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SUMMARY/ABSTRACT 

 
 

The FUS-ERG chimeric oncogene has been associated with fatal acute myeloid 

leukemias (AML) carrying the non-random t(16;21) (p11;q22) chromosomal aberration. 

In these leukemias, the presence of the t(16;21) translocation product FUS-ERG is 

associated with a) an increase in blasts with a round or irregular nucleus, basophilic 

cytoplasm, vacuoles and, occasionally, with phagocytosis features; b) the presence of 

micromegakaryocytes; and c) impaired myeloid differentiation with dysplastic 

neutrophils.  Reportedly, ectopic expression of FUS-ERG in murine myeloid precursor 

(L-G) and in human cord blood cells induces changes which, in part, might account for 

the phenotype observed in t(16;21) AML patients.  However, the FUS-ERG-dependent 

mechanisms underlying multilineage hematopoietic differentiation defects are still 

unclear. 

 To understand how FUS-ERG affects granulocytic differentiation, we 

independently generated 32Dcl3-derived myeloid progenitor cell lines expressing HA-

tagged ERG, FUS, and FUS-ERG oncoprotein.  In the presence of the growth factor, IL-

3, all cell lines showed similar proliferation rate without acquiring cytokine-independent 

growth. However, FUS and FUS-ERG, but not ERG, expression decreased the 

susceptibility to apoptosis induced by cytokine-deprivation in a dose-dependent manner.  

Interestingly, viable FUS-ERG-expressing cells (30%) were observed after five days in 

IL-3-deprived culture, whereas no parental cells were viable after 24 hours.  Conversely, 

FUS-ERG-expressing cells showed enhanced proliferation and delayed differentiation 

when cultured in the presence of G-CSF, a growth factor important in granulocytic 
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differentiation.  By contrast, marked apoptosis was observed in G-CSF-treated FUS- and 

ERG-expressing cells.  

To dissect the FUS-ERG-dependent molecular mechanisms underlying altered 

differentiation, we assessed protein levels of G-CSF receptor (G-CSFR) and of the two 

major regulators of myelopoiesis, PU.1 and C/EBPα.  Surprisingly, G-CSFR and 

C/EBPα, but not PU.1, levels were markedly increased in FUS-ERG-expressing cells but 

not in FUS- or ERG-transduced lines.  Moreover, by microarray analysis we found that 

FUS-ERG expression specifically induced a) downregulation of genes either required for 

granulocytic differentiation or inhibiting G-CSF-induced proliferation; b) downregulation 

of pro-apoptotic and growth-suppressor genes and upregulation of positive regulators of 

survival and proliferation; and c) upregulation of genes that either promote 

megakaryocytic differentiation or are markers of differentiation into other hematopoietic 

lineages.  Thus, it appears that FUS-ERG, rather than FUS or ERG overexpression, 

enhances survival and induces proliferation of myeloid progenitors by negatively 

affecting their ability to respond to differentiation stimuli. 
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INTRODUCTION 
 

Stem cells are the totipotent cells of the body that are capable of extensive 

proliferation and differentiation (Gilbert, 2003).  Stem cells are induced by the body to 

create all cells of an organism and constantly replenish various organic tissues such as 

blood, skin, and cells of the brain and liver.  In between the stem cell and its terminally 

differentiated progeny cells there is an intermediate population of committed progenitor 

cells that have limited capacity to proliferate and regulated differentiation potentials 

(Watt and Hogan, 2000).  The hematopoietic stem cell (HSC) has the ability of self-

renewal and gives rise to the different types of blood cells (Figure 1).  The adult 

pluripotent hematopoietic stem cells are found in the bone marrow and are responsible 

for generation of blood and lymph cells of the body.  Active bone marrow is found in the 

central cavity of all bones at birth.  However, by young adulthood the vertebrae, hips, 

shoulders, ribs, breastbone, and skull are the only bones of the body that continue to 

actively make blood cells (Beutler and Williams, 2001).  Hematopoiesis is the process by 

which the HSCs proliferate and differentiate to give rise to committed progenitors of the 

blood; lymphoid and myeloid (white cells), and erythroid (red cells) (Figure 2).   

Transcription Factors as regulators of 
hematopoietic cell 

proliferation and differentiation

Stem CellStem Cell

Stromal 
cells

Growth 
Factors

precursorsprecursors

myeloidmyeloid lymphoidlymphoid

 

Fig. 1:  Effects of transcription 
factors (green arrows) on 
proliferation and commitment 
of the hematopoietic stem cell 
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These lineage-committed cells terminally differentiate into essential blood cells of the 

mammalian body:  CTLs, plasma, helper T-cells, natural killer (NK) cells, platelets, 

basophils, eosinophils, neutrophils, macrophages, and erythrocytes (Figure 2).  Red cells 

(erythrocytes) and platelets are confined to the blood system whereas the white blood 

cells can exit the blood system and enter tissues where they are able to battle infection.  

ILIL--33
GG--CSFCSF

 

There are various factors affecting each step of the lineage pathways called 

hematopoietic growth factors (HGFs).  These factors are also known as cytokines and 

include granulocyte colony-stimulating factor (G-CSF), interleukin-3 (IL-3), granulocyte-

macrophage colony stimulating factor (GM-CSF), CSF-1, macrophage colony 

stimulating factor (M-CSF), stem cell factor (SCF), and tumor necrosis factor (TNF) 

(Gilbert, 2003).  Expression of these regulators is controlled at the transcriptional level 

(Figure 1) by specific molecules (transcription factors) which upon binding DNA, 

activate or repress gene expression.  Transcription is the process where mRNA is 

synthesized from a DNA template.  This process in eukaryotic cells is controlled by the 

RNA polymerase II (Roeder, 2005).  This polymerase binds to specific sequences present 

Fig. 2:  Hematopoiesis. 
IL-3 and G-CSF play a 
pivotal role in myeloid 
differentiation. The 
terminally differentiated 
blood cells are depicted 
at the bottom of the 
figure. 
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at the 5’ end of each gene called promoters and thus initiates RNA synthesis.  Following 

this step is elongation of the polynucleotide at its 3’ end.  Finally, the polymerase reaches 

the termination sequence and ceases transcription.  Following transcription, the newly 

formed messenger RNA (mRNA) leaves the cell nucleus and is translated into protein by 

ribosomes in the cell’s cytoplasm (Rodnina et al., 2005).  The proteins created serve in 

many areas and functions of a cell and many are transcription factors themselves.  These 

factors assist RNA polymerases in transcribing DNA into RNA.  Some of the 

transcription factors are involved in hematopoiesis and include PU.1 and C/EBPα 

(Gilbert, 2003).  The two major HGFs involved in this study are G-CSF and IL-3 and the 

two major transcription factors are PU.1 and C/EBPα (Figures 2 and 3).   

CMP

C/EBPαHSC

CLP

CLP

 

 Fig. 3:  Role of C/EBPα and PU.1 in hematopoietic cell differentiation. (HSC) 
Hematopoietic stem cell; (CMP) common myeloid progenitors; (CLP) common lymphoid 
progenitors; Ikaros, PU.1, GATA-1, NFE2 and C/EBPα are transcription factors. 
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G-CSF is produced by fibroblasts, monocytes, and endothelial cells, and the 

protein primarily stimulates neutrophil differentiation (Figure 2).  G-CSF promotes 

maturation and proliferation of acute myelogenous blast cells in addition to stimulating 

proliferation and maturation of normal common myeloid progenitors (CMP) (Beutler and 

Williams, 2001).  IL-3 is a multi-colony stimulating factor; it stimulates the growth and 

maturation of immature myeloid progenitors into granulocytes, monocytes, erythrocytes, 

megakaryocytes, mast cells, and T-cells (Beutler and Williams, 2001) (Figure 2).   

PU.1 is expressed in the HSCs in addition to the mutipotential progenitors, CMP 

and common lymphoid progenitors (CLP), and has been shown to be a transcription 

factor essential for development of myeloid lineages in hematopoiesis (Scott et al., 1994).  

This factor regulates promoter activity of a multitude of other myeloid genes encoding 

growth factors (i.e. SCL, G-CSF, M-CSF, and GM-CSF).  PU.1 is a member of the ETS 

transcription family and is important in lineage development.  Alterations in this gene 

have been shown to create a loss of development in myeloid and B-Cells (Scott et al., 

1994).  In some cases of acute myeloid leukemia (AML), activity of this factor has been 

shown to be suppressed, which implicates that its inhibition is a crucial step in the 

development of leukemia (Mueller et al., 2002).  Various data collected on PU.1 suggest 

that its degradation increases the self-renewal capacity of erythroid precursors and 

inhibits their differentiation (Tenen et al., 1997).  C/EBPα (CCAAT/enhancer binding 

protein) is a member of a family of leucine zipper transcription factors (Tenen et al., 

1997).  This factor is essential for the induction of genes that regulate granulocytic 

differentiation and expression of cytokine receptors, and is important for normal 

myelopoiesis.  These cytokine receptors include M-CSF, GM-CSF, G-CSF, and IL-3, and 
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genes required for granulocytic differentiation are MPO, LF, Myeloblastin, and others.   

Various studies on C/EBPα have suggested that it is a general inhibitor of cell 

proliferation and, therefore, resembles a tumor suppressor (Watkins et al., 1996).  

C/EBPα is genetically or functionally inactivated in AML and also inhibits the 

transactivation activity of PU.1 (Dahl and Simon, 2003).  Alterations in any step of the 

hematopoietic process (from stem-cell to mature blood cells) can disrupt the normal 

development of these cells and lead to clonal outgrowth of one or more cell lineages 

which can lead to deadly disease such as lymphomas and leukemias (Pereira et al., 1998). 

Lymphomas originate mostly in the lymph node system and are malignancies of 

the B and T cells (Hellman et al., 2001).  Leukemia is a cancer of the blood cells and 

affects the lymphoid or myeloid compartments.  Leukemia is categorized as being either 

chronic or acute.  Chronic leukemias develop in primitive myeloid or lymphoid 

progenitors which retain their ability to function as normal HSCs and continue to 

differentiate normally (Beutler and Williams, 2001).  However, these cells also have the 

tendency to undergo further transformation which leads to inhibited differentiation and 

loss of normal hematopoiesis.  There are four different types of leukemia; chronic 

myelogenous leukemia (CML), chronic lymphocytic leukemia (CLL), acute 

lymphoblastic leukemia (ALL), and acute myeloid leukemia (AML) (Figure 4).  This 

study focuses on the last type, AML, one of the most common types of leukemia in the 

Western Hemisphere.  AML is a clonal, malignant disease of the hematopoietic system 

that is characterized by increased proliferation and survival of myeloid immature cells, 

primarily in the bone marrow, and by impaired normal blood cell production (Beutler and 

Williams, 2001).  As the mutant cells gain growth and/or survival advantages over the 
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normal stem cells, its progeny proliferate to form billions of cells.  These processes 

usually result in bone marrow failure, with inhibition of normal hematopoiesis, arrested 

differentiation, neutropenia, anemia, and thrombocytopenia (Beutler and Williams, 

2001).  These place patients at risk for life-threatening infections, end-organ 

dysfunctions, and bleeding (Beutler and Williams, 2001).   

CLL

AMLCML
LEUKEMIA

Normal Hematopoiesis

transformation
Lymphoma

ALL

Acute myeloid Leukemia

Chronic myelogenous Leukemia

 

 

 

Management of AML is complex with only approximately 40% of treated patients 

achieving a long-term complete remission.  Treatment in general consists of induction 

with cytarabine/anthracycline-based chemotherapy regimen (“7+3”) followed by 

consolidation treatments for those patients who achieve complete remission.  The latter 

include high-dose cytarabine-based regimen or myeloblative doses of chemotherapy with 

autologus stem cell support.  For those patients at high risk of relapse; cases with 

Fig. 4:  Types of Leukemia Resulting From Abnormal Hematopoiesis. Microphotographs 
show blood smears form a normal donor and patients with the different types of Leukemia. 
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secondary AML developed from prior hematologic disorders or after receiving 

chemotherapy for unrelated cancers, and for those with cytogenetic or molecular 

aberration predicting early disease recurrence, therapeutic strategies with allogenic stem 

cell transplantation are usually pursued  (Beutler and Williams, 2001).   

 Acute myeloid leukemia is the primary form of leukemia during neonatal years; 

however, it represents only a small number of childhood and adolescent cases.  AML 

incidence increases with age; it accounts for 15-20% of acute leukemias in children and 

around 80% of those in adults (Beutler and Williams, 2001).  AML is only slightly more 

common in males over females and there is minimal difference between incidences in 

African or European descent at all ages.  Per year, there are around 2.3 cases per 100,000 

people at all ages.  Approximately 60% of AML cases are in people at ages of greater 

than 60 years, with a median age of 65-70 (Godwin and Smith, 2003).    

There are numerous predisposing conditions that can lead to the development of 

AML.  These include environmental factors such as exposure to radiation, benzene, and 

alkylating agents.  Some acquired diseases that lead to AML are primary 

thrombocythemia, CML, paroxysmal nocturnal hemoglobinuria, and myeloma (Beutler 

and Williams, 2001).  There are also a number of inherited conditions that increase the 

chance of developing the disease:  Down syndrome, identical sibling with AML, Werner 

syndrome, familial AML, and neurofibromatosis 1 are just a few (Beutler and Williams, 

2001).  Cytogenetic alterations are very common and frequent in the development of 

AML as well (Figure 5).  Some of these mutations include trisomy of chromosomes 8, 4, 

and 13, and deletions of all or part of chromosomes 7 and 5.  In addition to these 

mutations a number of chromosomal translocations have been noted in various leukemias 
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that often cause a rearrangement of a critical region of a protoncogene resulting from 

fusion between two genes.  The fusion genes are often transcription factors that alter 

regulatory sequences that control growth, differentiation, and survival (Hellman et al., 

2001).   

AML

Chromosomal 
aberrations

Normal
karyotype

•Genetic abnormalities
•Molecular abnormalities

Altered growth
Enhanced survival

Differentiation arrest

t(8;21) AML1/Eto
t(15;17) PML-RARα
inv(16) CBFβ-MYH11
t(9;11) AF9-MLL
t(7;11) Nup98-HOXA9
t(16;21) FUS-ERG

Flt3-ITD
MLL-PTD

 

One well-known translocation is that of the Philadelphia chromosome in CML 

discovered in 1960.  This is caused by the translocation between the c-ABL gene on 

chromosome 9 and the BCR gene on chromosome 22 which forms the well-known BCR-

ABL fusion gene (reviewed in Calabretta and Perrotti, 2004).  This translocation is also 

seen in approximately 30% of adults suffering from acute lymphoblastic leukemia (Ph1 

ALL).  

In approximately forty to fifty percent of those affected with AML, the somatic 

mutation results from a chromosomal translocation (Beutler and Williams, 2001).  These 

include the translocation (t) between chromosomes 8 and 21 AML1/ETO, t(15;17) PML-

RARα, t(9;11) AF9-MLL, t(7;11) Nup98-HOXA9, and t(16;21)(p11;q22) FUS-ERG 

(reviewed in Marcucci et al., 2005 and in Bloomfield, 2002) (Figure 5).   

Fig. 5:  Genetic and Molecular 
Abnormalities in AML. Genetic 
and or molecular aberrations in 
AML lead to differentiation 
arrest at different stages of 
myeloid maturation. 
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This last translocation between the FUS gene on chromosome 16 and the ERG 

gene on chromosome 21 leads to the production of the FUS-ERG fusion protein (Figure 

6).  The FUS-ERG translocation is very rare and, to date has only been diagnosed in 

approximately 30 patients with AML.  This non-random translocation was also observed 

in one patient with blast crisis of CML and in a few patients with myelodysplastic 

syndrome (MDS) that progressed to AML (Yamamoto et al., 1997).  In the FUS-ERG 

translocation, the RNA-binding domain of FUS is substituted with the DNA-binding 

domain of ERG and the chimeric transcript has been shown to function as a regulator of 

transcription (Yamamoto et al., 1997).  

Chr. 16 Chr. 21

FUS

ERG

FUS-ERG

FUS-ERG t(16;21)(p11;q22)

AML

FUS (TAD)
ERG (DBD)

FUS-ERG

FUS-dependent 
mRNA metabolism

ERG-dependent 
gene transcription

??

       

Altered differentiation is a common 
feature of different leukemias with poor 

prognosis

t(16;21) (p11;q22)

Not associated with
a specific FAB subtype

Fatal prognosis

Differentiation arrested 
at different stages

M0, M1, M2, M4, M5, M7

Frequently associated with 
other numerical or structural 

abnormalities

Median Age 20

 

 

 

 

Because AML shows diverse cytomorphological features, it is classified into various 

subtypes (M0, M1, M2, M3, M4, M5, M6 and M7) of the French-American-British 

(FAB) classification (Shimizu et al., 1993).  Occurrence in each subtype is dependent on 

cell type and degree of differentiation.  AML with the t(16;21) translocation shows 

arrested differentiation at different stages (M0, M1, M2, M4, M5, and M7) (Figure 6).  

The M0 stage is characterized by cells that are myeloblastic with minimal differentiation.  

Fig. 6:  t(16;21) Acute Myeloid Leukemia and the FUS-ERG fusion. (left) Generation of the 
chimeric FUS-ERG oncogene and possible mechanisms of leukemogenesis; (right) Clinical 
features of the t(16;21) AML. 
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M1 is characterized by myeloblastic cells without maturation.  M2 cells are myeloblastic 

with maturation.  M3 are promyelocytic, M4 are myelomonocytic, M5 are monocytic, 

M6 are Erythroleukemia, and M7 are megakaryocytic (Krause, 2000).  One group has 

identified 4 different types of mRNA transcripts for FUS-ERG, and although the 

biological implication of the heterogeneity of these transcripts has not been determined, it 

is predicted that these varying transcripts enable the translocation to be implicated in 

these various subtypes of leukemia (Panagopoulos et al., 1995).  The prognosis of 

patients diagnosed with this genetic aberration in AML is very poor and no patients 

achieve complete remission.       

 The FUS/TLS (translocated in liposarcoma) gene encodes an RNA/DNA-binding 

protein and was first discovered as a translocated gene in myxoid liposarcoma (Crozat et 

al., 1993).  In this disease, FUS is fused to the CHOP (c/EBP homologous protein) gene 

(Yang et al., 2000).  The FUS protein serves in transcription regulation and RNA 

metabolism.  It should also be noted that the nuclear RNA-binding protein encoded by 

FUS is homologous in amino-acid sequence to the EWS protein.  It has been shown in a 

subset of Ewing’s Sarcomas that ERG is fused with the EWS gene.  FUS is also closely 

related to TAFII68 (TATA-binding protein-associated factor).  TAFII68, TLS (FUS), and 

EWS interact with RNA polymerase II which implicates that TLS is a transcriptional 

activator (Yang et al., 2000).  In addition, experiments have shown that FUS binds to 

RNA polymerase II through the N-terminal domain and associates with various splicing 

factors via the C-terminal domain (Chansky et al., 2001).  The FUS gene contains a 

highly conserved C-terminus region composed of 80 amino acids called the 

ribonucleoprotein consensus sequence (RNP-CS) (Crozat et al., 1993).  Flanking this is 
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an RNA recognition motif (RRM) and further down from this are Arg-Gly-Gly (RGG) 

repeats and a C2-C2 zinc finger domain (Hackl and Luhrmann, 1996).  It has been 

demonstrated that suppression of FUS expression in myeloid precursor 32Dcl3 cells is 

correlated with upregulation of granulocyte-colony stimulating factor receptor (G-CSFR) 

and downregulation of interleukin-3 receptor (IL-3R) (Perrotti et al., 1998).  In addition, 

G-CSF-stimulated differentiation was seen to be accelerated in FUS-knock-down 

myeloid cells (Perrotti et al., 2000).  The FUS gene has also been found to be upregulated 

in CML-BC (blast crisis) (Perrotti et al., 1998).      

ERG (ets-related gene) is a member of the ETS gene superfamily which consists 

of a number of genes that encode for transcriptional regulators in a variety of 

developmental mechanisms.  These transcription factors play important roles in cell 

development, proliferation, differentiation, apoptosis, tissue remodeling, and deregulation 

of ETS genes leads to malignant transformation of cells (Oikawa, 2004).  ETS proteins 

bind to ETS-binding sequences of DNA through a uniquely conserved winged helix-turn-

helix motif (Donaldson et al., 1994).  Two of these genes are ETS-1 and ETS-2, both of 

which have been implicated in oncogenesis and cellular transformation when 

overexpressed (Myers et al., 2005).  The ERG gene encodes for five proteins; Erg-1, Erg-

2, Ergp55, Ergp49, and Ergp38 (Carrere et al., 1998).  ERG overexpression decreases 

apoptosis of serum-deprived NIH3T3 cells (Yi et al., 1997).  Furthermore,  it has been 

shown that ERG overexpression in mouse fibroblast NIH3T3 cell lines alters 

morphological features, allows cells to grow in low and serum-free media, and gives rise 

to colonies in soft agar (Hart et al., 1995), thus, ERG may contribute to oncogenesis.  In 

addition, mice injected with ERG-expressing cells ectopically developed tumors, which 
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suggests that ERG overexpression may contribute to tumor transformation (Ichikawa et 

al., 1999).  In addition to ERG, the APP (β-amyloid precursor protein)  gene is located on 

chromosome 21 in close proximity to ERG and ETS-2 transcription factor and has been 

shown to be overexpressed in AML (Baldus et al., 2004).  This protein is also associated 

with Down Syndrome and has previously been implicated in Alzheimer’s disease 

(Wolvetang et al., 2003). 

 FUS-ERG has been shown to arrest erythroid and alter myeloid differentiation 

and to increase proliferation and self-renewal capacity of human myeloid progenitors 

(Pereira et al., 1998).  The translocation increases the number of blast cells which exhibit 

the following characteristics:  round or irregular nucleus, basophilic cytoplasm, vacuoles, 

and phagocytic features.  The presence of micromegakaryocytes is also observed.  In 

addition, the chimeric protein has been demonstrated to induce anchorage-independent 

growth in 3T3 fibroblasts and to block neutrophilic differentiation of myeloid L-G cells 

(Ichikawa et al., 1999).  It seems that FUS is required for FUS-ERG-dependent 

suppression of differentiation.  This fusion protein has also been suggested to cause 

cellular abnormalities by interfering with FUS-mediated RNA splicing by serine-arginine 

proteins (Yang et al., 2000).  While FUS-ERG is known to be associated with AML, the 

mechanism by which the fusion protein acts is still unclear.  Thus, the goal of this study 

is to investigate whether the effects of the translocated fusion gene, FUS-ERG, in acute 

myeloid leukemia cells depend on interference with FUS RNA regulatory activity or with 

ERG transcriptional activating function.  
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RESULTS 
 
 

1. Effect of ERG and FUS-ERG on proliferation and survival of myeloid progenitors.  

To assess the effect of FUS-ERG expression on proliferation and survival of 

myeloid progenitor cells, the IL-3-dependent 32Dcl3 mouse myeloid precursors were 

infected with neomycin- or green fluorescent protein (GFP)-containing bicistronic 

retroviruses carrying the hemagglutinin (HA)-tagged FUS-ERG, ERG, and FUS cDNAs 

(Figure 7).  After antibiotic (G418)-mediated selection or FACS-mediated sorting of GFP 

positive cells, the newly established cell lines were used in proliferation and survival 

assays.   

 

To assess the effects of ERG and FUS-ERG on proliferation and survival of myeloid 

progenitors, parental 32Dcl3, FUS-, ERG-, and FUS-ERG-expressing cells were grown 

in the presence of IL-3 (Figure 8) and absence of IL-3 for 0 to 36 hours (Figure 9).  As 

shown, proliferation of the IL-3-growing cell lines was identical to that of parental cells 

(Figure 8).  While parental 32Dcl3 and 32D-ERG cells died by 24 hours of culture in the 

Fig. 7:  Expression of FUS, ERG and FUS-ERG 
in myeloid precursors. Anti-HA Western blots 
show ectopic HA-tagged FUS, ERG and FUS-
ERG proteins in mouse myeloid 32Dcl3 cells. 
GRB2 levels were detected as control for equal 
loading. 
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absence of IL-3 (Figures 9), 32D-FUS-ERG cells were less prone to undergo apoptosis 

induced by IL-3 deprivation (Figure 9). 

   

In fact, 30% of FUS-ERG cells were still alive after five days in culture with absence of 

IL-3 (not shown).  Interestingly, the 32D-FUS cells also behaved as the FUS-ERG cells 

and exhibited delayed apoptosis in absence of IL-3 (Figures 9).  These results suggest 

that the fusion protein gains an oncogenic function by circumventing cytokine-generated 

survival signals.  However, FUS-ERG cells failed to become completely growth factor-

independent and were all apoptotic within a week of culture (not shown).  

 

 

Fig. 8.  Effects of ERG, FUS, and FUS-
ERG on IL-3-dependent proliferation of 
myeloid 32Dcl3 cells.  Growth of parental, 
FUS-ERG-, ERG- and FUS-expressing 
32Dcl3 cells in IL-3-supplemented 
cultures.  Viable cells were counted over a 
72 hour time period by trypan-blue 
exclusion test. Lines in the graph represent 
Mean±SD. Representative of three 
different experiments with similar results.   

Fig. 9.  Effects of IL-3 deprivation on 
survival of parental, ERG-, FUS-, and 
FUS-ERG-expressing myeloid 32Dcl3 
cells.  Graph shows survival of parental 
32Dcl3 and derivative cell lines upon IL-3 
starvation. Viable cells were assessed by 
trypan-blue exclusion test. Representative 
of three independent experiments with 
similar results. 
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2. Effect of ERG and FUS-ERG expression on G-CSF-driven granulocytic 

differentiation of myeloid progenitors. 

Because dysplastic myeloid maturation is a characteristic feature of patient-

derived t(16;21) AML cells (Hiyoshi et al., 1995), and ectopic FUS expression impairs 

G-CSF-driven granulocytic differentiation and induces apoptosis of G-CSF-cultured 

myeloid precursors (Perrotti et al., 1998; Perrotti et al., 2000), we investigated the effects 

of FUS-ERG and ERG overexpression to determine whether altered differentiation in 

t(16;21) AML depends on FUS-ERG expression, and whether ERG overexpression might 

account for those effects.  Thus, growth and morphology were monitored in parental, low 

and high ERG-, and FUS-ERG-expressing 32Dcl3 cells exposed to G-CSF for 7 to 9 

days, (10% of U87MG conditioned medium as source of crude G-CSF).  Parental 32Dcl3 

cells ceased to proliferate after 4 days of culture in the presence of G-CSF (Figure 10) 

and underwent complete granulocytic differentiation by day 7 (Figure 11).  

 

By contrast, G-CSF-treated FUS-ERG-expressing cells showed enhanced proliferation 

(Figure 10) and delayed differentiation, as mitotic cells, vacuolated myeloblasts, cells at 

intermediate stages of maturation (myelocytes and metamyelocytes) and cells with 

Fig. 10.  Effect of ERG and FUS-ERG on 
G-CSF-driven proliferation of myeloid 
32Dcl3 cells.  Graph shows growth of 
parental 32Dcl3 and derivative cell lines 
upon exposure to G-CSF. Viable cells were 
assessed by trypan-blue exclusion test. 
Representative of three independent 
experiments with similar results. 
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segmented nuclei (polymorphonuclear cells; neutrophils) were evident after 9 days of 

culture in G-CSF-containing medium (Figure 11).  Thus, altered myeloid differentiation 

of t(16;21) leukemia cells might be a direct consequence of FUS-ERG expression. 

 

 

 

 

Unexpectedly, 32D-ERG-expressing cells, like FUS-expressing 32Dcl3 myeloid 

progenitor cells (Perrotti et al., 1998), did not show enhanced proliferation or 

differentiation in response to G-CSF but underwent apoptosis by day 5-6 (Figures 10 and 

11).  Interestingly, in parental 32Dcl3 cells, levels of endogenous ERG progressively 

decrease during G-CSF-induced neutrophilic maturation (Figure 12), suggesting that 

downregulation of ERG expression is required for differentiation.     

Fig. 11.  Effect of ERG and FUS-ERG on G-CSF-driven granulocytic differentiation of myeloid 32Dcl3 
cells.  Microphotographs show May-Grunwald/Giemsa stained cytospin of parental, ERG-, and FUS-ERG-
expressing 32Dcl3 cells exposed for the indicated time to G-CSF.  Representative of three independent 
experiments with similar results. 



Michael Doarn 

 25

 

Thus, these results suggest that overexpression of ERG or FUS alone does not account 

for the effect of FUS-ERG on differentiation of myeloid cells, which is most likely the 

result of either interference with ERG transcriptional activity or FUS-dependent 

regulation of mRNA transcription and splicing.  Alternatively, the effects of FUS-ERG 

on myeloid differentiation might be a specific effect of the fusion protein itself. 

 
 

3.   Effect of FUS, ERG, and FUS-ERG expression on levels of transcription factors 

important for myeloid differentiation.  

To dissect the FUS-ERG-dependent molecular mechanisms underlying altered 

differentiation, we assessed the effects of FUS, ERG, and FUS-ERG expression on the 

protein levels of the transcription factors PU.1, C/EBPα, and C/EBPε that, as extensively 

reported (reviewed in Tenen, 2003), are essential for differentiation of CMP cells toward 

the more committed granulocytic precursors, initial maturation of myeloblasts, and 

terminal maturation of myelocytes into neutrophilic cells, respectively.   

In 32Dcl3 cells, overexpression of FUS suppresses C/EBPα expression (Figure 

13, lane 2). Consistent with this finding, expression of a FUS mutant with dominant 

negative activity (S256A FUS), but not of the dominant active S256D FUS mutant 

(Perrotti et al., 2000), rescued C/EBPα expression back to normal levels (Figure 13, lanes 

Fig. 12.  Modulation of ERG expression during G-
CSF-induced granulocytic differentiation of myeloid 
32Dcl3 cells.  Western blot shows levels of ERG and 
GRB2 (loading control) in 32Dcl3 cells exposed for 0 to 
9 days to G-CSF. 



Michael Doarn 

 26

1, 3, and 4), suggesting that altered differentiation of FUS-ERG cells might depend on 

the effect of the FUS portion of FUS-ERG on C/EBPα expression.  

 

In agreement with this hypothesis, C/EBPα levels were clearly higher in three single 

clones of FUS-ERG-expressing cells than in parental 32Dcl3 cells (Figure 14, left panel).  

Furthermore, upregulation of C/EBPα by FUS-ERG appears to be dependent on the 

levels of the fusion protein itself, as C/EBPα protein levels are higher in 32Dcl3 cells 

highly expressing FUS-ERG than in a 32Dcl3 cell line expressing lower levels of FUS-

ERG (Figure 14, right panel, lanes 2 and 3).   

 

 

 

 

 

 

 

 

 

 

Fig. 14.  Effect of FUS-ERG expression on C/EBPα, C/EBPε, PU.1, and G-CSFR protein levels in 
32Dcl3 myeloid progenitor cells.  Western blots show expression of C/EBPα, C/EBPε, PU.1, and G-
CSFR in parental and in high (32D-FE1-3) and low (32D-FEP) FUS-ERG-expressing 32Dcl3 cells. 
Levels of the ectopic HA-FUS-ERG are depicted in the 4th row (left panel) and in the 3rd row (left 
panel).  Levels of GRB2 were monitored as control for equal loading. 

Fig. 13.  Effect of FUS expression on C/EBPα 
protein levels in 32Dcl3 myeloid progenitor cells.  
Western blots show expression of C/EBPα in 
32Dcl3 cells ectopically expressing wild type FUS 
(lane 2) or the dominant negative S256A or the 
dominant active S256D FUS mutant (Perrotti et al., 
2000).  Levels of HSP90 were monitored as control 
for equal loading. 
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Consistent with this finding, levels of the C/EBPα-regulated G-CSFR were also increased 

in FUS-ERG-expressing 32Dcl3 myeloid progenitors (Figure 14, left panel).  By contrast, 

levels of C/EBPε and PU.1 were not affected by FUS-ERG expression (Figure 14), 

suggesting that PU.1 and C/EBPε transcription factors are not targets of FUS-ERG pro-

leukemogenic activity.   

In 32Dcl3 myeloid precursors ectopically expressing low (32D-M12) or high 

(32D-M4) levels of ERG protein, C/EBPα expression was similar to that of parental 

32Dcl3 cells (Figure 15, lanes 3 and 4). 

 

However, expression and activity of other molecules involved in the regulation of 

myeloid differentiation were also aberrantly regulated by ERG and/or FUS-ERG 

overexpression.  Interestingly, expression of some of these factors appears to be regulated 

at the transcriptional level because they have also been detected by microarray performed 

on FUS, ERG, and FUS-ERG-expressing cells (see section 5 of results).  For example, 

levels of Myb, a transcription factor essential for proliferation and initial maturation of 

immature myeloid cells (Gonda, 1998), was markedly inhibited by FUS-ERG expression 

Fig. 15.  Effect of ERG and FUS-
ERG expression on regulators of 
myeloid differentiation and on APP 
levels. Western blots show expression 
of active STAT3, APP, 
C/EBPα, active MAPK ERK1/2, and 
Myb in 32Dcl3 cells ectopically 
expressing FUS-ERG (32D-FE3) (lane 
2), High ERG (lane 3) and low ERG 
(lane 4) levels. Level of ectopic HA-
tagged FUS-ERG and ERG are shown 
in the 6th panel. Levels of GRB2 were 
monitored as control for equal loading. 
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(Figure 15).  Moreover, both FUS-ERG and ERG expression enhanced activity of the 

signal transducer and activator of transcription 3 (STAT3), a G-CSF-induced 

transcription factor frequently activated in AML that augments proliferation and C/EBPα 

differentiation-inducing activity (Benekli et al., 2003; Coffer et al., 2000; Numata et al., 

2005; McLemore et al., 2001; Lai et al., 2003).  Similarly, activity of the mitogen 

activated protein kinase ERK1/2 was induced by FUS/ERG overexpression (Figure 15).  

Of note, it has been shown that ERK1/2 activity inhibits myeloid differentiation upon 

phosphorylation of C/EBPα on serine 21 (Ross et al., 2004). 

 

4.   Effect of ERG and FUS-ERG expression on APP levels and cellular localization in 

myeloid progenitor 32Dcl3 cells.  

Changes in amyloid precursor protein (APP) expression were investigated 

because it has been recently shown that its levels are increased in AML and correlated 

with that of ERG (Baldus et al., 2004).  As shown, APP expression is strongly enhanced 

in ERG and FUS-ERG expressing cells (Figure 15).  However, APP expression 

dramatically decreases upon G-CSF treatment of parental and FUS-ERG-expressing 

32Dcl3 cells (Figure 16), suggesting that either high APP levels might be non-compatible 

with myeloid differentiation or APP expression is associated with growth, and levels 

decline when cells cease to proliferate.  
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The effect of ERG and FUS-ERG is not only evident on APP expression; in fact, by 

confocal microscopy performed on anti-APP antibody-stained cytospinned cells, we 

found APP primarily localized in the cytoplasm of parental 32Dcl3 cells whereas it was 

relocated in the nucleus in 32D-FUS-ERG and 32D-ERG cells (Figure 17).  These data 

suggest that overexpression of ERG and, consequently, increased nuclear APP levels may 

play an important role in the development of AML, including the t(16;21) leukemias.  

 

 

 

  

Fig. 16.  Effect of IL-3 and G-CSF 
treatment on APP expression in 
parental and FUS-ERG-expressing 
32Dcl3 cells. Western blots show 
expression of APP in 32Dcl3 and 
FUS-ERG (32D-FE3) maintained in 
culture in the presence of IL-3 (lanes 1 
and 2) or induced to differentiate for 3 
days with G-CSF (lanes 3 and 4). 
Levels of GRB2 were monitored as 
control for equal loading. 

32D-ERG 32D-FUS-ERG 32Dcl3 

Fig. 17.  APP localization in parental, FUS-ERG-, and ERG-expressing 32Dcl3 cells.  Confocal 
microscopy on anti-APP-stained cells.  Insets depict magnified areas.  
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5.  Global effect of ERG and FUS-ERG on the transcription profile of myeloid 

progenitor 32Dcl3 cells. 

To determine the effect of ERG and FUS-ERG on gene expression, 

oligonucleotide array analysis was performed using total RNA obtained from the IL-3-

cultured parental, FUS-ERG- (FE3 and FEP), and ERG- (M4 and M12), and FUS-

expressing 32Dcl3 cells.  Interrogation of Affymetrix Microarray revealed a discrete 

number of genes regulated by ERG, and/or FUS-ERG (Table 1).  For example, cell lines 

expressing FUS-ERG had upregulated genes required for survival and proliferation, 

megakaryocytic differentiation and lymphocytic markers, whereas genes required for G-

CSF induced differentiation, and growth suppression were downregulated.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1.  Genes regulated by ERG, FUS-ERG, and FUS in relation to parental 32Dcl3 cells. 
             
Gene Title                                                                  Gene Symbol                                 Folda 
                                                      ERG       FUS-ERG       FUS 
neuroblastoma myc-related oncogene 1                     N-myc 1  6.08    2.0       13.98 
transglutaminase 2, C polypeptide                      Tgm2                                   13.93       10.18 
interleukin 2 receptor, alpha chain                       Il2ra                                     3.80         9.30 
CCAAT/enhancer binding protein (C/EBP), alpha                     C/EBPα                           -1.91 
homeo box C8         Hoxc8   1.89 
v-maf musculoaponeurotic fibrosarcoma                      Mafb                 -1.51 
   oncogene family, protein B (avian) 
MAD homolog 4 interacting transcription                       Mitc1                 -1.52 
    coactivator 1 
frizzled-related protein         Frzb                 -1.62 
gasdermin         Gsdm                 -1.65 
colony stimulating factor 3 receptor (granulocyte)                    Csf3r(G-CSFR)       2.75 
nuclear factor of kappa light chain gene                       Nfkb1                       1.80              5.27 
    enhancer in B-cells 1 
Von Willebrand factor homolog                       Vwf                                      6.80 
myeloproliferative leukemia virus oncogene                      Mpl                       2.00 
myeloblastosis oncogene                        Myb                     -1.60 
myeloperoxidase                        Mpo                                    -2.10 
helix-loop-helix Id2           Id2     -2.50 
wild-type p53-induced gene 1                       Wig1                                    -2.10 
BCL2/adenovirus E1B 19 kDa-interacting                    Bnip3                     -2.70 
   protein 1, NIP3 
cytokine inducible SH2-containing protein 3  cis3/SOCS3     -2.0 
complement component 3                        C3                                     1.66              3.05 
S100 calcium binding protein A8 (calgranulin A)                   S100a8                 1.54             6.22 
glycoprotein 49 B                      Gp49b                 1.53    6.61             3.54 
colony stimulating factor 2 receptor, beta 2,                    Csf2rb2       1.93 
   low-affinity (granulocyte-macrophage) 
amyloid beta precursor protein (cytoplasmic tail)                     Appbp2           -1.50 
   binding protein 2 
             
a.  Listed are genes with at least a 1.5 fold change in regulation 
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Interestingly, a gene upregulated by FUS-ERG is the G-CSFR which, as we previously 

showed, is overexpressed in FUS-ERG cells in a dose-dependent manner (Figure 14). 

Similarly, other transcription factors like NF-Kb were upregulated by FUS-ERG.  Indeed, 

anti-p65 NFkB western blot shows that NFkB is a true transcriptional target of FUS-ERG 

(Figure 18).  

 

Genes encoding markers of differentiation of different hematopoietic lineages (Mpl, vWf, 

and IL-2Rα) were also upregulated in FUS-ERG cells, consistent with the observation 

that leukemic cells from t(16;21) AML patients present lymphoid and megakaryocytic 

markers of differentiation (Hiyoshi et al., 1995).  

Some downregulated genes in FUS-ERG-expressing cells included myeloblastin, 

myeloperoxidase (MPO), and lactoferrin (LF), three factors whose activity is required  

for differentiation into mature granulocytes (Berliner et al., 1995; Lutz et al., 2001).  The 

levels of the mRNAs encoding the proto-oncogene Myb, the inhibitor of differentiation 

Id2 and the suppressor of cytokine signaling 3 (SOCS3), all of which are inhibitors of G-

CSF induced differentiation (Yanagisawa et al., 1991; Cooper and Newburger, 1998; 

Croker et al., 2004), were downregulated in FUS-ERG-expressing cells as well.  

Consistent with this data we have already shown that Myb protein is downregulated by 

FUS-ERG expression (Figure 15).  Other genes transcriptionally downregulated by FUS-

Fig. 18.  Effect of FUS-ERG on NFkB expression. 
Western blot show expression of NFkB in parental, 
high (lane 2) and low (lane 3) FUS-ERG-expressing 
cell lines. Levels of GRB2 were monitored as 
control for equal loading. 
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ERG were the pro-apoptotic and growth suppressors Wig-1 and BNIP-3 (Hellborg et al., 

2001; reviewed in Zhang et al., 2003).   

The proto-oncogene N-myc 1 was found among those genes upregulated in 

microarrays of ERG and FUS-ERG overexpressing 32Dcl3 cells.  Anti-N-Myc 

immunoblotting confirmed the microarray data; in fact, levels of N-Myc protein were 

markedly increased is 32Dcl3 cells ectopically expressing ERG and FUS-ERG (Figure 

19).  

32D Fe3 M4 FUS

GRB2

N-myc 1

 

 

Another gene upregulated in ERG-expressing cells was HOXC8, a transcription 

factor belonging to the homeobox family whose enhanced expression correlates with loss 

of differentiation (Waltregny et al., 2002).  Other genes downregulated in ERG-

expressing cells include: MafB (v-maf) which is a leucine zipper transcription factor; the 

MAD homolog 4 interacting transcriptional coactivator Mitc1; gasdermin (GSDM), a 

protein whose expression is suppressed in Gastro-Intestinal cancer (Saeki et al., 2000); 

and Frzb, an inhibitor of the wnt signaling pathway whose loss is apparently associated 

with tumor development (Bafico et al., 1999; reviewed in Polakis, 2000).  

 

 
 
 

Fig. 19.  Effect of FUS-ERG, ERG, and FUS 
overexpression on N-Myc expression. Western blot 
shows expression of N-Myc protein in parental 
(lane 1), FUS-ERG (lane 2), ERG (lane 3) and FUS 
(lane 4)-expressing cell lines.  Levels of GRB2 were 
monitored as control for equal loading. 
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DISCUSSION 
 

 
In the rare and fatal AML with the recurrent t(16;21) translocation, leukemic cells 

show enhanced proliferation and dysplastic myeloid differentiation (Hiyoshi et al., 1995); 

in fact, the t(16;21) translocation was found not associated to a specific FAB phenotype 

(Kong et al., 1997).  Although few studies indicate that FUS(TLS)-ERG, the product of 

the t(16;21) translocation (Panagopoulos et al., 1994), plays a pivotal role in promoting 

leukemogenesis (Pereira et al., 1998; Ichikawa et al., 1999), there is no formal evidence 

showing that it can transform hematopoietic stem cells or committed myeloid progenitors 

and induce leukemia in mice.  

Despite it being shown that the FUS-ERG fusion protein has potent 

transcriptional transactivation activity (Prasad et al., 1994), the mechanisms whereby it 

alters the phenotype and, perhaps, induces leukemic transformation of myeloid 

progenitors is still largely unknown.  Here, we reported that FUS-ERG expression 

decrease susceptibility to apoptosis induced by cytokine deprivation and enhances G-

CSF-driven proliferation of mouse myeloid progenitor 32Dcl3 cells.  Furthermore, we 

also provided evidence showing that increased survival was a characteristic shared 

between FUS-ERG and FUS but not ERG overexpressing cells, whereas the G-CSF-

induced proliferative advantage was a specific feature of FUS-ERG cells.  Aberrant G-

CSF-dependent proliferation was also accompanied by delayed granulocytic 

differentiation of FUS-ERG cells.  Consistent with this observation, it has been reported 

that expression of FUS-ERG in primary CD34+ cord blood cells markedly enhances self 

renewal and inhibits erythroid development (Pereira et al., 1998).  Seemingly, the patient-

derived myeloblastic YNH1 cells, which carry the t(16;21) translocation and express the 
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FUS-ERG fusion protein, do not undergo granulocytic differentiation but continuously 

proliferate if exposed to G-CSF (Yamamoto et al., 1997).  Although the FUS-ERG-

induced phenotypic changes might resemble those of leukemic cells, FUS-ERG 

expression did not confer growth factor independence to 32Dcl3 myeloid progenitors.  

Similarly, proliferation of L-G myeloid precursors transduced with a FUS-ERG-

expressing construct remained dependent on the exogenous support of cytokines 

(Ichikawa et al., 1999).  

Although FUS-ERG expression may be not sufficient to fully transform cells, 

altered differentiation of FUS-ERG-expressing myeloid progenitor 32Dcl3 cells seems to 

be a direct consequence of FUS-ERG expression.  In fact, the presence of vacuolated 

blast cells with irregular nuclei, frequent mitosis, cells arrested at different stages of 

maturation, and expression of lymphoid and megakaryocytic markers in myeloid 32D-

FUS-ERG cells exposed for 9 days to G-CSF has also been observed in specimens from 

t(16;21) AML patients (Hiyoshi et al., 1995).  

Because differentiation arrest is a common feature of acute leukemias, and   

genetic or functional inactivation of C/EBPα, the major regulator of granulocytic 

differentiation (Zhang et al., 1997), has been found associated to myeloid leukemias with 

normal cytogenetic or carrying specific chromosomal abnormalities (Perrotti et al., 2004), 

we asked whether the aberrant differentiation of FUS-ERG-expressing cells results from 

loss of C/EBPα function.  Unexpectedly, C/EBPα expression was upregulated in FUS-

ERG-expressing cells, downregulated in FUS-expressing cells, and unaffected in ERG-

expressing cells.  Moreover, increased C/EBPα expression appears to correlate with 

increased C/EBPα transcriptional activity, as levels of the C/EBPα target G-CSFR 
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(Zhang et al., 1998) were also upregulated.  Increased expression of the G-CSF receptor 

(G-CSFR) may explain the enhanced survival of FUS-ERG cells cultured in the presence 

of G-CSF; however, the presence of high levels of C/EBPα argue against this simple 

interpretation.  In fact, C/EBPα is not only an inducer of differentiation but also a strong 

growth suppressor (Friedman, 2002).  Since G-CSF can amplify its mitogenic signals by 

inducing the expression of its own receptor (Steinman and Tweardy, 1994) and induce 

granulocytic differentiation in a C/EBPα-independent manner (Collins et al., 2001), it is 

possible that increased C/EBPα expression reflects a mechanism that tries to compensate 

the growth advantage induced by the effects of G-CSF through STAT3 signaling.  

Indeed, we have shown that STAT3 activity is enhanced in FUS-ERG-expressing 

myeloid cells.  In this scenario, we must expect that FUS-ERG activates pathways 

leading to post-translational inactivation of C/EBPα that, in turn, becomes unable to 

induce G1/S arrest and differentiation.  In line with this hypothesis, we found that FUS-

ERG augments MAPK ERK1/2 activity that, as previously reported, inhibits C/EBPα 

transcriptional and growth suppressive functions upon phosphorylation of C/EBPα serine 

21 (Ross et al., 2004).  

Although altered differentiation of FUS-ERG-expressing cells might, in part, 

depend on functional inactivation of C/EBPα, the expression profile of 32D-FUS-ERG 

cells indicate that upregulation of growth-promoting genes together with downregulation 

of genes with pro-apoptotic, growth suppressive, and differentiation inhibitory function 

might account for enhanced proliferation and dysplastic differentiation of committed 

myeloid progenitor cells.  



Michael Doarn 

 36

Interestingly, we also found the amyloid precursor protein (APP) to be 

upregulated by FUS-ERG and ERG expression.  Although we still do not understand the 

function of APP in myelopoiesis and in leukemia, it appears clear that it might have an 

important role in these processes because of the ability of FUS-ERG and ERG to induce 

APP expression and relocation into the nuclear compartment.  Note that it has been 

recently reported that increased APP and ERG expression correlate with poor prognosis 

of AML patients with chromosome 21 abnormalities (Baldus et al., 2004).  Interestingly, 

APP was one of the few genes whose expression was regulated in a similar manner by 

both ERG and FUS-ERG.  Moreover, we did not find factors (with the exception of 

C/EBPα) which were similarly or antagonistically modulated by FUS and FUS-ERG 

expression, suggesting that FUS-ERG neither represents a more powerful transcription 

factor enhancing expression of ERG-target genes, nor a protein that strongly interferes 

with FUS activities. 

In summary, we favor the hypothesis that FUS-ERG predisposes myeloid cells to 

leukemic transformation which, eventually, will be induced by a subsequent hit (Figure 

20). 

 

CMP

MDS

AML

FUS-ERG (potent transcription factor)

Altered Differentiation

1st Hit

molecular abnormalities
Activated oncogenes

Loss of tumor suppressors

2nd Hit      Transformation

Hypothesis

t(16;21) (p11;q22) MDS/AML

 

Fig. 20.  Role of FUS-ERG in 
leukemogenesis. FUS-ERG may 
alter differentiation of myeloid 
progenitors and, eventually, 
predispose them to become 
leukemic upon oncogenic activation 
and/or loss of genes with tumor 
suppressor activity. 
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Indeed, the t(16;21) translocation was also found in patients with myelodysplastic 

syndrome (MDS) that subsequently developed AML (Hiyoshi et al., 1995).  However, we 

cannot exclude the possibility that FUS-ERG might be capable of transforming primary 

hematopoietic stem cells and induce a series of phenotypic changes characteristic of the 

t(16;21) AML.  Additional studies aimed at investigating the molecular mechanism 

whereby FUS-ERG regulates gene expression will provide further insight into the role of 

FUS-ERG in leukemogenesis.  Specifically, experiments aimed at assessing the effects of 

FUS-ERG and ERG on proliferation, survival, and differentiation of primary CD34+ 

human bone marrow cells and at determining whether FUS-ERG expression in normal 

marrow cells induces leukemia in immunocompromised NOD/SCID mice might unveil 

new insights into the molecular mechanisms responsible for differentiation arrest of acute 

myeloid leukemias cells.  A better understanding of the complexity of these mechanisms 

might help the identification of novel therapeutic drugs aimed at restoring the normal 

development of the leukemic myeloid progenitors.   
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MATERIALS AND METHODS 
 
Cell Lines  

The murine IL-3-dependent 32Dcl3 myeloid precursor cells and derivatives were 

maintained in culture in Iscove’s modified Dulbecco medium (IMDM) supplemented 

with 10% heat-inactivated FBS (Gibco, BR, Gaithersburg, MD), 2mM L-Glutamine 

(Gibco, BR, Gaithersburg, MD), 1% penicillin/streptomycin (Gibco, BR, Gaithersburg, 

MD), and 10% WEHI-conditioned medium as a source of IL-3.  The 32Dcl3 HA-FUS-, 

HA-ERG-, and HA-FUS-ERG-expressing cells were generated by retroviral infection as 

previously described (Perrotti et al., 1998).  Low-expressing lines of 32Dcl3-FUS-ERG 

cells were created (32D-FEP, -FEA, and -FEAB) in addition to high expressing FUS-

ERG (32D-FE1, -FE2, and -FE3).  Two ERG-expressing cell lines, high ERG (32D-M4) 

and low ERG (32D-M12) were created.  All cDNA were tagged with HA.  Granulocytic 

differentiation of 32Dcl3 cells and derivates was induced by G-CSF.        

The amphotropic-packaging cell line Phoenix (Dr. G. P. Noloan, Stanford 

University of Medicine) was maintained in culture in 10% Dulbecco’s Modified Eagle 

Medium (DMEM) (Gibco, BR, Gaithersburg, MD), FBS medium, 2mM L-glutamine, 

and 1% penicillin/streptomycin, and grown for 24hr to 80% confluence prior to 

transfection by calcium phosphate-DNA precipitation (ProFection system, Promega, 

Madison, WI).   

 
Plasmids 
 
 The MIGR1-HA-ERG plasmid was generated as follows:  ERG cDNA was 

amplified by RT-PCR using two sets of primers spanning the BamHI site present in the 

ERG cDNA, and containing at the 3’ end the hemagglutinin (HA) sequence followed by 
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a BglII restriction site.  The RT-PCR products were then phosphorylated, digested with 

BglII and BamHI, and subcloned into previously BglII/HpaI digested retroviral vector 

MIGR1.  The LXSN plasmids containing the HA-tagged wild-type and S256A or S256D 

FUS cDNAs were created as previously described (Perrotti et al., 2000).  Briefly, pSK-

HA S256A FUS (inactive mutant) and pSK-HA S256D FUS (dominant active mutant) 

were XbaI-HindIII digested, blunted, and subcloned into the blunted EcoRI site of the 

LXSP retroviral vector as previously described.  FUS-ERG plasmid was obtained from 

Dr. Ichikawa H. (NCCRI, Tokyo Japan).  The HA-tagged FUS-ERG cDNA was cloned 

into a HindIII site of pLNCX retroviral expression vector as previously described 

(Ichikawa et al., 1999).     

 
Western Blot Analysis 
 

Cells were harvested and lysed:  approximately 106 cells/100 µl of isotonic lysis 

buffer (1% NP-40, 150 mM NaCl, 20nM Hepes at pH 7).  Lysates were clarified by 

centrifugation (12,000g, 15min, 4°C), denatured (10 min, 100oC), after being incubated 

on ice for 30 minutes and subjected to one cycle of freezing-thawing.  Protein lysates 

were denatured in boiling water bath for 10 minutes and subjected to Sodium Dodecyl 

Sufate PolyAcrylamide Gel Electrophoresis (SDS-PAGE).  Proteins in gel were electro-

transferred to nitrocellulose filter and used for Western blot.  Briefly, the filter was 

subjected to washing with TRIS Buffer Saline (TBS) solution (100mM TRIS, 1M NaCl 

at pH 7.6) and blocking with 5% Nestle Carnation Dry Milk.  Primary antibody was 

added followed by secondary antibody.  Primary antibodies used were:  monoclonal anti-

GRB2, monoclonal anti-HA (Covance, Princeton NJ), polyclonal anit-C/EBPα (Santa 

Cruz Biotechnology), polyclonal anti-G-CSFR (Santa Cruz Biotechnology), polyclonal 
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anti-PU.1 (Santa Cruz Biotechnology), monoclonal anti-N-myc 1 (Upstate 

Biotechnology), and polyclonal anti-APP (Cell Signaling Technology).  Secondary 

antibodies used were anti-mouse and anti-rabbit (Amersham Biosciences).  Protein levels 

were detected by chemiluminesence (ECL Western Blotting Detection Agents). 

 
Cytospins    
 

Morphologic differentiation was monitored by May-Grunwald/Giemsa staining of 

cytospin preparations.  At each day of culture in G-CSF-supplemented medium, 

approximately 50-75x103 cells were obtained through centrifugation and re-suspension in 

PBS.  Cells were transferred to Fisher Brand microscope slides via Thermo Shandon 

Cytospin 4 machine.  Stained cells were observed under a Zeiss Axioskop 2 Plus 

microscope for analysis.  

 
Proliferation, Survival, and Differentiation Assays 
 

In order to observe the effect of ERG and FUS-ERG on proliferation and survival, 

infected murine cells were grown in either Interleukin-3 (IL-3)-containing or deprived 

medium for the indicated time.  Percentage of dead and alive cells was monitored by 

Trypan-Blue exclusion test.  The effect of ERG and FUS-ERG on G-CSF-driven myeloid 

proliferation and neutrophilic differentiation was also assessed at the indicated time by 

Trypan-Blue exclusion test. 

 

Immunofluorescence Microscopy 

 5-7.5x104 parental, HA-tagged ERG- and FUS-ERG-expressing 32Dcl3 cells 

were cytospinned on glass slides and fixed for 10 minutes in PBS-containing 3.7% 
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formaldehyde.  Thereafter, cells were washed three times with PBS, permeabilized by 

incubation (10 minutes) in PBS-0.05% Triton X-100 (Sigma), rinsed again with PBS and 

then blocked for 10 minutes in PBS-4% goat serum.  Incubation with the anti-APP 

antibody (1:200 dilution) and with Rhodamine Red-x goat anti-mouse IgG (H+L) (1:300 

dilution).  Molecular probes were carried out at room temperature for 30 minutes.  Slides 

were rinsed three times with PBS, treated with SlowFade Antifade reagent (Molecular 

Probes), and analyzed.   

   
Microarray Analysis 
 

 Microarray analysis was performed to further understand which genes are up or 

downregulated by FUS-ERG, ERG, and FUS.  Total RNA, isolated by acid phenol 

guanidium extraction and isopropenol precipitation, was used to interrogate mouse 

oligonucleotide arrays (The Ohio State University Comprehensive Cancer Center 

microarray facility).       
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