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Abstract 
In performance analysis of radar/communications systems using computer 

simulations or physical wave-front generator, it is often desired to include in the 

simulation the response of the antenna.  Incoming signals are distorted by the antenna as 

they are received, and therefore modeling this effect is crucial to accurate signal 

processing and analysis.  In general, the impulse response of an antenna is not available.  

However, one can measure or otherwise acquire the gain and phase response of the 

antenna over the bandwidth of interest at several discrete frequencies.  Using these 

discrete frequency-domain data points, one is interested in obtaining a finite-length filter 

to represent the antenna response.  We have studied several methods using an inverse 

Fourier transform approach to obtain the filter coefficients.  We have shown that if the 

bandwidth of the filter is somewhat larger than the bandwidth of the incoming signal, that 

various approaches involving the inverse Fourier transform to obtain the coefficients can 

be used.  The simplest case involves taking the inverse Fourier transform of the 

frequency data and using the result as the filter coefficients.  However, this simple 

approach may not create a filter that models the antenna within an acceptable error 

tolerance over the band of interest.  The methods studied significantly improved upon the 

basic Fourier method for determining the filter coefficients.  One approach involves 

windowing the coefficients to further reduce the error.  The second approach studied 

involves windowing the frequency-domain samples.  The final approach involves 

interpolating the data and solving for the coefficients in the least squares sense to obtain 

further improvements in modeling the antenna.
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Introduction  
 

 In order to find a good method for modeling an arbitrary antenna response as a 

Finite Impulse Response (FIR) filter, several techniques were studied or devised to 

improve the filter reconstruction of the antenna response.  In each case, it was assumed 

that N equally spaced frequency samples were available of the antenna response in the 

given direction.  It was also assumed that the antenna bandwidth was greater than the 

bandwidth of the incident signal.  The goal was to reconstruct the antenna response over 

the portion of the antenna bandwidth containing the desired signal using a FIR filter. 

 The first case studied was a simple inverse Fourier approach, using the transform 

of frequency samples of the antenna response as the filter coefficients.  This technique 

had a problem of creating large ripples and oscillations in the reconstructed frequency 

response. 

 The second technique studied sought to correct the oscillations and ripples caused 

by the finite nature of the IFT approach.  A higher-order window, such as a Hamming or 

Kaiser window, was applied to the filter coefficients obtained in the simple IFT case in 

order to significantly reduce the ripple.  However, this technique had a problem with 

energy loss in the desired portion of the bandwidth. 

 The third technique involved windowing the frequency samples before the Fourier 

operation was performed.  By windowing the frequency samples, one has control over 

which portion of the frequency spectrum has energy loss, thus eliminating the energy loss 

problem. 



 The fourth technique was an improvement upon the other techniques using a least 

squares approach to solve for the filter coefficients.  In order to solve for the filter 

coefficients using the Fourier operation in the least squares sense, one is required to have 

more frequency samples than desired filter coefficients.  This condition can be met by 

either obtaining for frequency samples or interpolating the ones available. 

 A summary of the results explains when to use each technique outlined in this 

study.  Depending on the scenario, constraints, and assumptions, different techniques are 

suitable for different applications. 



Simple Fourier Transform 

Overview 
 The study began with a review of the inverse Fourier transform.  In general, in 

order to find the discrete impulse response of a discrete series of frequency samples, one 

applies the Inverse Discrete Fourier Transform (IDFT) to the frequency data.  Using the 

IDFT as the antenna filter coefficients, an analysis was performed on the effectiveness of 

this method.  Finally, the errors and problem that result from using this method are 

discussed. 

Assumptions 
When designing a FIR filter, there a many well-known techniques for determining 

the filter coefficients assuming the frequency response is linear in magnitude or phase.  

This is almost never the case for a real antenna response, therefore none of the 

aforementioned techniques can be used for this study.  In general, an antenna response 

will be well-behaved but non-uniform and non-linear phase over its bandwidth.  This 

means that there are no sudden discontinuities in either the gain or phase response, and 

neither the gain and phase response can be modeled by a low-order polynomial.  This 

study assumes that the antenna’s gain and phase responses are available over its’ 

bandwidth.  In general, antennas are designed to receive incident signals over a certain 

bandwidth B around a center frequency, f0.  In this study, we are not concerned about the 

carrier frequency aspect of the antenna, only the bandwidth itself.  Therefore, this study 

set the center frequency to 0 MHz for simplicity and assumed the antenna has a 50 MHz 

bandwidth.  Figure 1 illustrates a typical gain and phase response for an antenna, and this 

response is used throughout the study.  In this study, the actual antenna response will be 



denoted A(f)  The spectrum containing the incident signal, 0.64B (32 MHz) is outlined 

with dashed lines and will be so in subsequent figures. 
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Figure 1: Antenna Gain and Phase Response 

 
In general, hardware FIR filters operating at high frequencies do not have 

extremely long filter lengths.  For the purpose of this study, we have chosen a 25-tap 

filter length (N) for suitability and relevance to applications.  All filters designed and 

plotted in this study are length 25.  However, the methods used in this study are 

applicable to any arbitrary length filter. 

 Typically, the bandwidth of the antenna is greater than the bandwidth of the 

incident signal.  In this study, the incident signal is assumed to have a bandwidth of 32 

MHz (0.64B) around the center frequency, and a uniform power spectrum over the 32 

MHz, as illustrated in Figure 2.  The figure shows that the incident signal has no 

frequency component outside the 0.64B of the total bandwidth.  Thus, when modeling the 

antenna response, one only needs to consider the portion of filter frequency response that 

contains the desired signal. 
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Figure 2: Incident Signal Power Spectrum 
 
 
 

Procedure 
In order to generate the antenna filter coefficients using the Simple Fourier 

Transform method, one first starts with the N Δf-spaced antenna frequency samples, 

where N times the frequency spacing Δf is equal to the antenna bandwidth.  Therefore, 

the first step is to measure or acquire the frequency samples.  For this study, the 25 

frequency samples with 2 MHz spacing are assumed to be available; the methods for 

acquiring or calculating them are numerous and unimportant for this study.  Figure 3 

shows the gain and phase of each of these uniformly spaced antenna frequency samples, 

spanning the 50 MHz bandwidth.  The frequency samples are denoted E[k] and have a 

corresponding frequency fk. 
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Figure 3: Antenna Gain and Phase Samples, 2 MHz Spacing 
 
The Fourier Transform and its’ inverse are widely understood, so the equations 

relating the frequency samples to the time domain samples are simply used with no 

derivations in this paper.  When one has a finite series of frequency samples, denoted 

E[f], their impulse response, e(t), can be computed at any time t as follows. 

∑
−

=

=
1

0

2*][*1)(
N

k

ke tfjkE
N

te π         (1) 

Using simple extensions of this formula, one can obtain a series of equally spaced time 

samples representing the impulse response.  In general, when one has N Δf -spaced 

frequency samples, one will have N coefficients in the time domain with 1/NΔf spacing 

after applying a simple IDFT. 
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e[m] denotes the m-th time coefficient.  There are N elements in e[m], and tm is the time 

value of the m-th time sample in e[m]. In our example, the frequency spacing Δf was 2 

MHz and the time spacing is 1/25Δf (20 nanoseconds).  The resulting coefficients are 

used to model the antenna response.  Figure 4 shows the real and imaginary components 

of the filter coefficients calculated using this method. 
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Figure 4: Real & Imaginary Components of IDFT Filter Coefficients 

 
Using the filter coefficients, one can find the frequency response of the filter for any 

frequency using the following inverse operation. 

        (3) ∑
−

=

−=
1

0

2*][)(
N

m

me ftjmef πα

α(f) denotes the frequency response of the filter coefficients.  In general, this identity can 

be used to find the frequency response at all frequencies.  One can calculate the gain and 

phase response for all values in between the original Δf frequency samples and plot the 



result vs. the actual antenna response to analyze how good of a job the filter is doing 

representing the original antenna response over the band of the incident signal. 

Results & Discussion 
 Using the simple Fourier technique, the filter coefficients were determined and 

the frequency response, α(f) was calculated and plotted over the antenna bandwidth.  

Figure 4 shows the gain response of the filter designed using the IDFT technique, α(f) 

compared with the original antenna gain response, and Figure 5 shows the phase response 

of the IDFT filter compared to the phase response of the antenna.  In both figures, the 

bandwidth of the incident is outlined with dashed lines.   
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Figure 5: IDFT Filter Gain Response Compared to Actual Antenna Gain Response 
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Figure 6: IDFT Filter Phase Response Compared to Actual Antenna Phase Response 

 
As shown in Figures 5 & 6, the filter does a reasonable job approximating both the gain 

and phase response of the actual antenna.  In fact, at the frequencies corresponding to the 

original frequency samples fk, the filter perfectly reconstructs the antenna pattern.  This 

result should be intuitive because the only information available was the gain and phase 

response at the frequencies fk.  However, in between the frequencies corresponding to the 

original samples, a significant ripple appears in both the gain and phase response.    

 The ripple is the significant challenge to overcome in this study, because the 

ripple introduces some error into the simulation if left uncorrected.  In order to better 

analyze this ripple, and error function R(f) was defined as follows: 

||
)(

)()()(
fA

ffAfR α−
=       (4) 

R(f) will be referred to as the normalized error of the filter.  This metric is defined as the 

magnitude of the following expression: the complex difference between the actual 

antenna frequency response and the filter frequency response divided by the actual 



antenna frequency response.  The normalized error function is typically plotted in dB by 

taking the base ten logarithm of the normalized error function and multiplying the result 

by 20.  Figure 7 shows the normalized error function R(f) of the IDFT filter. 
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Figure 7: Normalized Error Function of IDFT Filter 

 
This plot of the normalized error of the IDFT filter illustrates why this metric was 

defined.  Normalizing the error function allows the analysis to properly account for the 

relative severity of the ripple over certain portions of the band.  Figure 7 shows several 

effects which were observed from the gain and phase response plots of the IDFT filter 

response (Figures 5 & 6).  Namely, the ripple is more severe near the fringes of the band 

and less severe in the portion of the band containing the desired signal.  The dashed lines 

outline the 32 MHz portion containing the incident signal, and the worst case error is 

approximately -26 dB in this region, which corresponds to a 5% worst case error.  

Additionally, the error function shows that the IDFT filter frequency response matches 

the actual antenna pattern exactly at the frequencies fk, shown on the figure as the deep 



nulls in the error function every 2 MHz.  For many applications, a 5% error is simply 

unacceptable.   

 Determining why the IDFT method produces such a large ripple is the key to 

figuring out how to reduce the problem.  Consider for a moment that anything which is 

finite duration in the frequency domain will have infinite duration in the time domain.  

Thus, a finite-bandwidth antenna response requires an infinite duration time series 

representation in order to achieve perfect reconstruction.  However, the time series 

implemented by the IDFT method was only 25 coefficients spaced 20 nanoseconds apart.  

This method is equivalent to calculating the infinite duration time filter and applying a 

rectangular window function to the center 25 filter coefficients.  It is well known that a 

rectangular window function in the time domain causes large ripples in the frequency 

domain.  The second filter design approach considers whether different windowing 

functions other than the rectangular method can improve performance. 



Time-Domain Windowing 

Overview 
 As discussed in the previous section, a finite-bandwidth antenna response requires 

an infinite time duration filter for perfect reconstruction.  However, the simple IDFT 

approach to designing the filter produces an N-length finite duration filter.  This filter is 

equivalent to taking the infinite duration filter required for perfect reconstruction and 

applying a rectangular window to the center N elements.  A rectangular windowing 

operation in the time domain results in a fast ripple in the frequency domain.  This second 

method for designing the filter studies various types of windowing functions in addition 

to a rectangular window to determine what performance improvements can be achieved.  

The premise is the ripple can be reduced with higher order windowing functions, and to 

compare several windowing functions and study the performance tradeoffs. 

Triangular Window Function 
The method for creating this type of filter is step-for-step identical to the simple 

inverse Fourier transform approach except for one step.  Previously, the antenna 

frequency samples E[k] were operated on by the IDFT producing the time domain filter 

coefficients e[m].  The frequency response α(f) was then computed from the antenna 

filter coefficients.  This second method varies in that it applies a window function to the 

filter coefficients e[m].  Several types of windowing functions were compared, the first is 

the simple rectangular window function, not illustrated, which is equivalent to the IDFT 

method.  The second type is a triangular window function, which is term-by-term 

multiplied with the filter coefficients e[m] to produce etri[m], a corresponding filter 

response αtri(f) , and a corresponding normalized error function Rtri(f). Figure 8 shows the 

triangular window function, Figure 9 shows the gain response of atri(f) and Figure 10 



shows the phase response using atri(f). Figure 11 shows the corresponding normalized 

error functions for both the rectangular and triangular window methods. 
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Figure 8: Triangular Window Function 
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Figure 9: Rectangular & Triangular Window Technique Gain Response 
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Figure 10: Rectangular & Triangular Technique Phase Response 
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Figure 11: Rectangular & Triangular Window Technique Normalized Error Functions 

 
A comparison of the two normalized error functions reveals that the triangular 

technique marginally improves performance compared to the rectangular techique.  The 

worst case error improves to -27 dB from -26 dB.  However, there is some “bias” to the 

frequency response, as it no longer matches exactly with the actual antenna response at 



the frequency points fk.  Figures 9 & 10 show that the gain and phase response using the 

triangular window no longer exactly tracks the magnitude and phase response of the 

actual antenna.  This can be understood simply as a tradeoff, reducing the ripple by 

altering the filter coefficients causes a less accurate tracking of the actual antenna 

response.  Nonetheless, for some applications a “bias” in the antenna response may be 

preferable to a larger ripple.  Because of this “bias”, one of the problems with the time-

domain windowing technique is that there is some energy loss in the portion of the band 

corresponding to the incident signal.  This is because the windowing function applied to 

the filter coefficients affects the entire bandwidth of the filter, not simple one portion of 

it. 

Higher-Order Window Functions 
 The triangular window function showed marginally improved performance over 

the rectangular window function.  Higher order windowing functions should show larger 

performance improvements than the triangular approach.  Both a Hamming window and 

a Kaiser-Bessel window (Beta of 6) are also compared to see how much better higher-

order windowing functions improve performance over the rectangular and triangular 

approaches.  The Hamming & Kaiser approaches have corresponding coefficients 

ehamming[m] and ekaiser[m], corresponding frequency responses ahamming(f) and akaiser(f) 

respectively, and corresponding error function Rhamming(f) and Rkaiser(f) respectively.  

Figure 12 shows the Hamming & Kaiser windows, Figure 13 compares both new filter 

gain responses, while Figure 14 compares their phase responses.  Figure 15 compares the 

error functions for all four windowing techniques. 
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Figure 12: Hamming & Kaiser Window Functions 
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Figure 13: Hamming & Kaiser Window Techniques Gain Response 
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Figure 14: Hamming & Kaiser Techniques Phase Response 
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Figure 15: Normalized Error Functions for All Window Types 

 
 As expected, the higher order windowing functions improved performance in the 

desired band further than the lower order windowing techniques.  The Hamming window 

approach resulted in a worst case error of -44 dB and the Kaiser window approach 

resulted in a worst case error of -48 dB, or maximum errors of 0.63% and 0.44% 



respectively.  Additionally, for the higher order techniques, the “bias” effect discussed 

previously becomes less pronounced.  The ripple is almost complete non-existent in the 

portion of the band corresponding to the incident signal for the Kaiser technique, despite 

the small “bias”. 

 This second technique demonstrated that significant performance gains in the 

portion of the antenna bandwidth corresponding to the incident signal can be achieved by 

using a high order window function.  Lower order window functions such as a 

rectangular or triangular technique exhibited significantly higher normalized error than 

the higher-order techniques.  The best technique studied was the Kaiser-Bessel window 

with a Beta of 6. 



Frequency Domain Windowing 

Overview 
 The time domain windowing technique demonstrated that windowing the antenna 

filter coefficients after taking the IDFT of the frequency samples can improve the 

performance of the filter over the band of interest (center 32 MHz).  When no window 

was applied to the IDFT coefficients, there was a significant ripple in the gain and phase 

response of the filter.  The ripple effect was significantly reduced when a high order 

window was applied to the coefficients.  However, the tradeoff for the reduced ripple was 

a “bias” effect: the distortion of the magnitude and phase response caused by a loss of 

energy in the desired band.  Perhaps for some simulations, the bias is less of a problem 

than a fast ripple.  In others, perhaps the bias is a worse problem to have.  Nonetheless, 

this third technique was motivated by attempting to reduce the bias while still using a 

windowing technique to improve performance.  Instead of windowing after the IDFT 

operation is performed on the frequency samples, E[k], a window is applied before the 

IDFT operation is performed.  These frequency domain windows must be more carefully 

designed than the time domain windows, so as to not cause energy loss in the 0.64B (32 

MHz) of the spectrum containing the incident signal. 

Procedure 
 The steps for this technique are once again similar to the simple IDFT approach.  

The N frequency samples, E[k], are term-by-term multiplied by a frequency window 

which preserves the samples within the incident band (0.64B) while tapering to 0 those 

outside the incident band resulting in E’[k].  After this windowing is applied, the steps 

are identical to the simple IDFT technique to produce the filter: the IDFT operation is 



performed on the E’[k] samples and the filter’s gain and phase response are calculated, as 

well the new error function. 

Linear Window Function 
 The first frequency window tested was a simple linear taper, shown in Figure 16.  

The window is term by term multiplied with the original antenna samples, E[k], resulting 

in the new samples Elinear[k], whose magnitudes are shown in Figures 17 compared with 

the original samples, E[k].  The windowing operation does not affect the phase of the 

samples, so a phase comparison is not shown because they are identical.     
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Figure 16: Linear Window Taper 
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Figure 17: Linear Frequency Window Samples 

 
After the IDFT operation is performed on the frequency windowed samples and 

the new filter coefficients are obtained, the filter gain and phase response, αlinear(f) can be 

calculated as well as the normalized error function, Dlinear(f). Figure 18 shows the filter 

gain response compared to the Rectangular and Kaiser window techniques discussed 

previously.  Figure 19 shows their phase responses.  Figure 20 shows the corresponding 

error functions compared. 
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Figure 18: Linear Frequency Window Gain Response Compared to Kaiser & Actual 
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Figure 19: Linear Frequency Window Phase Response Compared to Kaiser & Actual 
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Figure 20: Linear Frequency Window Normalized Error Function Compared to Kaiser & Actual 

  
Based on Figures 18 through 20, we can see that this technique produces fairly 

good results compared with the simple IDFT filter (Rectangular Filter).  There is no 

evidence of bias, as shown in the error function by the deep nulls corresponding to the 

original frequencies fk.  The worst case error in the desired band (center 32 MHz denoted 

by hashed black lines) for this technique is -33 dB compared to -26 dB for the simple 

IDFT technique.  This represents a maximum error of 2.2% vs. 5% for the simple IDFT 

approach.  However, based on the shape of the error function, one can observe that this 

technique is actually doing much better in the center part of the desired band than the 

other techniques.  This technique actually outperforms the Kaiser technique in the center 

half of the desired band.  For applications where the bias is a more significant problem 

than the ripple, this technique is a significant improvement over the standard IDFT filter 

approach.  Changing the type of frequency window from linear to something else less 

abrupt would be expected to improve performance further. 



Sine Squared Window Function 
 An obvious improvement upon the linear frequency windowing technique is a 

window which tapers from 0 to 1 much more smoothly.  A sine squared window tapering 

was chosen for the portion of the band outside the spectrum of the incident signal.  This 

window is shown in Figure 21, and clearly is less abrupt than the linear window 

technique.  As with the linear frequency window, this window is term by term multiplied 

with the original frequency samples, E[k], to produce a new set of samples, Ess[k].  

Figure 22 shows the gain of both E[k] and Ess[k] for comparison, they have identical 

phase.  Once again, the antenna filter coefficients using this method are calculated by 

taking the inverse Fourier transform of the weighted frequency samples.  The same 

procedure is followed for determining the gain and phase response as well as the 

normalized error function of the sine squared window technique.  Figures 23 & 24 show 

the gain and phase responses of the new sine squared window technique compared with 

previous techniques, and Figure 25 compares their respective error functions. 
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Figure 21: Sine Squared Frequency Window 
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Figure 22: Sine Squared Windowed Frequency Samples 
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Figure 23: Gain Response of Sine Squared Frequency Technique 
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Figure 24: Phase Response of Sine Squared Frequency Window Technique 
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Figure 25: Normalized Error Function of Sine Squared Frequency Windowed Technique 
  
As expected, the sine squared frequency window improved performance notably 

compared to the linear frequency window technique.  The worst case error in the portion 

of the band corresponding to the incident signal is -42 dB, or 0.79%, close to the worst 

case -48 dB error seen by the Kaiser approach.  A few observations are noteworthy based 

on the results in Figure 25.  First, the sine squared technique significantly outperforms the 

Kaiser technique over the center 28 MHz of the 32 MHz band of interest.  Furthermore, 

there is no evidence of bias using the sine squared technique, because the nulls in the 

error function once again coincide with the original frequency samples at fk. 



Least Squares Design Approach 

Overview 
 The previous methods described for finding the finite impulse response (FIR) 

filter to represent an antenna all rely on the inverse Fourier transform approach when the 

number of known frequency samples is equal to the number of desired filter coefficients.  

However, in many instances, one may have available more frequency samples over the 

antenna bandwidth than number of desired filter coefficients.  These additional samples 

can either be obtained through measurements, calculations, or interpolation.  Suppose one 

has available M frequency samples on an antenna response over bandwidth B and desired 

an N length FIR filter to model the antenna response.  If M > N, it is possible to set up M 

equations with N unknown filter coefficients.  Furthermore, a constraint vector can be 

applied if one is only interested in matching the antenna frequency response over a 

portion of the total bandwidth, for example 0.64B.  It is well known that an efficient way 

to solve a system of equations with more equations than unknowns is the least squares 

technique.  This approach was studied to determine if the filter performance can be 

improved over the previous techniques. 

Procedure 
We first must have available to us N frequency samples across the bandwidth B, 

and desire an N length filter, where M > N.  In general, M should be at least twice N in 

order for this technique to work well in any situation.  The frequency samples are stored 

in the vector H, while the N unknown filter coefficients are denoted h.   



First, set up a Fourier Transform matrix relating M frequency samples to N filter 

coefficients.  This M-by-N matrix is denoted, W.  The value of the element in the mth row 

and nth column is simply: 

enmW N
mnj π2

],[ =        (5) 

 

This defines the Fourier matrix which relates N antenna frequency samples to M filter 

coefficients by the equation 

hWH *=         (6) 

Where H is an M-by-1 vector containing the M known frequency samples, and h is an N-

by-1 vector containing the N unknown filter coefficients.  This relationship relates N 

unknown filter coefficients to M known frequency samples across the antenna bandwidth.  

This means we can solve for h, the filter coefficients, in the least squares sense.  Before 

solving this system a weighting vector is added that accounts for the interest in only a 

portion of the total antenna bandwidth.  Namely, the center 0.64B (32 MHz) of the total 

system bandwidth (50 MHz) is the portion of the bandwidth where the antenna response 

must match as closely as possible.  Since the incident signal is not present in the 

remaining 18 MHz of the antenna bandwidth, a weighting vector can be added which 

ignores the portion of the band where there is no incident signal.  The weighting vector, 

L, is an M-by-M diagonal matrix.  All non-diagonal elements in L are 0.  The diagonal 

elements of L are weighted 0 or 1 corresponding to either the undesired or desired 

portions of the band.  The new equation becomes 

hWLHL *)*(* =        (7) 

Solving for h, 



         (8) )*(*)*( HLWLh +=

Where the + operation denotes the pseudo-inverse of a matrix.  In this way, we can solve 

for the filter coefficients using a least squares approach. 

Results 
 For the least squares technique for setting up the least squares approach, we start 

with 100 frequency samples over the same bandwidth B, with spacing Δf of 0.5 MHz, 

shown in Figure 26.  Since there are 100 frequency samples, N is 100. 
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Figure 26: N=100 Frequency Samples 

 
In the weighting matrix W, all non-diagonal entries are 0.  The diagonal entries 

correspond to a weighting vector which establishes the relative importance of certain 

portions of the bandwidth.  Figure 27 shows the diagonal entries for the weighting vector 

W assuming we have N = 100 frequency elements, B = 50 MHz, and the incident signal 

spectrum of 0.64B = 32 MHz.  Since only the portion of the filter bandwidth containing 

the desired signal needs to be matched, the weights outside of this region are set to zero.  



In Figure 27, each weight in the center 32 MHz (the 0.64B) is set to 1, while those 

corresponding to the remaining portion of the band are set to 0.  In this way, the diagonal 

entries of the weighting vector can be constructed.  More elaborate scenarios involving 

multiple desired bands and various relative weightings can be devised depending on the 

application and scenario. 
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Figure 27: Weighting Matrix Diagonal Elements 

 
After solving for the filter coefficients using the least squares approach, the gain and 

phase response are calculated, as well as the error function.  The gain and phase 

responses are shown in Figures 28 and 29, while the error function is shown in Figure 30. 
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Figure 28: Least Squares Gain Response 
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Figure 29: Least Squares Phase Response 
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Figure 30: Least Squares Normalized Error Function 

 
The least squares technique performs significantly better than the previous techniques.  

From Figure 30, the worst case error inside the desired band is approximately -78 dB, or 

0.013%.  In general, this technique is superior to both types of windowing techniques 

(time domain windowing and frequency domain windowing).   



Summary 
 When simulating a radar/ communication system, the distortion caused by the 

antenna to the incoming signal must be accounted for in order to achieve accurate 

performance analysis.  A common way to account for the antenna response in hardware-

in-the-loop simulations or computer simulations is to model the antenna response as a 

finite impulse response (FIR) filter.  For each angle of arrival of incident signals, the 

antenna response is different and requires a different set of FIR filter coefficients to 

model the antenna.   Various techniques were studied and compared for generating these 

FIR filters to model the antenna responses. 

 In this study, the incident signal bandwidth was only 0.64B of the total antenna 

bandwidth B.  In most applications, the antenna bandwidth exceeds the incident signal 

bandwidth.  The filter is only required to match the response of the antenna over this 

portion of the total bandwidth because there is no incoming signal containing in the 

remaining frequency spectrum, only noise.  The antenna responses were assumed to be 

well behaved with non-linear phase and non-uniform magnitude.   

 The simplest cast studied was a simple Inverse Fourier Transform (IFT) approach.  

This approach results in a significant ripple in the frequency response of the filter when 

compared to the actual antenna response.  The reason there was a ripple has to do with 

the properties of the Fourier transform.  The Fourier transform of a finite-bandwidth 

antenna response will have an infinite time series filter for perfect reconstruction.  The 

simple IFT approach is equivalent to truncating this infinite-length filter with a 

rectangular window.  In is well know that rectangular windows in the time domain cause 

ripples and oscillations in the frequency domain. 



 The second technique used the observation that the simple IFT approach is 

equivalent to a rectangular window applied to the infinite-length filter.  The motivation 

was that a smoother windowing operation should reduce the ripple seen in the filter 

frequency response.  Instead of using a rectangular truncation operation, higher order 

windows were considered.  These included a triangular window, a Hamming window, 

and a Kaiser window.  As expected, the ripple was reduced for each of these cases, with 

the best case being the Kaiser window.  However, a different type of error was introduced 

in the desired band: a so-called bias caused by a loss of energy from the filtering 

operation.  So while the performance of the filters created with this technique was 

superior to the simple IFT approach, a different type of error was introduced, the “bias,” 

that may be less desirable than the ripple for certain applications. 

 The third technique was motivated by the desire to eliminate the “bias” yet still 

improve the filter performance at matching the antenna response over the desired band.  

Instead of windowing the filter coefficients, a window function was applied to the 

original frequency samples.  When designing the frequency windows, the weighting were 

constructed such that only frequency samples which lay outside the desired band were 

tapered.  Two types of frequency windows studied were a linear and sine squared 

technique.  The windowed frequency samples were then operated on by the Fourier 

transform to produce filter coefficients.  Once again, the filter performance in modeling 

the antenna was improved over the standard IFT approach.  And as expected, the “bias” 

problem was not evident in the desired band.  The ripple was reduced significantly using 

a frequency window as well, but the result was non-uniform over the antenna bandwidth.  

The performance was best closest to the center of the desired band. 



 The final technique considered assumed instead that one has more antenna 

frequency samples than desired filter coefficients.  Also, if one did not have more 

frequency samples than filter coefficients, it was suggested that a cubic spline 

interpolation be used on the available frequency samples to create more.  Since one can 

write a system of equations relating M frequency samples to N filter coefficients by the 

Fourier operation, this system can be solved in the least squares sense when M > N.  

Since only the desired band, 0.64B of the total bandwidth B, is required to match the 

antenna response, a weighting vector was applied to set the error tolerance outside the 

desired band to infinity.  In other words, no consideration was given to the portion of the 

bandwidth which did not contain the incident signal.  Using the least squares technique, 

further improvements in the filter performance at modeling the antenna were obtained.  

The worst case error in the desired band was over an order of magnitude better than any 

other technique. 

 The recommendations for the use of these techniques depend on the application 

and assumptions.  If one has available more frequency samples than the desired number 

of filter coefficients, the least squares technique is recommended.  If one does not have 

more frequency samples than filter coefficients, interpolation is recommended to generate 

additional samples such that this method can be used.  If one is unable or unwilling to 

interpolate, then there exists a choice between the other two methods studied in this 

paper.  Depending on the type of error that will most affect the simulation, choose the 

time domain windowing technique if ripple is a concern (convolution sensitive, adaptive 

processing), and choose the frequency domain technique is “bias” is a concern (received 

power sensitive). 



Sources 
[1] Porat, Boaz.  A Course in Digital Signal Processing.  1997.   

(Equations 1-8 directly or derived from this book) 
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