DERMATOGLYPHIC TRAITS OF JEWISH AND NON-JEWISH WHITES

G. J. SIEMENS

University of Toledo, Toledo 6, Ohio

The systematic study of Dermatoglyphics has advanced through the researches of Wilder (1922), Montgomery (1926), Henry (1934) and Cummins (1926 and 1929). Application of this knowledge to Anthropological studies is on record by Biswas (1936), Cummins, Lane, Leche, Millar, Steggerda (1936), and Abel (1937). A comprehensive review of the methods and biology of Dermatoglyphics is given by Cummins and Midlo (1943). A revised method for plantar formulation developed under the direction of Professor Norma Ford Walker of the University of Toronto is employed in this analysis.

In the present report is presented a statistical analysis of palmar and plantar pattern frequencies of 309 Jewish people of Toronto and Chicago as compared with 124 non-Jewish Whites of the same areas.

Four main sources supplied the prints required: (1) students of the University of Toronto, (2) students of public schools and collegiates of Toronto, (3) members of the Young Men's Hebrew Association of Toronto, (4) students of the University of Chicago and members of Marcy Centre, Chicago. The second and third sources supplied prints of about 250 Jewish people and the fourth supplied prints of an additional 60 Jewish people.

The ancestry of the groups was as follows:

	Females	Males
Jewish with Polish ancestry	47	54
Jewish with Russian ancestry	41	32
Jewish with Russian-Polish ancestry	12	18
Jewish with Central European ancestry	12	16
Jewish with mixed European ancestry	18	24
Jewish with English ancestry	4	5
Jewish with North American ancestry	4	5
Jewish offspring of cousin marriages	6	11
Jewish total	144	165
Non-Jewish, English, Scottish, Irish	30	32
Non-Jewish, various nationalities	16	46
Non-Jewish total 124 :	46	78

REVISED METHOD OF PLANTAR FORMULATION

In this study special attention has been given to the formulation of the plantar configurations, which up to the present have not been described as satisfactorily as have the palmar patterns. All prints were made by the inkless Faurot method which makes possible the printing of the entire ridge skin area of the sole on a single sheet of sensitized paper by one rolling motion. A brief outline of the revised method of formulation is necessary.

Plantar topography and marginal loci numbers are given in figure I A. Main lines, Hal (E), A, B, C, D, are traced from their digital triradii to their marginal terminations. The locus of each termination is recorded. For example, main line B crossing the long axis of the sole obliquely may terminate at 15 (figure I, C.). When a main line becomes involved in the hallucal area it terminates as 15h.

THE OHIO JOURNAL OF SCIENCE 54(1): 15, January, 1954.

Recurving main lines running into interdigital whorls or loops will not terminate marginally and are therefore formulated as interdigital, e.g., 9i or 11i.

Plantar hallucal configurations are formulated according to the method of Walker (1946) who gives a double formulation, descriptive of both the distal thenar and the first interdigital area (W^s/O, figure 1, C.). Whorls are of three types: concentric (W) spiral (W^s) and seamed whorls (Wsm). S-Patterns may occur. Central pockets (CP) are like whorls except that they have no confluent circular ridges. Loops open in three directions: tibial (L^t), fibular (L^t), and distal (L^d).

FIGURE 1. Plantar topography and dermatoglyphic formulation.

Arches open proximally (A^p) , tibially (A^t) , fibularly (A^f) , and distally (A^d) . Open fields (O) are common as part of the dual formulation.

Second, third and fourth interdigital areas show elongated whorls (W); loops distal (L^d) , proximal (L^p) , proximal opening fibularly (L^{pf}) and tibially (L^{pt}) ; loops accompanied by accessory triradii (D and d); vestiges (V), small vestiges (v); open fields (O), and multiplications (M). Proximal triradii are indicated as y, subordinate to a loop or whorl (figure 1 C, in the third interdigital note the pattern, $L^{pt}y$).

In the hypothenar, calcar and thenar areas dual formulations are the more

convenient. The hypothenar area is divisible into distal and proximal and each area may show a distinct loop usually opening tibially but sometimes fibularly (L^{t}/L^{f}) . Arches (A), multiplications (M), or vestiges may also be present. The calcar area is formulated in dual fibio-tibial order. Tibial vestiges in the calcar and thenar proximal area are common. True calcar patterns are extremely rare. The calcar and sub-distal thenar are most commonly open fields, that is they have the lowest pattern intensity. Complete hypothenar and thenar formulations are an innovation in the present study. By printing onto the extralimital margins two distinct pattern areas may be discovered in the hypothenar region (figure 1, C. Lt/Lt).

Cuan		L	INEAR	Form	JLA			Ра	ttern For	MULA		
No.	D V	C IV	B III	A II	Hal I	Hyp. T d/p	Cal f/t	Then p/sd	Hallucal Th. d/I_1	In I2	terdigi I3	tal I4
Left Plar 1A 1B 1C 1D 2A 2B 2C 2D	ntar 15' 13 15'' 11i 15'' 15'' 11 15'	15' <i>9i</i> 10 9 15h 9i 9 0	15'' 7i 8 7 13 7 7 7i	15'' 7 7i 5 11 0 5i 7i	15h 15h 15h 15h 9 15h 5i 7i	Lt/Lt Lt/V Lt/O V/Lt O/O Ap/Lt Lt/O Lt/O	Lt/v O/O O/O O/O O/O O/O O/V O/O	V/O O/O O/O V/O O/O O/O O/O O/O	W/O W/O W/O Lfd/O W/Oy O/Af Ap/O	O Lpy Lpy Lpy W O O Lpf	V W Ld O W Ld W	O Lp Lpt Ldy O O O O
Right pla 3A 3B 3C 3D 4A 4B 4C 4D	antar 15'' 15' 13 15' 15' 15' 8	13 11 15h 13 15' 9 6	0 9 15h 13 15' <i>15</i> '' 7 9	0 7 15h 13 15'' <i>15''</i> 7 9	7 13 15h 5 15h 13 15'' 13	Ap/Lft- Lt/V Lt/V Ap/v Lt/Lt Lt/O Ap/Lpf Lt/Lf	Lt O/v O/O O/O Lt/V O/O O/O O/v	0/0 0/0 V/0 V/0 V/0 V/0 0/0 0/0	O/Lf O/Ldy Ld/W O/Ld W/O O/Ld CP/Oy O/Ldy	0 0 0 0 Lpt Lp 0	Ld Ldy M M O Ld Ldy	0 M 0 0 0 Ld

TABLE 1	
Plantar formulae for the 16 tracings of actual prints shown in figu	re 2.

The numbers in Italics indicate the extent of digital derm ridge confluence distal to the digital triradii.

The order of complete plantar formulation is indicated in figure 1 B. It is as follows:

- 1) Terminations of main lines in the sequence, D, C, B, A, Hal (or E).
- 2) Hypothenar distal and proximal configurations.
- 3) Calcar fibular and tibial areas.
- 4) Thenar proximal and sub-distal areas.5) Hallucal (distal thenar and first interdigital patterns).
- 6) Second interdigital (I2) configurational area.
- 7) Third interdigital (I_3) configurational area.
- 8) Fourth interdigital (I_4) configurational area.
- 9) Ridge confluencies above digital triradii formulated by underscoring linear formula.

Figure 1 with its subscripts illustrates this complete formulation. Sixteen other sole tracings are shown in figure 2, and their formulations are presented in table 1.

TESTS OF SIGNIFICANCE

To determine the statistically significant associations of traits with either the Jews or the non-Jews the chi-square test is applied. Grouping configurations

TABLE 2

	Line	e D	Lin	e C	Lin	e B	Lin	e A
Loci	Jewish	Non-J.	Jewish	Non-J.	Jewish	Non-J.	Jewish	Non-J.
1 2 3 4 5' 6 7 8 9 10 11 13 X X 0	9.9 2.8 29.8 9.5 47.7 0.3	12.9 3.2 31.9 8.9 41.1 0.4	$\begin{array}{c} 0.7\\ 8.7\\ 2.8\\ 29.0\\ 48.7\\ 2.6\\ 0.5\\ 3.4\\ 1.1\\ 2.4 \end{array}$	0.4 11.3 3.2 27.8 40.7 0.4 1.2 4.8 4.0 6 0	$\begin{array}{c} 0.2\\ 0.3\\ 0.6\\ 10.0\\ 31.4\\ 7.6\\ 42.6\\ 3.4\\ 3.1\\ 0.2\\ 0.2\\ 0.2\\ 0.5\end{array}$	0.4 8.9 39.9 7.7 39.9 0.4 2.4	2.6 4.4 29.6 15.5 40.5 5.2	$\begin{array}{c} 6.1 \\ 2.0 \\ 36.3 \\ 16.9 \\ 33.1 \\ 4.0 \\ 0.4 \\ 1.2 \end{array}$
Accessory								
Triradii	5.7	7.7	0.5	0.4			1.1	1.2
Chi-square for the entire rang n equals Critical Significanc	ge De 11	9.949 5 .070	16.112 5		9.459 5 11.070		14.652 6 12.592	
Association: Chi-square for Termin	No Signif nation X	ot ìcant	Signif 6.128	icant	No Signif	ot icant	Signif	icant
Most fraguer	t Main I	ine Termi	Both S	Significant				

Comparison of the frequencies of the terminations of the palmar main lines in Jewish and Non-Jewish people. (Left and right combined. Jewish, 618 palms; Non-Jewish, 248 palms.)

JEWISH: $11 \cdot 9 \cdot 7 \cdot 5' -$

NON-JEWISH 11 · 9 · 7 . 7 . 3 ---9 or

TABLE 3

Frequencies of positions of axial triradii of Jewish and Non-Jewish people determined by linear measurement and expressed in percent of total palm length. (By the method of Walker and Penrose.) (Left and right palms are combined.)

Position of Triradius*	Jewish (622 palms)		Non-Jewish (300 palms)	Chi-square value
0 t t ¹ t ¹	$ \begin{array}{r} 1.9 \\ 29.6 \\ 59.6 \\ 8.8 \\ \end{array} $		$\begin{array}{c} 0.0 \\ 45.3 \\ 51.0 \\ 3.7 \end{array}$	22.157 6.191 7.510
Two or more Triradii per palm	15.7	ı	7.0	13.802

In all Chi-square tests, n is 1, for p 0.05 the Critical Value is 3.841, therefore all four values show Significant Associations.

* 0—absence of triradii; y, triradius within 0 to 14.9% of palm length from distal bracelet crease to proximal crease at base of third digit; t', 15 to 39.9%; t'', 40% and over.

No. 1

dichotomously either as patterns or as pattern-less, a two by two (2×2) table enables us to use the standard formula:

$$X^{2} = \frac{(ad - bc)^{2} N}{(a + c) (b + d) (c + d) (a + b)}$$

Consulting Fisher's (1936) table for n equal to 1, and for the probability 0.05, chi square (X^2) should equal or exceed 3.841 to indicate a significant association between the two variables. In some tests a greater degree of freedom is found necessary, and two by n (2 x n) calculations are applied. Of the many traits involved in these computations only those configurations which show significant differences between Jews and non-Jews are pointed out.

PATTERNS	Hypor Jews	THENAR Non-J.	The Jews	enar Non-J.	Jews	[1 Non-J.] Jews	Non-J.] Jews 2	I3 Non-J.	Jews	[₄ Non-J.
0 v & V M 1 and L d & D	$16.3 \\ 15.5 \\ 36.4$	13.3 13.7 29.8	78.9 18.1 0.6 1.9	$77.4 \\ 21.3 \\ 0.4 \\ 0.8$	90.8 7.9 0.2 1.1	$92.3 \\ 7.3 \\ 0.0 \\ 0.4$	$65.2 \\ 16.5 \\ 12.5 \\ 0.5 \\ 5.2 $	56.8 32.6 6.4 0.0 4.0	$43.2 \\ 1.8 \\ 0.3 \\ 53.4 \\ 1.5$	54.4 2.4 1.2 41.9 0.0	31.4 16.2 7.8 39.1 14.1	$21.8 \\ 29.4 \\ 3.2 \\ 41.5 \\ 13.3$
W S T Au Ac Ar P-th	$\begin{array}{r} 4.2 \\ 2.3 \\ 0.5 \\ 83.6 \\ 41.2 \\ 2.1 \end{array}$	$2.8 \\ 2.8 \\ 0.8 \\ 87.9 \\ 49.6 \\ 2.0 \\ 1.2$	0.2		0.2		0.2	1.0	0.2	0.0		1010

TABLE 4Comparison of configuration frequencies in all palmar areas of Jews and Non-Jews. (Expressed
in percentages based on 618 Jewish and 248 Non-Jewish palms.*)

Chi-squa	re tests dichot.	omously applied, groupi	ng Patterns ('I	Γ, 1, L, d, D,	W. S. P-th)
and Pattern	less (O, v, V, M	I, A) so that n is 1, and (Critical value i	s 3.841, p 0.05.	
X^2	2.505	0.021 for thenar	0.955	12.095	0.182
		plus I_1		Association	
		•		Significant	

*Percentages exceed 100 in the totals due to dual configurations in some areas, especially the hypothenar.

TABLE 5

	Line D.	Line C.	Line B.	Line A.	Line E, or
Locus					Hallucal.
	Jews Non-J.	Jews Non-J.	Jews Non-J.	Jews Non-J.	Jews Non-J.
5		0.8 0.8	1.3 4.0	1.9 2.4	1.7 2.1
õ		0.3	1.1	0.6 0.4	0.2 0.4
7i		0.2	0.3	0.6	0.2
7	2.7 4.8	2.6 2.4	15.5 20.6	13.3 14.1	4.5 4.4
8	0.3		6.5 4.4	3.1 2.0	0.2 0.4
9i	0.8 1.2	3.6 5.2	7.3 2.0	2.3 1.6	1.0 2.0
.9	1.6 2.4	24.7 31.9	$14.6 \ 16.1$	7.0 4.4	1.0 1.2
10	1.3	5.0 3.0	0 0 0 4		0.3 0.4
	0.8 0.4		$0.6 \ 0.4$	1.1 0.4	0.4
11	1.1 1.4	4.7 4.0	2.4 1.0 1.2	1.0	0.8 1.2
12	23 20	2.0 0.8 4 9 4 4	1.0	10 10	1.1 1.0
151	42.4 5/ 0	19.6 22.6	10 7 16 9	12 8 99 9	20 80
1511	44 3 32 2	23 5 18 5	21 7 16 5	32 7 10 3	10.8 5.6
15h	1.3 0.8	1.3 0.8	2.3 12	4 4 2 4	32 2 26 6
X		0.2	0.6	1.1 2.1	0.2 0.4
0	0.2	3.5 3.2	11.2 12.9	15.4 14.5	0.5 0.4
X²	14.700	8.129	14.635	63.132	22.091
n	5	5	6	5	5
Critical	U .	0	0	U	0
Value:	11.070	11.070	12.592	11.070	11.070
A550Cla 11011.	Significant	Not Significant	Significant	Significant	Significant
The most cc Jewish: 15''	ommon planta (15') . 9.15''	r main line formula . 15" . 13(15h)—	: Non-Jewis 15' . 9	h:) . 7(15') . 15' . 1	3—

Comparison of frequencies of plantar main line terminations in Jews and Non-Jews expressed in percentages. (Based on 618 Jewish and 248 Non-Jewish soles.)

DERMATOGLYPHIC TRAITS

PALMAR FORMULAE

Palmar configurations are formulated according to standard methods (Cummins and Midlo, 1943) and the frequencies of similar configurations are calculated for various areas. Right and left palms are combined. The results are presented in tables 2 to 4.

Chi Square Values which approach but do not quite attain statistically significant associations for probability 0.05, the critical value for n 1 being 3.841.

G.J.S.

FIGURE 3. Configurations showing statistically significant associations with Jewish and Non-Jewish people.

The terminations of each of the four palmar main lines show a marked highest frequency at definite loci among the Jewish people. In general the main lines in Jewish people tend to be crowded into the distal region of the palm with a transverse confluence of the ridges. Among non-Jewish people dermal ridges have a greater tendency to run longitudinally so that line A terminates more frequently at locus 3. The third palmar main line, i.e., line C, is absent in 6 percent of the non-Jews printed, in 2.4 percent of Jewish people. The most frequent main line formula among the Jewish people is $11 \cdot 9 \cdot 7 \cdot 5'$, while among the non-Jewish it is $11 \cdot 9 \cdot 7 \cdot 3$ or $9 \cdot 7 \cdot 5'' \cdot 5'$ (table 2).

Palmar axial triradii of Jewish people display two high frequencies; namely, a highest frequency in position t between 10 and 15 percent of the palmar length (from the bracelet crease to the carpophalangeal crease of the third digit) and

G. J. SIEMENS TABLE 6

Pattern	Н	Hypothenar Area				CALCAR AREA				THENAR AREA			
	Di Jews	istal Non-J	Pro Jews	ximal Non-J	Fit Jews	oular Non-J	Ti Jews	bial Non-J	Pro Jews	ximal Non-J	Sub Jews	odistal Non-J	
0	29.6	33.5	62.9	71.8	99.0	98.4	63.1	71.0	78.0	77.0	96.8	96.4	
v	0.8	0.4	5.5	0.4	0.2	0.0	8.9	2.0	9.2	2.8	1.0	0.4	
V	20.9	23.4	25.1	17.3	0.2	1.2	28.0	26.6	12.6	19.8	2.3	2.8	
Lt	38.2	30.2	6.3	10.8	0.6				0.2				
Lf	0.3												
Ap	10.2	11.7	0.2										
Chi-square	for loop	ps and N	Von-loo	ops:	In	the ca	alcar a	ind the	nar ar	eas nea	rly al	l of ch	
3	X2	5.24	33.	670	Cu	iniguia	tions t		be ope	n neius	or ves	uges.	
	n	1	1										
Α	ssociati	ion:	_										

Comparison of frequencies of configurations in the hypothenar, calcar, and thenar areas in Jews

Symbols: O, open fields; V, vestiges; Lt, loops tibial; Lf, loop fibular; Ap, arch proximal.

Not Significant

Significant

TABLE 7

Comparison of configurational frequencies in the plantar hallucal area of Jews and Non-Jews. (Percentages based on 618 Jewish and 248 Non-Jewish sole prints.)

PATTERN TYPES	THENAR 1	Distal Area	FIRST INTERDIGITAL AREA		
	Jews	Non-Jews	Jews	Non-Jews	
0	46.1	51.2	51.9	49.2	
v	1.1	1.3		1.2	
Lt	9.6	10.5			
$\mathbf{L}\mathbf{f}$	1.0	0.8		13.3	
Ld	0.3		44.5	35.5	
Ар	2.7	2.8	0.2		
$\mathbf{A}\mathbf{t}$	0.5		0.3		
Af	0.5	0.8	2.4	0.4	
W	38.0	32.2	0.6		

Chi-square test for association of patterns (Loops and Whorls) and patternless (Open fields, Vestiges and Arches). X^2 2 135 0 945

Critica Associa	n 1 l Value 3.841 ation: Not signifi	cant Not sig	1 nificant

Chi-square test for association of Whorls and No Whorls in Thenar and First Interdigital areas combined. X² 3.940 n

Critical Value	3.841	
	Association significant	

another high frequency in position t', between 30 and 35 percent of palmar length. Two or more triradii per palm are found in 15.7 percent of Jewish palms. Non-Jewish palms show fewer double triradii, and fewer triradii in position t' and t", but 1.5 times as many triradii in the low position of t (tables 3 and figure 1).

In the palmar hypothenar area of Jewish people ulnar and radial loops and also whorls show a higher percentage than in non-Jews. In the thenar and first interdigital areas loops and whorls occur in a few Jewish palms as also in non-Jewish. Second and third interdigital areas show a higher percentage of whorls,

FIGURE 4. Frequency of axial triradii in various positions on the palms of Jews and Non-Jews.

loops, and loops with accessory triradii in Jewish palms. Patterns in the third interdigitial area are significantly associated with Jewish palms. But in the fourth interdigital area the non-Jews have a higher frequency of loops. In all areas of the palm, patterns such as whorls and loops, are more frequent in Jewish palms than in non-Jewish with the exception of loops in the fourth interdigital area.

PLANTAR CONFIGURATIONS

Ridge confluencies distal to digital triradii on the soles of Jewish people show a significantly greater frequency than in non-Jewish (table 9). This means that cutaneous syndactyly is commoner, including fusions of two, three or four toes.

TABLE 8

Patterns		PLANTAR INTERDIGITAL CONFIGURATIONS									
	Se	cond	Т	hird	Fourth Area						
	Jews	Non-Jews	Jews	Non-Jews	Jews	Non-Jews					
0	51.9	68.1	16.5	13.7	66.5	61.7					
V	4.4	4.8	3.1	7.7	3.1	13.1					
М	2.9	1.2	8.1	3.6	14.2	8.9					
Α	0.2				0.5						
Lpt	15.8	8.9	4.4	4.4	2.9	2.0					
Lpf	14.9	11.3	0.2								
Ĺd	5.5	4.0	49.7	60.9	12.1	14.1					
W	4.5	1.2	18.1	9.3	0.5						
Chi-square configur	Test for Ass ations and or	ociation of Pat	terns (loop	s and whorls)	and Patternless	(all other					
\mathbf{X}^2	13.0	73	0.4	40	0.047						
Critical Sim	nificance Val	10	3 9	41 - 1	and $p = 0.05$						

Comparison of frequencies of plantar configuration in the second, third, and fourth interdigital areas of Jews and Non-Jews. (Percentages based on 618 Jewish and 248 Non-Jewish soles.)

Chi-square	Test for	Association	of Patterns	(loops a	and w	horls)	and	Patternless	(all	other
configut	rations a	nd open field	s).							
X^2		13.073		0.440				0.047		
Critical Sig	nificance	Value		3.841	. n =	1	and	l p = 0.05		

Significant				Not Significant					Not Significant				
Chi-square Tes	: for	Association	of	Distal	Loops	and	No	Loops	in	the	third	interdig	ital
area. n =	1.				-			-					
X^2					8.8	927							
Association					Sigr	ificat	nt.						

Association: Chi-square Test for Association of Whorls and No Whorls in the third interdigital area, n = 1. Critical Value 3.841 X^2 10 581 Significant

TABLE	9
-------	---

Comparison of ridge confluencies above digital triradii on the soles of Jews and Non-Jews. (Expressed in percentages based on 618 soles of Jews and 248 soles of Non-Jews.)

	Je	Jews		
Across Four Digits D, C, B, A Across Three Digits C, B, A Across Two Digits C, B or B, A	Left 2.3 11.3 28.2	Right 3.2 8.7 28.5	Left 0.0 6.4 24.2	Right 0.0 7.3 21.8
Total	41.8%	40.4%	30.6%	29.1%
No. of Confluences L & R divided by total N	o of soles $41.4 \pm$	2.0%	$29.8 \pm$	1.6%
Chi-square Test for Association of presence X^2	and absence of an	y Confluenc	es: n 1. 539	

p 0.05, Critical Value 3.841. Association Significant.

TABLE	10
TUDDD	+U

Comparison of frequencies and of positions of proxime	al plantar triradii in Jews and Non-Jews.
(Expressed in percentages based on 618 Jew	vish and 248 Non-Jewish prints.)

		INTERDIGITAL AREAS								
]	I1		I_2		[₃	I4			
	Jews	Non-J.	Jews	Non-J.	Jews	Non-J.	Jews	Non-J.		
Left Right	2.6 3.4	2.4 8.1	$\begin{array}{r} 21.7 \\ 25.9 \end{array}$	18.9 21.8	$\begin{array}{c} 12.0\\ 12.6\end{array}$	$\begin{array}{c} 12.9 \\ 9.3 \end{array}$	4.4 4.4	5.2 6.9		
Added Average	6.0 3.0	10.5 5.2	47.6 23.8	40.7 20.3	$\begin{array}{r} 24.6 \\ 12.3 \end{array}$	$\begin{array}{c} 22.2 \\ 11.1 \end{array}$	8.8 4.4	$\begin{array}{c} 12.1 \\ 6.0 \end{array}$		
$\frac{1}{1}$ Chi-square test For p = 0.05 Ci	applied for $n = 1, X^2 =$ ritical Value	associati 2.28 is 3.841.	on of Tr 3. Therefo	riradii and 344 pre no asso	Absenc 0 ociations	e of Trira 56 are statist	dii. 1 tically si	94 ignificant.		

Association:

Proximal plantar triradii show a greater frequency (though not significant) in the second and third interdigital areas of Jewish soles compared to non-Jewish. However, in the first and fourth interdigital areas the reverse is the case and non-Jews show a greater frequency (table 10).

In the hypothenar distal area Jewish soles have about eight percent greater frequency of tibial loops than non-Jewish, which association is significant (table 6). More than ninety-nine percent of calcar and thenar (proximal and subdistal) areas are characterized by open fields and a few vestiges. A few rare loops appear on the heels of the Jewish people (table 6). Whorls are found in the hallucal thenar area of 38 percent of Jewish people and only 32 percent of non-Jewish: a significant association (table 7). In Jewish plantar second interdigital areas loops and whorls are greater in number. In the third interdigital area whorls are twice as frequent as in non-Jews. The latter show a high frequency of distal loops in this area. All these associations are significant (table 8). The fourth interdigital area shows no difference of significance.

A significant association of a configuration in favor of one people or another is not always easily discernible. A pattern occurring in a high percentage of both Jews and non-Jews and showing only a small difference between the two may be statistically significantly associated in favor of one, whereas a pattern occurring in a low percentage of cases in both people must show a much greater difference in frequency before it is said to be significantly associated with one or the other people.

Figure 3 illustrates most of the salient Jewish and non-Jewish traits which these tests have revealed to be significantly associated with one or the other of the two Caucasian sub-groups. Figure 3 A shows sixteen configurations statistically significantly associated in favor of Jewish people. The higher percentage frequencies are evident for every configuration in the second column. The third column shows the lower frequencies in the non-Jews. Figure 3 B shows eleven specific configurations significantly associated with non-Jews. Their higher percentage frequencies are given in the third column. In both figures the fifth column shows that all chi-square values (except the one marked with an asterisk) exceed the critical significance value for probability 0.05. Where n is 1, the critical value is 3.841; where n is 5, it is 11.070; where n is 6, it is 12.592. The two configurations marked with an asterisk approach but do not quite attain statistically significant association for probability 0.05.

SUMMARY

Formulation of plantar dermatoglyphics is extended to cover the entire ridge skin areas and as a result new areas of discrete dermal configurations are discovered in the hypothenar distal and proximal regions of the sole.

The dermatoglyphics of 309 Jewish people are compared with 124 non-Jewish Whites. Chi-square tests reveal that the configurations showing a statistically significant association in favor of the Jews are as follows: (See figure 3 A.)

- 1. Terminations of palmar line C at 9.
- 2. Distal loops in palmar third interdigital area.
- 3. Termination of palmar line A at 5'.
- 4. Axial triradius on the palm at position t".
- 5. Axial triradius on the palm at position t'.
- 6. Double axial triradii on the palm.
- 7. Ridge confluence across two, three, or four plantar digits.
- 8. Whorls in the third interdigital area of the sole.
- 9. Loops and whorls in the second interdigital area of the sole.
- 10. Terminations of plantar line E at 13 or at 15h.
- 11. Whorls in the thenar distal area of hallucal patterns.
- 12. Termination of plantar line A at 15".

- 13. Termination of plantar line B at 15".
- Termination of plantar line D at 15". 14.
- 15. Proximal plantar triradii in the second interdigital area approach significance.
- 16. Tibial loops in the hypothenar distal area.

Configurations showing a statistically significant association in favor of non-Jews, are: (See figure 3 B.)

- 1. Absence of palmar line C.
- 2. Short termination of line C.
- 3. Termination of palmar line A at 3.
- 4. A single palmar axial triradius at position t.
- 5. Absence of ridge confluence across plantar digits.
- 6. Loops in the plantar third interdigital area.
- 7. Termination of plantar line E at 13.
- 8. Termination of plantar line A at 15'.
- 9. Termination of plantar line B at 7.
- 10. Termination of plantar line D at 15'.
- 11. Tibial loops in the hypothenar proximal area approach significance.

It is therefore shown that palmar and plantar ridge confluence in the Jewish people here studied tends to be more transverse to the long axis of the palm and sole than in the non-Jewish people, that Jewish people have a greater pattern intensity in almost all ridge skin areas than non-Jewish people, and that these differences are statistically significant. This supports the finding of Cummins and Midlo (1943) and Rife (1948).

The extent of the intra-racial variations, as well as the inter-racial, within and between the Jewish and the non-Jewish Whites, is revealed by the percentage frequencies of the configurations which occur in the two groups studied.

REFERENCES

- Abel, W. 1937. Über Storungen der Papillarmuster. Gestörte Papillarmuster in Verbindung mit einigen körperlichen und geistigen Anomalien. Zschr. Morph. Anthrop., 36: 1–38.
- Biswas, P. C. 1936. Über Hand und Fingerleisten von Indern. Zschr. Morph. Anthrop., 35: 519-550.
- Bonnevie, K. 1929. Zur Mechanik der Papillarmusterbildung. Die epidermis als formativer Faktor in der Entwicklung der Fingerbeeren und der Papillarmuster. Zschr. wiss. Biol. Abt. D., Roux Arch., 117: 384-420.
- **Cummins, H.** 1926. Epidermal-ridge configurations in developmental defects with particular reference to the ontogenetic factors which condition ridge direction. Amer. Jour. Anat., 38: 89-151.

Cummins, H. 1929. The topographic history of the volar pads (walking pads: Tastballen) in

Cummins, n. 1929. The topographic history of the volar pads (walking pads: Tastballen) in the human embryo. Pub. Carneg. Instn. Embry., 20: 105-126.
Cummins, H., M. S. Lane, S. M. Leche, R. Millar, I. D. Steggerda, and M. Steggerda. 1936. Measures of men. Dept. Mid. Amer. Research, Tulane University, New Orleans.
Cummins, H., and C. Midlo. 1927. Dermatoglyphics in Jews. Amer. Jour. Phys. Anthrop., 10: 91-113.

Cummins, H., and C. Midlo. 1943. Fingerprints, palms and soles. The Blakiston Co., Philadelphia.

Fisher, R. A. 1936. Statistical methods for research workers. Oliver and Boyd, London. Henry, Sir E. R. 1934. Classification and uses of fingerprints. H. M. Stationary Office, London.

Montgomery, R. B. 1926. Sole patterns. A Study of the Footprints of Two Thousand Indi-viduals. Anat. Rec., 32: 107-114.

Rife, D. C. 1948. Dermoglyphics of Jewish People. Amer. Jour. Phys. Anthrop., 6.
Rife, D. C. 1950. A comparison of stature, weight, and head measurements among Catholic, Protestant, and Jewish students. Ohio Jour. Science, 50: 000-000.

Siemens, G. J. 1947. A study of certain genetic traits found in the dermoglyphics of Jewish people. Ph.D. Thesis, School of Graduate Studies, Univ. of Toronto.
 Walker, N. Ford. 1946. Personal communication. Department of Zoology, University of

Toronto

Wilder, H. H. 1922. Racial differences in palm and sole configuration Amer. Jour. Phys. Anthrop., 5: 143-206.