
ON THE COMMUTATIVITY OF THE BOUNDARY AND INTERIOR
OPERATORS IN A TOPOLOGICAL SPACE.—N. Levine [2] discovered that,
in a topological space, the interior and closure operators will commute if and only
if the set on which they operate is the symmetric difference of a set that is both
open and closed and a set that is nowhere dense. The intent of this paper is to
characterize those sets for which the interior and boundary operators will commute.

The following notation will be used:
cA—closure of A
CA—complement of A

Int A—interior of A
BA—boundary of A

AvB—symmetric difference of A and B
Lemma 1: <[X,T|- is a topological space and A and E subsets of X, then

Int (AH E) = IntAHIntE.
Lemma 2: If <{X,T̂  is a topological space, A and E are subsets of X, and A

is open and E is dense, then c(AHE) =cAP\cE = cA. This is an exercise on p. 57
in Kelley'sbook (1955).

Lemma 3: If <{X,T|> is a topological space and A is a subset of X, then
IntBAnBIntA = 0.

Proof: IntBAHBIntA = Int(cAr\cCA)r\cIntAr\cCIntA = IntcAnintcCAH
clntAHcCIntA = IntcAnCcIntAncIntAHcCIntA = 0.

Lemma 4: If <|X,T} is a topological space and A is a subset of X, then
IntBA = BIntA if and only if IntcA = cIntA = IntA.

Proof: Necessity. Suppose IntBA = BIntA. Then these sets must both be
empty in order to be equal since by lemma 2 they have nothing in common. Thus

(1) IntBA = IntcAnCcIntA = 0 and
(2) BIntA = cIntAncCA = 0
Equations 1 and 2 imply IntcACcIntA and clntAC CcCA = IntA respectively.

Since IntAC IntcA, it follows that IntA = IntcA = cIntA.
Sufficiency. Suppose IntcA = dntA = IntA. This implies that BIntA = 0 and

IntBA = 0, and thus the two sets are equal.
Theorem: If \ X,T \ is a topological space and A is a subset of X, then IntBA =

BIntA if and only if A = EUP, where E is open and closed, P is nowhere dense,
00

Proof: Using lemma 4, the proof reduces to showing that IntcA = clntA = IntA
if and only if A = EUP, where E is open and closed, P is nowhere dense, and

00
Necessity. Suppose IntcA = cIntA = IntA. By Levine's theorem (Levine,

1961), it follows that if IntcA = cIntA, then A = EvP where E is open and closed
and P is nowhere dense. Thus it is left to establish what further conditions the
second equality places on E and P. In Levine's proof, E=cIntA. Thus E =
IntA(i.e. E = Int(EvP) ). Int(EvP) = CcC[ (EnCP)U(CEHP) ] = Cc[ (CEH
CP)U(PHE) ] = C[c(CEnCP)Uc(PnE) ]. By lemma 2 and the fact that CP
is dense it follows that C[c(CEnCP)Uc(PP\E) ] = CcCEnCc(PnE) =EHCc-
(PHE). Therefore, E = EnCc(PHE) which implies PHE = 0.

Sufficiency. Suppose A = E^jP, E is open and closed, P is nowhere dense, and
EHP = 0. By Levine's theorem, cIntA = IntcA. IntA = Int(EUP) = Cc(CEH
CP) = CcCE = E. Thus IntA is closed and it follows that ClntA = IntcA = IntA.—
DAVID H. STALEY, Ohio Wesleyan University, Delaware, Ohio.
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