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Introduction
Removal of nitrogen from water is one of the services 

that wetlands provide. Denitrification is a the major process 
by which nitrogen is removed from water in wetlands; N2 
and N2O are the final products from this process.  Formation 
and release of N2O into the atmosphere is a concern because 
of its contribution to the greenhouse effect and the ozone 
depleting effect (Johansson et al., 2003). On the other hand, 
N2 is a desirable end product of denitrification because it 
is not harmful to the atmosphere, and the nitrogen cycle 
is completed.  Riparian wetlands are exposed to seasonal 
flood pulses that cause changes in the physical and chemical 
environment of the soil, influencing microbial processes 
involved in the nitrogen cycle.  When a flood pulse 
occurs, the total wetland area increases, causing changes 
in oxidizing and reducing conditions along the edges and 
terrestrial-wetland transitional zones. How flood pulses 
affect nitrogen gas fluxes dynamics  in created  wetlands 
is not well understood. 

The aim of this study was to investigate the influence of 
hydrology and vegetation on gaseous nitrogen fluxes in two 
created experimental wetlands in the Midwestern USA. 

Material and methods

Site Description
The study was carried out in two kidney-shaped 1-ha 

experimental wetlands, which were constructed in 1993 at 
the Olentangy River Wetlands Research Park at the Wilma 
H. Schiermeier Wetland Complex, in Columbus Ohio, USA. 
Seasonal hydrologic pulses were simulated by pumping 
river water at a high rate (1892-3785 L min-1) during the 
first week of each month, while in the remaining three 
weeks the wetlands received a low flow (378-757 L min-1). 
The pulse schedule operated from January through June, 
2003 and 2004, and from July to December the wetlands 
received a steady rate of flow.  An extraordinary simulated 
flood pulse was performed in August 2003. Natural flooding 
from the Olentangy River occurred on August 30, 2003 and 
June 13, 2004.

Gas Flux Measurements
N2O fluxes were measured using a closed chamber 

technique (Smith et al., 1983). Nine plots in each wetland 
were sampled. The plots were distributed in transects along 

the two experimental wetlands (near the inflow, middle 
and outflow). Each transect contained plots at different 
elevations, including the edge and high marsh zones, which 
experienced alternating wet and dry conditions, and the 
low marsh zone which was continuously flooded (Figure 
1). In each plot, a Plexiglas chamber (24.5 cm x 24.5 cm 
x 70 cm) was placed 10 cm into the soil. Gas fluxes were 
measured from June 2003 to December 2004.  Samples 
were taken weekly, three times a month during pulsing 
months, and once per month when no pulses were performed. 
Chambers were sealed for 2 hours. Gas samples and internal 
chamber temperatures were collected or measured before 
the chambers were closed, and every 30 minutes after they 
had been closed.

To investigate the effect of vegetation on nitrous oxide 
fluxes, a different type of chamber was used (Altor and 
Mitsch, 2004).  Circular HDPE bases (0.27 m2) with PVC 
frames were placed permanently in the edge zones.  When 
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Figure 1.  Map of sampling plots (grid 10 x 10 m). Dark 
areas indicate the open water zones. Gray areas indicate 
emergent vegetation zones.  Areas outside these sections 
are Transitional/Upland Zones.
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vegetation was included, frames were approximately 1.5m 
tall and where emergent vegetation was continuously 
removed, frames were approximately 0.5 m tall. During gas 
flux measurements, a 4-mil plastic bag with pressure vent 
was placed on the frame and attached to the base with two 
3-cm wide elastic bands.  Chambers were closed for 1 hr 
and gas samples were withdrawn as described above every 
20 minutes during the hour.  Internal air temperature, water 
table level and soil temperatures were also registered.  The 
effect of vegetation on nitrous oxide fluxes was evaluated 
from May to September 2004.

Denitrification (N2 + N2O production) was measured in 
the field using the acetylene blockage technique (Ryden 
and Dawson, 1982).  A PVC pipe (4 cm diameter x 75 cm 
high) with a water seal was placed 10 cm into the soil next 
to the Plexiglas chambers described above.  Acetylene was 
injected 10 cm into the soil using a perforated 4mm PVC 
pipe to obtain a final concentration of 10% v/v.  Thirty 
minutes after acetylene injection, the PVC pipes were 
sealed and gas samples were taken every 10 minutes over 
a 30 minute period.

Analytical Methods
Nitrous oxide was analyzed using a gas chromatograph 

(Shimadzu GC-14-A) fitted with a 2 ml sampling loop, two 
Porapak-Q 1.8 m columns and an electron capture Ni-63 
detector. Nitrous oxide fluxes were calculated using the 
closed chamber flux equation (Holland et al., 1999).

Statistical Analysis
All statistical analysis were performed with SPSS 

software. The data were not normally distributed, therefore 
they were analyzed using nonparametric techniques. The 
Mann-Whitney-U test was used to examine differences 
in seasonal and spatial nitrous oxide fluxes. The Kruskal 
Wallis test was used to evaluate the effect of vegetation 
on N2O fluxes. A 5% significance level was used to assess 
differences among treatments.

Results and Discussion

Seasonal Fluxes
During summer 2004, nitrous oxide fluxes in high marsh 

plots (40.3 ± 15.0 µg N m-2 h-1) were significantly greater 
than fluxes obtained in these plots during the rest of the 
year (p<0.05).  In low marsh and edge plots, N2O emissions 
fluctuated between 3-10 µg N m-2 h-1 and did not vary 
significantly among the different seasons (Figure 2). 

Spatial Patterns
Low marsh plots that were regularly flooded showed 

significantly lower average nitrous oxide fluxes than high 
marsh plots, which were affected by the flood pulses (3.82 
± 0.78 vs. 14.46 ± 8.65 µg N m-2 h-1 respectively, p = 0.027). 
However, fluxes from marsh plots were not significantly 

lower than the fluxes from edge plots that were rarely flooded 
(5.96 ± 1.14 µg N m-2 h-1, p = 0.10) (Table 1). 

Short Term Effect of Flood Pulses on Gas 
Emissions

Low marsh plots that had continuous standing water 
had low rates of nitrous oxide fluxes regardless of the flood 
pulse condition (Figure 3).  Nitrous oxide fluxes from high 
marsh plots were not significantly different before and 
during flood pulses (2.4± 6.5 and 6.9± 2.2 µg N m-2 h-1, p 
= 0.148) when the water level averaged –22 ± 3.0 and + 
16 ± 1.5 cm respectively, but they increased significantly 
to 25.9 ± 13.8 µg N m-2 h-1 after the flood pulses, when the 
water table dropped to –9.2 ± 3.3 cm (p=0.021).  In edge 
plots where surface flooding was infrequent but groundwater 
levels fluctuated, nitrous oxide emissions were significantly 
lower (p= 0.018) before the pulse (4.1 ± 1.8 µg N m-2 h-1) 
but increased significantly during (p=0.013) and after (p= 
0.07) the pulse (11.3 ± 3.1 and 7.25 ± 3.3 µg N m-2 h-1).

In our high marsh plots, the spike in nitrous oxide 
fluxes observed after flood pulses might be explained by a 
combined effect of a shallow water table and availability 
of inorganic nitrogen and organic carbon.  When floods 
occurred, anoxic conditions favored denitrification (N2 
+ N2O) in these wetland zones (Hernandez and Mitsch, 
in revision) and this could explain the slight increase in 

Table 1. Nitrous oxide emissions from plots at different 
elevations in created marshes receiving hydrological 
pulses.  Values are means, and bars represent standard 
error.  

Figure 2.  Seasonal nitrous oxide emissions from plots 
at different elevations in created marshes receiving 
hydrological pulses.  Values are means and bars 
represent standard error.  

Plot N2O Fluxes (μg N m-2 h-1)

Low marsh 3.82 ± 0.68

High marsh 14.46 ± 8.63

Edge 5.96 ± 1.14
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fluxes during the pulse.  One week after the flood pulses, 
the water table was very low, but still maintaining anoxic 
conditions for denitrification and N2O production.  Because 
no standing water was present, there was no restriction of 
N2O diffusion to the atmosphere, causing an increase in the 
fluxes.  Likewise, the fact that the plots were exposed to air 
might have caused suboptimal conditions for denitrification.  
Under suboptimal conditions for denitrification, N2O is the 
predominant end product (Yoshinari, 1990).  In forested 
riparian zones of the Netherlands, Hefting et al. (2003) 
found that N2O fluxes were higher in zones with a shallow 
water table compared to zones with deeper water levels.  
In our edge zones, nitrous oxide fluxes were affected by 
hydrology in a different way than in the high marsh plots.  
This might be due to the complex mechanisms controlling 
N2O emission; the gas is produced as both an intermediate 
product of denitrification and as a byproduct of nitrification 
(Yoshinari, 1990; Stevens et al., 1998; Muller et al., 1997).  
Since edge plots were exposed to air most of the time, 
aerobic conditions could have favored the establishment 
of a population of aerobic nitrifying bacteria; therefore, 
nitrous oxide produced when plots were exposed to air 
could be the byproduct of the nitrification of ammonium 
released during mineralization.  Before flood pulses, fluxes 
from these plots were very low and the water table was not 
close to the surface.  When floods occurred, denitrification 

and N2O production were stimulated and diffusion of N2O 
to the atmosphere was not restricted since flooding was very 
shallow.  After flood pulses the water table dropped quickly, 
decreasing anoxic conditions for denitrification; therefore 
fewer fluxes were observed.

Effect of Vegetation on Gas Fluxes
When wetland soils were exposed to air, the average 

nitrous oxide flux in plots with vegetation was 17.6 ± 15.8 
µg N m-2 h-1, and in plots without vegetation flux rates 
were 11.6 ± 1.5 µg N m-2 h-1 (Table 2). When plots were 
flooded, nitrous oxide fluxes were significantly higher 
where vegetation was present (39.6 ± 13.70 µg N m-2 h-1) 
compared to areas without vegetation (–3.57 ± 13.17 µg N 
m-2 h-1, p = 0.03)  In contrast, when no surface water was 
present, the presence of vegetation did not affect nitrous 
oxide fluxes (p = 0.312). 

Gas emissions through both wetland and upland plants 
have been previously described (Mosier et al.,1990; Chang 
et al., 1998).  In wetlands plants, the arenchyma system is 
involved in gas exchange with the atmosphere (Mitsch and 
Gosselink, 2000), and in upland plants gases are released to 
the atmosphere via plant transpiration (Chang et al., 1998).  
We found that N2O fluxes were higher in plots with plants 
than in plots without plants when they were inundated, but 
that plants did not have a measurable effect on nitrous oxide 

Condition Flooded Exposed to air

With plants 39.64 ± 13.70 17.59 ± 15.80 *

Without plants -3.58 ± 13.17 11.68 ± 1.46

Table 2. The effect of emergent vegetation on nitrous 
oxide fluxes from created marshes, under different 
hydrologic conditions. Values are mean flux rates (µg N 
m-2 h-1), ± standard error. Asterick indicates a significant 
difference at alpha =0.05.
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Figure 3. Short term effect of flood pulses on A: water 
level, and B: nitrous oxide fluxes in plots.  Values are 
means and bars represent standard error 
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fluxes when soils were exposed to air.  This may be due to the 
fact that under flooded conditions the arechymatous system 
is more actively transporting oxygen from shoots to roots, 
and thus transporting gases in the soil more quickly to the 
atmosphere than under exposed conditions.  Similar patterns 
have been described for N2O fluxes from rice paddies (Yan 
et al., 2000).  When the soil was flooded, emissions were 
predominantly made through the rice plants, while in the 
absence of flood water; N2O was emitted mainly from the 
soil surface.  Ulrike et al. (2004) found that N2O emissions 
from degraded fen soils planted with Phragmites were two 
times higher than emissions from unplanted soils, but that 
Phalaris arundinacea did not affect N2O emissions.

Denitrification
Average denitrification rates were significantly higher  

in low marsh plots (793 ± 156 µg N m-2 h-1) compared to 
high marsh and edge plots (468 ± 74.15 and 379 ± 101 µg 
N m-2 h-1), but no significant differences were observed 
in denitrification rates betwen high marsh and edge plots 
(Figure 4).  This was due to the continuously flooded 
conditions that occurred in low marsh zones, which created 
prolonged anoxia that facilitated the total reduction of 
nitrates to dinitrogen.

Conclusions 
N2O emissions from created marshes were influenced by 

soil temperature, hydrologic conditions and the presence of 
emergent vegetation.  Plots that were regularly inundated 
showed the lowest nitrous oxide fluxes when vegetation 
was not present.  Flood pulses resulted in an increase in 
nitrous oxide fluxes from plots in the high marsh and edge 
zones of the wetlands.  Vegetation facilitated nitrous oxide 
emmisions from wetland soils only when soils were flooded. 
Total denitrification was higher in marsh plots which were 
regularly inundated.
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