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We used Random amplified polymorphic DNA (RAPDs), partial ribosomal DNA (rDNA), the mitochondrial gene 
cytochrome oxidase subunit I (cox1) and major sperm protein (msp) sequence analysis to investigate genetic diversity 
and population structure in Heterorhabditis bacteriophora, H. indica, H. marelata, H. megidis, H. downesi and H. 
zealandica comprising 18 isolates collected from different parts of the world. Blastn similarity search performed for 
the partial rDNA sequences confirmed the identity of Heterorhabditis species and suggested that all the unknown 
isolates belonged to H. bacteriophora. Blastn e-values for the species and isolates ranged between 0 to 9e-145.  Genetic 
diversity and phylogenetic analysis produced dendrograms that showed high degrees of genetic variations among
Heterorhabditis species with the overall average pairwise distance values of 0.3217, 0.6391, 0.7963 and 0.0572 for 
RAPD, partial rDNA, cox1 and msp, respectively.  Although we expected low genetic diversity among H. bacteriophora
isolates due to alternate automictic and amphimictic lifecycle and lack of long distance movement capability restricting 
gene flow, our results demonstrate highly structured genetic variation among the isolates.  Phylogenetic analysis 
showed that H. bacteriophora isolates is a species complex that contain at least two two new species KMD10 and GPS5. 
Further H. bacteriophora sensu Pionar populations can be divided into two major groups: “HP88” and “Oswego”. We 
conclude that strictly relying on ITS sequences based blastn for Heterorhabditis species identification is misleading.

Entomopathogenic nematodes Heterorhabditis and
Steinernema posses tremendous potential for biological 
control of insect pests (Grewal et al., 2005).

Although entomopathogenic nematodes have 
worldwide distribution only 10 species of 
Heterorhabditis have been described (Stock & Hunt, 
2005).

A major problem in the recognition of  
Heterorhabditis species is the high morphological 
conservation and difficulties in performing cross 
breeding tests due its complex life cycle.  

Heterorhabditis life cycle can be initiated by a single 
infective juvenile that matures into a self reproducing 
hermaphrodite. However, inside the insect cadaver both 
males and females can occur in the subsequent 
generation.  This life cycle can lead to continuous 
change in allele frequency and population genetic 
structure. 

As Heterorhabditis species specialize on buried insects 
and lack long distance self movement, their life cycle 
must result in low intra-specific genetic diversity. 

However, numerous studies indicate high genetic 
diversity among populations of the cosmopolitan H. 
bacteriophora (Grewal et al., 2005).
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Heterorhabditis bacteriophora is a species complex 
containing several species.

1) Investigate the inter- and intra-specific genetic 
variation in Heterorhabditis.

2) Investigate the presence of subspecies 
structuring within H. bacteriophora populations.

3) Compare between the resulting phylogenetic 
relationships inferred from RAPD patterns and 
partial rDNA, cox1, and msp sequences. 

METHODSMETHODS

Data were collection and processed for RAPD analysis.  
DNA sequences were edited using Bioedit and BLAST 

(Basic Local Alignment Search Tool) sequence similarity 
searches were performed. 

DNA Sequences were aligned using clustal W, MAFFT 
and PRRN programs.

Amino acid translations of cox1 and msp sequences were 
obtained and analyzed by MEGA 3.1 software. 

Resulting alignments compared, the final alignments 
improved manually and prepared in FASTA, MEGA and 
NEXUS formats. 

The best base-substitution models for distance analysis 
and reconstructing phylogeny were obtained using Find-
Model software. 

Phylogenetic trees were constructed using neighbor 
joining (NJ), minimum evolution (ME), Bayesian analysis of 
phylogeny (BAP), maximum parsimony (MP) and maximum 
likelihood (ML) methods using PAUP V4B10, MEGA 3.1, 
MrBayes v3.1 and Tree Puzzle softwares.    
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Fig. 1. Random amplified polymorphic DNA (RAPD) profiles of 18 isolates 
of Heterorhabditis species  after PCR with primer 1 (A). And  primer 4 (B). 

M: stands for DNA size marker.

Genomic DNA was extracted using Qiagen®
Genomic Tip 100/G according to the manufacturer’s 
recommendations.

PCR conditions were adjusted and products were 
amplified, purified and sequenced.
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Table I.  List of 
entomopathogenic 
nematode species
and strains used in 

this study and their 
original localities.
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Fig. 2.  Phylograms depicting the degree of relationship between Heterorhabditis species 
and isolates  produced from the RAPD analyses data generated using Neighbor joining 

(A), Minimum evolution (B), UPGMA (C) Bayesian analysis (The number of 
generations used is 1000000. Number in front of the nodes are the credibility values) 

(D) and Maximum parsimony (Bootstrap replicates = 1000) (E) methods.
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Fig. 3.  Phylograms depicting the degree of relationship between Heterorhabditis 
species and isolates produced from partial rDNA generated using Neighbor joining 

(A), Minimum evolution (B), UPGMA (C) and Maximum parsimony (Bootstrap 
replicates = 1000) 75 % consensus tree (D), and Bayesian analysis methods (E), the 

number of generations used is 1000000. Number in front of the nodes are the bootstrap 
and credibility values.

Fig. 4.  Phylograms depicting the degree of relationship between Heterorhabditis 
species and isolates produced from partial cox1 DNA generated using Neighbor joining 

(A), UPGMA (B), and Maximum parsimony (Bootstrap replicates = 1000) 75 % 
consensus tree (C), and Bayesian analysis methods (D), the number of generations used 

is 1000000. Number in front of the nodes are the bootstrap and credibility values.
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Fig. 5.  Phylograms depicting the degree of relationship between Heterorhabditis 
species and isolates produced from partial cox1 amino acid sequence generated using 
Neighbor joining (A), UPGMA (B), and Maximum parsimony (Bootstrap replicates = 

1000) 75 % consensus tree (C), and Bayesian analysis methods (D), the number of 
generations used is 1000000. Number in front of the nodes are the bootstrap and 

credibility values. 
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Fig. 6.  Phylograms depicting the degree of relationship among H. bacteriophora isolates 
produced from partial msp DNA sequence generated using Neighbor joining (A), UPGMA (B), 
and Maximum parsimony (Bootstrap replicates = 1000) 75 % consensus tree (C), and Bayesian 
analysis methods (D), the number of generations used is 1000000. Number in front of the nodes 
are the bootstrap and credibility values. D.viviparus and O. dentatum were used as out groups. 

Fig. 7.  Phylograms depicting the degree of relationship among H. bacteriophora isolates 
produced from msp amino acid sequence generated using Neighbor joining (A), UPGMA (B), and 

Maximum parsimony (Bootstrap replicates = 1000) 75 % consensus tree (C), and Bayesian 
analysis methods (D), the number of generations used is 1000000. Number in front of the nodes 
are the bootstrap and credibility values. D.viviparus and O. dentatum were used as out groups.  
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RAPD analysis showed relatively high values of 
pairwise among all species.  The overall pairwise 
distance for the 18 isolates was 0. 3217. 

The phylogenetic analysis of the partial rDNA 
sequences revealed strong sub-structuring among H. 
bacteriophora isolates.  

All partial rDNA based phylogenetic trees agreed for 
division of the species into two major phylogenetic 
groups. 
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The cox 1 also showed high values of genetic diversity 
among Heterorhabditis species.  The overall average 
pairwise difference is 0.6534.  The overall value of 
pairwise distance among H. bacteriophora isolates is 
0.4273, when all the haplotypes were included.

All the cox 1 (DNA and amino acid sequences) based 
phylogenetic trees showed high degree of sub-species 
structuring within H. bacteriophora. 

All phylogenetic trees agreed for division of the 
species into two phylogenetic groups: 

HP88 group containing isolates HP88, Acows, 
Riwaka, GPS1, GPS3 and GPS11. 

Oswego group containing Oswego, NC1, KMD19 and 
OH25 with high bootstrap and clade credibility values.

Both KMD10 and GPS5 are representing new 
phylogenetic species. 

As expected, major sperm protein gene msp is highly 
conserved among Heterorhabditis isolates as the overall 
value of pairwise distance among  H. bacteriophora isolates 
was only 0.0572.

Although highly conserved genes do not usually show sub-
species structuring, msp revealed the presence of sub-
structuring among H. bacteriophora isolates.  

The ITS-rDNA sequence based blastn searches are commonly used 
for identification of Heterorhabditis species (Adams et al., 1988; Stock 
and Hunt, 2005).

However our results indicate that ITS regions in Heterorhabditis 
does not show high genetic diversity and may hid species 
differentiation. 

We found that cox1 is a more reliable target for species 
identification in Heterorhabditis.
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CONCLUSIONCONCLUSION

cox1 is suitale for species identification in Heterorhabditis than 
ITS-rDNA.

H. bacteriophora is a species complex that contain two new 
species “KMD10” and “GPS5”.

H. bacteriophora sensu Poinar also showed distinct sub-
structring.  

To test the biological aspect of speciation, crosses between 
the new proposed species and the other known 
Heterorhabditis species  will be conducted.


