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ABSTRACT 

This thesis is part of the McMurdo Dry Valleys (MCM) Long-Tern Ecological 

Research (LTER) study in Southern Victoria Land, Antarctica. With the exception of the 

ice-covered lakes, there is little liquid water present in the valleys for most of the year. 

Chemical weathering is thought to occur more readily in warm and wet climates, 

however recent research has shown that it can occur in cold and dry environments. The 

chemical weathering of rocks and sediments in Taylor Valley occurs in the stream 

channels when liquid water is present, resulting from the melting of glacial ice during the 

austral summer. Not only is silicon an important element geologically, it is an important 

biogeochemical element, as aquatic microorganisms, such as diatoms, need it for growth. 

Silica (Si) is thought to be one of the chemicals that is dissolved by the glacier meltwater 

as it flows into the lakes. This thesis is an aqueous geochemical study of the Si found in 

the streams and lakes. 

Water samples were collected at the beginning of the austral summer and then 

again in midsummer from Lakes Bonney, Fryxell and Hoare in the Taylor Valley for the 

past 3 field seasons. Stream samples from each of the lake basins were also collected 

during the summer months. To analyze the concentrations of reactive Si in the water 

samples, a colorimetric method was used. 

Streams of the Lake Fryxell basin had the highest average Si concentrations, - 1.5 

mgL. Streams that flow into Lake Hoare had the lowest average concentrations, -0.2 

mgL. This difference is most likely a result of the length of the streams. The streams in 

Lake Fryxell basin are longer that those of the Lake Hoare, and therefore the water is in 

contact with the underlying sediment for a longer period of time, resulting in more Si 

being dissolved. The annual flux of Si into the lakes was determined by calculating the 

average Si concentrations in the streams and multiplying by the volume of stream flow 

for each lake basin. The highest Si fluxes occurred in the Lake Bonney basin followed 

by Lake Fryxell and Lake Hoare. When these fluxes are normalized to lake area, the 

values range from 212 mgsi/m2yr in Lake Bonney, 29 mgsi/m2yr in Lake Fryxell and 12 

mgSi/m2yr in Lake Hoare. 



Si concentrations in the lakes vary over time due to physical, chemical and 

biological processes. The concentrations in the lakes could be influenced by dilution 

with stream water of lower Si concentrations, precipitation and dissolution of Si within 

the water column, or biological uptake of Si by diatoms. For example, a decrease in Si 

concentration occurred in the upper part of the water column of Lake Hoare between the 

early and midsummer sample collections in all three seasons. The change in Si is much 

greater than expected from uptake by diatoms. Approximately 0.03% of the Si decrease 

can be attributed to biological uptake, based on primary productivity measurements. 

Therefore, other physical processes must control the Si variations in Lake Hoare. 
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INTRODUCTION 

This research was undertaken as part of the McMurdo Dry Valleys Long-Term 

Ecological Research (MCM-LTER) project in Antarctica, which began in 1993. The dry 

valleys are among the coldest and driest ecosystems on Earth. Because of this, the region 

is considered to be a polar desert. The primary study location for the LTER project, 

Taylor Valley, contains alpine glaciers, ephemeral streams, perennially ice-covered lakes 

and rocky soils. 

During the summer months, meltwater is generated on the glaciers and flows 

through streams to the lakes in the valley bottom. As water moves through the system, 

solute concentrations increase (Lyons et al., 1998b). The lakes are closed-basin lakes 

with no out-flowing streams. Because these lakes are perennially ice-covered, water is 

lost from the ice surface of the lakes by sublimation of ice while solutes accumulate in 

the lakes over time. All of the lakes are chemically and density stratified and are 

relatively stable (Lyons et al., 1998b). Dissolved components can be removed from the 

water column by chemical or biological processes. Solutes can also move through the 

water column by diffusion. 

Although the dry valleys appear to be "lifeless", microbial communities can exist 

whenever liquid water is present (McKnight et al., 1999; Kennedy, 1993). 

Microorganisms including diatoms live in the lakes and streams of the dry valleys. 

Diatoms take up dissolved Si to build their shells. 

GEOGRAPHY & CLIMATE 

Taylor Valley (Figure l),  77" OO'S, 162" 52'E, is part of the McMurdo Dry 

Valleys in Southern Victoria Land, Antarctica. Taylor Valley (TV) is 33 km long and 12 

km wide and is bordered by the Asgard Range to the north and the Kukri Hills to its south 

(Figure 1). TV is a polar desert with a mean annual temperature of approximately -20 "C 

(Clow et al., 1988) and a total annual precipitation of less than 10 cm (Keys, 1980). 

Therefore, TV is among the coldest and driest terrestrial environments on earth. For 

approximately 2-3 months in the austral summer, the dry valley climate is characterized 
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Figure 1 .  Map of Taylor Valley showing glaciers, streams and lakes. 



by continuous daylight, near freezing air temperatures, and the presence of meltwater 

flow. 

The differences in climate within TV are largely related to topographic setting 

within the valley (Lyons et al., 2000). One important cause of the climatic differences is 

the presence of Nussbaum Riegel, an 800m high hill in the center of TV. Nussbaum 

Riegel splits the valley into the Bonney basin and the Hoare and Fryxell basins. The 

long-term effect of the Nussbaum Riegel on the valley climate is reflected in the change 

in glaciers along the valley walls with less snowfall and warmer summer temperatures in 

the Bonney basin, compared to the Hoare and Fryxell basins (Fountain et al., 1998). 

Another important topographical feature in the valley is Canada Glacier, which blocks 

much of the narrow valley floor at the east end of Lake Hoare. Lake Bonney experiences 

a more continental climate (warmer, drier conditions) strongly influenced by katabatic 

winds, while Lake Fryxell experiences a more marine climate (wetter, colder, cloudy 

conditions) (Lyons et al., 2000). The climate of Lake Hoare tends to be closer to Lake 

Fryxell, but, depending on the season, shifts towards a Lake Bonney climate (Lyons et 

al., 2000). 

GEOLOGY 

Taylor Valley's geomorphology has been modified by the movement of glaciers, 

the inflow of ocean waters, and the waxing and waning of lacustrine environments over 

the past few million years (Porter and Beget, 1981). Because of glacier movements, the 

valley floor contains a mosaic of tills of differing age and composition (Pew6 , 1960; 

Stuvier et al., 1981; Burkins et al., 1999). The ages of the morainal materials in the 

region date to 2.5 million years (Brown et al., 1991). 

TV soils are composed of unconsolidated material ranging from sand to boulder 

size. Relatively flat areas are often covered by a desert pavement, a thin layer of coarse 

stones or gravel that overlie sandy material (Claridge and Campbell, 1977). Permafrost 

begins about 0.5 m below the ground surface (Conovitz et al., 1998). 

The basement rocks of the McMurdo Dry Valley region are composed of 

Precambrian schists, gneisses, and marbles, which are overlain by the Ross Supergroup 

(schist, gneiss, marble, quartzite, hornfel, metasediments, limestone) (Warren, 1969). 



Both the basement rocks and the Ross Supergroup are intruded by early Paleozoic 

Granite Harbor Intrusives (granite and granodiorites) (Campbell and Claridge, 1987; 

McKelvey, 1981). These rocks make up the Asgard Range to the north of TV and the 

Kukri Hills to its south (McKelvey, 1981). Farther inland, this rock sequence was eroded 

to form a peneplain, and is overlain by the Beacon Supergroup (Campbell and Claridge, 

1987; McKelvey, 1981). This group of flat-lying, continental sediments can be broken 

down into the Taylor Group (Devonian to Carboniferous), consisting of conglomerates, 

sandstones, siltsones and thick quartz sandstones: and the Victoria Group (Permian to 

Jurassic) which is composed of glacial sediments (tillite, sandstone, shale, minor 

limestones), coal, sandstone, mudstone, and basaltic volcanoclastic beds (Campbell and 

Claridge, 1987). The Ferrar Group (Jurassic) consists of Ferrar Dolerite sills and 

Kirkpatrick Basalts (lava flows) (Campbell and Claridge, 1987; McKelvey, 1981). The 

more recent McMurdo Volcanics are composed of hornblende and olivene basalts 

(Campbell and Claridge, 1987). These rocks can be found near Mt. Erebus, which is still 

active today, and as basaltic cones in Taylor Valley (Campbell and Claridge, 1987; 

McKelvey, 1981). In addition, due to several glacial advances and retreats in Taylor 

Valley, the valley floor has Cenozoic till composed of granite, marble, gneiss, dolerite, 

and Beacon sandstone (PCwC, 1960). Also present in the valley are deltaic deposits and 

layers of silt and clay form Glacial Lake Washburn, as well as lake carbonate deposits 

(Hendy et al., 1979). 

LAKES 

TV contains three major closed basin lakes: Lake Bonney, Lake Hoare and Lake 

Fryxell (Figure 1). Lake Fryxell is closest to the ocean, -8km from the coast. It is also 

the shallowest lake. Lake Hoare is -15km west of the ocean and it is 'held' in place by 

the Canada Glacier (Lyons et al., 2000). Without the Canada Glacier in its current 

location, Lake Hoare would flow east and drain into Lake Fryxell. Lake Bonney begins 

-30krn inland (Lyons et al., 2000). The characteristics of these lakes are shown in Table 

1. 



Table 1 Characteristics of the Taylor Valley Lakes (Lyons et al., 2000) 
Characteristic Lake Fryxell Lake Hoare Lake Bonney 
Surface area (m2) 7.1 x lo6 1.91 x lo6 4.81 x lo6 
Volume (1 x lo6 m3) 25.2 17.5 64.8 
Maximum depth (m) 2 1 34 40 
Water temperature ("C) 0 + 1.0 0 + 4.0 -2 + 7.0 

Taylor Valley lakes are subject to extreme climate conditions. Lakes are covered 

with perennial ice that is currently 3-6 m thick. During most summers, a moat of water 

. forms at the edge of the lakes, as the ice near the shore melts completely (Fountain et al., 

1999). Glacial meltwater is transported to the lakes by ephemeral streams. From the 

1970s until about 1990, there was a net gain in water to the lakes as lake levels had been 

generally rising (Chinn, 1993). Since 1990, lake levels have decreased (Doran et al, 

2002). Over the winter the ice cover refreezes at the edges and accumulates more ice at 

the cover bottom. All year long, high winds albate the surface of the ice cover and 

sublimation of the ice cover also results, due to the severely dry conditions. 

The lakes have abundant planktonic and benthic microbial populations (Vincent, 

1988). No higher forms of life, such as pelagic crustacea, mollusc, insects or fish, have 

been observed (Doran et al., 1994). Microbial mats are primarily composed of 

cyanobacteria, pennate diatoms and eubacteria (Wharton et al., 1983). 

Lake variations 

Over the past 10 years of MCM-LTER investigations in TV, it has become clear 

that landscape characteristics, both past and present, greatly influence the variability 

observed in the lakes (Lyons et al., 2000). These variations are great and the three major 

lakes in TV are different in many aspects. Lake Hoare is the freshest of the lakes 

throughout the water column, the bottom water of Lake Fryxell is brackish and both lobes 

of Lake Bonney have hypersaline bottom waters. 

The major ionic ratios of the TV lakes, even in their fresh surface waters, are 

quite different (Lyons et al., 1998b). The lakes are different in their nutrient 

characteristics (Priscu, 1995), as well as their chlorophyll and algal distributions (Lizotte 

and Priscu, 1998). Primary production rates are also different in the lakes. Their 



proximity and similar climate and basin geology make it even more difficult to explain 

their extraordinary chemical differences. The degree to which the individual lakes 

interact with their surrounding environment, especially the small variations in climate 

within the TV, are a major key to understanding their present and past development. 

Subtle climate differences within the landscape may account for the biological variations 

in the lakes and.have a profound effect on the geochemistry and biogeochemistry of these 

lakes (Lyons et al., 2000). 

STREAMS 

Ephemeral streams transport glacial meltwater to terminal lakes that lose water 

only through sublimation and evaporation (Fountain et al., 1999). The only source of 

water to the streams is glacial melt during the austral summer (Conovitz et al., 1998). 

Snowfall in the dry valleys does not contribute significantly to the streams or to the 

general hydrology of the valleys because it usually sublimates before melting (Chinn 

1981). For six to ten weeks per year (late November-early February), streams flow from 

their source to one of the three lakes. There is little to no stream recharge via base flow 

or overland flow. TV streams are first or second-order, typically shallow (< 30 cm), and 

vary in width (1-10 m, Green et al., 1988), length, and gradient (shallow Fryxell, steep 

Bonney and Hoare). 

Stream flow is intermittent with highly variable discharge both daily and 

seasonally due to temperature fluctuations (Conovitz et al., 1998; McKnight et al., 1999). 

Associated with the stream channels in the hyporheic zone, the zone laterally and 

vertically adjacent to the stream where there is subsurface flow. Exchange of water 

between the stream and the hyporheic zone occurs during streamflow (McKnight and 

Andrews, 1993), and is an important process in the addition of solutes through 

weathering (Maurice et al., 2002). 

The mean summer air temperature for the 5 year period 1994-1999 in Taylor 

Valley has been below the freezing point for fresh water, which has minimized glacier 

melt (Fountain et al, 1999). In non-typical years, such as 2001-2002, warmer 

temperature resulted in increased stream flow. 



SILICA 

Compounds of silicon occur in all natural waters. They may be present either as 

suspended solids or in solution. Silicon occurs in minerals such as quartz, feldspars, and 

clays. Biomineralisation of silicon in the form of opal or amorphous hydrated silicon 

oxide (biogenic silica, SiO, - nH,O) is performed by a number of aquatic organisms, of 

which the diatoms are the most widely distributed. In the dissolved form, silicon is 

present as silicic acid, H,SiO,. The undissociated monomeric form dominates in natural 

waters at pH below 9 (Aston, 1983; Stumm and Morgan, 1996). Silicic acid is derived 

either from weathering reactions of silicate and aluminosilicate minerals or from 

dissolution of the biogenic opal following death of the organisms. 

It is well known that silicon cycling in temperate lakes is an annual event 

controlled by diatom production (Hoffmann et al., 2002). Dissolved silica is taken up by 

diatoms in the epilimnion. As the frustules settle and the lake stratifies, the planktonic 

diatom production often becomes limited by silica bioavailibility. Diatom production 

during the following temperature-driven stratification period is then limited to 

allochthonous silicic acid input; because upward diffusion of silica which redissolved 

from the sediments and the benthic nepheloid layer is a slow but continuous process 

(Hoffmann et al., 2002). 

The amorphous silica contained in diatoms dissolves five orders of magnitude 

faster than mineral silicates, at about 2 X lo-' mol cm-2 s-' (Hurd, 1983). Most of the 

information available about diatom wall dissolution has been derived in the marine 

environment. Oceans are strongly undersaturated with respect to amorphous silica and 

the silica incorporated into diatom cells is quickly recycled after their death (Smetacek, 

1999). Most freshwater systems are also strongly undersaturated. The rate of dissolution 

of the diatom skeletons is known to be affected by many factors including, the presence 

of protective organic skins (Bidle and Azam, 1999), temperature (dissolution slows in 

low temperature waters (Lewin, 1961 ; Werner, 1977; Lawson et al., 1978)), and the 

presence of salt (enhances the dissolution rates of diatoms (Kato and Kitano, 1968; 

Kamatani, 197 1; Hurd and Birdwhistell, 1983; Barker et al., 1994)). 

Silica dissolution has not been very extensively studied in lake water. In 

particular, there is no agreement as to whether biogenic silica dissolution begins in the 



water column. Some authors show that the major fraction of SiO, produced annually in 

the form of frustules dissolves before being integrated in the permanent sediment (Parker 

et al., 1977). Variations in SiO, saturation will have great impact on Si dynamics and 

thus varies from lake to lake. 

METHOD 

Reactive silicate was measured calorimetrically using a method based on Mullin 

and Riley (1955). This method detects only monomeric and dimeric silicic acid; 

polymeric species do not participate in the reaction. Often the terms "reactive" and "non- 

reactive" are used to classify different fractions of dissolved silica in fresh and marine 

waters. They refer to the monomeric and polymeric silcon species, respectively, in 

solution. The reactive form will participate in the biological cycling of silicon in the 

hydrosphere. In contrast, it is assumed that polymeric forms are not available for 

biological uptake and utilisation. The reactive fraction is the dominant dissolved species 

in natural waters. (Hoffmann et al., 2002) 

Collection 
All samples for geochemical analysis were obtained with great care in order to 

minimize contamination. Members of the MCM-LTER team collected water samples 

from several Taylor Valley streams throughout the Austral summer over a period of three 

field seasons, 1999-2002. Lake samples were also collected early and mid summer 

during those seasons. Within 12 hours of collection, samples were filtered through 0.4 

pm Nuclepore membrane filters into water washed high-density polyethylene (HDPE) 

Nalgene bottles. 

Bottle Cleaning Procedures 
HDPE Nalgene bottles were rinsed three times with distilled, deionized 18-MB 

(DI) water and then filled with DI water to soak overnight. Prior to analysis, the bottles 

were emptied and left in a class 100 laminar flow hood to dry. 



Reagents 
All reagents and solutions were made with fresh DI water and stored in HDPE 

Nalgene bottles. 

Acid Ammonium Molybdate 
1. 10 g Ammonium Molybdate dissolved by shaking in about 300 ml DI water. 
2. 30 ml of concentrated hydrochloric acid was added to complete the solution of the 

salt. 
3. Bottle filled with DI water to volume of 500 ml. 

Reducing Agent 
1. Sulfuric acid. 25% vlv. 400 ml. 
2. Oxalic acid. 10%. 20.0 g of oxalic acid dihydrate dissolved by shaking in about 125 

ml DI water. Bottle filled with DI water to volume of 200 ml. 
3. Metol-sulphite solution. 4.0 g sodium sulfite and 6.6 g methylaminophenol sulfate 

dissolved by shaking in about 250 ml DI water. Bottle filled with DI water to volume 
of 330 ml. The solution was then filtered. 

4. DI water. 70 ml. 
5. The 4 components were then combined. 

Procedure 
A series of working standards were made from a 10 m g L  Si stock standard and a 

blank was included. Concentrations used were 0.0,0.05,0.1,0.2,0.5, 1.0, and 2.0 mg/L 

Si. Samples were stored and analyzed at room temperature. Most stream samples were 

diluted by a factor of 2. In order to reduce interference from salts, the high salinity 

stream and lake samples required increased dilution (Toxey et al. 1997). Lake Hoare 

samples were diluted at a factor of 4. Lake Fryxell and Lake Bonney samples were 

diluted at a factor of 10. 

1. 20 ml of standard or sample was pipetted into a 60 ml HDPE bottle. 
2. 3 ml of acid ammonium molybdate was added. Acid ammonium molybdate is used 

to convert reactive silica to yellow silicomolybdic acid. 
3. Waited 10 minutes. 
4. 15 ml of reducing agent was added. The reducing agent converts silicomolybdic acid 

to molybdenum blue. 
5. 12 ml of DI water was added. 
6. Standards and samples were left to stand overnight. 



7. The optical density (absorbance) of the standards and samples was measured on a 
Milton Roy 50 1 Spectronic Spectrophotometer. Prior to analysis of the samples, the 
instrument was zeroed at a wavelength of 8 12 nm using a 1-cm width optical density 
cuvete containing a blank to subtract the absorbance of the cuvete from the sample 
absorbances. 2.5 rnL of each standard or sample was measured. Cuvetes were 
thoroughly rinsed with DI water between standards and samples. 

8. The absorbance of the standards and samples was recorded. (Table 2) 
9. A calibration curve was computed using Excel software. The equation of the best-fit 

line (Figure 2) between the absorbance of the standards and their known 
concentrations was used to calculate lake and stream water Si concentrations from the 
absorbance values. 

TabIe 2 Si Standards 
Dilution Concen- 1 

I Sample Factor tration Absorbance Calculation Si rngIL I 
Blank 1 0.00 0.000 -0.001 -0.001 
standard 0.OSmglL 1 0.05 0.015 0.045 0.045 
standard O.lmglL 1 0.10 0.031 0.094 0.094 
standard 0.2rngtL 1 0.20 0.065 0.199 0.199 
standard 0.5mgiL 1 0.50 14.166 0.509 0.509 
standard I .OmglL 7 1 .OD 0.330 1.013 1 .013 

0.00 0.50 1.00 1.50 2.00 

Concentration (rnglL) 

.- - - - 

2 + 5 0  I 
i 

Figure 2. Example Calibration Curve 



DISCUSSION 

STREAMS 

Dissolved Si present in stream water depends both on the original Si 

concentration of the glacier meltwater as well as the production of Si via chemical 

weathering. The latter is dependent upon the size and morphological characteristics of 

the drainage basin and on its geological setting (McKnight et al., 1999). Differences in 

stream chemistry reflect the differences in the source water flowing from the glaciers, the 

chemistry of the rocks and soils, and also the length of time the water is in contact with 

the regolith (Lyons et al., 1998). More recent work describing chemical weathering in 

these streams suggest that the rates of weathering alumnosilicates can be surprisingly 

high (Nezat et al., 2001; Maurice et al., 2002). Though there are low levels of reactive Si 

in the meltwaters from the glaciers, it is certain that concentrations of the H,SiO, above 

0.281mgL (10 pm) must originate from silicate mineral weathering within the stream 

reaches (Lyons et al., 1998). Although paleodiatoms are present in perched deltas and 

lacustrine sediments in TV (Kellogg et al., 1980), dissolution of diatom debris is minimal 

in VonGuerard Stream and has not been found to contribute reactive Si to other TV 

streams (Blum et al., 1997). In addition it is hypothesized that present-day diatoms, due 

to low concentrations (<I% of biomass in most TV streams), have little impact on 

reactive Si concentrations (McKnight et al., 1998). 

Average Si concentrations for the sampled streams (1999-2000 and 2000-2001) 

and stream lengths are shown in Table 3. In both seasons, Hoare basin streams have the 

lowest average concentration. In 99-00 the Bonney basin streams have the highest 

average concentration. However in 00-01, the highest stream average is in the Fryxell 

basin. In 99-00, the Si concentration of Red River (Blood Falls) is much larger than any 

of the other TV streams. This stream flows off of the snout of the Taylor Glacier over ice 

with incredibly high concentrations of C1 and other major ions and cations. Samples 

from this stream are the cause of the increased average Si concentration in the Bonney 

Basin for the 99-00 season. 



Table 3 TV Stream Lengths and Si Average Concentrations 
I I 

Fryxell Basin 
Aiken Creek 
Andrews Creek 
Bowles Creek 
Canada Stream 
Cresent Stream 
Delta Stream 
Green Creek 
Harnish Creek 
Huey Creek 
Lost Seal Stream 
Mariah Creek 
McKnight Creek 
VonGuerard Stream 
Hoare Basin 

Andersen Creek 
House Stream 
McKay Creek 
Wharton Creek 
Bonney Basin 

East 
Bartlette Creek 
Bohner Stream 
Priscu Stream 
Vincent Creek 
West 
Lawson Creek 
Lyons Creek 
Red River (Blood Falls) 
Santa Fe Creek 
Sharp Creek 

Length 
( k m )  

1999 - 2000 
Average Stream Si 

Concentration (mg/L) 

2000 - 2001 
Average Stream Si 

Concentration (mg/L) 

Figure 3 is a plot of length versus average Si concentration for both seasons. 

Lake Hoare has relatively short streams and low Si concentrations. Lake Fryxell has the 

longest streams and relatively high concentrations. There is a slight positive correlation 

between the length of the stream and the amount of Si in the stream water based on 

Fryxell streams. Overall in Taylor Valley, the streams with similar lengths have large 

ranges of Si concentration. From year to year, Si concentrations will vary within a 

stream. The longest of all TV streams, Delta Stream (1 1.2 km) had a higher average Si 

concentration in 00-01 than the previous year, while in the same basin, VonGuerard 

Stream (4.9 km) showed the opposite trend. 
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LAKES 

Estimation of the amount of Si entering the lake with the meltwater inflow 

requires the monitoring of water discharge into the lake as well as regular measurement 

of the concentrations of dissolved Si contained in the inflowing water. Si concentrations 

were averaged for each stream for the 1999-2000 season. For the streams with 

significant measurable flow for that year, the Si flux (kglyr) was calculated (Table 4). 

The total flux for each basin was determined by summing the individual stream values. 

The Bonney Basin had the highest Si flux, (935 kglyr), followed by the Fryxell Basin 

(21 1 kglyr) and the Hoare Basin (23 kglyr). These values are conservative since 

measurable flow did not occur in some of the streams where a sample was collected. 

Only two of the four Lake Hoare streams are gaged, therefore the Si flux in Lake Hoare 

may be greater than reported here. 



Table 4 Si Flux in Taylor Valley Lake Basins 
I 
I Flux normalized Si 

Fryxell Basin 
Aiken Creek 
Andrews Creek 
Bowles Creek 
Canada Stream 
Cresent Stream 
Delta Stream 
Green Creek 
Harnish Creek 
Huey Creek 
Lost Seal Stream 
Mariah Creek 
McKnight Creek 
VonGuerard Stream 

Hoare Basin 
Andersen Creek 
House Stream 
McKay Creek 
Wharton Creek 

Bonney Basin 
East 
Bartlette Creek 
Bohner Stream 
Priscu Stream 
Vincent Creek 
West 
Lawson Creek 
Lyons Creek 
Red River (Blood Falls) 
Santa Fe Creek 
Sharp Creek 

Average Si Annual Flow Si Flux Sum of Basin Lake Area to lake area Volume for Residence time 
(mg/L) 103(m3/yr) (kglyr) Si Flux (kglyr) (m2) (mgSiIm2yr) Lake (kg) (Y r) 

There are negligible contributions of H,SiO, from atmospheric precipitation to the 

lakes (White and Blum, 1995). The Si found in the atmosphere is primarily present in 

particulate form, essentially of natural inorganic (quartz) or biological origin (diatoms). 

Wind stress on the land surface results in advection of soil grains into the atmosphere, the 

dust later falls on the water surface (moat) or ice cover as particulate matter in dry fallout. 

Atmospheric dissolved Si concentrations are expected to be very low, therefore, 

atmospheric input is assumed to be zero in this work. 



Figure 4 shows plots of the Si profiles for the Taylor Valley lakes. Both the early 

and late summer samples in 1999-2000 are shown for Lake Fryxell and East and West 

Bonney. Seasons 99-00,OO-01, and 01-02 are displayed for Lake Hoare. The early 

sampling date represents the time before significant stream flow occurred. 

The Si concentration in both Lake Hoare and Lake Fryxell increase with depth. 

There is a decrease in Si in the upper part of the water column of Lake Hoare and Lake 

Fryxell over the summer. The dilution of surface waters over the summer is caused by 

the introduction of less concentrated stream water and ice cover melt. The same effect 

occurs in Lake Hoare's surface waters for all three seasons. Over the three summers, 

bottom water Si concentrations have remained relatively constant in Lake Hoare. 

The Bonney Basin lakes show little change in Si concentration from early to late 

summer. Both East and West Bonney have mid-depth Si maximums. The chemocline in 

East Bonney is about 2m higher than West Bonney. These Si maximums may be caused 

by density differences within the water column. The bottom waters of the Bonney basin 

are hypersaline. The Si may be unable to settle any lower in the water column due to the 

density increase in both lobes. In addition, Si may be chemically precipitated at depth in 

the east lobe of Lake Bonney (Lyons et al, 1998b). 

In order to help with interpretation of the Si profiles, the Si/Cl ratios were 

determined. C1 is thought to be conservative and is not removed from the water column 

except by precipitation of NaCl in the deep waters of East Lake Bonney. Si/C1 profile for 

each lake in the Taylor Valley early and late summer are shown in Figure 5. In all cases, 

the ratio of Si/C1 is lower in the lakes than in the streams that flow into them. This 

suggests that Si is being removed relative to C1 in all of the lakes. The relatively straight 

Si/Cl profiles in Lake Hoare and Lake Fryxell suggest that the concentrations of both Si 

and C1 are dominated by physical processes such as evaporative concentration. The Si/C1 

ratios are highest in Lake Hoare even though Si concentrations are lowest in the Lake 

Hoare streams. This may indicate that biogenic uptake of Si in Lake Hoare is the lowest 

of all the lakes. This is supported by primary production rate differences among the lakes 

as well, e.g. http://huey.colorado.edu. The very low Si/C1 ratios in the bottom of Lake 

Bonney reflect the very high concentrations of C1 at depth. Lake Bonney is thought to be 

the oldest of the Taylor Valley lakes and the SiIC1 profile reflects the long accumulation 
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of salts within the lake (Lyons et al, 1998b). The low SiIC1 ratios in Lake Bonney overall 

may be due to removal of Si relative to C1 by both chemical and biological processes and 

modern diffusion of solutes throughout the water column. 

The total pool of Si in each lake was calculated for the 1999-2000 season 

(Appendix C). Each lake was divided into layers based on midpoints between sample 

depths. The volume of each layer was multiplied by the Si concentration at the 

corresponding depth. There is no Si measurement for the ice cover or for water less than 

-5 meters deep. This surface layer was assumed to have no Si for these calculations. 

The layers were then summed to calculate the total amount of Si in each lake. This was 

done for the early and late season samples. Lake Fryxell has the largest pool of Si 

followed by East Bonney, Hoare and West Bonney. 

East Bonney, West Bonney and Fryxell lakes show an increase in the total Si pool 

from early in the austral summer to mid-summer. Lake Hoare does not show the same 

increase. In the 99-00,OO-01 and 01-02 seasons, there is a significant decrease in the 

calculated amount of Si from early to mid-summer. This is probably due to dilution of 

surface water by input of less concentrated ice cover melt and stream water, and uptake 

of Si by diatoms. 

During the winters of 2000 and 2001, an increase in Si concentration occurred in 

the surface waters of Lake Hoare. This is probably caused by freeze concentration. 

Every winter approximately half of a meter of ice is frozen to the bottom of the ice cover. 

The water that freezes is relatively pure, resulting in the solutes being left behind. 

Therefore, Si and other solutes are forced into a smaller volume of water, increasing the 

concentration of the lake. In the early season sample of the three years discussed here, 

the pool of Si in Lake Hoare has 'recovered' to almost the same value. The calculations 

show that the lake was increasing in concentration each season. Two factors may control 

this phenomenon. Either a larger amount of Si from stream water entered the lake during 

the previous season, or more water was frozen to the ice cover, resulting in further freeze 

concentration. 

The residence time for Si was calculated for the three lake basins (Table 4). The 

total amount of Si in each basin was divided by the Si flux. Lake Fryxell's residence 

time for Si was calculated to be just over 1000 years. This value corresponds to the time 



that Lake Fryxell was thought to begin to refill (Lyons et al., 1998a). The Bonney basin 

has the shortest calculated residence time, 260 years. Lake Hoare was found to have the 

longest residence time, over 3200 years. These calcuations are based on flow data from 

only 1999-2000 and there is variation from year to year. The flux is calculated from a 

little more than half of the streams that flow to these lakes. Higher amounts of discharge 

would increase the Si flux, therefore resulting in shorter residence times. 

DIATOMS & PPR 

The amount of primary productivity (PPR) in the lakes of TV varies between each 

lake and within the water column (Figure 6). West Bonney is the most productive lake 

with its max at 13m (7.22 pg C / L day). East Bonney's highest production is at 12m 

(1.1 1 pg C / L day), but it is not nearly as productive as West Bonney. Lake Fryxell's 

highest PPR is at 9 m (2.08 pg C / L day) and the max is at 5 m (0.67 pg C / L day) in 

Lake Hoare. 

The percentage of Si taken up by diatoms was calculated in each lake on a layer 

basis of the sampled depths (Appendix D). The PPR averages for each layer are from 

measurements taken from 1993-1997. 180 day productivity cycle was used for these 

calculations. The Si/C ratio for diatoms is 0.3039 (Nelson et al., 1995). No more than 

10% of PPR can be attributed to diatoms in the water column (Sarah Spaulding and John 

Priscu, personal communication). 

The calculated percentage of Si taken up by diatoms is closely linked with the 

amount of primary production (Figure 6). In West Bonney the largest percentage of Si 

uptake occurs at 12 and 13m, over 1.5% for both layers. 13m is just above the 

chemocline. A significant increase in Si and other chemicals occurs at 14 m in West 

Bonney. East Bonney has the next highest percentage of Si uptake, at a depth of 12m 

(>0.3%). In Lake Fryxell, about 0.15% of Si is taken up by diatoms in the layers 9m and 

above. The 3 lakes mentioned above all have surface waters less productive than their 

maximum layer and the % decreases with depth following the most productive layer. 

Lake Hoare's highest percentage (0.14) is at the first sampled depth (5m) and uptake 

decreases with depth. 



The main sink for dissolved Si is its uptake by diatoms in the water column and in 

benthic mats and subsequent sedimentation of the diatom frustules to the lake bottom. In 

Lake Hoare, 10% of PPR can to be attributed to diatoms in benthic mats, however 

productions sites within mats are not constant. Diatoms are very mobile and move by 

their raphe structures (Sarah Spaulding, personal communication). Adsorption of Si onto 

particles (Swedlund and Webster, 1999) and authigenic formation of new silicate 

minerals was not considered as a major removal mechanism. 
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CONCLUSION 

Si dynamics in Taylor Valley lakes are influenced by certain biological and 

physical processes that are not factors in temperate lakes. The productivity is limited by 

the short season when sunlight is available. A 3-6 m ice cover on the lake surface also 

limits transmission of light during the summer. The near freezing lake temperatures slow 

the rate of Si dissolution. The average amount of Si uptake by diatoms in the water 

column is low ( ~ 1 % )  for the lakes as a whole, however in certain areas of each lake 

productivity is greater. 

On average, the glacial meltwater transported to the lakes has Si concentrations 

much lower than the lake Si concentrations. The amount of Si entering the lakes, based 

on flux calculations from the 1999-2000 season, is small compared to the total pool of 

silica in each lake. Residence time calculations were based on flows from one season, 

and flow varies from year to year, so they should be considered estimates only. 

However, the residence time calculated for Lake Fryxell is consistent with the historic 

refilling of the lake. 

Climate differences exist between the lakes, even though they are relatively close 

in proximity. The Bonney Basin tends to be warmer than the Fryxell or Hoare basins. 

The amount of stream flow, and therefore amount of Si entering the lakes, in influenced 

by the amount of direct sunlight each basin receives and the temperature. 

Freeze concentration followed by dilution with glacier meltwater input explains 

why Si concentrations in the surface waters of Lake Hoare are much higher early in the 

summer than the concentrations from the previous year's last sampling. This process 

probably occurs in Lake Fryxell and the Bonney Basin lakes as well. 

The surface waters of all of the TV lakes are fresh, however their bottom waters 

are quite different. The chemical differences result in unique conditions for each lake. 

The hypersaline bottoms in the Bonney Basin lakes may explain why Si concentrations in 

these lakes have a mid-depth maximum. Lakes Fryxell and Hoare have maximum Si 

concentration at the deepest sample. The histories of these lakes may explain the 

differences in each of these lakes. 



Examination of multiple years of stream flow data and lake Si profiles would give 

an increased understanding in the biogeochemical dynamics in these lakes. More 

accurate residence times could be calculated. Further annual analysis of Si in the Taylor 

Valley may provide a more complete picture of the biological, physical and chemical 

processes in the lakes and streams. 
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APPENDIX A 

Stream Si Concentration 1999-2000 



Sample Si mg/L Average mg/L Sample Si mg/L Average mglL 

Aiken Creek #1 99121001255 1.322 1.198 Huey Creek 0 F2 00010601 120 2.172 2.296 
Huey Creek 0 F2 0001 1 2 0  1625 2.388 Aiken Creek #2 99121001330 1.551 

Aiken Creek #3 991210@1410 1.545 Huey Creek 0 F2 00012501425 2.41 1 
Aiken Creek 0 F5 00010601440 0.633 Huey Creek 0 F2 99123001330 2.215 
Aiken Creek 0 F5 0001 1201835 1.122 
Aiken Creek 0 F5 99122001410 0.974 Lawson Creek 0 83 00010901610 0.572 0.536 
Aiken Creek 0 F5 99122701215 0.586 Lawson Creek 0 83 0001 1801745 0.487 
Aiken Tributary 99121 0 0  1354 1.849 Lawson Creek 0 B3 991201 01615 0.436 

Lawson Creek 0 83 99120901 145 0.475 
Andersen Creek 99121 1 01618 0.279 0.276 Lawson Creek 0 83 991231 01255 0.708 
Andersen Creek 0 H I  00010402010 0.257 
Andersen Creek 0 HI  0001 11 01250 0.465 Lost Seal Stream 000121 0 1635 1.510 1.017 
Andersen Creek 0 HI  00012301810 0.707 Lost Seal Stream 0 F3 00010601120 0.713 
Andersen Creek 0 H I  99120401745 0.273 Lost Seal Stream 0 F3 99121401955 1.353 
Andersen Creek 0 H I  99120801200 0.301 Lost Seal Stream 0 F3 9912200 1450 0.862 
Andersen Creek 0 H I  99120801600 0.202 Lost Seal Stream 0 F3 99122701710 0.645 
Andersen Creek 0 H I  99120802000 0.159 
Andersen Creek 0 H I  99120802359 0.122 Lyons Creek 0001090 1510 0.347 0.644 
Andersen Creek 0 H I  99120900400 0.1 52 Lyons Creek 0 84 0001 1801620 0.251 
Andersen Creek 0 H I  99120900800 0.1 77 Lyons Creek 0 84 99122301305 0.331 
Andersen Creek 0 H I  99120901200 0.21 4 Lyons Creek 0 84 991231 0 1  145 0.294 

Lyons Creek Trib. 0001 1 8 0  1640 1.999 
Andrews Creek 99122801 320 0.486 0.378 
Andrews Creek 0 mouth 0001 I201320 0.270 Mariah Creek 0001 1401825 0.232 0.232 

Bartlette Creek 0001 0 8 0  1850 1.573 1.544 McKay Creek 00010301230 0.085 0.119 
Bartlette Creek 0001 1 8 0  1230 1.516 McKay Creek 0001 1001245 0.115 

McKay Creek 0001230 1420 0.150 
Bohner Stream 00010802000 1.955 1.943 McKay Creek 99122501235 0.122 
Bohner Stream 0 Priscu 0001 1701440 1.988 McKay Creek (25ft-Lk Chad) 99121 1 01345 0.148 
Bohner Stream 0 Priscu 99120901400 1.887 McKay Creek 0 Boulder 99120801818 0.092 

Bowles Creek 0001 1401810 2.345 2.314 McKnight Creek 00011201815 1.554 1.393 
Bowles Creek 991 127@ 1550 2.387 McKnight Creek 9912140 1925 2.067 
Bowles Creek 99122801320 2.209 McKnight Creek 9912200 1430 1.371 

McKnight Creek 0 F3 00010601415 
Canada Stream 0 F1 0001060 1035 0.750 0.759 McKnight Creek 0 F4 99122701530 0.893 
Canada Stream 0 F1 00012501655 0.701 
Canada Stream 0 F1 99112701425 0.652 Priscu Stream 991 2090 1256 0.719 1.104 
Canada Stream 0 F1 99120701500 0.881 Priscu Stream (before Bohner) 99122401000 0.981 
Canada Stream 0 F1 99122001915 0.620 Priscu Stream 0 B1 00010201210 1.265 
Canada Stream 0 F1 99122801240 0.949 Priscu Stream 0 81 00010801950 1.850 

Priscu Stream 0 B1 0001 1 7 0  1355 0.707 
Delta Stream 0 F10 00010701720 2.418 2.279 
Delta Stream 0 F10 00012301005 2.141 Red River (Blood Falls) 0001 1802120 6.807 6.807 

Green Creek 0 F9 0001070 1455 0.633 0.892 Santa Fe Stream 0 82 00010901630 0.547 0.530 
Green Creek 0 F9 0001 1501405 0.751 Santa Fe Stream 0 82 0001 1801905 0.634 
Green Creek 0 F9 00012201350 0.944 Santa Fe Stream 0 82 99120901112 0.322 
Green Creek 0 F9 9912070 1625 1.325 Santa Fe Stream 0 82 991231 01225 0.727 
Green Creek 0 F9 99122700935 0.449 Santa Fe Stream 0 Flume (82) 991201 01535 0.421 
Green Creek 0 F9 9912280 1125 0.583 
Green Creek 0 mouth 00010701455 0.732 Sharp Creek 0001 1802055 1.822 1.781 
Green Creek 0 mouth 00012201310 1.257 Sharp Creek (50ft from inflow) 99122301625 1.739 
Green Creek 0 mouth 9912070 1555 1.71 4 
Green Creek 0 mouth 991221 01200 0.527 Vincent Creek 0001080 1900 2.030 2.006 

Vincent Creek 0001 1 8 0  1245 1.982 

House Stream 0 H2 00010301300 0.078 0.1 18 Von Guerard Stream 0 front 0001 1501255 3.301 3.301 
House Stream 0 H2 0001 1001220 0.078 
House Stream 0 H2 0001230 1440 0.156 Wharton Creek 00010301220 0.134 0.237 
House Stream 0 H2 9912080 1720 0.086 Wharton Creek 0001230 1425 0.309 
House Stream 0 H2 99121 101405 0.192 Wharton Creek 99121 1 0 1400 0.273 
House Stream 0 H2 99122501215 0.115 Wharton Creek 9912250 1245 0.233 



APPENDIX B 

Stream Si Concentration 2000-200 1 



Sample 

Aiken Creek (Upper) 00121 9 0  1860 
Aiken Creek (Upper) 0012260 1900 
Aiken Creek (Upper) 01010402000 
Aiken Creek 00121901930 
Aiken Creek 001 2260 1930 

Andersen Creek 0012090 1400 
Andersen Creek 010101 02146 
Andersen Creek 01 01 070 1900 
Andersen Creek 01 01 140 1500 
Andersen Creek @HI 0012020 1950 
Andersen Creek @HI 00121601530 

Bartlette Creek 001 1300 1940 
Bartlette Creek 0012220 1326 

Bohner Stream 00122201210 
Bohner Stream 010129 

Bowles Creek 0101 1601615 

Canada Stream 0012040 1620 
Canada Stream 0012050 1445 
Canada Stream 00121 0 0  1440 
Canada Stream 001 21 9 0  1824 
Canada Stream 0012270 1505 
Canada Stream 0101 1401410 
Canada Stream 0101 0401435 
Canada Stream 0101 1801450 
Canada Stream 0101240 1450 

Delta Stream 001 223@ 131 0 
Delta Stream 0012270 1150 

Green Creek 001 205 0 1553 
Green Creek 0012100 1 1  35 
Green Creek 00121901720 
Green Creek 00122701315 
Green Creek 0101 1001420 
Green Creek 001204@ 1720 
Green Creek 01 01040 1340 
Green Creek 0101 140 1300 
Green Creek 010116 
Green Creek 0101240 1330 
Green Creek 0 F9 00120201130 

House Stream 001 2030 1330 
House Stream 00121701135 
House Stream 010101 01655 
House Stream 0101070 1640 
House Stream 0101200 1640 

Lawson Creek 001 1290 1730 
Lawson Creek 001 1300 1615 
Lawson Creek 00120701250 
Lawson Creek 001221 0 1450 
Lawson Creek 001 2290 1735 
Lawson Creek 0101060 1250 
Lawson Creek 0101 1201700 
Lawson Creek 0101 19021 10 
Lawson Creek 01012901315 

Si mg/L Average mg/L Sample Si mg/L Average mg/L 

Lost Seal Stream 0012100 171 5 0.895 1.081 
Lost Seal Stream 0012190 1944 1.024 
Lost Seal Stream 0012270 1320 1.061 
Lost Seal Stream 0101 1501850 1.352 
Lost Seal Stream 0101230 1400 1.071 

Lyons Creek 001 13001650 0.152 0.728 
Lyons Creek 001221 0171 1 0.238 
Lyons Creek 00122901450 0.275 
Lyons Creek 01010601215 0.490 
Lyons Creek 0101 1201500 1.1 1 1  
Lyons Creek 0 64 001 2070 1549 0.300 
Lyons Creek Above Trib. 01012601045 0.369 
Lyons Creek Tributary 0101 12@1520 1.700 
Lyons Creek Tributary 01012601045 1.91 4 

Mariah Creek 0012100 1230 1.51 5 1.989 
Mariah Creek 001 21 9 0  1750 2.283 
Mariah Creek 00122701400 1.951 
Mariah Creek 0101040 1355 2.207 

McKay Creek 00120301415 0.139 0.127 
McKay Creek 0012090 1245 0.1 15 
McKay Creek 0012170 1230 0.127 
McKay Creek 010101 0 1655 0.096 
McKay Creek 01 010701700 0.158 
McKay Creek 01 01 200 1700 0.125 

McKnight Creek 0012190 1944 1.687 1.687 

Priscu Stream 0012090 1517 1.061 0.870 
Priscu Stream 001 2200 1840 0.668 
Priscu Stream 0012220 1230 0.858 
Priscu Stream 0012290 1420 0.619 
Priscu Stream 01010601105 1.276 
Priscu Stream 01012901540 0.742 

Red River 001 222 0 1245 
Red River 01 010601340 
Red River 01011201700 
Blood Falls 001 1290 1730 
Blood Falls 001 1300 1630 
Blood Falls 001 2070 1525 
Blood Falls 0012290 1715 
Blood Falls 01012901245 

Santa Fe Creek 001 12201630 
Santa Fe Creek 001 1290 1730 
Santa Fe Creek 001 13001730 
Santa Fe Creek 00120701415 
Santa Fe Creek 001221 01315 
Santa Fe Creek 00122201235 
Santa Fe Creek 0012290 1630 
Santa Fe Creek 01010601403 
Santa Fe Creek 0101 1201655 
Santa Fe Creek 0101 1901945 
Santa Fe Creek 01012901225 

Sharp Creek 001 2070 1505 1 .854 1.763 
Sharp Creek 001221 01350 1.671 



Sample Si mg/L Average mg/L 

Upper VonGuerard Stream 00121901405 1.549 1.644 
Upper VonGuerard Stream 00122301555 1.495 
Upper VonGuerard Stream 00122601730 1.750 
Upper VonGuerard Stream 01 01 18 0 1945 1.580 
Upper VonGuerard Stream 01012502203 1 .a48 

Vincent Creek 001 22263 1335 2.134 2.134 

Wharton Creek 001203@1415 0.174 0.186 
Wharton Creek 001 209 @ 1300 0.155 
Wharton Creek 00121701245 0.155 
Wharton Creek 010101 01730 0.174 
Wharton Creek 01012001710 0.271 



APPENDIX C 

Lake Si Profiles and Layer Calculations 



Sample 

Fryxell Early 99-00 
5 FRX 991030 
6 FRX 991030 
7 FRX 991030 
8 FRX 991030 
9 FRX 991030 
10 FRX 991030 
1 1  FRX 991030 
12 FRX 991030 
15 FRX 991030 
18 FRX 991030 

Fryxell Late 99-00 
5 FRX 991223 
6 FRX 991223 
7 FRX 991223 
8 FRX 991223 
9 FRX 991223 
10 FRX 991223 
1 1  FRX 991223 
12 FRX 991223 
15 FRX 991223 
18 FRX 991223 

Hoare Early 99-00 
4.5 HOR 991 117 
5 HOR 991 117 
6 HOR 991117 
8 HOR 991 117 
10 HOR 991117 
12 HOR 991117 
14 HOR 991117 
16 HOR 991117 
18 HOR 991117 
20 HOR 991117 

Hoare Late 99-00 
4.5 HOR 000104 
5 HOR 000104 
6 HOR 000104 
8 HOR 000104 
10 HOR 000104 
12 HOR 000104 
14 HOR 000104 
16 HOR 000104 
18 HOR 000104 
20 HOR 000104 

Sample Si Conc. 
Depth (m) (mglL) 

surface 0.000 
5 4.413 
6 4.968 
7 5.307 
8 6.139 
9 6.664 
10 9.007 
1 1  12.029 
12 13.201 
15 16.038 
18 15.883 

surface 0.000 
5 5.125 
6 5.632 
7 6.200 
8 6.435 
9 7.325 
10 9.461 
1 I 10.918 
12 11.600 
15 15.474 
18 16.032 

surface 0.000 
4.5 1.772 
5 2.174 
6 3.965 
8 4.172 
10 4.598 
12 4.866 
14 5.585 
16 6.267 
18 6.499 
20 6.450 

surface 0.000 
4.5 0.218 
5 0.403 
6 2.628 
8 3.333 
10 4.334 
12 4.841 
14 5.755 
16 6.398 
18 6.571 
20 6.522 

Volume of 
layer (L) 

27206424773 
3757085904 
3336304361 
3079504478 
2807622823 
2527909407 
2229542993 
1841155469 
282323081 5 
2567481 61 2 
1230705251 

Si within 
layer (kg) 

0 
16578 
16574 
16342 
17237 
16845 
20082 
22147 
37269 
41176 
19548 

0 
19254 
18789 
19094 
18067 
18517 
21 093 
20101 
32748 
39730 
19731 

0 
1393 
3233 
8064 
10106 
9730 
8936 
8869 
8317 
6894 
12784 

0 
171 
599 
5345 
8073 
91 70 
8889 
9140 
8490 
6970 
12926 

Si below 
layer (kg) 



Sample 
Depth ( rn)  

Si Conc. 

(mglL) 

Volume of 
layer (L) 

Si within 
layer (kg) 

Si below 
layer (kg) Sample 

E. Bonney Early 99-00 
4.5 EBON 991106 
5 EBON 991 106 
6 EBON 991106 
8 EBON 991106 
10 EBON 991106 
12 EBON 991106 
13 EBON 991106 
15 EBON 991 106 
18 EBON 991106 
20 EBON 991 106 
22 EBON 991 106 
25 EBON 991106 
30 EBON 991 106 
35 EBON 991 106 
37 EBON 991 106 

surface 
4.5 

5 
6 
8 

1 0  
12  
1 3  
1 5  
1 8  
2 0 
2 2 
2 5 
3 0 
3 5 
3 7 

E. Bonney Late 99-00 
4.5 EBON 991228 
5 EBON 991228 
6 EBON 991228 
8 EBON 991228 
10 EBON 991228 
12 EBON 991228 
13 EBON 991228 
15 EBON 991228 
18 EBON 991228 
20 EBON 991228 
22 EBON 991228 
25 EBON 991228 
30 EBON 991228 
35 EBON 991228 
37 EBON 991228 

surface 
4.5 

5 
6 
8 

1 0  
1 2  
1 3  
1 5  
1 8  
2 0 
2 2  
2 5 
3 0 
3 5  
3 7 

W. Bonney Early 99-00 
4.5 WBON 991 11 1 
5 WBON 991111 
6 WBON 991111 
8 WBON 991111 
10 WBON 991111 
12 WBON 991111 
13 WBON 991111 
14 WBON 991111 
15 WBON 991111 
17 WBON 991111 
20 WBON 991 111 
22 WBON 991 11 1 
25 WBON 991 11 1 
30 WBON 991 11 1 
35 WBON 991 11 1 
38 WBON 991 11 1 

surface 
4.5 

5 
6 
8 

1 0  
12  
1 3  
1 4  
1 5  
1 7  
2 0 
2 2  
2 5 
3 0 
3 5 
3 8  

W. Bonney Late 99-00 
4.5 WBON 991230 
5 WBON 991230 
6 WBON 991230 
8 WBON 991230 
10 WBON 991230 
12 WBON 991230 
13 WBON 991230 
14 WBON 991230 
15 WBON 991230 
17 WBON 991230 
20 WBON 991230 
22 WBON 991230 
25 WBON 991230 
30 WBON 991230 
35 WBON 991230 
38 WBON 991230 

surface 
4.5 

5 
6 
8 

1 0  
12  
1 3  
14  
1 5  
1 7  
2 0 
22  
2 5 
3 0 
3 5 
3 8 



Sample 

Hoare Early 00-01 
HOR 5m 001 11 1 
HOR 6m 001 11 1 
HOR 8m 001 11 1 
HOR 10m 001111 
HOR 12m 001 11 1 
HOR 14m 001111 
HOR 16m 001111 
HOR 18m 001111 
HOR 20m 001 11 1 
HOR 22m 001 11 1 
HOR 24.5m 001 11 1 

Hoare Late 00-01 
HOR 5m 010103 
HOR 6m 010103 
HOR 8m 010103 
HOR 10m 010103 
HOR 12m 010103 
HOR 14m 010103 
HOR 16m 010103 
HOR 18m 010103 
HOR 20m 010103 
HOR 22m 010103 
HOR 25m 010103 

Hoare Early 01-02 
HOR 5m 011102 
HOR 6m 011102 
HOR 8m 01 1102 
HOR 10m 011102 
HOR 12m 011102 
HOR 14m 01 1102 
HOR 16m 011102 
HOR 18m 011102 
HOR 20m 01 11 02 
HOR 22m 01 1102 
HOR 23.3111 01 11 02 

Hoare Late 01-02 
HOR 5m 01 1222 
HOR 6m 01 1222 
HOR 8m 01 1222 
HOR 10m 01 1222 
HOR 12m 011222 
HOR 14m 011222 
HOR 16m 01 1222 
HOR 18m 01 1222 
HOR 20m 01 1222 
HOR 22m 01 1222 
HOR 23m 01 1222 

Sample 
Depth (m) 

surface 
5 
6 
8 

10 
12 
14  
16  
18 
2 0 
22 

24.5 

surface 
5 
6 
8 

10 
12 
14  
16  
18  
2 0 
22 
25 

surface 
5 
6 
8 

10  
12  
14  
16  
18  
2 0 
2 2 

23.3 

surface 
5 
6 
8 

10 
12  
1 4  
16  
18  
2 0 
22 
2 3 

Si Conc. 

(mglL) 

0.000 
2.896 
3.764 
4.608 
4.546 
4.980 
5.426 
5.922 
6.492 
6.567 
6.405 
6.753 

0.000 
0.280 
2.661 
4.012 
4.1 74 
4.918 
5.785 
6.467 
6.678 
6.529 
6.529 
6.616 

0.000 
4.855 
4.917 
4.843 
4.880 
4.868 
5.755 
6.285 
6.507 
6.409 
6.409 
6.372 

0.000 
0.319 
2.501 
4.202 
4.745 
5.028 
5.854 
5.829 
6.458 
6.421 
6.372 
6.520 

Volume of 
layer (L) 

Si within 
layer (kg) 

0 
4309 
7657 

11162 
9618 
9144 
8617 
7858 
6887 
5620 
4338 
3996 

0 
417 

54 12 
9720 
8831 
9031 
9188 
8582 
7084 
5588 
5297 
3395 

0 
7223 

10001 
11 732 
10326 
8939 
9140 
8341 
6903 
5484 
3385 
3228 

0 
475 

5087 
10179 
10039 
9234 
9296 
7736 
6850 
5495 
3365 
3303 

Si below 
layer (kg) 

79205 
74896 
67240 
56078 
46460 
3731 5 
28699 
20840 
13954 
8334 
3996 

0 

72544 
72127 
6671 5 
56995 
48164 
391 34 
29946 
21 364 
14280 
8692 
3395 

0 

84702 
77479 
67478 
55746 
45420 
36481 
27341 
19000 
12098 
6613 
3228 

0 

71  060 
70585 
65498 
5531 9 
45279 
36046 
26750 
19014 
12164 
6669 
3303 

0 



APPENDIX D 

Percentage of Si Uptake by Diatoms 



Sample 
Sample average PPR 

Depth (m) (,ug Cll'd) 
Volume of Si within 

layer (L) layer (kg) 
Carbon 
(kg) 

Si 10% due to 
(kg) Diatoms 

% Si used 
in layer 

Fryxell Early 99-00 
5 FRX 991030 
6 FRX 991030 
7 FRX 991030 
8 FRX 991030 
9 FRX 991030 
10 FRX 991030 
11 FRX 991030 
12 FAX 991030 

Hoare Early 00-01 
HOR 5m 001 11 1 
HOR 6m 001 11 1 
HOR 8m 001111 
HOR 10m 001 111 
HOR 12m 001111 
HOR 14m 001 111 
HOR 16m 001111 
HOR 18m 001111 
HOR 20m 001 11 1 
HOR 22m 001 11 1 

E. Bonney Early 99-00 
4.5 EBON 991 106 
5 EBON 991 106 
6 EBON 991 106 
8 EBON 991 106 
10 EBON 991 106 
12 EBON 991106 
13 EBON 991 106 
15 EBON 991106 
18 EBON 991 106 
20 EBON 991 106 
22 EBON 991106 

W. Bonney Early 99-00 
4.5 WBON 991 11 1 
5 WBON 991111 
6 WBON 991111 
8 WBON 991111 
10 WBON 991111 
12 WBON 991111 
13 WBON 991111 
14 WBON 991111 
15 WBON 991111 
17 WBON 991111 
20 WBON 991111 


