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PROCEEDINGS OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 127, Number 3, March 1999, Pages 937-940 
S 0002-9939(99)04767-X 

NONTORIC HAMILTONIAN CIRCLE ACTIONS 
ON FOUR-DIMENSIONAL SYMPLECTIC ORBIFOLDS 

S. F. SINGER, J. TALVACCHIA, AND N. WATSON 

(Communicated by Peter Li) 

ABSTRACT. We construct four-dimensional symplectic orbifolds admitting 
Hamiltonian circle actions with isolated fixed points, but not admitting any 
Hamiltonian action of a two-torus. One example is linear, and one example is 
compact. 

In this note we construct four-dimensional symplectic orbifolds admitting Hamil- 
tonian circle actions with isolated fixed points, but not admitting any Hamiltonian 
action of a two-torus. This work is part of our ongoing attempt to generalize to 
orbifolds the classification of four-dimensional compact symplectic manifolds with 
Hamiltonian circle actions due to Ahara and Hattori, Audin and Karshon ([AH], 
[Au], [K]) and is part of a larger program to understand torus actions of complex- 
ity one on orbifolds. The complexity of a Hamiltonian torus action on an orbifold 
is defined to be the difference between half of the dimension of the orbifold and 
the dimension of the torus. The complexity zero case (i.e., n-torus actions on 
2n-dimensional orbifolds) has been analyzed by Lerman and Tolman [LT]. 

One of Karshon's theorems states that if a Hamiltonian circle action on a compact 
four-dimensional manifold has isolated fixed points, then the action can be extended 
to the action of a two-torus. It follows that if a compact symplectic four-dimensional 
manifold has a Hamiltonian circle action with isolated fixed points, then it is a toric 
variety. One of our orbifolds is compact, proving that Karshon's result does not 
generalize to orbifolds. Our result is slightly stronger: not only do the circle actions 
fail to extend, but the underlying spaces admit no Hamiltonian two-torus action 
whatsoever. 

In the first section we consider a compact orbifold that is the quotient of a non- 
singular four-dimensional toric variety by a finite group. Specifically, we consider 
CP1 x CP1 modulo an action of the group Z/4Z. The natural Hamiltonian action 
of the two-torus on CP1 x CP1 does not descend to the quotient; however, the 
action of one circle subgroup does descend, giving the required circle action. 

In the second section we consider the vector orbi-space C2/r where r is a finite 
subgroup of U(2) that is not abelian. Here the diagonal action of S1 on C2 descends 
to the orbifold but, due to the nature of the group r, there is no possible two-torus 
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action on the orbifold. Unlike symplectic manifolds, where the only obstructions 
to large torus actions are global, symplectic orbifolds can have local obstructions. 

1. A COMPACT EXAMPLE: CP' x CP//r 

Consider the real four-dimensional manifold CP1 x CP1. We denote an arbitrary 
point on this manifold by (x, y), with x, y E CP1. This manifold has a standard 
symplectic form given by 

i ( dxAdt dyAdy 
'=2 +t 1X)2 1+ I 012)2 

Let r denote the group of symplectomorphisms generated by (x, y) a-4 (-y, x). 
Note that r = Z/4Z. Then CP1 x CPl/r is a symplectic orbifold. We denote a 
point of this orbifold by [x, y], the r-equivalence class of (x, y). The only singular 
points of this orbifold are [0, 0], [oo, oo] and [0, oc], and these have cyclic orbifold 
structure groups of orders 4, 4 and 2, respectively. 

We can define a Hamiltonian circle action on CP1 x CPl/r. The function 

0 ([X ______=___ $([xy]) = 4 ((lJ + J1F ) (1 + Jy2)) 

is well-defined on CP1 x CPl/r, and its Hamiltonian flow is given by [eit/2x, eit/2y]. 

Notice that the minimum period of this flow is 27r. The fixed points are [0, 0], [oc, oc] 
and [0, oc]. The image of 0 is [0, 2]. The function 0 is a Morse function. One can 
apply the results of [LT], section 4.1, to see that the associated Morse polynomial 
is 1+ X2 + X4, that this polynomial must equal the Poincare polynomial, and hence 
that dim H2 = 1 i.e., the second cohomology is one-dimensional. 

It remains to show that this orbifold admits no effective Hamiltonian action of 
a two-torus. We argue by contradiction. Suppose 

: cP1 x CPl/r - R2 

is the Hamiltonian for an effective two-torus action. Let A be the image of A. 
Then A is a convex polytope. By applying Bott-Morse theory to a generic one- 
dimensional projection of the moment map AP and comparing with the Poincare 
polynomial, we know that the number of vertices of A is equal to dim H2 + 2 = 3. 
Hence A is a triangle. Because CP1 x CPl/r has only three singular points, of 
orders 4, 4 and 2, it follows from the normal form theorem for group actions on 
orbifolds, in section 3.5 of [LT], that these points must correspond to the vertices of 
the triangle. Without loss of generality (by choosing an automorphism of the two- 
torus) we may assume that the edge between the two vertices of order 4 is parallel 
to the vector (1, 0). Let (a, b) and (c, d) be primitive integer vectors parallel to the 
other two sides. 

Because the order of an isolated singular point in a toric variety is given by the 
determinant of the matrix of primitive integer vectors parallel to edges emanating 
from the corresponding vertex of the associated polytope, we find that 

b d ?=2, b = ?4 and d = ?4. 
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But these three equations cannot be simultaneously satisfied by integers, as 
a 

| 

must be divisible by 4 if a and c are integers. Contradiction! Hence CP1 x CPl/r 
admits no effective action of a two-torus. 

We remark that this orbifold has a Kaehler structure inherited from CP1 x CP1. 
While Karshon has shown that any compact symplectic four-dimensional manifold 
with a Hamiltonian circle action (with no assumptions on the fixed-point sets) must 
be Kaehler [K] and Tolman has constructed a six-dimensional, non-Kaehler compact 
symplectic manifold with a Hamiltonian action of a two-torus [T], it is unknown 
whether every compact symplectic four-dimensional orbifold with a Hamiltonian 
circle action must be Kaehler. 

2. A VECTOR ORBI-SPACE EXAMPLE: C2/r 

Let r be a finite subgroup of U(2) that is not abelian. (For example, let r be 
a dihedral group.) Consider C2 with coordinates (z1, Z2) and symplectic form 

W =(dz A dz1 + dz2 A d2). 
2 

The diagonal Hamiltonian action of Si on (C2, W) given by 

(e, (z, Z2)) e (&0zie0 i z2) 

with moment map 

q(Z1, Z2) = 4(tzi12 + Z2 12) 

descends to C2/r. There is one singular point of the orbifold at [(0,0)] which is 
also an isolated fixed point of the S1 action. The orbifold structure group of [(0 0)] 
is r. By Lemma 6.2 in [LT], however, there can be no faithful Hamiltonian two- 
torus action on C2/r. The image of the moment map (D for any such two-torus 
action would have to be a simplicial cone containing D([(O, 0)]) as a vertex, and the 
orbifold structure group at [(O 0)] would have to be a quotient of lattices, and hence 
abelian. But r is not abelian; hence the vector orbi-space admits no Hamiltonian 
two-torus action. 
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