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ABSTRACT 
 
 
 

Emerging meshless technologies are very promising for numerically solving Euler 

and Navier-Stokes transport systems in one-, two-, and three-dimensions (3-D). The 

Reduced-Order Meshless (ROM) technique developed in this work is applicable  to a 

wide array of transport physics systems (i.e., fluid flow, heat transfer, gas dynamics, 

internal combustion flow and chemical reactions, and solid- liquid mixture flow) with 

various types of boundary and initial conditions. Such applications to be benchmarked in 

this work include one- and two-dimensional advection, and two- and three-dimensional 

convection-diffusion problems (Burgers’ equation). Computational solutions to these 

boundary-value problems will be demonstrated using the ROM approach and the 

predicted solutions will be posted against the Meshless Local Petrov-Galerkin (MLPG) 

method and exact solutions to these problems when they exist. Extensions to 3-D 

phenomenology will be attempted based on the conclusions obtained from computational 

studies to establish the existence, smoothness, and boundedness of 3-D Navier-Stokes 

transport systems.  

An approximated benchmark solution of the Navier-Stokes equations is also 

developed in this work using a linearized perturbation analysis.  The classical paper on 

gas turbine throughflow, Three Dimensional Flows in Turbomachines (Marble, 1964), 

outlines this procedure for approximation, and produces solutions for a class of 

axisymmetric problems.  An investigation into the behavior of these solutions uncovered 
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a series of inconsistencies in the paper, which are outlined in detail and corrected when 

known to be in error. 
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1. INTRODCUTION 
 

Transport physics problems are practical and full of complexities that remain hard 

to fully understand. The current state of our knowledge presents several conflicting 

conjectures about the existence, uniqueness, and smoothness of solutions of one such 

problem, the Navier-Stokes equations. Because our current knowledge leaves open the 

question of whether these solutions even exist, our understanding of these systems is at a 

very primitive level. Conventional methods of partial differential equations appear to be 

inadequate to settle the question.  However, innova tive approaches in advancing 

computational meshless techniques may be able to settle the inquiry, and lead to advances 

in fluids engineering and science. This is the primary goal that is revealed through the 

development and application of meshless technologies to advection-diffusion and 

convection-diffusion problems, Burgers’ equation, and axisymmetric Navier-Stokes 

transport systems. 

A Reduced-Order Meshless (ROM) methodology has been developed that can 

capture the three-dimensional transport physics of flow devices more accurately and 

efficiently than current state-of-the-art meshless technologies.  Specifically, the system is 

modeled as a meshless continuum utilizing only nodal data to describe the arbitrary 

volume in which the system's governing equations are solved, subjected to constraints 

imposed by an assumed transport field of mathematically complete, generalized Fourier 

series of functions. The Fourier series comprises a basis for the transport physics domain 

containing the desired solution (i.e., pressure, temperature, density, velocities, enthalpy, 

and entropy at a particle inside the transport system). No conventional finite elements, 
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boundary element, finite difference, finite volume, and element connectivity or 

component substructuring of data is needed.   

In this work, computational solutions to the aforementioned boundary-value 

problems are demonstrated using the ROM approach and are posted against exact 

solutions to these problems when they exist. At this stage in the research, exact solutions  

to one- and two-dimensional advection-diffusion and convection-diffusion, and three 

dimensional Burger’s equations have been calculated.  These equations are commonly 

used as test equations for the Navier-Stokes equations because closed-form solutions 

exist for the two-dimensional problem.  A classical linearized perturbation analysis of the 

Navier-Stokes equations is developed as a benchmark for fully three-dimensional 

asymmetric through-flow nonlinear problems of turbomachines in progress.  In 

comparison to other reduced-order meshless models, our results are a significant 

advancement in the ability to capture linear advection and nonlinear convection effects of 

these equations. 

 

The Navier Stokes Equations  

The search to solve Euler and Navier-Stokes transport systems in one-, two-, and 

three-dimensions, has been aided with significant advances in emerging meshless 

computational tools. These equations are to be solved for an unknown transport property 

(φ), which can be either a scalar or vector quantity (i.e., density, temperature, energy, 

entropy (losses), or a fluid velocity vector ui(x,t)i=1,2,3), passing across a velocity field 

uj(x,t)j=1,2,3 , and fluid pressure p(x,t) defined in a transport domain at position x and time t 
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> 0. This work will restrict attention to incompressible transport problems. The 3-D 

Navier-Stokes equations are then given by:  
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with initial conditions φ(x,0) = φo(x) = the prescribed transport property values. Here, 

fi(x,t) are the components of a given, externally applied source in the transport system, 

ν represents a transport diffusion constant associated with φ, and 
23

2
i 1 ix=

∂
∆ =

∂∑  is the 

Laplacian operator in the space variables. The Euler equations are (1) and (1.2) with the 

transport diffusion ν set to zero. Equation (1.1) is defined as the conservation of 

momentum for a transport system subject to externally applied sources, internal pressure 

p(x,t), and transport diffusion effects. Equation (1.2) defines the transport system as 

incompressible, assumption this work will be restricted to. 

 A few words defining each of the terms in Equation (1.1) is appropriate. The first 

term on the left-hand side (LHS) of Equation (1.1) is unsteadiness of the property φ. The 

second LHS term of Equation (1.1) is the nonlinear convection term. It is nonlinear 

because it can involve products of the unknown transport property (φ), its gradients, and 

the velocity field uj(x,t)j=1,2,3. The first term on the right-hand side (RHS) of Equation 

(1.1) is the diffusion term, involving the Laplacian operator in the spatial domain of the 

transport system. This diffusion term represents the friction or shearing applied on the 

transport system. The second RHS term of Equation (1.1) is the transport pressure 
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gradient term. It represents the internal normal stress rates that exist in the transport 

system. The last RHS term of Equation (1.1) is the externally applied source term in the 

transport system, resulting from either gravitational/centrifugal body forces or surface 

traction forces existing at the boundary surfaces of the transport system. 

The existence of the nonlinear convection term resulting from a substantial 

derivative in time and space of the dependent transport property (φ), poses the central 

difficulty in obtaining tractable solutions of Equation (1.1), both mathematically exact or 

computationally. As the convection term dominates, computational solutions become 

notoriously unstable, exhibiting oscillatory solutions about an unknown exact solution. 

Conventional treatment is to stabilize numerical approximations (such as Finite 

Difference Methods (FDM), Finite Element Methods (FEM), Finite Volume Methods 

(FVM), and Boundary Element Methods (BEM)) using numerically-correcting 

upwinding techniques. Emerging meshless technologies (Atluri, 2002; Liu, 2003) have 

also considered similar kinds of special treatments, which limit the ability to predict the 

existence and smoothness of unsteady convection-diffusion transport systems 

characterized by the Navier-Stokes equations. Hence, the primary focus of this research is 

to address this specific question:  

Can new emerging meshless technologies in reduced-order simulation and 
modeling be used to find computationally exact solutions to 3-D Navier-Stokes transport 
systems, where conventional integral-based finite element and differential-based finite 
volume methodologies under serve the analysis of such systems? 
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Methods of Procedure  

Advanced engineering computations have seen a great deal of progress during the 

past four decades. The conventional methodologies have employed Lagrangian-based 

(integral) FEM and BEM, and Eulerian-based (differential) FDM and FVM. Lagrangian-

based FEMs and BEMs have several drawbacks in modeling and simulation of the above 

Euler and Navier-Stokes fluid systems. These drawbacks result from either the BEMs’ 

inherent  difficulties in preventing the integral-based singular functions from producing 

solution matrix ill-conditioning, or the FEMs’ false numerical “locking” in convection, 

diffusion, compressibility, and unsteadiness phenomena. Both FEMs and BEMs are 

further disadvantaged by the need to (re)generate meshes at an enormous computational 

cost. Eulerian-based FDMs and FVMs have setbacks of “ghost” point evaluations along 

the wall boundaries of fluid systems. Moreover, when simulating the loss mechanisms of 

fluid flow problems, FDMs and FVMs can suffer special computational anomalies in 

systems with large distortions, moving material or density interfaces, and deformable 

boundaries or walls. Previous attempts have been made to combine the best of FDMs, 

FVMs, and FEMs, by combining the multi-grid systems with an Arbitrary Lagrangian-

Eulerian (ALE) coupling approach (Shin and Chisum, 1997). However, such approaches 

have very complicated mapping techniques which can lead to problems of stability and 

accuracy.   

Due to the time consuming mesh generation and computational cost of 

regenerating the meshes, a new field of meshless methods have been developed to 

overcome this burden.  However, the majority of these methods (as outlined in Lin, 

2000), namely Smooth Particle Hydrodynamics (SPH) (Lucy, 1977), Diffuse Element 
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Method (DEM) (Naroles et al, 1992), Element Free Galerkin Method (EFG) (Belytcsko 

et al, 1994), Reproducing Kernel Particle Method (RKPM) (Liu, Jun, and Zhang, 1995), 

and hp-clouds method (Duarte and Oden, 1996), are not truly mesh free.  These methods 

require a mesh to interpolate or to numerically integrate the weak form of the governing 

equation.   

Four truly meshless methods have been developed, including the Finite Point 

Method (FPM) (Oñate, Idelsohn, Zeinkiewicz and Talyor, 1996), Local Boundary 

Integral Equation Method (LBIE) (Zhu, Zhang, and Atluri, 1998a,b), Meshless Local 

Petrov Galerkin Method (Lin and Atluri, 2000), and the Reduced-Order Meshless (ROM) 

(McGee and Fang, 2005).  The scope of this work is limited to the latter two methods.   

The MLPG method is a weak (integral) form of the solution computed over a 

local simple geometry sub-domain.  The governing equation is weighted by a test 

function and integrated over the local domain to form a global stiffness matrix.  A 

moving least squares method is used to determine the value of the coefficients for the 

solution.  The specific shape of the domain (cube, sphere, etc) can be modified to suit the 

global boundary conditions, yielding applicability to a wide range of boundary-value 

problems.  The major drawback from this method is its tendency to exhibit oscillatory 

solutions for convection driven problems.  Specifically, as the inertial (convective) forces 

become large, the solution is pushed in the direction of the flow, and the diffusion 

process is dominated.  Upwinding techniques, originally developed to stabilize highly 

oscillatory first and higher order derivatives inside FEM and FVM methods, can also be 

implemented to MLPG to emphasize upstream conditions for the solution of each point.  

The major difficulty in developing an upwinding scheme for nonlinear convection 
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problems is that the flow direction is not known until after the solution is developed.  

Models implementing upwinding lose transportiveness, being the ability for flow 

properties to be transported in all directions of the domain.       

The first upwinding technique (MLPG1) deve loped in Atluri (2002) is 

implemented through the choice of the trial function.  The maximum value of the 

weighting function can be shifted up in the direction of the streamline function, while the 

domain of the function remains constant.  A second correction scheme (MLPG2) is 

developed which uses an upstream shift of the entire domain of the unskewed trail 

function.  Both methods are benchmarked in this work. 

The ROM technique is unique in that it is a strong form solution.  The partial 

differential equation is solved directly without the use of numerical integration by 

invoking an assumed generalized Fourier series, which is a unique, continuous solution 

throughout the entire domain of interest.  Boundary and initial conditions are included in 

the approximating series. Lower order derivatives of the given field may be calculated 

exactly and substituted into the governing equation at each arbitrary node in the domain.  

The partial differential equation over the entire domain is effectively transformed into a 

series of algebraic equations evaluated at each node, to be solved for unknown 

coefficients using standard methods for evaluating systems of equations.  No element 

connectivity is required, albeit the solution is dependent on the choice of the evaluation 

points.   
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2. NUMERICAL ANALYSIS 
 

To determine the effectiveness of the ROM methodology, a series of examples are 

in this work.  

 

1D Advection-Diffusion Boundary-Value Problem 

Consider the simple one-dimensional advection-diffusion equation described as: 

02
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−
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f
x

K
x

u
φφ

      (2.1) 

where the three terms from left to right are the advection, diffusion, and source terms 

respectively.  The constant K is the diffusion coefficient, and u is the coefficient 

associated with advection.  The relative size of the advection and diffusion terms are 

determined by the non-dimensional Peclet (Pe) number defined as 
K
uL

Pe = , with L as 

the characteristic length scale.  Equation (2.1) is subject to the following boundary 

conditions: 

0)1(,0)0( == φφ .       (2.2) 

For low order Peclet numbers, there is excellent agreement between the ROM, 

MLPG, and the exact solution (Figure 2.1).  At Pe=100, the MLPG method begins to 

exhibit oscillatory behavior due to the large advection term.  The upstream direction in 

the one-dimensional problem is trivial, and both upwinding techniques adequately predict 

the exact solution.  When the Peclet number is increased again to 1000, the MLPG 

method completely diverges out of the figure.  Although the MLPG2 appears to capture 

the exact solution, the plot is misleading.  With the exact solution plotted to only 10 

points, the sharp boundary effect is masked.  The MLPG1 and MLPG2 techniques do not 
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accurately predict the solution in the domain between x=0.9 and x=1.  In this problem, 

the ROM technique predicts the solution at high Peclet numbers without the need for any 

upwinding.  In addition, the effect of the boundary at x=1 is captured better than either of 

the MLPG methods. 
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2D Advection-Diffusion Boundary-Value Problems 

Consider now the two-dimensional advection diffusion equation written as: 
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The boundary conditions are given by: 
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φ
φ

φφ
        (2.4) 

 The source f=0, and the direction of the flow is skewed 45 degrees from the x axis using 

the advection coefficients given by:  

)4/sin(),4/cos( ππ == vu         (2.5) 

 For this and subsequent examples, only the best upwinding scheme (MLPG2) will 

be compared with the upwind free ROM results.  Figure 2.2 shows both methods in good 

agreement for low Peclet number systems.  However, as the advection term dominates, 

the ROM method is able to accurately capture the flow around the x=1 and y=1 

boundaries. The MLPG2 scheme has difficulty predicting the nature of the solution in the 

neighborhood of (x,y)=(1,1), and is unable to capture the boundary layer.  At a Peclet 

number of 100, ROM predicts a steep transport gradient associated with the boundary 

layer effect.  At Pe=106, the boundary layer creates a nearly vertical gradient which is not 

captured in the MLPG2 method.    In fact, the MLPG2 method does not capture any 

noticeable change in solution from Pe=100 to Pe=106 along the boundary.  The 

coarseness of the grid creates false diffusion in the solution space near the boundary, 

which is especia lly obvious in the neighborhood of (x,y)=(1,1).  In general, the MLPG 

method does not capture the steep gradients produced near the boundary in either the one- 
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or two-dimensional problems. It is projected the weak formulation of the partial 

differential equation in the MLPG method may necessitate a course grid to prevent 

matrix ill conditioning. 
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A second two-dimensional example is examined using the governing equation 

(2.3), subject to the condition 0=φ on all boundaries.  The advection coefficients u  and v 

are given as one and zero respectively, which eliminates the advection term in the y-

direction.  However, the diffusion process and the boundary conditions at x=1 and x=0 

make the problem a two dimensional process.  In addition, the equation is subject to an 

external forcing function is given by: 





<<−
≤<

=
)15.0(,1

)5.00(,1
x

x
f         (2.6) 
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Figure 2.3 
 

The wall boundary conditions at y=1 and y=0 creates a thin boundary layer flow 

called the “wall effect”, which is accurately picked up by the ROM solution. Similar to 

the previous two-dimensional example, the ROM methodology captures the steep 

solution gradient near the boundary including the “mixing phenomena” with the main 
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flow above the boundary layer.  Both the boundary layer flow and the adjacent mixing 

phenomena are highly irreversible (entropic) phenomenon having large amounts of shear 

stresses picked up by the diffusion terms of the advection-diffusion equation. Mixing 

taking place adjacent to the boundary layer flow is a shear driven process of high 

irreversibility. The best MLPG upwinding scheme captures the appropriate solution in a 

horizontal band near the center of the y solution space.  However, as the vertical position 

nears a boundary, MLPG2 underestimates the entropic effect and it does not predict any 

mixing phenomena in the solution.   

 

2D Convection-Diffusion Boundary-Value Problem 

Up to this point, the convection term of the Navier Stokes equation has been 

approximated by a known advection term.  While a large advection term creates 

essentially the same inertial force dominated flow, the simplification allows the solution 

to be solved using the ROM technique without any iteration.  The principle point of the 

preceding numerical examples was to verify the ROM methodology’s capability to 

handle the boundary effects, which plague not only conventional finite element, finite 

difference, and finite volume schemes, but also mesh and mesh-free convection-diffusion 

schemes even with the use of upwinding. This work is restricted to these non-iterative 

problem formulations, but the ROM technique has been demonstrated on highly 

nonlinear solid mechanics applications by McGee et al (2005a,b) and Fang et al (2005).  

This current work has been expanded by the same authors to the two-dimensional 

Burger’s equations, given by: 
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Subject to the boundary conditions given as: 

)
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2
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tanh(2)(,0)0()0(
ππ

==== LvLuvu    (2.9) 

These equations are commonly used as test models for Navier-Stokes solvers, because 

they contain the same nonlinear convection term, and the two-dimensional form has exact 

solutions.  The low Reynolds number (ratio of nonlinear convection to diffusion) 

solutions are compared against the exact solution in Figure 2.4, and are in good 

agreement.
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Exact Solution 

  

ROM Solution 

 

 
 

Figure 2.4
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3D Convection-Diffusion Boundary-Value Problem 

The three-dimensional Burger’s equations are given by: 
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with boundary conditions given by: 

0)()()(,0)0()0()0( ====== LwLvLuwvu     (2.13) 

The resulting solution (Figure 2.5) for Re = 1 again demonstrates the ROM ability 

to capture solutions to nonlinear problems, when the convection term is on the same 

order of magnitude as the diffusion term.  One of the goals of future work is to expand 

these solutions to higher-order Reynolds number flows, where the convection term 

substantially drives the solution.
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3. NAVIER STOKES APPROXIMATION- A THROUGHFLOW ANALYSIS 
 

In addition to developing solutions to large Re Burger’s equation, an approximate 

solution for the Navier-Stokes equations in three dimensions must be developed, because 

no exact solution exists for general cases of three dimensional Burger’s or Navier-Stokes 

equations.  The primary purpose of the approximate solution is to produce some 

confidence in the solutions that will be developed using ROM.  While the literature is 

filled with numerical solutions, relatively few closed-form solutions exist.  One such 

method was developed by Frank Marble (1964) for developing an analysis of the 

throughflow of a gas turbine engine.  The behavior of the machine is governed by 

examining three types of aerodynamic flow problems: (1) throughflow - the amount of air 

that can pass through the machine with a given geometry, (2) blade-to-blade - the air flow 

velocity triangles defining the pressurized flow characteristics between blade rows of the 

engine, and (3) three-dimensional secondary flow - a detailed analysis of the loss 

mechanisms associated with blade tip clearance flow, the endwall flow and the associated 

boundary layer effects.  This work focuses on the first problem, where the blade rows can 

be reduced to momentum sources in the axial, radial and tangential directions.   By 

making this initial assumption, a general velocity profile of the machine can be 

determined, which will then become input parameters for solving the more detailed 

blade-to-blade interactions and loss mechanisms (problems 2 and 3) of the machine.  

Marble’s work advanced the state of aircraft engine design by considering the 

axisymmetric Navier-Stokes equations through linearized incompressible and inviscid 

solutions.  
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Development of linearized solutions  

The axisymmetric, steady Navier-Stokes equations in cylindrical coordinates 

(r,θ,z) are given by: 
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where equations 3.1, 3.2, & 3.3 are the radial, axial and tangential momentum equations, 

subject to the continuity equation (3.4).  The velocity profiles are given by (u,v,w) in the 

(r,θ,z) directions, and  ρ  and p are the density and pressure respectively.  Due to the 

axial symmetry assumption, all derivatives with respect to θ vanish.  The inviscid 

assumption further simplifies the equations by eliminating the diffusion process which is 

very small for high Reynolds number air flows. 

 These equations are nonlinear because of the convection term in the three 

momentum equations.  Also adding to the nonlinearity are the force terms from the blade 

rows, which are functions of the velocity profile in the region of the blade.  Finally, the 

density adds another source of nonlinearity to the equations.  However, the equations can 

be approximated using a linearized perturbation analysis, if a simple geometry for the gas 

turbine engine is used (Marble, 1964; Figure 3.1). 
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Problem Geometry, Marble (1964) 

 

Figure 3.1 
 

By assuming a constant hub radius (rh) and a constant tip radius (rt), the basic 

shape of the streamlines are known in advance of the solution.  Furthermore, the overall 

increase in momentum due to the externa lly applied source (blade rows) is relatively 

small compared to the base momentum in the system.  Lastly, compressibility effects can 

be ignored for low speed (Mach<<1) flows. 

 Given these restrictions, Marble outlines a useful perturbation analysis where the 

unknown transport properties φ  = u,v,w, etc. are approximated by:    

( ) ( ) ...10 ++= εφφφ         (3.5) 

and high-order terms are dropped.  The )0(φ  terms are just the initial conditions of the 

system.  This process transforms the governing equations 3.1-3.4 into a linear second-

order partial differential equation (PDE), which takes the form of a non-homogeneous 

Bessel’s equation with a harmonic term in the z direction given as:  
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Equation 3.6 is only a function of the radial velocity perturbation and a prescribed 

axial force ( zF ), which is given as a prescribed enthalpy (h(1)) jump across the blade row. 

This equation can be solved independently of the axial perturbation, which is then 

calculated through the continuity equation: 

r
ru

rz
w

∂
∂

−=
∂

∂ )(1 )1()1(

        (3.7) 

   

Constant Hub Constant Tip Actuator Disk Problem 

 The simplest solution to equation 3.6 can be developed by assuming the enthalpy 

jump occurs across a blade row with infinitesimal length at z=0 given by: 

2
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t
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The solution is subject to the following boundary conditions: 

( ) ( ) 0,, )1()1( == zruzru th        (3.9) 

( ) ( ) 0,, )1()1( =∞=−∞ ruru        (3.10) 

which ensures the radial perturbation vanishes far upstream and downstream from the 

blade row (3.9) and the velocity normal to the surface of the hub and tip is zero (3.10).  

Additional matching conditions must be prescribed over the singular enthalpy jump 

source at z=0 and are given as: 

)0,()0,( )1()1( −=+ ruru         (3.11) 
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Given the boundary conditions, radial and axial perturbation complementary solutions to 

the coupled equations 3.6 and 3.7 can be given in terms of Bessel functions of the first 

kind ( ( )xJ1 ) and second kind ( ( )xY1 ) as: 
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 An interesting result of the continuity equation yields the axial perturbation at z=0 

is just half of the residual axial velocity far downstream.   In general, this result will hold 

true for any problem geometry and source which produces symmetric radial perturbations 

up and downstream. 

 The characteristic roots nκ are calculated by evaluating equation 3.13 at the 

boundary r=rt subject to boundary condition 3.9.  The values nκ  just become the roots of:  

( ) ( ) ( ) ( )tnhnhntn rYrJrYrJ κκκκ 1111 −       (3.16) 

 The coefficients Cn are just a function of the hub and tip radius, defined explicitly 

as: 
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Marble (1964) also defines nC  in an integral form (Marble, 1964; Eq. 4-21) as: 
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Our investigation of his work has revealed that equation 3.18 should be corrected except 

for a typographical error [in Marble, 1964; Eq. 4-21)] on the tr term in the denominator to 

become: 

( ) ( ) ( ) ( ) ( )[ ]∫ −=
t

h

r

r
nhnhnn

tnn

t
n dYrJrYJ

rv
ra

C αακκκακα
κ

ω
1111

2
22

)(
   (3.18a) 

 Solutions to equations 3.13-3.15 were plotted and compared to Marble’s 

published results in Figure 3.2.   The most obvious discrepancy occurs between the plots 

of the axial velocity perturbation.  The findings of the magnitude of the axial velocity 

perturbation in Work et al (2006b) are twice as large as Marble (1964).  No specific 

cause has been identified at this time.  

 One interesting feature of equations 3.13-3.15 may provide some insight.  A close 

examination of equations 3.13-3.15 shows complete independence between the velocity 

perturbation solutions (u(1) & w(1)) and the base axial flow (w(0)).  The plots of the 

perturbation solutions remove dependence of the constants a and the blade wheel speed ω 

from the solution, but add a dependence on w(0).  The base axial flow parameter used to 

generate the solutions by Work et al (2006b) is w(0)=-0.5, which has little physical 

relevancy.  This would require a base flow in the reverse direction through the machine.  

A second plot of the perturbation solutions is generated in Figure 3.3, which removes the 

w(0) dependence from the solution. 

 A significant finding is that although the perturbation solutions are now opposite 

in sign, the magnitude of the axial velocity is the same as Marble (1964).  The radial 
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distribution is now about half the published magnitudes by Marble (1964).  As a design 

aid, the flow perturbations in Figure 3.3 are significantly more useful, as there is no 

dependence on the base axial flow through the machine.  Therefore, all subsequent plots 

will be plotted on a modified abscissa and benchmarked against Figure 3.3. 
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    Actuator Disk Solutions, Marble (1964) 

 

Actuator Disk Solutions, Work et al (2006) 
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Actuator Disk Solutions, No w(0) Dependence 
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Asymptotic Actuator Disk Solutions  

 One of the central difficulties in developing perturbation solutions for the actuator 

disk problem lies in the evaluation of the Bessel functions.  In 1964, this was primarily 

done either by hand or with tables, which could be a very time consuming process.  As a 

result, Marble (1964) also developed an approximate solution based on an asymptotic 

evaluation of the Bessel functions.  For sufficiently large hub to tip ratios ( 6.0≥
t

h

r
r

), the 

characteristic roots nκ  may be approximated by: 
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n
−

≈
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Additionally, the Bessel functions which make up the basis of the perturbation solutions 

can also be approximated as 
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as defined in (Marble, 1964; Eq. 4-59, 4-50).  However, a careful derivation of the 

asymptotic relationship reveals additional terms in the denominator outside of the 

trigonometric functions.  Equations 3.20 and 3.21 should be replaced by: 
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The updated asymptotic relationships are plotted in Figure 3.4 for comparison with the 

Bessel Solutions shown in Figure 3.3.  As can be seen, there is strong agreement. 
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Constant Hub Constant Tip Finite Chord Problem 

  A more complex, but physically more accurate analysis of the throughflow can be 

developed by considering a blade row with a finite chord length c.  Governed by the same 

equations 3.6-3.9, the finite chord can be thought of as a summation of the effects of a 

series of actuator disks.   The enthalpy jump for the finite chord is slightly modified to an 

asymmetric blade loading condition in which two thirds of the enthalpy increase is 

provided in the first half of the chord length.  The enthalpy jump as a function of r (α) 

and z (β) becomes: 
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Solutions for the finite chord [Marble, 1964; Eq. 4-23, 4-24, 4-27, & 4-28] are given as: 
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with:  
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In the solution for the axial velocity (equation 3.27), Marble (1964) has multiple 

errors in his published equation.  The first error is related to the limits of integration on 

the third term.  The third term is the perturbation downstream, yet the integral is 

evaluated upstream.  The second error also relates to the third term, and the Green’s 

weighting function defined by ),;,( βαzrK . Because the Green’s weighting function 

carries a “ βκ −− zne ” term, it must necessarily vanish far upstream and far downstream.   

However, the axial velocity perturbation far downstream should be twice that at the 

center of the chord, which can not be satisfied if the perturbation vanishes.  The 

weighting function in the third term should not include the  βκ −− zne  term.  The final error 

involves the sign of the solution.  When comparing equation 3.27 with 3.14 and 3.15, it is 

clear the two perturbation solutions are opposite in  sign.   When all of the above  

corrections are made, equations 3.27 and 3.29 become:  
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with: 
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A plot of the radial perturbation caused by the finite chord is reproduced in 

Figures 3.5ab. Both results by Marble (1964) and Work et al (2006b) are for the 

particular geometry defined by an aspect ratio (
c

rr ht −
) of 2.0.  The Work et al (2006b) 

results are plotted without w(0) dependency (as discussed previously), which accounts for 

the difference in scale from Marble’s work.  It is important to note that the radial solution 

given by 3.26 was used to explicitly produce the perturbation results, however, a very 

fundamental discrepancy between the plotted results must be settled.   

 The error in question is the relationship between the upstream (negative axial 

position) and downstream (positive axial position) perturbation magnitudes.  In Marble’s 

(1964) work, the perturbation downstream is larger than that upstream.  However, in 

Work et al (2006b), the opposite relationship is found.  A careful analysis of an 

increasing finite chord beginning from an actuator disk provides some insight. 

Recalling the enthalpy jump given by equations 3.24 and 3.25, it is noted that the 

total enthalpy jump across the chord length is equivalent to the enthalpy jump created by 

the actuator disk equation 3.8.  As a result, when the chord length c approaches zero 

(aspect ratio = ∞ ), the finite chord solution converges on the actuator disk solution.  
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Figure 3.5c shows the finite chord radial perturbation is equivalent to the superimposed 

actuator disk result, shown in Figure 3.5c as plus symbols in comparison.
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As the actuator disk expands to a finite chord with an aspect ratio of five (Figure 

3.5d), the separation from the upstream and downstream perturbation becomes apparent.  

The upstream perturbation is necessarily larger due to the type of asymmetry associated 

with the blade row. Because two-thirds of the enthalpy jump occurs on the leading 

(upstream) half of the finite chord, the center of the enthalpy jump no longer occurs at 

z=0, as was the case in the actuator disk problem.  In fact, the center of the enthalpy jump 

now occurs at a point upstream ( 0<z ).  Given a point outside of the finite chord, the 

finite chord can now be approximated as an actuator disk at the upstream center of the 

enthalpy jump.  This center shift necessarily requires the perturbation at an upstream 

point to be larger than the corresponding downstream point because, in essence, the 

upstream point is closer to the source causing the perturbation.    This reality is violated 

in Marble’s (1964) finite chord radia l perturbation distributions (Figure 3.5b). 

When the finite chord is increased until the aspect ratio exactly matches the result 

produced in Marble (1964), a two additional inconsistencies are revealed.  Clearly, the 

difference between the upstream and downstream radial perturbations is larger in the 

solutions generated by Work et al (2006b), although no specific cause has been identified 

at this time.  Another point of interest is axial position 05.0−
+=

− ht rr
z

. While not entirely 

obvious, this position is inside the finite chord, near the midpoint.  Because the radial 

perturbation is a function of distance from the source, the perturbation caused by the 

leading edge of the blade has already begun to dissipate before it reaches the trailing 

edge, as well as any other point inside the chord.  As a result, the perturbation at 

05.0−
+=

− ht rr
z

 caused by an actuator disk at z=0 is actually larger than the perturbation 
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created by a finite chord with a distributed source surrounding the point in question.  The 

closer a point inside the chord lies towards the leading or trailing edge of the blade, the 

less likely the perturbation from the actuator disk will be larger than that of the finite 

chord.  This phenomenon interestingly is not captured in the Marble (1964) result despite 

the use of the same solution function (equation 3.26). 

 The axial perturbation solutions are somewhat easier to compare because the 

effect of a finite chord is quite small for blade rows with an aspect ratio greater than one.  

The modified axial perturbation solution given by equation 3.30 is plotted along with the 

corresponding actuator disk results in Figure 3.6.  With the noted exception of the 

magnitude and sign of the solution, which has been previously discussed for the actuator 

disk problem, the solutions are in good agreement, indicating the modifications to 

equation 3.27 are indeed correct. 
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Variable Hub Constant Tip Problem 

 Up to this point in the present work, all sources of the radial and axial 

perturbations have been caused by a blade row.  The variable hub problem is an 

investigation of a geometric source caused by a change in the cross sectional area (Figure 

3.7). 

 

Figure 3.7 
 
The perturbations are again governed by equations 3.6 and 3.7, subject to the boundary 

condition equation 3.10 and: 

( )
dz
dr

wzru h
h

)0()1( , =         (3.33) 

( ) 0,)1( =zru t          (3.34) 

Equation 3.33 defines the radial perturbation as the slope of the hub, which is then given 

by [Marble, 1964; Eq. 5-11]: 

( )lz
l
z

l
r

zf h
h ≥






=

2
cos

2
)(

ππ
      (3.35) 

( )lzzf h ≥= 0)(       (3.36) 

In order to generate the physical hub profile, equation 3.35 is integrated yielding: 

( )lzC
l
z

rzF hh ≥+





=

2
sin)(

π       (3.37) 
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 There appears to be a significant limitation with the hub profile given by equation 

3.37.  Assuming a positive constant C, the hub slope will change by 2 hr .  In order to 

maintain a physically significant geometry, the hub to tip ratio (
t

h

r
r

) must be less than 0.5.  

Anything larger will create a change in the hub profile which is larger than the blade 

height.   A more general hub profile can be constructed as: 

( )lzC
l
z

Fh ≤+





=

2
sin

π
α       (3.38) 

Where 
m
rh0=α , and 0hr is the hub radius at z=0,  m is a scaling constant, and C= 0hr . 

A specific example of a hub profile given by equation 3.38 is given in Figure 3.8. 

.  

Figure 3.8 
 

Given the new hub profile equation 3.38, the hub slope equation 3.35 now becomes:  

( )lz
l
z

l
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
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2
cos

2
)(

ππα       (3.39) 

 This subtle change is significant because a Fourier transform of the boundary 

shape is taken in order to generate solutions to the radial and axial perturbation solutions.  
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All subsequent equations developed by Marble [(1964); Eq. 5-13 – 5.19, 5-21 – 5-23] 

must be modified to account for the new hub profile.  Fortunately these changes only 

require a simple substitution of α in place of hr in the terms outside of the Bessel 

functions.  The solution for the radial perturbation given the new hub profile becomes:  
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where ( )xI1  and ( )xK1 are modified Bessel functions of the first and second kind, 

respectively. 

 The axial perturbation may be stated as: 
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 The resulting solutions for the radial and axial perturbation are given in Figure 

3.9.  Because the solutions are given in terms of w(0), all plots will now contain a )0(

1
w

 

term along the abscissa.  The radial velocity perturbation has the expected results that 

points along the hub have a perturbation equal to the slope of the hub. In general, all 

boundary conditions are satisfied.  The resulting axial perturbation takes a shape 

upstream similar to that caused by a blade row.  The perturbation at the hub is negative, 

while the perturbation at the tip is positive.  As the hub begins to increase towards the tip, 

decreasing the cross sectional area, the perturbation becomes positive across the entire 

height of the blade.  The axial perturbation increases most significantly along the hub 

boundary as expected.  Far downstream, it is noted that the axial perturbation is again just 

twice that at z=0, which is a result of the continuity equation 3.7, and the radial 

perturbation symmetry.   
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Figure 3.9 
 

Variable Hub Constant Tip Asymptotic Solution 

While no benchmark plots exist in Marble (1964) for the Bessel solutions to the 

variable hub geometry, an asymptotic solution to the axial perturbation [Marble, 1964; Eq 

7-67 – 7-70] is provided as:  
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with: 
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 A fundamental problem with the asymptotic solution is that the axial perturbation 

far downstream is not twice that at z=0.  This can be shown by simply evaluating 

equation 3.46 at z=0 to reveal: 
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Whereas equation 3.47 evaluated at ∞becomes: 
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A derivation of the asymptotic solutions might reveal the specific error in 

equation 3.47 or 3.48, but is outside the scope of this work.  However, a plot of the 

asymptotic axial perturbation (Figure 3.10) reveals more information.  It appears the 

problem may lie with equation 3.50, which governs the points far downstream.  

Conceptually, the axial perturbation downstream should be larger due to the constriction, 

but this is not captured in the asymptotic solution.  When examining the accuracy of  

equation 3.45 and 3.46, the general shape of the solution is similar to the Bessel solution, 

although the magnitude is smaller.  The difference in magnitude most likely arises from 

the modification of the hub slope function for the Bessel solution.  Another potential 

source of error could come as a result of the additional  
2

1
πn

 in the asymptotic functions 
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(equation 3.22 and 3.23).  Again, these controversies should be settled by a derivation of 

the asymptotic solutions (equations 3.45-3.47). 
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Figure 3.10 
 

Variable Tip Constant Hub Problem 

The axial and radial perturbations for the variable tip geometry are again 

governed by equations 3.6 and 3.7, subject to the boundary condition equation 3.10 and: 

( ) 0,)1( =zru h          (3.51) 
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where the tip slope is given by [Marble, 1964; Eq. 5-26]: 
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Equation 3.53 has a constraint in that it can not be used for a real gas turbine engine.  The 

magnitude of the profile change from upstream to downstream, analogous to the variable 

hub problem, becomes tr2 .   Only the case where the hub radius is zero, or does not exist, 

can this geometry be physically constructed.  Furthermore, for this problem, the tip will 

diverge, increasing the cross sectional area.  To be consistent with the variable hub 

problem, this section will treat the variable tip as a converging section (i.e., in the 

compressor).  The modified tip slope then becomes: 

( )lz
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where 
m
rt=α , and m is a scaling constant.  A plot of varying tip of this class would take 

the form similar to Figure 3.11. 

 

Figure 3.11 
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into equations 3.40-3.44 for: 
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If only the proceeding substitutions are made, the boundary constraints will no t be 

satisfied.  An additional substitution of: 
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must be made into equation 3.41 for: 
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These substitutions yield the following equations: 
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Given these modifications, the radial and axial velocity perturbations are 

determined (Figure 3.12).  The radial velocity perturbation appears exactly as expected.   

The variable tip perturbations are larger than that of the previous variable hub problem, 

because the constriction is larger.  This is a direct result of the definition of α  in each 

problem.  The radial perturbation is negative due to the negative slope of the tip profile. 

The axial velocity perturbation is clearly incorrect.  At the tip along the 

converging section, the velocity perturbation should be positive. Furthermore, upstream 

from the geometry change, a similar perturbation would be expected from either the 

variable hub or variable tip, yet the perturbations are opposite. In fact, the entire solution 

appears to be mirrored.   
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When the hub slope was modified to create a diverging section, a negative sign 

was carried through the perturbation formulas.  This had the appropriate effect on the 

radial solution (negative perturbation caused by a negative slope), but it also negated the 

axial velocity perturbation.  Even if the solution was constructed as a diverging section as 

originally prescribed by equation 3.53, the axial solution would still be incorrect.  By 

removing the negative sign, axial velocity would now be increasing for a diverging 

section, which is also not true.  However, if a negative sign is divided out of equations 

3.67-3.69, the resulting plot much more closely resembles what should physically occur 

(Figure 3.13).   Although a specific cause of the mirrored axial velocity perturbation has 

not been identified at this time, it is believed a negative sign should be taken of the axial 

perturbation equations. 
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Modified Axial Perturbation  
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4. SUMMARY 
 

In this work, the Reduced Order Meshless methodology was implemented on a 

series of one- and two-dimensional advection-diffusion problems, and two- and three- 

dimensional convection-diffusion problems. The linear advection diffusion problems 

show a significant improvement over other emerging meshless techniques in the ability to 

capture the boundary layer effects of high Peclet flows.  At low Reynolds number flows, 

solutions have also been achieved.  Current work is under way to expand the scope of 

work to include the nonlinear convection-diffusion problems of high Reynolds number.  

One of the major advantages of ROM is that no upwinding is needed to stabilize the 

results. 

 A second principle finding of this work was uncovered in the search to find an 

approximate three-dimensional Navier-Stokes solution, specifically related to the 

throughflow of a gas turbine engine.  The seminal work of Marble (1964) on this topic 

was revisited and a number of inconsistencies were discovered.  The most significant 

findings include actuator disk and finite chord solutions which are opposite in sign from 

the published Marble (1964) results.  Additionally, radial perturbations are half as large 

as published for a given axial perturbation. Other errors include a missing factor on the 

asymptotic analysis of the actuator disk solution, and hub and tip slope functions which 

are severely restricted for the design of real gas turbine engines with a variable hub or tip. 

Furthermore, expressions to convert the variable hub problem to variable tip geometry 

are incomplete, and the asymptotic axial perturbation of a variable tip problem does not 

satisfy a key constraint of the continuity equation.  This research will also be extended to 

definitively answer the questions raised in this work. 
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6. APPENDIX A - ADDITIONAL TYPOGRAPHICAL ERRORS 
 

1. [Marble 1964; Eq 5-23] is given as: 
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The r in the modified Bessel function of the second kind should be corrected in the 

denominator of the first term to rh: 
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2. [Marble 1964; Eq 7-65] is given as:  
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The ξ should be replaced by l, the two bracketed terms in the denominator of the second 

term should be added together, instead of subtracted, to become: 
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3. [Marble 1964; Eq 7-68] is given as:  
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The domain should be corrected to: 
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  (3.45) 

 


