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526 Chapters GRAPH THEORY

8.2.1 ATTRIBUTES OF A GRAPH MODEL

Definitions:
A mathematical representation of a physical or behavioral phenomenon is a corre
spondence between the parts and processes of that phenomenon and a mathematical 
system of objects and functions.
A model of a physical or behavioral phenomenon is the mathematical object or function 
assigned to that phenomenon under a mathematical representation.
Modeling is the mathematical activity of designing models and comprehensive math
ematical representations of physical and behavioral phenomena.
A graph model is a mathematical representation that involves a graph.

Examples:
1. Table 1 gives many examples of graph models. Each example states what the vertices 
and edges (or arcs) represent and where in the Handbook details on the application can 
be found.

8.3 DIRECTED GRAPHS

Assigning directions to the edges of a graph greatly enhances modeling capability, and is 
natural whenever order is important, e.g., in a hierarchical structure or a one-way road 
system. Also, any graph may be viewed as a digraph, by replacing each edge with two 
directed edges, one in each direction. Many graph problems are best solved as special 
cases of digraph problems, for instance, finding shortest paths, maximum flows, and 
connectivity.

8.3.1 DIGRAPH MODELS AND REPRESENTATIONS

Most graph terminology applies equally well to digraphs, e.g., subgraph, self-loop, bi
partite, isomorphic, empty. The definitions below are special to digraphs or take on 
a somewhat different meaning for digraphs. In context, where it is clear that only di
graphs are being discussed, “directedness” is often an implicit attribute of an “edge”, 
“path”, and other terms.

Definitions:
A directed graph, or digraph, consists of:

• a set V, whose elements are called vertices,
• a set E, whose elements are called directed edges or arcs, and
• an incidence function that assigns to each edge a tail and a head.

The tail of an arc is the vertex it leaves, and the head is the vertex it enters.
A strict digraph has no self-loops or multi-arcs.
The underlying graph of a digraph is the graph obtained from the digraph by 
replacing every directed edge by an undirected edge.
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Table 1 Directory of graph models.

subject area 
and application

vertex attributes and meaning r^ rGi€r6nc6edge/arc attributes and meaning

computer programming vertex labels are program steps §8.1.1
flowcharts edge directions show flow

social organization vertices are persons §8.1.1
social networks edges represent interactions

civil engineering vertices are road intersections §8.1.1,
road networks edges are roads §8.3.1

operations research vertices are activities §8.3.1
scheduling arcs show operational precedence

sociology vertices are individuals §8.3.1
hierarchical dominance arcs show who reports to whom

computer programming vertices are subprograms §8.3.1
subprogram calling diagram arcs show calling direction

ecology vertices are species §8.3.1
food webs arcs show who eats whom

operations research vertices are activities to be scheduled §8.3.1,
scheduling edges are activity conflicts §8.6.1

genealogy vertices are family members §8.3.1
“family trees” arcs show parenthood

set theory vertices are elements §8.3.1
binary relations arcs show relatedness

probabilistic analysis vertices are process states §8.3.2
Markov models edges are state transitions

traffic control vertices are intersection §8.3.3
assigning one-way streets edges are streets

partially ordered sets vertices are elements §8.3.4
Hasse diagrams arcs show covering relation

computer engineering vertices are computational nodes §8.4.2
communications networks arcs are communications links

operations research vertices are supply and demand nodes §8.4.2
transportation networks arcs are supply lines

walking tours vertices are land masses §8.4.3
Seven Bridges of Konigsberg edges are bridges

postal delivery routing vertices are street intersections §8.4.3
Chinese Postman Problem edges are streets

information theory vertices are binary strings §8.4.4
Gray codes edges are single-bit changes

radio broadcasting vertices are broadcast stations §8.6.1
assignment of frequencies edges are potential interference

chemistry vertices are chemicals §8.6.1
preventing explosions edges are co-combustibility
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subject area 
and application

vertex attributes and meaning 
edge/arc attributes and meaning reference

cartography regions are countries §8.6.4
map-coloring edges are borders

highway construction vertices are road intersections §8.7.1
avoiding overcrossings edges are roads

electrical network boards vertices are circuit components §8.7.1
avoiding insulation edges are wires

VLSI computer chips vertices are circuit components §8.7.4
minimizing layering edges are wires

information management vertices are data records §17.1.4
binary search trees edges are decisions

computer operating systems vertices are prioritized jobs §17.1.5
priority trees edges are priority relations

physical chemistry vertices are atoms §9.3.2
counting isomers edges are molecular bonds

network optimization edges are connections §10.1.1
min-cost spanning trees edge-labels are costs

bipartite matching parts are people and jobs §10.2.2
personnel assignment edges are job-capabilities

network optimization vertices are locations §10.3.1
shortest path edge-labels are distances

traveling salesman routing vertices are locations §10.7.1
shortest complete tour edge-labels are distances

The out-degree of vertex v, denoted <5+(u), is the number of arcs with tail at v.
The in-degree of vertex v, denoted <5“(u), is the number of arcs with head at v.
A digraph D is transitive if whenever it contains an arc from utov and an arc from v 
to w, it also contains an arc from u to w.
The adjacency matrix Ad of a digraph D is

Ad = [ffltj]) where Cy = number of arcs from Vi to vj.
The incidence matrix Md of a digraph D with no self-loops is Md = [6»j], where

{-t-1, if Ui is the tail of ej but not the head 
-1, if Vi is the head of Cj but not the tail 

0, otherwise.
There is no standard convention for self-loops.

Facts:
1. Strict-digraph terminology: In a context focusing primarily on strict digraphs, there 
is often a different terminological convention:

• “digraph” refers to a strict digraph;
• a directed graph with multi-arcs is called a multidigraph;
• a directed graph with self-loops is called a pseudodigraph;
• an arc with tail u and head v is designated uv.
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2. Alternative “path” terminology: There is an alternative convention in which a
(directed) “path” may use vertices and arcs more than once, but an “elementary path” 
does not repeat arcs, and a “simple path” does not repeat vertices (and, hence, does 
not repeat arcs either). See §8.3.2.
3. The incidence structure of a digraph is frequently represented by an arc list, in which 
each arc is represented by an ordered pair uv, where u is its tail and v is its head. For 
each arc with tail u and head v, there is a separate entry, so that uv occurs as often as 
the number of such arcs. A list of the isolated vertices plus such an arc list completely 
specifies a digraph.
4. Another common specification of a digraph is the lists-of-neighbors representation. 
For each vertex u, there is a corresponding row, which has as an entry the head of each 
arc whose tail is u. Thus a vertex v occurs in that row as many times as there are arcs 
from u to V.
5. The incidence matrix is another common way to represent a digraph. Since all but 
one or two of the entries in every column are zero, the incidence matrix is a highly 
inefficient form of representation.
6. The adjacency matrix is also a common way to specify a digraph in some contexts 
when there is no reason to identify the arcs by name.
7. A digraph can be represented by a 2 x \E\ incidence table in which the tail and head 
of each arc e appear in column e. Direction on an arc can be indicated by a convention 
as to whether tail or head appears in the first row, which requires swapping the two 
column entries if the direction is changed. Alternatively, direction can be indicated by 
marking one of the two entries in each column as the head, and then moving the marker 
if the direction changes.
8. A row-sum in a directed adjacency matrix equals the out-degree of the corresponding 
vertex. A column-sum equals the in-degree.
9. In any digraph, the sum of the in-degrees, the sum of the out-degrees, and the
number of edges are all equal to each other; i.e., <^^(^) = l-^l-

Examples;
1. The following arc list, incidence table, list-of-neighbors, and adjacency matrix all 
represent the digraph G.

^5

incidence table:
arc list: ei 62 63 64 65 66 67

uv, vv, vw, XW, XW, UX, XU U V V X X U X
V V w W w X u
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lists-of-neighbors;

u V w X
' u : v,x u /O 1 0 1\

V : v,w V 0 1 1 0
w : 0 ► adjacency matrix: ^ 0 0 0 0

. X : w,w,u _ X 0 2 0/

2. Civil Engineering: A road network in which at least some of the roads are one
way can be modeled by a digraph. The nodes are road junctures; each two-way road 
is represented by a pair of arcs, one in each direction. Loops are allowed, and they 
may represent “circles” that occur in housing developments and in industrial parks. 
Similarly, multiarcs may occur.
3. Operations Research: A large project consists of many smaller tasks with a prece
dence relation — some tasks must be completed before certain others can begin. The 
vertices represent tasks, and there is an arc from u to u if task u must be completed 
before v can begin. For instance, in the following figure it is necessary both that food 
is loaded and the cabin is cleaned before passengers are loaded.

unload 
passengers load passengers

clean cabin

unload luggage load luggage

4. Sociology and Sociobiology: A business (or army, or society, or ant colony) has a 
hierarchical dominance structure. The nodes are the employees (soldiers, citizens, ants) 
and there is an arc from u to u if u dominates v. If the chain of command is unique, 
with a single leader, and if only arcs representing immediate authority are included, 
then the result is a rooted tree. (See §9.1.2.)
5. Computer Software Design: A large program consists of many subprograms, some 
of which can invoke others. Let the nodes of D be the subprograms, and let there be 
an arc from u to u if subprogram u can invoke subprogram v. Then the call graph D 
encapsulates all possible ways control can flow within the program. Directed cycles 
represent indirect recursion, and serve as a warning to the designer to ensure against 
infinite loops. See the following figure, where subprogram 2 can call itself indirectly.
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6. Ecology: A food web is a strict digraph in which nodes represent species and in
which there is an arc from u to ?; if species u eats species v. The following figure shows 
a small food web.

frog -------^ spider -----------  grackle

beetle ------------>■ cherry tree

7. Operations Research: A sequence of books must be printed and bound, using one 
press and one binding machine. Suppose that book i requires time pi for printing and 
time bi for binding. It is desired to print the books in such an order that the binding 
machine is never idle: when it finishes one book, the next book should already be 
printed. The vertices of a digraph D can represent the books. There is an arc from 
book i to book j if pj < 6j. Then any path through all the vertices corresponds to a 
permissible ordering.
8. Genealogy: A “family tree” is a digraph where the orientation is traditionally given 
not by arrows but by the direction down for later generations. Despite the name, a family 
tree is usually not a tree, since people commonly marry distant cousins, knowingly or 
unknowingly.
9. Binary relations: To any binary relation i? on a set V (see §12.1) a digraph D(V, R) 
can be associated; the vertices are the elements of V, and there is an arc from u to u if 
(u, v) € R. Conversely, every digraph without multiple arcs defines a binary relation on 
its vertices. The relation R is transitive (see §12.1.2) if and only if the digraph D{V, R) 
is transitive.

8.3.2 PATHS, CYCLES, AND CONNECTEDNESS 

Definitions:
A directed walk is a sequence of arcs such that the head of one arc is the tail of the 
next arc.
The length of a directed walk is the number of arcs in the sequence.
A closed directed walk is a directed walk that begins and ends at the same vertex. 
A directed trail is a directed walk in which no arc is repeated.
A directed path is a directed trail in which no vertex is repeated.
A directed cycle is a closed directed trail in which no vertices are repeated, except 
the starting and stopping vertex.
Vertex v is reachable from vertex u if there is a directed path from u to v.
A basis for a digraph is a set of vertices V such that every vertex not in V is 
reachable from V and such that no proper subset of V has this property.
The distance from a vertex u to a vertex u in a digraph D is the length of the shortest 
directed path from u to u-
A digraph is strongly connected (or diconnected, or strong) if every vertex is 
reachable from every other vertex.



532 Chapters GRAPH THEORY

A digraph is unilaterally connected (or unilateral) if for every pair of vertices u 
and V, there is either a un-path or a uu-path.
A digraph D is weakly connected (or weak) if the underlying graph is connected. 
The digraph D is disconnected if the underlying graph is disconnected.
A strong component of a digraph is a maximal subgraph that is strongly connected.
A digraph D{V, E) is reducible if the vertex set V may be partitioned into a disjoint 
union Vi U V2 so that all arcs joining Vi and V2 go from Vi to V2.
The condensation D* of a digraph D is the strict digraph whose nodes are the strong 
components {Vj, V2,..., Vk} of D, with an arc ViVj € Ed* if and only if there is an 
arc vv' in D such that v E Vi and v' EVj.
The converse of a digraph D is obtained by reversing the directions of all the arcs 
of £).
The directional dual of a theorem about digraphs is the statement obtained by re
placing each property in the theorem statement by its converse.

Facts:

1. Using a pencil on a drawing of a digraph, a directed walk can be traversed by 
following the arrows without lifting the pencil from the graph.
2. Distance in digraphs need not be symmetric. That is, the distance from u to u might 
be different from the distance from v to u.
3. If A is the adjacency matrix of D, then the ij entry of A" is the number of n-arc 
walks from Uj to Vj.

4. Let be the smallest out-degree of a strict digraph D. If J"*" > 0, then D has a 
cycle of length at least J"*" + 1.
5. Let 5“ be the smallest in-degree of a strict digraph D. If S~ > 0, then D has a 
cycle of length at least -|-1.
6. The directional dual of a theorem about digraphs is a theorem about digraphs.
7. Fact 5 is the directional dual of Fact 4.
8. A digraph D is Eulerian (§8.4.3) if and only if the underlying graph is connected 
and in-degree equals out-degree at every vertex.
9. A digraph D has an Euler uu-trail (where u ^ u) if the following conditions hold:

• the out-degree of vertex u exceeds the in-degree by one;
• the in-degree of v exceeds the out-degree by one;
• at every other vertex, the in-degree equals the out-degree.

That is,
• d+(u) = d~{u) + 1;
• d~{v) = d'^{v) + 1;
• (Vu; ^ u,v) [d~(u;) = d^{w)].

Other Euler-type results for graphs generalize to digraphs as well.
10. Let 6 be the minimum of all in- and out-degrees of D. If D is strict and <5 > ^ > 1, 
then D contains a Hamilton cycle (§8.4.4).
11. Hamilton theory is much harder and less complete than Euler theory, for digraphs 
as for graphs.
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12. The strong components of a digraph D partition the vertices of D, but not the arcs, 
since some arcs go from one component to another. However, the maximal unilateral 
subgraphs do partition the arcs. If Vi, V2 are the vertex sets of two strong components 
of D, then all arcs between V\ and V2 face the same way — either all are from Vi or all 
are to V\. See the following figure.

13. The condensation of any digraph is an acyclic digraph (§8.3.4). See the figure for 
Fact 12.
14. A digraph is reducible if and only if its condensation has at least two vertices.
15. A digraph is unilateral if and only if its condensation is a path.
16. A set V is a basis of a digraph D if and only if V consists of one vertex from each 
strong component of D that has in-degree 0 in £)*. Thus, every basis of a digraph has 
the same number of vertices.

17. The eigenvalues of a digraph D are the union (counting multiplicities) of the eigen
values of its strong components. (See §8.9.3.)

Examples:
1. Let u, V be vertices of an n-vertex digraph D with adjacency matrix A. If v is 
reachable from u, then some uu-path has length < n - 1. Thus, D is strong if and only

n—1
if every entry of is positive. There are more computationally efficient tests for

fe=0
diconnectivity: Warshall’s algorithm (§14.2) and directed depth first search (§13.3.2).

2. Let M be an arbitrary square matrix. Computation of the eigenvalues of M can 
sometimes be speeded up as follows. Create matrix A by replacing each nonzero entry 
of M by a T’, and then let D be the digraph with adjacency matrix A. The eigenvalues 
of M are the union of the eigenvalues of the minors of M indexed by the strong com
ponents of D. (If one component has vertices vi,vz,vj, then one minor has rows and 
columns 1,3,7 of M.) If M is sparse (few nonzeros), then digraph D will usually have 
many small components and this approach will be efficient.

3. Markov models: Let V represent a set of states and E the possible transitions of 
a Markov process (§7.7). Then walks through D represent “histories” that the process 
can follow.
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8.3.3 ORIENTATION
There are many natural questions concerning when the edges of an undirected graph 
could be assigned directions so as to obtain a certain sort of digraph. For instance, 
when can a graph be oriented to obtain a strong digraph? An application of this last 
question is to determine when a set of roads could all be made one-way, while keeping 
all points reachable from all others.

Definitions;

An orientation of a graph is an assignment of directions to its edges, thereby making 
it a digraph.

An orientation of a graph is strong if, for each pair of vertices u, v, there is a directed 
path from u to u and a directed path from v to u.
An orientation of a graph is transitive if, whenever there is an arc from utov and an 
arc from v to w, there is also an arc from u to w.
A graph that admits a transitive orientation is called a comparability graph.
A cut-edge (or bridge) of a graph is an edge whose removal would increase the number 
of components (§8.4.1).

A 2-edge-connected graph G is connected and has no cut-edge.

A generalized circuit in a graph is a closed walk (§8.4.1) that uses each edge at most 
once in each direction.
A triangular chord for a closed walk (§8.4.1) ui, it2> • • • > is a proper edge that
joins two vertices exactly two apart on the walk.

Facts:

1. Let x(^) be the chromatic number (§8.6.1) of graph G. Then every orientation of 
G has a path of length at least x{G) - 1.

2. A graph G has a strong orientation if and only if G is 2-edge-connected. (H. Robbins, 
1939)

3. A graph G is a comparability graph if and only if every generalized circuit of G of 
odd length > 3 has a triangular chord.

4. Algorithms 1 and 2 give ways of creating a strong orientation in a 2-edge-connected 
graph.

Examples:

1. In the figure below the digraph D is a weak transitive orientation of the graph G 
and D' is a strong nontransitive orientation.



Section 8.3 DIRECTED GRAPHS 535

Algorithm 1: Naive algorithm for creating a strong orientation. 
{This algorithm is good to use by hand for small graphs.}
input: a 2-edge-connected graph G 
output: a strong orientation of G
H := any cycle in G 
direct H
while some vertex of G is not in directed subgraph H 

V := a, vertex not in H 
find two edge-disjoint paths from v to H

(Two such paths exist because G is 2-edge-connected} 
direct one path from v to H and the other from H to v 
H := H with these two subgraph added 

orient any remaining edges arbitrarily

Algorithm 2: Better algorithm for creating a strong orientation.
{A good algorithm for large graphs or for computer implementation.}
input: a 2-edge-connected graph 
output: a strong orientation
select an arbitrary vertex as root
construct the Depth-First-Search spanning tree from that root {See §9.2.2.} 
orient the tree edges downward from the root 
orient all back edges upward toward the root 
orient all cross edges arbitrarily

2. The following graph is not transitively orientable, and x, u, v, y, v, w, z, w, u, x are 
the vertices of a generalized circuit without a triangular chord.

3. Traffic control: The flow of traffic on crowded city streets can sometimes be im
proved by making streets one-way. When this is done, it is necessary that a car can 
travel legally between any two locations. Assigning directions to the edges of the graph 
representing the street grid is an orientation of this graph, and cars can travel legally 
between any two points if and only this graph has a strong orientation. Consequently, 
by Robbins’ theorem (Fact 2), to make all the streets one-way without losing mutual 
accessibility of locations, it is necessary and sufficient that the grid of streets be 2-edge- 
connected.
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Algorithm 3: Naive topological sort.
{Construct a linear extension ordering for a DAG.} 
input: a DAG D
output: a numbering of the vertices in a topsort order
H:=D-,k:=l 

while Vh ^ tit
Ufc := a vertex of H of in-degree 0 {This exists. See Fact 1.} 
H := H — Vk {Remaining graph is still a DAG.} 
k := k + 1

8.3.4 DIRECTED ACYCLIC GRAPHS 

Definitions:
A digraph is acyclic if it has no directed cycles. A directed acyclic graph is sometimes 
called a DAG.
A source of a digraph is a vertex of in-degree zero.
A sink of a digraph is a vertex of out-degree zero.
A linear extension ordering of the n vertices of a digraph is a consecutive labeling 
Vi,V2, ■ ■ ■ ,Vn SO that, if there is an arc from Vi to Vj, then i < j. (See also §11.2.5.)
A topological sort, or topsort, is an algorithm that assigns a linear extension ordering 
to a DAG. This traditional name belies the facts that it is not quite a sort, in the usual 
sense of sorting, and that its relation to topology (in the sense understood by topologists) 
is obscure.

Facts:
1. Every DAG has at least one source, and by duality, at least one sink.
2. Every DAG has a unique basis (§8.3.2), namely, the set of all its sources.
3. Topsort yields a linear ordering for the vertices that makes the adjacency matrix of 
a DAG upper-triangular.
4. Doing a preliminary topsort permits many optimization problems about paths to 
be solved subsequently by a single algorithmic pass through the vertices in the topsort 
order; see §15.2.2 (dyneunic programming) and §15.5 (critical paths). See Algorithm 3.

Examples:
1. In the following digraph vertex u; is a source and vertex z is a sink. It is a DAG, 
even though the underling graph has cycles. Labeling the vertices either in the order 
w, X, y, z or w, y, x,z is a linear extension ordering.

y z
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2. Consider any digraph whose vertices represent discrete events, and whose arcs go 
from earlier events to later events. Any such digraph is acyclic. Conversely, any digraph 
whose vertices represent procedural steps and whose arcs represent required precedence 
can be scheduled (using a topological sort) so that arcs do in fact go forward in time.
3. The Hasse diagram of a poset (§12.3.5) is a DAG, as is the entire graph of a poset 
(arc from u to u if and only if u > u).

8.3.5 TOURNAMENTS 

Definitions:
A tournament is a digraph with exactly one arc between each pair of distinct vertices. 
An n-tournament has n vertices.
The score vector of a tournament is the sequence of out-degrees of the vertices (number 
of arcs leaving each vertex), usually in ascending order.
A tournament T is regular if every vertex has the same outdegree.
A tournament T is strong if there is a directed path between each pair of vertices in 
both directions.
A tournament T is transitive if, whenever there is an arc from u to u and from v to w, 
there is also an arc from u to w.
A tournament T is irreducible if there is no bipartition Vi, V2 of the vertices such that 
all arcs between Vi and V2 go from Vi to V2.
Vertex u of a tournament dominates vertex v if there is an arc from u to v.
A transmitter in a digraph is a vertex that has an arc to every other vertex.
A king in a digraph is a vertex from which there is a path of length 1 or 2 to all other 
vertices.
A single-elimination competition is a contest from which a competitor is eliminated 
after the first loss.

Facts:
1. Every tournament has a Hamilton path (§8.4.4), in fact an odd number of them.
2. The following statements are equivalent for any n-tournament T:

• T is strong;
• T is irreducible;
• T has a Hamilton cycle (§8.4.4);
• T has cycles of all lengths 3,4,..., n.;
• Every vertex of T is on cycles of all lengths 3,4,..., n.

3. Almost all tournaments are strong, in the sense that, as n 00, the fraction of 
labeled n-tournaments that are strong approaches 1.
4. The following are equivalent for a tournament:

• the tournament is transitive;
• the tournament contains no cycles;
• the tournament contains no 3-cycles;
• the tournament is a total (i.e. linear) order;
• the tournament has a unique Hamilton path.

5. Every tournament has a king.
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6. The king of a tournament is unique if and only if it is a transmitter. Otherwise, 
there are at least three kings.
7. In a large tournament, almost every vertex is a king, for as n —> oo, the fraction of 
n-tournaments in which every vertex is a king approaches 1.
8. Score vector chasacterizations: A nondecreasing sequence S of nonnegative integers 
si,S2, ■ ■ ■ ,Sn is the score vector of an n-tournament if and only if

or equivalently, if and only if
the sequence S' obtained by deleting any one Sj and reducing the largest re
maining n - Si - 1 terms by 1 is a score vector of an (n—l)-tournament.

9. The second characterization of Fact 8 leads to a recursive algorithm to construct a 
tournament having a specified score vector. See Example 4.
10. A nonnegative integer sequence Si < S2 < ... < s„ is the score vector of a strong 
n-tournament if and only if

there are two choices which way to direct the edge. If c„ is the numbered of distinct 
unlabeled n-tournaments, then

The distinction between labeled and unlabeled tournaments is the same as between 
labeled and unlabeled graphs; see §8.9.1. The two tournaments in the following figure 
are isomorphic as unlabeled tournaments, but distinct as labeled tournaments.

12. Ranking real tournaments: When a tournament models a competition, there is
an obvious desire to rank the teams, or at least to pick a clear winner. Many ranking 
methods have been proposed, and continue to be proposed.
13. When a tournament is acyclic, it corresponds to a unique total ordering (Fact 4), 
so the ranking is unequivocal. However, almost all tournaments are strong (Fact 3). 
Moreover, in a large tournament, almost every vertex is a king (Fact 7). These are 
reasons why it is considered difficult to give a satisfactory general method to rank 
tournaments.
14. Scheduling tournaments: To speed up the play of an n-tournament, games can be
scheduled in parallel. If n is even, then at most ^ of the games may be played
at once, so at least n — 1 rounds are needed. However, if n is odd, then only games 
can be played at once, so at least n rounds are needed. In fact, this minimum number 
of rounds can be obtained, and several methods of scheduling tournaments, subject to 
various additional conditions, have been devised. See [Mo68].

11. There are 2(2) distinct labeled tournaments, because for each pair of vertices {u, u}.

Cn >-------------- ——— ~ 1

;

(a) (b) (c)



Section 8.4 DISTANCE, CONNECTIVITY, TRAVERSABILITY

Examples:
1. A round-robin sports tournament in which there are no ties is a tournament in 
the mathematical sense defined above. However, a single-elimination competition (e.g., 
most tennis tournaments) is not a tournament as defined above.
2. It has been observed that in every small flock of hens, every pair of hens establish 
a dominance relation — the weaker of the two allows the stronger to peck her. Thus, 
this pecking order is a tournament.
3. In a “paired comparison experiment”, a subject is asked to state a preference in 
each pair chosen from n items. This amounts to a tournament, where there is an arc ij 

if item i is preferred to item j.
4. Is there a tournament on vertices {a,b,c,d,e) with respective scores (1,2,2,2,3)? 
Deleting e according to the second part of Fact 8 leaves vertices (o, b, c, d) with scores 
(1,2,2,1). Next deleting d leaves (o, b,c) with scores (1,1,1). The obvious tournament 
with such a score vector is a 3-cycle. Next reinsert vertex d, making it dominate vertex a 
only. Then reinsert vertex e, making it dominate a,b,c. This 5-tournament has the 
specified score vector (1,2,2,2,3).
5. Ranking real tournaments: Ranking teams by their order along a Hamilton path (see 
Fact 1) is rarely satisfactory, because that order is unique only for transitive tournaments 
(Fact 4); in most cases, there are a great many Hamilton paths. Ranking by score vector 
usually creates ties, and a team with few wins may deserve a better rank if those teams 
it beats have many wins. So one may consider the second-order score vector, where 
each team’s score is the sum of the out-degrees of the teams it beats. This can be 
continued to nth-order score vectors. There is a limit ranking obtained this way (often 
quite satisfactory), related to the eigenvalues of the digraph. See [Mo68] for more detail 
and references.
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8.4 DISTANCE, CONNECTIVITY, TRAVERSABILITY
Movement from one node to another in the network corresponds to the graph-theoretic 
notion of a walk. Graphs often serve as models for transportation and communication 
network problems. The capability for any two nodes in a network to communicate 
corresponds to connectedness. The connectivity of a graph is a measure of resistance to 
a communications cutoff.

8.4.1 WALKS, DISTANCE, AND CYCLE RANK 

Definitions:
A walk in a graph is an alternating sequence vo,ei,vi,... ,6r,Vr of vertices and edges 
in which each edge ej joins vertices Uj_i and Uj. Such a walk is also called a uq, Vr-walk.

The length of a walk is the number of occurrences of edges in it. An edge that occurs 
more than once is counted each time it occurs.
A trail is a walk in which all of the edges are different.
A path is a trail in which all the vertices are different, except that the initial and final 
vertices may be the same. A path from vq to Vr is called a vq, Vr-path.

A walk, trail, or path is open if its final vertex is different from its initial vertex.
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