1.9) that every sufficiently large oriented graph G 

with δ0(G) ≥ (3n − 4)/8 contains a Hamilton cycle. This is best possible for all n and 

settles a problem of Thomassen. The arguments in [46] can straight-forwardly be modified 

to show that G even contains an �-cycle through any given vertex for every � ≥ n/1010 

and we do so in Section 7.2. Together with Theorems 5.3 and 5.4 this implies that G is 

pancyclic, i.e. it contains cycles of all possible lengths. 

Theorem 7.1. There exists an integer n0 such that every oriented graph G on n ≥ n0 

vertices with minimum semi-degree δ0(G) ≥ (3n − 4)/8 contains an �-cycle for all 3 ≤ 

� ≤ n. Moreover, if 4 ≤ � ≤ n and if u is any vertex of G then G contains an �-cycle 

through u. 

This improves a bound of Darbinyan [28], who proved that a minimum semi-degree of 

�n/2�−1 ≥ 4 implies pancyclicity. Another degree condition which implies pancyclicity in 

oriented graphs which are close to being tournaments is given by Song [69]. Proposition 5.7 
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shows that we cannot have � = 3 in the ‘moreover’ part of Theorem 7.1.
 

For (general) digraphs, Thomassen [72] as well as Häggkvist and Thomassen [40] gave 

degree conditions which imply that every digraph with minimum semi-degree > n/2 

is pancyclic. (The complete bipartite digraph whose vertex class sizes are as equal as 

possible shows that the latter bound is best possible.) Alon and Gutin [1] observed that 

one can use Ghouila-Houri’s theorem [34] (which states that a minimum semi-degree of 

at least n/2 guarantees a Hamilton cycle in a digraph) to show that every digraph G 

with minimum semi-degree > n/2 is even vertex-pancyclic, i.e. for every � = 2, . . . , n each 

vertex of G lies on an �-cycle. 

7.1.2 Universal Pancyclicity 

In Chapter 6 we discussed the following result on arbitrary orientations of Hamilton cycles 

in oriented graphs. 

Theorem 7.2. For every α > 0 there exists an integer n0 = n0(α) such that every 

oriented graph G on n ≥ n0 vertices with minimum semi-degree δ0(G) ≥ (3/8 + α)n 

contains every orientation of a Hamilton cycle. 

We also proved in Chapter 5 a result on arbitrary orientations of short cycles (Propo

sition 5.8). 

In this section we extend Theorem 7.2 to a pancyclicity result for arbitrary orientations: 

If an oriented graph G on n vertices contains every possible orientation of an �-cycle 

for all 3 ≤ � ≤ n we say that G is universally pancyclic. The following result says 

that asymptotically universal pancyclicity requires the same minimum semi-degree as 

pancyclicity. 

Theorem 7.3. For all α > 0 there exists an integer n0 = n0(α) such that every oriented 

graph G on n ≥ n0 vertices with minimum semi-degree δ0(G) ≥ (3/8 + α)n is universally 

pancyclic. 
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In Section 7.3 we derive this universal pancyclicity result (Theorem 7.3) by combining
 

the short-cycle result (Proposition 5.8) with a probabilistic argument applied to Theo

rem 7.2 giving all long cycles. 

7.2 An Exact Result 

With the results of Section 5.2 in mind, we are in a position to prove Theorem 7.1. The 

proof that this result holds for ‘long’ cycles uses somewhat similar methods to those 

in [46], and we will use some results from that paper. Using the ‘stability method’ we 

will distinguish between a non-extremal case where our oriented graph has some form of 

expansion property, and an extremal case where the oriented graph is shown to be similar 

to that in Figure 4.1. 

We have already proved the result for 4 ≤ � ≤ n/1010 in Theorem 5.4 and the case � = 3 

is dealt with by Theorem 1.4. Thus we can assume that n/1010 ≤ � < n. 

We will need the following slight extension of Lemma 3.2, due to Keevash, Kühn and 

Osthus [46]. 

Lemma 7.4. For every ε ∈ (0, 1) there exists numbers M � = M �(ε) and n0 = n0(ε) such 

that the following holds. Let d ∈ [0, 1] with ε ≤ d/2, let G be an oriented graph of order 

n ≥ n0 and let R� be the reduced digraph with parameters (ε, d) obtained by applying the 

Diregularity Lemma to G with M � as the lower bound on the number of clusters. Then R� 

has a spanning oriented subgraph R such that 

(a) δ+(R) ≥ (δ+(G)/|G| − (3ε + d))|R|, 

(b) δ−(R) ≥ (δ−(G)/|G| − (3ε + d))|R|, 

(c) for all disjoint sets S, T ⊂ V (R) with eG(S∗, T ∗) ≥ 3dn2 we have eR(S, T ) > d|R|2 , � � 
where S∗ := and T ∗ :=i∈S Vi i∈T Vi. 

(d) for every set S ⊂ V (R) with eG(S∗) ≥ 3dn2 we have eR(S) > d|R|2, where S∗ := � 
i∈S Vi. 
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Define a hierarchy of constants so that
 

1/n0 � ε � d � c � η � 1. 

Let G be an oriented graph on n ≥ n0 vertices with minimum semi-degree δ0(G) ≥ 

�(3n − 4)/8� and let u ∈ V (G). Suppose that G contains no cycle of length � containing u. 

Apply the Diregularity Lemma (Theorem 3.1) and Lemma 7.4 to G with parameters (ε2/3, 

d). This gives us a partition of V (G) into V0, V1, . . . , Vk with m := |V1| = . . . = |Vk| and 

a reduced oriented graph R on vertex set {1, 2, . . . , k}. Lemma 7.4 gives us that 

δ0(R) > (3/8 − 1/(2n) − d − ε2)k > (3/8 − 2d)k. (7.1) 

Case 1. |N+(S)| ≥ |S| + 2ck for every S ⊂ [k] with k/3 < |S| < 2k/3.R 

In this case we use probabilistic methods to find a subdigraph G� of G with � vertices 

and a new reduced oriented graph which still satisfies the conditions of Case 1, possibly 

with modified constants. Also, we can ensure that u ∈ V (G�). We can then use the 

following result from [46], which says that all such graphs contain a Hamilton cycle. 

Lemma 7.5. Let M � , n0 be positive numbers and let ε, d, η, ν, τ be positive constants such 

that 1/n0 � 1/M � � ε � d � ν ≤ τ � 1. Let G be an oriented graph on n ≥ n0 

vertices such that δ0(G) ≥ 2ηn. Let R� be the reduced digraph of G with parameters (ε, d) 

and such that |R�| ≥ M � . Suppose that there exists a spanning oriented subgraph R of 

R� with δ0(G) ≥ η|R| and such that |N+(S)| ≥ |S| + ν|S| for all sets S ⊆ V (R) withR 

|S| < (1 − τ)|R|. Then G contains a Hamilton cycle. 

The argument we use to find an appropriate subdigraph G� is similar to that in [46], 

and uses standard probabilistic techniques. Recall that there are k (non-exceptional) 

clusters, each with size m. 

Claim 1.1. Let m� satisfy 10−11n/k < m� < m and p := m�/m. Then there exists a 

partition of V (G) \ V0 into sets A and B which has the following properties: 
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(a)	 |Ai| = m�, where we write Ai := Vi ∩ A for every i ∈ [k]; 

(b)	 |NG 
+(v) ∩ Ai| = p|NG 

+(v) ∩ Vi| ± n2/3 for every vertex v ∈ V (G); and similarly for 

N− 
G (v); 

(c)	 R is the oriented reduced graph with parameters (ε2/1011 , 3d/4) corresponding to the 

partition A1, . . . , Ak of the vertex set of G[A]; 

(d)	 δ0(G[A]) ≥ (3/8 − ε)|A|. 

Proof. For each cluster Vi define a partition into Ai and Bi as follows. Let η := 

n2/3/(4|Vi|) and put x ∈ Vi in Ai with probability p + η, independently of all other 

vertices. Then standard Chernoff-type bounds give that the probability that p|Vi| < 

|Ai| < p|Vi| + n2/3/2 does not occur is exponentially small in |Vi|. Further, they also 

give that the probability that any vertex v ∈ Ai has outneighbourhood varying from 

p|N+(v) ∩ Vi| by more than n2/3/2 is exponentially small. Thus for sufficiently large n aG 

partition exists satisfying both these conditions, and we can discard up to n2/3/2 vertices 

from each Ai to obtain a partition satisfying (a) and (b). 

To see (c) note that the definition of regularity implies that the pair (Ai, Aj ) consisting 

of all the Ai -Aj edges in the pure oriented graph G∗ is ε2/1011-regular and has density at 

least 3d/4 whenever ij ∈ E(R). On the other hand, (Ai, Aj ) is empty whenever ij /∈ E(R) 

since (Vi, Vj ) ⊃ (Ai, Aj ) is empty in this case. Property (d) follows immediately from (b). 

If � ≥ n − |V0| then form G� by discarding n − � arbitrary vertices from V (G) \ {u}. 

Otherwise apply the previous claim to G with m� := ��/k� − 1. Let G� := G[A ∪ V0 
�], 

where V � ⊆ V (G) \ A is an arbitrary set of vertices containing u (if u �∈ A) of size � − |A|.0 

Then G� has exactly � vertices and satisfies the conditions of Lemma 7.5 with τ = 1/3, 

η = 1/6 and ν = 2c. Apply that result to obtain a Hamilton cycle in G� and thus a cycle 

of length � through u in G. 

Case 2. There is a set S ⊂ [k] with k/3 < |S| < 2k/3 and |N+(S)| < |S| + 2ck.R 
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In this case we exploit the minimum semi-degree condition to demonstrate that G has
 

roughly the same structure as the extremal graph. The proof proceeds in three steps. 

(i) Show that the G has roughly the same structure as the extremal graph. 

(ii) Show that if the cluster sizes and vertices satisfy certain conditions then using the 

Blow-up Lemma (Lemma 3.3) we have the desired cycle (Claim 2.3). 

(iii) Use (ii) to obtain further structural refinements, eventually showing that G either 

contains a Hamilton cycle or contradicts the minimum semi-degree condition. 

The difference between the proof here and the proof of the exact Hamiltonicity result 

in [46] is primarily in Step (ii), Claim 2.3. We have similar conditions here, but the 

stronger conclusion that we get a cycle of any length, not just a Hamilton cycle. Their 

proofs of the results needed for (iii) in the Hamiltonicity case implicitly require only that 

the conditions of (ii) are not satisfied, and so the proof of Step (iii) for us is implicit in 

their paper. Hence we will not give their proofs for either Step (i) or (iii). Instead we give 

a complete proof of the result in Step (ii) and refer the reader to [46] for all remaining 

details. 

Let 

AR := S ∩ N+ 
R (S), BR := N+ 

R (S) \ S, CR := [k] \ (S ∪ N+ 
R (S)),
 DR := S \ N+ 

R (S).
 

These sets will have similar properties as the sets A, B, C and D in the extremal example. � 
Let A := i∈AR 

Vi and define B, C, D similarly. The following notation will prove useful. 

Let P (1) := A, P (2) := B, P (3) := C and P (4) := D. When we refer to P (i + 1) 

or P (i − 1) we will always mean modulo 4. Define P (i ⊕ 1) by P (1 ⊕ 1) := P (1), 

P (2 ⊕ 1) := P (4), P (3 ⊕ 1) := P (3) and P (4 ⊕ 1) := P (2). This operation should be 

viewed with reference to the extremal graph as being the ‘other’ out-class of P (i) (so C 

so A, D for B, A for C and B for D), and has the obvious inverse P (1 � 1) := P (1), 

P (2 � 1) := P (4), P (3 � 1) := P (3) and P (4 � 1) := P (2). Since we will show that G 
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has a somewhat similar structure to the extremal graph it will be useful to define the
 

following graph on V (G). Let F [(P (i), P (i + 1)] contain all edges from P (i) to P (i + 1), 

let F [A] and F [C] be tournaments which are as regular as possible. Finally let F [B, D] 

be a bipartite tournament which is as regular as possible. We will show that G roughly 

notation will always be absolute. 

We call a vertex x ∈ P (i) cyclic if it has almost the same number of neighbours 

looks like F , and hence contains a cycle of length � From now on we will not calculate . 

∗explicit constants multiplying , and just write O( ). The constants implicit in the O( )c c

−in P (i 1) and P (i + 1) vertex in the corresponding vertex class in F Moreas a . 

+∈ |precisely, call a vertex P (i) cyclic if Nx G

√ 
(x) ∩ P (i + 1)| ≥ (1 − O( c))|P (i + 1)| and
 

|N
− 
G

√
 
(x) ∩ P (i − 1)| ≥ (1 − O( c)|)P (i − 1)|, counting modulo 4. A vertex is acceptable
 

if it has a significant outneighbourhood in one of its two ‘out-classes’ and one of its two
 

‘in-classes’, where these are understood with reference to F . More precisely, x ∈ P (i) is 

acceptable if both the following hold. 

• |N+ 
G (x) ∩ P (i + 1)| 

√ 
c))n or |N+ 

G≥ (1/100 − O( (x) ∩ P (i 
√ 

⊕ 1)| ≥ (1/100 − O( c))n, 

• |N
− 
G

√
 
(x) ∩ P (i − 1)| ≥ (1/100 − O( c))n or |N
− 

G

√
 
(x) ∩ P (i � 1)| ≥ (1/100 − O( c))n.
 

An edge from P (i) to P (j) in G is acceptable if P (j) = P (i + 1) or P (j) = P (i ⊕ 1). 

The next claim combines several results from [46] and shows that these sets have 

roughly the same structure as in F . 

Claim 2.2 (Keevash, Kühn and Osthus, [46]). The following hold for all i. 

(a) |P (i)| = (1/4 ± O(c))n, 

(b) e(P (i), P (i + 1)) > (1 − O(c))n2/16, 

(c) e(P (i), P (i ⊕ 1)) > (1/2 − O(c))n2/16. 

Furthermore, by reassigning vertices that are not cyclic to A, B, C or D we can arrange 

that every vertex of G is acceptable. We can also arrange that there are no vertices that 

are not cyclic but would become so if they were reassigned. 

94
 



� 

Note that these properties of A, B, C and D are invariant under the relabelling A ↔ C, 

B ↔ D. Thus we may assume that |B| ≥ |D|. 

Given a path P := v1 . . . vk in G with v1, vk ∈ P (i) we say we contract P to refer to 

the following process, which yields a new digraph H. Remove v1, . . . , vk from G and add 

an extra vertex v
 ∗ to P (i) with outneighbourhood N+(vk) and inneighbourhood N−(v1). 

The ‘moreover’ part of the next claim is not in the statement of the corresponding claim 

in [46]. That we are not seeking a Hamilton cycle allows us this modified condition and 

a simpler proof than would otherwise be the case. 

Claim 2.3. If |B| = |D| and every vertex is acceptable then G has an �-cycle containing 

u. Moreover, the assertion also holds if we allow one non-acceptable vertex x ∈ A ∪ C. 

Proof. The idea is as follows. First we contract suitable paths to leave us with a 

digraph G1 containing only cyclic vertices. Then we find suitable paths to contract to 

give a digraph G2 with |A| = |B| = |C| = |D|. We can then apply the Blow-up Lemma 

to the underlying graph to find a cycle in G2 which ‘winds around’ A, B, C, D. By 

our choice of the vertices in this cycle and the definition of our contractions this will 

correspond to the desired cycle in G. We will say that a 4-partite graph with vertex 

classes (P (1), P (2), P (3), P (4)) has type (p1, p2, p3, p4) if |P (i)| = pi + q and pi ∈ N for 

all i and some q. Our initial condition on the sizes means that G has type (p1, 0, p3, 0). 

The type sum is p1 + p2 + p3 + p4. 

Firstly, move the non-acceptable vertex x (if it exists) to a vertex class in which it is 

acceptable, and readjust the O(c) notation if necessary. This gives us type (p1, 0 ≤ p2 ≤ 

1, p3, 0), possibly with new values for the pi. Let v1, . . . , vt be vertices which are acceptable 
√ 

but not cyclic. Claim 2.2 (a) and (b) give us that t = O( c)n (easily shown by counting 

edges), so we can pick cyclic neighbours v
 + 
i and v
 − 

i 
+ 

+ 

of each vi such that the edges viv 

and v
 − 
i vi are acceptable and all these vertices are distinct. We want to contract v − 

so that we form a new graph in which all vertices are cyclic. We need to ensure that after 

contracting we are still of type (p1, 0 ≤ p2 ≤ 1, p3, 0) (although possibly with different pi 
√
 

to above) and p1, p3 = O( c)n. For each vi find a path Pi of length at most 3 starting
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� � 

at v
i 
+, ending at some cyclic vertex in the same cluster as v − 

i and ‘winding around the
 

− 
i are in the same cluster
 clusters,’ i.e. following the order P (i), P (i + 1) etc. If vi 

+ and v 

then the path P
i is the empty path. Let Pi := v
 − +P
i and note that we can choose
 vivi i 

the Pi to be disjoint. 

Contract the paths Pi to form a new digraph G1. Note that G1 is not necessarily 

oriented. Every vertex in G1 is cyclic by construction, possibly with a new constant in the 
√ 

O( c) notation in the definition of a cyclic vertex. G1 also has type (p1, 0 ≤ p2 ≤ 1, p3, 0) 
√ 

and p1, p3 = O( c)n. 

Now suppose that |A| < |C| and let s := |C| − |A| = p3 − p1. Greedily find a path 

PC in G1 which follows the pattern CCDAB s times and then ends in C. I.e. find an 

edge between 2 cyclic vertices in C, extend around the clusters back to C and repeat 

until we have a path from C to C with s (cyclic) vertices from A, B and D and 2s + 1 

vertices from C. We can do this as Claim 2.2 (a) and (c) imply that almost all unordered 
√ 

pairs of vertices in C are connected by an edge and s = O( c)n. Let G2 be the digraph 

obtained by contracting PC . Then in G2 has type (p1, 0 ≤ p2 ≤ 1, p1, 0). If |A| > |C| 

we can achieve type (p1, 0 ≤ p2 ≤ 1, p1, 0) in a similar way by contracting a path PA 

√ 
from A to A following the pattern AABCD. Note that since s = O( c)n, all vertices of 

G2 are still cyclic. Now suppose that in G2 we have |D| > |A|. Let s := |D| − |A| = −p1. 

This time we find a path PD from D to D following the pattern DBCDABDABC which 

contains s + 1 more vertices from D than it contains from A, and similarly for C. Note 

that contracting PD does not change |B|− |D|. Contracting PD gives us a digraph (which 

we still call G2) with type (0, 0 ≤ p2 ≤ 1, 0, 0) and all of whose vertices are still cyclic. 

The last case to consider is when we have |D| < |A|. In this case we can equalize the sets 

by contracting two paths PA and PC of appropriate length as above. 

We now find and contract a short path in G2 to form a new oriented graph G3 with 

|G3| − n + � ≡ 0 (mod 4). Let p := n − � (mod 4). This is (congruent to) the number 

of vertices we do not want in the cycle we will find in G3. We now contract paths to 

ensure that G3 has type sum p, and thus |G3| − n + � ≡ 0 (mod 4). Suppose G3 has 

96
 



type (0, 0, 0, 0). If p = 0 we are done. If p = 1 use one path PC and one path PD as 

above to obtain type (1, 0, 0, 0). If p = 2 then a path PD gives us type (1, 0, 1, 0) and 

finally if p = 3 a path PC gives us type (1, 1, 0, 1). Now suppose G3 has type (0, 1, 0, 0). 

If p = 1 we are done already. If p = 2 contract one path PD and one path PC to get 

type (1, 1, 0, 0). If p = 3 a path PD gives us type (1, 1, 1, 0). Finally if p = 4 two paths PD 

and one path PC gives type (2, 1, 1, 0). 
√ 

At most O( c)n vertices in G3 correspond to paths in G. Call these vertices and u 

special vertices. We now contract the special vertices. Let S1 consist of the special vertices 

in A. Find a path from A to A that ‘winds around’ the 4 clusters of the oriented graph G3 

√ 
|S1| times and contains all vertices in S1. As |S1| ≤ O( c)n we can find such a path easily 

with a greedy algorithm. Contract this path and repeat for B, C and D to reduce the 

number of special vertices to at most 4 without otherwise affecting the structure of G3. 

Let S consist of these remaining special vertices. 

Let G� 
3 be the underlying graph corresponding to the set of edges oriented from P (i) 

to P (i +1), for 1 ≤ i ≤ 4. Since all vertices of G3 are cyclic and we chose c � η � 1, each 

pair (P (i), P (i + 1)) is (η, 1)-super-regular in G� 
3. Furthermore, G� 

3 contains no multiple 

edges. Let F � be the 4-partite graph with vertex classes P (i) where the 4 bipartite graphs 

induced by (P (i), P (i + 1)) are all complete. Define �� := |F �| − n + � and note that it 

satisfies �� ≡ 0 (mod 4) and ��/4 ≤ |D|. Thus ‘winding around’ the 4 clusters ��/4 times 

we can find a cycle of length �� in F � including all the special vertices. Note that we need 

� < n here, since the one non-acceptable vertex means that we cannot ensure that G3 has 

type (0, 0, 0, 0). Remove each special vertex vj ∈ S from this cycle to split the cycle into 

+ − + −a series of disjoint paths P1 := v1 P1
�v2 , P2 := v2 P2

�v3 etc. For each vj ∈ S ∩ P (i) and 

every i pick sets C+ ⊂ N+(vj ) ∩ P (i + 1) and C− ⊂ N−(vj ) ∩ P (i − 1) of size 10−8|G3|.j j 

We now apply Lemma 3.3 with M = 4, Δ = 2, b = 10−8 and the Cj 
+ and Cj 

− as the 

+ − + −sets Cx (for x ∈ {v1 , v 2 , v 2 , . . . , v 1 }) to embed the paths P1, . . . , P|S|. This gives us 

disjoint paths in G� 
3 − S with endpoints in the Cj 

+ and Cj 
− and the sum of whose lengths 

is |G3|− n + � − 2|S|. The ‘moreover’ part of Lemma 3.3 implies that we can assume that 
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these paths continually ‘wind around’ A, B, C, D. The condition on the endpoints of the
 

paths ensures that we can add in the special vertices to obtain a cycle C in G3 of length 

|G3| − n + �. As every vertex outside C in G3 corresponds to a single vertex in G, the 

cycle C� in G corresponding to C has length � and contains u. � 

Since we are done if we satisfy the conditions of Claim 2.3, assume that |B| > |D|. The 

argument in [46] reaches a similar point to us here, and proceeds by showing that either G 

contains a Hamilton cycle, or is even more like the extremal graph. More precisely, they 

show that G either satisfies certain structural conditions, which we state below, or the 

conditions of Claim 2.3 are satisfied. They do this by moving vertices between clusters 

to obtain |B| = |D| whilst ensuring that all vertices are acceptable. The situation can 

arise though that |B| = |D| + 1 and the only vertex class that it is possible to move 

vertices in B to without stopping them being acceptable is D. In this case we can shift 

an arbitrary vertex in B to A ∪ C to satisfy the conditions of Claim 2.3. 

Claim 2.4. For each of the following properties, there are fewer than |B| − |D| vertices 

with that property or the conditions of Claim 2.3 are satisfied. 

√ 
•	 x ∈ A and |N−(x) ∩ C| ≥ (1/100 − O( c))n.
 

√
 
•	 x ∈ A and |N−(x) ∩ B| ≥ (1/100 − O( c))n.
 

√
 
•	 x ∈ C and |N+(x) ∩ A| ≥ (1/100 − O( c))n.
 

√
 
• x ∈ C and |N+(x) ∩ B| ≥ (1/100 − O( c))n. 

We now define a new class of vertices. We say that a vertex is good if it is acceptable 

and satisfies one of the following. 

√ 
•	 x ∈ A and |N−(x) ∩ C|, |N−(x) ∩ B| ≤ (1/100 + O( c))n.
 

√
 
•	 x ∈ B and |N+(x) ∩ A|, |N+(x) ∩ B| ≤ (1/100 + O( c))n and |N−(x) ∩ B|, 

√ 
|N−(x) ∩ C| ≤ (1/100 + O( c))n.
 

√
 
• x ∈ C and |N+(x) ∩ A|, |N+(x) ∩ B| ≤ (1/100 + O( c))n. 
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• x ∈ D. 

Note that cyclic vertices are not necessarily good. 

√ 
Claim 2.5. By reassigning at most O( c)n vertices we can arrange that every vertex is 

good or the conditions of Claim 2.3 are satisfied. 

Let M be a maximal matching in e(B, A) ∪ e(B) ∪ e(C, A) ∪ e(C, B). 

Claim 2.6. e(M) = 0 and |B| − |D| = 1 or the conditions of Claim 2.3 are satisfied. 

If the conditions of Claim 2.3 are satisfied we are done, so assume not. Since e(M) = 

0 we now have e(B ∪ C, A) = 0. Since e(A) < |A|2/2 there exists a vertex a ∈ A 

with d−(a) ≤ (|A| − 1)/2 + |D|. Furthermore, we also now have that e(C, B) = 0 and 

e(B) = 0, and so there exist vertices c ∈ C and b ∈ B with d+(c) ≤ (|C| − 1)/2 + |D| and 

d(b) ≤ |A| + |C| + |D|. Since |D| = |B| − 1 we see that 

3 3 
(3n − 4)/2 ≤ d−(a) + d+(c) + d(b) ≤ (|A| + |C| + 2|D|) − 1 = (n − 1) − 1. 

2 2

This contradiction completes the proof. 

7.3 Proof of universal pancyclicity result 

To deduce Theorem 7.3 from Theorem 7.2 and Proposition 5.8 we will use the following 

observation which is similar to one in [54]. 

Lemma 7.6. There exists an integer n1 such that the following holds for all 0 < α < 

1. Suppose we are given an oriented graph G on n ≥ n1 vertices with minimum semi-

degree δ0(G) ≥ (3/8 + α − n−3/8)n where n/2 ∈ N. Then there is a subset U ⊆ V (G) of 

size |U | = n/2 := u such that δ0(G[U ]) ≥ (3/8 + α − u−3/8)u. 

To prove it we need a large deviation bound for the hypergeometric distribution (see 

e.g. [45, Theorem 2.10]). 
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� � 

� � 

Lemma 7.7. Given q ∈ N and sets A ⊆ T with |T | ≥ q, let Q be a subset of size q of T 

chosen uniformly at random. Let X := |A ∩ Q|. Then for all 0 < ε < 1 we have 

ε2 

P[|X − E(X)| ≥ εE(X)] ≤ 2 exp − E(X) . 
3 

Proof of Lemma 7.6. Consider a subset U of vertices of G chosen uniformly at 

random from all subsets of V (G) of size u. Let ε := (1 − 2−3/8)u−3/8 . Consider any 

vertex x of G and define a random variable X+ := |N+(x) ∩ U |. Observe that εE(X+) ≤ 

εu = (1 − 2−3/8)u5/8 and hence 

E(X+) ≥ (3/8 + α − n −3/8)u = (3/8 + α − u −3/8)u + εE(X+). 

Then by Lemma 7.7 we have 

(1 − 2−3/8)2 u −2P[X+ ≤ (3/8 + α − u −3/8)u] ≤ P[X+ ≤ (1 − ε)E(X+)] ≤ 2 exp −
3/4 

≤ n . 
3u 4 

The final inequality holds since we assume n, and hence u, to be sufficiently large. The 

same bound holds when we consider inneighbourhoods of vertices. Hence with positive 

probability there exists a set U ⊆ V (G) with the desired minimum semi-degree property. 

We are now in a position to derive Theorem 7.3. 

Proof of Theorem 7.3. Given α > 0, set �0 := max{n0(α/3), n1, (6/α)8/3}, where n0 

is the function defined in Theorem 7.2 and n1 is as in Lemma 7.6. Let n � �0, 1/α and 

consider an oriented graph G on n vertices with minimum semi-degree δ0(G) ≥ (3/8+α)n. 

Choose any 3 ≤ � ≤ n and any orientation C of an �-cycle. We have to show that G 

contains a copy of C. This is clear if 4 ≤ � ≤ �0, since n � �0, 1/α and thus an 

application of Proposition 5.8 gives us C immediately, at least for � ≥ 4. For � = 3 we 

can use Fact 5.12 to get that N+(v) is not independent for any v ∈ V (G) and hence to 

find a transitive triangle. Theorem 5.3 gives us the directed 3-cycle. 
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So we may assume that � > �0. Let k be an integer such that 2k� ≤ n < 2k+1�. A 

straightforward application of Lemma 7.7 implies the existence of a subgraph G� of G 

on n� := 2k� vertices with δ0(G�) ≥ (3/8 + α/2)n� . Apply Lemma 7.6 k times to obtain 

a subgraph G�� of G� on � vertices with δ0(G��) ≥ (3/8 + α/2 − �−3/8)� ≥ (3/8 + α/3)�. 

Since � > n0(α/3) we can now apply Theorem 7.2 to obtain a Hamilton cycle oriented 

as C in G�� and hence the desired orientation of an �-cycle in G. 
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CHAPTER 8
 

OPEN PROBLEMS
 

8.1 Long Cycles 

There are two natural directions in which to extend our work on Hamilton cycles in 

oriented graphs. Firstly, we can seek stronger sufficient conditions for the existence of 

such a Hamilton cycle in an oriented graph. The best-known open problem here is the 

Nash-Williams conjecture, which would provide a digraph analogue of Chvátal’s theorem 

for digraphs. If the degree sequence d1 ≤ d2 ≤ . . . ≤ dn of a graph satisfies dk ≥ k + 1 or 

dn−k ≥ n − k whenever k < n/2 then Chvátal’s theorem tells us that it is Hamiltonian. 

For digraphs we need two sequences: d+ ≤ d+ ≤ . . . ≤ d+ for the out-degree sequence 1 2 n 

and d− ≤ d− ≤ . . . ≤ d− for the in-degree sequence. 1 2 n 

Conjecture 8.1. Let G be a strongly connected digraph of order n and suppose that for 

all k < n/2 

(i) d+ ≥ k + 1 or d− ≥ n − k andk n−k 

(ii) d− ≥ k + 1 or d+ ≥ n − k.k n−k 

Then G contains a Hamilton cycle. 

An approximate version of Conjecture 8.1 for large digraphs was recently proved by 

Kühn, Osthus and Treglown [56]: 
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Theorem 8.2. For every η > 0 there exists an integer n0 = n0(η) such that the following 

holds. Suppose G is a digraph on n < n0 vertices such that for all k < n/2 

(i) d+ ≥ k + ηn or d− ≥ n − k andk n−k−ηn 

(ii) d− ≥ k + ηn or d+ ≥ n − k.k n−k−ηn 

Then G contains a Hamilton cycle. 

It is natural to ask whether this could be made exact and the error terms removed. 

The other direction in which the question can be extended is to expand the class of 

cycles we are seeking. In Chapter 6 we have done so, looking at arbitrary orientations 

of Hamilton cycles. The obvious open problem here is whether Theorem 6.2, our result 

on arbitrary orientations of Hamilton cycles, can this be made exact and the error term 

removed. The first step to doing so, and an interesting question in its own right, is likely 

to be obtaining an understanding of the extremal oriented graphs. That is, what do those 

oriented graphs who almost (in some appropriately defined sense) satisfy the minimum 

semi-degree condition of Theorem 6.2 but do not contain some orientation of a Hamilton 

cycle look like? It is not clear that this is a simple family, as is the case with the standard 

orientation where we have the example of Häggkvist (Figure 4.1). 

8.2 Short Cycles 

With short cycles the first open problem is obvious: we have not solved our own conjecture. 

Conjecture 8.3. Let � ≥ 4 be a positive integer and let k ≥ 3 be minimal such that k does 

not divide �. Then there exists an integer n0 = n0(�) such that every oriented graph G on 

n ≥ n0 vertices with minimum semi-degree δ0(G) ≥ �n/k� + 1 contains an �-cycle. 

As discussed in Section 5.1.2, there is a natural strengthening of this conjecture to 

arbitrary orientations of cycles. 
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Conjecture 8.4. Let C be an arbitrarily oriented cycle of length � ≥ 4 and cycle-

type t(C) ≥ 4. Let k be the smallest integer which is greater than 2 and does not di

vide t(C). Then there exists an integer n0 = n0(�, k) such that every oriented graph G on 

n ≥ n0 vertices with minimum semi-degree δ0(G) ≥ �n/k� + 1 contains C. 

Some of our partial results towards these conjectures require use of Lemma 5.19, which 

says that if we allow a linear ‘error term’ in the degree conditions then instead of finding 

an �-cycle, it suffices to look for a closed walk of length �. The proof of this lemma 

is a standard application of the Regularity lemma. It would be interesting to find a 

proof which avoids the Regularity lemma. This would probably allow some of our partial 

results to be applied to much smaller graphs than is the case at present, as well as being 

an interesting result itself. 
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[54] D. Kühn and D. Osthus, Loose Hamilton cycles in 3-uniform hypergraphs of large 
minimum degree, Journal of Combinatorial Theory, Series B 96 (2006), 767–821. 
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[64] M. Nathanson, The Caccetta-Häggkvist Conjecture and additive number theory, 
ArXiv Mathematics e-prints (2006). 

[65] T. Nishimura, Short cycles in digraphs, Proceedings of the First Japanese Conference 
on Graph Theory and Applications 72 (1988), 295–298. 

[66] Ø. Ore, Note on Hamiltonian circuits, American Mathematics Monthly 67 (1960), 
55. 

108
 



[67] J. Shen, Directed triangles in digraphs,	 Journal of Combinatorial Theory, Series 
B 74(2) (1998), 405–407. 

[68] J. Shen, On the girth of digraphs, Discrete Mathematics 211 (2000), 167–181. 

[69] Z. Song, Pancyclic oriented graphs, Journal of Graph Theory 18(5) (1994), 461–468. 
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