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CYCLE LENGTHS IN Akb*

CHARLES M. GRINSTEAD

Abstract. Let A be a nonnegative, n n matrix, and let b be a nonnegative, n n vector. Let S be the
sequence {Akb }, k 0, l, 2, .... Define re(A, b) to be the length of the cycle of zero-nonzero patterns into
which S eventually falls. Define m(A) to be the maximum, over all nonnegative b of re(A, b). Finally, define
re(n) to be the maximum, over all nonnegative, n n matrices A of m(A). This paper shows given A and b,
that re(A, b) is a divisor of a certain number, which is determined by the structure ofA and b. It is also shown
that log m(n) (n log n) /2.
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Let A be a nonnegative, n n matrix, and let b be a nonnegative, n vector. In
this paper, we are concerned with the zero-nonzero patterns in the sequence S {A kb },
k 0, 1, 2, .... Since there are 2n possible patterns for an n vector, the sequence
S must eventually fall into a cycle, and the length of the cycle is at most 2 n. We define
re(A, b) to be the length of this cycle. We also define re(A) to be the maximum, over
all b of re(A, b). Finally, we define re(n) to be the maximum, over all nonnegative,
n n matrices A of re(A). Given A and b, we will show that m(A, b) is a divisor of a
certain number, which is determined by the structure ofA and b. We will also show that

log (m(n)) 1/(n log n).

Each nonnegative, n n matrix A corresponds to a directed graph G(A) with vertices
l, 2, n, and with an edge from j to if aij > 0. (If aii > 0, then there is a loop at
vertex i.) This is not the usual definition. However, the present definition aids in the
exposition. We note that our graph could be obtained by applying the usual definition
to the transpose ofA. Each nonnegative vector b corresponds to a subset P(b) ofvertices,
defined by P(b) if and only if bi > 0. Given a vector b, the set corresponding to Ab
is the set of all vertices of distance one from P(b), i.e., all vertices j such that there is a
vertex P(b) and an edge (i,j) in G(A). If we define

I’ k) (v) { w: there is a path of length k from v to w },
r)(T)= r)(v),

v_T

then we have

P(Akb)= I’<)(P(b)).
A subgraph H of a graph G is said to be strongly connected if, for any two (not

necessarily distinct) vertices in H, there is a path in H from each vertex to the other. A
subgraph is a strongly connected component (scc) if it is a maximal strongly connected
subgraph of G. It is easy to show that the scc’s are pairwise disjoint. They need not,
however, partition the graph.

In terms of matrices, given A, we let P be a permutation matrix such that PAPr is
in block lower triangular form, with square matrices on the diagonal. If no such P exists,
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538 CHARLES M. GRINSTEAD

other than P I, then the matrix A is said to be irreducible. If we find P such that each
diagonal block is irreducible, then the diagonal blocks of size greater than 1, together
with the nonzero diagonal blocks, correspond to the scc’s of G(A).

LEMMA 1. Let SI, $2, be a sequence ofsubsets ofa finite set S, and let d be a
positive integer. Suppose that for all j and for all sufficiently large h, we have Sj
Sj /hd. Then the sequence has an eventual cycle whose length divides d.

Proof. Let j be any nonnegative integer less than d. Let S be the set of all v e S
such that v S/hd for some h >- 0. For each v e S there exists an integer hv such that
v S/hd for all h >= ho. Let h0 be the maximum of the ho, taken over all v e SJ Then

S+hd S for all h >= h0. Thus, the sequence has an eventual cycle consisting of S,
S, s(d-1). This implies that the sequence has an eventual cycle the length ofwhich
divides d. [2]

We define the index of a graph to be the greatest common divisor of the lengths of
the circuits in the graph. The index of a nonnegative matrix A is then defined to be the
index of G(A). (We note that this is not the usual definition of the index of a matrix.
Let b be a nonnegative vector, and for j >- 0 denote P(A b) by P. We first examine
re(A, b) in the case that A is irreducible.

LEMMA 2. Let A be a nonnegative, irreducible n n matrix with index d. Then,
for all b, re(A, b) divides d.

Proof. It is well known (see 5, Thm. 2.9, p. 49 that the greatest common divisor
of the lengths of the circuits through any vertex v is d, independent of the vertex v. It is
also well known that ifwe call these circuit lengths c, c2, cj, then there is a multiple
of d, say Nvd, such that every multiple of d greater than or equal to Nod can be written
as a nonnegative linear combination of the { ci}. If we let N maxoG No, then every
vertex in G is on a circuit of length hd, for all h >= N. Thus, if v P, then v P/ha for
all sufficiently large h. Then Lemma applies. This completes the proof.

LEMMA 3. Let A be a nonnegative, n n matrix, and let C be an scc in G(A ). Let
b be a nonnegative vector, and, as before, let P P(A b) and Po P(b). Let the index
ofC be d. Then the sequence { Pj f’) C} eventually repeats with a cycle length that di-
vides d.

Proof. Let j be a positive integer, and let v be any vertex in P fq C. Since C is an
scc with index d, v is on a circuit in C of length hd, for all sufficiently large h. This
means that v is in ej+hd f’) C for all sufficiently large h. Thus, from Lemma 1, we see
that the sequence { Pj. f’) C } eventually repeats with a cycle length that divides d. [21

THEOREM 1. Let A be a nonnegative, n n matrix, and let G(A) have scc’s C,
C2, Cg. Let b be any nonnegative vector. Suppose that the sequence {P Ci } has
an eventual cycle oflength ri. Then m(A, b) equals the least common multiple ofthe ri.

Proof. Let r equal the least common multiple (lcm) of the ri. First we show that
m(A, b) divides r. To show this, we shall show that for all vertices v in G(A), the
sequence {P f) { v has an eventual cycle whose length divides r.

Let v C for some i. If v e Pk for some k >= 0, then for some positive integerj and
for all sufficiently large h, we have v Pj / hr, since r is a multiple of ri. So Lemma
implies that the sequence {P fq { v } ) has an eventual cycle whose length divides r. If
v Pk for all k >= 0, then the sequence {P N { v } } has a cycle of length 1.

Now suppose that v is not an element ofany Ci. Let Ci, Ci2, "’", Ck be the scc’s
containing vertices that have paths to v. If k 0, then v is in no P with ->_ n. Finally,
if k > 0, then for j >= n, v e Pj if and only if there is a v* in Cis Pt, for some s -< k,
and a path of length (j t) from v* to v. (We need to assume that j >= n because, for
smaller values ofj, the fact that v e Pj could be due to v being at the end of a path of
length j from a vertex in P0 not in any C;.) Since v* Cs, the eventual cycle in the
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sequence { Pj fq v* } } has a length that divides ris. This means that the contribution of
v* to the eventual cycle in the sequence { Pj fq { v } } has a length that divides ris. Since
the contributions of all other vertices in Ci, C2, "’, Ck to the sequence {P N { v } }
are similar, we see that the sequence { P. N v } } has an eventual cycle whose length
certainly divides r. So we have shown that for all vertices in G(A), either they appear in
none of the P for sufficiently large j, or they appear with a pattern having a length that
divides r. This means that m(A, b) divides r.

Since the eventual cycle of the sequence {P fq C } is of length r, it is clear that ri
must divide m(A, b). D

COROLLARY 1. Let A be a nonnegative, n n matrix, and let G(A) have scc’s C,
C2, "", Ct with indices d, d2, "", dr, respectively. Let b be any nonnegative vector.
Let T be the set ofscc’s that intersect at least one element ofthe sequence { Pk }. Let dr
equal the least common multiple ofthe set of di’s corresponding to the C’s in T. Then
re(A, b) divides dr.

Proof. IfC e T, and we let rg equal the length ofthe eventual cycle ofthe sequence
{ Pj Ci}, then using Lemma 3, we know that ri divides d;. If C -e T, then the length
ofthe eventual cycle ofthe sequence {P C } is 1. Thus, since m(A, b) equals the lcm
of the r;’s corresponding to the C’s in T, we see that m(A, b) divides dr.

We now turn our attention to the maximization of m(A) over all nonnegative
n n matrices A. Given positive integers d, d2, dk, with sum n, it is possible to
construct a nonnegative, n n matrix A and a nonnegative vector b such that
re(A, b) lcm (d, d2, dg). We accomplish this by letting G(A) be the disjoint
union of circuits of lengths d, d2, dk, and letting Po be a set containing exactly one
vertex from each circuit.

Next, we note that di <= C;I for each i, and that
k

ICl-<n,
i=1

so we know that
k

i=1

Thus, we wish to maximize the lcm of d, d2, "", d over all sets of positive integers
with sum not exceeding n. The maximum value will be re(n). Let us call a set {di }
whose lcm is this maximum value an n-extremal set. We note that this problem can be
stated as follows. Among all elements of the symmetric group Sn, which elements have
the largest order, and what is their order? In terms of the original problem, the group
elements of largest order are those that, when written as a product ofdisjoint cycles, have
cycle lengths forming an n-extremal set. The order ofthese elements is re(n). This problem
was studied by Landau (see [3, Vol. 1, pp. 222-229 ]), who proved Theorem 2 below
(see also [4]). We will give a shorter proof of this result.

LEMMA 4. For every n >-_ 1, there exists an n-extremal set X such that each element
ofX is either a prime power or the number 1.

Proof. Assume that X is an n-extremal set containing an integer r, which is neither
nor a prime power. Then r is divisible by at least two different primes, p and q. Suppose

that the powers ofp and q appearing in the prime factorization of r are pY and qz. In X,
if we replace r by the integers pY, qz, and (r/pYqZ), then the lcm remains unchanged,
and the sum of the elements ofX decreases by the quantity

A=r-- py+qZ+
pyqZ
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It remains to show that A >__ O. We have

Since pY and qZ divide r,

>- r--p _qZ.

5 r

6 pY qZ

5

5 1)>=r6 2 3

Let p; denote the ith prime. At first glance, it might seem that an n-extremal set
should consist of Pl, P2, "’", Pk, where k is the largest prime such that the sum of the
first k primes does not exceed n. However, it is easy to show that this is not, in general,
the best way to proceed. As an example, suppose that n is the sum of all of the primes
not exceeding the prime 1231. The numbers 2, 3, 5, and 1231 have the same sum as the
numbers 29 and 36, but the lcm of the second set is larger than the lcm of the first set.
So, by replacing the first set with the second set, we obtain a set with a larger lcm.

It is nevertheless the case that by taking the first k primes, we obtain a set whose
lcm has, asymptotically, the same logarithm as m(n).

THEOREM 2. Given a positive integer n, let k be the largest integer such that

k

Pi<----n.
i=1

Then, log (m(n)) 7 ik=l log (Pi). Furthermore, k 2//ilog (n)), so

log(re(n)) n)( V(log (n))).

Before proving this theorem, we need the following lemma.
LEMMA 5. Let T and T’ be two sets ofreal numbers with thefollowing properties:
(i) Each element ofT is less than each element of T’.
(ii) Every element ofboth sets is at least as large as e.
(iii) The sum of the elements in T is at least as large as the sum of the elements

ofT’.
Then the product ofthe elements of T is at least as large as the product ofthe elements
ofT’.

Proof. Let B be a real number at least as large as each element of T and less than
each element of T’. We note that B can be chosen to be at least e. Let S and S’ be the
sums of the elements in the sets T and T’, respectively. Let P and P’ be the products of
the elements in the sets T and T’, respectively.

First, fix T’I k. Iftwo elements of T’ are unequal, we can make P’ larger without
affecting S’, by replacing each of the two elements by their average. Thus, we may
assume that all of the elements in T’ are equal. Then their common value is (S’/k),
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and P’ (S’/k) k. Since each element in T’ is greater than B, it is easy to show that
p, <_ B(S’/).

If q is any real number such that e -< q -< B, then it is easy to check that q >=
B (q/B). Thus, if the elements of T are q, q, , qk, then the product of the elements
of T is at least (B(q’/B))(B(q/B)) (B(qk/B)), which equals B (sly). Since S >- S’, we
have P >= P’, which completes the proof.

Proofof Theorem 2. The Prime Number Theorem implies that Pi log (i) (see
[2, p. 10]). Using this, it is easy to show that

l Pi k2 log (k).
i=

Thus, we have n (1/2)k2 log (k), which implies that log (k) (1/2) log (n). Hence,

k 2((n))/(/(log(n))).
We note that this implies that

Pk ((n))(]/(log(n)) ).

Now assume for the moment that n is the sum of the first k primes. Let S be the
set of primes not exceeding Pk, and let S’ be an n-extremal set. The sum of the elements
in S’ is then less than or equal to the sum of the elements in S, which equals n. Let T’
be the set of all elements of S’ which are powers of primes pj such that j > k. Let T be
the set of all primes Pi in S such that no power ofPi appears in S’. Since each prime in
S T appears to the first power in S T, and appears to at least the first power in
S’ T’, and since the sum of the elements in S is at least as great as the sum of the
elements in S’, we must have that

Z qj<- ZPi,
qj T pi T

where each qj. in the left-hand sum represents a prime power. We further note that each
q in T’ is greater than Pk, and that each Pi in T is less than or equal to Pk. We now note
that Lemma 5 applies, except that one ofthe Pi in Tmight be the prime 2. Ifwe temporarily
change it to a 3, then, using Lemma 5, we see that the product of the elements of T is
at least as great as the product ofthe elements in T’. Changing the 3 back to a 2 certainly
does not affect the dominant term in the estimation for the logarithm of the product of
the elements in S’. Thus in S’, if the elements in T’ are replaced by the elements in T,
the product of the elements of the new S’ is at least two-thirds as large as the product of
the elements in the old S’, hence we may assume that S’ contains no powers ofany prime
greater than pk. At this point we emphasize that S’ may have a sum that exceeds n.
Nevertheless, each element in S’ is less than or equal to n. Using this fact, we shall show
that the logarithm of the product of the elements in S’ does not exceed /(n)(logn).
We estimate:

log(
q. i_ ,/ p>

_-<log(n<))+ log(pi)
Pi >

fn(logn)
+ fn /logn- Vn

logn
 /log
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We now show that this bound is achieved by the elements in S. We have

k

log(pi) p
i=1

(see [2, Thms. 420, 434]). Also, since n /k= Pi and Pi /(log i), it is easy to show
that

p-, (2 (n)//(logn))log(2 (Vn)//(logn))

fn Vlog n.
Thus, if n is the sum of the first k prime numbers, then

log(m(n)) fn lgn.
Finally, we relax the assumption on n. Assume instead that

k k+l

n , Pi < n <= , Pi nz.
i=1 i=1

Since m(n) is clearly monotonic in n, we have m(n) <= m(n) <= m(n2), but it is easy to
check that m(n) m(n2), which completes the proof. [2]

A comment on the conclusion of the theorem is in order. While it would be nicer
to obtain a function to which m(n) is asymptotic, it seems unlikely that this can be done.
The task would require an estimation similar to the estimation ofthe product ofthe first
k primes. Let P be this product. We would have to obtain an estimate of the follow-
ing form:

k

log(pi)=f(k)+ o(1),
i=1

for then we would be able to say that P ef(lO. Although it is known that the above
sum is asymptotic to Pk, at this time we cannot even say that the error term is O(p) for
even one value of di < 1.
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servations.
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