A STUDY OF THE RATE OF GROWTH OF TWO SCLEROTIZED REGIONS WITHIN LARVAE OF FOUR SPECIES OF MOSQUITOES

A. ABDEL-MALEK AND R. L. GOULDING, JR.¹

Department of Zoology and Entomology, The Ohio State University, Columbus, Ohio

The observations leading to the following study were made independently by the joint authors and arose from two unconnected studies of mosquito larvae in which measurements of the larvae were a part of the routine. Upon discussion and comparison of data it was decided that, in spite of a difference in approach and method, the information should be pooled in order that a more complete study might be presented.

It is the objective of this paper to determine whether the measurements of head capsule width and air siphon length in different instars are so distinctly separated as to allow one to ascertain from these measurements the stadia or number of larval instars present.

MATERIALS AND METHODS

The larvae of Aedes aegypti L., Ae. trivittatus (Coq.), Culex apicalis Adams and Anopheles quadrimaculatus Say were measured for head capsule width and, with the exception of An. quadrimaculatus, for air siphon length. The larvae of Ae. aegypti and Ae. trivittatus were killed in K. A. A. D. killing mixture (Peterson, 1943). They were measured under a binocular microscope in which an ocular micrometer was inserted in one of the $15 \times$ oculars. In all the first instar larvae examined the objective used was $2 \times$ under which the ocular micrometer was calibrated to 0.09 mm per small division. The remaining instars were examined under a $1 \times$ objective with the micrometer calibrated to 0.045 mm. The larvae of both species were obtained from reared material, those of Ae. trivittatus from the eggs of wild, gravid females and those of Ae. aegypti from a culture maintained in the Department of Zoology and Entomology at the Ohio State University.

The larvae of *Culex apicalis* and *Anopheles quadrimaculatus* were killed in a solution containing six parts water, three parts ninety-five percent alcohol and one part formalin. They, too, were measured under a binocular microscope; however, in this case a $10 \times$ micrometer ocular was used with the opposite ocular blacked out. An objective of 48 mm focal length was employed in all measurements. The micrometer ocular was calibrated to 0.0216 mm per small division on the scale. The specimens of *C. apicalis* were taken from a field collection of larvae found in a road side permanent pool. Since several previous and succeeding collections from this pool yielded other species of *Culex* only rarely it was considered that all the instars were a satisfactory representation of the single species. The larvae of *An. quadrimaculatus* were taken from a culture maintained in the same laboratory with that of *Ae. aegypti*.

¹The authors extend appreciation to Dr. E. L. Green, Dr. Alvah Peterson and Dr. Carl E. Venard, all of the Department of Zoology and Entomology at The Ohio State University, for their helpful suggestions and criticisms during the development of this study and preparation of the manuscript. Appreciation is also extended to the Statistics Laboratory of The Ohio State University for their statistical analysis of the data presented herein.

A. ABDEL-MALEK AND R. L. GOULDING, JR.

TABLE I Aedes aegypti INSTAR 1 Head Capsule Width Air Siphon Total 202 225247 270 $\frac{5}{6}$ 180... 0 0 1 4 õ 202..... 4 1 1 6 5 225... ŏ $\hat{3}$ $\hat{2}$ 1 247... ŏ ī 0 4 270..... Ō Ō $\mathbf{5}$ $\overline{\mathbf{5}}$ 10 32Tota1..... 1 11 9 11

.70

T	N	sт	٨	p	2
1	IN	51	А	к	- 24

		Head Ca				
Air Siphon	360	405	450	495	lotal	1 400
360 405 450	7 3 0	$\begin{smallmatrix}&15\\&14\\&3\end{smallmatrix}$	$\begin{array}{c}1\\3\\1\end{array}$	0 1 1	$\begin{array}{c} 23\\ 21\\ 5\end{array}$	
Total	10	32	5	2	49	130

Air Siphon	Hea	ad Capsule W	Total		
	585	630	675	iotai	1
$\begin{array}{c} 540. \\ 585. \\ 630. \\ \end{array}$	$\begin{array}{c} 0\\ 3\\ 1\end{array}$	3 9 6	0 1 6	3 13 13	
Total	4	18	7	29	-r = .34

			Insta	r 4			
Air Siphon		Head	Tata1				
	765	810	855	900	945	Total	
675 720	0 1	1 18	0 11	$1 \\ 3$	0	$\begin{array}{c}2\\33\end{array}$	h = 854 $s_{h} = 40.7$
765	.1	7 0	11 5	11 9	0	30 15	a = 756 $s_a = 40.1$
855	0	0		1	1	3	r = .51
1 ota1	2	20	28	25	2	83	

INSTAR 3

PLATE I

FIGS. 1-5. Histograms of the head capsule widths and air siphon lengths of Aedes aegypti, Aedes trivittatus and Anopheles Quad.

Vol. XLVIII

TABLE II

Aedes trivittatus

Instar 1

Air Cistor]	Head Cap	Toto1			
Air Siphon	225	270	315	360	lotai	
225. 270. 292. 315. 360.	1 0 0 0 0	0 1 0 0 0	$\begin{array}{c}3\\14\\1\\7\\2\end{array}$	0 0 0 0 1		$\begin{array}{l} h = 312 \\ s_{h} = 20.2 \\ a = 284 \\ s_{a} = 37.6 \\ r =42 \end{array}$
Total	1	1	27	1	30	

Instar 2

A.'. C'. 1		Head		Tete1			
Air Siphon	450	495	540	585	630		h - 550
450 495 540	1 0 0	$\begin{array}{c}2\\0\\0\end{array}$	14 1 8	4 1 1	$\begin{array}{c} 0\\ 0\\ 3\end{array}$	$\begin{array}{c} 21 \\ 2 \\ 12 \end{array}$	$s_{h} = 36.3$ a = 483 $s_{a} = 42.7$ r = 57
Tota1	1	2	23	6	3	35	101

Instar 3

		Head	Total				
Air Sipnon	720	765	810	855	900		
585 630 675 720 810	0 1 0 0 0	1 1 1 1 0	$\begin{array}{c}1\\6\\0\\3\\0\end{array}$	0 0 0 0 1	$\begin{array}{c} 0\\ 2\\ 2\\ 3\\ 0 \end{array}$	$2 \\ 10 \\ 3 \\ 7 \\ 1$	$\begin{array}{l} h = 828 \\ s_{h} = 55.5 \\ a = 667 \\ s_{a} = 55.4 \\ r = 32 \end{array}$
Tota1	1	4	10	1	7	23	

Instar 4

Air Siphon	Hea	d Capsule W	Total		
	1080	1125	1170	TOTAL	h = 1107
810 855 900	1 1 4	$egin{array}{c} 0 \\ 0 \\ 2 \end{array}$	0 0 2	$\begin{array}{c c}1\\1\\8\end{array}$	$s_{h} = -37.9$ a = -887 $s_{a} = -30.4$ r =35
Total	6	2	2	10	

FIGS. 6-7. Histograms of the head capsule widths of air aiphon lengths of *Culex apicalia*. FIG. 8. Scatter diagram of *Aedes aegypti*.

Vol. XLVIII

TABLE III

Culex apicalis

Instar 1

A: C: 1	Hea	id Capsule W	Tatal		
Air Siphon	238	259	281	lotal	h = 262.7
302 324 346	1 0 0	32 2 0	0 7 1	33 9 1	$s_{h} = 9.33$ a = 307.9 $s_{a} = 10.6$ r = .81
Tota1	1	34	8	43	

INSTAR 2

		Head	Capsule V	Width		Total	
Air Siphon	346	367	388	410	432	Iotal	
497 518 540 562	0 0 1 0	$\begin{array}{c} 2\\ 2\\ 0\\ 0\end{array}$	4 1 4 0	$\begin{array}{c} 0\\ 2\\ 1\\ 0 \end{array}$	0 0 0 1	$\begin{array}{c} 6\\ 5\\ 6\\ 1\end{array}$	$\begin{array}{l} h = 387.6 \\ s_{h} = 20.2 \\ a = 520.8 \\ s_{a} = 20.8 \\ r = -232 \end{array}$
Total	1	4	9	3	1	18	r = .33

INSTAR 3

			Head (Total					
Air Siphon	540	562	583	605	626	648	670	Total	h = 610.9
799 821 842 864	1 1 1 0	$\begin{array}{c} 2\\ 0\\ 0\\ 0\\ 0\end{array}$	0 0 1 1	0 0 1 1	$egin{array}{c} 0 \\ 1 \\ 2 \\ 0 \end{array}$	$\begin{array}{c} 0\\ 0\\ 1\\ 6\end{array}$	0 0 0 1	$\begin{array}{c} 3\\2\\6\\9\end{array}$	
Tota1	3	2	2	2	3	7	1	20	

INSTAR 4

Air Sinhon		Hea	ad Cap	Total				
All Siphon	842	864	886	907	929	950	TOTAL	
1274	0	2	0	0	0	0	2	h = 893.8
1296	1	2	1	2	0	0	6	$s_{\rm h} = 27.7$
1318	0	1	0	2	0	0	3	a = 1335.1
1339	0	0	0	1	0	1	2	$s_a = 45.6$
1361	Ō	Ō	3	0	0	0	- 3	r =
1382	Ō	0	0	1	1	Ō	2	
1404	Õ	Ō	1	Ō	1	Ō	$\overline{2}$	
1426	Õ	Ō	Ō	0	1	Ō	1	
Total	1	5	5	6	3	1	21	

.

Growth of Mosquito Larvae Abdel-Malek and Goulding

PLATE III

9.AEDES TRIVITTATUS

FIGS. 9-10. Scatter diagrams of Aedes trivittatus and Culex apicalis.

A. ABDEL-MALEK AND R. L. GOULDING, JR.

Vol. XLVIII

In the case of the larvae of C. *apicalis*, An. quadrimaculatus and Ae. aegypti the instars of each species were mixed together and withdrawn at random for measurement. The larvae of Ae. trivittatus were taken from predetermined instar groups. One hundred and two examinations were made in the case of C. apicalis, one hundred and ninety-six of An. quadrimaculatus, one hundred and ninety-eight of Ae. trivittatus.

Measurements were made of the head capsules of the four groups represented in the region of greatest width, which occurred commonly between the ocular areas.

TABLE I	V
---------	---

Anopheles quadrimaculatus

Instar 1

			Head C	apsule	117: 1.1					
	13				Width					
	<u>130</u> 1		151 21		17	Total 173		ıl	h = 158.2 $s_h = 11.5$	
					12					
			·	Insta	R 2			<u> </u>		
			Head	l Capsı	ule Wid	1th				
237	237 259		281		302		Total			
1		9	5			2		17	h = 269.4 $s_h = 17.3$	
				Insta	ar 3					
		H	ead Cap	osule W	/idth					
4	10 4	32 4	54 4	75 4	97 8	518 5	40	l'otal	1 407 0	
	3	13	13 1	17	3	2	7	58	n = 407.8 $s_h = 36.1$	
				Insta	R 4					
]	Head C	apsule	Width					
648	670	691	713	734	756	778	799	Total	_	
1	6	15	21	16	15	10	3	87	h = 727.2 $s_h = 34.8$	
	237 1 4 	237 1 410 4 3 648 670 1 6	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	INSTA Head Capsa 237 259 281 1 9 5 INSTA Head Capsule W 410 432 454 475 4 3 13 13 17 INSTA Head Capsule W 410 432 454 475 4 3 13 13 17 INSTA Head Capsule Head Capsule Head Capsule 648 670 691 713 734 1 6 15 21 16	INSTAR 2 Head Capsule Wid 237 259 281 1 9 5 1 INSTAR 3 Head Capsule Width 410 432 454 475 497 5 3 13 13 17 3 13 17 3 INSTAR 4 Head Capsule Width 648 670 691 713 734 756 1 6 15 21 16 15	INSTAR 2 Head Capsule Width 237 259 281 302 1 9 5 2 INSTAR 3 Head Capsule Width 410 432 454 475 497 518 5 3 13 13 17 3 2 1 INSTAR 4 Head Capsule Width 648 670 691 713 734 756 778 1 6 15 21 16 15 10	INSTAR 2 Head Capsule Width 237 259 281 302 1 9 5 2 1 INSTAR 3 Head Capsule Width 410 432 454 475 497 518 540 540 INSTAR 3 INSTAR 3 INSTAR 4 Head Capsule Width 1 Head Capsule Width 1 Head Capsule Width 1 Head Capsule Width 648 670 691 713 734 756 778 799 1 6 15 21 16 15 10 3	INSTAR 2 Head Capsule Width 237 259 281 302 Total 1 9 5 2 17 INSTAR 3 Head Capsule Width Total 410 432 454 475 497 518 540 Total A 13 13 17 3 2 7 58 INSTAR 4 Head Capsule Width Gase Group Group Capsule Width Head Capsule Width Gase Group Group Capsule Width Head Capsule Width Gase Group Group Capsule Width INSTAR 4 Head Capsule Width Gase Group Group Capsule Width Gase Group Group Capsule Width Gase Group Group Capsule Width Gase Group Capsule Width	

The air siphons were measured from the point of juncture at the eighth abdominal segment to their tips.

Tables I-IV comprise a presentation of the head capsule and air siphon measurements in the form of frequency tables. The measurements are rounded off to three places and recorded in thousandths of a millimeter. Together with the frequency table will be found the means, standard deviation of the two variables and correlation coefficient.*

*The tables and statistical analysis included herein were prepared by the Statistical Laboratory, Ohio State University, Columbus, Ohio.

From the data in Tables I–IV, Table V has been compiled. The ratios refer to the ratio between the weighted mean of one instar and that of the preceding one. Difference refers to the differences between the weighted means.

HEAD CAPSULE WIDTH				Air Siphon Length							
Instar	Mean	Difference	Ratio	Mean	Difference	Ratio					
Aedes aegypti											
$\begin{array}{c c}1\\2\\3\\4\end{array}$	$\begin{array}{c c} 246 \\ 402 \\ 635 \\ 854 \end{array}$	156 233 219	$ \begin{array}{c} 1.634 \\ 1.580 \\ 1.345 \end{array} $	$231 \\ 388 \\ 601 \\ 756$	157 213 155	$\frac{1.680}{1.549}\\ 1.258$					
			Aedes trivittat	us							
$\begin{array}{c}1\\2\\3\\4\end{array}$	$\begin{array}{c} 312 \\ 550 \\ 828 \\ 1107 \end{array}$	238 278 279	1.763 1.505 1.337	284 483 667 887	199 184 220	$1.701 \\ 1.381 \\ 1.330$					
			Culex apicali	s							
$\begin{array}{c}1\\2\\3\\4\end{array}$	$\begin{array}{c c} 263 \\ 388 \\ 610 \\ 894 \end{array}$	$\begin{array}{c} 125\\ 222\\ 284 \end{array}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$308 \\ 521 \\ 844 \\ 1335$	213 323 491	$\frac{1.692}{1.620}\\1.582$					
		Anot	bheles quadrima	iculatus							
$\begin{array}{c}1\\2\\3\\4\end{array}$	158 269 468 727	111 199 259	1.703 1.740 1.553								

TABLE V

DISCUSSION OF DATA

The distribution of the measurements of both the head capsule widths and air siphon lengths were plotted from the data in Tables I–IV. In addition, scatter diagrams were made by plotting the head capsule widths against the siphon lengths for *Aedes aegypti*, *Ae. trivittatus* and *Culex apicalis*.

Upon examination of the histograms (Plates I and II, Fig. 1–7) of both the head capsule widths and air siphon lengths it becomes apparent that these measurements are relatively constant within the four stadia. This observation corresponds with that of Dyar (1890) who, in his study of lepidopterous larvae, found in those examined that the sclerotized parts did not change in area during a stadium but rather the change occurred with ecdysis. In all cases, except the air siphons of the third and fourth instars of *Aedes aegypti*, there is a marked difference between the extremes.

It is considered that the accompanying scatter diagrams (Plates II and III, Fig. 8–10) serve to sum up the entire situation rather adequately. When length of siphon is plotted against head width for all individuals in each instar, it becomes readily apparent that both increase in a definite, clear-cut manner with ecdysis and that no overlapping of extremes occurs except in the case of the air siphons of the third and fourth instars of *Aedes trivittatus*.

F

Gaines and Campbell (1935) in their study of the number of instars in the corn earworm, Heliothis obsoleta (Fab.), used the ratio of the means of measurements of successive instars as a means of judging the progression of head capsule widths. They found, as did Ripley (1930) and Forbes (1934) with other lepidopterous larvae, that the greatest proportionate growth tended to fall between the first and second instars and the least between the pennultimate and the last. This also appears to hold true for the four groups of larvae considered here. An exception does occur in the head capsule ratios of An. quadrimaculatus and C. *apicalis* in which the ratios of the second and third instars are greater than those of the first and second instars; however, since the other five sets of ratios show a consistent decrease in ratio and since in no case is the last ratio greater than those preceding it, an experimental error rather than a deviation from the expected trend may be inferred.

The coefficients of correlation (r) indicate only a low degree of correlation between the size of the head capsules and air siphons. From this evidence it is not possible to predict size of an individual head capsule from the size of the air siphon or vice versa within a stadium.

Although there is an apparent and distinct increase in head capsule width and air siphon length between each instar and its succeeding one, it is not possible to state the nature of this increase in terms of regular progression, either geometric or arithmetic. This condition may be due to the fact that our time increment was determined arbitrarily and not with consideration of the time spent by each individual larva in each of the four stadia.

For practical purposes, the means of the head capsule widths of all the species studied and the air siphon lengths of the culicid species may be used as a criterion for determination of the instar. Although the character of the head capsule is known to be used by many field workers as an indication of instar, no stated corroboration of this practice was found in the literature in hand.

SUMMARY

The head capsule widths and air siphon lengths of the species of mosquito larvae herein examined are relatively constant within the four stadia. There was. with one exception, no overlapping of the extremes of measurements between instars.

The ratio between means of measurements of successive instars tends to decrease with the advancement of the larval instars.

Correlation is low between the size of head capsule and air siphon within an instar.

Determination of the nature of the rate of growth during successive molts cannot be completely assayed without an accurate determination of the time spent by each larva in each stadium.

For practical purposes the width of the head capsule and/or the length of the air siphon in each of the species considered may be used in determination of the stadia and number of instars.

BIBLIOGRAPHY

Dyar, H. G. 1890. The number of molts of Lepidopterous larvae. Psyche 5: 420-422. Forbes, W. T. M. 1934. A note on Dyar's law (Lepidoptera larvae). Bull. Brooklyn Ent. Soc. 29: 146-149.

Gaines, J. C. and F. L. Campbell. 1935. Dyar's rule as related to the number of instars of the corn ear worm. Heliothis obsoleta (Fab.). Collected in the field. Ann. Ent. Soc. Amer. 28: 445-461.

Peterson, A. 1943. Some new killing fluids for larvae of insects. Jour. Ec. Ent. 36 (1): 151.
Ripley, L. B. 1923. The external morphology and postembryology of noctuid larvae. Ill. Biol. Monog. 8 (4): 102.