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STRUCTURE OF LIQUIDS AND SOLUTIONS
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As we focus our attention on the liquid state and on solutions, I shall make a
few comments on the relation of the liquid state to the gaseous and solid states of
matter. The space in a system constituting a gas is sparsely occupied. Owing
to their thermal energy, the molecules of a gas are in continual motion and collide
occasionally with one another and with the walls of their container but rebound
without loss of energy to the system. Because of the near-independence of the
particles of a gas, a gas can expand to an unlimited volume. Thus, the distinctive
feature of the gaseous state is that its particles (atoms or molecules) are sub-
stantially independent of each other except for occasional collisions.

A primary property of a liquid is that it occupies a certain amount of space;
it has a definite density at a given temperature and pressure. The particles of a
liquid are close enough to be in contact with one another. In contrast to the gas,
the attraction of one molecule to its immediate neighbor is high and, when a liquid
is poured, it maintains a constant volume. Furthermore, the molecules in a
liquid do not have particular partners as they do in solids, and this irregularity
allows a greater degree of tolerance in molecular arrangement. Thus, the liquid
state is characterized by its irregularity or indefiniteness in molecular arrangement.

If one could use an experimental technique which would be on an observational
time-scale small enough, the measured properties of a liquid would likely match
those of a solid. One experimental observation which supports this prediction is
that ultrasonic waves of a sufficiently high frequency can set up shear waves in
liquids as they do in solids. Also, it has been shown by neutron beam diffraction
that a molecule in a liquid has time to vibrate 10 to 100 times before the structure
changes. In this short time-scale the structure of the liquid is physically but not
geometrically like that of a crystal.

If the thermal agitation of a liquid is reduced to a point where it is insufficient
to break the attractive forces between molecules, then at temperatures below this,
bonds between molecules are permanently maintained and collections of molecules
take on a rigidity, thus giving the system a bridgework of bonds. The pattern
of such a framework may be random or ordered; the ordered arrangement is the
one of lesser energy and, therefore, tends to develop. The ordered arrangement is,
of course, the crystalline state. Thus, the dominant feature of the crystalline state,
in contrast to the gaesous and the liquid states, is the bonding forces between its
molecules that give this state its orderly arrangement. Thermal agitation tends
to disturb this order in the solid so that, when the temperature is high enough
and the average thermal energy of a molecule exceeds its bonding energy, the
molecules escape from one another's influence and the solid melts.

Another interesting difference between solids and liquids is that the melting
point of a pure solid, which does not show liquid crystallinity, is sharp; however,
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a liquid cooled through the freezing point with appropriate precautions does not
solidify, nor do its properties change greatly in passing through the temperature
at which it normally freezes. A conclusion one might draw here is that the solid
and liquid are alternative ways of arranging molecules. When a crystal is heated
short of the melting point, the atoms increase their vibration and move farther
apart but do not change partners. On the other hand, a liquid upon being heated
shows a change in identity and number of neighbors about a reference molecule.
Thus, a liquid may be described as a continuous series of phases, each "stable"
at a particular temperature.

From these few remarks about the properties of liquids and solids one might
conclude that a liquid near its freezing point has a structure which is not very
different from that of a solid. At this point there must be about the same number
of molecules surrounding a reference molecule in the liquid state as there are
when the material is in the solid state. In characterizing the three states of
matter, one can say that crystalline solids have regular and coherent structure;
liquids have irregular and coherent structure; and gases have irregular and in-
coherent structure.

In much of the vast literature on the liquid state there has been an effort to
explain the thermal, mechanical, and other properties of liquids. The results of
these studies have brought little success in accounting for the structural character
of the liquid state when one considers, in a relative way, the successes of the molec-
ular theory of gases and of the lattice theory of crystalline solids. This lack of
success evidently lies in the fact that it is extremely difficult to construct a model
of the liquid state which corresponds to its structure and at the same time to have
a model which yields itself to mathematical computation.

A number of theories of liquids have been proposed. These are the kinetic
multiple contact theory of Kirkwood (1935, 1939, 1946) and of Born and Green
(1946); the cell theory of Lennard-Jones and Devonshire (1937, 1938); the cybo-
tactic hypothesis of Stewart (1930); and the hole theories of Frenkel (1946), of
Eyring (1936), Eyring and Hirschfelder (1937), and of Furth and his coworkers
(1939, 1941). The last three theories assume that a large part of the liquid has a
crystalline arrangement, which is in contradiction with the experimental facts
that liquids lack a long-range order.

None of the theories mentioned above have made much use of the experimental
evidence that has accumulated, or is accumulating, on the actual molecular struc-
ture of liquids and solutions. The first papers on the structure of liquids by
x-ray methods are the classical studies of Prins (1935), of Stewart (1930) and of
Morgan and Warren (1938). These early papers have been followed by a number
of others on the structure of liquids, such as, neutron diffraction of liquids
(Thewlis, 1950), structure of solutions (Brady, 1958a, b; Brady and Krause, 1957;
Strauss, 1960; Ritter, personal communication), and the structure of formamide
(Brown and DeSando, unpublished) by the x-ray method and by the microwave
technique (Costain and Dowling, 1960). All data show liquids and solutions pos-
sess short-range order. This short-range order is practically limited to molecules
in the first, second, and third spheres around a given molecule; i.e., beyond two
or three molecular diameters the arrangement in one place in the liquid has no
effect on that in another.

Many attempts have been made to explain the structure of ionic solutions.
Some of the big advances in recent years in our knowledge of these systems come
from classical papers such as those by Debye and Huckel (1923a, b) and by Mayer
(1950). Much of the early evidence relative to the structure of solutions is based
on such measurements as conductance, viscosity, boiling point, and freezing
point. The use of x-rays to study the structure of solutions is relatively new.
Stewart (1939) made some attempt to use x-rays in the study of the structure of
ionic solutions and concluded that the electrostatic field of the ions broke down
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the tetrahedral structure of water. Prins (1935) made some observations on how
the x-ray diffraction patterns of solutions could be correlated with various struc-
tural elements of the solution. He assumed that the x-ray scattering in a solution
was due to (1) the water structure, (2) the water-ion structure and (3) the ions
alone. Bernal and Fowler (1933) concluded the effect of ions in solution was to
either increase or decrease the structural regularity of the solution depending on
whether the ions were solvated or unsolvated. Several workers have carried out
radial distribution functions for a number of solutions including sodium hydroxide,
hydrochloric acid, and phosphoric acid (Finbak and Bastiansen, 1943; Devik et al.,
1944; Bastiansen and Finbak, 1944). Apparently the resolution of the distribu-
tion functions was not good enough for them to attempt to draw any quantitative
results from their data. Brady has studied the structure of lithium chloride
(1958a), potassium chloride (Brady and Krause, 1957), potassium hydroxide
(1958a), and iron(III) chloride (1958b) solutions. Ritter (personal communica-
tion) has studied the structure of barium iodide solutions.

Since my students and I have used x-ray methods in some of our studies, I
shall focus our attention on the knowledge of the structure of liquids and solutions
which can be gained from the experimental and theoretical procedures of x-ray
diffraction. Occasionally, other experimental methods will be mentioned to
supplement the evidence from this method.

This paper is a general review, written for an audience representing different
scientific disciplines, and the details of the theoretical aspects of the x-ray method
have been omitted; only the results of the findings are discussed. The interested
reader may find the theory described in many of the references cited at the end
of this article.

Instrumentation
Let us take a very brief look at the experimental practices of x-ray methods.

Details of the equipment used for x-ray studies may be found in many standard
textbooks and monographs on the subject. It will suffice here to say that there
are two common types of instrumentation available for x-ray diffraction studies.
The simplest and least expensive type is to record the x-ray diffraction pattern on
photographic film, using a powder camera. A more elaborate method is to detect
the diffracted radiation by means of a quantum counter, such as a Geiger or
scintillation counter. The latter instrumentation is the better of the two for the
study of liquids and solutions because one can get better curve fitting and, thus,
better peak resolution in the radial distribution curve.

Diffracting Power of Atoms

When an atom is exposed to electromagnetic radiation, the electrons are
accelerated, and they radiate at the frequency of the incident radiation. At
optical frequencies the superposition of the waves scattered by individual atoms
results in ordinary optical refraction. When x-rays strike an atom they are
diffracted by the cloud of electrons forming the outer part of the atom. A sche-
matic representation of the scattering of x-rays by atoms is given in figure 1.
The diffracting power of an atom is determined by the number of electrons in the
atom. Atoms such as iodine and lead, which have high atomic numbers, are
higher in diffracting power than atoms such as carbon and oxygen, which have
low atomic numbers. Therefore, in studying any material one can expect better
diffraction patterns from large atoms than from small ones. If one is working
with liquids or solutions in which there is short-range order, the choice of a system
with large atoms, or at least some large atoms, will result in a better diffraction
pattern than would be obtained from a system composed of only small atoms.
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Periodic Repetition of Atoms
A pure chemical substance has the fundamental feature that all of its atoms

or molecules are duplicates of all other atoms or molecules in the substance. From
the viewpoint of geometry each atom or molecule is a copy of some arbitrarily
selected reference atom or molecule of the mass. When this reference unit is
repeated systematically, a periodic pattern exists. In nature this periodic repeti-
tion is found in one, two, or three dimensions. A systematic study of repetitive
patterns shows that there are two types of purely one-dimensional patterns, 17
types of purely two-dimensional patterns, and 230 types of purely three-dimensional
patterns.

The crystalline solid with its periodic repetition in three dimensions reveals its
structure very easily through the use of x-ray. The x-rays, whose wavelength is
comparable to the lattice spacing of the atoms in a crystal, will be diffracted under
certain conditions. W. L. Bragg explained the characteristics of the diffracted
beam by a simple model in which he assumed that the x-rays are reflected from
the atoms which are periodically arranged in the crystal. The diffracted beam is
found only in those special situations where the reflections from atoms arranged

FIGURE 1. (Left) Scattering of x-rays by an atom.
FIGURE 2. (Right) Schematic diagram to show reflection and transmission of x-rays by atoms

set in a plane.

in parallel planes interfere constructively. If a train of x-rays whose wave front
is perpendicular to the direction of propagation is scattered by an array of atoms,
the scattered x-rays interfere with each other except when they are in phase, i.e.,
when the difference between the wavelength of the scattered rays by different atoms
is zero or a whole number of wavelengths.

Because of the great penetrating power of x-rays, a single atom cannot reflect
a large fraction of the incident x-rays; many of the rays are transmitted through a
single atom. This statement can be illustrated schematically as shown in figure 2.
As can be seen in this diagram, the distance from the original wave front to an
atom and on to a new wave front is the same for all atomic locations for the atoms
set in a given plane. The directions of the wave fronts are either a continuation
of the beam (transmitted beam) or a reflection of the beam (diffracted beam).
In order to get the resultant reflection, the partial reflection from many atoms,
periodically arranged, must be added. In order for these reflections to be con-
structive, each reflecting layer of atoms must be an integral number of wavelengths
longer than the one immediately above it. This is illustrated in figure 3, where
A'B'C is an integral number of wavelengths longer than ABC and, therefore,
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constructive interference of x-rays results. The difference in the lengths of the
paths followed by these two rays is nX.

So much for the crystalline solid which, by its periodic arrangement ot atoms
gives a series of sharp rings in its diffraction pattern. A diffraction pattern of
sodium chloride crystals is shown in figure 4(A).

FIGURE 3. Illustration of constructive reflections of x-rays from periodic arrangement of
atoms.

FIGURE 4 Diffraction patterns of A, sodium chloride; B, metallic sodium in a propylene
polymer- and C, a 12.4 molal solution of lithium iodide in water. Note the change
in the breadth of the rings (1 and V, 2 and 2') as the particle size decreases.

Xon-Crystalline Materials
There is no sharp dividing line between crystalline and non-crystalline materials.

With decreasing crystallite size, the widths of the lines composing the powder
pattern of a solid increase, and the stronger lines in the pattern assume a diffuse
design characteristic of non-crystalline materials. This kind of pattern is illus-
trated in figure 4(B), where a dispersion of metallic sodium in a propylene polymer
is shown Ring broadening takes place when the crystallite size falls below ap-
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proximately 10 5 cm. This effect is analogous to the imperfect resolution of an
optical grating containing only a few lines. As the particle size of the crystallite
becomes increasingly smaller, the x-ray reflections become increasingly diffuse
until at the limit of 10~7 to 10~8 cm, which is the region of atomic dimensions, a
precise, repetitive pattern ceases to exist. The repetitive order found in liquids
is obviously somewhere between that of the solid and the region of atomic
dimensions.

The x-ray diffraction pattern of a liquid or a solution consists of diffuse halos,
usually no more than two or three in number. This kind of pattern shows that
the molecules of a liquid have short-range order. Beyond two or three molecular
diameters the structure in one part of the liquid has no effect on that in another
part. However, the existence of halos in the x-ray pattern shows that there is
some short-range order in the liquid and solution to give a "smeared-out" ring.
A diffraction pattern of a 12 molal solution of lithium iodide in water is shown in

R IN ANCSTHOMJ

FIGURE 5. Radial distribution curve for mercury. (Reproduced with permission from
Gingrich, N. S. 1943. Revs. Modern Phys. 15: 106).

figure 4(C). The marked difference between this pattern and that of a crystalline
solid is obvious. It can be seen that a crystalline material gives a rich diffraction
pattern with an orderly arrangement of a large number of images in the three
dimensions of reciprocal space. These patterns can be used to obtain accurate
data on the arrangement of atoms. The diffuse patterns from non-crystalline
materials, liquids, and solutions reflect only the statistical approximate "order in
these systems. These patterns can likewise be interpreted to obtain an arrange-
ment of atoms in the structure.

As one studies the diffraction pattern of a non-crystalline material, he finds
that the possibilities of interpretation become more restrictive than in solids.
However, there are two ways that one can proceed to interpret the x-ray diffraction
patterns of liquids and solutions. First, one can postulate particular arrangements
of atoms, the intensity patterns at different angles can be calculated, and these
calculated values compared with the actual diffraction pattern of the specimen.
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Another method, and the one described herein, is to convert the experimental
diffraction pattern by the Fourier Series method into a vector diagram. If there
is only one type of atom present in the species, this diagram will represent the
radial distribution of atoms around any particular atom in the specimen. If
there is more than one type of atom present, all the vectors in the specimen are
superposed in all directions; the vector diagram must be interpreted in terms of
atomic arrangements.

To understand the radial distribution function, let us suppose that we pick a
molecule (considered as a point) at random in the liquid and draw a series of
spheres around it with their volumes regularly increasing. These spheres shall
be drawn so that the volume interval between two neighboring spheres is always
the same. The radial-distribution function is then the average of the number of
atoms or electrons between such neighboring spheres as a function of the radial
distance from the central atom or electron. In other words, the distribution
function is a measure of the average density of the liquid as a function of inter-
molecular distance.

As expected, the function is zero at very small distances since atoms and
molecules occupy a finite space and cannot be closer together than their diameters.
The value of the radial distribution function jumps to a high maximum at the dis-
tance of nearest neighbors to the reference molecule; it falls off and then peaks
again less sharply for the next nearest neighbors; and it peaks still less sharply for
the third nearest neighbors. Eventually the function smears out to a uniform
value. The radial distribution curve of mercury as determined by Gingrich (1943)
is given in figure 5. The curve gives the average distribution of neighboring atoms
(electron density) as a function of the distance from the center of a reference
mercury atom. Also, from the radial distribution curve one gets directly the
concentration of atoms at distances from a given atom and, since the work is
quantitative, the areas under the peaks give directly the number of atoms in that
range of distances.

Structure of Water and Formamide
The x-ray structure of water was first worked out by Morgan and Warren

(1938) and the results of their study are shown in figure 6. The first peak in this
curve, which represents the distance between closest neighbors, is at 2.90 A at a
temperature of 1.5°C and at 3.05 A at a temperature of 83°C. This peak repre-
sents the distance between oxygen atoms o in neighboring water molecules and
compares favorably with the value of 2.76 A in ice. The intermolecular distance
in water is, therefore, slightly greater than in ice and increases with temperature.
The area under the first peak in the radial distribution curve gives a value of
approximately four nearest neighbors. At the temperatures of 1.5°, 13°oand 30°C,
a marked concentration of neighbors at a distance of approximately 4.5 A is clearly
indicated on the distribution curve.

From the value of the distance between the nearest neighbors, the number of
nearest neighbors, and the presence of neighbors at a distance of 4.5 A, the struc-
ture of water can be established. As one sets out to establish the structure of
water, one of the logical structures that might come to mind at first is a close-
packed arrangement of the molecules. In the close-packed arrangement one
would expect to find a number of nearest neighbors approximately equal to twelve
(assume the molecules are essentially spherical). From the experimental data
of Morgan and Warren, it is clear that water does not even approximate a close-
packed liquid. Another line of reasoning one might follow in arriving at the
structure of water is to relate the structure of water to that of ice. Figure 7
gives a diagrammatic representation of the structure of ice. It can be seen from
this diagram that, in ice, each water molecule is surrounded by four neighboring
molecules in tetrachedral arrangement. From the value of the distance between



200 GLENN H. BROWN Vol. 61

closest neighbors, the number of nearest neighbors, and the broad peak at 4.5 A,
all obtained from the radial distribution curve, it is evident that the water struc-
ture approximates that of ice. The disappearance of the peak at 4.5 A as the
temperature rises indicates that the tetrahedral bonding in water becomes less
sharply defined or less prevalent. Therefore, in a brief summary of the work of
Morgan and Warren, one can say that x-ray results show an essentially tetrahedral
structure for water, but that this structure cannot be interpreted uniquely in
terms of a definite number of neighbors at a certain distance. The structure
undoubtedly involves a continual change in neighbors in the tetrahedral unit.
The structure of water has been verified by other workers (Brady and Romanow,
I960; Strauss, I960).

FIGURE 6. Radial distribution curves for water for various temperatures. (Reproduced
with permission from Morgan, J. and B. E. Warren. 1938. T. Chem. Phys.
6: 670).
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The structure of the formamide molecule was worked out by Costain and
Dowling (1960) using microwave spectroscopy. A picture of their structure of
the molecule is given in figure 8. Costain and Dowling concluded that the H2N—C
group forms a shallow pyramid while the N'—CHO group is planar. The dihedral
angle between the H'NC plane and the NCO plane is 7° ±5° and between the
H" NC plane and the NCH plane is 12° ±5°. The C—N distance in the moleclue
is 1.38 A. X-ray methods are not very definitive in unraveling the structure of
formamide. o The radial distribution curve in figure 9 shows a peak at 4.0 A and
one at 4.9 A. The 4.0 A distance is the combination of atomic distances across
the formamide dimer, i.e., carbon-carbon, oxygen-oxygen, nitrogen-nitrogen, etc.

FIGURE 7. Diagrammatic representation of the structure of ice. (Reproduced with per-
mission from Pauling, L. 1960. The Nature of the Chemical Bond. Cornell
University Press. 465 pp.).

distance, while the 4.9 A distance is most likely the distance between dimers.
The peak at approximately 1.5 A indicates the presence of the C—N bond. The
complete analysis of the x-ray structure of formamide will be published elsewhere.

Before leaving the consideration of pure liquids, I should call attention to a
recent proposal by Bernal (1959) on the geometry of liquids. He has proposed
that liquids show fivefold axial symmetry which is quite in contrast with solids
which can have only twofold, threefold, fourfold, or sixfold axial symmetry. An
arrangement of fivefold symmetry in a two-dimensional pattern, representing
Bernal's ideas, is shown in figure 10. Alongside this pattern is one representing
sixfold symmetry which leads to a two-dimensional hexagonal pattern. The
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FIGURE 8. Probable structure for the formamide molecule. Insert shows molecule viewed
along N—C bond with the N—CHO plane perpendicular to the plane of the
drawing. (Reproduced with permission from Costain, C. C. and J. M. Dowling.
1960. J. Chem. Phys. 32: 165).
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FIGURE 9. Radial distribution curve for formamide.
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FIGURE 10. Figure on left represents fivefold symmetry in two dimensions. Figure on right
represents sixfold symmetry in two dimensions. (Reproduced by permission from
Bernal, J. D. 1960. Sci. Am. 203: 130).

FIGURE 11. Diagram representing polyhedral "holes" in liquid structure. From left to
right at the top are: regular tetrahedron, regular octahedron, and three semi-
regular solids with 14, 16, and 12 faces, resp. (Reproduced with permission from
Bernal, J. D. 1960. Sci. Am. 203: 124).
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first of these patterns shows irregularity over an extended area while the second
shows regularity. Bernal concludes that the fivefold axial symmetry which gives
irregularity over an extended volume is the basic structure of liquids.

If one takes a reference point in a liquid that is not a molecule and surrounds
this point with molecules, the positions of these molecules may be thought of as
defining a hole in the shape of a polyhedron (formed if the centers of the atoms are
connected with straight lines). Furthermore, if one considers relatively dense
packing and an ideal structure in which all the molecules are the same distance
apart, mention need be made only of the polyhedra with equal edges, namely,
the tetrahedron, octahedron, and three semiregular figures (see upper portion of
figure 11). If these polyhedra represent the geometry of "holes" in a liquid, then
these polyhedra may be used to build the structure of a liquid. In the middle
and lower portions of figure 11 there are two possible patterns of arrangements.
The arrangements in each case are nested at the left and exploded at the right.
The lower pattern is composed only of tetrahedra and octahedra in the ratio of
two to one and shows regular arrangement which results in a repeating pattern.
The upper pattern is a typical irregular pattern composed of one each of the dif-
ferent polyhedra represented at the top of the figure. This pattern, if extended,
wrould not give a repeating arrangement. Thus, using Bernal's ideas, this sort of
an arrangement results in an example of a possible network of "holes" to form
a liquid structure.

FIGURE 12. Model of the packing of five tetrahedral "holes" sharing a common edge,
pattern shows fivefold symmetry.

This

There are a large number of arrangements of "holes" that might correspond
to the short-range order of a liquid. Assuming the tetrahedra represent "holes"
in the liquid around which molecular spacings take place, another likely arrange-
ment is the packing of the five tetrahedra in such a fashion that they have an edge
in common. This arrangement, shown in figure 12, gives a cross-sectional view
in which are seen five molecules arranged at the apices of the tetrahedra. Such
a pattern shows fivefold axial symmetry and cannot grow indefinitely since it closes
in on itself.

This brief resume of Bernal's geometry of liquids cannot do justice to a very
interesting idea. The interested reader is referred to the original paper (Bernal,
1959).

Structure of Solutions
A number of measured properties of solutions, such as conductance and

viscosity, show abnormal behavior in the concentrated regions. For example,
it has been known for some time that the electrical conductance of most 1:1
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electrolytes in water rises as the concentration of the solute rises, passes through
a maximum, and then decreases. Theoretically one would expect the conductance
to increase as the concentration of solute increases. X-ray structure studies of
solutions show that this decrease in conductance can be attributed to ionic aggre-
gates in the system. Several of these studies will be cited in the paragraphs which
follow.

I shall consider first two different solutions which have been studied in my
research. A detailed report on the complete analysis and interpretation of the
structure of these two solutions, along with others of the same solutes at different
concentrations, will be published elsewhere. The first of these solutions is a 12.4
molal solution of lithium iodide in water. The radial distribution curve for this
system is shown in figure 13. This curve has been corrected for the contribution
of water. The peaks below 2 A are considered to result from spurious effects,
characteristic of Fourier inversion and are, therefore, not significant in the analysis
of the structure. The first important peak is the one at 3.7 A, which represents

0 2 4 o

RADIAL DISTANCE A

FIGURE 13. Radial distribution curve for a 12.4 molal solution of lithium iodide in water.

an iodide ion-water interaction while the peak at 4.95 A represents an iodide ion-
iodide ion interaction. The area under the first peak is 7.9 and under the second
peak it is approximately two. The details by which one arrives at these peak
assignments and areas will be described elsewhere, and for the present considera-
tion it will be sufficient to accept the assignments. With these peak assignments
and the areas under the peaks, one must set out to assign a structure to the system
using any available information at one's disposal. The first logical information
to seek is whether the structure of crystalline lithium iodide trihydrate has been
determined. Fortunately, the structure of the crystal has been worked out by
West (1934), who proposed a hexagonal symmetry. It will be remembered that
from the radial distribution curve is obtained the distance of nearest neighbors,
next nearest neighbors, second nearest neighbors, and, from areas under the peaks,
the number of atoms in that range of distances. If one has this knowledge of the
crystalline structure of lithium iodide trihydrate and uses the data from the
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radial distribution curve, he can construct a model of the ionic aggregate such as
that shown in figure 14. In this structure there is a centrally located lithium ion
surrounded by six molecules of water at a distance of 2.4 A and six iodide ions at a
distance of 4.5 A. The lithium ion, water molecule, and iodide ion are represented
in figure 14 by an increase in the diameter of the circle, respectively. It should
be noted that the lithium ion is not only in the center of a regular octahedron
whose apical positions are occupied by water molecules, but it is also located in
the center of a flattened octahedron formed by iodide ions.

FIGURE 14. Proposed model of the aggregate of lithium and iodide ions and water molecules
in a 12.4 molal solution of lithium iodide. Lithium ion is represented by smallest
circle, water by next smallest, and iodide ion by the largest circle.

10

2 3 4 5O

R A D I A L D I S T A N C E A

FIGURE 15. Radial distribution curve for a 4.02 molal solution of potasssium iodide in
formamide.
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The aggregate shown in figure 14 can be extended in all directions to accomo-
date twenty-one extra molecules of water and additional lithium ions to preserve
electrical neutrality in the "lattice" of the 12.4 molal solution. Therefore, the
structure sketched in figure 14 represents the predominate species in the aqueous
solution of 12.4 molal lithium iodide.

Next, let us consider a solution of potassium iodide in formamide. Formamide
has a large dielectric constant (109 at 20°C) compared to water with a value of
78.5 at 25°C. Because of the large dielectric constant of formamide, one might
expect less association of ions in this solvent than in water. Let us look at the
radial distribution curve for a 4.02 molal solution of potassium iodide in formamide
to see what kind of ion aggregate, if any, exists in such a solution. Figure 15
represents the radial distribution curve of such a solution.

cr

cr

Fe+ 3

cr

cr

FIGURE 16. (Left) Proposed model of the aggregate of potassium and iodide ions in a 4.02 molal
solution of potassium iodide in formamide.

FIGURE 17. (Right) Proposed model of the aggregate of iron (III) and chloride ions in a
concentrated solution of iron(III) chloride.

The two peaks I wish to consider first in this curve are at 3.70 A and 5.25 A.
The first of these distances is a potassium ion—iodide ion interaction and the second
an iodide ion—iodide ion interaction. Using these distances and what one knows
about comparable distances in crystalline potassium iodide, one can construct a
model like that in figure 16. The area under the potassium ion—iodide ion peak
gives a coordination number of 6.7. The model proposed in figure 16 fits the
nearest and next nearest neighbor spacings quite well, i.e., potassium ion—idodide
ion distance and iodide ion—iodide ion distance. The structural unit in this
solution is a Ksle"1 anion and electrical neutrality is obtained by a potassium
cation. A likely location for four of the potassium ions is in four of the faces of
the octahedral structure for the KI6~

5 unit (fig. 16). The peak at 4.4 A represents
a potassium ion—iodide ion distance, with the potassium ion on the negative end
of the formamide dipole and the idodide ion on the positive end of the same dipole.
Details of the interpretation of the structure of the 4.02 molal solution of potas-
sium iodide in formamide and of other solutions of the same salt in formamide will
be published later.
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A few studies of solutions by other research workers will be cited. Brady
(1958a) has interpreted the structure of solutions of lithium chloride (0.11
LiCl:0.89 H2O) in water. He based his structure on a tetrahedrally arranged
sphere of water molecules coordinated to a centrally located lithium ion. He
then postulated that some of the molecules of water in the sphere of hydration
around the lithium ion are shared by two chloride ions per water molecule. This
assignment of locations of chloride ions results in two distances representing
chloride ion-—chloride ion interaction, i.e., a distance between two chloride ions
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FIGURE 18. Radial distribution curve for carbon black. (Reproduced with permission from
Warren, B. E. 1934. J. Chem. Phys. 2: 553).

TABLE 1

Number of neighbors and distances in a single
graphite layer {Warren, 1934)

Average o
Distance (A)

2.6

4.0

5.0

Distance (A)

1.42

f2.46

[2.84

[3.75

[4.25

[4.92

[s.ii

Number of
Neighbors

3

6

3

6

6

6

6
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sharing the same molecule of water located at the apices of the tetrahedron and a
distance between chloride ions which are associated with two different molecules
of water located at two different apices of the same tetrahedron.

In solutions of iron(III) chloride in water Brady (1958b) found that as the
concentration of iron(III) chloride increases, the extent of higher order com-
plexing increases and in a nearly saturated solution, the octahedral ion, (FeCl6)~

3,
is the predominant form present. This ion is shown in figure 17.

Other Applications of X-ray Analysis of
Non-Crystalline Materials

A number of studies of non-crystalline materials, other than those already
cited, have been made; only a few will be mentioned here. The structure of
carbon black was worked out a number of years ago by Warren (1934). The
radial distribution curve shown in figure 18 agrees with the existence of single
graphite layers. The data from Warren are summarized in table 1.

Figure 19 shows the arrangement of neighbors about a reference atom in a
single graphite layer. The circles in the background on the drawing outline the
number of neighborsoand the distances from the reference atom starting at 1.42 A
and going to a 5.11 A distance.

FIGURE 19. Arrangement of neighbors about a reference atom in a single graphite layer.
(Reproduced with permission from Warren, B. E. 1934. J. Chem. Phys. 2: 554).

From this study of carbon black it is clear that it is not a truly amorphous
form of carbon. The existence of single layers of graphite is clearly established,
and the diffraction data indicate a heterogeneous mixture containing particles
which range from single graphite layers to graphite crystals of larger size.

I shall mention one more interesting study of a non-crystalline material.
Klug and Alexander (1954) report a study of the structure of polyisoprene. The
isoprene unit has a stoichiometric composition of CsHs and has the name, 2-
methyl-l,3-butadiene. The radial distribution curve for this non-crystalline
system is given in figure 20. The first peak indicates two nearest neighbors at
abouto 1.5 A, and the second peak shows approximately three second neighbors at
2.55 A. The positions and areas of the first two peaks in the polyisoprene curve
show that the polysiosprene structure consists of coiled or folded long-chain
methyl-1,3-butadiene. The radial distribution curve for this non-crystalline
of 109° and a single-double bond angle of approximately 125°. The data, however,
do not allow one to make a definite choice between the several possible ways in
which addition takes place in the polymerization of the isoprene.

Figure 21 shows the relationship between the radial distribution curves of
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polyisoprene and natural rubber. It is clear that the structures of polyisoprene
and natural rubber are very much alike. The first two peaks are very similiar
while the indefiniteness of the third peak results from rotational freedom about
the single bond in the polymer. This structural relationship between polyisoprene
and natural rubber is one of the most convincing evidences in our knowledge that
natural rubber has isoprene as its building unit.

The examples of the radial distribution procedure cited in this paper point up
its importance. The method yields itself to many other uses such as structure
of polymers, of molten salts, of elements such as sulfur when melted, and of molten
alloys.

2 -

FIGURE 20. Radial distribution function of synthetic polyisoprene. (Reproduced with per-
mission from Klug, H. P. and L. E. Alexander. 1954. X-Ray Diffraction Pro-
cedures. John Wiley & Sons, Inc. 716 pp.).

FIGURE 21. Radial distribution curves from polyisoprene and natural rubber. (Reproduced
with permission from Klug, H. P. and L. E. Alexander. 1954. X-Ray Dif-
fraction Procedures. John Wiley & Sons, Inc. 716 pp.).
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In this brief review of the structure of liquids and solutions I have attempted
to acquaint you with the end results of the x-ray method without burdening you
with the theory involved. Adequate references have been given to guide an
interested person into a deeper understanding of the subject. It is safe to say
that the studies of the structures of liquids and solutions will result in some interest-
ing new developments in the future. Workers have only begun to look into the
mysteries of the structures of these systems.
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